
Universidade de Aveiro
Departamento de Electrónica,
Telecomunicações e Informática

2020
das Universidades de Aveiro, Minho e Porto
Programa de Doutoramento em Informática

Morteza Hosseini Modelos de compressão e ferramentas para dados
ómicos

Compression models and tools for omics data

Universidade de Aveiro
Departamento de Electrónica,
Telecomunicações e Informática

2020
das Universidades de Aveiro, Minho e Porto
Programa de Doutoramento em Informática

Morteza Hosseini Modelos de compressão e ferramentas para dados
ómicos

Compression models and tools for omics data

Tese apresentada às Universidades de Aveiro, Minho e Porto para cumpri-
mento dos requisitos necessários à obtenção do grau de Doutor em
Informática, realizada sob a orientação cient́ıfica do Doutor Armando
José Formoso de Pinho, Professor Catedrático e co-orientação do Doutor
Diogo Rodrigo Marques Pratas, Investigador Auxiliar do Departamento de
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro.

Trabalho financiado pelas seguintes entidades:

To my family: Hamze, Ozra, Davoud, Masoud, Fateme, Mahdi, Sedighe,
Somaye, Hasti, Tarannom and Delaram

o júri / the jury

presidente / president João Carlos de Oliveira Matias
Full Professor, University of Aveiro

vogais / examiners committee Mário Alexandre Teles de Figueiredo
Full Professor, University of Lisbon

Lúıs Filipe Coelho Antunes
Full Professor, University of Porto

Francisco Moreira Couto
Associate Professor with Aggregation, University of Lisbon

José Lúıs Guimarães Oliveira
Full Professor, University of Aveiro

Armando José Formoso de Pinho
Full Professor, University of Aveiro

agradecimentos /
acknowledgements

First and foremost, I would like to express my sincere gratitude to my super-
visor Armando J. Pinho, for the continuous support to my PhD study and
research, for his patience, motivation, enthusiasm, and immense knowledge.
His guidance helped me in all the time of research and writing of this thesis.
It has been a privilege being his student.

I would like to give very special thanks to Diogo Pratas for being my co-
supervisor and sharing his knowledge in computational biology. He has been
all I could hope for, both from an academic and personal perspective.

I gratefully acknowledge financial support from Fundação para a Ciência e
Tecnologia (FCT).

On a more personal note, I would like to thank Hooshiar Zolfagharnasab,
João Carvalho, Mohammadreza Kasaei, Hamidreza Kasaei, Ehsan Shahri,
Reza Parsamehr, Anabela Viegas, Ana Isabel Martins, Sónia Brandão,
Raquel M. Silva, Cláudio Teixeira, Vahid Mokhtari, Abbas Abdolmaleki,
Nima Shafii, Mohammadreza Kamali, Burkhard Morgenstern, Thomas
Dencker, Peter Meinicke and Nafise Jafarzadeh, with whom I have shared
unforgettable moments.

Last but not least, I owe so much thanks to my family, parents, broth-
ers, sister, sisters-in-law and nieces who were continuously supporting me
throughout my life.

Palavras-chave Compressão relativa, Modelos de Markov, compressão de dados ómicos,
encriptação de dados ómicos, metodo livre de alinhamentos, rearranjo
genómico, genómica comparativa

Resumo O crescente crescimento do desenvolvimento de tecnologias de sequencia-
mento de alto rendimento e, como consequência, a geração de um enorme
volume de dados, revolucionou a pesquisa e descoberta biológica. Mo-
tivados por isso, nesta tese investigamos os métodos que fornecem uma
representação eficiente de dados ómicos de maneira compactada ou crip-
tografada e, posteriormente, os usamos para análise.

Em primeiro lugar, descrevemos uma série de medidas com o objetivo de
quantificar informação em e entre sequências ómicas. Em seguida, apresen-
tamos modelos de contexto finito (FCMs), modelos de Markov tolerantes
a substituição (STMMs) e uma combinação dos dois, especializados na
modelagem de dados biológicos, para compactação e análise de dados.

Para facilitar o armazenamento do dilúvio de dados acima mencionado, de-
senvolvemos dois compressores de dados sem perda para dados genómicos e
um para dados proteómicos. Os métodos funcionam com base em (a) uma
combinação de FCMs e STMMs ou (b) na combinação mencionada, jun-
tamente com modelos de repetição e um modelo de previsão competitiva.
Testados em vários dados sintéticos e reais mostraram a sua eficiência sobre
os métodos do estado-de-arte em termos de taxa de compressão.

A privacidade dos dados genómicos é um tópico recentemente focado nos
desenvolvimentos do campo da medicina personalizada. Propomos uma
ferramenta capaz de representar dados genómicos de maneira criptografada
com segurança e, ao mesmo tempo, compactando as sequências FASTA e
FASTQ para um fator de três. Emprega criptografia AES acompanhada de
um mecanismo de embaralhamento para melhorar a segurança dos dados.
Os resultados mostram que é mais rápido que os algoritmos de uso geral e
espećıfico.

As técnicas de compressão podem ser exploradas para análise de dados
ómicos. Tendo isso em mente, investigamos a identificação de regiões
únicas em uma espécie em relação a espécies próximas, que nos podem
dar uma visão das caracteŕısticas evolutivas. Para esse fim, desenvolvemos
duas ferramentas livres de alinhamento que podem encontrar e visualizar
com precisão regiões distintas entre duas coleções de sequências de DNA
ou protéınas. Testados em humanos modernos em relação a neandertais,
encontrámos várias regiões ausentes nos neandertais que podem expressar
novas funcionalidades associadas à evolução dos humanos modernos.

Por último, investigamos a identificação de rearranjos genómicos, que têm
papéis importantes em desordens genéticas e cancro, empregando uma
técnica de compressão. Para esse fim, desenvolvemos uma ferramenta ca-
paz de localizar e visualizar com precisão os rearranjos em pequena e grande
escala entre duas sequências genómicas. Os resultados da aplicação da fer-
ramenta proposta, em vários dados sintéticos e reais, estão em conformidade
com os resultados parcialmente relatados por abordagens laboratoriais, por
exemplo, análise FISH.

Keywords Relative compression, Markov model, omics data compression, omics data
encryption, alignment-free method, genomic rearrangement, comparative
genomics

Abstract The ever-increasing growth of the development of high-throughput sequenc-
ing technologies and as a consequence, generation of a huge volume of data,
has revolutionized biological research and discovery. Motivated by that, we
investigate in this thesis the methods which are capable of providing an
efficient representation of omics data in compressed or encrypted manner,
and then, we employ them to analyze omics data.

First and foremost, we describe a number of measures for the purpose
of quantifying information in and between omics sequences. Then, we
present finite-context models (FCMs), substitution-tolerant Markov mod-
els (STMMs) and a combination of the two, which are specialized in mod-
eling biological data, in order for data compression and analysis.

To ease the storage of the aforementioned data deluge, we design two loss-
less data compressors for genomic and one for proteomic data. The methods
work on the basis of (a) a combination of FCMs and STMMs or (b) the men-
tioned combination along with repeat models and a competitive prediction
model. Tested on various synthetic and real data showed their outperfor-
mance over the previously proposed methods in terms of compression ratio.

Privacy of genomic data is a topic that has been recently focused by devel-
opments in the field of personalized medicine. We propose a tool that is
able to represent genomic data in a securely encrypted fashion, and at the
same time, is able to compact FASTA and FASTQ sequences by a factor
of three. It employs AES encryption accompanied by a shuffling mecha-
nism for improving the data security. The results show it is faster than
general-purpose and special-purpose algorithms.

Compression techniques can be employed for analysis of omics data. Having
this in mind, we investigate the identification of unique regions in a species
with respect to close species, that can give us an insight into evolutionary
traits. For this purpose, we design two alignment-free tools that can accu-
rately find and visualize distinct regions among two collections of DNA or
protein sequences. Tested on modern humans with respect to Neanderthals,
we found a number of absent regions in Neanderthals that may express new
functionalities associated with evolution of modern humans.

Finally, we investigate the identification of genomic rearrangements, that
have important roles in genetic disorders and cancer, by employing a com-
pression technique. For this purpose, we design a tool that is able to accu-
rately localize and visualize small- and large-scale rearrangements between
two genomic sequences. The results of applying the proposed tool on sev-
eral synthetic and real data conformed to the results partially reported by
wet laboratory approaches, e.g., FISH analysis.

Contents

1 Introduction 1

1.1 Next-generation sequencing . 2

1.2 Storage of omics data . 3

1.3 Omics data compression . 6

1.4 Omics data encryption . 8

1.5 Omics data analysis . 9

1.6 Outline . 10

1.7 Contributions . 10

1.7.1 Publications . 11

1.7.2 Software . 12

2 Measures and models 13

2.1 Measures for quantifying information . 13

2.1.1 Introduction . 14

2.1.2 Normalized information distance . 15

2.1.3 Normalized compression distance . 16

2.1.4 Normalized conditional compression distance . 17

2.1.5 Normalized relative compression . 17

2.1.6 Normalized compression . 18

2.2 Compression models . 18

2.2.1 Finite-context model (FCM) . 18

2.2.2 Substitution-tolerant Markov model (STMM) . 19

2.2.3 Cooperation of FCMs and STMMs . 20

2.2.4 FCMs compared to cooperation of FCMs and STMMs 22

2.3 Application on quantifying inverted repeats . 24

2.4 Conclusions . 29

i

3 Compression of omics data 31

3.1 Compression of genomic sequences . 32

3.1.1 Introduction . 32

3.1.2 GeCo2 . 34

3.1.3 Jarvis . 39

3.2 Compression of amino acid sequences . 48

3.2.1 Introduction . 48

3.2.2 Methods . 50

3.2.3 Results and discussion . 50

3.3 Conclusions . 55

4 Secure encryption of genomic data 57

4.1 Introduction . 57

4.2 Methods . 58

4.2.1 Pack and unpack . 59

4.2.2 Shu�e and unshu�e . 60

4.2.3 Encrypt and decrypt . 65

4.3 Results and discussion . 66

4.3.1 Experiment setup . 66

4.3.2 Compare with compression and encryption methods 69

4.3.3 Run with di�erent number of threads . 73

4.3.4 Explore redundancy . 75

4.4 Conclusions . 77

5 Finding and visualization of distinct regions in omics sequences 79

5.1 Genomic level . 80

5.1.1 Introduction . 80

5.1.2 Methods . 80

5.1.3 Results and discussion . 82

5.2 Proteomic level . 85

5.2.1 Introduction . 85

5.2.2 Methods . 85

5.2.3 Results and discussion . 86

5.3 Conclusions . 90

6 Detection and visualization of genomic rearrangements 93

6.1 Introduction . 93

ii

6.2 Methods . 95

6.2.1 Data modeling . 96

6.2.2 Storing models in memory . 96

6.2.3 Finding similar regions . 97

6.2.4 Computing complexity . 98

6.3 Results and Discussion . 100

6.3.1 Dataset . 101

6.3.2 Application on synthetic data . 101

6.3.3 Application on real data . 101

6.3.4 Comparison to Smash . 106

6.3.5 Robustness against fragmented data . 111

6.3.6 Benchmarking . 111

6.4 Conclusions . 115

7 Conclusions 117

Bibliography 119

iii

iv

List of Figures

1.1 Double helix structure of DNA. Credit: Nature Education [1]. 2

1.2 The cost of sequencing a human genome. Credit: National Human Genome Research Institute. 3

1.3 A sample FASTQ �le. 5

1.4 A sample FASTA �le. 5

1.5 A sample SAM �le. 6

1.6 A sample VCF �le. 7

1.7 The scheme of a data compressor. 7

1.8 The encoding process of arithmetic coder for the input a1a2a3 [35]. 8

2.1 Relation between the Kolmogorov complexity, conditional Kolmogorov complexity, conjoint
Kolmogorov complexity and algorithmic mutual information. 15

2.2 Algorithm for enabling/disabling an STMM. 20

2.3 (a) Cooperation of FCMs and STMMs. Note that each STMM needs to be associated with an
FCM; (b) probability of an input symbol is estimated by employing the probability and weight
values that have been obtained from processing previous symbols. 21

2.4 The relation between context-order sizes (k), forgetting factors and complexity (information
content). For the experiment, we compressed 10 synthetic sequences with the sizes of 500 kb
to 20Mb, with di�erent redundancies, and calculated the average information content. 22

2.5 Compression of a synthetic target sequence relatively to a reference using (a) FCMs; and
(b) cooperation of FCMs and STMMs. 23

2.6 Compression of a synthetic target sequence relatively to a reference in presence of mutations,
employing (a) FCMs; and (b) cooperation of FCMs and STMMs. 23

2.7 NRC values calculated by compression of chimpanzee and human chromosomes. (a), (b) IRs
applied (IR = 0) and not applied (IR = 1); and (c), (d) the di�erence in NRCs between not
applying and applying IRs (NRCIR=0 − NRCIR=1). 26

2.8 NRC results concerned with compression of gorilla using human chromosomes as references.
(a) left: IR = 0 and right: IR = 1; and (b) the di�erence between NRCs. 27

2.9 NRC values associated with the compression of turkey and chicken chromosomes. (a), (b) With
and without IRs; and (c), (d) the di�erence between NRCs. 28

3.1 Cache-hash data structure. 35

3.2 An example of a competitive prediction between �ve weighted context models and three
weighted stochastic repeat models. 39

v

3.3 Example of a repeat model. The base marked with ? is intended to be encoded. The dashed
arrows show failure in prediction by the model. 40

3.4 The hash table constructed by the repeat model. 41

3.5 Example of a competitive prediction context model with the context order size of �ve. 42

3.6 Bit-rates, in bps, for compressing four sequences of HoSa, EnIn, AeCa and YeMi, when apply-
ing CPCM with di�erent context order sizes. 43

3.7 Applying state-of-the-art compressors on 15 sequences (described in Table 3.2). (a) compres-
sion ratio; (b) compression speed, in kilobase per second. Note that CoGI was an outlier,
therefore, it was removed from this �gure. 47

3.8 Running Jarvis with di�erent modes on (a) HoSa; (b) GaGa; and (c) DaRe. 47

3.9 Times of carrying out GeCo2 and Jarvis in all modes on a sequence including the human
Y-chromosome and a very repetitive sequence. 48

3.10 (a) Bit-rates; (b) times; (c) memory usages; (d) bit-rates versus times of AC and other protein
compressors, obtained by testing on 16 di�erent sequences. 53

3.11 Normalized compression results of AC compressing 10,677 proteins, described in Table 3.13. . 54

3.12 Histogram of sizes for the datasets described in Table 3.13. 54

3.13 (a) Violin plot of NCs and (b) average NCs for the sequences described in Table 3.13. 55

4.1 The schema of Cryfa. (a) The process of compaction & encryption of a FASTA/FASTQ �le.
Dashed lines show that quality scores are not considered for FASTA �les; (b) decryption & un-
packing of a �le that has already been compacted & encrypted by Cryfa. 59

4.2 An example of packing DNA bases. 60

4.3 An example to show the importance of applying shu�ing in Cryfa, in which an attacker tries
exhaustive password search to break the encryption. 61

4.4 An example to show the importance of shu�ing in Cryfa. An attacker downloads the entire
sequences in NCBI database and encrypts them. By comparing each encrypted sequence with
the target �le, the attacker tries to break the encryption. 62

4.5 An example of shu�ing and unshu�ing. The uniform pseudo-random number generators in
shu�e and unshu�e blocks need to employ the same seed. 64

4.6 The authenticated encryption operation by AES method (GCM). 65

4.7 Total time and �le size to encrypt / compact & encrypt and decrypt / decrypt & unpack the
whole FASTA and FASTQ datasets by Cryfa and AES Crypt, a general-purpose encryption
tool. (a) real time, (b) �le size. CR stands for compression ratio. 71

4.8 Total time and �le size for compaction & encryption and decryption & unpacking of the entire
FASTA and FASTQ datasets obtained by di�erent methods. (a) real times; (b) �le sizes. CR
stands for compression ratio. 76

4.9 Time and memory used by Cryfa when running with di�erent number of threads, on a 338MiB
FASTA �le (viruses.fasta, from viruses species) as well as a 1.2GiB FASTQ �le (DS-B1088_SR.fastq,
from Denisova subspecies). (a) real times and CPU times, that is user time plus system time;
(b) memory usage. 77

4.10 Normalized compression (NC) values obtained by running Cryfa, DELIMINATE and MFCom-
press on several genomic sequences. 78

vi

5.1 Algorithm of the proposed method for �nding and visualizing distinct regions between two
collections of omics data. 82

5.2 Regions in modern human chromosomes that do not exist in Neanderthal genomes. “Enlarge”
shows the number of times that a region is enlarged, for the visualization purpose. 83

5.3 Uniqueness ratios for di�erent rates of mutation and di�erent k-mer sizes applied to synthetic
and real (Neanderthals) datasets. 87

5.4 (a) Distribution of uniqueness ratios; (b) total uniqueness ratios; (c) probability of a target
word being seen in the reference, for di�erent k-mers. 88

5.5 Modern human proteins with the most distinct regions against Altai, Sidron and Vindija Ne-
anderthals. The format m / n shows that considering k-mer size of 7, m out of n amino acids
are relatively unique. 90

6.1 The schema of Smash++. The process of �nding similar regions in reference and target se-
quences and computing the redundancy in each region includes eight stages. Smash++ out-
puts a *.pos �le that includes the positions of the similar regions, and can be then visualized
as an SVG image. 95

6.2 The data structures used by Smash++ to store the models in memory. (a) table of 64 bit coun-
ters that uses up to 128MiB of memory, (b) table of 32 bit counters that consumes at most
960MiB of memory, (c) table of 8 bit approximate counters with memory usage of up to 1GiB
and (d) Count-Min-Log sketch of 4 bit counters which consumes up to 1

2w × d B of memory,
e.g., if w = 230 and d = 4, it uses 2GiB of memory. 97

6.3 Approximate counting update and query. 98

6.4 Count-Min-Log Sketch update and query. 99

6.5 Finding similar regions in reference and target sequences. Smash++ �nds, �rst, the regions in
the target that are similar to the reference, and then, �nds the regions in the reference similar
to the detected target regions. This procedure is performed for both regular and inverted
homologies. 100

6.6 Similarities between synthetic sequences with di�erent sizes, detected by Smash++. The pa-
rameters used are k-mer size = 14 and number of substitutions in STMM = 5, which are the
default parameters used by Smash++. For the threshold, the default value of 1.5 and 1.97 are
used for panels a-d and e, respectively. (a) 1.5 kb sequences; (b) 100 kb sequences. No simi-
larity is detected for part II of the reference, since it is mutated 90%. Parts III and IV of the
reference and I and II of the target are joined, since there is no space between consecutive re-
gions; (c) 5Mb sequences; (d) 100Mb sequences; (e) 60 kb sequences. Roughly 43% of mutation
is detected. 103

6.7 Similarities in a real dataset, detected by Smash++. (a)G. gallus chr. 18 andM. gallopavo chr. 20.
The parameters were k-mer size = 14, No. substitutions in STMM = 5, threshold = 1.9 and
min block size (m) = 500,000, i.e., the regions smaller than 500,000 bases were not considered
for further processing; (b) G. gallus chr. 14 and M. gallopavo chr. 16. The result is obtained by
setting k = 14, No. substitutions = 5, threshold = 1.95 and m = 400,000; (c) H. sapiens chr. 12
and P. troglodytes chr. 12. The parameters were k = 14, without using STMM, threshold = 1.9
andm = 100,000; (d) X. oryzae pv. oryzae PXO99A and X. oryzae pv. oryzae MAFF 311018 (two
rice pathogens). The result obtained by setting k = 13, threshold = 1.55 and m = 10,000. 104

vii

6.8 Pair-wise comparison of G. gallus chr. 18 and M. gallopavo chr. 20. (a) Smash++, with k = 14
and 5 used by an FCM and an STMM, respectively. The blocks smaller than 500 kb are dis-
carded; (b) progressiveMauve [280], with LCB (locally collinear block) weight of 18,692. Re-
verse complements are shown in lower level; (c) adopted from [297], which is con�rmed by
FISH analysis. The box shows a local rearrangement; (d) SynBrowser [284], with the resolu-
tion of 150 kb (minimum size of a reference block); (e) adopted from [133], which con�rms an
inversion rearrangement of size ∼5Mb by FISH analysis. 105

6.9 G. gallus chr. 14 compared to M. gallopavo chr. 16. (a) Smash++, employing an FCM and
an STMM with k = 14 and 5, respectively. The blocks smaller than 400 kb are discarded;
(b) progressiveMauve, with LCB weight of 27,424; (c) adopted from [297]. The box shows an
inversion rearrangement; (d) SynBrowser, with the resolution of 150 kb. 106

6.10 Comparison of H. sapiens chr. 12 and P. troglodytes chr. 12. (a) Smash++, with k = 14 used
by an FCM. The blocks smaller than 100 kb are discarded; (b) progressiveMauve, with LCB
weight of 55,186; (c) Cinteny [285], with minimum length of synteny block = 1 kb, maximum
gap between adjacent markers = 5Mb and minimum number of markers = 1; (d) SynBrowser,
with the resolution of 150 kb; (e) D-GENIES [298], in “strong precision” mode. 107

6.11 Pair-wise comparison of PXO99A and MAFF 311018. (a) Smash++, with k = 13 used by an
FCM. The blocks smaller than 10 kb are discarded. In order to make the �gure clearer, the
shaded paths for connecting corresponding regions are not drawn; (b) progressiveMauve,
with LCB weight of 3926; (c) adopted from [294], which employs an alignment-based method
to obtain this dot plot. The blue and red colors shows regions of PXO99A that align to the
same or opposite strand of MAFF 311018, respectively. 108

6.12 Comparison of Smash++ and Smash on the synthetic dataset. Using cooperation of an FCM
and an STMM (in Smash++) produces more accurate results rather than using a single FCM
(in Smash). 109

6.13 Comparison of Smash++ and Smash on the real dataset, including S. cerevisiae chr. VII and
S. paradoxus chr. VII. The rearrangements maps clearly show the improvement made over
Smash, using an FCM along with an STMM. 110

6.14 Similarity of a target sequence to a reference sequence, when the reference is permuted by
blocks of di�erent sizes of 450 kb, 30 kb, 1 kb and 30 b. To run Smash++, an FCM with k-mer
size of 14 and the threshold of 1.5 was used. It shows the proposed method is resistant to
fragmentation of sequence; for example, in the case of 30 b, although the reference is highly
fragmented, Smash++ could detect the same three similar regions in the target as the original
case. 112

6.15 (a) The peak memory consumption, in gigabytes; and (b) the elapsed (wall clock) time usage,
in minutes, of Smash++ by running on all synthetic and real datasets described in Table 6.1. . 113

6.16 Comparison of Smash++ and Smash, in terms of (a) memory usage; and (b) time usage, run-
ning on real and synthetic data described in Table 6.1. To have a fair comparison, only one
model (FCM) is used by Smash++, and also self-complexity is not computed. Diamonds indi-
cate the mean, and bars, the ranges from minimum to maximum values. 114

viii

List of Tables

1.1 Comparison of various high-throughput sequencing methods. 4

1.2 Mandatory �elds in SAM �le format1. 6

1.3 Mandatory �elds in VCF �le format1. 7

1.4 List of software developed in the dissertation. 12

2.1 Compression results for real dataset. 24

2.2 Dataset used for studying the role of inverted repeats on DNA sequence similarity. 25

3.1 Speci�cation of 12 pre-computed modes of GeCo2. 36

3.2 Dataset used for benchmarking genomic sequence compressors. 37

3.3 Compressed �le sizes, in bytes, obtained by GeCo2 and state-of-the-art genomic data com-
pressors. 38

3.4 Computation times, in seconds, of applying GeCo2 and other genomic sequence compressors
on the dataset described in Table 3.2. 38

3.5 Speci�cation of 15 running modes of Jarvis. 44

3.6 Compressed �le sizes, in bytes, obtained by Jarvis and other state-of-the-art data compressors. 46

3.7 Computational time, in seconds, of applying Jarvis and other compressors on the dataset. . . . 46

3.8 Representation of amino acids and possible DNA codons associated with them, along with
their distribution percentage in two large protein databases. 49

3.9 Datasets used for comparing AC with other compressors. 51

3.10 Bit-rates of AC and existing protein compressors, in bits per symbol (bps). 51

3.11 Compression time of di�erent compressors, in milliseconds. 52

3.12 Memory usage of di�erent protein compressors, in megabytes. 52

3.13 Datasets used exclusively by AC. 54

4.1 Datasets for compression and encryption experiments, in FASTA and FASTQ formats. 68

4.2 Datasets used exclusively for encryption experiments. 69

4.3 Datasets for redundancy exploration experiments. 69

4.4 Comparing Cryfa and AES Crypt, as a general-purpose encryption tool, running on FASTA
and FASTQ datasets. 70

ix

4.5 Cryfa compared to AES Crypt, running on VCF, SAM and BAM datasets. 72

4.6 Compression & encryption and decryption & decompression of FASTA datasets. Note that
for all methods, except Cryfa, the compressed �le is encrypted with AES Crypt method. 73

4.7 Compression & encryption and decryption & decompression of modern human FASTQ dataset. 74

4.8 Compression & encryption and decryption & decompression of Denisova and synthetic FASTQ
datasets. 75

5.1 Genes present in at least half of the regions that exist in modern human chromosomes and do
not exist in Neanderthal, considering the threshold of 0.90. 84

5.2 Datasets used by FRUIT, including synthetic and real data from Neanderthals and modern hu-
man. 87

5.3 The most unique proteins of modern human absent in the Neanderthals. 89

5.4 The most similar non-human primate exomes to modern human, that are listed in Table 5.3. . 91

6.1 Synthetic and real dataset used in the experiments. 102

6.2 Performance of Smash++, in terms of memory and time usage, running on all synthetic and
real datasets described in Table 6.1. 114

6.3 The memory and time usage of Smash++ and Smash, running on synthetic and real dataset
(Table 6.1). To have a fair comparison, Smash++ uses only one model (FCM), as Smash does. . 115

x

List of Abbreviations

AES Advanced encryption standard
AF Alignment-free

BAM Binary alignment map
BGZF Blocked GNU Zip format
BPS Bits per symbol

CD Compression distance
CMLS Count-min-log sketch
CPCM Competitive prediction context model

DNA Deoxyribonucleic acid

FCM Finite-context model
FISH Fluorescence in situ hybridization

GCM Galois/counter mode of AES
GGA Gallus gallus (chicken)
GiB Gigabyte

HS Homo sapiens (human)
HTS High-throughput sequencing

ID Information distance
IR Inverted repeat

kb Kilobase
KiB Kilobyte
KPA Known-plaintext attack

LCB Locally collinear block

Mb Megabase
MGA Meleagris gallopavo (turkey)
MiB Megabyte
Mya Million years ago

NC Normalized compression
NCCD Normalized conditional compression distance
NCD Normalized compression distance
NGS Next-generation sequencing
NID Normalized information distance
NRC Normalized relative compression

xi

xii

PCR Polymerase chain reaction
PRNG Pseudo-random number generator
PT Pan troglodytes (chimpanzee)

SAM Sequence alignment map
STMM Substitution-tolerant Markov model
SVG Scalable vector graphics

UI User interface

VCF Variant call format

Chapter 1

Introduction

DNA (deoxyribonucleic acid) sequencing is a process in which the physical order of nucleotides con-
tained in a DNA molecule is determined. The canonical structure of DNA includes four nucleotides:
adenine (A), cytosine (C), guanine (G) and thymine (T), which is shown in Fig. 1.1. By sequencing
DNA of any organism, the sequence of individual genes, clusters of genes, full chromosomes, or
entire genomes can be determined.

DNA sequencing has a broad application to the �elds including, but not limited to, (a) molec-
ular biology, to study genomes and the proteins encoded by them [2]; (b) evolutionary biology, to
study the relation between di�erent organisms and their evolution [3]; (c) medicine, to perform ge-
netic testing for determining risk of genetic diseases [4] and also, determining a speci�c bacteria to
provide a more precise antibiotics treatments [5]; (d) metagenomics, to study on identi�cation of
organisms that are present in samples from particular environments [6]; (e) forensics, for paternity
testing [7] and forensic identi�cation [8]; and (f) paleogenomics, to analyze the genomic information
concerned with extinct species [9], [10].

In 1970 the �st method for determining the sequence of DNA was developed, by employing a
location-speci�c primer extension strategy [11]. Sanger et al. in 1977 adopted this strategy and
developed a faster method for sequencing with chain-terminating inhibitors, based on the DNA
polymerase [12]. At the same time, Gilbert and Maxam developed a method for sequencing by
chemical degradation [13]; however, it involved employing hazardous chemicals and had a more
complex process rather than the Sanger method. Over the next years di�erent sequencing methods
were developed [14]–[16] and the �rst automated sequencing machine, ABI 370, was marketed by
Applied Biosystems [16].

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Double helix structure of DNA. Credit: Nature Education [1].

1.1 Next-generation sequencing

In the 1990s, various DNA sequencing methods were proposed and later employed in commercial
sequencers. They were called “next-generation sequencing” (NGS) methods, since they had some
characteristics that were absent in earlier methods mentioned above, e.g., being highly scalable and
being able to sequence the entire genome at once.

