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Abstract
Deterministic sensitivity analyses (DSA) remain important to interpret the effect of uncertainties in individual parameters 
on results of cost-effectiveness analyses. Classic DSA methodologies may lead to wrong conclusions due to a lack of or 
misleading information regarding marginal effects, non-linearity, likelihood and correlations. In addition, tornado diagrams 
are misleading in some situations. Recent advances in DSA methods have the potential to provide decision makers with 
more reliable information regarding the effects of uncertainties in individual parameters. This practical application discusses 
advances to classic DSA methods and their implications. Three methods are discussed: stepwise DSA, distributional DSA 
and probabilistic DSA. For each method, the technical specifications, options for presenting results, and its implications for 
decision making are discussed. Options for visualizing DSA results in incremental cost-effectiveness ratios and in incre-
mental net benefits are presented. The use of stepwise DSA increases interpretability of marginal effects and non-linearities 
in the model, which is especially relevant when arbitrary ranges are implemented. Using the probability distribution of each 
parameter in distributional DSA provides insight on the likelihood of model outcomes while probabilistic DSA also includes 
the effects of correlations between parameters.
Probabilistic DSA, preferably expressed in incremental net benefit, is the most appropriate method for providing insight on 
the effect of uncertainty in individual parameters on the estimate of cost effectiveness. However, the opportunities provided 
by probabilistic DSA may not always be needed for decision making. Other DSA methods, in particular distributional DSA, 
can sometimes be sufficient depending on model features. Decision makers must determine to which extent they will accept 
and implement these new and improved DSA methodologies and adjust guidelines accordingly.

1  Introduction

In health economics, deterministic sensitivity analyses (DSA) 
are used to inform decision makers about the sensitivity of 
the outcomes of a cost-effectiveness model to individual 

parameters (one-way sensitivity analysis) or sets of param-
eters (two-way or multi-way sensitivity analysis). The sixth 
report of the ISPOR-SMDM (International Society for Phar-
macoeconomics and Outcomes Research and Society for 
Medical Decision Making) series on good modelling practices 
discusses model parameter estimation and uncertainty and 
advocates deterministic and probabilistic sensitivity analyses 
for all evaluations [1, 2]. Probabilistic sensitivity analyses are 
recommended for the interpretation of joint parameter uncer-
tainty on cost-effectiveness estimates. In addition, insight into 
the isolated effects of variations in individual parameters is 
provided by deterministic methods. Deterministic analyses 
remain of relevance to decision makers [3–9].

Current DSA methods do not provide reliable insight 
into the changes to the outcome of the model due to indi-
vidual parameter uncertainty. Limitations to the classic 
DSA approach have been well known for years [10–12], 
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and include that (i) the parameter ranges included in DSAs 
are often chosen arbitrarily and no insight in effects at the 
margin is provided, (ii) non-linearities in models are not 
visible, (iii) results of DSAs do not provide insight into 
the likelihood of the reported parameter values, (iv) cor-
relations between parameters are not taken into account 
and (v) DSAs are usually reported in the incremental cost-
effectiveness ratio (ICER), the mathematical properties of 
which bring several limitations [1, 12–16].

These limitations imply that the classic approach to 
DSA can produce biased estimates of the expected costs 
and outcomes under individual parameter values that differ 
from the base case [10]. For example, in many oncologi-
cal models, survival estimates include parametric survival 
curves that are defined by two correlated parameters (e.g. 
Weibull or lognormal curves [17, 18]). Evaluating the 
model outcome for a value of one of the survival curve 
parameters at the maximum of its predefined range while 
keeping the other at its base case value will nullify the cor-
relation and thereby provide an incorrect estimate.

Recently, a new method for performing DSAs was 
published, which the authors called the Probabilistic 
One-way Sensitivity Analysis (POSA) [12]. This method 
is explained in more detail later in this paper but in sum-
mary entails the use of individual parameter distributions 
to generate parameter values according to pre-set per-
centile steps of their probability density function. Subse-
quently, the sampled value of the parameter of interest is 
held fixed while all other model parameters are repeatedly 
randomly sampled from their respective probability distri-
butions, as in a probabilistic sensitivity analysis [12]. This 
procedure is repeated for each pre-set percentile step for 

all individual model parameters. Although POSA may be 
the best approach to provide detailed insight in individual 
parameter uncertainties, simpler approaches may be suf-
ficient in most situations, the method is computationally 
burdensome and it does not use the ICER as an outcome 
even though the ICER represents the preference of many 
decision makers. Thus, the uptake of POSA may be limited 
even though it provides methodological advances. Since 
the impact of any methodological advance on decision-
making practices depends on its uptake, more guidance 
on the application of different DSA methods is necessary.

POSA can be broken down into three methodological 
advances to classic DSA, each with its own implications for 
decision makers. These stages of advancement include the use 
of steps of parameter values (stepwise DSA), the use of dis-
tributions for generating parameter values according to these 
steps (distributional DSA), and the introduction of proba-
bilistic sampling of all other parameters when assessing the 
parameter of interest (probabilistic DSA). The POSA method 
is a form of probabilistic DSA but with the model outcome 
expressed in incremental net benefits instead of the ICER [12].

This practical application systematically discusses the 
three methodological advances to classic DSA, their inter-
pretation and their implications for decision makers based 
on a hypothetical case study. Each advance is described in 
light of what it adds to the previous approach.

2 � Three Stages of Methodological Advances 
to Deterministic Sensitivity Analysis (DSA)

In this section, three methodological advances will address 
each of the five limitations to the classic DSA approach as 
outlined in the introduction. A lack of insight in effects at 
the margin (i) and in non-linearities (ii) can be addressed by 
stepwise DSA. Insight into the likelihood of outcomes (iii) 
can be provided by performing DSA according to individual 
parameter distributions (distributional DSA). Insight in cor-
relation (iv) can be provided by probabilistic DSA. The use 
of incremental net benefit instead of the ICER (v) can be 
applied within all methods. Table 1 summarizes the limita-
tions that each method addresses.

The use of incremental net benefit instead of the incremental 
cost-effectiveness ratio

The mathematical characteristics of ratios introduce some 
difficulties with the ICER as a means to report model out-
comes [1, 6, 10, 13, 19, 20]. Normally distributed incremen-
tal costs and benefits may result in non-normally distrib-
uted ICERs due to the denominator approaching zero, and 
ICERs are not uniquely defined. Good practice guidelines 
thus advise not to report negative ICERs (and instead report 

Key Points for Decision Makers 

Limitations to classic deterministic sensitivity analysis 
(DSA) methodologies may result in wrong conclusions 
regarding the effect of uncertainties in individual param-
eters on cost-effectiveness model outcomes.

Developments in DSA methodologies include stepwise 
DSA, distributional DSA based on parameter probability 
density functions and probabilistic DSA.

Probabilistic DSA provides the most accurate insight 
into marginal and non-linear effects, likelihood of 
outcomes and correlation between parameters. In some 
cases distributional DSA can be sufficient for decision 
making.

Decision makers must determine to which extent they 
will accept and implement these improved DSA method-
ologies and adjust guidelines accordingly.
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domination) and to clearly distinguish positive ICERs that 
are located in the southwest quadrant of the cost-effective-
ness plane (negative incremental costs and QALYs) [1, 16, 
21].

