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PARTITION ENERGY OF SOME TREES AND THEIR GENERALIZED

COMPLEMENTS

E. SAMPATHKUMAR1, S. V. ROOPA2, K. A. VIDYA3, M. A. SRIRAJ4, §

Abstract. Let G = (V,E) be a graph and Pk = {V1, V2, . . . , Vk} be a partition of V .
The k-partition energy of a graph G with respect to partition Pk is denoted by EPk (G)
and is defined as the sum of the absolute values of k-partition eigenvalues of G. In this
paper we obtain partition energy of some trees and their generalized complements with
respect to equal degree partition. In addition, we develop a matlab program to obtain
partition energy of a graph and its generalized complements with respect to a given
partition.
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partition energy.
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1. Introduction

Let G = (V,E) be a graph of order n where V = {v1, v2, . . . , vn} is the vertex set and
E is the edge set. The energy of a graph G was defined by I. Gutman [5] as the sum of
the absolute values of eigenvalues of G. The concept of graph energy has application in
chemistry to estimate the total π-electron energy of a molecule. The adjacency matrix
A(G) of G is a real symmetric matrix whose (i, j)th entry aij = 1 or 0 according as {vi, vj}
is an edge or not. The eigenvalues of this matrix represent the energy level of the electron
in the molecule. In Hückel theory, the π-electron energy of a molecule is defined as the
sum of the energies of all the electrons in a molecule.
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Graph partitioning problem arises in various areas of computer science, engineering,
and related fields. Recently, the concept of graph partition has gained importance due to
its application in route planning, clustering and detection of cliques in social, pathological
and biological networks and high performance computing. The graph partition problems
are defined on the data which can be represented in the form of a graph G = (V,E).
Let V1, V2, . . . , Vk be non-empty disjoint subsets of V such that their union equal to V .
Then {V1, V2, . . . , Vk} is called partition of vertex set V . There are many ways of parti-
tioning a given graph. One can partition G into smaller components arbitrarily or with
respect to some specific properties. For example, Uniform graph partition is a type of
graph partitioning problem that consists of dividing a graph into components such that
the components are of about the same size and there are few connections between the
components. Equal degree partition of a graph is a partition of the vertex set of the graph
such that all vertices of same degree are in the same set.

If V1, V2, . . . , Vk is a partition of vertex set V , Then {V1, V2, . . . , Vk} is called a k-partition
of V denoted by Pk. The partition Pk of a graph G = (V,E) introduces two more graphs
called k-complement and k(i)-complement which are defined as follows.

Definition 1.1. [7] For all Vi and Vj in Pk, i 6= j remove the edges between vertices of
Vi and Vj and add the edges between the vertices of Vi and Vj which are not in G, the

resulting graph is called k-complement of G and is denoted by (G)k.

Definition 1.2. [8] For each set Vr in Pk, remove the edges of G joining the vertices
within Vr and add the edges in G which are non-adjacent in Vr, the graph obtained is
called k(i)-complement and is denoted by (G)k(i).

In [9], the L-matrix of G = (V,E) of order n with respect to a partition Pk =
{V1, V2, . . . , Vk} of the vertex set V is defined as a unique square symmetric matrix
Pk(G) = [aij ] whose entries aij are defined as follows:

aij =


2 if vi and vj are adjacent where vi, vj ∈ Vr, 1 ≤ r ≤ k
−1 if vi and vj are non-adjacent where vi, vj ∈ Vr, 1 ≤ r ≤ k
1 if vi and vj are adjacent between the sets

Vr and Vs for r 6= s where vi ∈ Vr and vj ∈ Vs, 1 ≤ r, s ≤ k
0 otherwise.

In [10], we defined k-partition eigenvalues of G as the eigenvalues of the matrix Pk(G)
and the k-partition energy EPk

(G) is defined as the sum of the absolute values of k-
partition eigenvalues of G. In [10] we determined partition energy of some known graphs,
their k-complement and k(i)-complement. In addition, some bounds for EPk

(G) are ob-
tained.

