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Abstract. We review the construction of supersymmetric extension of the n-particle Euler–
Calogero–Moser model within the Hamiltonian approach [1]. The main feature of the proposed
supersymmetrization method is that it is automatically adapted for a model with an arbitrary
even number of supersymmetries. It is shown that the number of fermions that must be used in
this construction is 1

2
Nn(n+ 1). We demonstrate that the resulting supersymmetric system is

dynamically invariant with respect to the superconformal group Osp(N|2) and give the explicit
realization of its generators in terms of the conserved currents. For the simplest case of the
N = 2 supersymmetric n-particle Euler–Calogero–Moser model we provide its description in
superspace by using the corresponding constrained superfields.

1. Introduction and Bosonic model
Recently, an interest in studying of supersymmetric extensions of matrix models has significantly
increased. In many respects it is connected with a notable progress that was achieved in the
supersymmetrization of the bosonic matrix models [2, 3, 4, 5, 6]. The matrix models were
successfully used in constructing systems which preserve the conformal symmetry (see e.g. [7]
and refs. therein). It is well known that the conformally invariant systems such as, for example,
the Calogero model as well as its different extensions [8, 9, 10, 11, 12], can be obtained from the
matrix models by a reduction procedure. In the supersymmetric case each element of a given
matrix (unitary, Hermitian, symmetric, etc.) is replaced by a proper superfield, which may
be constrained [2, 3, 4, 5]. However, the superfield approach is useful only for the first lowest
values N of the extended supersymmetry, restricted by N ≤ 4, and it seems to be less efficient
or even inapplicable for N > 4 supersymmetric cases.1 In contrast, the Hamiltonian approach
has no serious restriction on the number of supersymmetries, due to the absence of auxiliary
components.

In the supersymmetrization of the bosonic matrix models, besides of the standard set of
N n fermions accompanied n bosonic fields, it appears a large number of additional fermionic
degrees of freedom, which are related with non-diagonal part of the supermatrices. Note that the
number of these fermions depends on corresponding matrix model. So, as it was demonstrated

1 Up to now unique example of a matrix system with N = 8 supersymmetry has appeared in [5] in N = 4
superspace.
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in our recent paper [6], to construct a supersymmetric extension of Hermitian matrix models
within the Hamiltonian approach, which admits an arbitrary number of supersymmetries, we
introduced N n(n − 1) additional fermions. Moreover, how it was shown in that paper, that,
after the reduction procedure, an N -extended n-particle supersymmetric Calogero model can
be obtained. In this paper we apply the supersymmetrization procedure for the real symmetric
matrix model [8] within the Hamiltonian approach.

We start with a basics of a spin generalization of the n-particle Calogero–Moser model, which
is also known as the Euler–Calogero–Moser (ECM) model [8, 9]. As a bosonic system, this model
is closely related to the free matrix models associated with real symmetric matrices (see e.g. [11]).
The Hamiltonian, which depends on the coordinates xi(t) and momenta pi(t) of each particle
and also on the internal degrees of freedom realized by the angular momenta ℓij = −ℓji, is given
by

H =
1

2

n∑
i=1

p2i +
1

2

n∑
i̸=j

ℓ2ij

(xi − xj)
2 . (1.1)

The introduced variables satisfy the standard Poisson brackets{
xi, pj

}
= δij ,

{
ℓij , ℓkm

}
=

1

2

(
δikℓjm + δjmℓik − δjkℓim − δimℓjk

)
, (1.2)

from which follows that the angular momenta form the so(n) algebra.
It is well-known that the Euler–Calogero–Moser model with the Hamiltonian (1.1) is a

conformally invariant system with respect to SO(1, 2) group. Besides the Hamiltonian, the
rest set of its generators is defined as the conserved currents of dilatation D and conformal
boost K as

D = −1

2

n∑
i=1

xipi + tH and K =
1

2

n∑
i=1

x2i − t

n∑
i=1

xipi + t2H (1.3)

