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ABSTRACT  

This paper presents a novel visual tracking approach that combines the NMI metric and the traditional SSD metric within 

a gradient-based optimization frame, which can be used for direct visual odometry and SLAM. We firstly derivate the 

closed form expression for first- and second-order analytical NMI derivatives under the assumption of rigid-body 

transformations, which then can be used by subsequent Newton-like optimization methods. Then we develop a robust 

tracking scheme that utilizes the robustness of NMI metric while keeping the optimization characteristics of SSD-based 

Lucas-Kanade (LK) tracking methods. To validate the robustness and accuracy of the proposed approach, several 

experiments are performed on synthetic datasets as well as real image datasets. The experimental results demonstrate that 

our approach can provide fast, accurate pose estimation and obtain better tracking performance over standard SSD-based 

methods in most cases.  

Keywords: direct visual tracking, normalized mutual information, sum of squared differences, nonlinear optimization 

 

1. INTRODUCTION  

Real-time vision-based pose tracking is a critical technique for a wide range of robotic applications. Most of current 

available visual tracking approaches can be divided into two primary classes: feature-based and direct tracking methods. 

Compared to traditional feature-based methods normally limited to certain feature type, direct tracking is able to take full 

advantage of the available image information and thereby save the costly computation spent on feature extraction and 

matching. Therefore, direct methods have become increasingly popular recently in scenarios requiring fast tracking speed 

and robustness towards feature-less scenes (e.g. visual odometry and SLAM). This paper mainly deals with direct tracking 

approaches applied in visual odometry. 

When performing such direct tracking, the tracking problem is usually transformed into a non-linear optimization problem, 

which aims to maximize or minimize a registration function that represents the similarity between a template image and 

the current image. Many recent works have used the traditional SSD metric that directly compares the luminance 

differences between two images, which is real-time capable due to its standard least squares optimization structure. 

However, SSD-based approaches are based on the brightness constancy assumption that can be violated quite easily in 

real-world applications, for example by partial occlusions, shadows and variations in lighting conditions. Several solutions 

have been proposed to deal with these variations. [1, 2] use robust M-estimators and [3] introduce an elegant re-weighting 

scheme from the perspective of probability, which increases the robustness to occlusions by assigning relatively small 

weights to those occluded regions. An affine brightness transfer function [2, 4] has been employed to handle more fine-

grained illumination changes in a joint optimization frame. However, in spite of taking such measures above, the tracking 

performance of SSD-based approaches would still inevitably suffer certain deteriorations in case of scene variations. 

In contrast to the SSD metric, mutual information (MI) that measures the information quantity shared by two images (in 

this context) has proved to be robust towards partial occlusion and lighting changes, and has been commonly used in 

medical image registration [5, 6]. [7] subsequently presented a normalized measure of mutual information (i.e. NMI) to 

increase the robustness to the changes in overlapping regions, which obtained a distinct improvement in the behavior of 

rigid registration of MR-CT and MR-PET images. Since then, various MI-based implementations have been proposed, 

which can be divided into two main categories: non-gradient and gradient based methods. In earlier works, non-gradient 

based methods (such as hill climbing [6], Powell’s method [8]) were quite popular, since MI is originally calculated from 

the discrete joint intensity histogram (i.e. a two-dimensional histogram of combinatorial intensity levels in two images) 

that makes an explicit solution to the derivatives of MI function unavailable. Normally, these non-gradient optimization 

methods are computationally inefficient, thereby limiting their applications to real-time tracking. With the introduction of 
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partial volume interpolation technique [9, 10], an analytic computation of MI-related derivatives becomes available. In 

[10], the authors formulate the MI metric as a continuous and differentiable function of the estimated parameters using B-

spline Parzen windows. Based on this, a Levenberg-Marquardt (LM) optimizer is then employed for parameters estimation. 

