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1. Introduction

Since the report on PbMBO4 (with M  =  Al, Ga, Fe, Mn, Cr; 
space group: Pnma) by Park et al [1–3] this family of com-
pounds has drawn considerable interest due to their broad 

range of properties. Of interest are the axial negative thermal 
expansion (ANTE) in the a-direction [4], the axial negative 
linear compressibility (ANLC) of the b lattice parameter [5], 
the dynamic stereochemically active lone electron pairs (LEPs) 
of Pb2+ cations [6], and the 1D Heisenberg magnetic chains 
for M  =  Fe, Cr, or Mn [7]. The structural stability of PbMBO4 
mainly requires a stereochemically active cation (i.e. Pb2+), a 
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Abstract
We propose two new members of the mullite-type family, SnAlBO4 and SnGaBO4, and 
carry out an in-depth study of their crystal properties using the hybrid method PW1PW. 
Both are isostructural to PbMBO4 (M  =  Fe, Mn, Al, Ga), which show axial negative linear 
compressibility (ANLC), among other interesting features. We find that, although Sn2+ is 
susceptible of being oxidized by oxygen, a suitable range of experimental parameters exists 
in which the compounds could be synthesized. We observe absence of ANLC below 20 GPa 
and explain it by the small space occupied by the lone electron pairs, as indicated by the small 
length of the corresponding Liebau Density Vectors. In agreement with this fact, the structures 
present a low number of negative mode-Grüneisen parameters, which may also suggest lack
of negative thermal expansion. The electronic properties show a remarkable anisotropic 
behaviour, with a strong dependence of the absorption spectra on light polarization direction.
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rigid BO3 trigonal planar unit, and a suitably sized M-cation 
forming edge-sharing octahedra that run parallel to the c-axis 
[2]. Since the radius of the Sn2+ cation is similar to that of Pb2+ 
[8], these two cations are expected to be readily exchanged in 
the structure, showing 5s2 and 6s2 LEP activities, respectively. 
Whereas Pb2+ is stable [9], compounds with Sn2+ are usu-
ally moderate reducing agents [10]. Therefore, syntheses of 
SnMBO4 compounds may not be as easy as those of PbMBO4 
using conventional solid state methods at open conditions.

This work presents an ab initio study of the structural proper-
ties of SnMBO4, with M  =  Al and Ga (nonstandard Pnam mul-
lite setting). We primarily employ the hybrid method PW1PW 
[11], and base our choice on two criteria. On the one hand, the 
PW1PW functional has been shown to outperform several other 
functionals, including the hybrid B3LYP, in the description of 
structural and energetic parameters of solids [11]. Therefore, the 
first reason is that of exactitude, which extends to the descrip-
tion of a vast array of crystalline compounds [12–14]. On the 
other hand, although the title compounds have not yet been syn-
thesized, several members of the mullite-type family (including 
isostructural PbAlBO4) have been studied with the PW1PW 
functional [4, 15–17], showing good agreement with exper
imental data. Consequently, to perform a meaningful compar-
ison between our study and the available information we employ 
here the same functional. On this basis, we calculate the Gibbs 
free energies for the decomposition of SnMBO4 as a function 
of temperature and oxygen pressure, which are important for 
determining conditions where the compounds may be stable. By 
means of pressure-constrained optimizations we also study their 
elastic properties, motivated by previous reports of ANTE [4] 
and ANLC [5] in isostructural compounds. In order to improve 
the atomic understanding of such properties, we also investigate 
the phonon dispersion and density of states, together with their 
pressure-dependent behaviour, which allows the calculation of 
isothermal mode Grüneisen parameters. Additionally, we calcu-
late the electronic density of states and refractive indices, which 
are expected to benefit from the use of a hybrid method [11, 
18]. Nevertheless, since the density functional theory (DFT) is a 
ground-state one, we also employ the GW-BSE (Bethe–Salpeter 
equations) method for the calculation of the optical excitation 
spectra under different light polarizations [19], which may be 
of interest for potential non-linear optic applications. Finally, 
we calculate the Wang–Liebau eccentricity parameters [20] 
and Liebau Density vectors [17], to rationalize the effect of 
the LEP stereochemical activity on the elastic behaviour of the 
compounds.

This study will guide the experimental work by providing 
initial values for structural features. Additionally, the atomic 
interpretation of the elastic and thermal properties of these 
compounds will also help to understand the crystal physico-
chemical properties of other members of the family.