The problems with the ICER as an outcome can be miti-
gated in two ways. Either one can include in the presenta-
tion of DSA results the quadrant of the cost-effectiveness 
plane that the reported ICER populates, or one can report 
incremental net benefits instead. Incremental net benefits 
can be presented in monetary or in health benefits (INMB 
and INHB). The relation between INMB and INHB is linear 
and straightforward [19]. In this paper, we use INMB as it 
represents the more common approach.

We provide results for both approaches to mitigate the 
problems with the ICER. Each of the three new DSA meth-
ods reported in the following sections are presented while 
giving insight in dominated scenarios but also with the ICER 
as well as with INMB as the model outcome of interest. We 
used a willingness-to-pay threshold of €20,000 per QALY 
to calculate INMB throughout this paper as it is one of the 
willingness-to-pay reference values used in the Nether-
lands, while it simultaneously approximates the threshold of 
£20,000 per QALY used by the National Institute for Health 
and Care Excellence (NICE) [3, 4].

Model description for the hypothetical case study

For the case study, a simple Markov model was constructed, 
closely related to recent models seen in oncology [22–29]. 
The model parameter values were chosen in such a way to 
be able to show all implications of the DSA methodologies 
based on a single case study. The model includes three dis-
ease states: progression-free survival (PFS), post-progres-
sion survival (PPS) and death.

Incremental costs and QALYs were calculated for a new 
treatment compared with a comparator. Twelve parameters 
defined the model. Exponential survival curves defined PFS 
for the new treatment and PFS and overall survival (OS) for 
the comparator, while a hazard ratio defined OS for the new 
treatment. Utility between both treatments was set as equal. 
Thus, only two utility inputs were needed: one for PFS and 
one for PPS. Three cost parameters applicable to the com-
parator as well as the new intervention defined costs dur-
ing PFS, costs during PPS and one-off costs for death. The 
costs for both disease states were assumed to be correlated 

(R2 = 0.8). A single parameter defined the costs for the new 
treatment while the comparator did not incur costs. The last 
two included parameters were the discount rates for costs and 
benefits (both 3.5%). The model included cycles of 1 month 
and a time horizon of 5 years (60 months). No half-cycle cor-
rections were applied. The model can be requested from the 
authors but we note that it serves only illustrative purposes.

The values, ranges and distributions of all 12 parameters 
are listed in Table 2. On purpose, different types and extents 
of ranges were included. During probabilistic sampling, the 
costs were restrained to be at least zero and exponential 
survival curve parameters were restrained to the interval 
between zero and one.

2.1 � Stepwise DSA

2.1.1 � Stepwise DSA: Addressed Limitations and Methods

2.1.1.1  Non‑linearity and  marginal effects  Uncertainty in 
individual parameters may not have a linear effect on incre-
mental costs, incremental benefits and/or the ICER. Infor-
mation regarding non-linear effects may nevertheless be 
relevant for decision making as it conveys whether a small 
change in a parameter value may have a small or large effect 
on the model outcome. Additionally, through the provision 
of insight in non-linearity in the outcomes of the model due 
to the uncertainty ranges in individual parameters, we also 
gain insight in the marginal effects at the outer ends of the 
range of each parameter, which is particularly helpful in the 
case of arbitrary ranges.

The ISPOR-SMDM good practices report explicitly states 
that deterministic sensitivity analyses should be based on 
evidence-informed ranges; the use of arbitrary ranges is 
actively discouraged. Nevertheless, the use of arbitrary 
ranges in reimbursement dossiers submitted by manufac-
turers and in published articles is commonplace [22–26, 
30–32]. Thirty-six technology appraisals were published by 
NICE between January and June 2019. For 20 appraisals, the 
committee papers including the manufacturer submission 
of the model was available. Of those, 70% (N = 14) showed 
the use of arbitrary ranges for multiple parameters within 
the deterministic sensitivity analysis, ranging between 
±10 and 50%, or using unknown percentages [22–26, 30, 
32–43]. Furthermore, all of the models used the same per-
centage for all parameters in case of arbitrary ranges. The 
ISPOR-SMDM report states that in the case of a lack of pre-
specified information on parameter ranges, an appropriately 
broad range should be implemented for each parameter [1]. 
Though applying the same fixed percentage for all param-
eters is convenient and easy to interpret, it is highly unlikely 
that it is appropriate for each parameter. If the used ranges 
for the parameters included in the DSA are questionable, so 
are the results of the DSA.

Table 1   Limitations to the classic deterministic sensitivity analysis 
(DSA) approach that are addressed by each of the methodological 
advances
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2.1.1.2  Stepwise DSA method  Marginal effects and non-
linear relations between input parameter values and the 
model outcome can be demonstrated by replacing the clas-
sic approach to DSA, which assesses the outcome at the 
base case value and at a minimum and a maximum value, 
with a stepwise approach. Stepwise DSA entails that model 
outcomes are recorded for the base case, minimum and 
maximum values and for a number of uniform intermediate 
steps between the base case and the minimum and the base 
case and the maximum. In our case study, we used 10 steps 
above the base case (including the maximum) and 10 steps 
below (21 steps in total). We took the range of each param-
eter and inferred that these represented 95% confidence 
ranges. The interval between the 2.5th and 97.5th percen-
tile of the range can be split into steps of five percentiles, 
with the mean value (50th percentile) representing a half 
step between the 10th and 11th step. Sometimes the size of 
the lower range differs from the size of the upper range. In 
those cases, the steps between the minimum and the base 
case may be smaller or larger than those between the base 
case and the maximum.

2.1.2 � Stepwise DSA: Figures and Their Interpretation

Figure 1 shows the tornado diagrams for both the classic 
DSA approach (left figure) as well as stepwise DSA (right 
figure). The model provided a base-case ICER of €7403 per 
QALY, based on incremental costs of €2665 and incremental 
QALYs of 0.36.

The stepwise DSA figure reads as a classic DSA tor-
nado diagram but instead of looking solely at the outer 
ends of the range (minimum and maximum), we gain 
insight in the range between the base case and the mini-
mum and maximum, respectively. The steps are shown 
as bars, clustered per parameter. For clarity, the applied 
ranges are reported within the diagram. Note that the 
costs during PFS were varied by 50% and costs during 
PPS by 25% (see Table 2). Their relative impact on the 
ICER (which is not twice as large for PFS costs) illus-
trates that it is crucial to know the extent of each range 
when interpreting the tornado diagram. The order of the 
parameters in the tornado diagram would be different had 
the same range been used for both parameters, as can be 
easily inferred by looking at the intermediate steps of the 
range for PFS costs.

Figure 2 shows the stepwise DSA results in the same 
plot as in Fig. 1 but with transparent bars to indicate the 
situations where the new therapy dominates the old (left 
figure), and the DSA results expressed in INMB (right 
figure). The order of the parameters has been kept fixed 
throughout the manuscript to facilitate comparisons 
between the figures.