In spectral graph theory, different kinds of energy of a graph G have been extensively
studied by many researchers and some of them can be found in [1], [5], [6], [10] and
references there on. Also energies of various trees have been studied in [2], [3], [4]. An
edge independent set of G has no two of its edges incident to a common vertex and the
maximum cardinality of such a set is called the edge independence number of G. The two
classes of trees with edge independence number two are,

In [11], the energy of trees with edge independence number two is discussed. In this
paper we plan to obtain partition energy of the above trees and their generalized com-
plements with respect to equal degree partition. We also develop a matlab program to
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obtain partition energy of a graph and its generalized complements with respect to a given
partition.

2. Partition energy of some trees and their generalized complements with
respect to equal degree partition

In this section, we derive characteristic polynomial of trees with edge independence
number two and their generalized complements with respect to equal degree partition and
in some particular cases, their partition energy is obtained. We also discuss the partition
eigenvalues of a graph having pendant vertices and isolated vertices with respect to equal
degree partition.

In [6], equal degree partition of a graph is defined as follows.

Definition 2.1. Given a graph G there is a unique partition Pk = {V1, V2, . . . , Vk} with
the following conditions.
(i) if for any Vr ∈ Pk and vi, vj ∈ Vr, 1 ≤ r ≤ k, d(vi) = d(vj).
(ii) if for any vi ∈ Vr, vj ∈ Vs where r 6= s, d(vi) 6= d(vj). This unique partition Pk is
called equal degree partition of a graph G.

Lemma 2.1. [5] Let M,N,P,Q be matrices and M be invertible. If

S =

[
M N
P Q

]
,

then detS = detM det[Q− PM−1N ].

Theorem 2.1. Let P3 = {V1, V2, V3} be the equal degree partition of the vertex set V of

order n of the tree T1(Fig.1). Then the characteristic polynomials of T1, (T1)3, (T1)3(i)
with respect to P3 are respectively,

(i) (λ− 1)n−4[λ4 + (p1 + p2 − 2)λ3 − 2(p1 + p2)λ
2 + 2(1− p1p2)λ+ (p1 + p2 + 3p1p2 − 1)].

(ii) (λ− 1)n−4[λ4 + (p1 + p2 − 2)λ3 + (1− 2(p1 + p2))λ
2 + (p1 + p2 − 2p1p2)λ+ p1p2].

(iii) (λ+2)n−4[λ4−2(p1+p2−2)λ3+(3−5(p1+p2))λ
2+4(p1p2−1)λ+4(p1+p2−1)−3p1p2].

Proof. (i) In tree T1, let V1 = {v1}, V2 = {v2} and V3 = {u1, u2, · · · , up1 , w1, w2, · · · , wp2}
where p1 6= p2. Then P3 = {V1, V2, V3} is an equal degree partition of the vertex set V of
T1. The vertices in V1 are of degree p1 + 1, vertices in V2 are of degree p2 + 1 and vertices
in V3 are of degree one.
The L-matrix of T1 (partition matrix of T1) with respect to P3 is
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P3(T1) =



- v1 v2 u1 u2 · · · up1 · · ·w1 w2 · · · wp2
v1 0 1 1 1 . . . 1 0 0 . . . 0
v2 1 0 0 0 . . . 0 1 1 . . . 1
u1 1 0 0 −1 . . . −1 −1 −1 . . . −1
u2 1 0 −1 0 . . . −1 −1 −1 . . . −1
...

...
...

...
...

. . .
...

...
...

. . .
...

up1 1 0 −1 −1 . . . 0 −1 −1 . . . −1
w1 0 1 −1 −1 . . . −1 0 −1 . . . −1
w2 0 1 −1 −1 . . . −1 −1 0 . . . −1
...

...
...

...
...

. . .
...

...
...

. . .
...

wp2 0 1 −1 −1 . . . −1 −1 −1 . . . 0


.

In det[λI − P3(T1)], we carry out the following transformations.
This determinant has p1 +p2 +2 rows and columns. Let the rows and columns be denoted
by Ri and Ci respectively, i = 1, 2, 3 . . . , p1 + p2 + 2.

Step.1: Subtract the row R3 from the rows R4, R5, . . . , Rp1+2 and subtract the row
Rp1+3 from the rows Rp1+4, Rp1+5, . . . , Rp1+p2+2.