2.  Computational procedures

All structure optimizations, electronic structure and frequency 
calculations were performed with the crystalline orbital pro-
gram CRYSTAL14 [21], employing the hybrid method 

PW1PW [11], in which 20% HF exchange is mixed with the 
PWGGA exchange functional [22]. The studied structures 
were optimized using the experimental crystallographic data 
of PbAlBO4 [15] and PbGaBO4 [1] as the starting geometries 
of SnAlBO4 and SnGaBO4, respectively. All basis sets were 
taken from the CRYSTAL website database. The Monkhorst–
Pack shrinking factor was set to 8, corresponding to 125 
independent k-points in the irreducible part of the Brillouin 
zone. A very large integration grid with 75 radial points and 
974 angular points was adopted for the numerical integra-
tion of the exchange-correlation energy. The truncation of 
Coulomb and exchange integrals was set to 9, 9, 9, 14 and 42 
in logarithmic values. The Anderson method [23] was used 
for convergence acceleration. Harmonic frequencies at the 
Γ-point of the Brillouin zone were calculated by numerically 
computing the second derivatives of the energy with respect 
to the atomic positions, and diagonalizing the mass-weighted 
Hessian matrix in Cartesian coordinates, as implemented in 
CRYSTAL14 [24, 25]. A Gaussian smearing function with a 
15 cm−1 width was applied to the resulting modes for plot-
ting the IR and Raman spectra and phonon density of states. 
This was chosen as a representative value from the observed 
full widths at half maximum (FWHM) in the experimental 
PbAlBO4 Raman spectrum [15], which range from 12 cm−1 
to 22 cm−1. The refractive indices were calculated by means 
of the ‘Coupled Perturbed Hartree–Fock/Kohn–Sham’ 
method [26–28]. Reference calculations of PbAlBO4 and 
TiO2 were carried out with the same methodology. The crystal 
orbital overlap population analysis [29] was performed with 
CRYSTAL17 [30].

Optical spectra were calculated for the optimized structure 
of SnAlBO4 obtained with CRYSTAL-PW1PW employing 
the GW-BSE method as implemented in the GPAW program 
[31]. The quasiparticle energies were calculated with the G0W0 
approach applying an approximate vertex correction (G0W0Γ) 
based on the renormalized adiabatic LDA (rALDA) kernel 
[32]. The GW energy cut-off EcutGW was set to 150 eV. The 
initial wavefunction was obtained with the LDA functional 
[33] and a plane-wave basis set delimited by an energy cut-off 
of 600 eV. The Bethe–Salpeter equations [19] were solved for 
eight occupied and eight virtual bands using an energy cut-off 
of 200 eV. The dielectric function was calculated in the range 
0.0–6.0 eV.

3.  Results and discussion

The similarity in size and chemical behaviour between tin 
and lead apparently points towards the feasibility of the syn-
thesis of SnMBO4 compounds. Our calculations show that 
both SnAlBO4 and SnGaBO4 are stable with respect to their 
decomposition into the corresponding oxides:

SnMBO4(s) →
1
2

M2O3(s) + SnO(s) +
1
2

B2O3(s).� (1)

The change in the standard Gibbs free energy (∆G0
298 K) at 

298 K corresponding to the formation of the oxides from 
SnAlBO4 and SnGaBO4 are 87.0 kJ mol−1 and 83.3 kJ mol−1, 
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respectively. For comparison, we have obtained a value of 
61.2 kJ mol−1 for PbAlBO4 (a readily synthesized compound 
[3]) using the same methodology.

SnII compounds are susceptible of being oxidized into SnIV 
due to their reducing properties [10], and are unstable towards 
their oxidation by air. In contrast, the inert pair effect stabi-
lizes the 2  +  oxidation state for lead. It is thus important to 
ascertain whether the SnMBO4 compounds are stable towards 
their oxidation:

SnMBO4(s) +
1
2

O2(g) →
1
2

M2O3(s) + SnO2(s) +
1
2

B2O3(s).