In 1990, “base-by-base” sequencing method was patented that involved removable 3′ blockers
on DNA arrays [17]. In 1996, pyrosequencing was introduced which was a real-time method based
on “sequencing by synthesis” [18]. “DNA colony sequencing” method was patented in 1998, that
involved random surface-polymerase chain reaction (PCR) arraying [19]. In 2000, the �rst commer-
cial “next-generation” sequencing method, called massively parallel signature sequencing (MPSS),
was introduced by Lynx Therapeutics [20].

Next-generation or “high-throughput” sequencing (HTS) technologies are able to parallelize the
sequencing of billions of fragments of DNA, which has led to faster and cheaper sequencing rather
than the �rst-generation sequencing [21], [22]. As a comparison, it took 13 years to the Human

1.2. STORAGE OF OMICS DATA 3

Genome Project (HGP) to provide the �nal draft of an entire human genome in 2003 [23], while
today, HTS have enabled us to perform such sequencing in less than one day [24]. Also, the cost
of sequencing human genome drastically reduced from $40,000,000 in 2003 to $1000 in 2019 (see
Fig. 1.2). A comparison of HTS methods is provided in Table 1.1.

1.2 Storage of omics data

The biological data produced by high-throughput sequencing technologies can be stored in di�erent
�le formats, among which FASTQ, FASTA, SAM and VCF are the most common ones that represent
data in an ASCII character-encoding scheme. The raw sequencing data, generated by a sequencing
instrument, is stored in FASTQ format which contains multiple reads. In each read, there is a nu-

cleotide sequence, a quality score associated with each base, that shows the sequencing quality, and
some extra information. After generating the raw data, it is typically desirable to align the reads to a
reference sequence, that is to �nd the location(s) in the reference sequence that correspond(s) to the
nucleotide sequence of a read. These locations along with the mismatching information and some
extra �elds are stored in SAM format. From aligned data, FASTA �les can be stored, which include
only headers and nucleotide sequences. By analyzing the aligned data, stored in the SAM �le, the
variants (substitutions, insertions and deletions) between the original and the reference genome can
be obtained. These variants along with their position and some extra information is stored in VCF
format. In the followings, we describe in detail the mentioned formats.

Figure 1.2: The cost of sequencing a human genome. Credit: National Human Genome Research Institute.

4 CHAPTER 1. INTRODUCTION
Ta

bl
e
1.
1:

Co
m

pa
ris

on
of

va
rio

us
hi

gh
-th

ro
ug

hp
ut

se
qu

en
ci

ng
m

et
ho

ds
.

Pl
at

fo
rm

R
ea

d
le

ng
th

A
cc

ur
ac

y
R

ea
ds

pe
r

ru
n

Ti
m

e
pe

r
ru

n
C

os
t

pe
r
1G

bp
(U

S$
)

Pa
ci

fic
B

io
sc

ie
nc

es
30
,00
0b

(N
50

)
m
ax

>
10
0k
b1
,2,
3

87
%

ra
w

-r
ea

d
[2

5]
4M

pe
r

Se
qu

el
2

SM
R

T
ce

ll,
10
0–
20
0

gi
ga

ba
se

s1
,4

[2
6]

30
m
in

–2
0h

1
[2

7]
$7
.2–

$4
3.3

Io
n

To
rr

en
t

<
60
0b

5
99
.6%

6
<
80
M

2h
$6
6.8

–$
95
0

R
oc

he
45

4
70
0b

99
.9%

1M
24
h

$1
0,0
00

Ill
um

in
a

M
in

iS
eq

,N
ex

tS
eq

:7
5–
30
0b

99
.9%

(P
hr

ed
30

)

M
in

iS
eq

/M
iS

eq
:1

–2
5M

1–
11

da
ys

[2
8]

$5
–$
15
0

M
iS

eq
:5
0–
60
0b

N
ex

tS
eq

:1
30

–4
00
M

H
iS

eq
25

00
:5
0–
50
0b

H
iS

eq
25

00
:3
00
M

–2
G

H
iS

eq
3/

40
00

:5
0–
30
0b

H
iS

eq
3/

40
00

:2
.5
G

H
iS

eq
X

:3
00
b

H
iS

eq
X

:3
G

cP
A

S-
B

G
I/

M
G

I

B
G

IS
EQ

-5
0:
35

–5
0b

7

99
.9%

(P
hr

ed
30

)

B
G

IS
EQ

-5
0:
16
0M

1–
9d

ay
s

$5
–$
12
0

M
G

IS
EQ

20
0:
50

–2
00
b7

M
G

IS
EQ

20
0:
30
0M

B
G

IS
EQ

-5
00

:5
0–
30
0b

7
B

G
IS

EQ
-5

00
:1
30
0M

pe
r

fl
ow

ce
ll

M
G

IS
EQ

-2
00

0:
50

–3
00
b7

M
G

IS
EQ

-2
00

0:
37
5M

FC
S

fl
ow

ce
ll,

15
00
M

FC
L

fl
ow

ce
ll

pe
r

fl
ow

ce
ll.

SO
Li

D
50
+3
5o

r
50
+5
0b

99
.9%

1.2
–1
.4
G

1–
2w

ee
ks

$6
0–

$1
30

N
an

op
or

e
D

ep
en

de
nt

on
lib

ra
ry

pr
ep

ar
at

io
n,

no
tt

he
de

vi
ce

,
so

us
er

ch
oo

se
s

re
ad

le
ng

th
(<

2,2
72
,58
0b

[2
9]

)

∼9
2–
97

%
si

ng
le

re
ad

de
pe

nd
en

to
n

re
ad

le
ng

th
se

le
ct

ed
by

us
er

da
ta

st
re

am
ed

in
re

al
ti

m
e.

C
ho

os
e

1m
in

–4
8h

$7
–$
10
0

G
en

ap
Sy

s
∼1
50
bs

in
gl

e-
en

d
99
.9%

(P
hr

ed
30

)
1–
16
M

∼2
4h

$6
67

Sa
ng

er
40
0–
90
0b

99
.9%

N
/A

20
m
in

–3
h

$2
,40
0,0
00

1
w
w
w
.p
ac
b.
co
m
/b

lo
g/
ne
w
-s
of
tw

ar
e-
p
ol
ym

er
as
e-
se
qu

el
-s
ys
te
m
-b
oo

st
-t
hr
ou

gh
pu

t-
aff

or
da

bi
lit
y

2
w
w
w
.g
en
om

ew
eb
.c
om

/s
eq
ue
nc
in
g/
af
te
r-
ye
ar
-t
es
ti
ng

-t
w
o-
ea
rl
y-
pa

cb
io
-c
us
to
m
er
s-
ex
p
ec
t-
m
or
e-
ro
ut
in
e-
us
e-
rs
-s
eq
ue
nc
#
.X
w
dm

oH
U
zb
E
p

3
w
w
w
.g
lo
b
en
ew

sw
ir
e.
co
m
/n

ew
s-
re
le
as
e/
20
13
/1
0/
03
/5
77
89
1/
10
05
10
72
/e
n/

P
ac
ifi
c-
B
io
sc
ie
nc
es
-I
nt
ro
du

ce
s-
N
ew

-C
he
m
is
tr
y-
W
it
h-
L
on

ge
r-
R
ea
d-
L
en
gt
hs
-t
o-
D
et
ec
t-

N
ov
el
-F
ea
tu
re
s-
in
-D

N
A
-S
eq
ue
nc
e-
an

d-
A
dv

an
ce
-G

en
om

e-
St
ud

ie
s-
of
-L
ar
ge
-O

rg
an

is
m
s.
ht
m
l

4
w
w
w
.fl
xl
ex
bl
og
.w
or
dp

re
ss
.c
om

/2
01
3/
07
/0
5/
de
-n
ov
o-
ba

ct
er
ia
l-
ge
no

m
e-
as
se
m
bl
y-
a-
so
lv
ed
-p
ro
bl
em

5
w
w
w
.t
he
rm

ofi
sh
er
.c
om

/o
rd
er
/c
at
al
og
/p

ro
du

ct
/A

30
67
0#

/A
30
67
0

6
w
w
w
.w
eb
.a
rc
hi
ve
.o
rg
/w

eb
/2
01
80
33
00
75
72
0/
ht
tp
:/
/1
29
.1
30
.9
0.
13
/i
on

-d
oc
s/
G
U
ID

-C
64
19
13
0-
57
D
8-
4D

E
2-
B
C
F
8-
47
15
7C

B
3C

9A
2.
ht
m
l

7
en
.m

gi
te
ch
.c
n/

pr
od

uc
ts

www.pacb.com/blog/new-software-polymerase-sequel-system-boost-throughput-affordability
www.genomeweb.com/sequencing/after-year-testing-two-early-pacbio-customers-expect-more-routine-use-rs-sequenc#.XwdmoHUzbEp
www.globenewswire.com/news-release/2013/10/03/577891/10051072/en/Pacific-Biosciences-Introduces-New-Chemistry-With-Longer-Read-Lengths-to-Detect-
Novel-Features-in-DNA-Sequence-and-Advance-Genome-Studies-of-Large-Organisms.html
www.flxlexblog.wordpress.com/2013/07/05/de-novo-bacterial-genome-assembly-a-solved-problem
www.thermofisher.com/order/catalog/product/A30670#/A30670
www.web.archive.org/web/20180330075720/http://129.130.90.13/ion-docs/GUID-C6419130-57D8-4DE2-BCF8-47157CB3C9A2.html
en.mgitech.cn/products

1.2. STORAGE OF OMICS DATA 5

FASTQ is a text-based format which represents biological sequences and their corresponding
quality scores with ASCII characters. This �le format is considered as the de facto standard to store
the output of high-throughput sequencing instruments [30]. A sequence in FASTQ format contains
four lines: (a) the sequence identi�er, that begins with a “@” character; (b) the raw sequence letters;
(c) a “+” character, optionally followed by the same sequence identi�er in (a); and (d) the quality
scores for the sequence in (b), that has necessarily the same number of symbols as in the sequence
(see Fig. 1.3). The “.fq” and “.fastq” �le extensions are commonly used to store a FASTQ �le.

FASTA is a text-based format which represents nucleotides or amino acids with single-letter
codes [31]. A sequence in this format has two parts: (a) a single-line description, that starts with
the “>” symbol; and (b) the sequence data. As shown in Fig. 1.4, a �le in this format can contain
concatenation of di�erent single sequence �les. Filename extensions associated with this format
include, but are not limited to, “.fasta”, “.fna”, “.�n”, “.faa” and “.frn”.

SAM (Sequence Alignment Map) is a text-based format to store biological sequences that are
aligned to a reference sequence. As shown in Fig. 1.5, a sequence in this format contains two sections:
(a) the header, that starts with an “@” character; and (b) the alignment section, that has 11 mandatory
�elds (see Table 1.2). It should be mentioned that the binary version of a SAM �le is a “BAM” (Binary
Alignment Map) �le, that is generated by compressing the SAM �le in BGZF (Blocked GNU Zip
Format) [32]–[34]. SAM and BAM �les can be saved in “.sam” and “.bam” formats, respectively.

VCF (Variant Call Format) is used to store genomic sequence variations in a text �le. As Fig. 1.6
shows, a sequence in this format consists of three sections: (a) meta-information lines, that begin
with “##”; (b) a header line, pre�xed with “#”; and (c) data lines, that record sample(s) information

@SRR566546.970 HWUSI-EAS1673_11067_FC7070M:4:1:2299:1109 length=50
TTGCCTGCCTATCATTTTAGTGCCTGTGAGGTGGAGATGTGAGGATCAGT
+
hhhhhhhhhhghhghhhhhfhhhhhfffffe‘ee[‘X]b[d[ed‘[Y[^Y
@SRR566546.971 HWUSI-EAS1673_11067_FC7070M:4:1:2374:1108 length=50
GATTTGTATGAAAGTATACAACTAAAACTGCAGGTGGATCAGAGTAAGTC
+
hhhhgfhhcghghggfcffdhfehhhhcehdchhdhahehffffde‘bVd

Identifier
Sequence

Quality score

Sequence
Identifier

Quality score

‘+’ sign

‘+’ sign

Figure 1.3: A sample FASTQ �le.

>VIT_201s0011g03530.1
AATTAAGCATAAATACTCACTCTTACCCCCTTATTTTCTTATCTCTCATCACTTTTGGTGCGAAG
GACCATGAGAACAAGCTGCAATGGGTGTAGGGTTCTTCGCAAGGCATGCAGCCAAGACTGCATCA
>VIT_201s0011g03540.1
CAGGTAGCGTGAAGTTAAACCCTAGCGCTTTAGACAAACAGCTGTAGTCACCGCCCACAAACACC
AGCCTCTGAGACACCACCTCAAACCTTTCCACTTAAATACACATCCCTCACACCCTTTTCAATTC
>VIT_201s0011g03550.1
CATGCAAAGCTGAACGCGATGCTGTGATTGGTGGTAAGTGGTAGTTGAGTAAATTTGACAGTGAA
GCCGAAATGGTAAAAGACTAAGGCTAGAAGTAGAATACCACTGTTCTTCTCATCACGTGGGCCCA

Header
Sequence

Header
Sequence

Header
Sequence

Figure 1.4: A sample FASTA �le.

6 CHAPTER 1. INTRODUCTION

@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGAT *
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGG *
r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCT * SA:Z:ref,29,-,6H5M,17,0;
r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCA *
r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30 9M = 7 -39 CAGCGGC * NM:i:1

Header

Alignment

Figure 1.5: A sample SAM �le.

Table 1.2: Mandatory �elds in SAM �le format1.

Column Field Type Description

1 QNAME String �ery template NAME
2 FLAG Integer bitwise FLAG
3 RNAME String References sequence NAME
4 POS Integer 1-based le�most mapping POSition
5 MAPQ Integer MAPping �ality
6 CIGAR String CIGAR String
7 RNEXT String Ref. name of the mate/NEXT read
8 PNEXT Integer Position of the mate/NEXT read
9 TLEN Integer observed Template LENgth
10 SEQ String segment SE�ence
11 QUAL String ASCII of Phred-scaled base QUALity + 33
1 samtools.github.io/hts-specs/SAMv1.pdf

and are tab-separated into at least eight columns (Table 1.3). VCF �les can be saved in “.vcf” format.

1.3 Omics data compression

With the advancements in high-throughput sequencing technologies, a large amount of biological
data is produced, that needs to be stored, processed and transmitted. Data Compression can tackle
these challenges by reducing the size of storage and cost of processing and transmission. A compres-
sion algorithm can be either (a) lossless, in which the compressed data can be perfectly reconstructed
to the original data, or (b) lossy, where the decompressed data is an approximation of the original
data. Lossy compressors can, usually, provide better compression at the expense of loosing informa-
tion. In this thesis we focus on the lossless approach, since the lossy one is not able to approximate
the Kolmogorov complexity without overestimation.

A data compressor can be seen as the combination of a mathematical model and a coder (Fig. 1.7).
To have an e�cient compressor, the model should represent the data e�ciently. In other words, the
better is the model, the lower number of bits is required to store the compressed data [35]. There
exist general-purpose algorithms, e.g., gzip, bzip2 and 7zip, that do not consider characteristics of bi-
ological sequences, e.g., inverted repeats (IRs); therefore, such methods cannot model the biological
data e�ciently and lead to low compression gains [36], [37]. Special-purpose algorithms, however,

samtools.github.io/hts-specs/SAMv1.pdf

1.3. OMICS DATA COMPRESSION 7

##fileformat=VCFv4.3
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001
20 1437 rs6054257 G A 29 PASS NS=3;AF=0.5 GT:GQ:DP 0|0:48:1:51,51
20 1733 . T A 3 q10 NS=3;AF=0.017 GT:GQ:DP 0|0:49:3:58,50
20 11106 rs6040355 A G,T 67 PASS NS=2;AA=T GT:GQ 1|2:21:6:23,27
20 12327 . T . 47 PASS NS=3;AA=T GT:GQ 0|0:54:7:56,60

Meta-info

Header
Data

Figure 1.6: A sample VCF �le.

Table 1.3: Mandatory �elds in VCF �le format1.

Column Field Type Description

1 CHROM String sequence name (typically a CHROMosome) on which the variation is being
called

2 POS Integer 1-based POSition of the variation on the given sequence
3 ID String IDentifier of the variation
4 REF String REFerence base(s) at the given position on the given reference sequence
5 ALT String list of ALTernative alleles at this position
6 QUAL String Phred-scaled QUALity score for the call
7 FILTER String A flag indicating the FILTERs status and result
8 INFO String additional INFOrmation about the variation

9 FORMAT String an (optional) list for describing the samples
+ SAMPLEs String for each (optional) SAMPLE, values are associated with the fields listed in

FORMAT
1 samtools.github.io/hts-specs/VCFv4.3.pdf

provide higher compression gains by modelling better the biological data. In Chapter 3 we present
a number of statistical models for the purpose of e�cient representation of omics sequences.

The coder assigns a binary sequence to a source data, that can be achieved by (a) assigning a num-
ber of bits to each nucleotide in a DNA sequence or amino acid in a protein sequence, or (b) assigning
a binary sequence to the entire DNA or protein sequence. The former approach is taken by Hu�-
man [38], Golomb [39] and Shannon-Fano [40] algorithms, and the latter by arithmetic coder [41],

Modeller

Coder

Data compressor

Source

data

Compressed

 data

Figure 1.7: The scheme of a data compressor.

samtools.github.io/hts-specs/VCFv4.3.pdf

8 CHAPTER 1. INTRODUCTION

which is speci�cally useful to cope with the data with small alphabets, e.g., genomic sequences. It
is also useful to keep separated the modelling and the coding parts of a data compressor [35].

Arithmetic coder stores the entire source data into an arbitrary-precision fraction within the
range [0.0, 1.0). As an example, considering a source sequence S = a1a2a3 with P (a1) = 0.7, P (a2) =
0.1 and P (a3) = 0.2, the encoded message is a fraction within the range [0.5600, 0.5460), as shown
in Fig. 1.8. Since arithmetic coder provides, in general, near-optimal output for any given source
data, to have a better compression algorithm, a modeller is needed that can accurately predict the
patterns of bases in a sequence.

1.4 Omics data encryption

Development of high-throughput sequencing technologies and as a consequence, generating a huge
volume of data, has revolutionized personalized medicine in which, treatments are tailored to the
individual patients based on their genetic contents [42], [43]. The advent of this �eld, however, raises
issues concerned with preserving security of patients genetic information, which is highly sensitive
by nature. To address these issues, a method is required that allows only authorized parties to have
access to this private information [44]. Authenticated encryption has the potential to provide the
three key criteria of con�dentiality, integrity and authenticity for such information [45].

In information security, con�dentiality is a property upon which the information is not disclosed
or made available to unauthorized individuals [46]; integrity assures the data remains accurate and
complete over its entire life cycle, hence, unauthorized individuals cannot modify it [47]; authentic-
ity is a property upon which a claim of identity of a computer system user is veri�ed [48].

Omics data �les have speci�c properties; for example, VCF �les essentially begin with the 16
character “##�leformat=VCF” or FASTQ �les begin with the “@” character at the �rst line, fol-

Figure 1.8: The encoding process of arithmetic coder for the input a1a2a3 [35].

1.5. OMICS DATA ANALYSIS 9

lowed by “A”, “C”, “G” and “T” bases in the second line and then, a “+” character in the third line.
General-purpose encryption approaches do not consider these properties, hence, a special-purpose
encryptor is needed. Such method should be able to prevent an adversary to break the encryption
by security attacks such as known-plaintext attacks (KPA) [49]. KPA is de�ned as an attack model
in which the adversary has access to the plaintext as well as the ciphertext (encrypted plaintext).

1.5 Omics data analysis

Data compression can be used for analyzing genomics or proteomics data. An application of such
analysis method is to �nd unique regions in a species with respect to its close species, which can
elaborate our understanding of evolutionary traits. Neanderthals are one of the closest groups to
modern humans who have lived in Eurasia until 35,000 ± 5000 years ago and then went extinct for
probably multiple reasons such as climate change [50]–[52], extermination by immigrating modern
humans [53], [54] and disease [55], [56]. With availability of a complete Neanderthal genome [57],
[58], we can �nd regions in modern human reference genome which are highly dissimilar to those
of Neanderthals; it gives us an insight into human evolution.

Another application of compression-based data analysis is to �nd rearrangements, that are mu-
tational changes in the genomes e.g., insertion, deletion, duplication and inversion, between a pair
of genomic sequences. Relation to cancer, genetic disorders and chromosomal evolution makes
detection of genomic rearrangements very important [59], [60]. Rearrangements can be detected
by either wet laboratory methods e.g., Fluorescence in situ hybridization (FISH) [61] or computa-
tional (dry laboratory) algorithms, which has a major di�erence with the �rst approach that is using
computers instead of chemicals. The computational algorithms for comparing a pair of sequences
can be categorized into alignment-based and alignment-free methods.

Alignment-based methods, that arrange sequences to identify similar/conserved regions be-
tween them, have limitations such that (a) they assume the order of homology between the pair
of sequences is maintained [62]; (b) their accuracy drops drastically if the identity of sequences is
below a certain point, which is quite possible in protein sequences [63]; and (c) they depend on
assumptions about evolution of the sequences [64]. Alignment-free methods, however, do not have
these limitations; moreover, they are faster, in general.

Alignment-free methods for �nding sequence similarity can be classi�ed into methods based on
(a) information theory [65]–[68]; (b) word frequency [69]–[73]; (c) number of matching (spaced)
words [74]–[78]; (d) length of matching words [79]–[82]; and (e) graphical representation [83], [84].
Among the mentioned classes, information theory-based ones can �nd local sequence similarity, by
computing the amount of information shared between sequences [64].

10 CHAPTER 1. INTRODUCTION

1.6 Outline

The present thesis comprises of seven Chapters. Chapter 1 is introduction. In Chapter 2 we describe
a number of measures to calculate the amount of information in and within omics sequences. Then,
we present a number of mathematical models for omics data compression. Finally, we show an
application of the mentioned measures and models on the role of inverted repeats on the similarity
between a pair of genomic sequences.

Chapters 3 and 4 focus on an e�cient representation of omics data by means of compression
and encryption tools. In Chapter 3 we introduce two genomic data compressors: GeCo2, that uses
a combination of �nite-context models and substitution-tolerant Markov models; and Jarvis, that
employs weighted context models, weighted stochastic repeat models and a competitive prediction
model. We also introduce a proteomic data compressor, namely AC, that uses the same mathematical
models as GeCo2, with the di�erence that they consider the characteristics of protein sequences.

In Chapter 4 we introduce a special-purpose tool, namely Cryfa, for secure encryption of ge-
nomic data. It is also able to compact FASTA and FASTQ �les. Cryfa provides con�dentiality,
integrity and authenticity of genomic data by employing AES encryption along with a shu�ing
mechanism that enhances the security.

Chapters 5 and 6 show applications of the compression models and measures, introduced in
Chapter 2, on the analysis of omics data. In Chapter 5 we focus on identifying and visualizing unique
regions in a species sequences with respect to the sequences of its close species, which can increase
our understanding of evolutionary traits. For this purpose, we introduce CHESTER for genomic
sequences and FRUIT for proteomic sequences, and apply them on the sequences of modern human
and Neanderthal, as one of the closest hominins to humans.

In Chapter 6 we propose an alignment-free tool, namely Smash++, for detection and visual-
ization of genomic rearrangements, that play an important role on cancer and genetic disorders.
This information theory-based algorithm employs data compression for the purpose of �nding re-
arrangement between a pair of DNA sequences. Chapter 7 concludes the thesis and provides future
research directions.

1.7 Contributions

Author’s contributions to the present thesis are divided into two sections of publications, including
journal articles and conference papers, and software, that are publicly available.

1.7. CONTRIBUTIONS 11

1.7.1 Publications

Part of this dissertation has been published in the following manuscripts:

1. M. Hosseini, D. Pratas, B. Morgenstern, and A. J. Pinho, “Smash++: An alignment-free and
memory-e�cient tool to �nd genomic rearrangements,” GigaScience, vol. 9, no. 5, giaa048,
2020.

2. M. Hosseini, D. Pratas, and A. J. Pinho, “AC: A compression tool for amino acid sequences,”
Interdisciplinary Sciences: Computational Life Sciences, vol. 11, no. 1, pp. 68–76, 2019.

3. D. Pratas, M. Hosseini, J. M. Silva, and A. J. Pinho, “A reference-free lossless compression algo-
rithm for DNA sequences using a competitive prediction of two classes of weighted models,”
Entropy, vol. 21, no. 11, p. 1074, 2019.

4. M. Hosseini, D. Pratas, and A. J. Pinho, “A probabilistic method to �nd and visualize distinct
regions in protein sequences,” in The 27th European Signal Processing Conference (EUSIPCO),
IEEE, 2019, pp. 1–5.

5. D. Pratas, M. Hosseini, and A. J. Pinho, “Visualization of similar primer and adapter sequences
in assembled archaeal genomes,” in The 13th International Conference on Practical Applications

of Computational Biology & Bioinformatics (PACBB), Springer, 2019, pp. 129–136.

6. D. Pratas, M. Hosseini, and A. J. Pinho, “GeCo2: An optimized tool for lossless compression
and analysis of DNA sequences,” in The 13th International Conference on Practical Applications

of Computational Biology & Bioinformatics (PACBB), Springer, 2019, pp. 137–145.

7. M. Hosseini, D. Pratas, and A. J. Pinho, “Clustering DNA sequences by relative compression,”
in The 25th Portuguese Conference on Pattern Recognition (RECPAD), Oct. 2019.

8. M. Hosseini, D. Pratas, A. Amorim, and J. Carneiro, “Improving the detection of mtDNA re-
arrangements using a fast and accurate algorithm,” in XV Encontro Nacional de Biologia Evo-

lutiva, Nov. 2019.

9. M. Hosseini, D. Pratas, and A. J. Pinho, “Cryfa: A secure encryption tool for genomic data,”
Bioinformatics, vol. 35, no. 1, pp. 146–148, 2018.

10. D. Pratas, M. Hosseini, G. Grilo, A. J. Pinho, R. M. Silva, T. Caetano, J. Carneiro, and F. Pereira,
“Metagenomic composition analysis of an ancient sequenced polar bear jawbone from Sval-
bard,” genes, vol. 9, no. 9, p. 445, 2018.

11. D. Pratas, M. Hosseini, and A. J. Pinho, “Compression of amino acid sequences,” in The 12th

International Conference on Practical Applications of Computational Biology & Bioinformatics

(PACBB), Springer, 2018, pp. 105–113.

12 CHAPTER 1. INTRODUCTION

12. M. Hosseini, D. Pratas, and A. J. Pinho, “On the role of inverted repeats in DNA sequence sim-
ilarity,” in The 11th International Conference on Practical Applications of Computational Biology

& Bioinformatics (PACBB), Springer, 2017, pp. 228–236.

13. D. Pratas, M. Hosseini, and A. J. Pinho, “Substitutional tolerant Markov models for relative
compression of DNA sequences,” in The 11th International Conference on Practical Applications

of Computational Biology & Bioinformatics (PACBB), Springer, 2017, pp. 265–272.

14. D. Pratas, M. Hosseini, and A. J. Pinho, “Cryfa: A tool to compact and encrypt FASTA �les,” in
The 11th International Conference on Practical Applications of Computational Biology & Bioin-

formatics (PACBB), Springer, 2017, pp. 305–312.

15. D. Pratas, M. Hosseini, R. M. Silva, A. J. Pinho, and P. J. S. G. Ferreira, “Visualization of distinct
DNA regions of the modern human relatively to a Neanderthal genome,” in The 8th Iberian

Conference on Pattern Recognition and Image Analysis (IbPRIA), Springer, 2017, pp. 235–242.

16. M. Hosseini, D. Pratas, and A. J. Pinho, “A survey on data compression methods for biological
sequences,” information, vol. 7, no. 4, p. 56, 2016.

The following paper was published in collaboration with department of bioinformatics at uni-
versity of Göttingen in Germany, during the author’s visit:

17. S. Röhling, A. Linne, J. Schellhorn, M. Hosseini, T. Dencker, and B. Morgenstern, “The number
of k-mer matches between two DNA sequences as a function of k and applications to estimate
phylogenetic distances,” PLoS ONE, vol. 15, no. 2, e0228070, 2020.

1.7.2 Software

Associated with every method proposed in this dissertation is a software developed and publicly
available under GNU GPLv3 license. The source codes can be accessed by the URLs in Table 1.4.

Table 1.4: List of software developed in the dissertation.

So�ware Languages URL

Smash++ C++, Python www.github.com/smortezah/smashpp
Cryfa C++, Bash www.github.com/cobilab/cryfa
GeCo2 C, Bash www.github.com/cobilab/geco2
AC C, Bash www.github.com/cobilab/ac
CHESTER C, Bash www.github.com/cobilab/chester
FRUIT C++, Bash www.github.com/cobilab/fruit
Jarvis C, Bash www.github.com/cobilab/jarvis

www.github.com/smortezah/smashpp
www.github.com/cobilab/cryfa
www.github.com/cobilab/geco2
www.github.com/cobilab/ac
www.github.com/cobilab/chester
www.github.com/cobilab/fruit
www.github.com/cobilab/jarvis

Chapter 2

Measures and models

In this chapter is described and introduced a number of measures, including NID, NCD, NCCD,
NRC and NC, in order to quantify the amount of information between and in omics sequences. It is
discussed that NRC, among others, is the most light-weight comparative measure in terms of time
and memory usage.

Then, di�erent mathematical models, including �nite-context models, substitution-tolerant
Markov models and a cooperation of them, is presented for compressing genomic and proteomic
sequences. Applying on various synthetic and real data showed that employing a combination of
FCMs and STMMs provides better results than solely FCMs.