Step.2: Add the columns C4, C5, . . . , Cp1+2 to the column C3 and add the columns Cp1+4,
Cp1+5, . . . , Cp1+p2+2 to the column Cp1+3.
Step.3: Take (λ− 1)n−4 as common factor.

Further simplification gives∣∣∣∣∣∣∣∣
λ −1 −p1 0
−1 λ 0 −p2
−1 0 λ+ (p1 − 1) p2
0 −1 p1 λ+ (p2 − 1)

∣∣∣∣∣∣∣∣ (1)

which is of the form

∣∣∣∣ M N
P Q

∣∣∣∣ where M =

[
λ −1
−1 λ

]
, N =

[
−p1 0

0 −p2

]
, P =

[
−1 0
0 −1

]
and Q =

[
λ+ (p1 − 1) p2

p1 λ+ (p2 − 1)

]
.

By using Lemma 2.1,
we get [λ− 1 + p1(1− λX)][λ− 1 + p2(1− λX)]− p1p2(1−X)2 where X = 1

λ2−1 .

This on expansion gives
[λ4 + (p1 + p2 − 2)λ3 − 2(p1 + p2)λ

2 + 2(1− p1p2)λ+ (p1 + p2 + 3p1p2 − 1)].

Hence, the characteristic polynomial of P3(T1) is

(λ− 1)n−4[λ4 + (p1 + p2 − 2)λ3 − 2(p1 + p2)λ
2 + 2(1− p1p2)λ+ (p1 + p2 + 3p1p2 − 1)].

The proof of (ii) and (iii) is similar to that of (i). Hence we omit the proof. �

Corollary 2.1. Let T3 be the tree obtained from T1 (Fig.1) by taking p1 = p2 = p and
P2 = {V1, V2} be the equal degree partition of its vertex set. Then

(i) EP2(T3) = EP2(T3)2 = 2p− 2 +
√

(2p− 3)2 + 4(5p− 2) +
√

9 + 4p.
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(ii) EP2(T3)2(i) = 4p− 4 +
√

4p+ 9 +
√

(4p− 3)2 + 4(5p− 2).

Proof. (i) In Theorem 2.1, choose p1 = p2 = p. Then the partition changes to P2 =
{V1, V2} where V1 = {v1, v2}, V2 = {u1, u2, · · · , up, w1, w2, · · · , wp}. Consequently (1)
changes to ∣∣∣∣∣∣∣∣

λ −2 −p 0
−2 λ 0 −p
−1 0 λ+ (p− 1) p
0 −1 p λ+ (p− 1)

∣∣∣∣∣∣∣∣ .
By using Lemma 2.1, we get [λ2 + (2p− 3)λ+ (2− 5p)][λ2 + λ− (2 + p)].
Hence the eigenvalues of P2(T1) are

1 2p− 2 times

−(2p− 3) +
√

[(2p− 3]2 + 4(5p− 2)

2
once

−(2p− 3)−
√

[(2p− 3]2 + 4(5p− 2)

2
once

−1 +
√

9 + 4p

2
once

−1−
√

9 + 4p

2
once

Thus, EP2(T3) = 2p− 2 +
√

[(2p− 3]2 + 4(5p− 2) +
√

9 + 4p.

Since T3 and (T3)2 are isomorphic, EP2(T3) = EP2(T3)2.

(ii) In P2(T3), interchange 2 and −1 to get P2(T3)2(i).

With similar simplification, we get the eigenvalues of P2(T3)2(i) as follows.

−2 2p− 2 times

(4p− 3) +
√

[4p− 3]2 + 4(5p− 2)

2
once

−(4p− 3)−
√

[4p− 3]2 + 4(5p− 2)

2
once

−1 +
√

9 + 4p

2
once

−1−
√

9 + 4p

2
once

Hence, EP2(T3)2(i) = 2(2p− 2) +
√

[(4p− 3]2 + 4(5p− 2) +
√

9 + 4p.
�

Theorem 2.2. Let P4 = {V1, V2, V3, V4} be the equal degree partition of the vertex set V

of order n of the tree T2 (Fig.2). Then the characteristic polynomial of T2, (T2)4, (T2)4(i)
are

(i) (λ− 1)n−5{λ5 + (p1 + p2 − 2)λ4 − [1 + 2(p1 + p2)]λ
3 + [4− (p1 + p2)− 2p1p2]λ

2

+ [3(p1 + p2) + p1p2 − 2]λ− (p1 + p2) + 4p1p2}.