� (2)
We find that ∆G0

298 K for reaction (2) is  −174 kJ mol−1 
and  −178 kJ mol−1 for SnAlBO4 and SnGaBO4, respectively. 
Therefore, their decomposition is highly favoured under an 
oxygen partial pressure of 100 kPa and a temperature of 298 K. 
The value of ∆G, however, is affected by those variables: a 
lower oxygen partial pressure, and a higher temperature, stabi-
lizes SnMBO4. The change in the Gibbs free energy for reac-
tion (2) as a function of the oxygen partial pressure at three 
different temperatures is shown in figure 1. Irrespective of the 
significantly different sizes, the M-cation has a minor effect 
on the calculated values. Of particular notes, both temperature 
and oxygen pressure play important roles in the stability of 
SnMBO4. For instance, at a temperature of 1173 K, the com-
pounds are stable under oxygen pressures lower than ~5 · 10−2 
Pa. Since both conditions are experimentally attainable [34] 
we predict that the compounds could be readily synthesized. 
Whether the compounds remain metastable under ambient 
conditions is outside the scope of this work, but the finding of 
favourable conditions hints to this possibility [35].

For the comparatively lower temperatures of 973 K and 
773 K the maximum tolerable oxygen partial pressures get 
significantly lowered, to ~6 · 10−6 Pa and ~6 · 10−12 Pa, 
respectively. This is explained by the negative entropy change 
∆S0

298 K  of the reactions (around –111 J K−1 mol−1 for both 
Al- and Ga-cations), which leads to a higher exergonicity for 
reaction (2) at decreasing temperatures, and thus favours the 
decomposition of SnMBO4.

Once the conditions at which the compounds could be syn-
thesized have been determined, the crystalline properties of 
SnAlBO4 and SnGaBO4 are predicted. The lattice parameters, 
atomic positions, anisotropic displacement parameters and 
selected interatomic distances are given in tables 1, 2, S1 and 
S2 (supplementary information (available online at stacks.iop.
org/JPhysCM/31/345701/mmedia)), respectively. The lattice 
parameters of SnAlBO4 are smaller than those of SnGaBO4 
due to the smaller size of the Al3+ cation with respect to Ga3+ 
[36]. The experimental values of PbAlBO4 [3] (a  =  692.09(5) 
pm, b  =  802.15(6) pm, c  =  571.34(4) pm) and PbGaBO4 [1] 
(a  =  699.44(10) pm, b  =  824.95(11) pm, c  =  589.25(8) pm) 
show similar trends. That is, the a–cell parameter is ~3% larger 
for SnMBO4 than that of the PbMBO4 structure; b–cell param
eter is ~5% larger for PbMBO4; and c-remains similar. The 
changes of the cell parameters lead to similar cell volumes for 
SnAlBO4 and PbAlBO4 (313.9 · 106 pm3 and 317.2 · 106 pm3, 
respectively), and SnGaBO4 and PbGaBO4 (333.0 · 106 pm3  

Figure 1.  (a) Crystal structure of SnMBO4 (M  =  Al, Ga). (b) 
Change in the Gibbs free energy for the decomposition of SnMBO4 
by oxygen uptake into SnO2  +  ½ M2O3  +  ½ B2O3, as a function 
of the oxygen partial pressure at three different temperatures. P0 
denotes the standard pressure, 100 kPa.

Table 1.  Crystal data of SnAlBO4 and SnGaBO4.

Empirical formula SnAlBO4 SnGaBO4

Formula 
weight/10−3 kg 
mol−1

220.50 263.24

Space group Pnam (62) Pnam (62)
a/pm 711.2 720.4
b/pm 772.2 784.9
c/pm 571.7 588.9
Cell 
volume/10−30 m3

314.0 333.0

Z 4 4
Density/g cm−3 4.694 5.262
Refractive indices 
in principal axes

1.894, 2.029, 1.943 1.904, 2.017, 1.945

Electronic  
bandgap/eV

3.88 4.44
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and 340.0 · 106 pm3, respectively). The slightly larger values 
can be explained in terms of the larger size of Pb2+ cations with 
respect to Sn2+. The variation in the a- and b-cell parameters 
between SnMBO4 and PbMBO4 can be explained in terms of 
the stereochemical activity and orientation of the respective 
LEPs, leading to a mechanical analogy of a Nürnberg scissor. 
That is, the expansion in the b-direction occurs at the expense 
of the contraction in the a-direction. Members of the mullite-
type family usually show a correlation between a and b, while 
the c lattice parameter behaves independently [37].