[11] presents a novel Newton-like optimization approach within an inverse compositional optimization frame, which 

enables the real-time template-based tracking. In their work, they consider second order terms in the computation of 

Hessian matrix for the first time, and demonstrate that this is of significance to the optimization results. Although [11] 

claims that their proposed modified Newton-like optimization approach has a wider convergence domain than the 

traditional Newton approach, we find that it still easily gets stuck in incorrect local optima or even goes divergent in our 

experiments, which has also been pointed out in [12]. 

However, most efficient optimization methods mentioned above only focus on the optimization of MI criterion, and quite 

few works feature normalize mutual information (NMI) within a gradient-based optimization strategy and apply it to visual 

odometry, which might be because the derivation of analytical gradients of NMI is more complicated than its counterpart 

of standard MI. In [13], the authors only present the first-order analytical derivatives of NMI function without further 

considering second-order terms. Only using the first-order gradients, [14] use a Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) optimizer for NMI optimization in visual localization, rather not visual odometry. The BFGS optimizer is 

essentially a quasi-Newton method in combination with the use of line search strategies, which only requires a Jocabian 

matrix to be supplied and then iteratively construct a Hessian during optimization. In contrast, our approach evaluates a 

Hessian matrix directly and employ a Levenberg-Marquardt algorithm, a real Newton-type method, for subsequent 

optimization. A direct comparison of these two methods is beyond the scope of this work. 

In this paper, we propose a hybrid tracking scheme that utilizes the inherent robustness of NMI metric while maintaining 

the relatively wide convergence basin of SSD metric. A series of experiments are conducted on both synthetic and real-

sensor benchmark datasets [12, 15, 16]. The experimental results show that our proposed method has a distinct advantage 

over standard SSD-based methods, in terms of accuracy and robustness. To the best of our knowledge, this is the first work 

to employ NMI criterion within a Newton-type optimization frame for the task of direct visual odometry without any prior 

data. 

 

2. PROBLEM FORMULATION 

In this section, we firstly present the general mathematical formulation of direct visual tracking problems as well as the 

classical LK tracking methods with SSD metric. Then, a brief introduction of NMI metric will be given. 

2.1 Formulation of direct visual tracking 

Direct visual tracking essentially refers to a class of approaches based on the optimization of an image registration function, 

which usually involves a template (reference) image
rI , a current (target) image

tI , a geometric warp model ( ) 

parametrized by the displacement parameters , and a similarity function ( )f  . Generally, this problem can be written as 

 *

V( )
= arg max ( , ( , ) )r tf I I

 
  


 (1) 

where V represents the available parameter space under given constraints, and  
is the displacement parameters that 

maximize the similarity between the template 
rI and the warped current image

tI . Note that although the formulation (1) 

is a maximization problem, it can be easily rewritten as a minimization form in case of the use of dissimilarity metrics, 

such as the standard SSD metric. The warp model ( )   depends on the specific transformation models, e.g. homograph 

transformation and affine transformation. In this paper, we assumes a rigid body transformation model, and the 

displacement parameters   are defined in se(3) lie algebra associated to the SE(3) group with six dimensions.  

As can be seen from (1), different similarity functions lead to different registration (cost) functions and based on the 

individual forms of functions, different optimization methods would be employed, which results in different optimization 

characteristics (e.g. convergence domain and rate). Considering the requirement of real-time tracking in visual odometry, 

the SSD-based LK tracking method is the mostly commonly used approach in recent works [3, 17, 18]. 

Proc. of SPIE Vol. 10819  108190T-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

2.2 Lucas-Kanade Framework with SSD 

[19] gives detailed description of the LK method as well as its several variants, which has been applied for various 

parameter estimation tasks. In direct image registration, SSD metric is often used within the LK framework. In this case, 

the formulation (1) can be rewritten as 

 
2*

V( )
= arg min ( ) ( ( , ) )

r

r t

x I

I x I x
 

  