All together they form the one-dimensional conformal algebra so(1, 2){
H,K

}
= 2D,

{
H,D

}
= H,

{
K,D

}
= −K. (1.4)

In this paper we review an N -extended supersymmetric generalization of the Hamiltonian
(1.1) and establish an Osp(N|2) invariance of the N supersymmetric ECM model. By
considering of the simplest case of the model with N = 2 supersymmetry, we provide its
description in N = 2 superspace in terms of constrained superfields. Finally, we give the N = 2
supersymmetric version of a system, a crucial features of which is dependence on antisymmetric
fermions, as well as on bosons, which enter the supercharges only through their sum.

2. Supersymmetric spin ECM model in the Hamiltonian approach
2.1. Model with N = 2 supersymmetry
TheN = 2 supersymmetric extension of the n-particle Euler–Calogero–Moser model is described
by two supercharges Q,Q and Hamiltonian H, whose bosonic limit is (1.1), and which form
N = 2 super Poincaré algebra{

Q,Q
}
= −2iH, {Q,Q} =

{
Q,Q

}
= 0. (2.1)

In order to construct the supercharges Q and Q, it is necessary to introduce a certain set of
fermionic fields. For the n-particle case, we have to add 2n fermions ψi(t), ψ̄i(t), (i = 1, ..., n),
for which the standard Poisson brackets must be satisfied{

ψi, ψ̄j
}
= −iδij . (2.2)
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These fermions can be considered as a superpartners of components xi and, therefore, can be
combined with them into a proper N = 2 supermultiplet. However, this set of fermions is not
enough to realize the superchargers Q,Q so that their anticommutator can lead to the correct
bosonic limit of the potential part in Hamiltonian (1.1). Indeed, to produce the potential∑n

i>j

ℓ2ij
(xi−xj)2

in (1.1) the supercharges should, in particular, contain terms, which are linear in

symmetric spinor fields ρij(t), ρ̄ji(t) (due to antisymmetry of lij), of the following type

Q ∼ ρijℓij
xi − xj

, Q ∼ ρ̄ijℓij
xi − xj

. (2.3)

A simple conjecture that these symmetric spinors can be constructed as a sum of the introduced
fermionic components as

ρij = ψi + ψj , ρ̄ij = ψ̄i + ψ̄j (2.4)

leads to inconsistency of the possible structure of supercharges with the basic relation (2.1) of
the N = 2 super Poincaré algebra. Therefore, following the arguments which was proposed
in [6], the spinors ρij(t), ρ̄ji(t) should be treated as new fields in addition to ψi(t), ψ̄i(t). They
also satisfy the condition ρii = ρ̄ii = 0 for each of the indices i and obey the following Poisson
brackets {

ρij , ρ̄km
}
= − i

2

(
1− δij

)(
1− δkm

)(
δikδjm + δimδjk

)
. (2.5)

Thus, a complete number of the fermionic degrees of freedom is follows: n(n+1) fermionic fields
in the model: (ψi, ψ̄i) = 2n, (ρij , ρ̄ij) = n(n− 1). By using of these fermions, we can construct
the composite object Πij = −Πji

Πij = −i

[
(ψi − ψj) ρ̄ij +

(
ψ̄i − ψ̄j

)
ρij +

n∑
k=1

(ρikρ̄kj − ρjkρ̄ki)

]
. (2.6)

It can be checked that with respect to the brackets (2.2), (2.5) the Πij also form the so(n)
algebra as it was for the operators ℓij{

Πij ,Πkm
}
=

1

2

(
δikΠjm + δjmΠik − δjkΠim − δimΠjk

)
. (2.7)

Taking all these arguments into account, it is a matter of straightforward calculations to check
that the supercharges Q and Q given by

Q =

n∑
i=1

piψi −
n∑
i̸=j

(ℓij +Πij) ρij
xi − xj

, Q =

n∑
i=1

piψ̄i −
n∑
i̸=j

(ℓij +Πij) ρ̄ij
xi − xj

(2.8)

together with the Hamiltonian

H =
1

2

n∑
i=1

p2i +
1

2

n∑
i̸=j

(ℓij +Πij)
2

(xi − xj)
2 (2.9)

form N = 2 super Poincaré algebra (2.1) and describe therefore to the N = 2 supersymmetric
extension of the n-particle Euler–Calogero–Moser model.