Finally, an application of the compression models and the compression-based measures is pre-
sented on the role of inverted repeats in DNA sequences similarity. Tested on several genomic se-
quences from various species, it is found that some sequences are more similar to each other when
IRs are considered in the compression process. This raises the possibility to detect chromosomal re-
arrangements. The results obtained conform to the ones previously reported using FISH approach
or other computational methods; however, we unveiled a number of undocumented similarities.

2.1 Measures for quantifying information

Kolmogorov complexity can be used in order to quantify the information within a sequence; how-
ever, it is not computable [101]. For this purpose, here we present a number of measures which are
based on compression, as a computable approximation of the Kolmogorov complexity.

13

14 CHAPTER 2. MEASURES AND MODELS

2.1.1 Introduction

Kolmogorov complexity

In 1965, Kolmogorov introduced three approaches for quantitative de�nition of “information”: com-
binatorial, probabilistic and algorithmic approaches [102], among which the algorithmic one is more
explored to date. To de�ne algorithmic entropy or Kolmogorov complexity, let x denote a binary
string of �nite length, where x = x1x2… xN ∈ ΘN and the alphabet Θ = {0, 1}. Its Kolmogorov com-
plexity, K (x), is the length of the shortest binary program x ∗ that computes x in a universal Turing
machine and halts [103]. Therefore, K (x) = |x ∗| represents the minimum number of bits from which
x can be computationally retrieved [104].

The conditional Kolmogorov complexity of x given y, K (x |y), denotes the length of the shortest
binary program that on input y, outputs x and halts. Note that if the input is an empty object, y = �,
then K (x |y) = K (x |�) = K (x). The conjoint Kolmogorov complexity of x and y , K (x, y), denotes
the length of the shortest binary program that, without auxiliary information to the computation,
computes x along with y and halts. Disregarding correcting terms, that asymptotically become
irrelevant [104], the relation between the three mentioned Kolmogorov complexity functions can
be shown by the chain rule [105]:

K (x, y) = K (x) + K (y |x). (2.1)

Given the symmetric property of the conjoint Kolmogorov complexity, that is K (x, y) = K (y, x),
and Eq. 2.1, we can de�ne algorithmic mutual information, I (x∶y), as [104], [106]

I (x∶y) = K (x) − K (x |y) (2.2a)

= K (y) − K (y |x) (2.2b)

= K (x) + K (y) − K (x, y) (2.2c)

= K (x, y) − K (x |y) − K (y |x). (2.2d)

Note that it has the symmetric property, i.e., I (x∶y) = I (y∶x). Fig. 2.1 illustrates the relation between
the Kolmogorov complexity functions and the algorithmic mutual information.

2.1. MEASURES FOR QUANTIFYING INFORMATION 15

I(x:y)K(x|y) K(y|x)K(x) K(y)I(x:y)K(x|y) K(y|x)K(x) K(y)

K(x,y)

Figure 2.1: Relation between the Kolmogorov complexity, conditional Kolmogorov complexity, conjoint Kol-
mogorov complexity and algorithmic mutual information.

Distance of information

A distance,D, on a setX is a function that mapsX ×X to [0,∞), where [0,∞) is the set of non-negative
real numbers. D satis�es the following conditions for all x, y, z ∈ X :

D(x, y) ≥ 0 (non-negativity) (2.3a)

D(x, y) = 0 ⇔ x = y, (identity) (2.3b)

D(x, y) = D(y, x), (symmetry) (2.3c)

D(x, y) + D(y, z) ≥ D(x, z). (triangle inequality) (2.3d)

In the following sections, di�erent measurements for the distance of information are described.

2.1.2 Normalized information distance

Two decades ago, Bennett et al. proposed information distance (ID) with the idea that if two strings
are closely related according to any “admissible distance”, then they will also be close according to
the information distance [107]. ID is de�ned as

ID(x, y) = max {K (x |y), K (y |x)} , (2.4)

up to an additive logarithmic term. The normalized version of ID, namely normalized information
distance (NID), is de�ned as [108]

NID(x, y) = max {K (x |y), K (y |x)}max {K (x), K (y)} . (2.5)

It is worth mentioning that since NID employs Kolmogorov complexity in its de�nition, it inherits
non-computability.

16 CHAPTER 2. MEASURES AND MODELS

2.1.3 Normalized compression distance

Since Kolmogorov complexity is not computable, a number of computable alternatives have been
proposed that are based on compression algorithms. By substituting K by C , a compressor, the
metric “compression distance” (CD) which is inspired by ID (Eq. 2.5), can be de�ned as [108]

CD(x, y) = max {C(x |y), C(y |x)} , (2.6)

up to an additive logarithmic term. C(x |y) denotes the number of bits required by a (lossless) com-
pression program that on input y, outputs x . Since many of compressors could not handle the
conditional compression, Eq. 2.7 was proposed as an alternative, inspired by the chain rule (Eq. 2.1):

CD(x, y) = max {C(x, y) − C(x), C(y, x) − C(y)} , (2.7)

up to an additive logarithmic term. C(x), C(y) and C(x, y) denote the number of bits required by
a (lossless) compressor to represent x , y and concatenation of x and y, and the information needed
for splitting them, respectively.

The normalized version of CD, that is normalized compression distance (NCD), is de�ned as [109]

NCD(x, y) = max {C(x, y) − C(x), C(y, x) − C(y)}max {C(x), C(y)}

= C(xy) − min {C(x), C(y)}
max {C(x), C(y)} , (2.8)

up to an additive logarithmic term. Values of NCD fall within the interval of 0 to 1, that is
0 ≤ NCD(x, y) ≤ 1. The closer its value is to 0, the more similar are x and y, and the closer its
value is to 1, the more dissimilar are x and y.

In order for a compression program to achieve an admissible NCD, it must be normal, that is it
must satisfy the following conditions [110]:

C(xx) = C(x) and C(�) = 0, � is an empty object, (idempotency) (2.9a)

C(xy) ≥ C(x), (monotonicity) (2.9b)

C(xy) = C(yx), (symmetry) (2.9c)

C(xy) + C(z) ≤ C(xz) + C(yz), (distributivity) (2.9d)

up to an additive O(log n) term, where n is the maximal length of an element involved in the
(in)equality concerned.

2.1. MEASURES FOR QUANTIFYING INFORMATION 17

2.1.4 Normalized conditional compression distance

In the de�nition of normalized compression distance, the chain rule (Eq. 2.1) has been used to sub-
stitute the conditional compression with the conjoint compression, that is substituting C(x |y) with
C(x, y) − C(y), since at the time of presenting NCD there were not many compression programs
that could do the conditional compression. The simplest way to calculate C(x, y) is compressing the
direct concatenation of x and y, however, all forms of x and y combined can be considered. In [110]
it is shown that employing the concatenation can a�ect the e�ciency of NCD. To overcome the
limitations, normalized conditional compression distance (NCCD) has been de�ned as [111], [112]

NCCD(x, y) = max {C(x |y), C(y |x)}max {C(x), C(y)} . (2.10)

In the case the individual algorithmic complexities of strings x and y are known, Eq. 2.10 turns into

NCCD(x, y) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

C(x |y)
C(x) , C(x) ≥ C(y)

C(y |x)
C(y) , C(x) < C(y).

(2.11)

It is worth noting that the conditional compression used in NCCD needs less computation rather
than conjoint compression used in NCD, since C(x |y) only needs to load models of y, however
C(x, y) needs to compress y in addition to loading its models. Also, if conditional compression of
multiple sequences, e.g., C(x |y), C(z|y),… is intended, models of y need to be loaded only once and
then, the sequences x , z, . . . can be compressed in parallel using the model.

2.1.5 Normalized relative compression

The relative compression of x given y , denoted byC(x‖y), is de�ned as size of a compressed sequence
x given exclusively the information from a sequence y [111]. It has the following properties:

1. C(x‖y) ≈ 0 i� y contains x ,

2. C(x‖y) ≈ |x | i� C(x |y) ≈ C(x).

In the relative compressor C(x‖y), the self-similarities that might occur in x are not possible to be
used, since it exclusively employs the information from the model of y .

Normalized version of the relative compression, namely normalized relative compression (NRC),
is de�ned as

NRC(x, y) = C(x‖y)
|x | . (2.12)

NRC is considered as a “semi-quasi distance” [113], [114], since it relaxes the symmetry and triangle
inequality axioms (see Eq. 2.3a). Note that 0 < NRC ≤ 1, since 0 < C(x‖y) ≤ |x |.

18 CHAPTER 2. MEASURES AND MODELS

The main advantage of NRC rather than NCCD is consuming less computation time and mem-
ory, since it does not include self-similarity compression terms, i.e., C(x) and C(y), and depends
only on one compression term, C(x‖y). In addition, unlike NCCD that needs setting parameters for
both target and reference sequences, x and y, NRC only needs to set parameters for the reference
sequence y. A comprehensive study on the comparison of the two measures has been done in [115]
by calculating them for various synthetic and real DNA sequences.

2.1.6 Normalized compression

The measures of NID, NCD, NCCD and NRC are comparative, in that they are de�ned between
two sequences. Here, we describe normalized compression (NC), that is inspired by the concept of
Kolmogorov complexity and is de�ned for a single sequence x as

NC(x) = C(x)
|x | log2 |Θ|

, (2.13)

where Θ is the alphabet of symbols in the sequence x . As an example, for a genomic sequence we
have Θ = {A,C,G,T} and therefore |Θ| = 4.

2.2 Compression models

We consider sequences over the nucleotide alphabet Θ; our goal is to measure the degree of lo-
cal similarity between two such sequences. More speci�cally, we consider a reference sequence
S = s1,… , sN over Θ, and we want to measure the local information content of a target sequence,
given this reference sequence. To this end, we employ a combination of �nite-context models and
substitution-tolerant Markov models to derive di�erent probability measures for observing a nu-
cleotide � in a sequence, given the context of the previous k nucleotides; these probabilities are then
mixed to provide the �nal probability of observing the nucleotide � . The following sections describe
in detail the models.

2.2.1 Finite-context model (FCM)

We consider the probability of observing a certain nucleotide, given the previous k nucleotides, by
using the relative frequency of this event in the reference sequence S. For � ∈ Θ and a k-merQ ∈ Θk ,
let N (� |Q) be the number of occurrences of Q in S that are followed by nucleotide � , and let N (Q)
be the number of occurrences of Q in S. As in [35], [86], [116], we then de�ne

PFCM(� |Q) =
N (� |Q) + �
N (Q) + |Θ|� , (2.14)

2.2. COMPRESSION MODELS 19

where |Θ| is the size of alphabet Θ and � is a pseudo-count parameter. For � = 1, Eq. 2.14 turns
into the Laplace estimator. Note that an FCM has the Markov property, in which the conditional
probability distribution of observing a nucleotide depends only on the state of preceding k-mer.

2.2.2 Substitution-tolerant Markov model (STMM)

Given the reference sequence S, we use the aforementioned probability distribution PFCM to de�ne
a sequence S′ = s′−k , s′−k+1,… , s′N recursively by

s′i =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

A if i < 1,
argmax

� ∈Θ
PFCM(� |s′i−k ,… , s′i−1) if i ≥ 1,

(2.15)

in which “A” represents adenine nucleobase. For � ∈ Θ and a k-mer Q ∈ Θk , we then de�ne N ′(� |Q)
as the number of occurrences of Q followed by � and N ′(Q) as the number of occurrences of Q,
respectively, in the sequence S′. Finally, we de�ne

PSTMM(� |Q) =
N ′(� |Q) + �
N ′(Q) + |Θ|� . (2.16)

STMMs, that are probabilistic-algorithmic models [86], [97], can be used along with FCMs when
confronted with nucleotide substitutions in genomic sequences. These models can be disabled, to
reduce the number of mathematical calculations, and consequently, increase the performance of the
proposed method. Such operation is automatically performed using an array of size k (the context
size), named history, which preserves the past k hits/misses. Observing a symbol in the sequence,
the memory is checked for the symbol with the highest number of occurrences. If they are equal, a
hit is saved in the history array; otherwise, a miss is inserted into the array. Before getting to store
a hit/miss in the array, it is checked for the number of misses and in the case they are more than
a prede�ned threshold t , the STMM will be disabled and also the history array will be reset. This
process (Fig. 2.2) is performed for each nucleotide in the sequence.

The following example shows the distinction between an FCM and an STMM. Assume that the
current context at a certain position is AGACGTAC, and the number of occurrences of symbols
saved in memory is 10, 6, 15 and 8 for A, C, G and T, respectively; also, the symbol to appear in
the sequence is T. An FCM considers the next context as GACGTACT, while an STMM considers
it as GACGTACG, since the nucleotide G is the most probable symbol, based on the number of
occurrences stored in memory.

20 CHAPTER 2. MEASURES AND MODELS

1: function GetBestId(array)
2: return index of max element in array
3: end function

4: function Miss(history)
5: for i ← 0 to k − 1 do
6: if history[i] ≠ 0 then
7: numFail ← numFail + 1
8: end if
9: end for

10: if numFail > threshold then
11: on ← 0 ⊳ Set STMM o�
12: else
13: insert 1 into history ⊳ Add one fail
14: end if
15: end function

16: function Hit(history)
17: insert 0 into history ⊳ Add zero fail
18: end function

19: function CorrectSTMM()
20: best ← 0
21: if on = 0 then
22: on ← 1 ⊳ Set STMM on
23: reset history ⊳ Set all elements to 0
24: else
25: best ← GetBestId(freqs) ⊳ freqs is an array of counters for bases
26: if best = currentBase then
27: Hit(history)
28: else
29: Miss(history)
30: update seqBu�er with best ⊳ seqBu�er is a bu�er to keep bases
31: end if
32: end if
33: update seqBu�er
34: end function

Figure 2.2: Algorithm for enabling/disabling an STMM.

2.2.3 Cooperation of FCMs and STMMs

Fig. 2.3 provides an overview of cooperation of FCMs and STMMs. When these models are in co-
operation, the probability of observing a nucleotide � ∈ Θ in a sequence S can be estimated as

P (�) =
m∑
i=1

PFCMi (� |Q) wi +
n∑
j=1

PSTMMj (� |Q) wj , (2.17)

2.2. COMPRESSION MODELS 21

wF3 wS3

PF3 PS3

Input
Symbol si

wF1 wS1

PF1 PS1

PF2

wF2

STMM3FCM3

Ctx1

Ctx2

FCM2

STMM1FCM1

Ctx3

G C C T G AT GT A TA

P

wS3wF3 PS3PF3wS1wF1PF1 PS1 wF2PF2

ba

Figure 2.3: (a) Cooperation of FCMs and STMMs. Note that each STMM needs to be associated with an FCM;
(b) probability of an input symbol is estimated by employing the probability and weight values
that have been obtained from processing previous symbols.

in which m and n denote the number of FCMs and STMMs, respectively, and wi and wj are weights
assigned to each FCM and STMM, respectively, based on its performance. We have

wiu ∝ (wiu−1)iPFCM(� |Qu−1), 1 ≤ i ≤ m, 1 ≤ u ≤ |S|,
wjv ∝ (wjv−1)jPSTMM(� |Qv−1), 1 ≤ j ≤ n, 1 ≤ v ≤ |S′|,

(2.18)

where u and v denote certain positions in the sequences S and S′, respectively, and i and j ∈ [0, 1)
are forgetting factors prede�ned for each model. Also,

m∑
i=1

wi +
n∑
j=1

wj = 1. (2.19)

By experimenting di�erent forgetting factors for models of genomic or proteomic sequences,
we have found that higher factors should be assigned to models that have higher context-order
sizes (less complexity) and vice versa (see Fig. 2.4 for more details).

Bit-rate, in “bits per symbol” (bps), denotes the average number of bits that each symbol will
take up in the compressed sequence, and can be calculated for s1, s2,… , sN ∈ S as

Bit-rate = − 1N
N∑
u=1

log2 P (su). (2.20)

Note that the probability of observing a symbol in a sequence can be calculated by either of Equa-
tions 2.14, 2.16 or 2.17, depending on the usage of FCMs, STMMs or a cooperation of them, respec-
tively. Note also that the better the compression model is, the smaller the bit-rate value is [117].

22 CHAPTER 2. MEASURES AND MODELS

● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ●

● ●

●

●
●

●
● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
●

● ● ● ●
●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ●
● ● ● ● ● ● ● ●

● ● ●
●

●
●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●
●

●
●

●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●
●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●

●

●

k = 17 k = 18 k = 19

k = 14 k = 15 k = 16

k = 11 k = 12 k = 13

k = 8 k = 9 k = 10

k = 5 k = 6 k = 7

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

2.031

2.033

2.035

2.037

2.33

2.34

2.35

2.36

1.700

1.705

1.710

1.715

1.57

1.58

1.59

1.60

1.57

1.58

1.59

1.9995

2.0000

2.0005

2.0010

2.0015

2.265

2.270

2.275

2.280

1.89

1.90

1.91

1.92

1.58

1.59

1.60

1.57

1.58

1.59

1.9900

1.9902

1.9904

1.9906

2.125

2.130

2.135

2.18

2.20

2.22

1.605
1.610
1.615
1.620
1.625
1.630

1.57

1.58

1.59

Forgetting factor

In
fo

rm
at

io
n

co
nt

en
t (

bp
b)

1.6

1.8

2.0

2.2

bpb

Figure 2.4: The relation between context-order sizes (k), forgetting factors and complexity (information con-
tent). For the experiment, we compressed 10 synthetic sequences with the sizes of 500 kb to 20Mb,
with di�erent redundancies, and calculated the average information content.

It is mentioned in Section 2.1.1 that there are three approaches of combinatorial, probabilistic
and algorithmic to de�ne information quantitatively. FCMs follow the probabilistic approach by
computing the probability of a given symbol in a sequence, considering the past k symbols, while
STMMs follow the algorithmic approach by getting enabled/disabled based on their performance.
Hence, we follow a combination of probabilistic and algorithmic approaches by employing a coop-
eration of FCMs and STMMs, although it has a closer connection to the probabilistic one.

2.2.4 FCMs compared to cooperation of FCMs and STMMs

In order to compare the e�ect of employing solely FCMs with employing FCMs along with STMMs,
we applied them on synthetic and real data, including white-tailed eagle, bald eagle, human, chim-
panzee, orangutan and marmoset species. The experiments were run on one core of a 3.40GHz
Intel® Core™ i7-6700 CPU with 32GiB RAM and a solid-state hard drive.

Synthetic dataset

We have performed experiments on two di�erent datasets. For the �rst experiment, we made a
synthetic reference sequence of size 200 b; then, duplicated it and inserted edits on positions 50, 100,
102, 150, 152 and 154, to make the target sequence. Fig. 2.5 illustrates in terms of bit-rates (bps) the

2.2. COMPRESSION MODELS 23

Length (b) Length (b)

B
it

-r
a

te
 (

bp
s

)

a bFCMs Cooperation of FCMs and STMMs

Figure 2.5: Compression of a synthetic target sequence relatively to a reference using (a) FCMs; and (b) co-
operation of FCMs and STMMs.

result of compressing the target relatively to the reference, when using only FCMs (Fig. 2.5a) and
cooperation of FCMs and STMMs (Fig. 2.5b). In the �gure, right direction means traversing the target
sequence from the �rst nucleotide to the last one (left to right), and left direction means traversing
it from the last nucleotide to the �rst one (right to left); also, min is the minimum of left and right
directions for each base in the target sequence. As can be seen, cooperation of FCMs and STMMs
led to a better modeling of the data, since it could provide less bit-rate values. On the contrary to the
cooperation, the FCMs could not address e�ciently the data modeling after occurring a substitution.
The cooperation has an almost strict decay to a low complexity value.

For the second experiment, we made a 100 kb reference sequence; then, duplicated it 12 times,
applied some degree of random mutations to each of them and concatenated them all to make the
target sequence. Fig. 2.6 shows bit-rates obtained by compressing the target relatively to the ref-
erence, in presence of mutations. In the �gure, min and max represent minimum and maximum

Length (Mb)

B
it

-r
a

te
 (

b
p

s
)

Length (Mb)

FCMs
Cooperation of

FCMs and STMMs

Substitution rate (%) Substitution rate (%)a b

Figure 2.6: Compression of a synthetic target sequence relatively to a reference in presence of mutations,
employing (a) FCMs; and (b) cooperation of FCMs and STMMs.

24 CHAPTER 2. MEASURES AND MODELS

bit-rates of left and right directions for each 100 kb chunks, respectively. Using FCMs, the minimum
bit-rate reaches to 1 bpswhen there is 7.5% mutation, while employing the cooperation of FCMs and
STMMs, it reaches to 1 bps when occurring 20% mutation.

Real dataset

We have downloaded from NCBI non-assembled sequences of white-tailed eagle (Haliaeetus albicilla
with 26X coverage) and bald eagle (Haliaeetus leucocephalus with 88X coverage) [118] and also,
reference genomes of human, chimpanzee, gorilla, orangutan and marmoset. The compression was
performed employing four FCMs with k-mer sizes = 4, 6, 13, 20 and � = 1, 1, 0.5, 0.005, respectively,
along with an STMM with k = 20, � = 0.5 and t = 5.

Table 2.1 provides in detail results of compressing the targets relatively to the references. In the
columns “Compress. gain” and “Time loss”, percentage of compression improvement and compu-
tation time added, respectively, are reported when using a cooperation of FCMs and STMMs over
using only FCMs. Note that both approaches consume the same amount of RAM. The “Div.” column
shows divergence time of the reference and the target species, in million years ago (Mya). As seen
in the table, there is a trade-o� between compression improvement and extra computation time.

2.3 Application on quantifying inverted repeats

Genomic sequences have speci�c properties such as the presence of inverted repeats [122], which
may play an important role in chromosomal rearrangements [123]. IRs, as sub-sequences of ge-
nomic sequences, are reversed and complemented copies of some other sub-sequences [124]. The
compression methods, aside from providing e�cient storage, processing and transmission, can help
investigating properties of IRs. We exploit a �nite-context model, introduced in Section 2.2, to carry
out a reference-based compression on genomic sequences.

To handle inverted repeats in the mathematical model, when a base is intended to be encoded,
in addition to the counter associated with the preceding context, we update another counter in the

Table 2.1: Compression results for real dataset.

Reference Target Compressed size (b) Compress.
gain (%)

Time
loss (%)

RAM
(GiB)

Div.
(Mya)FCM FCM+STMM

White-tailed Bald eagle 34,864,683 31,561,247 10.0 10.0 14 1 [119]
eagle

Human Chimpanzee 274,450,972 210,691,987 23.0 22.5 26 4.5–3 [120]
Human Gorilla 262,271,376 199,204,749 24.0 19.8 26 9–5 [120]
Human Orangutan 418,481,411 299,316,387 28.5 19.2 26 10 [120]
Human Marmoset 562,916,901 488,238,361 13.3 18.8 26 40 [121]

2.3. APPLICATION ON QUANTIFYING INVERTED REPEATS 25

following way. Let “G” be the base to be coded and “TCTA” be the associated context. First, we
concatenate the context and the base to form “TCTAG”; then, we calculate its reverse as “GATCT”,
and complement the reversed string as “CTAGA” (A ↔ T, C ↔ G). Here, we update the counter
associated with the 4-mer “CTAG’, observing “A” as the base to be encoded.

To investigate the properties of IRs in DNA data, a measure is also required. For this purpose,
di�erent measures have been proposed, such as normalized compression distance, normalized con-
ditional compression distance and normalized relative compression, which rely on the notion of
Kolmogorov complexity (Section 2.1). Here, we use the normalized relative compression, which is
light-weight regarding computational time and memory, to measure the dissimilarity between ge-
nomic data. Testing this approach on various species, including human, chimpanzee, gorilla, chicken
and turkey genomes, we unveil unreported results that may support several evolution insights.

We implemented the method using the C++ language, considering as input FASTA or SEQ for-
mat with the alphabet Θ = {A,C,G,T,N}. The machine used for the tests had a 16-core Intel®

Xeon® CPU E7320 with 2.13GHz frequency, and 256GiB RAM. For all tests, we set the parameters
� = 0.01 and context-order size (k) = 20. As dataset, several genome sequences with di�erent
species origins and lengths were considered (described in Table 2.2), that can be downloaded from
NCBI1. Hereinafter, the notation X.i refers to chromosome i of sequence X; moreover, MT, UL, UP,
AL and LG refer to mitochondrial DNA, unlocalized sequence, unplaced sequence, alternate locus
and a linkage group, that is not assigned to a chromosome, respectively.

In Fig. 2.7 is plotted heatmaps of the NRC values regarding the compression of human and
chimpanzee chromosomes, in an all-to-all scheme. Squares show similarity between the reference
and target sequences. The less the NRC value is, the more similar the corresponding chromosomes
are, since less bits are used for their relative compression. Figures 2.7a and 2.7b show NRC values
with and without considering IRs. As can be seen, there is higher similarity between the reference
and target chromosomes with the same numbers, rather than others, except for HS.2, HS.MT, HS.UL
and HS.UP corresponding to PT.2A & PT.2B, PT.MT, PT.UL and PT.UP, respectively. Also, HS.AL is
not similar to any PT chromosome. Note that HS.2 (corresponding to PT.2A and PT.2B) is presumed
to contain an ancestral chromosome fusion [125]; also, HS.Y (as a target) is highly correlated to PT.X,
since they had possibly exchanged information in recombination processes [126].

1ftp.ncbi.nlm.nih.gov/genomes

Table 2.2: Dataset used for studying the role of inverted repeats on DNA sequence similarity.

Target Species Size (GiB) Reference Species Size (GiB)
Human (HS) H. sapiens 3 3 Chimpanzee (PT) P. troglodytes 3 3
Chimpanzee (PT) P. troglodytes 3 3 Human (HS) H. sapiens 3 3
Gorilla (GG) G. gorilla 4 4 Human (HS) H. sapiens 3 3
Chicken (GGA) G. gallus 1 3 Turkey (MGA) M. gallopavo 1 2
Turkey (MGA) M. gallopavo 1 2 Chicken (GGA) G. gallus 1 3

ftp.ncbi.nlm.nih.gov/genomes

26 CHAPTER 2. MEASURES AND MODELS

Without IR (0)

With IR (1)

1 2A 2B 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y MT UL UP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

X

Y

AL

MT

UL

UP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

X

Y

AL

MT

UL

UP

P. troglodytes (tar)

H
. s

ap
ie

ns
 (

re
f)

0.4

0.6

0.8

1.0
NRC

a

Without IR (0)

With IR (1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y AL MT UL UP

1

2A

2B

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

X

Y

MT

UL

UP

1

2A

2B

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

X

Y

MT

UL

UP

H. sapiens (tar)

P
. t

ro
gl

od
yt

es
 (

re
f)

0.4

0.6

0.8

1.0
NRC

b

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

X

Y

AL

MT

UL

UP

1 2A 2B 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y MT UL UP
P. troglodytes (tar)

H
. s

ap
ie

ns
 (

re
f)

0.00

0.05

0.10

0.15

0.20

0.25

NRC0 − NRC1

c

1

2A

2B

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

X

Y

MT

UL

UP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y AL MT UL UP
H. sapiens (tar)

P
. t

ro
gl

od
yt

es
 (

re
f)

0.00

0.05

0.10

0.15

0.20

0.25

NRC0 − NRC1

d

Figure 2.7: NRC values calculated by compression of chimpanzee and human chromosomes. (a), (b) IRs
applied (IR = 0) and not applied (IR = 1); and (c), (d) the di�erence in NRCs between not applying
and applying IRs (NRCIR=0 − NRCIR=1).

Figures 2.7c and 2.7d show the di�erence in NRC between considering and not considering IRs
in the compression. The larger the di�erence of NRC values for two sequences is, the more similar
those sequences are when considering IRs, and consequently, possibly the higher the probability of

2.3. APPLICATION ON QUANTIFYING INVERTED REPEATS 27

chromosomal rearrangement would be. As can be seen, chromosomes 4, 5, 12, 17 and 18 of HS and
PT have more similarity than others, when considering IRs. This conforms with the results reported
in [127], [128], in which pericentric inversions were detected by FISH analysis. Also, HS.Y and PT.Y
are correlated, which conforms to [129]. Additionally, we have found a high correlation between
HS.MT and PT.UP (as the reference), when considering IRs.

The NRC results regarding compression of gorilla chromosomes using human as reference are
shown in Fig. 2.8. Considering IRs, a similarity between GG.17 and HS.5 is seen, which is justi�ed by
a chromosomal translocation [130]–[132]. Moreover, GG.2B and HS.2 are similar with and without

With IR (1) Without IR (0)

1 2A 2B 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X MTUL UP 1 2A 2B 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X MTULUP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

X

Y

AL

MT

UL

UP

G. gorilla (tar)

H
. s

ap
ie

ns
 (

re
f)

0.4

0.6

0.8

1.0
NRC

a

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

X

Y

AL

MT

UL

UP

1 2A 2B 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X MT UL UP
G. gorilla (tar)

H
. s

ap
ie

ns
 (

re
f)

0.0

0.1

0.2

0.3

0.4

NRC0 − NRC1

b

Figure 2.8: NRC results concerned with compression of gorilla using human chromosomes as references.
(a) left: IR = 0 and right: IR = 1; and (b) the di�erence between NRCs.