  (2) 

where x denotes the pixel coordinates in image plane, and the cost function here is aimed to minimize the photometric 

error based on the SSD of pixel intensities. Note that this optimization problem in (2) is in the least-squares form, for 

which there has existed several efficient nonlinear optimizer, such as Gauss-Newton and LM methods. In each iteration, 

the algorithms search the update that minimize the function in (2) as 

 2

V( )
= arg min ( ) ( ( ( , ), ) )

r

k k

r t

x I

I x I x
 

    
 



    (3) 

The current parameters can then be updated as follows: 

 1( ( , ), ) ( , )k k kx x         (4) 

In [19], the authors also propose an inverse compositional (IC) variant to classical LK, which can save large amounts of 

calculations. In the IC structure, the optimization function and the corresponding update are adapted as 

 
2

V( )
= arg min ( ( , ) ) ( ( , ) )

r

k k

r t

x I

I x I x
 

    
 



    (5) 

 -1 1( ( , ), ) ( , )k k kx x         (6) 

Since the update parameters are applied to the reference image instead of the current image, the derivatives of the cost 

function can be partially precomputed only once using the gradients of the reference image. In our approach, we also 

employ this IC optimization structure. 

2.3 Normalized mutual information 

Although the SSD based LK formulation has superior optimization characteristics with the use of some least-square 

optimizers, it has proved to be vulnerable to scene variations (such as occlusions and illumination changes) that can easily 

violate the assumption of constant brightness. In contrast to directly comparing the differences of pixel intensities, 

distributions of pixel intensities can provide a much more robust criterion to measure the similarity (or difference) between 

two images. Mutual information, an information-theoretical concept proposed by Shannon [20], can indicate the 

underlying relations between the probability distributions of two random variables (images), which now is applied quite 

successfully in medical and remote-sensing image registration [6, 11]. For convenience, we will describe the mutual 

information for two images, as used in image registration, not in a general sense. The most intuitive definition of MI is 

given as 

 MI( , ) H( ) H( ) H( , )r t r t r tI I I I I I    (7) 

where Ir, It still denote the reference and current images as before. H(Ir), H(It) represent the entropy values of  

corresponding images,  and H(Ir, It) is the joint entropy of two images. If we combine this formulation with the previously 

defined direct tracking problem in (1), the current image It can be considered to depend on the displacement parameter , 

and then MI can be rewritten as a function with respect to   

 MI( ) H( ) H( ( , )) H( , ( , ))r t r tI I I I         (8) 

Substituting the definition of entropy [20], this expression can be adapted as the following expression 
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,

( , ; )
MI( ) ( , ; ) log

( ) ( ; )

r t

r t

r t

I I

I I

r t I I

p r t
p r t

p r p t


 



 
  

 
 

  (9) 

In (9), r and t are possible pixel values of Ir and It respectively, and ( ) ( )
rI rp r P I r   is the probability distribution 

function of image (or variable) Ir, and ( ; ) ( ( , ) )
tI tp t P I t     the probability function of It. And

( , ; ) ( , ( , ) )
r tI I r tp r t P I r I t      represents the joint probability distribution of these two images. From the perspective 

of probability, this formulation can be interpreted as the Kullback-Leibler divergence between the joint probability 

distribution of two images ( , ; )
r tI Ip r t  , and the joint distribution in case of complete independence of the images

( ) ( ; )
r tI Ip r p t  . The assumption is that the divergence between these two distributions of images would reach the 

maximum when they are totally identical, namely the displacement parameters are correctly estimated, and it becomes 

zero when the distributions are independent that normally means severely misaligned. 