Let us remind that the n-particle Euler–Calogero–Moser model is conformally invariant. So,
we expect that the its N = 2 supersymmetric extension also possesses N = 2 superconformal
symmetry. The superconformal symmetry is a dynamical one. It means that full set of generators
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which includes the supercharges Q,Q (2.8) , Hamiltonian H (2.9) and the following conserved
currents

K =
1

2

n∑
i=1

x2i − t

n∑
i=1

xipi + t2H, D = −1

2

n∑
i=1

xipi + tH, U = −1

2

n∑
i=1

ψiψ̄i −
1

2

n∑
i ̸=j

ρij ρ̄ij ,

S =

n∑
i=1

xiψi − tQ, S =

n∑
i=1

xiψ̄i − tQ, (2.10)

form a superconformal algebra. The explicit calculation of (anti)commutators of these generators
leads to the following relations

{H,K} = 2D, {H,D} = H, {K,D} = −K,

{U,Q} =
i

2
Q,

{
U,Q

}
= − i

2
Q, {U, S} =

i

2
S,

{
U, S

}
= − i

2
S,

{D,Q} = −1

2
Q,

{
D,Q

}
= −1

2
Q, {D,S} =

1

2
S,

{
D,S

}
=

1

2
S,

{H,S} = −Q,
{
H,S

}
= −Q, {K,Q} = S,

{
K,Q

}
= S,{

Q,Q
}
= −2iH,

{
S, S

}
= −2iK,

{
Q,S

}
= 2iD + 2U,

{
Q,S

}
= 2iD − 2U, (2.11)

which assert that they form the osp(2|2) ∼ su(1, 1|1) superconformal algebra.
To end this subsection, we make two comments concerning two possible modified sets of

supercharges that still form, however, the N = 2 super Poincaré algebra. The first set relates

to the following supercharges Q̃, Q̃

Q̃ = Q+ im
n∑
i ̸=j

ψi − ψj
xi − xj

, Q̃ = Q− im
n∑
i̸=j

ψ̄i − ψ̄j
xi − xj

, m = const, (2.12)

where Q,Q are given in (2.8). These supercharges together with the Hamiltonian

H̃ = H+
m2

2

n∑
j ̸=i

1

(xi − xj)2
+
m

2

∑
j ̸=i

(ψi − ψj)
(
ψ̄i − ψ̄j

)
(xi − xj)2

−m
n∑

k ̸=j ̸=i

ρij ρ̄ij
xi − xj

(
1

xi − xk
− 1

xj − xk

)
(2.13)

form N = 2 super Poincaré algebra (2.1). Thus, the supercharges (2.12) and the Hamiltonian
(2.13) provide a new N = 2 supersymmetric extension of the rational Calogero model with a
modified Calogero-like potential.

The second case corresponds to the supercharges in the structure of which the symmetric
spinor fields ρij , ρ̄ij are replaced by the antisymmetric spinor fields ηij = −ηji, η̄ij = −η̄ji
and the x dependent terms are represented as functions of a sum xi + xj . Having made such
assumptions, it is possible to write down supecharges in the following form

Q̂ =

n∑
i=1

piψi −
n∑
i ̸=j

ℓij ηij
xi + xj

− i

n∑
i̸=j

ψi + ψj
xi + xj

ηij η̄ij + i

n∑
i̸=j ̸=k

xi + xj
(xi + xk) (xj + xk)

ηikηjkη̄ij ,

Q̂ =
n∑
i=1

piψ̄i −
n∑
i ̸=j

ℓij η̄ij
xi + xj

+ i
n∑
i̸=j

ψ̄i + ψ̄j
xi + xj

ηij η̄ij − i
n∑

i̸=j ̸=k

xi + xj
(xi + xk) (xj + xk)

ηij η̄ikη̄jk.

