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" A - INTRODUCTION " C - Two CALIBRATION PARAMETRIZATIONS " F — POST-FIT RESIDUALS AND DEGREE STANDARD DEVIATIONS
s ABSTRACT Equation (1) shows the common accelerometer calibration equation that is usually applied We define GRACE K band post-fit range rate residuals as follows:
_ _ _ _ In gravity field parameter estimation. This equation corrects the magnitude of the
Accelerometers onboard of satellites can be regarded as a key improvement in gravity uncalibrated acceleration by the bias vector b; the amplitude is corrected by the scale V=A_pgX.+AgpasRe —lag (2)

field recovery. These instruments are located In the center of mass of the satellite and are matrix S.
precisely measuring non-gravitational forces acting on the satellite surfaces.

| _ | _ _ ac, =Saggs+b (1) with V: estimated K band post fit range rate residuals, A_,g: design matrix of arc specific
Accelerometer measurements are distorted In their magnitude and amplitude, so an Tab. 1- Tested Scenarios parameters, Agap: design matrix of spherical harmonic coefficients, %..: estimated arc
accelerometer calibration has to be carried out. Usually, in orbit determination and gravity - ' specific parameters, g estimated spherical harmonic coefficients, and 1,5: reduced K
fleld parameter estimation, a priori values are introduced and corresponding numeric Scenario Description band range rate observations.
corrections are estimated iteratively. Within the gravity field recovery community various (LUH-GRACE2018) Bias: per arc (3h)
accelerometer calibration parametrizations are applied. We have tested several i Scale: fixed to a-priori values |[5] - ... s |
parametrization scenarios within our in-house developed GRACE-SIGMA gravity field o 3h ¥ 10% | 2003-Feb s B bt
recovery software. In this contribution, we present the impact of these scenarios on post- SlEB. !c)e_r e () 5 - ‘* k2 | —GFZ5a
fit KBRR residuals. Scale: diagonal elements per arc (3h) o WM %10-10 -\K CSR 5
g s
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" D — PARAMETRIZATION INFLUENCE ON STEP 1 5 L It g
The current release of monthly gravity field potential solutions with the name LUH- _
GRACE2018 computed at the Institute of Geodesy (IfE) / Leibniz University Hannover In order t rantee a correct implementation = S
(LUH) introduces accelerometer biases as unknown parameters. During orbit and gravity | = of ct)hgescglegupaa?ameeeter sensitivity pmatrices, at = 10" [200SHar | 5
field recovery bias parameters for every of the three GRACE science reference frame S oa  full son e first we test the influence of the two & il ©
axes and 3-hour-arcs are estimated. During the gravity field recovery the three E aforementioned scale matrix parametrizations on - ‘W& \ e
accelerometer scale factors are held fixed to a-priori values. In order to get a more 008 orbit pre-adjustment (see box B). Note that in 21010 e — g
realistic accelerometer parametrization and In addition to absorb force modeling S step 1 a scale matrix with off-diagonal elements g | rms 2: 2.58E-7 m/s =
Inaccuracies we also introduce scale factors as unknowns to the estimation procedure. 2002 '6] was also tested (one month). This scenario is i [ ©
" 001 not mentioned in Tab. 1, since the influence of T (e S
J this parametrization on gravity field estimation T 107 [[2003:Apr E
O 0003Feb 0 2003Mar0i  2003Apr01  has not been evaluated yet. While for the LUH- 2 o -
" B -LUH-GRACE2018 ESTIMATION PROCEDURE GRACE2018 parametrization usually only three £ W‘WW S
Fig. 10 3D orbit fit error of the tested  jterations are needed, the introduction of the g o 2 Sy —— _ 5 \ ’ f
c(:aal\l:l\alrlalgon b'tscefna”?hs t\;]v.r.t. scale matrix components requires a higher c‘% v rms 2: 2.47E-7 mys - 2 N g
e 282)3:/3 , Sr2002/04.ree amount of iterations for convergence. o o o2 o0 10 20 10 50 50
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Orbit pre-adjustment Fig. 3: Power spectrum densities of the post-fit residuals and degree standard deviations of the

Orbit adjustment and monthly solutions. GFZ release 5a and CSR release 5 solutions are shown as reference.
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- Initial state (6) i) 1 G — DiscussioN
- accelerometer bias (3) 7 - el sEie [(9) . “» °f o bias+scale GRACE A —0.95 -
- accelerometer bias (3) E | o biasssoslo GRAGE B X For the test period of three month, the introduction of the diagonal elements of the
3 oA 2 | s GRACED ) 308'5 accelerometer scale matrix could decrease the post-fit KBRR residuals in the 107-103
IIETations 8 common parameters/arc M 10 - = | Hertz bandwidth. In most cases, the diagonal scale matrix also slightly improved the
y TR IS S e ad| o guality of the monthly solutions in terms of degree standard deviations. When solving for
GRACE-SIGMA software consists of two - empirical KBRR (8) [3] 12 003 Feb 01  2003-Mar0!  2003-Apr-01 078 00a-Feb-01  2003Mar0l  2003-Aor01 the biases and scale factors every 3 hours, the estimated parameters show a large
main processing steps. In a pre-adjustment 10 . variance compared to the long term values. The variance can be decreased by
L1B reduced-dynamic orbits are improved 6561 global parameters/month or ) : constraining the calibration parameters or by treating the scale parameters not as local
by estimating corrections to the Initial | | | 1y ; arc parameters, I.e. estimating scales for larger periods. Further studies on this topic are
satellite states and a-priori accelerometer - normalized spherical harmonic 2 51 = needed. The influence of a scale matrix with off-diagonal elements was tested on orbit
biases. Pre-adjusted orbits are used as coefficients of the Earth's = @0 pre-adjustment; the influence on gravity field recovery is pending.
initial orbits in step 2. In this step, GRACE- geopotential 7 < %
SIGMA recovers the gravity field using 057 ] .
batch least squares. Local parameters and 1 . . . 5 . o . = R
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normal - Mmatrices  containing spherical Fig. 2: (Estimated) accelerometer calibration parameters. [1] Naeimi et al. (2018): IfE monthly gravity field solutions using the variational equations, EGU General
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The panels of Fig. 2 show the estimated accelerometer calibration parameters using the series of monthly gravity field solutions from GRACE, GRACE/GRACE-FO Science Team Meeting 2018,
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FORCE MODELS: cf. [1], [2} reduced-dynamic GNV1B positions are right side the scales. The upper panel refers to the x-axis (a ong-track) of the g o, P The Sity " hcved ) ol "
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NUMERICAL INTEGRATION: cf. [4] reduced-dynamic GNV1B positions, as of space, z-axis (radial) parameters are not shown. Please note that the major part of the parameters for Level-1B ACC data (version 2). Tech. note, Center for Space Research [6] Klinger and
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