In [7], the authors point out that the traditional MI metric could be influenced adversely by the size of overlapping part of 

images, and propose a normalized measure of mutual information, i.e. NMI, which is proved to be more robust to changes 

in overlap 

 
,

,

( , ; ) log( ( ) ( ; ))
H( ) ( ( , ))

NMI( )
H( , ( , )) ( , ; ) log ( , ; )

r t r t

r t r t

I I I I

r tr t

r t I I I I

r t

p r t p r p t
I H I

I I p r t p r t

 
 


   


 




 (10) 

In order to make this function differentiable, the Parzen windowing method with a third-order B-spline kernel are normally 

employed [9, 11, 13]. Firstly the joint distribution can be calculated from a normalized bi-dimensional histogram of the 

two images using the following expression 

 
1

( , ; ) ( ( )) ( ( ( , )))
r tI I r t

xx

p r t r I x t I x
N

        (11) 

where Nx is the number of pixels selected in reference image, and  is the B-spline kernel function.
rI and 

tI are the 

respective scaled version of the images, and r and t are the possible values of the scaled images, normally    
2

, 0, cr t N  

with Nc the number of histogram bins. Then the respective marginal probability distribution of the two images can be 

integrated from the joint probability distribution, e.g. for the reference image Ir 

 
1

( ) ( , ; ) ( ( )) ( ( ( , )))
r r tI I I r t

t x tx

p r p r t r I x t I x
N

           (12) 

Due to the partition of unity constraint of B-spline kernel function [9], this term ( ( ( , ))) 1t

t

t I x    . The formulation 

(12) is thus written as 

 
1

( ) ( ( ))
rI r

xx

p r r I x
N

   (13) 

Similarly, the marginal distribution of the current image It is as follows 

 
1

( ; ) ( , ; ) ( ( ( , )))
r r tI I I t

r xx

p t p r t t I x
N

         (14) 

Although several efficient optimization methods have been propose for standard MI optimization, few works investigate 

the optimization strategies of NMI metric, especially in those real-time applications. The next section presents a full 

derivation of analytical derivatives of NMI, which enables the possibility of applying Newton-type optimization methods. 
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2.4 Derivatives of NMI metric 

As mentioned in section 2.2, an inverse compositional formulation is used in optimization, and the corresponding Jocabian 

and Hessian matrix can be given as 

 
NMI( ( , ), ( , ))

J r tI I   



 



 (15) 

 
2

2

NMI( ( , ), ( , ))
H r tI I   



 



 (16) 

In this work, the Jacobian matrix is firstly considered and for simplifying the expressions, we define two notations 

A H( ) ( ( , ))r tI H I   and B H( , ( , ))r tI I   to represent the joint entropy of the two images and the sum of their 

respective entropies, with respect to the update parameter  . Then substitute (10) into (15) and use the derivative chain 

rules 

 

2

NMI( ) B( ) A( )
J

1 B( ) A( )
A( ) B( )

A ( )

  

 

 
 

 

    
 

 

    
      

    

 (17) 

Applying (11)-(14) to (17) to yield the following expressions 

  
, ,

A( ) B( )
1 log , logr t r t

r t r

I I I I

I I I

r t r t

p p
p p

 

   

    
  

   
   (18) 

  2
,

1 B
J log 1+log

A A

r t

r r t

I I

I I I

r t

p
p p



  
  

  
  (19) 

Then further derivate the Hessian matrix using the first-order gradient in (19) 

 
,

2

2
, ,

J( )
H M( )

M( )
M( )

r t

r t r t

I I

r t

I I I I

r t r t

p

p p




  




 

   
    

   

   
    

  



 

 (20) 

where the first data term on the right side of the equation is the second-order part of Hessian, and the second data term 

represents the first-order part. As pointed out in [11, 21], the influence of the second-order part on MI optimization cannot 

be neglected, and we thus keep this term in Hessian expression of the NMI metric as well. As for the first-order part, using 

the chain rule on the derivative of M and then apply (18) to the derivative, can yield an accurate expression as follows 

 

2

3 2
,

T T

2
,

M( ) B A 1 A B
2

A A

B 1 1 1
+

AA

r t

r t r t r r

r t r

I I

r t

I I I I I I

r t rI I I

p

p p p p

p p



    

   

       
               

   
  

    



 

 (21) 

As we can see from (19), (20) and (21), the derivatives of NMI are related to the derivatives of the joint distribution of 

these two images and the marginal distribution of the reference image.  
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Using the (11) and (13), we can get the following expressions 