(2.14)
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The bosonic potential has an expected form

V̂ =
∑
i̸=j

ℓijℓij

(xi + xj)
2 , (2.15)

while the full Hamiltonian Ĥ has no such transparent structure as H (2.9).

2.2. Model with even number of supersymmetries
The N = 2 supersymmetric n-particle Euler–Calogero–Moser model admits a generalization to
those which are invariant under the supersymmetry with arbitrary even number of supercharges.
This generalization provides by supercharges which have extra su(M) indices a, b and form the
N = 2M super Poincaré algebra{

Qa, Qb
}
= −2iδabH,

{
Qa, Qb

}
=

{
Qa, Qb

}
= 0, a, b = 1, ...,M. (2.16)

Indeed, we can consider the following set of 1
2Nn(n + 1) fermions ψai , ψ̄i a and ρaij , ρ̄ij a that

satisfy the Poisson brackets{
ψai , ψ̄b j

}
= −iδab δij ,

{
ρaij , ρ̄kmb

}
= − i

2
δab
(
1− δij

)(
1− δkm

)(
δikδjm + δimδjk

)
. (2.17)

Then, by analogy with the N = 2 supersymmetric case, it is possible to construct a composite
object Πij = −Πji

Πij = −i

N∑
a=1

[(
ψai − ψaj

)
ρ̄ij a +

(
ψ̄i a − ψ̄j a

)
ρaij +

n∑
k=1

(
ρaikρ̄kj a − ρajkρ̄ki a

)]
, (2.18)

that satisfies, as before, the commutation relations of the so(n) algebra (2.7). Using (2.18),
the supercharges Qa, Qa, which correspond to the extended N = 2M supersymmetry, can be
written as follows

Qa =
n∑
i=1

piψ
a
i −

n∑
i̸=j

(ℓij +Πij) ρ
a
ij

xi − xj
, Qa =

n∑
i=1

piψ̄i a −
n∑
i ̸=j

(ℓij +Πij) ρ̄ij a
xi − xj

. (2.19)

They form together with the Hamiltonian

H =
1

2

n∑
i=1

p2i +
1

2

n∑
i̸=j

(ℓij +Πij)
2

(xi − xj)
2 (2.20)

N = 2M super Poincaré algebra (2.16) and describe the N = 2M supersymmetric extension of
the n-particle Euler–Calogero–Moser model.

It is rather easy to check that the supercharges Qa, Qa (2.19), Hamiltonian H (2.20) and the
following conserved currents

K =
1

2

n∑
i=1

x2i − t

n∑
i=1

xipi + t2H, D = −1

2

n∑
i=1

xipi + tH, Jab = −
n∑
i=1

ψai ψ̄i b −
n∑
i ̸=j

ρaij ρ̄ij b,

Iab = −
n∑
i=1

ψai ψ
b
i −

n∑
i ̸=j

ρaijρ
b
ij , Iab =

n∑
i=1

ψ̄i aψ̄i b +

n∑
i ̸=j

ρ̄ij aρ̄ij b,

Sa =

n∑
i=1

xiψ
a
i − tQa, Sa =

n∑
i=1

xiψ̄i a − tQa, (2.21)

form the superalgebra osp(N|2) [1]. Note that the generators Jab form u(M) subalgebra, while
together with the generators Iab and Iab they form so(2M) subalgebra of osp(N|2) superalgebra.
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3. N = 2 supersymmetric Euler–Calogero–Moser model in superspace
TheN -extended supersymmetric ECMmodel, that has been constructed within the Hamiltonian
methods, admits a nice superfield description for the simplest case with N = 2 supersymmetry.
An importance of the N = 2 superfield approach is that it can make more clear the meaning
for introducing the new fermionic fields of the ρ-type and the role played by the additional
currents ℓij . To obtain the N = 2 supersymmetric ECM model in superspace, defined by the
supercharges Q,Q (2.8) and the Hamiltonian (2.9), one needs to solve two tasks:

• assemble the physical components xi, ψi, ψ̄i, ρij and ρ̄ij into appropriate N = 2 superfields

• introduce auxiliary bosonic superfields vi, v̄i whose leading components realize ℓij via
bilinear combinations.