(ii) (λ− 1)n−5{λ5 + (p1 + p2 − 2)λ4 − 3(p1 + p2)λ
3 + [(p1 + p2)− 2p1p2 + 2]λ2

+ [2(p1 + p2) + 5p1p2 − 1]λ− (p1 + p2)− 2p1p2}.
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(iii) (λ+ 2)n−5{λ5 + 2[2− (p1 + p2)]λ
4 + [2− 5(p1 + p2)]λ

3 + 2[2p1p2 + (p1 + p2)− 4]λ2

+ [9(p1 + p2) + p1p2 − 8]λ+ 2(p1 + p2)− 8p1p2}.

Proof. Given that P4 = {V1, V2, V3, V4} is the equal degree partition of the vertex set V
of order n of the tree T2. Let us suppose that V1 = {v1}, V2 = {v2}, V3 = {v3} and
V4 = {u1, u2, · · · , up1 , w1, w2, · · · , wp2}. Then vertices in V1, V2, V3 and V4 are of degree
2, p1 + 1, p2 + 1 and 1 respectively. The L-matrix of T2 with respect to P4 is

P4(T2) =



- v1 v2 v3 u1 u2 · · · up1 · · ·w1 w2 · · · wp2
v1 0 1 1 0 0 . . . 0 0 0 . . . 0
v2 1 0 0 1 1 . . . 1 0 0 . . . 0
v3 1 0 0 0 0 . . . 0 1 1 . . . 1
u1 0 1 0 0 −1 . . . −1 −1 −1 . . . −1
u2 0 1 0 −1 0 . . . −1 −1 −1 . . . −1
...

...
...

...
...

...
. . .

...
...

...
. . .

...
up1 1 0 0 −1 −1 . . . 0 −1 −1 . . . −1
w1 0 0 1 −1 −1 . . . −1 0 −1 . . . −1
w2 0 0 1 −1 −1 . . . −1 −1 0 . . . −1
...

...
...

...
...

...
. . .

...
...

...
. . .

...
wp2 0 0 1 −1 −1 . . . −1 −1 −1 . . . 0



.

With the same operations on det[λI − P4(T2)] as in Theorem 2.1, we get (λ− 1)n−5 and∣∣∣∣∣∣∣∣∣∣
λ −1 −1 0 0
−1 λ 0 −p1 0
−1 0 λ 0 −p2
0 −1 0 λ+ (p1 − 1) p2
0 0 −1 p1 λ+ (p2 − 1)

∣∣∣∣∣∣∣∣∣∣
(2)

which is of the form

∣∣∣∣ M N
P Q

∣∣∣∣ where M =

 λ −1 −1
−1 λ 0
−1 0 λ

, N =

 0 0
−p1 0

0 −p2

,

P =

[
0 −1 0
0 0 −1

]
and Q =

[
λ+ (p1 − 1) p2

p1 λ+ (p2 − 1)

]
.

By using Lemma 2.1,
we get [λ− 1 + p1(1− (λ2 − 1)Y )][λ− 1 + p2(1− (λ2 − 1)Y )]− p1p2(1− Y )2

where Y = 1
λ3−2λ .

On further simplification, we get
λ5 + (p1 + p2− 2)λ4− (1 + 2(p1 + p2))λ

3 + [4− (p1 + p2)− 2p1p2]λ
2 + [3(p1 + p2) + p1p2−

2]λ− (p1 + p2) + 4p1p2.
Hence, the characteristic polynomial of P4(T2) is

(λ− 1)n−5{λ5 + (p1 + p2 − 2)λ4 − [1 + 2(p1 + p2)]λ
3 + [4− (p1 + p2)− 2p1p2]λ

2

+ [3(p1 + p2) + p1p2 − 2]λ− (p1 + p2) + 4p1p2}.
The techniques used in proof of (ii) and (iii) are similar to that of (i).
Hence we omit the proof. �

Corollary 2.2. Let T4 be the tree obtained from T2 by taking p1 = p2 = p and
P3 = {V1, V2, V3} be the equal degree partition of its vertex set. Then,
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(i) EP3(T4) = 2p− 2 + 2
√
p+

∑
| λt |

where λt are roots of λ3 + 2pλ2 + (p− 3)λ− (4p− 2) = 0.