The bulk moduli K0 and their first pressure-derivatives K′
0 

were calculated by fitting the energy versus volume curves, 
as shown in figure 2, using the 3rd order Birch–Murnaghan 
equation  of state. The obtained values are K0  =  100.3 GPa 
and K′

0  =  3.88 for SnAlBO4 and K0  =  91.9 and K′
0  =  6.34 

for SnGaBO4. As could be expected from its larger unit cell 
volume, the bulk modulus is lower for SnGaBO4, following 
a simple rule occasionally valid for isostructural compounds 
[38, 39]. The bulk moduli are relatively larger than that of 
PbAlBO4 of 76.1(6) (PW1PW: 77.4(2) GPa), a fact attribut-
able to a lower influence of the Sn2+ LEP in the SnMBO4 
properties, as will be discussed later.

Table 2.  Atomic coordinates of SnAlBO4 and SnGaBO4.

SnAlBO4 SnGaBO4

Atom Wyckoff Site symmetry x y  z x y  z

Sn1 4c .m. 0.0769 0.3675 ¼ 0.0797 0.3660 ¼
M1 4a −1 0 0 0 0 0 0
B1 4c .m. 0.7789 0.7320 ¼ 0.7843 0.7255 ¼
O11 4c .m. 0.8387 0.0917 ¾ 0.8290 0.0854 ¾
O12 4c .m. 0.1028 0.8816 ¾ 0.1028 0.8749 ¾
O2 8d 1 0.1630 0.1945 0.9579 0.1613 0.2024 0.9532

Figure 2.  Calculated energy versus volume curves for (a) SnAlBO4 
and (b) SnGaBO4. Circles show the calculated data points while 
lines are fittings to the 3rd order Birch–Murnaghan equation of 
state.

Figure 3.  Phonon dispersion diagrams along the selected high-
symmetry directions for (a) SnAlBO4 and (b) SnGaBO4.

J. Phys.: Condens. Matter 31 (2019) 345701
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The optimized cell volumes at different pressures can be 
used as an alternative procedure for bulk moduli calculations 
by fitting to the 3rd order Birch–Murnaghan state equation. 
By these means we obtained K0  =  107.3 GPa and K′

0  =  4.6 for 
SnAlBO4, and K0  =  97.9 GPa and K′

0  =  5.0 for SnGaBO4, in 
agreement with the energy versus volume procedure (figure 
2).

An interesting property shown by structurally related 
compounds is the ANLC, i.e. an increase in one of the lat-
tice parameters when the crystal is subjected to hydrostatic 
pressure [40]. For instance, isostructural PbFeBO4 shows 
a 1.5% increase in its b-cell parameter under a pressure of 
8 GPa [5]. The proposed mechanism involves the concerted 
tilting of BO3 units [5], facilitated by the softness of the struc-
ture along the a-direction (where the stereochemical active 
Pb2+ LEPs are predominantly located). Similar conclusions 
were drawn for BiB3O6 [40, 41], in which the Bi3+ cations 
show stereochemical activity. We have therefore studied the 
behaviour of SnMBO4 structures under pressure. The evo
lution of the lattice parameters for both compounds is shown 
in figure S1. Of particular notes, unlike positive expansion in 
the b-direction in some PbMBO4 compounds [5], all lattice 

parameters contract when pressure is increased up to 20 GPa. 
The proposed mechanism for the negative linear expansion of 
PbFeBO4 and BiB3O6 directly involves the stereochemically 
active LEPs. Therefore, the LEP of Sn2+ cations do not seem 
to influence the structure as strongly. As such, the incorpora-
tion of Sn2+ into the PbFeBO4 structure could be used to fine 
tune the ANLC property.

The phonon dispersion diagram for SnMBO4 is shown in 
figure 3. A band maximum composed of three Einstein-type 
frequencies (almost dispersionless) is observed in an isolated 
region near 1000 cm−1. The eigenvector analysis shows that 
this feature exclusively involves O11 and O2 vibrations. These 
oxygen atoms are also involved together with the B-atoms in 
the higher frequency (1200–1400 cm−1) region of the spectra. 
Two phononic band gaps are also observed for both com-
pounds (figure 3). For SnAlBO4 they are in the ranges 765 

Figure 4.  Phonon density states and the contributions from the 
constituent atoms for (a) SnAlBO4 and (b) SnGaBO4.