Let us start with the first task. From the structure of the supercharges Q,Q (2.8) it is clear
that under the N = 2 supersymmetry transformations, defined as

δsusyz(t) = i
{
z(t), ε̄Q+ εQ

}
, (3.1)

follows that the coordinates xi transform through fermions ψi, ψ̄i. So, one have to introduce n
bosonic N = 2 superfields xi with the following components,

xi = xi|, ψi = −iDxi|, ψ̄i = −iDxi|, Ai =
1

2

[
D,D

]
xi|, (3.2)

where | denotes the θ = θ̄ = 0 projection. As usual, D and D are N = 2 covariant derivatives
whose anicommutators are given by{

D,D
}
= 2i∂t and

{
D,D

}
=

{
D,D

}
= 0. (3.3)

The fermions ρij , ρ̄ij can be embedded as the first components into n(n−1) fermionic superfields
ρij , ρ̄ij , symmetric and of zero diagonal in the indices i, j, i.e.

ρij = ρji, ρ̄ij = ρ̄ji, ρii = ρ̄ii = 0 (no sum) . (3.4)

As N = 2 superfields the ρij and ρ̄ij contain a lot of components. However, their leading

components ρij and ρ̄ij transform under the N = 2 supersymmetry generated by Q and Q (2.8)
as follows,

δQρij ∼ iϵ̄

[
ψi − ψj
xi − xj

ρij −
n∑

k ̸=i,j

xi − xj
(xi − xk) (xj − xk)

ρikρjk

]
,

δQρ̄ij ∼ iϵ

[
ψ̄i − ψ̄j
xi − xj

ρ̄ij −
n∑

k ̸=i,j

xi − xj
(xi − xk) (xj − xk)

ρ̄ikρ̄jk

]
. (3.5)

To realize these transformations in superspace we are forced to impose the following nonlinear
chirality conditions,

Dρij = i

[
ψi −ψj
xi − xj

ρij −
n∑

k ̸=i,j

xi − xj
(xi − xk) (xj − xk)

ρikρjk

]
,

Dρ̄ij = i

[
ψ̄i − ψ̄j
xi − xj

ρij −
n∑

k ̸=i,j

xi − xj
(xi − xk) (xj − xk)

ρ̄ikρ̄jk

]
. (3.6)
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These conditions are self-consistent and leave in the superfields ρij and ρ̄ij only the components

ρij = ρij |, Bij = Dρij |, ρ̄ij = ρ̄ij |, Bij = Dρ̄ij | . (3.7)

To get the correct Poisson brackets for ψi, ψ̄i and ρij , ρ̄ij (2.2) after passing to the Hamiltonian
formalism, the kinetic terms for these fermionic components must read

Lψkin =
i

2

n∑
i=1

(
ψ̇iψ̄i − ψi

˙̄ψi
)

and Lρkin =
i

2

n∑
i,j

(
ρ̇ij ρ̄ij − ρij ˙̄ρij

)
. (3.8)

Altogether, we arrive at the following superfield action for the purely N = 2 supersymmetric
system with lij = 0,

S0 =

∫
dt d2 θ

[
− 1

2

n∑
i=1

Dxi Dxi +
1

2

n∑
i,j

ρijρ̄ij

]
, d2θ ≡ DD. (3.9)

To resolve the second task, one has to realize the ℓij in terms of auxiliary semi-dynamical
variables. As so(n) generators the ℓij possess the standard realization