2.1.3 � Stepwise DSA: Benefits

2.1.3.1  Incalculable ICERs  From Fig. 1, one benefit of the 
stepwise DSA approach becomes clear immediately. The 
maximum value for utility in PPS is equal to the base-case 

Table 2   Parameter values and 
their ranges and distributions for 
the hypothetical case study

CI confidence interval, HR hazard ratio, OS overall survival, PFS progression-free survival, PPS post-pro-
gression survival, N/A not applicable, SD standard deviation

Parameter Base case Type of range Range Distribution Distribution 
parameters

Survival parameters Mean SD
 PFS λ comparator 0.25 95% CI 0.100–0.400 Normal 0.25 0.077
 PFS λ intervention 0.05 95% CI 0.017–0.083 Normal 0.05 0.017
 OS λ comparator 0.03 95% CI 0.021–0.039 Normal 0.03 0.005
 OS HR intervention 1.00 95% CI 0.800–1.250 Lognormal 1.00 0.114

Utility parameters Alpha Beta
 Utility PFS 0.80 95% CI 0.610–0.930 Beta 17.80 4.70
 Utility PPS 0.50 95% CI 0.200–0.800 Beta 4.54 4.54

Cost parameters Mean SD
 Costs PFS (€) 1200 ± 50% 600–1800 Normal 1200 306
 Costs PPS (€) 2000 ± 25% 1500–2500 Normal 2000 255
 Costs death (€) 1500 ± 25% 1125–1875 Normal 1500 191
 Costs intervention (€) 750 ± 25% 563–938 Uniform N/A N/A

Discount rates
 Discount rate costs 3.5% Fixed range 0.015–0.055 Uniform N/A N/A
 Discount rate benefits 3.5% Fixed range 0.015–0.055 Uniform N/A N/A
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utility in PFS. Since there is no treatment effect on OS in 
the base case, the resulting QALYs are zero and an ICER 
cannot be calculated, which means it cannot appropriately 
be reported in the classic tornado diagram with the ICER. 
In the classic DSA, this either defaults to zero (as in Fig. 1) 
or it means modellers leave such cases out of the visuali-
zation of the DSA entirely and report it only in text. The 
stepwise DSA shows clearly that the effect of uncertainty in 
this parameter on the ICER is actually very substantial. The 
parameter is at the very top of the stepwise tornado diagram, 
while it would have been somewhere in the bottom part of 
the diagram in the classic DSA.

2.1.3.2  Non‑linearity and marginal effects  In Fig. 1, the 
non-linear relation between several parameters and the 
ICER are evident. An increase in the hazard rate (lambda) 
for PFS of the comparator results in a lower ICER due to a 
simultaneous decrease in costs and increase in incremen-
tal QALYs. Due to the exponential curve, the marginal 
effect on the ICER is small at the outer end of the upper 
range. In contrast, the marginal effects increase for the 

lower range. These effects are not visible in the traditional 
DSA.

For a decision maker who would be willing to accept the 
intervention if the ICER remains below €20,000 per QALY, 
the intervention would not be cost effective at the minimum 
value of this range (the ICER is €34,178 per QALY). A 
slightly smaller outer end of the range would yield a dispro-
portionally smaller ICER. For example, three steps closer to 
the base case (hazard rate = 0.15) the ICER is €16,640 per 
QALY, making the intervention cost effective. The effect of 
decreasing the range by 32% yields an effect on the ICER of 
− €17,538 per QALY (− 51%), or a change of 237% relative 
to the base case ICER. At the other end, uncertainty regard-
ing the boundary of the upper range will be less relevant, as 
marginal effects are small.

2.1.3.3  Domination and  incremental net monetary ben‑
efits  In our hypothetical model, in some situations the new 
therapy dominated the old (representing the southeast quad-
rant of the cost-effectiveness plane). In Fig. 2 (right figure) 
we included in the tornado diagram of the stepwise DSA 

Fig. 1   Classic deterministic sensitivity analysis (left) and stepwise deterministic sensitivity analysis (right). DR discount rate, OS overall sur-
vival, PFS progression-free survival, PPS post-progression survival
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information regarding what negative ICERs mean. In this 
case, we only had situations where the new therapy domi-
nated the old (we made these transparent), but we can easily 
extend this presentation by using more types of transpar-
ency, colours or patterns in the bar plots. This way we retain 
the information included in the stepwise DSA, including the 
parameter value at which the new therapy starts dominating 
the old, while also providing information on the meaning of 
the otherwise uninterpretable ICER values. If we had only 
reported the minimum and maximum value as resulting in 
domination or not, we could have omitted useful informa-
tion about the moment the new therapy started to dominate 
the old [44]. It would suggest that the whole range means 
domination while it is perfectly possible that the majority of 
the range leads to non-dominating situations. In Fig. 2, this 
is the case for the costs of the new therapy.

The reporting of INMB as opposed to the ICER solves 
many difficulties associated with the ICER in our case study. 
In Fig. 2 we can see that there is no problem with incalcula-
bility of the upper range of utility during PPS. Additionally, 
the non-linear relationships in the model become clearer 

because non-linearity as a consequence of the ICER being a 
ratio is eliminated, which can be seen in the range for utility 
during PPS and for the hazard ratio. We can still show situa-
tions where the new therapy dominates the old by including 
transparent bars.

2.2 � DSA with Percentiles of the Parameter 
Probability Distribution (Distributional DSA)

2.2.1 � Distributional DSA: Addressed Limitations 
and Methods

2.2.1.1  Likelihood of the parameter values  A limitation to 
classic and stepwise DSA is that they assume that each value 
of a parameter’s range is equally likely to occur. However, 
in reality most parameter ranges are defined by a probability 
distribution, which means that the values at the outer ends 
of the range are not as likely to occur as the values around 
the mean. By including the probability distribution in the 
DSA we gain insight in the likelihood of the parameter 
value and the resulting model outcome. Distributional DSA 

Fig. 2   Stepwise deterministic sensitivity analysis (DSA) with infor-
mation on situations where the new therapy dominates the old 
through transparent bars (left) and stepwise DSA expressed in incre-

mental net monetary benefits (right) for the theoretical case study. DR 
discount rate, OS overall survival, PFS progression-free survival, PPS 
post-progression survival
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takes a similar approach as stepwise DSA, but instead of the 
uniform steps between the base case and the minimum and 
maximum, the steps represent percentiles of the probability 
density function of the parameter.

2.2.1.2  Distributional DSA method  The method is best 
explained by looking at a normal distribution. For example, 
take the costs during PFS. These costs are arbitrarily varied 
by ± 50% in the DSA. To perform distributional DSA (but 
also in general to perform a PSA), we will need to assume 
a distribution. In our case study, we assumed a normal dis-
tribution with the outer ends of the range representing the 
95% confidence interval running from the 2.5th percentile 
to the 97.5th percentile. As with stepwise DSA, the inter-
val between the 2.5th and 97.5th percentile of the range can 
be split into steps of five percentiles, with the mean value 
(50th percentile) representing a half step between the 10th 
and 11th step. The value of the parameter in the distribu-
tional DSA approach was subsequently calculated based on 
this percentile of the probability density function rather than 
being based on uniform steps. Because the probability den-
sity function is denser around the mean, 1/10th of the distri-
bution does not equal 1/10th of the uniform range. Figure 3 
shows this visually.

As an example, look at the values that represent 75% of 
the range around the mean, in Fig. 3 represented between 
the grey dotted lines. The values for the cost parameter for 
the uniform steps equal €726–€1674 (range €947) while 
they equal €848 to €1552 (range €704) for the normal dis-
tribution. The difference in the applicable range of €243 
(€947–€704) represents 20% of the full range (€600–€1800).