28 CHAPTER 2. MEASURES AND MODELS

considering IRs. However, there is a remarkable di�erence between considering and not considering
IRs in the compression of GG.2A using HS.2 as reference; thus, these two chromosomes are similar
only when IRs are considered.

In Fig. 2.9, the NRC results of compressing chicken and turkey chromosomes are plotted. Many

Without IR (0)

With IR (1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 MT W Z UL UP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

31

32

33

LG

MT

W

Z

UL

UP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

31

32

33

LG

MT

W

Z

UL

UP

M. gallopavo (tar)

G
. g

al
lu

s
(r

ef
)

0.7

0.8

0.9

1.0
NRC

a

Without IR (0)

With IR (1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 LGMT W Z UL UP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

MT

W

Z

UL

UP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

MT

W

Z

UL

UP

G. gallus (tar)

M
. g

al
lo

pa
vo

 (
re

f)

0.7

0.8

0.9

1.0
NRC

b

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

31

32

33

LG

MT

W

Z

UL

UP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 MT W Z UL UP
M. gallopavo (tar)

G
. g

al
lu

s
(r

ef
)

0.00

0.02

0.04

0.06

0.08

NRC0 − NRC1

c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

MT

W

Z

UL

UP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 LGMT W Z UL UP
G. gallus (tar)

M
. g

al
lo

pa
vo

 (
re

f)

0.00

0.02

0.04

0.06

0.08

NRC0 − NRC1

d

Figure 2.9: NRC values associated with the compression of turkey and chicken chromosomes. (a), (b) With
and without IRs; and (c), (d) the di�erence between NRCs.

2.4. CONCLUSIONS 29

di�erent similarities can be seen, such as in chromosomes 3 and 2, 6 and 8, 8 and 10, 11 and 13, and
18 and 20 of GGA and MGA, respectively, which were reported in [133] as chromosomal rearrange-
ments. We have found similarities between MGA.W and, GGA.1 and GGA.UL, and also GGA.W and,
MGA.1, MGA.Z and MGA.UP. Moreover, we have found that MGA.27 and GGA.25, and also GGA.32
and MGA.UP are highly similar when IRs are considered.

2.4 Conclusions

We described a number of measures in order for quanti�cation of information in and between omics
sequences. Among them are compression-based measures that employ a compression method to
approximates the Kolmogorov complexity. Also, we presented di�erent models, including FCMs,
STMMs and a cooperation of FCMs and STMMs, for the purpose of compressing genomic and pro-
teomic data. Tested on several sequences showed that the cooperation produces better results than
using solely the FCMs. Finally, we presented an application of exploiting the introduced compres-
sion models along with the measures on the role of inverted repeats in similarity of DNA sequences.
Applied on various DNA dataset showed that some sequences are more similar to each other when
IRs are considered during the compression procedure.

30 CHAPTER 2. MEASURES AND MODELS

Chapter 3

Compression of omics data

Advancements in high-throughout sequencing technologies has led to generating a huge volume
of omics data. Development of e�cient compressors for such data is crucial, to reduce the storage
and bandwidth for transmission, and also for analysis purposes. In this chapter are presented two
genomic sequence compressors, namely GeCo2 and Jarvis, and a protein data compressor, AC.

GeCo2 performs lossless compression by employing a combination of FCMs and STMMs with
which is associated a speci�c decay factor. It can use models considering only inverted repeats. The
results of testing our tool on several DNA sequences from various domains and kingdoms shows an
improvement over state-of-the-art methods using less computational resources (time and memory).

Jarvis works based on weighted context models, including FCMs and STMMs, and weighted
stochastic repeat models from which the best class of model is used for each nucleotide, using a
competitive prediction model. The two classes of models use speci�c sub-programs to handle in-
verted repeats e�ciently. The results of applying Jarvis on the same dataset used by GeCo2 shows
that it attains a higher compression ratio than state-of-the-art approaches, including GeCo2.

AC is a state-of-the-art method for lossless compression of amino acid sequences, which works
based on a cooperation of FCMs and STMMs. Compared to several general-purpose and special-
purpose protein compressors, our method provides the best bit-rates. AC can also compress the
sequences nine times faster than its competitor, paq8l. In addition, by employing the proposed
method we analyze the compressibility of a large number of sequences from di�erent domains. The
results show that viruses and eukaryota are the most and the least complex sequences to compress,
respectively, and also archaea and bacteria are the second most complex ones.

31

32 CHAPTER 3. COMPRESSION OF OMICS DATA

3.1 Compression of genomic sequences

3.1.1 Introduction

With the development of high-throughput sequencing technologies, huge volumes of sequencing
data are produced everyday, fast and cheaply, that can lead to upgrading the scienti�c knowledge
of genome sequence information as well as facilitating the diagnosis and therapy. Along with these
advantages, three challenges exist to deal with this data deluge: storage, processing and transmis-
sion. Also, the costs associated with them are higher compared to sequence generation, that makes
the situation more complicated [134]. Compression is able to overcome these challenges by reducing
the storage size and processing costs, such as I/O bandwidth, along with increasing transmission
speed [33], [135], [136].

Genomic (or DNA) sequences are codi�ed messages from an alphabet of four symbols (A, C, G
and T) that contain instructions, structure and historical marks of all known cellular organisms [137].
Initially, genomic sequences were compressed with general-purpose tools, such as gzip1, bzip22 or
lzma3. Since the emergence of biocompress [138] (described in the following), the development of
special-purpose compression algorithms for these sequences revolutionized the �eld.

Over the past three decades, many genomic sequence compressors have been proposed in the
literature, that can fall into two categories of reference-free and reference-based methods [87], [117],
[138]–[174]. The basic idea of reference-free compression is to exploit structural properties, e.g.,
inverted repeats, along with statistical properties of the sequences in order for compression [175].
In the following a selection of these methods are described. The �rst algorithm speci�cally proposed
for compression of genomic sequences is biocompress [138], which detects factors (repeats) and
complementary factors (inverted repeats) in sequences and encodes them by the Ziv and Lempel
compression method [176], using the length and position of their earliest occurrences.

POMA is an adaptive particle swarm optimization-based memetic algorithm [147] which works
based on comprehensive learning particle swarm optimization (CLPSO) [177] and an adaptive intel-
ligent single particle optimizer (AdpISPO)-based local search. In this method, an approximate repeat
vector (ARV) codebook is designed and then optimized by CLPSO and AdpISPO for compressing the
sequence. The approximate repeats that have the fewest base variations employ the candidate ARV
codebooks, encoded as particles, to achieve the optimal solution in POMA. Then, the weighted �t-
ness values are used to select the leader particles in the swarm. Finally, an AdpISPO-based local
search is exploited to �ne-tune the leader particles.

DNA-COMPACT (DNA COMpression based on a Pattern-Aware Contextual modeling Tech-
1www.gzip.org
2www.sourceware.org/bzip2
3www.7-zip.org/sdk.html

www.gzip.org
www.sourceware.org/bzip2
www.7-zip.org/sdk.html

3.1. COMPRESSION OF GENOMIC SEQUENCES 33

nique) [148] employs complementary contextual models and consists of two phases. First, the exact
repeats and inverted repeats are searched and then represented by a compact quadruplet. Second, the
non-sequential contextual models are introduced in order to exploit the features of DNA sequences;
then, the predictions of these models are synthesized using the logistic regression model, which is
shown to lead to less biased results rather than Bayesian averaging. Note that DNA-COMPACT can
handle both reference-free and reference-based genome compression.

The CoGI (Compressing Genomes as an Image) method [150] initially transforms the genomic
sequence into a binary image (or bitmap). Then, it uses rectangular partition coding algorithm [178]
to compress the image. Finally, it employs entropy coding for further compression of the encoded
image along with mismatches.

GeCo [152] uses a soft-blending cooperation of �nite-context models and substitution-tolerant
Markov models with one speci�c forgetting factor. The probability values calculated by the models
are then passed to an arithmetic encoder. The GeCo method has sub-programs to deal with in-
verted repeats and uses cache-hash for high-order context models, which is a middle point between
a dictionary and a probabilistic model.

The SPRING method [155], that supports both lossless and lossy compression of FASTQ se-
quences, provides its best results when the reads are reordered (lossy compression). For short
reads (up to 511 bp) it employs HARC [179], while for long reads it uses BSC1 (block sorting com-
pression). To compress quality scores, it performs quantization by means of QVZ [180], binary
thresholding or Illumina’s binning2 (quantizing to eight values) and then, encodes the quantized
values by BSC. Identi�ers in lossless mode are tokenized and compressed based on the di�erence
with the previous identi�er and �nally encoded by an adaptive arithmetic encoder, and in lossy
mode are discarded (the pairing information is saved).

The key idea of reference-based genome sequence compression is to employ similarity between
a target sequence and a (set of) reference sequence(s). This type of compressors achieve to, gen-
erally, higher compression ratios than reference-free compressors. In the following a selection of
reference-based genomic compressors is introduced.

The GRS method [160], which is based on the “di�” utility in Unix, �nds the longest sub-
sequences that are identical in the reference and the target sequences. Then, it calculates a sim-
ilarity measure; if that is greater than a threshold, the di�erence between the reference and target
sequences are compressed with Hu�man encoding [38]; otherwise, the reference and the target are
divided into smaller sub-sequences and the same strategy, i.e., comparing the value of the similarity
measure with an identi�ed threshold, is used to compress the sub-sequences.

FRESCO (Framework for REferential Sequence COmpression) [166] uses a compressed su�x
1www.github.com/IlyaGrebnov/libbsc
2www.illumina.com/documents/products/whitepapers/whitepaper_datacompression.pdf

www.github.com/IlyaGrebnov/libbsc
www.illumina.com/documents/products/whitepapers/whitepaper_datacompression.pdf

34 CHAPTER 3. COMPRESSION OF OMICS DATA

tree [181] of the reference sequence to match the pre�xes of an input string with sub-strings of
the reference sequence. In addition, three techniques are used to improve the compression perfor-
mance: (a) selecting a good reference; (b) rewriting the reference sequence; and (c) second-order
compression, that is reference-based compressing of an already compressed sequence.

GDC2 (Genome Di�erential Compressor) [168] considers multiple genomes of the same species.
It uses a number of extra reference phrases, that are extracted from other sequences, along with an
LZ-parsing for detection of approximate repeats. GDC2 considers short matches after some longer
ones, and supports random access to an individual sequence.

The iDoComp method [170] includes: (a) mapping generation, that employs the su�x arrays to
parse the target sequence relatively to the reference sequence; (b) post-processing of the mapping,
that �nds the consecutive matches which can be merged together to form an approximate match, and
uses them to reduce the size of mapping; and (c) entropy encoding, that uses an adaptive arithmetic
encoder to further compress the mapping and then generates the compressed �le.

ParRefCom [173] is a scalable parallel algorithm for paired-end (PE) genomics reads that com-
prises three steps: (a) a special alignment of PE reads to standard reference, in a sense that reads are
reordered while PEs are kept together; (b) classi�cation of PE reads based on the number of ends
aligned; and (c) developing custom compression strategies for reads in di�erent categories.

3.1.2 GeCo2

In this section we describe the GeCo2 tool, which is an improved version of GeCo [152]. In the
proposed tool we enhance the mixture of FCMs and STMMs, where each model has now a speci�c
decay factor. Additionally, speci�c cache-hash sizes and the ability to run only with inverted repeats
is developed. A new command line interface, several pre-computed modes of compression and
several optimizations in the code are included.

Methods

GeCo2 is an improved version of GeCo [152] and uses a cooperation of FCMs and STMMs, described
in Section 2.2, with a speci�c forgetting factor for each model, followed by arithmetic encoding. We
have found, experimentally, that lower forgetting factors should be used for more complex models.

To save models in memory, we use cache-hash data structure introduced in [152]. It keeps only
the last hashed entries, rendering a �exible and predictable amount of memory, that is independent
of sequence sizes. Fig. 3.1 shows the schema of this data structure. In order to save a context (index),
we divide it into “INDEX A” and “INDEX B”. As an example, considering contexts of size 20, 40 bits
is needed to save them. We divide these 40 bits into 24 bits for INDEX A, assuming we need a

3.1. COMPRESSION OF GENOMIC SEQUENCES 35

Figure 3.1: Cache-hash data structure.

hash table with 224 rows, and 16 bits for INDEX B. Associated with each INDEX A is “POSITION”, a
circular bu�er with the size of “MAXIMUM COLLISIONS”, that holds the position of the last entry
in that INDEX A row. MAXIMUM COLLISIONS is the maximum number of entries associated with
each INDEX A, that can be de�ned by user. Choosing a large number for it will make the cache-hash
sparse; it is 10 by default. Each entry in an INDEX A row includes INDEX B and “COUNTERS”, that
stores frequencies of occurring A, C, G and T bases after a speci�c context with 4 bit precision.
COUNTERS are 16-bit long, since they contain four 4-bit values. When a counter reaches 15, all
the counters (associated with the four bases) are divided by two. To deal with new contexts, if their
rightmost 16 bits already exists in an entry, the counters of the associated entry will be updated,
otherwise a new entry will be inserted after the last entry. Since in genomic sequences similar
regions tend to be grouped or close to each other, in order to search for an entry, we move from
the last entry toward the �rst one, using the positions saved in the POSITION bu�er. Note that the
cache-hash data structure uses a single hash function.

Compared with GeCo, we have made the following improvements: (a) in GeCo, each model with
a context order size of 14 or higher uses a hash table that keeps only the latest hash collisions, while
in GeCo2, each model has its own cache size. This enables to explore di�erent repetitive natures
without collision of models; (b) in GeCo, the inverted repeats model could only be added to an ex-
isting model, but in GeCo2 we added a mode for running exclusively the IR model. This allows to
use GeCo2 in IRs studies, namely for the detection of rearrangements of inverted nature; (c) a new
interface layout is created which enables more �exibility and permits easier optimization of param-
eters; (d) new functions, e.g., a new approximate power function, were added to make the program
faster. Several other functions were optimized; and (e) 12 pre-computed modes for reference-free
compression are added, that can be enabled with “-l <LEVEL>” �ag. The modes and associated pa-
rameters (see Section 2.2) are described in detail in Table 3.1. “k” denotes the context order size. “�”
is a parameter that allows to keep a balance between the maximum likelihood estimator and the
uniform distribution in a model, and is taken from user as 1/� . To consider inverted repeats, the

36 CHAPTER 3. COMPRESSION OF OMICS DATA

Table 3.1: Speci�cation of 12 pre-computed modes of GeCo2.

Mode k FCM STMM

1/� IR c Edit 1/�

1
1 1 0 – 0.7 –
12 20 1 – 0.97 –

2
2 1 0 – 0.78 –
4 1 1 – 0.78 –
11 80 1 – 0.96 –

3
3 1 0 – 0.8 –
4 1 1 – 0.84 –
12 50 1 – 0.94 2 15 0.95

4
4 1 0 – 0.8 –
6 1 1 – 0.84 –
13 50 1 – 0.94 2 15 0.95

5
4 1 0 – 0.82 –
6 1 1 – 0.72 –
13 50 1 – 0.95 2 15 0.95

6
4 1 0 – 0.88 –
6 1 1 – 0.76 –
13 50 1 – 0.95 2 15 0.95

7

4 1 1 – 0.9 –
6 1 1 – 0.79 –
8 1 1 – 0.91 –
13 10 1 – 0.94 1 20 0.94
16 200 1 5 0.95 4 15 0.95

8

4 1 1 – 0.9 –
6 1 1 – 0.8 –
13 10 1 – 0.95 1 20 0.94
16 100 1 5 0.95 3 15 0.95

9

4 1 1 – 0.91 –
6 1 1 – 0.82 –
13 10 1 – 0.94 1 20 0.94
17 100 1 8 0.95 3 15 0.95

10

1 1 0 – 0.9 –
3 1 0 – 0.9 –
6 1 1 – 0.82 –
9 10 0 – 0.9 –
11 10 0 – 0.9 –
13 10 1 – 0.9 –
17 100 1 8 0.89 5 10 0.9

11

4 1 1 – 0.91 –
6 1 1 – 0.82 –
13 10 1 – 0.95 1 20 0.94
17 100 1 15 0.95 3 15 0.95

12

1 1 0 – 0.9 –
3 1 0 – 0.9 –
6 1 1 – 0.85 –
9 10 0 – 0.9 –
11 10 0 – 0.9 –
13 50 1 – 0.9 –
17 100 1 20 0.9 3 10 0.9

3.1. COMPRESSION OF GENOMIC SEQUENCES 37

user should set IR = 1. “c” is the number of maximum collisions in cache-hash. “ ” is forgetting
factor in a model. “Edit” denotes the number of edits in a substitution-tolerant Markov model.

Results and discussion

We tested GeCo2, state-of-the-art genomic data compressors and one general-purpose compressor
on 15 DNA sequences with the total size of ∼534Mb (Table 3.2), described in [182], from various
domains and kingdoms, namely viruses, archaea, bacteria and eukaryota. The machine used for
tests had a single core Intel® Xeon® CPU E7320 at 2.13GHz frequency. GeCo2 is implemented in
the C language and is publicly available1 under GNU GPLv3 license.

Tables 3.3 and 3.4 demonstrate compressed sizes and computation times, respectively, for ap-
plying GeCo2 and other compressors on the dataset. We carried out paq8 (paq8kx variant) with the
“-8” (best option), GeCo with “-tm 1:1:0:0/0 -tm 3:1:0:0/0 -tm 6:1:0:0/0 -tm 9:10:0:0/0 -tm 11:10:0:0/0
-tm 13:50:1:0/0 -tm 18:100:1:3/10 -c 30 -g 0.9” option and XM using 50 copy experts.

GeCo2 is able to compress the complete dataset 0.2% more than GeCo, while performing in 11.8%
less time. The memory usage of GeCo and GeCo2 is ∼4.8GiB and ∼3.8GiB, respectively. Therefore,
comparing with GeCo (version 1), we improved the compression and computational time and also,
saved ∼1GiB of RAM.

GeCo2 can compress better than XM all sequences except DaRe, OrSa and EnIn. Overall, XM uses
rather than GeCo2 6.5 times more computational time and substantially larger RAM (at least 3 times
more). Note that compression/decompression of GeCo, XM and GeCo2 are approximately symmet-

1www.github.com/cobilab/geco2

Table 3.2: Dataset used for benchmarking genomic sequence compressors.

Name Species Category Size (b)

HoSa Homo sapiens Eukaryota, animalia 189,752,667
GaGa Gallus gallus Eukaryota, animalia 148,532,294
DaRe Danio rerio Eukaryota, animalia 62,565,020
OrSa Oriza sativa Eukaryota, plant 43,262,523
DrMe Drosophila miranda Eukaryota, animalia 32,181,429
EnIn Entamoeba invadens Eukaryota, amoebozoa 26,403,087
ScPo Schizosaccharomyces pombe Eukaryota, fungi 10,652,155
PlFa Plasmodium falciparum Eukaryota, protozoan 8,986,712
EsCo Escherichia coli Bacteria 4,641,652
HaHi Haloarcula hispanica Archaea 3,890,005
HePy Helicobacter pylori Bacteria 1,667,825
AeCa Aeropyrum camini Archaea 1,591,049
YeMi Yellowstone lake mimivirus Virus, mimivirus 73,689
AgPh Aggregatibacter phage S1249 Virus, phage 43,970
BuEb Bundibugyo ebolavirus Virus 18,940
Total 534,263,017

www.github.com/cobilab/geco2

38 CHAPTER 3. COMPRESSION OF OMICS DATA

Table 3.3: Compressed �le sizes, in bytes, obtained by GeCo2 and state-of-the-art genomic data compressors.

Name paq8 GeCo XM GeCo2 (mode1)

HoSa 40,517,624 38,877,294 38,940,458 38,845,642 (12)

GaGa 34,490,967 33,925,250 33,879,211 33,877,671 (11)

DaRe 12,628,104 11,520,064 11,302,620 11,488,819 (10)

OrSa 9,280,037 8,671,732 8,470,212 8,646,543 (10)

DrMe 7,577,068 7,498,808 7,538,662 7,481,093 (10)

EnIn 5,761,090 5,196,083 5,150,309 5,170,889 (9)

ScPo 2,557,988 2,536,457 2,524,147 2,518,963 (8)

PlFa 1,959,623 1,944,036 1,925,841 1,925,726 (7)

EsCo 1,107,929 1,109,823 1,110,092 1,098,552 (6)

HaHi 904,074 906,991 913,346 902,831 (5)

HePy 385,096 381,545 384,071 375,481 (4)

AeCa 380,273 385,640 387,030 380,115 (5)

YeMi 16,835 17,167 16,861 16,798 (3)

AgPh 10,754 10,882 10,711 10,708 (2)

BuEb 4668 4774 4642 4686 (1)

Total 117,582,130 112,986,546 112,558,213 112,744,517
1 It represents the compression level of GeCo2.

ric, since they perform decompression using approximately the same computational resources, i.e.,
time and memory.

Compared with paq8 (general-purpose compressor), GeCo2 is able to compress the dataset 4.1%
better and perform 138 times less computation. The memory usage of paq8 did not exceed 2GiB.

Table 3.4: Computation times, in seconds, of applying GeCo2 and other genomic sequence compressors on
the dataset described in Table 3.2.

Name paq8 GeCo XM GeCo2 (mode)1

HoSa 85,269.1 648.6 5589.8 652.4 (12)

GaGa 64,898.9 503.2 3633.9 494.7 (11)

DaRe 29,907.7 215.9 785.2 198.8 (10)

OrSa 20,745.1 192.4 489.7 138.3 (10)

DrMe 14,665.8 114.6 362.6 102.4 (10)

EnIn 11,183.6 95.8 279.8 82.5 (9)

ScPo 4619.1 45.2 96.5 34.2 (8)

PlFa 4133.9 39.7 84.4 35.3 (7)

EsCo 1973.9 26.4 36.8 5.1 (6)

HaHi 1738.1 23.7 39.1 4.4 (5)

HePy 715.1 17.2 11.2 1.9 (4)

AeCa 675.3 17.0 10.3 1.9 (5)

YeMi 32.6 12.3 0.9 0.1 (3)

AgPh 20.1 12.1 0.9 0.1 (2)

BuEb 9.1 12.2 0.7 0.1 (1)

Total 240,587.4 1976.3 11,421.8 1742.2
1 The compression level (mode) used in GeCo2 for each sequence is the same as in Table 3.3.

3.1. COMPRESSION OF GENOMIC SEQUENCES 39

3.1.3 Jarvis

In this section we describe Jarvis, a new lossless compressor for DNA sequences that uses a com-
petitive prediction model to estimate for each symbol the best class of models, among context and
repeat models, to be used for compression. The probability value associated with the chosen class
will be then redirected to an arithmetic encoder.

Methods

Jarvis works based on a competitive prediction between two classes of models: weighted con-
text models and weighted stochastic repeat models. The context models are combined through
a weighted set of contexts and substitution-tolerant contexts [97], [152] using a speci�c forgetting
factor for each model, while the stochastic repeat models use a common forgetting factor. By setting
di�erent number of context models and repeat models and their parameters, the proposed method
provides a �exibility to address compression of di�erent types of DNA sequences.

Fig. 3.2 shows an example of a competitive prediction between �ve weighted context mod-
els (represented by pre�x C) and three weighted stochastic repeat models (represented by pre�x R).
Each model has weights (W) and probabilities (P) that are calculated based on the counts present at
the respective data structure saved in memory (M). The su�ces (1 to 5) show model numbers. The
�fth context model includes an FCM (CW4, CP4) and an STMM (CW5, CP5) that share the same
data structure saved in memory (CM4), since they have the same context order size. After calculat-
ing probabilities and weights for di�erent models, they are redirected to the competitive prediction
model in order to �nd the model with the highest probability (predicted), which is then redirected
to an arithmetic encoder to provide the compressed sequence.

Weighted context models

Competitive
prediction

model

Arithmetic
encoder

Weighted stochastic repeat models

RW3, RP3

Figure 3.2: An example of a competitive prediction between �ve weighted context models and three weighted
stochastic repeat models.

40 CHAPTER 3. COMPRESSION OF OMICS DATA

In the following sections we describe the weighted context models, weighted stochastic repeat
models and competitive prediction model. For the purpose, we assume that there is a source gener-
ating symbols from a �nite alphabet Θ = {A,C,G,T}.

Weighted context models

Context models include �nite-context models and substitution-tolerant Markov models, described
in detail in Section 2.2, which generate weight and probability values that are updated for each
base. In order to save these models in memory, we use cache-hash data structure that is described
in Section 3.1.2. Note that a user can set the maximum number of collisions in the cache-hash to
constrain the peak memory (RAM) usage by Jarvis.

Weighted stochastic repeat models

The repeat model, that is inspired by the copy expert of the XM omics data compressor [145], relies
on a pointer to a position in the reference sequence that by a “good chance” contains a charac-
ter identical to that being encoded (in the target sequence) [163]. As we move through the target
sequence, the pointer may be repositioned to di�erent locations of the reference sequence; as its
consequence, all parameters of the model will be reset. In a repeat model, two counters are main-
tained: t , that stores the number of times that the model was used after the previous repositioning,
and ℎ, that keeps the number of times the model predicted correctly the nucleotide.

Fig. 3.3 shows an example of a repeat model, with the most recent repositioning occurred at
position 192872 and 178514 of the reference and the target sequences, respectively. The nucleotide
that is going to be encoded (marked with ?) is predicted by the model to be “G” (the base under the
“Current position” arrow), with which associated counters are t = 10 and ℎ = 8. The bases linked
by the dashed arrows indicate prediction errors (the predicted nucleotides were G and A, whereas
the correct ones were T and C).

Reference

Target

192872

178514

Current position

T C GG TA A T AC C A CG G GT CAT C GG TA A T AC C A CG G GT CA

T C GG TA A T AC C A CG T ?T CCT C GG TA A T AC C A CG T ?T CC

Figure 3.3: Example of a repeat model. The base marked with ? is intended to be encoded. The dashed
arrows show failure in prediction by the model.

3.1. COMPRESSION OF GENOMIC SEQUENCES 41

In order to compute the probabilities, that will be then passed to an arithmetic encoder, let x
be the nucleotide to be encoded, y be the predicted base, ℎ be the number of times that the model
successfully predicted the base and t be the number of times that the model was used after the
previous repositioning. The estimated probability of a nucleotide x can be calculated as

P (x) = ℎ + 1
t + 2 . (3.1)

A repeat model constructs a hash table with hashed k-mers (of a given size) as keys, and k-mers
and the positions of their occurrences in the reference sequence as values. Fig. 3.4 depicts an example
where k = 7 and k-mers “TATGTCC” and “CGATCGT” have been hashed into the same key, i.e.,
3123807. By saving k-mers in the hash table, direct comparison can be done to disambiguate between
them in the encoding phase. Note that using the hash table, the nucleotides that come right after all
occurrences of a given k-mer can be found.

Before a new nucleotide in the target sequence is encoded, performance of the repeat model is
checked. If the number of prediction failures, t − ℎ, is greater than a preset threshold, the repeat
model will be stopped. To restart the model, the positions of the preceding k-mer (before the current
nucleotide in the target sequence) is located in the hash table. In case there are more than one
position at that index (for that k-mer), the one closest to the encoding position would be chosen.
Note that if no record is found in the hash table, the current repeat model would not participate in
the process of compressing the current nucleotide.

Reference

CGATCGTTATGTCC GGCGGAT CGATCGT

132852 192033167287118227

Reference

CGATCGTTATGTCC GGCGGAT CGATCGT

132852 192033167287118227

3123807

9810346

118227 132852

192033

GGCGGAT

167287

Hash(“TATGTCC”)

Hash(“CGATCGT”)

Hash(“GGCGGAT”)

Hash table

Keys Values

TATGTCC CGATCGTTATGTCC CGATCGT

Figure 3.4: The hash table constructed by the repeat model.

42 CHAPTER 3. COMPRESSION OF OMICS DATA

Jarvis exploits multiple repeat models, with a maximum value (RPN) that can be set by a user.
When the RPN is larger than the available number of positions, the number of e�ective models will
be narrowed down to that number. The repeat models are combined in the same way as weighted
context models, considering the fact that associated with each model is a weight value that is up-
dated based on its performance. The decaying factors () should be small for such models, since the
weights need to be adapted quickly. Note that the reason to use the term “stochastic” in naming
these models is that in the hash table, all positions associated with a k-mer have the same probabil-
ity (chance) of being used.

Competitive prediction context model

The competitive prediction context model (CPCM) uses a �nite-context model, with an order size
de�ned as a parameter, to choose the best class between weighted context models and weighted
stochastic repeat models. For this purpose, a sequence of zeros and ones, Z , is generated.

Figure 3.5 depicts an example of a CPCM with a context order size of �ve (k = 5). To predict the
best class of models at the position i + 1, the probability of P (Zi+1 = S|Zi−4Zi−3Zi−2Zi−1) is calculated
by Eq. 2.14; in this case, S = 0 as the next symbol. Note that the alphabet is Θ = {0, 1} in a CPCM.
The probability values obtained by CPCM will then be redirected to an arithmetic encoder.

We evaluated the impact of context order sizes in CPCM on compression of HoSa, EnIn, AeCa
and YeMi sequences. The results shown in Fig. 3.6 denote that there is a direct relation between
the context order size and the length of a sequence (according to the respective redundancy). For
example, HoSa, as the largest sequence, has the least bit-rate when compressed with a context size
of 16 (in level 12) and YeMi, as the shortest sequence, presents the best compression with a context
size of 5 (in level 2). Note that the accuracy of prediction can be improved by using multiple CPCMs;
however, it will increase the computational time.