(ii) EP3(T4)3 = 2p− 2 + 2
√
p+

∑
| λt |

where λt are roots of λ3 + 2pλ2 − (p+ 1)λ− 2p = 0.

(iii) EP3(T4)3(i) = 4p− 4 + 2
√
p+

∑
| λt | for p ≥ 4

where λt are roots of λ3 − 4pλ2 + (7p− 6)λ+ (8p− 4) = 0.

Proof. (i) In Theorem 2.2, choose p1 = p2 = p. Then the partition changes to P3 =
{V1, V2, V3} where V1 = {v1}, V2 = {v2, v3}, V3 = {u1, u2, . . . , up, w1, w2, . . . , wp}. Conse-
quently (2) changes to ∣∣∣∣∣∣∣∣∣∣

λ 0 0 −p −p
0 λ 1 0 −p
0 1 λ −p 0
−1 0 −1 λ+ (p− 1) p
−1 −1 0 p λ+ (p− 1)

∣∣∣∣∣∣∣∣∣∣
By using Lemma 2.1, we get the eigenvalues of P3(T4) as 1 repeated 2p− 2 times,
1±√p once and the roots of

λ3 + 2pλ2 + (p− 3)λ− (4p− 2) = 0. (3)

Hence, EP3(T4) = 2p− 2 + 2
√
p+

∑
| λt |, where λt are roots of (3).

(ii) With similar operations on det[λI−P3(T4)3] as in (i), we get the eigenvalues of P3(T4)3
as 1 repeated 2p− 2 times, 1±√p once and roots of

λ3 + 2pλ2 − (p+ 1)λ− 2p = 0. (4)

Hence, EP3(T4)3 = 2p− 2 + 2
√
p+

∑
| λt |, where λt are roots of (4).

(iii) Applying similar operations as in (i) for det[λI−P3(T4)3(i)], we get the eigenvalues

of P3(T4)3(i) as −2 repeated 2p− 2 times, −2±√p once and roots of

λ3 − 4pλ2 + (7p− 6)λ+ (8p− 4) = 0. (5)

Hence, EP3(T4)3(i) = 4p− 4 + 2
√
p+

∑
| λt | for p ≥ 4, where λt are roots of (5). �

Theorem 2.3. Let G = (V,E) be a graph of order n with p pendant vertices and Pk =
{V1, V2, · · · , Vk} be the equal degree partition of V . Suppose that the pendant vertices are
in Vk and the pendant vertices are such that for (l ≤ k− 1) p1, p2, · · · , pl (Pi ≥ 2) number
of these are adjacent to the vertices v1, v2, · · · , vl respectively. Then

(i) 1 is an eigenvalue of Pk(G) and Pk(G)k repeated p− l times.

(ii) −2 is an eigenvalue of Pk(G)k(i) repeated p− l times.

Proof. In det[λI − Pk(G)] = 0, let us suppose that for l ≤ k − 1, the pendant vertices
are such that p1, p2, · · · , pl number of these are adjacent to the vertices v1, v2, · · · , vl re-
spectively. Let the first p1 pendant vertices be denoted by u1, u2, · · · , up1 . Then they are
adjacent to the same vertex v1 ∈ Vr for some r ∈ {1, 2, · · · , k− 1}. In the horizontal strip
corresponding to the vertices u1, u2, · · · , up1 , the column of v1 will have the entries −1, the
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columns of all other v′is is 0 and the columns of u′is take the value 1 except the principal
diagonal entries which are 0′s. Then by subtracting the row corresponding to the vertex
u1 from the rows corresponding to the vertices u2, u3, · · · , up1 , we get λ − 1 as common
factor in each of these p1 − 1 rows. Since this is true for all strips corresponding to the
remaining pendant vertices, it follows that 1 is an eigenvalue of Pk(G) repeated p− l times
where p = p1 + p2 + · · ·+ pl.
Consider det[λI−Pk(G)k]. In the horizontal strip corresponding to the vertices u1, u2, · · · , up1 ,
the column of v1 will have the entries 0, the columns of all other v′is is −1 and the columns
of u′is remain unaltered. Hence by repeating the above operations, we get 1 as an eigen-

value of Pk(G)k repeated p− l times.