2.2.2 � Distributional DSA: Figures and Their Interpretation

Figure 4 shows the stepwise DSA (left figure) and the dis-
tributional DSA (right figure). The interpretation of the 
distributional DSA is the same as the stepwise DSA. The 
changes to the shape of the ranges for each parameter are 
clearly visible, reflecting the normal and beta distributions. 
Note that the shape of the range does not change for the costs 
of the intervention, as the distribution of this parameter is 
defined as uniform. In general, when a probability distribu-
tion cannot be assumed, it is advocated to apply the uniform 
distribution which means the distributional DSA defaults to 
stepwise DSA for these parameters.

Figure 5 shows the distributional DSA with INMB as the 
outcome in two ways. The left figure is interpreted in the 
same way as the INMB figure for the stepwise DSA. The 
right figure (called a spider plot) is interpreted differently. 
Because the steps for each parameter are executed accord-
ing to standardized percentiles of their probability density 
functions, we can present each parameter on the same axis. 
The x-axis therefore now represents the percentile of each 
parameter’s distribution while the y-axis represents the 
INMB. Each parameter is represented by a different colour 
and different line markers. Grey dashed lines represent spe-
cific percentile ranges around the mean (in this case 50%, 
75% and 95%).

2.2.3 � Distributional DSA: Implications of the Results

2.2.3.1  Likelihood of  parameter values  The inclusion of 
the probability distributions clearly leads to different results. 

Fig. 3   Parameter values of costs 
during progression-free survival 
for different percentile steps of 
uniform and normal distribu-
tions



8	 R. A. Vreman et al.

Most notably, the utility in the PPS state appears consider-
ably less relevant. This is explained by the fact that the value 
of the utility at the next to last step is lower when calculated 
from the distribution than when it is uniformly calculated. 
Though we can still infer from Fig.  4 that the ICER will 
approach infinity when it comes closer to the maximum of 
the range, we now also can infer that the likelihood of these 
extreme ICERs is actually quite low. They are outside the 
next to last step representing the 92.5th percentile of the dis-
tribution with an ICER of €32,367. Similarly, only the outer 
five steps (up until the 22.5th percentile) of the lower range 
of the costs during PFS represent situations where the new 
therapy dominates the old, whereas this was the case for the 
outer seven steps in the stepwise DSA (up until the 32.5th 
percentile).

Figure 5, which presents model results in INMB, shows 
the same implications. The right figure makes it easier to 
interpret the likelihood that parameters cross certain INMB 
thresholds. For example, there is only one parameter that 
has a negative INMB within a range representing 75% of its 
distribution (the range between the 12.5th and 87.5th per-
centile), namely costs during PFS. Apparently, throughout 

the ranges of all individual parameters, the likelihood of a 
negative INMB is relatively small. Additionally, the graph 
readily shows whether the relation between the parameter 
and INMB is negative or positive (through the slope).

2.3 � Probabilistic Non‑Fixed Parameters 
in Deterministic Sensitivity Analysis 
(Probabilistic DSA)

2.3.1 � Probabilistic DSA: Addressed Limitations 
and Methods

2.3.1.1  Correlation between  parameters  All previously 
mentioned methods disregard an important element in cost-
effectiveness models—correlation between parameters [1]. 
When a cost-effectiveness model includes correlated param-
eters, the classic DSA approach as well as stepwise DSA 
and distributional DSA yield biased results.

In the simple case study we have been using, correlation 
between the parameters for costs during PFS and during PPS 
has been present from the beginning (see the description of 

Fig. 4   Stepwise deterministic sensitivity analysis for reference (left) and distributional deterministic sensitivity analysis (right). DR discount 
rate, OS overall survival, PFS progression-free survival, PPS post-progression survival
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the case study in section 2). However, it has not shown up 
in any of the presented DSA results so far.

2.3.1.2  Probabilistic DSA method  To include correlation 
in a DSA, we can perform probabilistic DSA where all 
parameters except the parameter of interest are sampled 
probabilistically—taking into account any correlation—for 
each fixed value of the parameter of interest (each quantile 
step). Probabilistic DSA is slightly more complex than the 
two methods described previously. The precise methods are 
described elsewhere by the inventors of the method [12], 
but here we provide a summary. The process is visualized 
in Fig. 6.

In probabilistic DSA, each individual parameter is still 
varied according to fixed percentiles of their probability den-
sity function, as in distributional DSA. However, for each 
parameter, we now include for each of the steps a probabil-
istic analysis for all the other parameters with as many itera-
tions as would be appropriate for the normal PSA (we used 
10,000) [45]. The results for these iterations are recorded 
and the next percentile step of the parameter of interest is 
introduced. This is repeated until an inner loop is completed 
for all predefined percentile steps of all parameters. In our 

case, 12 parameters defined the model, each with 21 steps. 
The 10,000 iterations for each of these 252 options results 
in 2.5 million iterations.

Subsequently, for each step of each parameter, mean 
incremental costs and mean incremental QALYs are calcu-
lated. The ratio of these means provides us with the proba-
bilistic ICER of each deterministic percentile step of the 
parameter [46]. INMB can also be calculated, based on the 
mean incremental costs and QALYs and the predefined 
willingness-to-pay threshold (€20,000 per QALY in our 
case). Calculated ICERs and INMB are conditional upon 
the parameter of interest that has been held fixed [12]. The 
conditionality includes that the possible correlation with the 
parameter of interest is taken into account. Note that the 
probabilistic approach with INMB as an outcome has previ-
ously been referred to as probabilistic one-way sensitivity 
analysis (POSA) [12], while probabilistic DSA includes all 
probabilistic approaches irrespective of the outcome used.

The probabilistic DSA method shares some similari-
ties with expected value of parameter perfect information 
analysis (EVPPI). Both methods require one parameter to 
be fixed while all others are varied probabilistically [6, 12, 
48]. However, the fixed value of the parameter of interest 

Fig. 5   Distributional deterministic sensitivity analysis with incremen-
tal net monetary benefits as the model outcome in a tornado diagram, 
with information on situations where the new therapy dominates the 
old through transparent bars (left) and distributional DSA expressed 

in incremental net monetary benefits in a spider plot (right). DR dis-
count rate, OS overall survival, PFS progression-free survival, PPS 
post-progression survival
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is sampled randomly from its probability distribution in 
EVPPI while it is deterministically defined according to a 
pre-set percentile of the probability distribution in probabil-
istic DSA. The methods answer different questions. EVPPI 
could be helpful in answering questions about the value of 
the reduction of uncertainty within the parameter of interest 
relative to other parameters, while probabilistic DSA treats 
the uncertainty associated with a parameter as a given, and 
subsequently investigates its effects on the outcome of the 
model.

2.3.2 � Probabilistic DSA: Figures and Their Interpretation

Figure 7 shows the results of the probabilistic DSA (left 
figure) in comparison with the distributional DSA (right 
figure). Their interpretation is the same with the exception 
that the mean ICER in the probabilistic DSA represents the 
probabilistic mean per parameter of the iterations performed 
for the base-case scenario of that parameter, rather than the 
deterministic base case. Note that the incalculable ICER 
does not apply anymore as the incremental QALYs are not 

Fig. 6   Process for perform-
ing probabilistic deterministic 
sensitivity analysis. ICER incre-
mental cost-effectiveness ratio, 
INMB incremental net monetary 
benefit



11Application and Implications of Novel Deterministic Sensitivity Analysis Methods

exactly zero due to the probabilistic element. Instead, a very 
large ICER was found as it approaches infinity when incre-
mental QALYs approach zero. Due to chance, this ICER 
may just as well have been negative to the same extent.