Figure 5.  Calculated infrared spectra for SnAlBO4 and SnGaBO4.

Figure 6.  Calculated Raman spectra for SnAlBO4 and SnGaBO4. 
Intensities were calculated for a laser wavelength of 633 nm and a 
temperature of 298 K.

J. Phys.: Condens. Matter 31 (2019) 345701
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to 980 cm−1 and 1000 to 1270 cm−1, while for SnGaBO4 they 
locate in 710 to 970 cm−1 and 985 to 1260 cm−1. Therefore, 
they show similar widths. Additionally, the lack of imaginary 
(negative) phonon frequencies further suggests that both com-
pounds are stable.

The calculated phonon density of states (PDOSs) of 
SnAlBO4 and SnGaBO4 are shown in figure  4. The results 
for both compounds are very similar and are consistent with 
the dispersion diagrams (figure 3): a continuum of phonon 
states is observed in the 100–800 cm−1 range, an isolated 
band appears near 1000 cm−1, and another continuum locates 
at 1200–1400 cm−1. The projected PDOS of each constituent 
atom in the asymmetric unit cell shows that Sn2+ is involved 
in the 100–200 cm−1 range, M in the 200–800 cm−1 range, 
and B in the 600–800 and the 1200–1400 cm−1 ranges. The 
vibrational features of O11, O12, and O2 are spread almost in 
the whole spectra with an exclusive contribution to the band 
maxima near 1000 cm−1.

The calculated infrared spectra of SnMBO4 are shown 
in figure  5. We applied a Gaussian line profile function for 
a better comparison with the experimental results (if avail-
able). Both spectra share similar features, with a multitude of 

bands in the 100 to 700 cm−1 range and two intense bands 
in the 1200–1400 cm−1 range. The latter are the superposi-
tion of three vibrational modes, as detailed in tables S2 and 
S3. The general features of the spectra are in principle agree-
ment with both the experimental and the calculated IR spectra 
of PbAlBO4 [15]. By analogy with this compound, the 100–
200 cm−1 range can be attributed to Sn–O related modes, the 
200–600 cm−1 to M–O, and the 600–1400 cm−1 range to B–O.

The calculated Raman spectra for both compounds are 
shown in figure 6, where the intensities were corrected con-
sidering a laser wavelength of 633 nm and a temperature of 
298 K. The calculated spectra show again a qualitative agree-
ment with the experimental spectrum of PbAlBO4 [15]. For 
future reference we list all calculated optical phonon modes in 
tables S2 and S3 in the supporting information.

Isostructural compounds (PbAlBO4 [15], PbFeBO4 [4]) are 
known to show ANTE. It has been proposed that this behav-
iour could be related to a substantial number of negative mode 
Grüneisen parameters γi  [42]. The isothermal Grüneisen 
parameter is defined as: γi = −d lnωi/d lnV , where ωi  is the 
frequency of the vibrational mode and V  the unit cell volume. 
The mode Grüneisen parameters γi  (at 0 K) of the studied 

Figure 7.  Mode Grüneisen parameters for the vibrational modes of (a) and (b) SnAlBO4 and (c) and (d) SnGaBO4. Circle sizes are 
proportional to the correlation coefficients, and the error bars refer to the uncertainty from the fitting.

J. Phys.: Condens. Matter 31 (2019) 345701
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compounds are shown in figure  7. The frequencies of most 
modes change linearly with pressure, as illustrated by the 
sizes of the error bars. For modes with wavenumbers within 
the 50–450 cm−1 range they spread from  −0.6 to 1.5. Modes 
in the range 450–1450 cm−1 vary from  −0.2 to 0.8. Out of 
the 81 optical phonon modes, six and nine for SnAlBO4 and 
SnGaBO4, respectively, show negative γi . In comparison with 
PbFeBO4, which shows eight modes with negative γi  just con-
sidering the 36 Raman active ones [4], the fraction of negative 
γi  for SnMBO4 is considerably smaller. This could indicate a 
lack of anomalous properties such as ANTE. However, if even 
such small fraction of modes outweigh the positive ones, the 
ANTE phenomenon cannot be ruled out for SnMBO4.

The electronic density of states for SnAlBO4 and SnGaBO4 
are shown in figure 8. Both compounds show similar proper-
ties: the lower valence band is dominated by the O-states, the 
upper valence band has contributions from O2− and Sn2+, and 
the conduction band shows contributions from both Sn and B. 
These general features are in agreement with the electronic 
structure of PbAlBO4.