2 2

2 2

( ( ( , )))1
=

( ( ( , )))1
( ( ( , )))

( ( ( , )))1
( ( ( , )))

r

r t

r t

I r

xx

I I r

t

xx

I I r
t

xx

p r I x

N

p r I x
t I x

N

p r I x
t I x

N

  

 

  
  

 

  
  

 

   

 

   
 

 

   
 

 







(22) 

In (22), the derivatives of B-spline function  with respect to the update can be obtained as follows: 

T
2 2

2 2

( ( ( , )))

( ( ( , )))

r r

r r r

r I x I

r

r I x I I

r

   

 

   

 

   
 

  

    

  

(23) 

with 

( )r rI I x x

x 

  


  
(24) 

Since using the inverse compositional formulation, the derivatives of image intensities with respect to update parameters 

represented by (24), are all computed in the reference image at the point of 0  . This means, once the reference image 

is chosen, the expressions of (23) and (24) would keep constant during the whole optimization and thus allow to be 

precomputed only once. Besides, although the expression of Hessian from (20) seems complicated and computation-costly, 

the computation in practice can be optimized by reusing the components utilized to calculate the function value as well as 

its Jacobian values (e.g.  A, B, A and B ), thereby saving large amounts of computations. 

3. ROBUST DIRECT TRACKING SCHEME

The main idea of this hybrid scheme is to firstly employ a SSD based optimization approach to yield a coarse estimation 

of the displacement, and this coarse result is then refined using a NMI based LM method. The whole scheme is efficiently 

performed on a Gaussian pyramid, where the SSD optimization is performed on higher levels and NMI optimization on 

lower levels.   

As illustrated above, a SSD optimizer is more capable of tracking relatively larger wraps (motions) than NMI optimizer, 

due to its larger convergence basin. It is thus natural to consider using SSD optimizer to provide an initial estimation that 

more likely falls into the narrow convergence domain of subsequent NMI optimizer. However, the occurring scene 

variations can easily bias the solutions of SSD optimization, which might result in much worse initial guesses. In order to 

cope with this situation, we employ the reweighting optimization scheme proposed by [3] based on the Students’ t-

distribution [22] noise model. Using this scheme, the original optimization problem in (2) is adapted into a reweighted 

least squares form as follows 

2*

V( )
= arg min ( ; ) ( ) ( ( , ) )

r

r t

x I

w x I x I x
 

   




 (25) 

with 
2 2

1
( ; )

( ) ( ( , ) )r t

v
w x

v I x I x


  




 
(26) 

where v denotes the degrees of freedom and  is the scale factor of t-distribution. The only difference from our work to 

[3] is that we use a generalized expectation-maximization (GEM) method to update the scale factor and the weights
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alternately, instead of solving an equation iteratively in [3]. The experimental results presented in the next section show 

that this reweighting mechanism enhance the algorithms’ robustness to partial occlusion and slight illumination changes 

to a certain extent, thereby more likely to provide a better coarse pose estimation.  

From (19)-(24), we can see that one pixel with the higher intensity gradient magnitude contributes more to the final 

Jacobian and Hessian than its lower-magnitude counterparts. From the subset of pixels preselected by SSD optimizer, we 

further choose those points whose gradient magnitudes are beyond a preset threshold as the final candidates for NMI metric 

calculation. Then a classical LM method is chosen for the optimization of NMI metric and the optimization is only 

performed on the lower pyramid levels (higher resolution) with the initial guess from SSD optimization, which can both 

reduce the number of iterations and increase the convergence rate effectively. 

4. EXPERIMENTS 

Several experiments are conducted to evaluate the proposed tracking approach. The whole evaluation process can be 

divided into two steps: On the first step, we only run the experiments on single image pairs and test how the algorithm 

responds to perturbations under different scene variations; on the second step, the evaluation is conducted on several 

benchmark datasets in order to have a quantitative measure of its accuracy and robustness. The two steps above are both 

be conducted on synthetic data and real sensor data respectively [12, 15, 16]. The used Gaussian pyramid comprises of 

five levels, where the top three levels are used for SSD optimization and the rest 2 levels for NMI optimization. 