Figure 8 shows probabilistic DSA with conditional INMB 
as the model outcome. The interpretation of these figures is 
equal to the interpretation of the figures with INMB for the 
distributional DSA. Note that the probabilistic nature of the 
analysis results in slightly variable estimates of the mean 
ICER and INMB.

2.3.3 � Probabilistic DSA: Implications of the Results

2.3.3.1  Correlation  The probabilistic DSA figure shows 
the relevance of correlation. The parameter that resulted in 
the largest ICER range in the distributional DSA, namely 
costs during PFS, is considerably less variable. The range 
in the ICER resulting from the uncertainty in the costs dur-
ing PFS is almost completely nullified. The correlation 
between the two cost parameters readily explains this phe-
nomenon, as the parameters have opposite effects. Where 

previously costs during PFS was the only parameter that 
had negative INMB within the 75% confidence interval of 
its distribution, now the ranges in none of the parameters 
are very likely to result in negative INMB. The classic, 
stepwise and distributional DSA approaches thus yielded 
misleading results.

Note that for interpretability, we did not update the order 
of the parameters throughout the manuscript, but it is evi-
dent that decision makers would draw completely different 
conclusions from the classic DSA in Fig. 1 than from the 
probabilistic DSA in Fig. 8. To illustrate this point, Fig. 9 
contains the classic DSA tornado diagram and the proba-
bilistic DSA tornado diagram in INMB, both with the most 
influential parameter at the top of the diagram. Though 
based on the same model and parameter ranges, the order 
of the parameters is entirely different. The cost parameters 
that were the second and fourth most important in the classic 
DSA are now at the bottom of the diagram. The parameter 
that seemed the least influential in the classic DSA (PFS 
lambda intervention, except for those not having an effect at 
all), is actually the second most influential.

Fig. 7   Distributional deterministic sensitivity analysis for reference (left) and probabilistic deterministic sensitivity analysis (right). DR discount 
rate, OS overall survival, PFS progression-free survival, PPS post-progression survival
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3 � General Discussion

3.1 � Implications for Decision Makers

Deterministic sensitivity analyses are never the sole method 
used to draw conclusions on cost effectiveness of interven-
tions. Nevertheless, the insights deterministic analyses pro-
vide remain of relevance to decision makers. As we have 
shown, current DSA methods may yield misleading if not 
utterly incorrect results (see Fig. 9).

In recent technology appraisals from NICE, the DSA 
results were used by the Evidence Review Group in the 
published committee papers for informing decisions in two 
ways; first, to find the parameters that are drivers of the cost-
effectiveness estimates and the extent of sensitivity of the 
ICER to those parameters, and second, to find out what the 
most likely upper ICER is under individual parameter uncer-
tainty and whether that ICER falls below a threshold usually 
considered cost effective [3, 4, 8, 17, 18, 47]. The precise 
differences in the interpretation of DSA results as a conse-
quence of using different methods will of course vary based 
on the characteristics of each therapy and cost-effectiveness 
model. Nevertheless, we have shown in this study that the 

new methods can substantially alter the interpretation of the 
extent to which parameters are drivers of the cost-effective-
ness estimates (see Fig. 9) as well as the interpretation of 
whether it is likely that certain thresholds will be crossed 
(see Figs 4, 5, 7 and 8). Thus, the new methods crucially 
improve the two main insights the DSA is meant to deliver 
to decision makers.

Furthermore, information on the marginal effects of a 
change in one of the input parameters can be very useful for 
modellers and decision makers when they must decide which 
alternative scenarios to explore. Even though some param-
eters may have large overall ranges, sensitivity of the model 
outcome to one end of the range may not be worth exploring 
further. Probabilistic DSA can help decision makers decide 
what scenarios should be explored, what additional informa-
tion would be helpful, for what parameters an EVPPI or a 
headroom analysis would be useful and what other aspects of 
the cost-effectiveness model deserve more or less attention. 
The probabilistic DSA is effectively a systematic method to 
explore many scenarios. Depending on the objectives of the 
modeller or decision maker, the percentiles that determine 
the distributional or probabilistic DSA percentile steps can 
be modified to reflect the most relevant scenarios.

Fig. 8   Probabilistic deterministic sensitivity analysis (DSA) with 
incremental net monetary benefits as the model outcome in a tor-
nado diagram (left) and probabilistic DSA expressed in incremental 

net monetary benefits in a spider plot (right). DR discount rate, OS 
overall survival, PFS progression-free survival, PPS post-progression 
survival
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Insight in non-linear marginal effects can be especially 
useful for early health technology assessment (HTA) in 
which input parameter values and ranges are relatively 
more uncertain, and usually scenarios are performed to 
determine threshold values [28, 49–52]. Early HTA can, for 
example, be used to determine the maximum price at which 
an intervention remains cost effective, that is, has positive 
INMB [53]. Additionally, since evidence about medicines 
is becoming increasingly more limited at the time a reim-
bursement decision must be made [54–58], the new DSA 
methods can aid decision makers in weighing the impact of 
different scenarios. Time is of relevance here, because the 
estimation of the mean value as well as the corresponding 
uncertainty may develop over the course of the lifecycle of 
a new therapy [51]. By performing a comprehensive DSA 
early in the drug development process, evidence generation 
can be tailored towards resolving the uncertainties that have 
the most important impact on the model results and subse-
quent pricing and reimbursement decisions. Additionally, 
after an initial reimbursement decision has been made, the 
scenarios incorporated within the DSA can inform which 
deviations in clinical practice from the mean value for any 

individual parameter as used in the model would warrant a 
reassessment.

3.2 � Which Method to Use in Which Situation

HTA organizations need to decide which method they find 
helpful and consequently want to request in company sub-
mission procedures. The same goes for international socie-
ties that provide guidelines on the execution of cost-effec-
tiveness analyses.

It may be clear from the previous sections that in princi-
ple, probabilistic DSA is the preferred method as it addresses 
all limitations associated with the classic DSA. However, 
the necessity of probabilistic DSA depends on some of the 
features of the model. If all model parameters are completely 
independent, probabilistic DSA may not provide much addi-
tional information over distributional DSA. Probabilistic 
DSA requires the modeller to perform many iterations. In 
our hypothetical case study this included 2.5 million itera-
tions; when more percentile values of each parameter’s 
probability distribution are included, this number will grow 
vastly. Alternatively, in EVPPI analyses it is common to 

Fig. 9   Comparison of the classic deterministic sensitivity analysis (DSA) approach (left) and the probabilistic DSA approach (right), based on 
the same data. DR discount rate, OS overall survival, PFS progression-free survival, PPS post-progression survival
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use fewer iterations for the inner loop (e.g. 1000 instead of 
10,000), which would drastically reduce the number of itera-
tions. The running time is therefore a combination of how 
complex the model is (number of parameters and technical 
complexity), the number of percentile steps assessed, the 
number of iterations in the probabilistic loop, and of course, 
computational power. In any case, the number of iterations 
will probably exceed those of a regular PSA (e.g. 10,000) by 
at least a factor of ten because a probabilistic loop with 1000 
iterations for ten percentile steps for a simple model with 
ten parameters would already entail 100,000 iterations. For 
stepwise and distributional DSA, the number of iterations 
will likely never approximate the running time of a regu-
lar PSA because a complicated model with 50 parameters, 
each tested for 21 percentile steps, would still only require 
1050 iterations in total. Therefore, if independence between 
parameters is guaranteed and computational efficiency is 
considered important, the less cumbersome distributional 
DSA may be sufficient. However, it should be noted that 
complete independence is often unlikely [1]. For any model 
that contains survival curves that are defined by two or more 
parameters, correlation is relevant, and the classic, stepwise 
and distributional DSA approaches will yield misleading 
results, the extent of which will vary per model. We advo-
cate to at least implement distributional DSA in all cases, 
as it is as easy to understand as the classic DSA and already 
provides decision makers with information about marginal 
effects, nonlinearities and likelihood.