(ii) We know that det[λI − Pk(G)k(i)] = 0 is obtained by inter changing 1 and −2 in
det[λI −Pk(G)]. Hence with the same operations as in (i) we get λ+ 2 as common factor

p− l times. Hence −2 is an eigenvalue of Pk(G)k(i) repeated p− l times. �

Theorem 2.4. Let G = (V,E) be a graph of order n with l isolated vertices and Pk =
{V1, V2, · · · , Vk} be the equal degree partition of V . Then

(i) −1 is an eigenvalue of Pk(G) and Pk(G)k repeated l − 1 times.

(ii) 2 is an eigenvalue of Pk(G)k(i) repeated l − 1 times.

We omit the proof of this theorem as the techniques used here are similar to that of
Theorem 2.3.

3. Matlab Program to find partition energy of a graph

In this section we present a program in Matlab to find partition energy of any graph
and its generalized complements with respect to the given partition.
In this program, for a given graph, we give input for number of vertices, partition of the
vertex set and edge input is given in the form of adjacency matrix. The outputs are par-
tition matrix of the given graph, its generalized complements with respect to the given
partition and their respective spectrum and energies.
clc
clear
n=input(’Enter size of the matrix: ’);
for i = 1 : n;
ti=[’Enter partition number of vertex-’,num2str(i),’:’];
p(i)=input(ti);
end;
disp(’Enter adjacency matrix:’);
for i = 1 : n;
for j = 1 : i;
Xij = [’Enter a’,num2str(i),num2str(j),’ :’] ;
a(i, j)=input(Xij);
a(j, i) = a(i, j);
end;
end;
disp(’Adjacency Matrix of the graph is’)
disp(a)
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weight = [ 2 -1; 1 0];
invertedWeight = [ -1 2; 1 0];
exvertedWeight = [2 -1; 0 1];
M1 = zeros(n, n);
M2 = zeros(n, n);
M3 = zeros(n, n);
for i = 1 : n
for j = i+ 1 : n
if(a(i, j) == 1)
connected = 1;
else
connected = 2;
end
if p(i) == p(j)
sameGroup = 1;
else
sameGroup = 2;
end
M1(i, j) = weight(sameGroup,connected);
M1(j, i) = weight(sameGroup,connected);
M2(i, j) = invertedWeight(sameGroup,connected);
M2(j, i) = invertedWeight(sameGroup,connected);
M3(i, j) = exvertedWeight(sameGroup,connected);
M3(j, i) = exvertedWeight(sameGroup,connected);
end
end disp(’L-Matrix of the graph is’)
disp(M1);
disp(’Matrix of k(i)-complement of graph is’)
disp(M2);
disp(’Matrix of k-complement of graph is’)
disp(M3);
E1 = eig(M1);
E2 = eig(M2);
E3 = eig(M3);
disp(’Eigen values of L-Matrix of the graph:’)
disp(E1);
disp(’Eigen values of L-Matrix of k(i)-complement of the graph:’)
disp(E2);
disp(’Eigen values of L-Matrix of k-complement of the graph:’)
disp(E3);
energy1 = 0;
energy2 = 0;
energy3 = 0;
for i = 1 : i energy1 = energy1 + abs(E1(i));
energy2 = energy2 + abs(E2(i));
energy3 = energy3 + abs(E3(i));
end disp(’Partition energy of the graph is’)
disp(energy1);
disp(’Partition energy of k(i)-complement of the graph is’)
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disp(energy2);
disp(’Partition energy of k-complement of the graph is’)
disp(energy3);
end
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