4.1 Experiments on single image pairs 

The experiments in this section are used to analyze the convergence domain of the algorithms (i.e. SSD, NMI and hybrid 

methods) through a series of tests on single image pairs with different initial positioning error in different scene variations. 

As proposed in [11], we use the root mean-square (rms) distance between the reference pixel coordinates in current image 

and the projected pixel coordinates with the estimated transformation as the evaluation criterion, which is given as 

 
N

2

1

1
( )= ( , )

N

c

i i

i

e x x  


  (27) 

where 
ix is the coordinate of the pixel selected for evaluation in the reference image, ( , )ix   denotes the projected 

coordinate of
ix in the current image, and c

ix is the accurate (reference) coordinate of the correspondence of 
ix in the 

current image. Unlike the work in [11] that only uses four corners for evaluation, we use SIFT descriptors and geometry 

consistency tests to select sufficient correspondence (no more than 50) for evaluation in order to increase the statistical 

power in convergence rate estimation. 

A. Selection of correspondences for evaluation 

In order to find corresponding pixels reliably, the selection process mainly comprises of two steps based on appearance 

similarity and spatial consistency. Firstly, extracting and matching SIFT features in the two images to generate an initial 

set of pixel pairs. Secondly, for every pair of the initial set, project the pixel in the reference image onto the current image 

using the ground-truth transformation offered by the dataset, and if the distance between the projected coordinates and the 

corresponding pixel coordinates is less than a preset value (in our experiments, 1px for synthetic images and 3px for real 

images), this pair would be used for evaluation.  

B. Experiments on synthetic data 

We extract two images from the datasets provided by [15], and firstly select corresponding pixel pairs in a nominal 

condition (without any scene variations). Fig.1 shows the two images used for subsequent experiments and the distribution 

of the distance error of selected correspondences under the ground-truth transformation. 

Proc. of SPIE Vol. 10819  108190T-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



ñ on

oss

Residual distribution of correspondences

0 15 120
AX ONO

135

40

35

30

25

20

15

10

Initial pixel w ror with perturbations

r +
0.01 0.02 0.03 0.04 0.05 0.06 0.07

perturbation o,(m)
0.08 0.09 0.10

25

20

r 15

á 10

5

Mean and rms error of correspondences

8.00 0.02 0.04 0.06 0.08

perturbation o,(m)

0.10 0.12

 

 
 

 

  

(a)                                                                                                    (b) 

Figure 1. (a) Reference image and current image from left to right. (b) Distribution of the distance error of correspondences, 

with the mean error = 0.24px, rms error = 0.26px 

Then we conduct the image alignment experiments with respect to a set of different initial poses under four different 

conditions: nominal condition, illumination changes, slight occlusion and severe occlusion. The initial pose parameters are 

generated automatically by adding a white Gaussian noise with the chosen  to the ground-truth pose. In our experiments, 

the deviation
t for the translations varies from 0.001 to 0.1m and a fixed 

r  of 0.01 rad is chosen for rotations. However, 

only the variance values of perturbations on the pose cannot reflect the impact imposed on the images quite well, since 

this impact is also concerned with the scene depth (A smaller scene depth obviously leads to stronger modifications of the 

image, with respect to a same perturbation). Similar to [21], we present the distribution of initial pixel errors in Fig. 2, so 

as to discover thoroughly how strong the perturbations’ impact on the scene are.  

Note that for each sigma, we calculate the distance of selected correspondences 500 times with randomly generated 

parameters and measure the mean outcome of each correspondent, so that Fig. 2(a) actually shows the statistical 

distribution of the results of 500 trials. And further using the statistical data from (a) to generate the mean- and rms distance 

of all correspondences. Then with the initial positioning errors in Fig. 2, we perform the alignment experiments under 

different conditions, and employ (27) to analyze the convergence rate (the optimization is considered to be convergent if 

the criterion is blow 0.5px) and estimation accuracy. For each method in each condition with each perturbation, the 

alignment experiment is repeated 500 times and the experimental results are presented in the following Fig. 3. 