ℓ̂ij =
i

2

(
viv̄j − vj v̄i

)
(3.10)

in terms of 2n bosonic variables vi, v̄i subject to{
vi, v̄j

}
= −iδij . (3.11)

To implement these new semi-dynamical variables vi, v̄i at the superfield level, we have to
introduce 2n bosonic superfields vi, v̄i. Additional information about these superfields again
comes from the transformation of their first components under N = 2 supersymmetry. These
transformations can be learned from the explicit structure of the supercharges Q, Q (2.8), with

the ℓij being replaced by their realization ℓ̂ij (3.10):

δQvi ∼ i ϵ̄

n∑
j ̸=i

ρijvj
xi − xj

and δQv̄i ∼ i ϵ

n∑
j ̸=i

ρ̄ij v̄j
xi − xj

. (3.12)

This form of transformations implies that, similarly to ρij and ρ̄ij , the superfields vi and v̄i are
subjected to the nonlinear chirality conditions,

Dvi = i
n∑
j ̸=i

ρijvj
xi − xj

and Dv̄i = i
n∑
j ̸=i

ρ̄ij v̄j
xi − xj

. (3.13)

Due to these constraints, there are the following independent components in superfields vi and
v̄i

vi = vi|, Ci = −iDvi|, v̄i = v̄i|, Ci = −iDv̄i|. (3.14)

Finally, to have the brackets (3.11), the kinetic terms for vi, v̄i must take the form

Lvkin = − i

2

n∑
i=1

(
v̇iv̄i − vi ˙̄vi

)
. (3.15)
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Therefore, the interaction part (lij ̸= 0) of the superfield action reads

S1 = −1

2

∫
dt d2θ

n∑
i=1

viv̄i. (3.16)

Combining everything together, we conclude that the superfield action should have the form

S = S0 + S1 =

∫
dt d2θ

[
− 1

2

n∑
i=1

Dxi Dxi +
1

2

n∑
i,j

ρijρ̄ij −
1

2

n∑
i=1

viv̄i

]
, (3.17)

where the superfields ρij , ρ̄ij ,vi and v̄i are subject to the constraints (3.6) and (3.13),
respectively.

Despite the extremely simple form of the superfield action (3.17), its off-shell component
version looks quite complicated due to the nonlinear chirality constraints (3.6) and (3.13). We
omit here the detailed calculation and give the final result for the on-shell component Lagrangian.
Its expression follows after integration over the Grassmann variables and exclusion the auxiliary
components Ai, Bij , Bij , Ci and Ci by their equations of motion in (3.17)

L =
1

2

n∑
i=1

ẋiẋi+
i

2

n∑
i=1

(
ψ̇iψ̄i−ψi ˙̄ψi

)
+

i

2

n∑
i,j

(
ρ̇ij ρ̄ij−ρij ˙̄ρij

)
− i

2

n∑
i=1

(
v̇iv̄i−vi ˙̄vi

)
−

n∑
i̸=j

(ℓ̂ij +Πij)
2

2 (xi − xj)
2 .

(3.18)

In (3.18) Πij is still defined as in (2.6) and ℓ̂ij is expressed in terms of semi-dynamical variables
as in (3.10). Thus, the superfield action (3.17), with the superfields ρij , ρ̄ij ,vi and v̄i being
nonlinearly constrained by (3.6) and (3.13), indeed describes the N = 2 supersymmetric Euler–
Calogero–Moser model.

To conclude, let us make a few comments:

• The nonlinear chirality conditions (3.6) can be slightly simplified by passing to the
superfields ξij , ξ̄ij :

ξij ≡
ρij

xi − xj
, ξ̄ij ≡

ρ̄ij
xi − xj

⇒ Dξij + i

n∑
k=1

ξikξjk = 0, Dξ̄ij + i

n∑
k=1

ξ̄ikξ̄jk = 0.