The calculations of the refractive indices show that both 
SnAlBO4 and SnGaBO4 are biaxial materials, as expected 

from their orthorhombic crystal structure. The refractive 
indices along the principal axes are relatively large, ranging 
from 1.89 to 2.03 (table 1). These values are comparable to 
those calculated for PbAlBO4 (1.86, 1.97, and 1.92). A com-
parison of calculated values for the main polymorphs of TiO2 
with experimental values indicate that the theoretical meth-
odology employed here leads to an underestimation of ~10%, 
and thus the experimental refractive indices for SnAlBO4 and 
SnGaBO4 are expected to differ from the calculated values. 
The calculated electronic bandgaps are 3.88 eV and 4.44 eV 
for SnAlBO4 and SnGaBO4, respectively (table 1). Bandgap 
calculations using the present methodology overestimate 
the experimental optical bandgaps of TiO2 polymorphs by 
~0.6 eV, and therefore it could be also expected that the optical 
bandgaps for SnMBO4 are lower than the above-mentioned 
values.

To validate the electronic bandgaps calculated with DFT, 
since there are yet no experimental results to which they may 
be compared, we have calculated the optical absorption spec-
trum of SnAlBO4 using many-body perturbation theory as an 
internal theoretical reference. This was performed using the 
GW-BSE method as implemented in GPAW [31]. The GW 
method (in the present case the non-self-consistent G0W0 
approximation with vertex corrections (G0W0Γ) was applied) 
takes into account polarization effects of the electron density 
near electrons and holes in the ground state. The resulting 
quasiparticle energies correspond to ionization energies 
and electron affinities. The Bethe–Salpeter equations  [19] 
account for electron–hole interactions in excited states. They 
are solved based on the dielectric function and quasiparticle 
energies obtained with G0W0Γ. The first absorption maximum 
(figure 9) is near 3.8 eV, which is in accordance with the 
PW1PW electronic band gap (3.88 eV). However, the onset 
of this peak, corresponding to the optical band gap, is located 
at much lower energies, slightly above 3.0 eV, like the calcul
ation for rutile TiO2. Of particular notes, a strong anisotropy 
of the spectrum is observed (figure 9). The intensity along 

Figure 8.  Density of electronic states for (a) SnAlBO4 and 
(b) SnGaBO4.

Figure 9.  Calculated optical absorption spectrum of SnAlBO4 
obtained with G0W0Γ-BSE.
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the x (a) and y  (b) polarization is almost negligible compared 
to the z (c) direction, parallel to the octahedral MO6 chains. 
Additionally, the first maxima are located at much higher ener-
gies between 4 and 5 eV. Thus, we predict strong directional 
effects for UV–visible spectra on single-crystals. Regarding 
the absorption spectra of SnGaBO4, since its electronic struc-
ture is analogous to that of SnAlBO4 (figure 8), we expect that 
the general features are similar to those in figure 9, with the 
only significant difference being probably a blue shift inferred 
by the larger DFT electronic bandgap for the Ga compound 
(4.44 eV).

As discussed in the previous sections, the structural prop-
erties of mullite-type O8 (LMBO4, ML2O4), O9 (L2M4O9) 
and O10 (L2M4O10) {L  =  lone electron pair carrying element, 
M  =  metal} compounds are often related to the stereochemical 
activities of the LEPs [4, 16, 37, 43–46]. The calculated charge-
density difference isosurfaces of the Sn2+ LEP are displayed in 
figure 10. The isosurfaces occupy a small region, even when 

using lower isovalues than that of the scale (0.009 e/106 pm3).  
The liebau density vectors [17] show, in both cases, short 
lengths of about 32 pm. Regarding the Wang–Liebau vectors 
[20] we observe, in agreement with previous findings [17], 
that their direction practically crosses the points of maximum 
charge in the LEPs. The Wang–Liebau eccentricity (WLE) 
parameters |Φ| are 2.88  ×  10−5 and 2.58  ×  10−5 for SnAlBO4 
and SnGaBO4, respectively, showing a similar stereochemical 
activity for both compounds, alike the Liebau Density Vector 
lengths. For comparison, the WLE parameters of PbAlBO4 and 
PbGaBO4 are 2.0  ×  10−5 and 1.9  ×  10−5, respectively [6]. The 
relatively large value of |Φ| for SnMBO4 indicates that the geo-
metric disposition of O-atoms in the first coordination sphere 
around Sn2+ is considerably asymmetric, however, its LEP 
occupies a rather small volume (figure 10).