0 1 10 11 1 1 00 1 0 10 0

P(Zi+1 = S | Zi-4, Zi-3, Zi-2, Zi-1)

Zi-4

0: Weighted context models

1: Weighted stochastic repeat models

CPCMUpdate counters

Zi+1

k

Figure 3.5: Example of a competitive prediction context model with the context order size of �ve.

3.1. COMPRESSION OF GENOMIC SEQUENCES 43

Figure 3.6: Bit-rates, in bps, for compressing four sequences of HoSa, EnIn, AeCa and YeMi, when applying
CPCM with di�erent context order sizes.

Decompression

Jarvis is a lossless compressor, therefore, it decompresses the compressed sequence to the original
sequence without any loss. During the compression, some side information is added to the begin-
ning of the compressed sequence that will be used by the decompressor to generate the exact same
original sequence. For instance, the seed used by stochastic repeat models is saved in the header to
ensure the exact beginning in the stochastic process.

The compression/decompression process in Jarvis is symmetric, meaning that weighted context
models, weighted stochastic repeat models and competitive prediction model are synchronized in
the same order, by the same characteristics, on both sides of compression and decompression.

Implementation

Jarvis is written in the C language and is publicly available1 under GNU GPLv3 license. As arith-
metic encoder, we use a slightly modi�ed version of the one proposed in [183]. Our tool includes 15
pre-computed running modes with the parameters described in Table 3.5. Except for a few modes,
lower modes use less computational resources (time and memory) and are more appropriate for

1www.github.com/cobilab/jarvis

www.github.com/cobilab/jarvis

44 CHAPTER 3. COMPRESSION OF OMICS DATA

Table 3.5: Speci�cation of 15 running modes of Jarvis.

Mode Context model (FCM) Context model (STMM) Repeat model z
k 1/� IR c Edit 1/� IR RPN k � � lim IR

1 2 1 1 – 0.7 – 50 13 1 0.9 5 0.2 1 4
2 3 1 1 – 0.7 – 50 13 1 0.9 5 0.2 1 6

3
3 1 0 – 0.95 –

50 13 1 0.9 6 0.1 1 86 1 1 – 0.7 –

4
3 1 0 – 0.93 –

1000 15 0.1 0.9 6 0.1 1 126 1 1 – 0.7 –
12 10 1 – 0.95 –

5 6 1 1 – 0.92 – 1000 15 0.1 0.9 6 0.1 1 12
6 6 1 1 – 0.92 – 1000 15 0.1 0.9 6 0.1 1 14
7 6 1 1 – 0.92 – 1000 16 0.1 0.9 6 0.1 1 14

8
3 1 0 – 0.93 –

1000 16 0.1 0.9 6 0.1 1 146 1 1 – 0.7 –
13 10 1 – 0.95 –

9

1 1 0 – 0.9 –

2000 16 0.1 0.9 6 0.1 1 14

4 1 0 – 0.93 –
6 1 0 – 0.7 –
10 10 0 – 0.94 –
12 20 0 – 0.95 –
14 50 1 – 0.95 1 1 0 0.95
18 200 1 30 0.95 1 10 1 0.95

10

1 1 0 – 0.9 –

5000 16 0.1 0.9 6 0.1 1 14

4 1 0 – 0.93 –
6 1 0 – 0.7 –
12 10 0 – 0.95 –
14 50 1 – 0.95 1 1 0 0.95
20 500 1 50 0.95 2 20 1 0.95

11
3 1 0 – 0.93 –

5000 14 0.1 0.9 6 0.1 1 146 1 1 – 0.7 –
13 10 1 – 0.95 –

12

1 1 0 – 0.8 –

200 16 1 0.9 6 0.2 1 14

4 1 0 – 0.93 –
7 1 0 – 0.93 –
10 10 0 – 0.94 –
12 20 0 – 0.95 –
14 50 1 – 0.95 1 1 0 0.95
18 500 1 20 0.95 1 10 1 0.95

13

1 1 0 – 0.8 –

1000 16 1 0.9 6 0.2 1 14

4 1 0 – 0.93 –
7 1 0 – 0.93 –
10 10 0 – 0.94 –
12 20 0 – 0.95 –
14 50 1 – 0.95 1 1 0 0.95
18 500 1 20 0.95 1 10 1 0.95

3.1. COMPRESSION OF GENOMIC SEQUENCES 45

Table 3.5 (continued)

Mode Context model (FCM) Context model (STMM) Repeat model z

k 1/� IR c Edit 1/� IR RPN k � � lim IR

14

3 1 0 – 0.93 –

3000 16 1 0.9 6 0.2 1 1413 20 0 – 0.95 –

18 500 1 20 0.95 2 10 1 0.95

15

4 1 0 – 0.93 –

5000 16 1 0.9 6 0.2 1 14
7 1 0 – 0.93 –

14 50 1 – 0.95 1 1 0 0.95
18 500 1 20 0.95 1 10 1 0.95

shorter sequences, while higher modes perform better for larger sequences. Nevertheless, model
con�gurations can be manually done by passing parameters to the program. In the table, “k” denotes
k-mer size. “�” is a parameter that allows to keep a balance between the maximum likelihood
estimator and the uniform distribution in a model. For context models and repeat models, it is taken
from user as 1/� and � , respectively. To consider inverted repeats, the user should set IR = 1.
“c” is the number of maximum collisions in cache-hash. “ ” denotes forgetting factor in a model.
“Edit” denotes the number of edits in a substitution-tolerant Markov model. “RPN ” is the maximum
number of repeats models. “�” is a parameter for discarding or maintaining a certain repeat model.
“lim” is a threshold value associated with � that may or may not accept a certain repeat model.
Finally, “z” is the context order size for the competitive prediction context model.

Results and discussion

We tested Jarvis, state-of-the-art genomic data compressors and two general-purpose compressors
on 15 DNA sequences (Table. 3.2) with various sizes and from di�erent domains and kingdoms of
biological organisms. The machine used for tests had a single core Intel® Xeon® CPU E7320 at
2.13GHz frequency.

Tables 3.6 and 3.7 depict in detail compressed sizes and computational times, respectively, for
applying Jarvis and other data compresses on the dataset. The following settings were used to run
the methods: lzma with “-9” �ag that provides the best compression, paq8 (paq8kx variant) with “-8”
option that provides the least compression size, GeCo with “-tm 1:1:0:0/0 -tm 3:1:0:0/0 -tm 6:1:0:0/0
-tm 9:10:0:0/0 -tm 11:10:0:0/0 -tm 13:50:1:0/0 -tm 18:100:1:3/10 -c 30 -g 0.9”, GeCo2 with the modes
shown in Table 3.3 (described in Table 3.1), XM with 50 copy experts, and Jarvis with the modes
shown in Table 3.6.

Fig. 3.7 illustrates compression ratios and speeds (in kilobase per second), respectively, for
general-purpose and special-purpose methods. Compression ratios are calculated as total size of

46 CHAPTER 3. COMPRESSION OF OMICS DATA

Table 3.6: Compressed �le sizes, in bytes, obtained by Jarvis and other state-of-the-art data compressors.

Name lzma paq8 CoGI GeCo GeCo2 XM Jarvis (mode)

HoSa 42,292,440 40,517,624 51,967,817 38,877,294 38,845,642 38,940,458 38,660,851 (7)

GaGa 36,179,650 34,490,967 40,846,177 33,925,250 33,877,671 33,879,211 33,699,821 (6)

DaRe 12,515,717 12,628,104 17,084,450 11,520,064 11,488,819 11,302,620 11,173,905 (5)

OrSa 9,348,183 9,280,037 11,999,580 8,671,732 8,646,543 8,470,212 8,448,959 (5)

DrMe 8,016,544 7,577,068 8,939,690 7,498,808 7,481,093 7,538,662 7,490,418 (5)

EnIn 5,785,343 5,761,090 7,210,867 5,196,083 5,170,889 5,150,309 5,087,286 (4)

ScPo 2,722,233 2,557,988 2,921,247 2,536,457 2,518,963 2,524,147 2,517,535 (4)

PlFa 2,097,979 1,959,623 2,411,342 1,944,036 1,925,726 1,925,841 1,924,430 (4)

EsCo 1,185,704 1,107,929 1,307,943 1,109,823 1,098,552 1,110,092 1,095,606 (4)

HaHi 985,096 904,074 1,124,483 906,991 902,831 913,346 899,464 (3)

AeCa 413,886 380,273 454,357 385,640 380,115 387,030 380,507 (3)

HePy 415,161 385,096 457,859 381,545 375,481 384,071 374,362 (3)

YeMi 19,262 16,835 19,805 17,167 16,798 16,861 16,861 (2)

AgPh 12,183 10,754 12,243 10,882 10,708 10,711 10,745 (2)

BuEb 5441 4668 5291 4774 4686 4642 4690 (1)

Total 121,994,822 117,582,130 146,763,151 112,986,546 112,744,517 112,558,213 111,785,440

original sequences (shown in Table 3.2) divided by total size of compressed sequences (shown in
Table 3.6), and compression speeds are calculated as total size of compressed sequences divided by
total run times. As seen in Tables 3.6 and 3.7 and Fig. 3.7, Jarvis compresses the dataset 5.2% more
than paq8, while it is 140 times faster. CoGI is the fastest method and can compress the dataset
2.3% better than gzip. Although our tool is 28 times slower than CoGI, it is able to provide 31%
higher compression ratios. Jarvis shows an improvement of 1.1% and 0.9% in compression ratios
over GeCo and GeCo2, respectively, although it is slightly slower than these two methods. Com-
pared to XM that is the second-best tool in compression ratios, Jarvis improves the compression

Table 3.7: Computational time, in seconds, of applying Jarvis and other compressors on the dataset.

Name lzma paq8 CoGI GeCo GeCo2 XM Jarvis

HoSa 552.5 85,269.1 25.2 648.6 652.4 5589.8 814.8
GaGa 468.7 64,898.9 19.9 503.2 494.7 3633.9 412.3
DaRe 170.0 29,907.7 8.2 215.9 198.8 785.2 284.9
OrSa 112.9 20,745.1 5.8 192.4 138.3 489.7 234.5
DrMe 85.6 14,665.8 4.3 114.6 102.4 362.6 66.7
EnIn 66.0 11,183.6 3.7 95.8 82.5 279.8 101.1
ScPo 23.0 4619.1 1.5 45.2 34.2 96.5 28.7
PlFa 18.3 4133.9 1.2 39.7 35.3 84.4 25.4
EsCo 8.1 1973.9 0.6 26.4 5.1 36.8 10.9
HaHi 6.9 1738.1 0.5 23.7 4.4 39.1 7.1
AeCa 2.2 675.3 0.2 17.0 1.9 10.3 2.2
HePy 2.3 715.1 0.2 17.2 1.9 11.2 2.7
YeMi 0.1 32.6 0.0 12.3 0.1 0.9 0.2
AgPh 0.0 20.1 0.0 12.1 0.1 0.9 0.1
BuEb 0.0 9.1 0.0 12.2 0.1 0.7 0.1
Total 1516.6 240,587.4 71.3 1976.3 1742.2 11,421.8 1991.7

3.1. COMPRESSION OF GENOMIC SEQUENCES 47

●

●

● ● ●
●

4.4

4.5

4.6

4.7

lzma paq8 GeCo GeCo2 XM Jarvis
Method

C
om

pr
es

si
on

 r
at

io
a ●

●

●
●

●

●

0

20

40

60

80

paq8 XM Jarvis GeCo GeCo2 lzma
Method

C
om

pr
es

si
on

 s
pe

ed
 (

K
b/

s)

b

Figure 3.7: Applying state-of-the-art compressors on 15 sequences (described in Table 3.2). (a) compression
ratio; (b) compression speed, in kilobase per second. Note that CoGI was an outlier, therefore, it
was removed from this �gure.

by 0.6%, while it is 5.7 times faster and uses half RAM. As an example, it uses ∼7GiB RAM for the
largest sequence. Overall, special-purpose methods could provide better compression ratios than
general-purpose ones, including lzma and paq8.

Jarvis can run on 15 di�erent modes. Fig. 3.8 provides a comparison of these modes for the three
largest sequences, i.e., HoSa, GaGa and DaRe. As an instance, applying our tool on HoSa sequence in
mode 12 achieves a bit-rate of 1.6 bps, which is 1% better than mode 7. As another instance, running
on DaRe, mode 1 is the fastest mode and mode 9 provides the best bit-rate. There is a trade-o�
between time and memory usage, when running on di�erent modes. Depending on the needs of a
user, the “best” mode can be chosen, which depends on a combination of number of models, depths
and estimator parameters, among others.

In order to test the idea that repetitive regions in a sequence are better modeled by stochas-
tic repeat models than by context models, we added a very repetitive sequence (exogenous from
the benchmarking dataset) to the assembled human Y-chromosome and run GeCo2 and Jarvis on
the sequence. The result, illustrated in Fig. 3.9, denotes that Jarvis performs better than GeCo2 in
all modes. As an example, Jarvis in mode 12 compresses the sequence 5.4% better than GeCo2 in

a HoSa GaGa DaRe

T
im

e
 (

s)

b c

Bit-rate (bps) Bit-rate (bps) Bit-rate (bps)

Figure 3.8: Running Jarvis with di�erent modes on (a) HoSa; (b) GaGa; and (c) DaRe.

48 CHAPTER 3. COMPRESSION OF OMICS DATA

T
im

e
 (

s
)

Bit-rate (bps)

Figure 3.9: Times of carrying out GeCo2 and Jarvis in all modes on a sequence including the human
Y-chromosome and a very repetitive sequence.

mode 15, using approximately the same computational time, which shows that adding repeat models
to context models is important in such cases.

3.2 Compression of amino acid sequences

3.2.1 Introduction

Proteins play a key role in all organisms, since they are involved in the control of the development
of those organisms [145], [184], [185]. Recently, the importance of protein sequences has increased,
namely after the start of the Human Proteome Project (HPP) [186]–[189]. Amino acid sequences are
successions of letters, usually from an alphabet of 20 symbols, which indicate the order and nature
of amino acids within a protein. Each amino acid corresponds to one or more DNA/RNA codons,
that are represented by a 4-symbol alphabet of {A, C, G, T/U}.

Possible DNA codons associated with amino acids, and also their distribution percentage in
two large datasets of DB1 (uniprot_sprot.fasta.gz) and DB2 (uniprot_trembl.fasta.gz) [190], that are
available online1, are listed in Table 3.8. As can be seen, from a speci�c amino acid, we cannot
retrieve a single codon. The W and M, which is the start codon, are exceptions. As the result of
DNA/RNA sequencing process, there might be extra symbols in the sequences, including but not
limited to B, Z and X. Appearance of such symbols show that the identity of a residue cannot be
determined by a crystallographic or chemical analysis of a protein [191].

Compression of amino acid sequences, with intrinsically disordered nature, is known to be com-
1ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete

3.2. COMPRESSION OF AMINO ACID SEQUENCES 49

Table 3.8: Representation of amino acids and possible DNA codons associated with them, along with their
distribution percentage in two large protein databases.

Sym Amino Acid DNA codon(s) DB1% DB2%

A Alanine GCT, GCC, GCA, GCG 8.26 9.10
C Cysteine TGT, TGC 1.37 1.21
D Aspartic acid GAT, GAC 5.46 5.45
E Glutamic acid GAA, GAG 6.73 6.16
F Phenylalanine TTT, TTC 3.86 3.92
G Glycine GGT, GGC, GGA, GGG 7.08 7.26
H Histidine CAT, CAC 2.27 2.19
I Isoleucine ATT, ATC, ATA 5.93 5.70
K Lysine AAA, AAG 5.82 4.99
L Leucine TTA, TTG, CTT, CTC, CTA, CTG 9.65 9.87
M Methionine ATG 2.41 2.38
N Asparagine AAT, AAC 4.06 3.88
P Proline CCT, CCC, CCA, CCG 4.72 4.85
Q Glutamine CAA, CAG 3.93 3.79
R Arginine CGT, CGC, CGA, CGG, AGA, AGG 5.53 5.71
S Serine TCT, TCC, TCA, TCG, AGT, AGC 6.61 6.69
T Threonine ACT, ACC, ACA, ACG 5.35 5.57
V Valine GTT, GTC, GTA, GTG 6.86 6.88
W Tryptophan TGG 1.09 1.29
Y Tyrosine TAT, TAC 2.92 2.93
B D or N GAC, GAT, AAC, AAT 0.00 5.03
Z E or Q GAA, GAG, CAA, CAG 0.00 0.00
X <any> <any> 0.00 0.04

Note: the symbol X in a sequence can be interpreted as any DNA codon [95], [191].

plex [192]–[195]. Nevill-Manning and Witten, in [196], even propose that these sequences are
approximately incompressible, given the marginal compression gains obtained by their proposed
method. We give another example. Considering a sequence with the cardinality of 20, a compressor
should not need more than log2 20 = 4.322 bits, theoretically, to save each amino acid. However,
gzip, as one of the most known compressors, needs more than 4.322 bits to save each symbol, due
to having a short memory model, among others.

A few protein compressors have been proposed in the literature [100], [140], [145], [184], [193],
[196]–[200]. In [145], [196] statistical models that use probabilities of contexts are exploited. The
�rst protein compression algorithm, CP (Compress Protein) [196], employs probability to put weight
on all contexts with the maximum of a certain length, based on their similarity to the current context.
The XM (eXpert Model) method [145] encodes each symbol by estimating its probability distribution
based on previous occurrences of that symbol. The probability values are �nally redirected to an
arithmetic encoder.

“Approximate repeats” are utilized in the methods presented in [140], [197]. Matsumoto et al.

consider in [140] palindromes and approximate repeats as two characteristic structures. In this
method, an LZ77-type algorithm and the CTW algorithm [201] encode long and short approxi-

50 CHAPTER 3. COMPRESSION OF OMICS DATA

mate repeats, respectively. Heuristics are also used to improve compression ratios. The ProtComp
method [197] models approximate repeats and builds an optimal substitution probability matrix for
the purpose of exploring medium and long-range correlations.

Employing a “dictionary” is considered in [184], [198], [199]. The ProtCompSecS method [198]
combines ProtComp [197] with a dictionary based method that uses DSSP (Dictionary of Protein
Secondary Structure) database [202]. CaBLASTP, proposed in [199], introduces a course database
to store unique data that comes from the original protein sequence database. Then, sequence seg-
ments that align to previously seen sequences are added to a link index. This method combines a
dictionary-based compression algorithm and a sequence alignment algorithm. In [184], a dictionary-
based scheme is proposed that works based on random or repeated protein sequence reduction and
ASCII replacement.

In [200] a heuristic method is introduced that exploits protein domain compositions. It builds a
hyper-graph for the proteome based on evolutionary mechanisms of gene duplication and fusion;
then, based on a minimum spanning tree, a cost function is minimized to compress the proteome.

Compression of amino acid sequences, besides reducing storage space, can be exploited to pre-
dict and uncover structure of proteins [195], [203], namely through fusions and duplications [204],
which are possibly linked with new functionalities [200]. Protein classi�cation [205] and domain
identi�cation [206] are other examples.

3.2.2 Methods

AC works based on cooperation between �nite-context models and substitution-tolerant Markov
models with several depths, which is described in detail in Section 2.2. The mixture weights associ-
ated with each model are updated based on its performance, that is related to the speci�c forgetting
function of each model. Note that in protein sequences we confront with an alphabet of, usually, 20
amino acids (cardinality = 20) instead of 4 in genomic sequences.

3.2.3 Results and discussion

The AC tool is implemented in the C language and is publicly available1 under GNU GPLv3 license.
Besides enabling users to customize the parameters of the compression models, this tool provides
seven prede�ned compression levels, which are obtained by authors experience. The machine used
for tests had a 4-core 3.40GHz Intel® Core™ i7-6700 CPU with 32GiB RAM. In order to compare AC
with existing methods, we have used 16 datasets that are described in Table 3.9 and are available
online2,3. We have selected the datasets with di�erent cardinalities and lengths and from di�erent

1www.github.com/cobilab/ac
2ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/reference_proteomes
3sweet.ua.pt/pratas/datasets/AminoAcidsCorpus.zip

www.github.com/cobilab/ac
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/reference_proteomes
sweet.ua.pt/pratas/datasets/AminoAcidsCorpus.zip

3.2. COMPRESSION OF AMINO ACID SEQUENCES 51

Table 3.9: Datasets used for comparing AC with other compressors.

Name Species Domain Kingdom Length (b) Cardin.1

BT Bos taurus Eukaryota Animalia 12,845,466 24
HS Homo sapiens Eukaryota Animalia 3,295,751 19
SC Saccharomyces cerevisiae Eukaryota Fungi 2,900,352 20
HT Haloterrigena turkmenica Archaea Euryarchaeota 1,473,976 20
EC Escherichia coli Bacteria Eubacteria 1,308,765 21
LC Lactobacillus casei Bacteria Eubacteria 809,301 20
SA Staphylococcus aureus Bacteria Eubacteria 796,785 20
HI Haemophilus influenzae Bacteria Eubacteria 509,519 20
MJ Methanococcus jannaschii Archaea Euryarchaeota 448,779 20
DA Desulfurococcus amylolyticus Archaea Crenarchaeota 400,476 20
AP Acanthamoeba polyphaga Viruses dsDNA viruses 341,649 21
HA Hadesarchaea archaeon Archaea Euryarchaeota 218,643 21
FM Fomitiporia mediterranea Eukaryota Fungi 161,738 20
FV Fowlpox virus Viruses dsDNA viruses 80,735 21
XV Xanthomonas virus Xp10 Viruses dsDNA viruses 13,372 20
EP Enterococcus phage Viruses dsDNA viruses 4184 20
1 Cardinality demonstrates number of di�erent amino acids in each sequence.

domains and kingdoms.

AC and several other compression methods were tested on the collection of �les, described in
Table 3.9. The results are shown in Tables 3.10, 3.11 and 3.12, in terms of bit-rate, time and memory
usage, respectively. Note that all methods were carried out with their best options, e.g. for lzma and
paq8l, “-9” and “-8” options were used, respectively, which provide the best bit-rates.

The box-plot in Fig. 3.10a shows that AC provides, on average, the best bit-rates. The largest
alphabet cardinality of the datasets that we have used is 24, therefore, a compressor needs theoreti-

Table 3.10: Bit-rates of AC and existing protein compressors, in bits per symbol (bps).

Dataset gzip bzip2 7zip lzma paq8l AC

BT 4.52 4.25 3.21 3.21 3.15 3.05
HS 4.61 4.26 4.03 4.03 3.90 3.79
SC 4.64 4.30 4.13 4.13 3.94 3.88
HT 4.53 4.25 4.06 4.06 3.91 3.83
EC 4.68 4.35 4.27 4.27 4.08 4.04
LC 4.66 4.30 4.27 4.27 4.08 4.06
SA 4.65 4.30 4.26 4.25 4.06 4.06
HI 4.67 4.32 4.29 4.27 4.10 4.10
MJ 4.59 4.27 4.21 4.20 4.00 4.00
DA 4.62 4.28 4.22 4.22 4.03 4.03
AP 4.59 4.27 4.14 4.14 3.97 3.99
HA 4.66 4.32 4.23 4.22 4.09 4.08
FM 4.42 4.10 3.54 3.53 3.60 3.43
FV 4.67 4.31 4.19 4.18 4.07 4.06
XV 4.68 4.37 4.31 4.26 4.15 4.14
EP 4.69 4.49 4.59 4.43 4.30 4.32

52 CHAPTER 3. COMPRESSION OF OMICS DATA

Table 3.11: Compression time of di�erent compressors, in milliseconds.

Dataset gzip bzip2 7zip lzma paq8l AC

BT 500 1052 6274 9182 778,461 97,446
HS 135 265 912 1685 195,154 22,828
SC 119 240 703 1396 172,661 17,935
HT 66 121 243 577 86,516 10,812
EC 54 105 212 474 79,108 7175
LC 32 67 138 257 47,578 4495
SA 32 70 124 256 46,833 4436
HI 21 41 88 153 30,196 1875
MJ 20 36 71 132 26,502 1703
DA 17 32 63 122 23,661 1537
AP 15 27 75 103 20,265 2186
HA 10 17 35 68 13,106 968
FM 7 15 31 57 9931 1709
FV 5 7 16 39 5165 485
XV 1 2 5 26 1107 34
EP 1 1 3 24 440 16

cally log2 24 = 4.58 bits, at most, to save each amino acid symbol. This is plotted with a red line. As
it is shown, for most datasets, gzip needs more than 4.58 bits to save each symbol. This shows that
gzip is not appropriate for amino acid sequences, although it is a widely used compressor. Fig. 3.10b
shows that AC is nine times faster than its main competitor, paq8l. The memory usage of di�erent
tools is shown in Fig. 3.10c. AC and paq8l use ∼1GiB of memory, which is available on present-day
standard computers. Fig. 3.10d shows the bit-rates obtained by di�erent tools as a function of their
time usages. Since amino acid sequences are known to be complex [192]–[196], even a small reduc-
tion in bit-rate can be considered as a signi�cant improvement. As another example, improvements
in the lossless compression of amino acid sequences is an indication that shows that the model used

Table 3.12: Memory usage of di�erent protein compressors, in megabytes.

Dataset gzip bzip2 7zip lzma paq8l AC

BT 4 8 151 177 1200 4443
HS 4 8 46 95 1035 3445
SC 4 8 42 91 1023 1745
HT 4 7 26 79 990 1606
EC 4 7 25 78 986 1101
LC 4 7 18 73 979 960
SA 4 7 18 73 978 959
HI 4 5 15 71 973 508
MJ 4 5 14 70 970 496
DA 4 4 14 70 969 492
AP 4 4 13 69 969 863
HA 1 4 10 68 965 481
FM 1 4 9 68 962 1120
FV 1 2 7 67 934 409
XV 1 1 3 47 617 58
EP 1 1 3 46 359 58

3.2. COMPRESSION OF AMINO ACID SEQUENCES 53

a b

c

d

Figure 3.10: (a) Bit-rates; (b) times; (c) memory usages; (d) bit-rates versus times of AC and other protein
compressors, obtained by testing on 16 di�erent sequences.

is more reliable and may serve as an extra expert for predicting the structure of proteins [207]; this
can lead us to the development of better diagnostics and therapeutics. As it is shown, AC provides
the lowest bit-rate in a time comparable to well-known general-purpose tools.

To analyze the behavior of AC in more detail, we have compressed 10,677 sequences from di�er-
ent domains, which are described in Table 3.13 and are available online1. Normalized compression
results are shown in Fig. 3.11. The NC shows the average number of bits needed to represent each
amino acid in a sequence. Note that the harder a sequence is to be compressed by AC, the greater
the value of NC is.

In Fig. 3.12, histogram of sizes are demonstrated. The widest range of sizes belongs to Eukaryota
1ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/reference_proteomes

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/reference_proteomes

54 CHAPTER 3. COMPRESSION OF OMICS DATA

Table 3.13: Datasets used exclusively by AC.

Domain No. seq Min size (b) Max size (b) Total size (b)

Bacteria 8586 16,117 4,652,819 8,336,646,144
Eukaryota 1064 161,738 43,726,990 6,455,205,888
Archaea 465 33,380 1,528,994 256,815,104
Viruses 562 201 341,649 7,790,592
Total 10,677 201 43,726,990 15,056,457,728

10 2 10 3 10 4 10 5 10 6 10 7 10 8
0.4

0.5

0.6

0.7

0.8

0.9

1

Viruses

Archaea

Bacteria

Eukaryota

Figure 3.11: Normalized compression results of AC compressing 10,677 proteins, described in Table 3.13.

datasets. In Fig. 3.13a, violin plot of NCs for the datasets described in Table 3.13 is illustrated. In
Fig. 3.13b is shown the average NC values for the 10,677 protein sequences from di�erent domains.
Viruses have the greatest average NC values, which means they are the most complex sequences
to be compressed by AC. On the contrary, Eukaryota datasets are the least complex ones. This
result conforms to the similar study on nucleotide level [208], with the only exception that in DNA,
archaea are slightly more complex than bacteria.

Figure 3.12: Histogram of sizes for the datasets described in Table 3.13.

3.3. CONCLUSIONS 55

0.6

0.8

1.0

Viruses Archaea Bacteria Eukaryota

N
C

a

0.96

0.92 0.92

0.88

0.85

0.90

0.95

1.00

Viruses Archaea Bacteria Eukaryota

A
ve

ra
ge

 N
C

b

Figure 3.13: (a) Violin plot of NCs and (b) average NCs for the sequences described in Table 3.13.

3.3 Conclusions

With the ever-increasing production of genomic and proteomic sequences, due to the development
of omics sequencing technologies, there is a need to store such data in an e�cient way. In this chap-
ter we introduced two genomic data compressors, GeCo2 and Jarvis, and an amino acid sequence
compressor, AC.

In GeCo2, which is an improved version of GeCo, we enhanced mixture of the context models,
added speci�c cache-hash sizes, provided the ability of considering solely the inverted repeats, a new
command line interface, several pre-computed compression modes, and several code optimizations.
The results of applying our tool on several DNA sequences showed an improvement over state-of-
the-art compressors using less computational resources.

Jarvis is a lossless genomic data compressor which employs two classes of models, namely
weighted context models (including FCMs and STMMs) and weighted stochastic repeat models,
and uses a competitive prediction model to estimate for each nucleotide the best class among them.
Testing on DNA sequences from various domains and kingdoms showed that our tool achieves a
higher compression ratio than state-of-the-art approaches, including GeCo2.