However, the Lagrangian, Hamiltonian and the Poisson brackets will look more complicated,
being written in terms of ξij and ξ̄ij despite the fact that these superfields now are defined
independently of the superfields xi.

• It turns out that the auxiliary superfields vi, v̄i cannot be re-defined in a similar manner.
Thus, the nonlinear chirality constraints (3.13) which relate these superfields with the xi
ones are crucial for the superfields description.

• It should be noted that the semi-dynamical variables vi, v̄i obeying the brackets (3.11) can
be used for the construction of su(n) generators. Clearly, the kinetic Lagrangian Lvkin (3.15)
possesses su(n) symmetry. However, this su(n) symmetry is reduced to the so(n) one upon
using the nonlinear chirality constraints (3.13).

• In N = 2 superspace a system defined by supercharges (2.14) is described by superfields
ηij , η̄ij ,vi and v̄i subjected to modified nonlinear chirality constraints

Dηij = i

[
ψi +ψj
xi + xj

ηij −
n∑

k ̸=i,j

xi + xj
(xi + xk) (xj + xk)

ηikηjk

]
,

Dη̄ij = i

[
ψ̄i + ψ̄j
xi + xj

ηij −
n∑

k ̸=i,j

xi + xj
(xi + xk) (xj + xk)

η̄ikη̄jk

]
, (3.19)
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and

Dvi = i
n∑
j ̸=i

ηijvj
xi + xj

, Dv̄i = i
n∑
j ̸=i

η̄ij v̄j
xi + xj

. (3.20)

However, the superfield action for the system still has the same form as in (3.17)

S =

∫
dtd2θ

[
− 1

2

n∑
i=1

Dxi Dxi +
1

2

n∑
i,j

ηijη̄ij −
1

2

n∑
i=1

viv̄i

]
, (3.21)

This system is needed to be further analyzed.

4. Conclusion
We reviewed a new N -extended supersymmetric so(n) spin-Calogero model by a direct
supersymmetrization of the bosonic Euler–Calogero–Moser system [8]. The crucial feature of a
given construction, besides the standard N n fermions ψai and ψ̄i a accompanying the bosonic
fields xi, is the presence of an additional set of fermionic degrees of freedom, namely, 1

2N×n(n−1)
symmetric fermions ρaij = ρaji, which originate from the off-diagonal part of the symmetric
supermatrices.

We obtained the supercharges Qa and Qa and the Hamiltonian which form an N -extended
super Poincaré algebra. As it was shown, the supercharges have the standard structure, cubic
in the fermions involved. We realized in term of all coordinates the generators of a dynamical
osp(N|2) superconformal algebra as the conserved currents and demonstrated the invariance of
ECM model with respect to this supergroup.

In the simplest case of N = 2 supersymmetric extension of the ECM model, we provided its
description in terms of N = 2 superfields. The peculiarity of this construction is reflected in
following facts:

• the coordinates xi and fermions ψi, ψ̄j forming standard unconstrained bosonic superfields,

• fermionic symmetric matrices ρij , ρ̄ij (with vanishing diagonal), subject to the nonlinear
chirality constraints,

• 2n bosonic N = 2 semi-dynamical superfields vi, v̄i also obeying the nonlinear chirality
constraints.

It is shown that the N = 2 superspace action is written as a sum of the standard kinetic terms
for all superfields. At the component level, the off-shell action has rather complicated structure
due to the nonlinear constraints. However, after eliminating the auxiliary components via their
equations of motion, the action acquires quite a simple form again, with an interaction quadratic
and quartic in the fermions.

However, the presented N = 2 supersymmetric case is not too instructive, since it can also be
constructed without additional fermions ρijand ρ̄ij , in analogy with the N = 2 supersymmetric
Calogero model [13, 14] if the terms quadratic in ρij and ρ̄ij in the nonlinear chirality constraints
(3.6) will be discarded. Thus, the generic superfield structure of the N -extended ECM model
becomes visible at N = 4 only. We are planning to address this elsewhere.
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