 
(a)                                                                                                               (b) 

Figure 2. (a) Boxplot for the initial pixel error with respect to perturbations. The boxes delimit the 25% and 75% quartiles, 

and the whiskers indicate the minimum and maximum. The red line is the median error of all correspondences. (b) Mean and 

rms pixel error of corresponding pixels. It shows that there is an approximated linear relation between the perturbation sigma 

and the corresponding mean- and rms distance. 

Then with the initial positioning errors in Fig. 2, we perform the alignment experiments under different conditions, and 

employ (27) to analyze the convergence rate (the optimization is considered to be convergent if the criterion is blow 0.5px) 

and estimation accuracy. For each method in each condition with each perturbation, the alignment experiment is repeated 

500 times and the experimental results are presented in the following Fig. 3. 
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(b) Illumination changes 

 

(c) Slight occlusion 
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(d) Severe occlusion 

Figure 3. Different current images, and corresponding convergence rates and rms errors (a) Nominal condition. (b) 

Illumination changes, with strong local changes and relatively slight global changes. (c) Slight occlusion, with only one 

artificial patch added to the image. (d) Severe occlusion, with multiple patches added to the image. 

From the results, we can see that in the nominal condition, the re-weighted SSD and our hybrid approach perform almost 

the same in terms of the convergence rate and the final residual error, both better than the NMI approach. When 

encountering the illumination changes (specifically refers to strong local changes and slight global changes in our 

experiments. Strong global changes are not considered, since it is quite rare in visual odometry), the SSD method can still 

maintain a relatively high convergence percentage in spite of suffering an apparent deterioration in performance, and the 

NMI method outperforms the SSD method in the alignment accuracy, but with a much lower convergence rate. The hybrid 

strategy is capable of achieving a better precision while keeping a higher convergence rate. This is pretty the same for the 

occlusions, where it is worth nothing that the NMI approach performs better than SSD approach when starting with smaller 

perturbations, and the hybrid approach always the best. 

4.2 Experiments on benchmark datasets   

This section will test our hybrid approach on some popular reference datasets, and we also provide the results of the re-

weighted SSD approach, and the TUM DVO project [23] as a reference (TUM-DVO is essentially a complete SLAM 

project with loop detection and optimization modules, and in this paper we only present its tracking result before the final 

optimization for comparison). In our experiments, the tracking process only using NMI method gets stuck in incorrect 

local extreme quite easily, and further suffers unrecoverable tracking failures. Therefore, the tracking results of using NMI 

metric alone are not presented in the following part. 

A. Synthetic datasets 

Firstly, the algorithms are tested on a synthetic office room scene in ETH-ICL datasets [12].  In this dataset, the authors 

add random noise to the original depth data and simulate several illumination changes (we focus on the local changes) in 

the images. It also provides the camera ground-truth trajectory that can be used for evaluation. Fig. 4 presents some images 

of this scene and the estimated trajectories are shown in Fig. 5. 

      

Figure 4. Images of the office room scene with illumination changes 
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(a)   TUM-DVO                                             (b)   Re-weighted SSD                                       (c)   SSD + NMI 

Figure 5. Estimated trajectories on the noisy dataset from TUM-DVO, SSD and SSD+NMI. 

Similar to [15], we use the absolute trajectory error (ATE) to quantify the accuracy of an estimated trajectory. Three 

standard statistics are computed for evaluating the ATE: RMSE, Mean and Median. The ATE statistics of these four 

trajectories are listed in Table 1. 

Table 1. Absolute trajectory error (ATE) for trajectories on the office room scene. 