AC is a novel method for lossless compression of amino acid sequences, which uses a combina-
tion of FCMs and STMMs. Experimental results show that this method provides the best bit-rates
compared to several existing protein compressors. Also, AC performs nine times faster than its com-
petitor, paq8l. Furthermore, we have employed AC to analyze compressibility of 10,677 sequences
from di�erent domains, using the normalized compression measure. The results show that viruses
are the hardest sequences to be compressed. Archaea and bacteria are the second hardest ones, and
eukaryota are the easiest sequences to be compressed.

56 CHAPTER 3. COMPRESSION OF OMICS DATA

Chapter 4

Secure encryption of genomic data

The ever-increasing growth of high-throughput sequencing technologies has led to a great accel-
eration of medical and biological research and discovery. As these platforms advance, the amount
of information for diverse genomes increases at unprecedented rates. Con�dentiality, integrity and
authenticity of such genomic information should be ensured due to its extremely sensitive nature.
In this chapter is proposed Cryfa, a fast secure encryption tool for genomic data, namely in FASTA,
FASTQ, VCF, SAM and BAM formats, which is also capable of reducing the storage size of FASTA and
FASTQ �les. The proposed tool uses AES encryption combined with a shu�ing mechanism, which
leads to a substantial enhancement of the security against low-data complexity attacks. Compared
to AES Crypt, a general-purpose encryption tool, Cryfa is an industry-oriented tool that is able to
provide con�dentiality, integrity and authenticity of data at three times more speed; in addition, it
can reduce the �le sizes to 1/3. Due to the absence of a method similar to our tool, we have simulated
its behavior with a combination of encryption and compression tools, for comparison purpose. For
instance, Cryfa is nine times faster than its fastest competitor in FASTA �les. Also, it has a very low
memory usage (only a few megabytes), which makes it feasible to run on any computer.

4.1 Introduction

The rapid advancement in HTS sequencing technologies has triggered a revolution in personalized
medicine, biotechnology and ancient DNA studies [209], [210]. However, it raises critical issues
regarding preserving security of the genomic data, which is highly sensitive due to its nature.

Authenticated encryption has the potential to address the issues of genomic data security, by
allowing only authorized parties to access such data. This cryptographic scheme is able to appropri-
ately ensure the key criteria of integrity, con�dentiality and authenticity of the genomic data, under
a single and easy-to-use programming interface [211], [212].

57

58 CHAPTER 4. SECURE ENCRYPTION OF GENOMIC DATA

General-purpose encryption methods, albeit directly applicable, do not take into consideration
speci�c properties of genomic data �les; for example, FASTA �les contain headers, beginning with
the “>” character, and DNA bases, including “A”, “C”, “G”, “T” and “N” symbols. As another ex-
ample, FASTQ �les comprise headers, beginning with the “@” character, bases, “+” separators and
quality scores. Also, VCF �les are required to begin with “##�leformat=VCF” string, which contains
16 characters and must be at the �rst line. Therefore, a special-purpose encryption approach is re-
quired, that is able to protect the genomic data against known-plaintext attacks (KPA) [49], as well
as low-data complexity attacks [213].

In this chapter, we present the Cryfa tool, that follows industry recommendations for upholding
security of in-transit and at-rest genomic data. This tool addresses secure encryption of such data,
along with compacting FASTA and FASTQ sequences by a �xed-block transformation, followed by
shu�ing the transformed information and ultimately, performing a fast authenticated encryption
on the shu�ed content. The encryption is performed by the advanced encryption standard (AES),
announced by the U.S. National Institute of Standards and Technology (NIST), which is a symmetric-
key algorithm. It processes data blocks, using cipher keys, based on a substitution-permutation
network [214]. Operating the shu�ing before encryption is crucial, since it prevents an adversary
to break the encryption by low-data complexity or KPA attacks.

Applying the AES method distributes information uniformly, therefore it is needed to per-
form the compacting phase before encryption. In this case, however, there are a few compression
side-channel attacks, such as CRIME- and BREACH-based attacks, which explore redundancy in a
compressed text by observing the size of its cipher text [215]. These methods can attack a com-
pression method which utilizes redundancy of a text and produces blocks of compressed text with
variable sizes. Regarding genomic data, they can exploit conserved sequences [216] to identify the
encrypted species by a brute-force attack to the beginning of the sequences. To make Cryfa resistant
against such security exploitations, we perform a �xed-size compacting, i.e., we pack equally sized
blocks of symbols in FASTA or FASTQ �les, independently of their redundancy.

4.2 Methods

Fig. 4.1 shows the schema of the Cryfa method. Fig 4.1a illustrates compaction & encryption of a
FASTA/FASTQ �le, that includes splitting headers, bases and quality scores, compacting each one
of them, shu�ing the joined pack and encrypting the shu�ed content. Fig. 4.1b illustrates decryp-
tion & unpacking of a �le that has already been compacted & encrypted by Cryfa. It includes de-
crypting the compacted & encrypted �le, unshu�ing the decrypted content and unpacking the un-
shu�ed content. Facing a genomic �le other than FASTA/FASTQ, the “split” and “compact” phases
in encryption, and “unpack” in decryption sides will be bypassed. In the following sections, pack-
ing/unpacking, shu�ing/unshu�ing and encryption/decryption processes are described in detail.

4.2. METHODS 59

PackH

PackB

PackQ

+ AES
GCM

FASTA
FASTQ

Input

Headers

Bases

Quals

Compacted
content

Key �le

Shu�ed
content

Compacted &
encrypted �le

Output

Compact & Encrypt

Split Compact Shu�e Encrypt

Decrypt Unshu�e Unpack

AES
GCM + Unpack

Compacted &
encrypted �le

Input

Decrypted
content

Key �le

Unshu�ed
content

Decrypted &
unpacked �le

Output

Decrypt & Unpack

a

b

Figure 4.1: The schema of Cryfa. (a) The process of compaction & encryption of a FASTA/FASTQ �le. Dashed
lines show that quality scores are not considered for FASTA �les; (b) decryption & unpacking of
a �le that has already been compacted & encrypted by Cryfa.

4.2.1 Pack and unpack

The operations of packing headers, bases and quality scores are similar to each other, with the only
di�erence being the number of symbols considered for each tuple varies. To clarify the process, an
example of packing DNA bases is provided, in which each tuple contains three symbols. To pack
DNA bases, a hash table is used to map each triplet of bases into an integer that represents the ASCII
value of a character that falls within the range [0, 63 − 1]. The number of integers in this interval is
63 = 216, which corresponds to the number of all possible triplets that can be built by six symbols of
A, C, G, T, N and X. We consider the X symbol based on the fact that, in DNA sequences, we might
face a number of bases other than A, C, G, T and N; since they are rarely presented in a sequence,
we pay a slight penalty dealing with them. This penalty would be to convert each of such bases to
an X symbol and insert an extra byte to point out which base it had been.

Fig. 4.2 shows an example of the packing process. All triplets of the sequence, except the last

60 CHAPTER 4. SECURE ENCRYPTION OF GENOMIC DATA

ATN GCA AGT CAT NCC AAT NCA ANN CNC NGC TTT GNA MAD

22

1

78

2

15

3

39

4

151

5

3

6

150

7

28

8

61

9

157

10

129

11

96

12

XAX

185

13

77

14

68

15

Sequence

Figure 4.2: An example of packing DNA bases.

one, are directly mapped to an integer between 0 and 215. Since the two bases M and D of the last
triplet, MAD, are absent from the alphabet {A, C, G, T, N}, they are �rst converted to X symbols;
then, the obtained triplet, XAX, is mapped into three integers of which two ones are penalties. The
�rst integer, 185, corresponds to the XAX triplet, while the second and the third integers, 77 and 68,
are ASCII codes for M and D symbols, respectively. Size of the packed sequence is calculated as

Size of packed sequence (bit) = ⌈
|S|
n ⌉ ⌈log2 |Θ|

n⌉ + 8x, (4.1)

in which |S| is the original sequence size in bits, n is the number of bases per pack, |Θ| is the alphabet
size, 8 is the number of bits per ASCII character and x is the number of penalty symbols, that is
Xes. In fact, ⌈|S|/n⌉, ⌈log2 |Θ|n⌉ and 8x show the number of packs, number of bits per pack and the
penalty, respectively. |Θ| is size of the alphabet {A, C, G, T, N, X}, that is 6. In this example, size of the
original sequence is 13 triplets × 3 bases × 8 bits = 312 bits, while the size of the packed sequence is
⌈39/3⌉ ⌈log2 63⌉ + 8 × 2 = 120 bits. Therefore, the sequence is compacted by a factor of 312/120 = 2.6.

The Unpacking process is the inverse of the packing process, in a sense that a lookup table is
employed to map each integer, representing the ASCII value of each character, to a tuple of symbols.
If that tuple includes any X symbols, that X is replaced by the character corresponding to the next
integer read from the content being unpacked. The unpacking operations that are performed on
headers, bases and quality scores are identical.

4.2.2 Shuffle and unshuffle

The shu�ing phase of Cryfa is of crucial importance. With the following examples, we show the
di�erence between applying and not applying the shu�ing. Note that in these examples, the attacker
is called Chuck. Fig. 4.3 demonstrates the �rst example. Assume that a genomic �le in VCF format
has been encrypted; Chuck has access to this encrypted sequence and also, knows that AES cipher
has been employed for the encryption. AES is a block cipher, therefore, he decides to decrypt the �rst
block of encrypted sequence, which includes 128 bits. Assume, the number of characters required
for a password is 8. For the purpose of decryption, he performs an exhaustive search on passwords,
in the sense that he guesses a password and tries to decrypt that block of data using that password; if

4.2. METHODS 61

...

+
##fileformat=VCF =⇒

Secure

encryption

failed!

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ X

...

...

+

-e%#S99{1E(ocI;] =⇒
Secure

encryption

succeeded!

128 bits

128 bits

Encrypted sequence

Without Shuffling

Decrypted sequence

128 bits

Exhaustive

Password

Search

8 char passwords

Shu�ed and encrypted sequence

With Shuffling

128 bits

Decrypted sequence

Figure 4.3: An example to show the importance of applying shu�ing in Cryfa, in which an attacker tries
exhaustive password search to break the encryption.

he could not obtain a meaningful set of characters, he guesses and tries the next password. Assume
Chuck knows that the original �le is in VCF format. Note that since every VCF �le must begin with
“##�leformat=VCF” string, this string is accounted as a “meaningful set of characters” for Chuck.
Therefore, whenever he could �nd a password by which he could break the encryption and obtain
“##�leformat=VCF”, with 128 bit length, he terminates the exhaustive search process. Since the
exhaustive attack to passwords with 8 characters is a�ordable with the modern computers, Chuck
would be able to break the encryption in a feasible time t0. Note that if Chuck did not know that the
original �le format was VCF, he could have searched for sets of characters meaningful in other �le
formats; for instance, FASTQ �les have an “@” character followed by a sequence identi�er and an
optional description, in their �rst lines. Most of the times, the identi�er is known.

Cryfa shu�es the sequence before encrypting it; this way, the �rst block of an encrypted �le
does not correspond to the �rst block of the original �le. Therefore, Chuck is not able to decrypt the
�rst 128 bit block and obtain the “##�leformat=VCF” string by an exhaustive attack to passwords.
In order for Chuck to break the encryption, he needs to guess a password and use it to decrypt
the entire �le, since shu�ing changes the positions of all characters. Then, he has to unshu�e it,
employing the password he has guessed earlier. If the resulting �le has the format of a VCF �le,
he would reach his goal, otherwise he has to guess another password and repeat the same steps.

62 CHAPTER 4. SECURE ENCRYPTION OF GENOMIC DATA

Thus, to recover the original sequence, Chuck needs to perform the exhaustive attack to passwords
and decrypt the entire sequence, instead of only 128 bits of it, and also he needs to unshu�e the
entire decrypted �le. As an instance, the size of one real dataset we employed in our experiments,
HS-ERR031905_2, is ∼11GiB (see Section 4.3.1); performing the aforementioned steps on such a �le
takes a huge time t1 ≫ t0.

The following scenario, along with Fig. 4.4, provide another example to demonstrate the impor-
tance of shu�ing in Cryfa. Let S0 be the original genomic sequence, C0 be an e�cient compressor
other than Cryfa and E0 be an encryptor. By compressing S0 with C0, the compressed sequence
SC0 is obtained, and by encrypting SC0 with E0, the compressed and encrypted sequence SCE0 is ob-
tained; these operations are performed in the compression & encryption side. The sequence SCE0 ,
the compressor C0 and the encryptor E0 are available to an attacker, called Chuck.

Assume the �le to be protected resides in NCBI database. Assume also that Chuck’s goal is to
recover the original sequence S0 by breaking the encryption of SCE0 . For this purpose, he downloads

...

... E0 =

... E0 =

...

...
E0 =

...

...
E0 =

SCE0

128 bits

SC1

SC3

SC1

Shu�ed

SC1

SC3

Shu�ed

SC3

128 bits

128 bits

128 bits

128 bits

Compressed and

encrypted sequence

Without Shuffling

Candidate compressed sequences Encrypt

Encrypted

blocks Compare

With Shuffling

Candidate compressed sequences Encrypt

Encrypted

blocks Compare

×

X Secure

encryption

failed!

×

× Secure

encryption

succeeded!

Figure 4.4: An example to show the importance of shu�ing in Cryfa. An attacker downloads the entire
sequences in NCBI database and encrypts them. By comparing each encrypted sequence with
the target �le, the attacker tries to break the encryption.

4.2. METHODS 63

from the NCBI database all sequences S1, S2,… , Sn from di�erent species, such as viruses, fungi, bac-
teria, and so on; then, he compresses them by C0 and obtains SC1 , SC2 ,… , SCn . Note that compressing
these sequences with current compressors takes from a few hours to a few days (at maximum). An
encryptor, which is a tool that performs AES block cipher in the case of this study, may add during
its encryption only a number of bits to a �le. Hence, the size of the encrypted �le is approximately
the same as the size of the not-yet-encrypted �le. Having this in mind, Chuck compares the sizes
of each of SC1 , SC2 , …, SCn with the one from SCE0 , and selects those sequences with approximately
the same size as SCE0 . Let SCi be each one of these sequences, in which 1 ≤ i ≤ n. A single SCi

is the compressed version of the original sequence that he is looking for. In the normal case, each
of SCi sequences needs to be encrypted completely, then the results are compared with SCE0 ; if the
two �les are exactly the same, Chuck has reached his goal. However, on one hand, we know AES
is a block cipher that encrypts a �le using �xed data blocks of 128 bits. On the other hand, C0 is a
compressor that does not shu�e the data, during the compression. Therefore, the �rst 128 bit block
of an SCi is encrypted to the �rst 128 bit block of SCEi ; the same happens to the second block, and
so forth. Thus, Chuck does not need to encrypt the whole sequence SCi and compare the result with
SCE0 ; 128 bits is su�cient. This way, the size of encryption problem is considerably reduced. Hence,
he can encrypt the �rst 128 bit block of an SCi sequence by guessing the password by exhaustive
search. If the result �le is equal to the �rst 128 bits of SCE0 , he has reached his goal, that is to recover
the original sequence S0 by decompressing that SCi . Note that Chuck excludes the header bits that
were introduced to the �le in order to support AES decryption.

Regarding Cryfa, Chuck has access to the ciphertext and his goal is to decrypt it. Note that he
is not capable of obtaining the result of a tampered input. Cryfa shu�es the data after compaction
and passes it to the encryption phase. This way, the �rst block of an encrypted sequence will not
correspond to the �rst block of the compacted sequence, before shu�ing. Therefore, to recover the
original sequence S0, the entire sequence of shu�ed SCi needs to be encrypted and compared with
the entire sequence of SCE0 . When dealing with big �les, like the ∼11GiB one mentioned in the
previous example, this recovery can take an enormous time greater than the case when we do not
perform shu�ing.

Another aspect of the importance of shu�ing before encryption is that it prevents an adver-
sary to break the encryption by low-data complexity attacks [217]–[219] or known-plaintext at-
tacks [220]–[222]. Applying the shu�ing, by employing uniform pseudo-random number genera-
tors, leads to permuting the plaintext uniformly and consequently, transforming the contents into
pseudo high-data complexity. This makes Cryfa resistant against low-data complexity attacks.

An example of shu�ing and unshu�ing processes is depicted in Fig. 4.5. To shu�e the packed
content, obtained by the packing process, a uniform pseudo-random number generator is employed
to rearrange each symbol. This generator guarantees the appearance of each possible permutation
of all symbols is equally likely. As an example, the symbols associated with the indices 0, 1, 2, 3 and 4

64 CHAPTER 4. SECURE ENCRYPTION OF GENOMIC DATA

A

0

G

1

T

2

N

3

C

4

Uniform pseudo-random
number generator

C

4

A

0

T

2

G

1

N

3

+
0 1 2 3 4

Uniform pseudo-random
number generator

402 1 3

+ + + + +

T A C G N

A

0

G

1

T

2

N

3

C

4

Seed

Seed

Initial seed

Key �le

Seed

Main content

Shu�ed content

Indices

Shu�ed

indices

Shu�ed

content

Unshu�ed content

Seed generation

Shuffle

Unshuffle

Figure 4.5: An example of shu�ing and unshu�ing. The uniform pseudo-random number generators in
shu�e and unshu�e blocks need to employ the same seed.

are swapped with those of randomly picked indices 2, 0, 4, 1 and 3, respectively. The pseudo-random
number generator is fed by a seed, which is provided by pseudo-randomizing the content of the key
�le. This �le includes the password that is set by a user.

For unshu�ing, the same uniform pseudo-random number generator and seed used in shu�ing
are employed. The generator shu�es a vector of indices with the values of 0, 1, 2,… , n, in which n
is the number of elements minus one. Since the generator and the seed fed to it are the same as the
ones employed in shu�ing, the identical orders of elements will be obtained. In this way, positions
that each symbol of the shu�ed content will have in output unshu�ed content is determined by
elements of the vector of shu�ed indices. As an example, the symbol T of the shu�ed content will
be placed at the 2nd position in the unshu�ed content. Similarly, the symbol A will be placed at the
0th position, and so forth.

4.2. METHODS 65

4.2.3 Encrypt and decrypt

In order for encryption and decryption, we have employed the advanced encryption standard
method (AES) in Galois/counter mode of operation (GCM) [223], which is shown in Fig. 4.6. GCM
is an authenticated encryption algorithm, meaning that it can provide data authenticity (integrity)
and con�dentiality, simultaneously. Therefore, any malicious changes to data or unauthorized ac-
cess attempt will be detected. This mode of operation uses block ciphers with a block size of 128 bits.
Note that GCM can exploit parallel processing by using a hardware pipeline e�ciently [224].

To encrypt the shu�ed content, �rst, two pseudo-random seeds are generated employing the
password set by the user. Then, one of these seeds is used to make a key and another one is used
to make the initialization vector (IV), which are required by GCM. IV, a unique binary sequence,
guarantees that even if a plaintext is independently encrypted multiple times using the same key,
the ciphertexts produced will be distinct [225]. As shown in Fig. 4.6, to produce a ciphertext, blocks

Incr Incr

Block cipher
encryptionK

Counter 0

Block cipher
encryptionK

Counter 1

Block cipher
encryptionK

Counter 2

Ciphertext 1

Plaintext 1

Ciphertext 2

Plaintext 2

MultHMultH MultH

Auth Data 1 len(A) || len(C)

MultH

Auth Tag

Figure 4.6: The authenticated encryption operation by AES method (GCM).

66 CHAPTER 4. SECURE ENCRYPTION OF GENOMIC DATA

are numbered sequentially; then, these numbers are encrypted by AES, using a key K, and �nally,
the encryption results are XORed with the plaintext. For the purpose of verifying the data integrity,
a block of additional authenticated data, “Auth Data 1”, is fed to a Galois Mult block, and its out-
put is used to generate the �nal authentication tag. Galois Mult performs multiplication in Galois
Field, GF (2128), using the hash key H. Note that “Incr” denotes the function of counter increment.
Ultimately, the encrypted text includes IV, ciphertext and authentication tag.

In order for decryption, the same cryptographic key as the one used in encryption side is em-
ployed, since AES is a symmetric-key algorithm. As mentioned before, this key is made using the
password set by the user. GCM hashes the cryptographic key to automatically produce the authen-
tication key. The operation of authenticated decryption is similar to the encryption operation, with
the only di�erence that in encryption, �rst, encrypting the block numbers are performed, then, the
hash step (Galois Mult) is taken, but in decryption, this order is reversed. To decrypt in GCM, au-
thentication tag is computed, and then, compared to the tag associated with the ciphertext; if they
match, the ciphertext is XORed with the result of encrypting block numbers, which is obtained
similarly to the authenticated encryption process, to produce the plaintext.

4.3 Results and discussion

Cryfa and several other compression and encryption methods have been carried out on a collection
of FASTA, FASTQ, VCF, SAM and BAM �les, that will be described next. Then, the proposed tool is
compared with a general-purpose encryption tool as well as several FASTA and FASTQ compressors.
Next, the behavior of Cryfa, as a multi-threaded tool, is evaluated when it is running with a di�erent
number of threads. Finally, to evaluate redundancy exploration by di�erent methods, we have tested
the proposed tool and a number of FASTA compressors on thousands of genomic sequences and
reported the results.

4.3.1 Experiment setup

Cryfa securely encrypts and compacts genomic data, leading to making the data resistant against
low-data complexity AES attacks [217] and making redundancy of an output �le almost inexplorable.
Since no method has been proposed that performs similar to what Cryfa does, in the sense of si-
multaneous compaction & encryption, we have considered two situations in order to have a com-
parison between our proposed method and the other methods: �rst, we compare Cryfa with a
general-purpose encryption tool, and second, we compress the datasets with di�erent state-of-the-
art compression methods, then, encrypt the compressed �les. A description of the methods and
datasets used for this purpose is provided in Section 4.3.1. In addition, the methods with which we
have compared Cryfa, in the sense of redundancy exploration, and the datasets used are described

4.3. RESULTS AND DISCUSSION 67

in Section 4.3.1. The machine used for the tests had a 4-core 3.40GHz Intel® Core™ i7-6700 CPU
with 32GiB RAM. Source codes and binaries are publicly available1 under GNU GPLv3 license.

Compression and encryption

A collection of methods for compressing FASTA �les, another collection for compressing FASTQ
�les and a single tool for encrypting FASTA, FASTQ, VCF, SAM and BAM �les are considered, that
are described in the following.

Dataset

Table 4.1 provides with details of the datasets used for compression and encryption. Regarding VCF,
SAM and BAM �les, Cryfa can exclusively encrypt them securely. Table 4.2 shows the datasets with
such formats which are used for encryption experiments. The datasets shown in Tables 4.1 and 4.2
are selected from di�erent species/subspecies including modern human, viruses, Denisova and Ne-
anderthal. Also, a number of synthetic data are considered that are generated by XS simulator [226].

Encryption methods

We have compared Cryfa with a general-purpose encryption software, AES Crypt2, that uses the
industry standard AES to encrypt �les. This software is open-source and available on several oper-
ating systems including Linux, Windows and macOS. Note that for the purpose of comparing Cryfa
and AES Crypt, we performed these two tools on all FASTA, FASTQ, VCF, SAM and BAM datasets.

FASTA compression and encryption methods

FASTA �les are, �rst, compressed with two general-purpose compressors, gzip3 and bzip24, and two
special-purpose compressors, MFCompress [116] and DELIMINATE [227]; then, the output �les are
encrypted with AES Crypt.

FASTQ compression and encryption methods

For the purpose of compressing FASTQ �les, the same general-purpose compressors considered for
FASTA �les are employed, that are gzip and bzip2, along with four special-purpose compressors,

1www.github.com/cobilab/cryfa
2www.aescrypt.com
3www.gzip.org
4www.bzip.org

www.github.com/cobilab/cryfa
www.aescrypt.com
www.gzip.org
www.bzip.org

68 CHAPTER 4. SECURE ENCRYPTION OF GENOMIC DATA

Table 4.1: Datasets for compression and encryption experiments, in FASTA and FASTQ formats.

Category Dataset Size (GiB) Description

FASTA

Human HS 3.1 Reference human genome, GRCh38.p7, obtained by concatenat-
ing all assembled chromosomes of modern human1.

Viruses viruses 0.3 All viruses genomes from NCBI2.
Synthetic SynFA-1 1.9 Generated by XS simulator [226]. Headers are simulated as the

ones provided by Illumina sequencing technology. All base sym-
bols, A, C, G, T and N, have identical occurrence probabilities of
0.2. Reads have static length of 100,000 bases.

Synthetic SynFA-2 0.9 Generated by XS simulator. Headers are simulated as the ones
by Ion Torrent technology. The bases A, C, G, and T have occur-
rence probabilities of 0.24 and N base has occurrence probability
of 0.04. Reads length vary from 75,000 to 100,000 bases.

FASTQ

Human HS-ERR013103_1 4.6 Taken from a Finnish male in Finland3.
Human HS-ERR015767_2 1.3 Taken from a Puerto Rican female in Puerto Rico4.
Human HS-ERR031905_2 11.1 Taken from a southern Han Chinese female5.
Human HS-SRR442469_1 0.5 Taken from an African Caribbean female in Barbados6.
Human HS-SRR707196_1 8.4 Taken from a British male in England and Scotland7.
Denisova DS-B1087_SR 1.7 High-coverage genome sequence8.
Denisova DS-B1088_SR 1.2 High-coverage genome sequence9.
Synthetic SynFQ-1 5.6 Generated by XS simulator. Headers are simulated as an output

of Ion Torrent sequencing technology. The bases A, C, G and T
have occurrence probabilities of 0.23, while occurrence probabil-
ity of base N is 0.08. Reads lengths vary from 70 to 150 bases.

Synthetic SynFQ-2 0.5 Generated by XS simulator. Headers are simulated as an output
of Illumina sequencing technology. There is an identical occur-
rence probabilities, 0.2, for all bases. Reads lengths vary from 70
to 120 bases.

1 ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/Assembled_chromosomes/seq
2 ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses
3 ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR013/ERR013103/ERR013103_1.fastq.gz
4 ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR015/ERR015767/ERR015767_2.fastq.gz
5 ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR031/ERR031905/ERR031905_2.fastq.gz
6 ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR442/SRR442469/SRR442469_1.fastq.gz
7 ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR707/SRR707196/SRR707196_1.fastq.gz
8 cdna.eva.mpg.de/denisova/raw_reads/B1087_SR.txt.gz
9 cdna.eva.mpg.de/denisova/raw_reads/B1088_SR.txt.gz

fqzcomp [36], Quip [228], DSRC 2 [229] and FQC [230]. Then, the AES Crypt tool is used to encrypt
the compressed �les.

Explore redundancy

We have run on a set of data described in the following Cryfa, MFCompress and DELIMINATE, as
FASTA �le compressors, to evaluate the redundancy exploration of these methods.

ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/Assembled_chromosomes/seq
ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR013/ERR013103/ERR013103_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR015/ERR015767/ERR015767_2.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR031/ERR031905/ERR031905_2.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR442/SRR442469/SRR442469_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR707/SRR707196/SRR707196_1.fastq.gz
cdna.eva.mpg.de/denisova/raw_reads/B1087_SR.txt.gz
cdna.eva.mpg.de/denisova/raw_reads/B1088_SR.txt.gz

4.3. RESULTS AND DISCUSSION 69

Table 4.2: Datasets used exclusively for encryption experiments.

Category Dataset Size (GiB) Description

VCF

Denisova DS-22 6.3 High-coverage genome sequence1.
Neanderthal N-n 0.8 High-quality genome sequence2.

SAM

Modern human HS-n 0.5 Sample from a British male in England and Scotland, aligned to the
human genome3.

Neanderthal N-y 1.5 High-quality genome sequence, aligned to the human genome4.

BAM

Modern human HS-11 0.6 Sample from a British male in England and Scotland, aligned to the
human genome5.

Neanderthal N-21 1.3 High-coverage genome sequence, aligned to the human genome6.
1 cdna.eva.mpg.de/denisova/VCF/human/HGDP0456.hg19_1000g.22.mod.vcf.gz
2 cdna.eva.mpg.de/neandertal/altai/ModernHumans/vcf/SS6004472.hg19_1000g.nonchrom.mod.vcf.gz
3 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/alignment/HG00096.unmapped.
ILLUMINA.bwa.GBR.low_coverage.20120522.bam

4 cdna.eva.mpg.de/neandertal/altai/AltaiNeandertal/bam/AltaiNea.hg19_1000g.Y.dq.bam
5 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/alignment/HG00096.chrom11.
ILLUMINA.bwa.GBR.low_coverage.20120522.bam

6 cdna.eva.mpg.de/neandertal/Vindija/bam/Vi33.19.chr21.indel_realn.bam

Dataset

We downloaded the whole NCBI database for archaea, bacteria, fungi, plants and viruses, with the
size of ∼250GiB. Then, we employed the GOOSE toolkit1 to extract the sequences labeled as “com-
plete genome”, since incomplete genomes may lead to errors or misleading values. Finally, we se-
lected the �les smaller than 2MiB. The �ltered datasets are described in Table 4.3.

4.3.2 Compare with compression and encryption methods

To compare Cryfa with other methods, we �rst, compare it with a general-purpose encryption tool,
and second, compress the datasets with di�erent compression methods and encrypt the output with

1www.github.com/pratas/goose

Table 4.3: Datasets for redundancy exploration experiments.