The impact of the methodological advances to DSA pre-
sented within this study will depend on the willingness of 
decision makers to adopt them. Decision makers generally 
prefer methods that are not overly complicated and that 
can be readily explained to the public. While some of the 
new DSA methods add complexity to the DSA process, the 
results—certainly when presented in a tornado diagram—
remain as intuitive as within classic DSA.

3.3 � Incremental Cost‑Effectiveness Ratio Versus 
Incremental Net Benefit

Previous literature has extensively discussed the advantages 
of using net benefit over ICERs when reporting cost-effec-
tiveness model results [1, 10, 13, 19]. In general, from a 
methodological perspective, the net benefit approach is pre-
ferred. However, in many HTA guidelines, the ICER remains 
the most prominent outcome [3, 4, 47]. The ease of its inter-
pretation and the fact that it is well established among people 
not directly involved in health economic modelling makes it 
likely that the ICER will remain the preferred outcome over 
incremental net benefit for the near future. From tornado 
diagrams expressed in ICERs, the conversion to tornado 
diagrams or line charts expressed in incremental net ben-
efits is not intuitive (see Fig. 2). To ease the transition and 

avoid confusion, HTA organizations may require the DSA 
tornado diagram to be expressed in the ICER in addition to 
a spider plot expressed in incremental net benefits (INMB 
or INHB). Since they are based on the same data, it would 
infer little additional work while it accommodates both the 
methodological arguments for using incremental net benefit 
and the societal and cultural arguments for using the ICER.

3.4 � Limitations and Warnings

Findings from a DSA are rarely, if ever, the sole reason for 
changing a conclusion on the cost effectiveness of interven-
tions. The discussed methodological advances to DSA meth-
ods can help decision makers to decide on those aspects of 
the model that need more explicit consideration, but should 
not be interpreted as being able to replace any of the other 
relevant methodologies to address uncertainty. Probabilis-
tic sensitivity analyses, value of information analyses, cost-
effectiveness acceptability curves, scenario analyses and 
other methods answer different questions than those that 
are answered within a DSA [1, 6]. The DSA is intended 
to answer the question of what would happen to the ICER 
or INMB if the estimation of a mean parameter value were 
wrong, or would change over time. The PSA provides deci-
sion makers with an uncertainty interval regarding the ICER, 
taking into account uncertainty in all parameters simulta-
neously, but it does not provide information on individual 
parameters. Good practice guidelines recommend modellers 
to perform a DSA as well as a PSA in order to get insight in 
the effects of uncertainties in individual parameters as well 
as insight in the combined uncertainty of all parameters [1].

The discussed methods also do not represent a replace-
ment for the application of evidence-informed ranges in 
input parameters, and should not be interpreted as advocat-
ing arbitrary ranges. The recommendations of the ISPOR-
SMDM good modelling practice reports apply irrespec-
tive of the methods applied to generate and visualize DSA 
results. However, since the reality is that arbitrary ranges are 
still often used in cost-effectiveness models, having meth-
ods to more adequately interpret the effects associated with 
the arbitrary range is important. Nevertheless, the new DSA 
methods in no way justify the use of arbitrary ranges.

We have chosen to model 21 percentile steps (ten smaller 
and ten bigger than the base case) as that is sufficient to 
grasp the function of marginal effects. This number is intui-
tive but remains essentially arbitrary; one could also decide 
to have less or more steps. Theoretically, it is even possi-
ble to make the steps almost continuous but there does not 
seem to be much added value, and this is computationally 
intensive.

Our hypothetical case study can be criticized in many 
ways as it is an extremely simplified model. Some of our 
simplifying assumptions such as a lack of discounting and 
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zero comparator are not very representative of the real 
world. The model’s main components such as the structure, 
the exponential survival curves and utilities are, however, 
very common within oncology. We chose to keep the model 
simple as the methodological advances are best explained 
with a model that is easy to understand and that has a limited 
set of parameters. We hope that we have provided enough 
examples of real situations to convince readers of the rel-
evance of the discussed DSA methods and we recommend 
future studies to investigate the benefits of the new methods 
in real-world case studies.

4 � Conclusions

Classic DSA approaches may provide biased information 
because they do not provide insight in marginal effects, non-
linearities, or the likelihood of the outcomes, and because 
they do not consider correlation. Recent advances in DSA 
methodologies in the form of stepwise, distributional and 
probabilistic DSA can address these limitations. This paper 
poses the argument to modellers and decision makers that 
methodological advances are worthwhile to implement in 
their models and decision-making processes. Sometimes dis-
tributional DSA may be sufficient, but in most cases proba-
bilistic one-way sensitivity analysis is the recommended 
method.

Author contributions  RAV, JWG, AKMT, HGML and WGG devised 
and planned the study. RAV, JWG and SK performed the analyses. 
RAV, JWG, SK, AKMT, HGML and WGG contributed to the interpre-
tation of the results. RAV drafted the first version of the manuscript. 
All authors reviewed and revised the manuscript in subsequent itera-
tions. All authors approved the final version of the manuscript.

Declarations 

Funding  No funding was received for this research.

Conflicts of interest  During the conduct of the study, JWG was funded 
by an unrestricted grant from GlaxoSmithKline. HGML is a member 
of the Lygature leadership team. RAV, SK, AKMT and WGG report 
no conflicts of interest.

Ethics approval  No animal or human subjects were involved in this 
study.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Availability of data and material  All used models and data for this 
study can be requested from the authors.

Code availability  The R scripts to make the published figures are made 
publicly available at https​://githu​b.com/Vrema​n/DSA.

Disclaimer  The views expressed in this article are the personal views 
of the authors and may not be understood or quoted as being made on 
behalf of or reflecting the position of the agencies or organizations with 
which the authors are affiliated.

Open Access  This article is licensed under a Creative Commons Attri-
bution-NonCommercial 4.0 International License, which permits any 
non-commercial use, sharing, adaptation, distribution and reproduction 
in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative 
Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons 
licence and your intended use is not permitted by statutory regula-
tion or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit 
http://creat​iveco​mmons​.org/licen​ses/by-nc/4.0/.

References

	 1.	 Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher 
MJ, Paltiel AD. Model parameter estimation and uncertainty: a 
report of the ISPOR-SMDM Modeling Good Research Practices 
Task Force-6. Value in Health. 2012a;15:835–42.

	 2.	 Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher 
MJ, Paltiel AD. Model parameter estimation and uncertainty 
analysis: a report of the ISPOR-SMDM Modeling Good Research 
Practices Task Force Working Group–6. Med Decis Making. 
2012b;32:722–32.