Statistics (m) TUM-DVO SSD SSD+NMI 

RMSE 0.119961 0.093862 0.082909 

Mean 0.101134 0.089770 0.075346 

Median 0.109709 0.078844 0.065110 

Obviously, the proposed method achieves the highest tracking accuracy when encountering noise-contaminated depth data 

and illumination changes in scenes. It is worth nothing that the TUM-DVO method used here actually cannot be regarded 

as a pure vision-based tracking method, because except photometric residuals it also takes depth residuals directly into its 

optimization frame. Since photometric residuals and depth residuals are both affected severely in this scene, it thus suffers 

the largest degradation in tracking performance. 

B. Real sensor datasets 

In practice, the actual noise, occlusion and illumination changes from the real sensor are usually much more complex than 

that in synthetic data. Therefore, we continually evaluate our method on some real world datasets.  

      

 

(a)   TUM-DVO                                             (b)   Re-weighted SSD                                       (c)   SSD + NMI 

Figure 6. Estimated trajectories on the real dataset with illumination variations from TUM-DVO, SSD and SSD+NMI. 
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The authors of ETH-ICL dataset also provides real RGB-D sequences with illumination variations acquired by a 1st-

generation Kinect, which is used for our evaluation firstly. We still consider the sequence with local illumination changes 

that more likely occur in the context of visual odometry. Similar to experiments on synthetic data, several images of this 

scene and estimated trajectories are shown in Fig. 6. The ATE statistics of each method are listed in Table 2. The results 

are basically consistent with that on synthetic data, showing that our hybrid tracking strategy is more capable of coping 

with gradual lighting changes in the scenes. 

Table 2. Absolute trajectory error (ATE) for trajectories on the office room scene. 

Statistics (m) TUM-DVO SSD SSD+NMI 

RMSE 0.244890 0.094815 0.053491 

Mean 0.233010 0.089577 0.049016 

Median 0.243662 0.082388 0.044572 

Then we also evaluate on several sequences from the commonly-used TUM RGB-D dataset [16] to allow comparisons 

between our results and other published works, although this dataset do not exhibit much illumination variation. From this 

dataset we choose four sequences: fr1_xyz, fr1_desk, fr2_desk and fr3_long_office, to test our method.  

Table 3. Absolute trajectory error (ATE) for sequences in TUM RGB-D dataset. 

Approach Statistics (m) fr1_xyz fr1_desk fr2_desk fr3_long_office 

TUM-DVO 

RMSE 0.030732 0.168639 0.124842 0.132312 

Mean 0.027709 0.140536 0.115781 0.111144 

Median 0.025783 0.118550 0.095214 0.098825 

SSD 

RMSE 0.046604 0.076606 0.097196 0.097152 

Mean 0.042353 0.070361 0.096168 0.079650 

Median 0.039532 0.071350 0.095036 0.055902 

SSD+NMI 

RMSE 0.034698 0.072053 0.092882 0.042874 

Mean 0.032768 0.066530 0.092015 0.037013 

Median 0.032279 0.068276 0.092327 0.031498 

We show the respective ATE statistics in Table 3, and note that there exists obvious partial occlusion (caused by a wooden 

board placed between two desks) in the fr3_long_office. From Table 1-3, we can conclude that the proposed method 

performs only slightly better than SSD based method on nominal scenes (such as fr1_xyz and fr1_desk, with little 

variations), and demonstrates a distinct superiority when encountering the appearance variations from occlusion and 

illumination changes. 

 

5. CONCLUSION 

This paper presented a robust and accurate visual tracking scheme for direct visual odometry, which utilizes the robustness 

of NMI similarity metric and the inherent wide convergence basin of SSD metric. A full derivation of first- and second-

order analytical NMI derivatives are presented so that it can be used with the LM optimization method. Then a novel 

hybrid tracking strategy has been proposed that preserves the strengths of NMI with respect to occlusions and illumination 

variations, and simultaneously increase the convergence rate by taking advantage of the superior optimization 

characteristics of SSD. The proposed method has been evaluated on both synthetic and real sensor datasets. The 

experimental results have verified its robustness and accuracy, which shows an apparent advantage compared with classical 

approaches. 
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