Category No. sequences Tot. size (MiB) Ave. size (KiB) Min size (KiB) Max size (KiB)

Archaea 104 553 1503 99 1943
Bacteria 760 10,154 1352 52 1950
Fungi 190 140 515 49 1763
Plants 2243 369 163 59 1812
Viruses 1333 231 135 49 1919
Total 4630 11,447 395 49 1950

cdna.eva.mpg.de/denisova/VCF/human/HGDP0456.hg19_1000g.22.mod.vcf.gz
cdna.eva.mpg.de/neandertal/altai/ModernHumans/vcf/SS6004472.hg19_1000g.nonchrom.mod.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/alignment/HG00096.unmapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/alignment/HG00096.unmapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam
cdna.eva.mpg.de/neandertal/altai/AltaiNeandertal/bam/AltaiNea.hg19_1000g.Y.dq.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/alignment/HG00096.chrom11.ILLUMINA.bwa.GBR.low_coverage.20120522.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/alignment/HG00096.chrom11.ILLUMINA.bwa.GBR.low_coverage.20120522.bam
cdna.eva.mpg.de/neandertal/Vindija/bam/Vi33.19.chr21.indel_realn.bam
www.github.com/pratas/goose

70 CHAPTER 4. SECURE ENCRYPTION OF GENOMIC DATA

an encryption method, then compare the results with the ones from Cryfa. For the �rst case, we
have encrypted and decrypted the entire datasets with AES Crypt, as an encryption software. For
FASTA and FASTQ �les, we have compacted & encrypted and decrypted & unpacked the datasets
with Cryfa. Regarding VCF, SAM and BAM datasets, we have exclusively encrypted and decrypted
them by Cryfa, since it does not provide compaction for these �le formats.

Table 4.4 shows compression ratios, time and memory usages by AES Crypt and Cryfa, running
on FASTA and FASTQ datasets. In this table, the times taken by Cryfa to compact, encrypt, decrypt
and unpack the datasets are reported separately. The total memory used by Cryfa to compact & en-

Table 4.4: Comparing Cryfa and AES Crypt, as a general-purpose encryption tool, running on FASTA and
FASTQ datasets.

Dataset Method Comp.
Time
(min)

Encr.
Time
(min)

Total Decr.
Time
(min)

Unpack
Time
(min)

Total CR1

Time Mem Time Mem
(min) (MiB) (min) (MiB)

FASTA

HS
AES Crypt – 1.61 1.6 1 1.51 – 1.5 1 1.0
Cryfa 0.27 0.06 0.3 9 0.06 0.45 0.5 25 2.9

viruses
AES Crypt – 0.22 0.2 1 0.22 – 0.2 1 1.0
Cryfa 0.09 0.02 0.1 9 0.02 0.09 0.1 25 2.9

SynFA-1
AES Crypt – 1.01 1.0 1 1.03 – 1.0 1 1.0
Cryfa 0.14 0.05 0.2 8 0.05 0.17 0.2 16 3.0

SynFA-2
AES Crypt – 0.40 0.4 1 0.40 – 0.4 1 1.0
Cryfa 0.09 0.02 0.1 9 0.02 0.11 0.1 12 3.0

FASTQ

HS-ERR013103_1
AES Crypt – 2.51 2.5 1 2.23 – 2.2 1 1.0
Cryfa 1.47 0.34 1.8 9 0.18 0.85 1.0 23 1.9

HS-ERR015767_2
AES Crypt – 0.72 0.7 1 0.62 – 0.6 1 1.0
Cryfa 0.31 0.10 0.4 10 0.07 0.24 0.3 20 1.9

HS-ERR031905_2
AES Crypt – 6.44 6.4 1 5.41 – 5.4 1 1.0
Cryfa 1.66 0.76 2.4 11 0.46 2.36 2.8 29 1.8

HS-SRR442469_1
AES Crypt – 0.20 0.2 1 0.22 – 0.2 1 1.0
Cryfa 0.07 0.03 0.1 10 0.02 0.09 0.1 22 1.9

HS-SRR707196_1
AES Crypt – 5.01 5.0 1 4.13 – 4.1 1 1.0
Cryfa 1.24 0.54 1.8 10 0.30 1.69 2.0 30 1.8

DS-B1087_SR
AES Crypt – 1.01 1.0 1 0.80 – 0.8 1 1.0
Cryfa 0.33 0.07 0.4 14 0.07 0.32 0.4 31 2.3

DS-B1088_SR
AES Crypt – 0.62 0.6 1 0.58 – 0.6 1 1.0
Cryfa 0.22 0.06 0.3 12 0.04 0.17 0.2 31 2.3

SynFQ-1
AES Crypt – 2.63 2.6 1 2.69 – 2.7 1 1.0
Cryfa 0.85 0.16 1.0 6 0.15 1.16 1.3 7 2.4

SynFQ-2
AES Crypt – 0.22 0.2 1 0.21 – 0.2 1 1.0
Cryfa 0.08 0.02 0.1 8 0.02 0.07 0.1 14 2.1

1 CR: Compression Ratio
Note: AES Crypt does not compact/unpack the files.

4.3. RESULTS AND DISCUSSION 71

crypt the datasets is the maximum of compaction memory usage and encryption memory usage
values. Also, the total decrypt & unpack memory usage is the maximum of decryption memory
usage and unpacking memory usage values. Since Cryfa uses ∼1MiB to encrypt and also decrypt
each �le and this is less than the amount used for compaction or unpacking phases, we have only
mentioned the total memory used in the table. The compression ratios are obtained by

Compression ratio = Original �le size
Compressed �le size . (4.2)

For AES Crypt, this value is 1.0 for all �les, since it does not compress the data.

Fig. 4.7 shows total encryption/compaction & encryption time usage and total decryption/de-
cryption & unpacking time usage by AES Crypt and Cryfa, and also, total compressed �les sizes
obtained by these two methods. In Fig. 4.7a is shown the aggregate time of running AES Crypt and
Cryfa on all FASTA and FASTQ �les (Table 4.4). As can be seen, even though Cryfa compacts, shuf-
�es and encrypts the �les, it is 4.6 times faster than AES Crypt at compaction & encryption and is
also, 3.4 times faster at decryption & unpacking of FASTA �les. For FASTQ �les, Cryfa is 2.3 times
faster than AES Crypt at compaction & encryption and 2 times faster at decryption & unpacking. In
Fig. 4.7b, the total sizes of original FASTA �les (6.2GiB) and FASTQ �les (34.7GiB) along with the
total sizes of compressed �les are shown. The compression ratio (CR) values are also denoted. In
addition, the reduced �le sizes, obtained by subtracting compressed �le sizes from original �le sizes,
are demonstrated. By this measure, we can evaluate the amount of storage space that can be saved,

0.7 0.9

3.2 3.1

8.3 8.2

19.2 16.8

FA
S

TA
FA

S
T

Q

0

AES Crypt

Cryfa

AES Crypt

Cryfa

Time (min)

Encrypt /
Compact & Encrypt
Decrypt /
Decrypt & Unpack

a

2.1
4.16.2

CR = 2.9CR = 2.9CR = 1 18.3

16.4

34.7

CR = 1.9CR = 1.9CR = 1

FASTA FASTQ

AES Crypt Cryfa AES Crypt Cryfa

0

10

20

30

40

S
iz

e
(G

B
)

Compressed
Reduced
(Original − Compressed)

b

Figure 4.7: Total time and �le size to encrypt / compact & encrypt and decrypt / decrypt & unpack the whole
FASTA and FASTQ datasets by Cryfa and AES Crypt, a general-purpose encryption tool. (a) real
time, (b) �le size. CR stands for compression ratio.

72 CHAPTER 4. SECURE ENCRYPTION OF GENOMIC DATA

using di�erent methods. With AES Crypt, the reduced �le size is zero, since it does not compress
the data. However, using Cryfa, 47% to 66% of the space required to store a �le can be decreased.

The time and memory used by AES Crypt and Cryfa, carrying out on VCF, SAM and BAM
datasets, are reported in Table 4.5. While Cryfa shu�es plus encrypts the �les, it is 1.7 to 3 times
faster than AES Crypt. The RAM usage of Cryfa is 1MiB for all of the datasets in this table. Note
that when Cryfa is supposed to exclusively encrypt/decrypt a �le, whether it is of FASTA/FASTQ
format or VCF/SAM/BAM, it uses only 1MiB of memory. This makes Cryfa feasible to run on any
standard computer, including single-board computers.

For the case of compressing and then encrypting the datasets, we have carried out di�erent
FASTA compression methods along with AES Crypt on all FASTA �les. The results are shown in
Table 4.6. In the same way, the results for FASTQ �les are shown in Tables 4.7 and 4.8. Regarding
FASTA datasets, all methods successfully compressed the �les losslessly. However, regarding FASTQ
�les, some methods were not able to compress a portion of the �les losslessly. These cases are shown
in the “Equal” column of Tables 4.7 and 4.8, with the word “No”.

Fig. 4.8 shows total compression & encryption time and total decryption & decompression time
usage by di�erent methods, and also, total compressed �les sizes obtained by these methods. As can
be seen in Fig. 4.8a, although Cryfa performs compacting, shu�ing and encrypting the FASTA �les,
it is 10.6 times faster than the second fastest method at compression & encryption, DELIMINATE
plus AES Crypt, and also, 1.7 times faster than the second-ranked method at decryption & decom-
pression, gzip plus AES Crypt. Also, it is 1.3 times faster than the second fastest method at com-
pression & encryption of FASTQ �les, DSRC 2 plus AES Crypt, and is also 1.2 times faster than the
second-ranked method at decryption & decompression, gzip plus AES Crypt. In Figs 4.8b, the total
sizes of original FASTA and FASTQ �les, the total sizes of compressed �les and the reduced �le sizes
are demonstrated. Cryfa is able to reduce the �le sizes by a factor of up to 2.9, on average. Note that
since there was no method performing similarly to what the proposed tool does, we had to simulate
its behavior with a combination of compression and encryption methods.

Table 4.5: Cryfa compared to AES Crypt, running on VCF, SAM and BAM datasets.

Format Dataset Encrypt Decrypt

AES Crypt Cryfa AES Crypt Cryfa

Time Mem Time Mem Time Mem Time Mem
(min) (MiB) (min) (MiB) (min) (MiB) (min) (MiB)

VCF
DS-22 2 9 1 1 8 1 2 9 1 1 8 1
N-n 0 3 1 0 1 1 0 4 1 0 2 1

SAM
HS-n 0 2 1 0 1 1 0 2 1 0 1 1
N-y 0 7 1 0 2 1 0 7 1 0 3 1

BAM
HS-11 0 3 1 0 1 1 0 3 1 0 1 1
N-21 0 6 1 0 2 1 0 6 1 0 3 1

4.3. RESULTS AND DISCUSSION 73

Table 4.6: Compression & encryption and decryption & decompression of FASTA datasets. Note that for all
methods, except Cryfa, the compressed �le is encrypted with AES Crypt method.

C. Method Compress
Time
(min)

Encrypt
Time
(min)

Total Decrypt
Time
(min)

Decompr.
Time
(min)

Total C. Ratio

Time Mem Time Mem
(min) (MiB) (min) (MiB)

HS (3.1GiB)

gzip 5.02 0.39 5.4 1 0.42 0.30 0.7 1 3.6
bzip2 4.54 0.36 4.9 8 0.36 1.79 2.2 1 3.9
MFCompress 7.58 0.28 7.9 518 0.28 5.95 6.2 521 5.1
DELIMINATE 3.88 0.28 4.2 3 0.29 2.95 3.2 2 5.1
Cryfa 0.27 0.06 0.3 9 0.06 0.45 0.5 25 2.9

viruses (0.3GiB)

gzip 0.80 0.05 0.9 1 0.05 0.03 0.1 1 3.3
bzip2 0.47 0.04 0.5 8 0.05 0.19 0.2 1 3.5
MFCompress 1.27 0.03 1.3 559 0.03 1.17 1.2 550 5.0
DELIMINATE 0.27 0.03 0.3 3 0.03 0.30 0.3 7 5.0
Cryfa 0.09 0.02 0.1 9 0.02 0.09 0.1 25 2.9

SynFA-1 (1.9GiB)

gzip 4.37 0.29 4.7 2 0.31 0.18 0.5 1 3.0
bzip2 2.65 0.27 2.9 8 0.28 1.22 1.5 1 3.2
MFCompress 3.50 0.27 3.8 554 0.25 2.69 2.9 552 3.4
DELIMINATE 1.73 0.25 2.0 3 0.27 2.57 2.8 7 3.4
Cryfa 0.14 0.05 0.2 8 0.05 0.17 0.2 16 3.0

SynFA-2 (0.9GiB)

gzip 1.83 0.14 2.0 1 0.14 0.09 0.2 1 3.1
bzip2 1.32 0.13 1.4 8 0.13 0.62 0.8 1 3.3
MFCompress 1.66 0.12 1.8 516 0.12 1.29 1.4 510 3.7
DELIMINATE 0.73 0.12 0.9 3 0.12 1.05 1.2 7 3.6
Cryfa 0.09 0.02 0.1 9 0.02 0.11 0.1 12 3.0

4.3.3 Run with different number of threads

Cryfa has been implemented as a multi-threaded program. In order to evaluate its cost-e�ectiveness
when running on machines with a di�erent number of cores, including the ones serving in the cloud,
we have carried it out on two datasets, viruses (FASTA) and DS-B1088_SR (FASTQ), with one up to
eight threads. The results are demonstrated in Fig. 4.9, in terms of real-time, CPU time and memory
usage. To obtain real-time and CPU time, which is an aggregation of user time and system time, we
have used “time” command, that is provided by default in Unix systems.

Running Cryfa with eight threads compared to using other number of threads, takes the least
real-time, however, it takes the most CPU time and uses the most memory. On the contrary, running
it with one thread uses the least memory. In this case, Cryfa takes the most real-time and the least
CPU time. Fig. 4.9a shows that by using two threads compared to one thread, the compaction & en-
cryption real-time decreases by a factor of ∼2. Also, using eight threads compared to one thread,
makes Cryfa 3 to 4 times faster in compaction & encryption and ∼2 times faster in decryption & un-

74 CHAPTER 4. SECURE ENCRYPTION OF GENOMIC DATA

Table 4.7: Compression & encryption and decryption & decompression of modern human FASTQ dataset.

C. Method Comp.
Time
(min)

Encr.
Time
(min)

Total Decr.
Time
(min)

Decompr.
Time
(min)

Total C. Ratio Equal

Time Mem Time Mem
(min) (MiB) (min) (MiB)

HS-ERR013103_1 (4.6GiB)

gzip 5.09 0.82 5.9 1 0.82 0.57 1.4 1 2.7 Yes
bzip2 5.70 0.64 6.3 8 0.65 2.60 3.2 1 3.4 Yes
fqzcomp 1.64 0.48 2.1 62 0.49 1.34 1.8 59 4.4 Yes
�ip 1.18 0.48 1.7 394 0.49 2.35 2.8 391 4.4 Yes
DSRC 2 0.92 0.49 1.4 3715 0.50 1.05 1.6 5286 4.2 Yes
FQC 6.93 0.48 7.4 4 0.50 5.97 6.5 4 4.3 Yes
Cryfa 1.47 0.34 1.8 9 0.18 0.85 1.0 23 1.9 Yes

HS-ERR015767_2 (1.3GiB)

gzip 1.54 0.16 1.7 1 0.16 0.12 0.3 1 3.8 Yes
bzip2 1.47 0.14 1.6 8 0.14 0.62 0.8 1 4.5 Yes
fqzcomp 0.42 0.10 0.5 60 0.11 0.29 0.4 58 6.1 Yes
�ip 0.35 0.10 0.5 391 0.10 0.67 0.8 390 6.0 Yes
DSRC 2 0.44 0.10 0.5 1780 0.11 0.30 0.4 2041 5.7 Yes
FQC 1.50 0.10 1.6 4 0.10 1.07 1.2 4 6.3 Yes
Cryfa 0.31 0.10 0.4 10 0.07 0.24 0.3 20 1.9 Yes

HS-ERR031905_2 (11.1GiB)

gzip 13.19 1.85 15.0 2 1.85 1.34 3.2 1 2.9 Yes
bzip2 13.63 1.52 15.2 8 1.54 6.19 7.7 1 3.5 Yes
fqzcomp 3.90 1.14 5.0 61 1.17 3.02 4.2 59 4.6 No
�ip 3.36 1.16 4.5 393 1.15 5.93 7.1 391 4.5 Yes
DSRC 2 2.28 1.23 3.5 2825 1.26 2.19 3.5 6374 4.3 Yes
FQC 14.03 1.35 15.4 4 1.14 13.64 14.8 4 4.8 Yes
Cryfa 1.66 0.76 2.4 11 0.46 2.36 2.8 29 1.8 Yes

HS-SRR442469_1 (0.5GiB)

gzip 0.63 0.07 0.7 1 0.07 0.05 0.1 1 3.0 Yes
bzip2 0.59 0.06 0.7 7 0.06 0.28 0.3 1 3.8 Yes
fqzcomp 0.20 0.04 0.2 61 0.05 0.14 0.2 59 4.9 No
�ip 0.14 0.05 0.2 385 0.05 0.24 0.3 383 4.8 Yes
DSRC 2 0.25 0.04 0.3 734 0.05 0.25 0.3 755 4.9 Yes
FQC 0.48 0.05 0.5 4 0.05 0.41 0.5 4 4.9 Yes
Cryfa 0.07 0.03 0.1 10 0.02 0.09 0.1 22 1.9 Yes

HS-SRR707196_1 (8.4GiB)

gzip 10.12 1.21 11.3 1 1.24 0.86 2.1 1 3.2 Yes
bzip2 11.22 0.99 12.2 8 1.01 4.87 5.9 1 4.1 Yes
fqzcomp 2.69 0.76 3.5 61 0.77 2.16 2.9 59 5.3 No
�ip 2.07 0.75 2.8 394 0.75 4.38 5.1 393 5.3 Yes
DSRC 2 1.72 0.78 2.5 2752 0.80 1.65 2.5 5763 5.1 Yes
FQC 9.77 0.66 10.4 4 0.68 8.10 8.8 4 6.0 Yes
Cryfa 1.24 0.54 1.8 10 0.30 1.69 2.0 30 1.8 Yes

packing. Fig 4.9b shows that Cryfa has a very low memory usage; even with eight threads, it uses
up to 12MiB RAM for compaction & encryption and up to 31MiB for decryption & unpacking.
Hence, the proposed tool can be feasibly carried out on present-day standard computers.

4.3. RESULTS AND DISCUSSION 75

Table 4.8: Compression & encryption and decryption & decompression of Denisova and synthetic FASTQ
datasets.

C. Method Comp.
Time
(min)

Encr.
Time
(min)

Total Decr.
Time
(min)

Decompr.
Time
(min)

Total C. Ratio Equal

Time Mem Time Mem
(min) (MiB) (min) (MiB)

DS-B1087_SR (1.7GiB)

gzip 1.27 0.17 1.4 1 0.18 0.14 0.3 1 4.2 Yes
bzip2 2.63 0.13 2.8 7 0.13 0.77 0.9 1 5.6 Yes
fqzcomp 0.43 0.10 0.5 57 0.10 0.28 0.4 53 7.6 No
�ip 0.40 0.13 0.5 391 0.13 0.58 0.7 388 5.9 No
DSRC 2 0.36 0.10 0.5 1923 0.10 0.25 0.4 2374 7.3 Yes
FQC 1.48 0.10 1.6 4 0.10 1.31 1.4 4 7.5 Yes
Cryfa 0.33 0.07 0.4 14 0.07 0.32 0.4 31 2.3 Yes

DS-B1088_SR (1.2GiB)

gzip 1.10 0.13 1.2 1 0.13 0.11 0.2 1 4.2 Yes
bzip2 2.01 0.10 2.1 7 0.10 0.49 0.6 1 5.6 Yes
fqzcomp 0.42 0.07 0.5 57 0.08 0.21 0.3 54 7.6 No
�ip 0.47 0.09 0.6 389 0.10 0.43 0.5 388 5.9 No
DSRC 2 0.32 0.08 0.4 1413 0.08 0.22 0.3 1736 7.2 Yes
FQC 1.16 0.07 1.2 4 0.08 0.96 1.0 4 7.4 Yes
Cryfa 0.22 0.06 0.3 12 0.04 0.17 0.2 31 2.3 Yes

SynFQ-1 (5.6GiB)

gzip 7.46 1.49 9.0 1 0.55 1.28 1.8 1 2.4 Yes
bzip2 7.30 0.93 8.2 8 0.87 3.54 4.4 1 3.0 Yes
fqzcomp 1.55 0.66 2.2 62 0.36 2.34 2.7 63 3.4 No
�ip 2.20 0.54 2.7 387 0.88 3.38 4.3 386 3.0 No
DSRC 2 1.12 0.62 1.7 5730 0.24 1.66 1.9 6370 3.4 Yes
FQC 5.60 0.51 6.1 4 0.98 4.97 6.0 4 3.5 Yes
Cryfa 0.85 0.16 1.0 6 0.15 1.16 1.3 7 2.4 Yes

SynFQ-2 (0.5GiB)

gzip 0.69 0.12 0.8 1 0.03 0.16 0.2 1 2.2 Yes
bzip2 0.63 0.09 0.7 8 0.06 0.31 0.4 1 2.8 Yes
fqzcomp 0.15 0.05 0.2 71 0.06 0.11 0.2 61 3.2 No
�ip 0.22 0.09 0.3 392 0.09 0.29 0.4 392 2.7 Yes
DSRC 2 0.21 0.08 0.3 908 0.10 0.26 0.4 904 3.2 No
FQC 0.45 0.06 0.5 4 0.11 0.59 0.7 4 3.4 Yes
Cryfa 0.08 0.02 0.1 8 0.02 0.07 0.1 14 2.1 Yes

4.3.4 Explore redundancy

In [208], it has been mentioned that the concept of Kolmogorov complexity (described in Section 2.1)
can be employed by a compressor to di�erentiate species. On the other hand, it is important for a
biological sequence encryptor not to allow a security attacker to do such a species di�erentiation.
If there is a method which does not explore redundancy in a genomic sequence, it can resist against
such attacks, since redundancy in a sequence has an inverse relation to its Kolmogorov complexity,
meaning that the less a sequence is complex, the more it is redundant.

76 CHAPTER 4. SECURE ENCRYPTION OF GENOMIC DATA

15.8 11.7

13 1.5

9.7 4.7

7.4 7.5

0.7 0.9

49.8 24.2

47 9.6

44.7 40.9

14.7 13.1

13.8 22

11.1 11.3

8.3 8.2

FA
S

TA
FA

S
T

Q

0

MFCompress + AES Crypt

gzip + AES Crypt

bzip2 + AES Crypt

DELIMINATE + AES Crypt

Cryfa

bzip2 + AES Crypt

gzip + AES Crypt

FQC + AES Crypt

fqzcomp + AES Crypt

Quip + AES Crypt

DSRC 2 + AES Crypt

Cryfa

Time (min)

Compress &
Encrypt
Decrypt &
Decompress

a

2.1

4.1

1.9

4.3

1.7

4.4

1.5

4.7

1.5

4.7

CR=2.9CR=2.9 CR=3.3CR=3.3 CR=3.6CR=3.6 CR=4.2CR=4.2 CR=4.2CR=4.2
18.3

16.4

11.8

22.9

9.5

25.2

7.9

26.8

7.8

26.9

7.5

27.2

7.2

27.5

CR=1.9CR=1.9 CR=3.6CR=3.6 CR=4.8CR=4.8CR=2.9CR=2.9 CR=4.6CR=4.6CR=4.4CR=4.4 CR=4.4CR=4.4

FASTA FASTQ

Cryfa
gzip + AES Crypt

bzip2 + AES Crypt

MFCompress + AES Crypt

DELIMINATE + AES Crypt

Cryfa
bzip2 + AES Crypt

FQC + AES Crypt

gzip + AES Crypt

fqzcomp + AES Crypt

Quip + AES Crypt

DSRC 2 + AES Crypt

0

10

20

30

S
iz

e
(G

B
)

Compressed
Reduced
(Original − Compressed)

b

Figure 4.8: Total time and �le size for compaction & encryption and decryption & unpacking of the entire
FASTA and FASTQ datasets obtained by di�erent methods. (a) real times; (b) �le sizes. CR stands
for compression ratio.

Cryfa securely encrypts genomic sequences by not exploring their redundancies. To evaluate
this, we have compacted a collection of genomic sequences from archaea, bacteria, fungi, plants and
viruses species (Table 4.3) by Cryfa, DELIMINATE and MFCompress, and computed the normalized
compression (described in Section 2.1) for each sequence.

The NC results are represented in Fig. 4.10. The left pane provides a scatter plot of values and
the right pane shows minimum, maximum and average (in a diamond shape) of NC values asso-
ciated with each species. As can be seen in the right pane, DELIMINATE and MFCompress have
broad ranges of values for di�erent species. Looking into the average NC results obtained by these
two methods, viruses, archaea, bacteria, fungi and plants can be easily di�erentiated, which means

4.4. CONCLUSIONS 77

DS−B1088_SR.fastq viruses.fasta

C
P

U
 tim

e
R

eal tim
e

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

0

10

20

30

40

50

0

10

20

30

40

50

Number of threads

T
im

e
(s

ec
)

Compact &
Encrypt
Decrypt &
Unpack

a

DS−B1088_SR.fastq viruses.fasta

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

0

10

20

30

Number of threads

M
em

or
y

(M
B

)

Compact &
Encrypt
Decrypt &
Unpack

b

Figure 4.9: Time and memory used by Cryfa when running with di�erent number of threads, on a 338MiB
FASTA �le (viruses.fasta, from viruses species) as well as a 1.2GiB FASTQ �le (DS-B1088_SR.fastq,
from Denisova subspecies). (a) real times and CPU times, that is user time plus system time;
(b) memory usage.

these methods explore redundancy in genomic sequences. Consequently, they approximate the
complexity values concerned with the sequences, which is a way to di�erentiate and authenticate
species [86], [95], [208], [231]. On the other side, NC values of Cryfa is almost equal for all species.
This equality proves our proposed method does not explore redundancy in genomic sequences,
hence it can be employed to securely encrypt biological sequences.