	 3.	 National Institute for Health and Care Excellence. Guide to the 
methods of technology appraisal 2013. London, 2013.

	 4.	 National Health Care Institute (ZIN). Richtlijn voor het uitvoeren 
van economische evaluaties in de gezondheidszorg. 2016. The 
Netherlands.

	 5.	 Drummond MF, Sculpher MJ, Torrance GW, O’Brien BJ, Stod-
dart GL. Methods for the economic evaluation of health care pro-
grammes. 4th ed. Oxford: Oxford University Press; 2015.

	 6.	 Fenwick E, Steuten L, Knies S, Ghabri S, Basu A, Murray JF, et al. 
Value of information analysis for research decisions—an introduc-
tion: report 1 of the ISPOR Value of Information Analysis Emerg-
ing Good Practices Task Force. Value in Health. 2020;23:139–50.

	 7.	 National Institute for Health and Care Excellence. Lorlatinib for 
previously treated ALK-positive advanced non-small-cell lung 
cancer (TA628). London, 2020.

	 8.	 National Institute for Health and Care Excellence. Obinutuzumab 
with bendamustine for treating follicular lymphoma after rituxi-
mab (TA629). London, 2020.

	 9.	 National Institute for Health and Care Excellence. Trastuzumab 
emtansine for adjuvant treatment of HER2-positive early breast 
cancer (TA632). London, 2020.

	10.	 Claxton K. Exploring uncertainty in cost-effectiveness analysis. 
Pharmacoeconomics. 2008;26:781–98.

	11.	 Ades AE, Claxton K, Sculpher M. Evidence synthesis, parameter 
correlation and probabilistic sensitivity analysis. Health Econ. 
2006;15(4):373–81. https​://doi.org/10.1002/hec.1068.

	12.	 McCabe C, Paulden M, Awotwe I, Sutton A, Hall P. One-way 
sensitivity analysis for probabilistic cost-effectiveness analysis: 
conditional expected incremental net benefit. PharmacoEco-
nomics. 2020;38:135–41.

	13.	 Briggs AH. Handling uncertainty in cost-effectiveness models. 
Pharmacoeconomics. 2000;17:479–500.

https://github.com/Vreman/DSA
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1002/hec.1068


16	 R. A. Vreman et al.

	14.	 Briggs AH, O’Brien BJ, Blackhouse G. Thinking outside the 
box: recent advances in the analysis and presentation of uncer-
tainty in cost-effectiveness studies. Annu Rev Public Health. 
2002;23:377–401.

	15.	 Siegel JE, Weinstein MC, Russell LB, Gold MR. Rec-
ommendations for reporting cost-effectiveness analyses. 
Panel on cost-effectiveness in health and medicine. JAMA. 
1996;276:1339–41.

	16.	 Sanders GD, Neumann PJ, Basu A, Brock DW, Feeny D, Krahn 
M, et al. Recommendations for conduct, methodological prac-
tices, and reporting of cost-effectiveness analyses: second panel 
on cost-effectiveness in health and medicine. JAMAAm Med 
Assoc. 2016;316:1093–103.

	17.	 National Institute for Health and Care Excellence. Larotrectinib 
for treating NTRK fusion-positive solid tumours (TA630). Lon-
don, 2020.

	18.	 National Institute for Health and Care Excellence. Fremanezumab 
for preventing migraine (TA631). London, 2020.

	19.	 Paulden M. Calculating and Interpreting ICERs and Net Benefit. 
PharmacoEconomics [Internet]. 2020. https​://doi.org/10.1007/
s4027​3-020-00914​-6.

	20.	 O’Hagan A, McCabe C, Akehurst R, Brennan A, Briggs A, Clax-
ton K, et al. Incorporation of uncertainty in health economic mod-
elling studies. Pharmacoeconomics. 2005;23:529–36.

	21.	 Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Green-
berg D, et al. Consolidated Health Economic Evaluation Reporting 
Standards (CHEERS)—Explanation and elaboration: a report of the 
ISPOR Health Economic Evaluation Publication Guidelines Good 
Reporting Practices Task Force. Value in Health. 2013;16:231–50.

	22.	 National Institute for Health and Care Excellence. Lenalidomide 
plus dexamethasone for previously untreated multiple myeloma 
(TA587). London, 2019.

	23.	 National Institute for Health and Care Excellence. Atezolizumab 
in combination for treating metastatic non-squamous non-small-
cell lung cancer (TA584). London, 2019.

	24.	 National Institute for Health and Care Excellence. Nivolumab with 
ipilimumab for untreated advanced renal cell carcinoma (TA581). 
London, 2019.

	25.	 National Institute for Health and Care Excellence. Enzalutamide 
for hormone-relapsed non-metastatic prostate cancer (TA580). 
London, 2019.

	26.	 National Institute for Health and Care Excellence. Durvalumab for 
treating locally advanced unresectable non-small-cell lung cancer 
after platinum-based chemoradiation (TA578). London, 2019.

	27.	 National Institute for Health and Care Excellence. Nivolumab for 
adjuvant treatment of completely resected melanoma with lymph 
node involvement or metastatic disease (TA558). London, 2019.

	28.	 Vreman RA, Geenen JW, Hövels AM, Goettsch WG, Leufkens 
HGM, Al MJ. Phase I/II clinical trial-based early economic evalu-
ation of acalabrutinib for relapsed chronic lymphocytic leukaemia. 
Appl Health Econ Health Policy. 2019. https​://doi.org/10.1007/
s4025​8-019-00496​-1.

	29.	 van Nuland M, Vreman RA, Ten Ham RMT, de Vries Schultink 
AHM, Rosing H, Schellens JHM, et al. Cost-effectiveness of mon-
itoring endoxifen levels in breast cancer patients adjuvantly treated 
with tamoxifen. Breast Cancer Res Treat. 2018;172:143–50.

	30.	 National Institute for Health and Care Excellence. Ocrelizumab 
for treating primary progressive multiple sclerosis (TA585). Lon-
don, 2019.

	31.	 National Institute for Health and Care Excellence. Abemaciclib 
with fulvestrant for treating hormone receptor-positive, HER2-
negative advanced breast cancer after endocrine therapy (TA579). 
London, 2019.

	32.	 National Institute for Health and Care Excellence. Brentuximab 
vedotin for treating CD30-positive cutaneous T-cell lymphoma 
(TA577). London, 2019.

	33.	 National Institute for Health and Care Excellence. Tildrakizumab 
for treating moderate to severe plaque psoriasis (TA575). London, 
2019.

	34.	 National Institute for Health and Care Excellence. Certolizumab 
pegol for treating moderate to severe plaque psoriasis (TA574). 
London, 2019.

	35.	 National Institute for Health and Care Excellence. Daratumumab 
with bortezomib and dexamethasone for previously treated mul-
tiple myeloma (TA573). London, 2019.

	36.	 National Institute for Health and Care Excellence. Pertuzumab 
for adjuvant treatment of HER2-positive early stage breast cancer 
(TA569). London, 2019.

	37.	 National Institute for Health and Care Excellence. Tisagenlecleu-
cel for treating relapsed or refractory diffuse large B-cell lym-
phoma after 2 or more systemic therapies (TA567). London, 2019.

	38.	 National Institute for Health and Care Excellence. Benralizumab 
for treating severe eosinophilic asthma (TA565). London, 2019.

	39.	 National Institute for Health and Care Excellence. Encorafenib 
with binimetinib for unresectable or metastatic BRAF V600 
mutation-positive melanoma (TA562). London, 2019.