In their revised model of the LEP, Walsh et al [47] argued 
that the stereochemical activity originates from the interac-
tion of cation ns2-(e.g. Sn(5s)) with the anion np -states (e.g. 
O(2p )), giving rise to bonding (Sn(5p )-O(2p )) and antibo-
nding (Sn(5p )-O(2p )*) states in the lower and upper parts of 
the valence band, respectively. This, together with the lattice 
distortion, allows the unoccupied Sn(5p ) orbitals to hybridize 
with the Sn(5s)-O(2p )* states, yielding an asymmetric elec-
tronic distribution. However, at which extent the interaction 
between the unoccupied Sn(5p ) and Sn(5s)-O(2p )* will occur 
depends on the relative energy of both Sn(5s) and O(2p ), 
leading to raise the Sn(5s)-O(2p )* states at an optimized level. 
Moreover, since the Sn(5p ) states interact with the anti-bonding 
levels, it is crucial for the Sn-cation on-site hybridisation that 
the Sn(5s)-O(2p )* states must have a substantial component of  
the Sn(5s) states. That is, a larger Sn(5s) character increases 
the stabilisation of the Sn(5s)-O(2p )* states. The crystal orbital 
overlap population (COOP) for the Sn–O and Pb–O interac-
tions, respectively calculated for PbAlBO4 and SnAlBO4, are 
shown in figure S2. Notably, the integrated COOP value can 
be used to quantify the bonding between the M and O orbital 
centres with positive and negative values corresponding to 
bonding and antibonding interactions [29]. The COOP com-
prises of about 10% and 21% integrated positive value for 
PbAlBO4 and SnAlBO4, respectively. The respective rest of 
the negative values in the upper part of the valence band refers 
to antibonding interactions. Beside the lattice distortion, the 
COOP analysis qualitatively shows that the 5s2 and 6s2 states 
bear stereochemically active LEP character, however, with 
different magnitude. The higher positive COOP value is con-
sistent with the higher WLE of the Sn2+ LEPs than that of 
Pb2+ LEPs with a relative smaller positive COOP. Therefore, 
even if the electron distribution around the Sn2+ cation is more 
asymmetric, the likely reduced volume of the 5s2 LEPs may 
not affect the bulk elastic properties as strongly as the larger 
6s2 LEP in PbMBO4, which seems to be responsible for the 
associated anomalous properties.

Conclusions

First-principles calculations based on the hybrid PW1PW func-
tional show that SnAlBO4 and SnGaBO4 could be synthesized 

Figure 10.  Charge-density difference isosurfaces and first 
coordination sphere of Sn in (a) SnAlBO4 and (b) SnGaBO4 
using the isovalue 0.009 e/106 pm3. The dotted line represents the 
direction of the Wang–Liebau eccentricity vector, while the liebau 
density vectors are shown as black arrows.
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from their corresponding oxides under low oxygen partial pres
sure and relatively high temperatures. A detailed structural char-
acterization was performed on the proposed compounds, and a 
comparison has been made with structurally related PbAlBO4. 
The behaviour of the lone electron pairs in the Sn compounds 
contrasts with those of Pb: while the Wang–Liebau eccentricity 
parameters show relatively large values, the liebau density vec-
tors are very short. This indicates an asymmetric first coordi-
nation shell of Sn2+ cations but a relatively small volume of 
the LEP. This impacts in the elastic properties: SnMBO4 show 
a larger bulk modulus and no axial negative linear compress-
ibility below 20 GPa, in contrast to PbMBO4 where the strong 
stereochemical activity of Pb2+ contributes to their anoma-
lous behaviour. The low quantity of negative mode-Grüneisen 
parameters supports this prediction, while it could also be an 
indication of the lack of axial negative thermal expansion. 
The calculation and assignment of the infrared and Raman 
spectra will serve as a reference for future experimental results. 
Moreover, we calculated the optical absorption spectrum of the 
title compounds using the GW-BSE method, and found a strong 
anisotropic character, with low-lying excited states polarized 
along the c-direction, parallel to the 1D MO6 chains.
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