	40.	 National Institute for Health and Care Excellence. Venetoclax with 
rituximab for previously treated chronic lymphocytic leukaemia 
(TA561). London, 2019.

	41.	 National Institute for Health and Care Excellence. Axicabtagene 
ciloleucel for treating diffuse large B-cell lymphoma and primary 
mediastinal large B-cell lymphoma after 2 or more systemic thera-
pies (TA559). London, 2019.

	42.	 National Institute for Health and Care Excellence. Pembrolizumab 
with pemetrexed and platinum chemotherapy for untreated, meta-
static, non-squamous non-small-cell lung cancer (TA557). Lon-
don, 2019.

	43.	 National Institute for Health and Care Excellence. Darvadstrocel 
for treating complex perianal fistulas in Crohn’s disease (TA556). 
London, 2019.

	44.	 Sacristán JA, Obenchain RL. Reporting cost-effectiveness analy-
ses with confidence. JAMA Am Med Assoc. 1997;277:375–375.

	45.	 Hatswell AJ, Bullement A, Briggs A, Paulden M, Stevenson MD. 
Probabilistic sensitivity analysis in cost-effectiveness models: 
determining model convergence in cohort models. Pharmaco-
Economics. 2018;36:1421–6.

	46.	 Stinnett AA, Paltiel AD. Estimating CE ratios under second-order 
uncertainty: the mean ratio versus the ratio of means. Med Decis 
Mak. 1997;17:483–9.

	47.	 Institute for Clinical and economic Review. A Guide to ICER’s 
Methods for Health Technology Assessment. August 2018. Bos-
ton. United States.

	48.	 Rothery C, Strong M, Koffijberg HE, Basu A, Ghabri S, Knies S, 
et al. Value of Information Analytical Methods: Report 2 of the 
ISPOR Value of Information Analysis Emerging Good Practices 
Task Force. Value in Health. 2020;23:277–86.

	49.	 Ijzerman MJ, Steuten LMG. Early assessment of medical tech-
nologies to inform product development and market access: a 
review of methods and applications. Appl Health Econ Health 
Policy. 2011;9:331–47.

	50.	 Drummond MF. Modeling in Early Stages of Technology Develop-
ment: Is an Iterative Approach Needed? Comment on “Problems 
and Promises of Health Technologies: The Role of Early Health 
Economic Modeling.” Int J Health Policy Manag. 2020;9:260–2.

	51.	 Grutters JPC, Govers T, Nijboer J, Tummers M, van der Wilt 
GJ, Rovers MM. Problems and promises of health technologies: 
the role of early health economic modeling. Int J Health Policy 
Manag. 2019;8:575–82.

	52.	 van Harten WH, Retèl VP. Innovations that reach the patient: 
early health technology assessment and improving the chances 
of coverage and implementation. Ecancermedicalscience. 
2016;28(10):683. https​://doi.org/10.3332/ecanc​er.2016.683.

https://doi.org/10.1007/s40273-020-00914-6
https://doi.org/10.1007/s40273-020-00914-6
https://doi.org/10.1007/s40258-019-00496-1
https://doi.org/10.1007/s40258-019-00496-1
https://doi.org/10.3332/ecancer.2016.683


17Application and Implications of Novel Deterministic Sensitivity Analysis Methods

	53.	 Frempong SN, Sutton AJ, Davenport C, Barton P. Early economic 
evaluation to identify the necessary test characteristics of a new 
typhoid test to be cost effective in Ghana. Pharmacoecon Open. 
2020;4(1):143–57. https​://doi.org/10.1007/s4166​9-019-0159-7.

	54.	 Davis C, Naci H, Gurpinar E, Poplavska E, Pinto A, Aggarwal 
A. Availability of evidence of benefits on overall survival and 
quality of life of cancer drugs approved by European Medicines 
Agency: retrospective cohort study of drug approvals 2009–13. 
BMJ. 2017;359:j4530.

	55.	 Kesselheim AS, Wang B, Franklin JM, Darrow JJ. Trends in uti-
lization of FDA expedited drug development and approval pro-
grams, 1987-2014: cohort study. BMJ. 2015;351.

	56.	 Vreman RA, Bouvy JC, Bloem LT, Hövels AM, Mantel-Teeu-
wisse AK, Leufkens HGM, et al. Weighing of evidence by health 

technology assessment bodies: retrospective study of reimburse-
ment recommendations for conditionally approved Drugs. Clin 
Pharmacol Ther. 2019;105:684–91.

	57.	 Vreman RA, Naci H, Goettsch WG, Mantel-Teeuwisse AK, 
Schneeweiss SG, Leufkens HGM, et al. Decision making under 
uncertainty: comparing regulatory and health technology assess-
ment reviews of medicines in the United States and Europe. Clin 
Pharmacol Ther. 2020;108(2):350–7. https​://doi.org/10.1002/
cpt.1835.

	58.	 Vreman RA, Belitser SV, Mota ATM, Hövels AM, Goettsch WG, 
Roes KCB, et al. Efficacy gap between phase II and subsequent 
phase III studies in oncology. Br J Clin Pharmacol [Internet]. 
2020. https​://doi.org/10.1111/bcp.14237​ ((cited 2020 May 29)).

https://doi.org/10.1007/s41669-019-0159-7
https://doi.org/10.1002/cpt.1835
https://doi.org/10.1002/cpt.1835
https://doi.org/10.1111/bcp.14237

	The Application and Implications of Novel Deterministic Sensitivity Analysis Methods
	Abstract
	1 Introduction
	2 Three Stages of Methodological Advances to Deterministic Sensitivity Analysis (DSA)
	2.1 Stepwise DSA
	2.1.1 Stepwise DSA: Addressed Limitations and Methods
	2.1.1.1 Non-linearity and marginal effects 
	2.1.1.2 Stepwise DSA method 

	2.1.2 Stepwise DSA: Figures and Their Interpretation
	2.1.3 Stepwise DSA: Benefits
	2.1.3.1 Incalculable ICERs 
	2.1.3.2 Non-linearity and marginal effects 
	2.1.3.3 Domination and incremental net monetary benefits 


	2.2 DSA with Percentiles of the Parameter Probability Distribution (Distributional DSA)
	2.2.1 Distributional DSA: Addressed Limitations and Methods
	2.2.1.1 Likelihood of the parameter values 
	2.2.1.2 Distributional DSA method 

	2.2.2 Distributional DSA: Figures and Their Interpretation
	2.2.3 Distributional DSA: Implications of the Results
	2.2.3.1 Likelihood of parameter values 


	2.3 Probabilistic Non-Fixed Parameters in Deterministic Sensitivity Analysis (Probabilistic DSA)
	2.3.1 Probabilistic DSA: Addressed Limitations and Methods
	2.3.1.1 Correlation between parameters 
	2.3.1.2 Probabilistic DSA method 

	2.3.2 Probabilistic DSA: Figures and Their Interpretation
	2.3.3 Probabilistic DSA: Implications of the Results
	2.3.3.1 Correlation 



	3 General Discussion
	3.1 Implications for Decision Makers
	3.2 Which Method to Use in Which Situation
	3.3 Incremental Cost-Effectiveness Ratio Versus Incremental Net Benefit
	3.4 Limitations and Warnings

	4 Conclusions
	References