4.4 Conclusions

We have developed Cryfa, an industry-oriented tool to securely encrypt genomic data and, also,
compact FASTA and FASTQ �les. The security of such data is substantially improved by a straight-
forward mechanism, shu�ing. We further preserve the security of genomic data by not exploring
complexity in those �les. Therefore, Cryfa cannot be exploited for species di�erentiation. Run-
ning on several real and synthetic datasets showed that the proposed tool is faster than the fastest

78 CHAPTER 4. SECURE ENCRYPTION OF GENOMIC DATA

● ● ● ● ●Archaea Bacteria Fungi Plants Viruses

●●● ●●●●●● ●● ●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●● ● ●● ●●●●●●● ●●●●●●● ●●●●●● ●●●● ●●●● ●● ●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●●●●●●● ●●●●●● ●●● ●●●● ●●●●● ●●●● ●●●● ●●● ●●● ●● ●●● ●●● ●●● ●●●●●●●●● ●●●●●●●●● ●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●● ●● ●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●● ●●●● ●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●● ●●●●● ●●●●●●● ● ●●●●● ●●●●●●●●●●●●●●● ●●● ●● ●●●● ●●●● ●● ●●●● ●●●●●●●● ●●● ●● ●●●● ●●●●●●●●●● ●●●● ●●● ● ●● ●●●●● ●● ● ●●● ●●●●●● ●●● ●●● ●● ●●●● ●● ●●●●● ●● ● ●●●● ●● ●● ●●●●● ●●● ●● ● ●●● ●●● ●●● ●● ● ● ●●● ●●●●●● ●● ●● ●●●● ●● ●●● ●●● ● ●●● ●●● ●● ●●● ●●●● ● ● ●●● ● ●● ●●● ● ●●● ● ● ●● ●● ●●●●● ●●● ●● ●● ●● ●● ● ● ●●● ●● ●●●●●●● ●● ● ●● ●● ●●●●●● ● ●● ●● ●●● ●●●●●●●● ● ●●● ●●●● ●●● ●● ● ●●●● ●● ● ●● ●●● ●● ●●● ● ●● ●●●●●●●●● ●● ● ●●● ●● ● ●●● ● ●● ●● ● ●● ● ●●● ● ●●●●● ●●● ● ● ●●●● ● ●● ●●●● ●●● ● ●● ●● ●● ●●●● ●●●●●●●● ●● ●● ●●●● ●●● ●●●●●●●●● ● ●● ●● ● ● ●●● ●●●● ●●●● ● ● ●●●●●●●●● ●● ● ●●●● ●● ●●● ●●●●●●●●● ●●●●● ● ●● ●● ●● ●● ●●●●●●●●●● ● ●● ●●● ●● ●● ●● ●●● ●●●● ●●●● ●●●●●● ● ●●●●●●●● ●● ●●●● ●● ●●●● ● ●● ●●● ●●●●● ● ●●● ●● ●● ●●● ●● ●● ●●● ●● ● ●●●● ● ●● ● ●●● ●●● ● ●● ●●● ●● ● ●● ●● ●● ●●●● ●● ●● ● ●● ●●● ●●● ●●● ●●●●● ●●● ●● ●● ●●●● ●●●●●●●●●● ● ●● ● ●● ●● ●●●●● ● ●●●● ● ●●●●●●●●● ● ●●● ●● ●●●●●● ●● ●● ●●●●●●● ●●● ●●● ● ●●●● ● ●●● ●● ●●●● ●●●● ●●● ●●● ●●● ● ● ●●● ● ● ●● ●●●● ●● ●● ●●● ●●●●●●● ●●●●●●●●●●●●●● ●●● ● ●● ●● ●●●● ●● ●● ●● ●●●●●●●●● ●● ●●● ● ● ● ●● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●●●● ●●●● ●● ● ●● ●●●● ●●●●●●●● ●●●● ● ●●●● ●●●●●●● ● ●● ●● ●● ●●●● ●●●● ●● ●●● ●●● ●●●● ●●●●●● ●● ●● ● ●●●● ●● ●● ● ●● ●● ●● ●● ●●●●●●●● ●●●● ● ●● ●● ●● ●●●●●●●●●● ●●● ●●● ●● ●●● ●●● ●●●●● ●● ●● ● ●●● ● ●●● ●● ●● ●● ●●●●●●●● ●● ●● ●●● ●●●●● ● ●●●●● ●●●● ● ●●●● ●● ●●● ● ● ●●● ●● ●● ●● ●● ●●● ●● ●●●●●●●● ●● ●●●●● ●● ●● ●●●● ●● ●●● ●●●● ●●●●● ●●● ● ●● ●●●●●● ●●●● ●● ●●● ●●● ●●●● ●

1.3

1.4

1.5

0.0 0.5 1.0 1.5 2.0

N
C

Cryfaa

1.3

1.4

1.5

A B F P V

Cryfab

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●● ●●●●● ●●●●● ●●●● ●●●●●● ●●●● ●● ●●● ●●●●●● ●●●●●● ●●●●●●●●● ●●● ●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●● ●●● ●● ●● ●●● ●● ●●● ●●●● ●●● ●●●●● ●●●●● ●●●●●●●●●● ●●●● ●● ●●●● ●●● ● ●● ●●● ●● ●●● ●●●●●●●●●● ●●● ●● ●●●●●● ● ●●● ●● ●●●●●●● ●● ●●● ●●●● ●●● ●● ●●●● ●● ●● ●●●●● ● ●●●●●●● ●●●●●●●●● ●●●●●● ●●●● ● ●● ●●●●●● ●● ●●●● ● ●●● ●●●● ●● ●●●●●● ●●● ●●● ●●● ●●●●●● ●●●● ●●●●● ●●●● ●●●● ●● ●●●●●● ●● ●●●● ● ●● ●●●●●● ●●● ●● ●● ●●●● ●●●●● ●● ●●●●● ●● ●●● ●●● ●●● ●●● ●●●●● ●● ●●● ●● ● ●● ●●●● ●●● ●● ●● ●● ●●●● ● ●●● ●● ●● ●●● ●●● ● ●● ●● ●●● ● ●● ●●●●● ●●● ●●●● ●●● ●●● ●●●●●● ●●● ● ●●● ●●● ●●● ●● ●●●●●●●●●● ●●●●●●●●● ●●●● ●●● ●●● ●●● ●●● ●● ●●●●●● ●● ●●●● ●● ●●●●●●● ●● ●●●● ●●●●●●● ●● ●●●●●●●●●● ●●●● ●● ● ●●●●● ●●●●●●●●●●●●● ●● ●●●●● ●● ●●●●●● ●●● ●●● ● ●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●● ●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●● ●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●● ●● ●●●●●●●●●●●●● ●●●●●● ● ●● ● ●●●●●● ●● ●●●●●●● ●●●●● ●●●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ● ●●●●● ●●●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●●●●●●●●● ●● ●● ●● ●● ●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●● ●●●● ●●● ●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●● ●●● ●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●● ●●●●●● ● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ● ●●●●●●●●●●●●● ●●●●●●●● ● ●●●●●●●●●●●● ●●●●●● ●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ● ●●●●●●● ●●●●● ● ●●●● ●●● ●● ●●●●●●●●●● ● ●●●●●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●●●●●● ●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●● ● ●●●● ●● ●●●●●●●●●● ●●● ●●● ●●● ●●●●●● ●●●●●●● ●●●●● ●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●● ● ●● ●●● ●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●● ●●● ● ●●●●● ●●●●●●●● ●●●●● ●● ● ●●●●●●● ●●●● ●●● ●●●●●● ●●●●●● ●●●●●● ●●● ●●●●●●● ● ●● ●●●●●●●●● ● ●●●●● ● ●● ● ●● ●● ● ●●●● ●● ●●● ●● ●● ●●●● ●● ●●●● ●●●●●● ●●●● ●● ● ●●●●●● ●● ●●●●● ● ●●●●● ●●● ●●● ●● ●●●●●●●● ●●● ●●● ●●●●● ●●● ●●● ●●●● ●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●● ●●●● ●● ●● ●●●●●● ●●●●●● ●●●●●●● ●● ●●● ●●●●●●●● ●●●●●●● ●●●●● ●●● ●●● ●● ●● ● ●●●●●● ●●● ●●●● ●●● ●● ●●● ●● ●● ●●●●●●●●● ●●●●● ●●●● ●● ●● ●● ●● ●● ● ●●●● ●● ●●●● ● ●● ●●●● ●●● ● ●●● ● ●●●● ●●● ●● ● ●● ●●● ●● ●●● ●●● ●●● ●● ●●● ●● ●● ●●● ● ●● ● ● ●●●● ●● ●● ●●● ●●●● ● ●● ● ●●● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ●● ●● ● ●● ● ●●●●●●● ●●● ●●● ●● ●● ●●●● ●●●● ●●●●● ●●●●● ●● ● ●● ● ●●● ● ●● ●● ●● ●● ●● ●● ●●● ●●●●● ●●● ● ●●●● ●● ●● ●●●● ●●● ●●● ●●● ●●●●●●● ●●● ●● ●●● ●● ●● ●●●●●● ● ●●●● ●● ●● ● ●●● ●● ● ●● ●● ●● ● ●● ● ●● ●●●● ● ●● ●● ●●●● ●●●● ● ●●●● ●● ●● ● ● ●●● ●●●●● ●● ●● ●● ● ● ●●● ●● ● ●● ●● ●●●● ●● ●●● ●●● ●●●● ●●● ●● ●●● ● ●●●●●●●●●● ●●● ●● ● ●●●● ●●● ●●● ●● ●●● ●● ●● ● ●●● ●●●● ●●● ● ● ● ● ●●● ● ●●● ●●●●●● ●●●● ●● ●● ●● ●●● ●●●●● ●● ● ●●● ●● ●●●● ●● ●● ●●● ●●● ● ●● ● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●●●● ●●●● ● ● ● ●●● ●●●● ●●● ●●● ●●● ●● ●●●● ● ●●●● ●●● ●● ●● ●● ● ●●● ● ●● ● ●●● ●●●● ● ● ●●●●●● ●● ● ●●● ●● ●●● ●● ●● ●●● ● ●●● ●●●● ●●● ● ●● ●● ●●● ●● ● ● ● ●●●●● ●● ●● ●● ● ●●● ●● ● ●● ● ● ●● ● ●● ●●●●● ●●●●● ● ●●● ●●●●● ● ●● ●●●● ●●● ●●● ●● ●●●● ● ●●● ● ●●●● ● ●● ● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●●● ●● ● ●●●● ●●●● ●● ●● ● ●● ●●● ●●●● ● ●● ● ●●●● ● ● ●●●●● ●●● ● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●●● ●●●● ● ●●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ● ●●●● ●●● ●●● ●●●●●●● ●●● ● ●● ●●●● ●● ●●● ●● ●●● ●●●● ● ●● ● ●● ● ●●●● ●● ●●● ●● ●●●●● ●● ●● ●● ●●● ●● ●● ●●●●● ● ●●● ● ●●● ●● ●●● ●●●●● ●● ●● ●●● ●●● ● ●●● ●● ●● ● ●●●●● ●●●● ●●● ●● ●● ●● ●● ●● ●●●● ●●● ●●● ● ● ●●●● ●●● ● ●● ●● ●●●● ●● ● ●●● ●●● ● ●● ●● ●●● ● ●●●● ● ●● ●●●● ●●● ●●● ●●●●●● ● ●● ●● ●● ●●● ● ● ●● ●● ●●●●●●● ●●● ●●● ●●● ●●● ●●● ●● ●● ●● ● ●● ●●●●● ● ●● ●●● ● ●●●●●●●●●●●●● ●●● ●●● ●●●●●● ●●● ●●●●●●●●●●●● ●● ●●●●● ●●● ●●●●●●●●●●●● ●●●●●● ●●● ● ●● ●●● ●● ●● ● ●●●● ● ●●● ● ● ● ●●●● ●● ●●●● ●●● ● ●● ● ●●● ●●●●● ●●●●●● ● ●●●● ● ●● ●● ● ●● ●●●● ● ●●● ●● ● ●● ● ● ●● ●● ●● ●●● ●●● ●● ● ● ●● ●● ● ●●● ●●● ●●● ●● ● ● ●● ●●●●● ●● ●● ●● ●●● ●●● ●● ●●● ●●● ●●● ●●● ●●● ●●● ● ●●● ●●●●●
● ● ●

0.7

0.8

0.9

1.0

1.1

0.0 0.5 1.0 1.5 2.0

N
C

DELIMINATE

0.7

0.8

0.9

1.0

1.1

A B F P V

DELIMINATE

●●●●●● ● ●●●●● ●● ●●●● ●● ●●●●●
● ●●●●● ● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●●●●● ● ●●●●●●●●●●●● ●●● ● ●● ●●●● ●●●●●●● ●● ●●●●●●●●●● ●●●●●●●● ●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ● ●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●●● ●● ●● ●●●●● ●●●●●●●●●●●●● ●●●● ●●● ●●●● ●●●● ●● ● ●●●●●● ● ●● ● ●●● ●●●●●● ●●●●● ●●●● ●●●● ●●●●●●● ●●● ●●●●● ●● ●● ● ●●●●●●●●●●●● ● ● ●● ●●● ●●● ●●● ●●●●● ●●●●●●●● ●●●●● ● ●●● ●●● ●●● ● ●●● ●● ●●●● ● ●●● ● ●● ●●● ●●● ●● ●● ●●● ●●●● ●● ● ●●● ●●●● ● ●● ●● ●●●●● ●● ●●●● ●●● ●● ●● ● ●●● ●●●● ●● ●● ●● ●● ● ●● ● ● ●●● ●● ● ●● ●● ●● ● ●● ●●● ● ●●● ●● ●● ● ● ● ●●● ●● ●● ● ●● ● ●●● ●●● ●●● ●● ●●●● ● ●●● ● ●●● ●● ●● ● ●● ●● ●● ●●●● ●●● ●●● ●●●● ●●● ●●● ●● ●●●● ● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●●● ●●● ●●●● ●● ●●● ●● ● ●●● ●● ● ●●● ●●●● ● ●●●● ●●● ●● ●● ●● ●●● ●●●● ●●● ● ●● ● ●●●● ●● ● ●●●● ● ● ●● ●● ●●●●● ●●●● ●● ●●●● ●●● ●●●● ●●● ● ●● ●● ●● ●●● ● ●●● ●●● ●●● ●● ● ●●● ●●●● ●●●●● ●●●●● ● ●●●● ●● ●●●● ●●●●● ●● ●●●● ●●●●● ●● ●●●● ●● ●●● ● ●●●●● ●● ●● ●●●● ●● ●●●● ●● ●●● ● ●●● ●●● ●●● ●●●●● ●●● ●● ● ●● ●●● ● ●●● ●● ●●● ●● ●●● ●● ● ● ●● ●●●●●●●●●● ● ●● ● ● ●● ●● ● ●●● ●● ●● ● ● ●●● ●●●● ● ●●● ●● ●● ● ●● ●●● ●●●●● ●●●●● ●● ●●● ●● ●● ●● ● ● ●● ● ●●● ●●● ●●●●● ● ●● ●● ●●●● ● ●● ●● ● ●● ● ●● ●●● ●● ●● ● ●● ●●● ●● ● ●● ●● ●●●●● ● ●● ●●● ● ●● ● ●● ● ●● ●● ●●● ●●●● ●●● ●● ●● ●● ●●●● ●● ●●● ●● ● ●● ●● ● ● ●● ● ●● ●● ●●●●● ●●●● ●● ●●● ●● ●●● ●● ●●● ●● ●● ● ●●● ●●● ● ●● ● ●● ●● ●●● ● ●●● ●●●● ●●●●●● ● ●● ●● ● ●●●● ●●● ●●● ●●●●● ●● ●● ● ● ●● ●● ●●● ●● ●●● ●● ●●●● ●●●●● ● ● ●● ●● ● ●● ●●● ●● ●●●●● ●●● ● ●●●●● ● ●●●●● ●● ●● ●● ●● ●●● ● ● ●●● ●● ● ●●●●● ●● ●●●●●●●●●● ●●● ●●●● ●●● ●●● ●●● ●● ● ●● ●● ●● ● ●● ●● ● ●●● ● ●● ●●●●● ●●● ●●●● ● ●● ● ●●● ●● ●● ●● ● ●● ●●●● ● ●●● ●●● ●● ●●●●● ●●●● ●● ●● ● ●●●●●● ●●● ● ●●● ●● ●● ●● ●● ●●● ● ● ●●●●● ● ● ● ●●●● ● ●● ● ●●●●● ●●● ●● ●●● ●● ●●●●● ●●● ●●●● ●● ●● ●●● ●● ●●●● ●● ●●●●●● ●●● ● ●●●●● ●●● ●●● ●●●● ●●●● ●●●●● ● ●● ●● ●●●●●● ● ●●● ●● ● ●● ●●● ●●● ● ●●●● ●●● ●● ●●● ●● ● ●● ●● ●● ● ●●●●●● ●● ● ● ●●● ●● ●●● ●● ●● ●●● ●● ●●●●● ● ●●● ●● ●●● ●●●● ●● ●● ●● ●●● ●● ● ●● ●● ● ●● ● ●●● ●●●● ●● ●●●● ●●●● ●● ●● ● ●●● ● ●●● ●● ● ●● ● ●●●● ●●● ● ●● ●● ●● ● ●●●●● ●● ● ●●● ● ●● ●● ●●● ●● ●● ●●●● ●●●● ● ● ●●● ●● ●●●● ●● ●●●● ●●● ●● ● ● ●●●●● ●● ●● ●●●●● ●●● ● ●●●●●● ● ●● ● ●●● ●● ●●●●●●● ●● ●●●● ●●●●● ●●● ●●●● ●●●●●● ●●● ●●● ●●●● ●●●●● ●●●●● ● ● ●●● ●● ●●● ●●● ●● ●● ● ●●●● ●● ●● ●● ●●● ●●● ● ●● ●●●● ●●● ●● ● ●●●●●● ● ●● ●● ●●●●● ●●●● ●●● ●● ●●● ●● ●●● ●●● ●●● ●●● ●● ●● ●● ●●●●●●● ● ●●●● ●●●●● ●● ●● ●● ●●●●● ●● ●●●●● ●●● ●● ●● ●●● ● ●● ●● ● ●● ●●● ●●● ● ●● ● ●● ●● ●● ●●● ●●● ●●●●● ●● ●●●● ●● ●● ●●● ● ●●● ●●● ●● ●● ●●● ●●● ●● ●● ●●●●● ●● ●●● ● ●●●●●● ●●●●● ●● ● ●●● ●●●●● ●●●● ●● ●●● ● ●●●● ● ●● ●●● ●●● ● ●●●● ●●● ● ●●● ● ●● ●●●●● ●●●● ●● ●● ● ●● ●●● ●● ●● ● ●● ●●●● ● ●● ●● ● ● ●●●● ● ●● ●●● ●● ●● ●● ●● ●●●● ●● ●● ●●● ●●●●●● ● ●●● ●●● ●●● ●● ●●●●●● ●●●●●● ●●●● ●●● ●●● ●●●● ●●● ● ●●●●● ●●● ●● ●●●● ●●●●●●●●●●● ●● ●●●●●●●● ● ●●●●●● ●● ●●●● ●●● ●●●●●●● ●● ●●● ● ●●●●● ●● ●● ●● ●●●● ●● ●●● ●● ●●● ●●●● ●●● ●●● ●●● ● ●● ●●●●●● ● ●● ●● ●● ●● ● ●●●● ●● ●●● ●● ●● ●● ●●●● ● ●●●●● ●●● ●●● ●● ●● ●● ●●●●●●● ●● ●●●● ●● ● ●● ●●●● ●● ●●● ●●● ●●● ●●●● ●●●●● ●● ●●● ●● ● ●● ●●●●● ●●●● ● ●●●● ●● ●●●●●●●●● ●●● ●● ●●● ●●● ● ●●●● ●●● ● ●●● ●●●● ● ●●● ●● ●●● ●● ●● ●●●● ●●●● ●●● ●● ● ● ●● ●● ●●● ●●●●● ● ●●● ●● ●●●● ● ●●● ●● ● ● ●●● ●●●●●●● ● ●● ●●● ●●● ●●● ●●●● ●● ●● ● ●●●●● ●● ●● ●●●●● ● ●● ●●●●● ●●●●● ●●● ●● ● ●●●● ●● ●● ● ●● ●● ●● ●● ● ●●● ●● ●● ●●●●● ●●●●●●● ● ●● ● ●● ●● ●●● ●●● ●●● ●● ●●●● ●●●●● ●●●● ●● ●●● ●●●●● ● ●● ●● ●● ● ●● ●●●● ● ●● ●● ●●● ●●● ● ●● ●●●● ● ●●●●●●● ●● ●●●●● ●●●●●● ● ●● ●●●●●● ●● ●●●●●●● ●● ●●● ●●● ● ●● ●●●●●● ●● ● ●● ● ●●●●●● ●●● ●●● ●●●● ●●●● ●●●● ●●● ●●● ●●●●●● ●●● ●● ● ●● ● ●●●● ●●●● ●●●●●● ●● ●●● ●● ●● ● ●● ●●● ●●● ●●●●●● ●● ●●●●●●● ●●● ●● ●●●●● ●●●● ●● ●● ●●●●● ●● ● ●●● ●●● ● ●● ●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●● ●●●●● ●●● ●●● ●● ●●● ●● ●●●● ●●● ●●●●●● ●● ●●● ● ●●● ●●●● ●●●●● ●●● ●●●●● ●● ●● ●●●●● ●●● ●●● ●●●● ●●● ●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●

0.7

0.8

0.9

1.0

1.1

0.0 0.5 1.0 1.5 2.0

File size (MB)

N
C

MFCompress

0.7

0.8

0.9

1.0

1.1

A B F P V

MFCompress

Figure 4.10: Normalized compression (NC) values obtained by running Cryfa, DELIMINATE and MFCom-
press on several genomic sequences.

state-of-the-art compression plus encryption tools, including general-purpose and special-purpose
ones. Cryfa not only runs in high-speed and has a high level of security, as also has a very low
memory usage, that is only a few megabytes.

Chapter 5

Finding and visualization of distinct regions

in omics sequences

Studies on identi�cation of species-speci�c genomic and proteomic regions, i.e., unique or highly
dissimilar regions with respect to close species, will lead us to understanding of evolutionary traits,
which can be related to novel functionalities or diseases [232]–[234]. In this chapter are proposed
two alignment-free tools that are able to �nd and visualize distinct regions between two collections
of omics data, including genomic and proteomic sequences.

In genomic level, CHESTER is presented. Applying this tool on whole genome of modern hu-
man and Neanderthal (high-quality genome sequence obtained from toe phalanx bone of a Siberian
woman with 50,000 years age), shows several regions in modern human chromosomes that are ab-
sent in Neanderthal genome. These regions include documented genes that are associated with
brain (neurotransmiters and synapses), hearing, blood, fertility and immune system, and undocu-
mented regions that may express new functions linked with evolution of modern human.

In proteomic level, FRUIT is introduced. This tool is applied on multiple synthetic and real
datasets to analyze its behavior when di�erent rates of mutation occur. Testing with di�erent k-mer
sizes shows that the higher the mutation rate, the higher the relative uniqueness. FRUIT is also em-
ployed to �nd and visualize distinct regions in modern human proteins relatively to the proteins
of Altai, Sidron and Vindija Neanderthals. The results show that four of the most distinct pro-
teins, named ataxin-8, 60S ribosomal protein L26, NADH-ubiquinone oxidoreductase chain 3 and
cytochrome c oxidase subunit 2 are involved in SCA8, DBA11, LS and MT-C1D, and MT-C4D dis-
eases, respectively. There is also Interferon-induced transmembrane protein 3, among others, which
is part of the immune system. Besides, we report the most similar primate exomes to the found mod-
ern human one, in terms of identity, query cover and length of sequences. The reported results can
give us an insight into the evolution of proteomes.

79

80 CHAPTER 5. FINDING AND VISUALIZATION OF DISTINCT REGIONS IN OMICS SEQUENCES

5.1 Genomic level

In this section we present CHESTER, a probabilistic and alignment-free tool to map and visualize
distinct regions between two collections of genomes.

5.1.1 Introduction

Up to a few years ago, it was only possible to obtain DNA sequences from present-day species. Due
to the works of, mostly, Pääbo’s group on methods and techniques for retrieving DNA sequences
from archaeological and paleontological remains [235], [236], the �rst time travel to ancient DNA
hominins became possible [237]–[239].

One of the closest hominid groups to modern humans is Neanderthal, that populated Eurasia
from 350,000 ± 50,000 to 35,000 ± 5000 years ago and has extinct at current age. Availability of
their sequences emerged as pieces [237]–[239], complete mitochondrial [240] and genome draft
sequences [241]. The �rst public complete Neanderthal genome, acquired from a woman toe phalanx
bone with ∼50,000 years age that was found in Denisova Cave in Altai mountains of Siberia, was
released on 2010 [57], albeit sequenced with a low coverage. This �nding made it possible to analyze
the Neanderthal whole genome at a computational level. The high coverage version (∼30-fold) was
released in 2014 [58].

We use high coverage whole Neanderthal genome (raw data) to localize and visualize distinct
regions of modern human DNA, using a modern human reference assembly, GRCh371. Based on
recent reports which have suggested that modern humans interbred with Neanderthals when they
arrived to Europe [242], and the similarity between Neanderthal and human genomes [243], [244],
we can deduce that any unique region in the DNA of modern humans may be of very limited extent.

Using ancient DNA, detection of distinct regions between modern human and Neanderthal is
di�cult, since (a) a large volume of data is involved in the analysis (> 418GiB); (b) it is needed
to deal with raw data, because ancient DNA is not assembled and has random order; (c) there is
contamination is DNA samples [245]; and (d) there is a high degree of substitutions in the DNA data,
mostly caused by PCR ampli�cations [246] and postmortem degradation [247]. Aware of these, we
propose in the next section an unsupervised probabilistic method that is able to compromise between
precision and space/time resources, maintaining a reasonable precision.

5.1.2 Methods

We tackle the problem of �nding the regions in target sequences which do not exist in reference
sequences. For this purpose, a model is required that can search the references for all words of a

1www.ncbi.nlm.nih.gov/grc

www.ncbi.nlm.nih.gov/grc

5.1. GENOMIC LEVEL 81

certain size, k, in the targets, and is also able to report the positions of unique words. Such model is
described next.

Model

For the purpose of checking the existence of all k-mers of a target in a reference sequence, it is
impractical to use a binary vector which considers all the possible situations. We give an example;
assume the cardinality of the alphabet representing a DNA sequence is 4 and the k-mer size is
20. This needs 420 byte or 1 terabyte of memory. To tackle this problem, we use a space-e�cient
probabilistic data structure, named Bloom �lter [248], [249]. In this data structure, false negative
matches are impossible but false positives are not, i.e., it enables to test whether the k-mers of a
target sequence are de�nitely not members of a reference, or they possibly are. A Bloom �lter, with
optimal number of hash functions and an appropriate size, can provide the results only slightly
di�erent than the deterministic approach.

An empty Bloom �lter is a bit vector of size m. This model requires ℎ di�erent hash functions
which map, separately, each k-mer to one of the bit vector positions; this will generate a uniform
random distribution. The number of hash functions, ℎ, which minimizes the false positive probabil-
ity, p, is proportional to the number of bases in a reference sequence, n, and is obtained by

ℎ = m
n ln 2. (5.1)

It is proven in [250] that considering the optimal value of ℎ, the false positive probability is at most

(1 − e
− ℎ(n+0.5)m−1)

ℎ
. (5.2)

For example, if ℎ = 6, n = 22,829,171 and m = 197,613,190, the false positive probability will be at
most 0.016 or 1.6%.

To hash k-mers, we use universal hashing. For mapping k-mers from some universe U to m
bins, labeled as [m] = {0, 1,… , m − 1}, we need to randomly select a function from a family of hash
functions. A family of functions F = {f ∶ U → [m]} is called a universal family if,

∀x, y ∈ U , x ≠ y ∶ Pr
f ∈F
[f (x) = f (y)] ≤ 1

m. (5.3)

1/m is the probability of collision when a hash function maps a key to a truly random element. To
obtain a family of universal hash functions, we pick a prime p ≥ m and de�ne

fa,b(x) = ((ax + b) mod p) mod m, (5.4)

in which a and b are random integers modulo p with a ≠ 0. The algorithm of the proposed method

82 CHAPTER 5. FINDING AND VISUALIZATION OF DISTINCT REGIONS IN OMICS SEQUENCES

is shown in Fig. 5.1.

Implementation

CHESTER is implemented in the C language and is publicly available1 under GNU GPLv3 license.
Similar to FRUIT, CHESTER contains three programs of CHESTER-map, CHESTER-�lter and
CHESTER-visual, which map relatively singular (distinct) regions between collections of references
and targets, �lter the regions and save the positions, and visualize positions of the relatively singu-
lar regions, respectively. The presented tool accepts FASTA, FASTQ and SEQ (including solely DNA
bases, e.g., A, C, G, T, N) formats for references, and FASTA and SEQ for targets.

5.1.3 Results and discussion

We have applied the proposed method on modern human and Neanderthal whole genomes, running
it on a 2.13GHz Intel® Xeon® CPU. For the experiment, we have used a Bloom �lter with the size of

1www.github.com/cobilab/chester

1: Initialize size of Bloom �lter (BF), m, and k-mer size, k

2: for each r in reference sequences do
3: calculate ℎ, using (5.1) ⊳ ℎ: optimal number of hash functions
4: calculate p, using (5.2) ⊳ p: false positive probability
5: for each k-mer string, s, in r do
6: for each ℎi in hash function family (HF) do
7: hash s to position os,i in BF, using (5.4)
8: update BF on position os,i
9: end for

10: end for
11: for each t in target sequences do
12: for each k-mer string, s, in t do
13: for each ℎi in HF do ⊳ HF : hash function family
14: hash s to position os,i in BF
15: query BF for position os,i , save Boolean result to �le uri ,tj
16: end for
17: end for
18: end for
19: end for

20: for each t in target sequences do
21: bit-wise OR on all Boolean elements of �les uri ,t , save result to �le ut
22: �lter ut by a window of size w , save relatively unique positions in �le ot
23: end for

24: Illustrate in an SVG image the positions saved in ot �les

Figure 5.1: Algorithm of the proposed method for �nding and visualizing distinct regions between two col-
lections of omics data.

www.github.com/cobilab/chester

5.1. GENOMIC LEVEL 83

64GiB and false positive probability of 0.008205, and also a k-mer size of 30. The script to reproduce
the results is available on the CHESTER’s Github repository under “ancient” directory and is named
“runNeanderthalGRC37.sh”.

After ∼51 hours of running (without parallelization), the full map of regions in modern human
chromosomes that do not exist in Neanderthal genomes is produced (Fig. 5.2). Comparison to the
supplementary information 19b of [58] shows that we have found more distinct regions, using a
�lter with the threshold of 0.95. Note that Prüfer et al. focused on the regions that had 20-fold
excess over randomized rank assignments, but we used the whole regions.

We found 125, 170 and 2169 regions for thresholds of 0.85, 0.90 and 0.95, respectively. Table. 5.1

Threshold=0.95, Enlarge=100,000

Threshold=0.90, Enlarge=500,000

20

21

22

X19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Figure 5.2: Regions in modern human chromosomes that do not exist in Neanderthal genomes. “Enlarge”
shows the number of times that a region is enlarged, for the visualization purpose.

84 CHAPTER 5. FINDING AND VISUALIZATION OF DISTINCT REGIONS IN OMICS SEQUENCES

Table 5.1: Genes present in at least half of the regions that exist in modern human chromosomes and do not
exist in Neanderthal, considering the threshold of 0.90.

Gene ID Full name Chr. Gene type

149643 spermatogenesis associated 45 1 protein coding
57504 metastasis associated 1 family member 3 2 protein coding
54842 major facilitator superfamily domain containing 6 2 protein coding
253559 cell adhesion molecule 2 3 protein coding
64084 calsyntenin 2 3 protein coding
100287290 LOC100287290 3 protein coding
285555 sperm tail PG-rich repeat containing 2 4 protein coding
93627 TBC1 domain containing kinase 4 protein coding
84109 pyroglutamylated RFamide peptide receptor 4 protein coding
285600 KIAA0825 5 protein coding
721 complement C4B (Chido blood group) 6 protein coding
26047 contactin associated protein-like 2 7 protein coding
64478 CUB and Sushi multiple domains 1 8 protein coding
340441 POTE ankyrin domain family member A 8 protein coding
158038 leucine rich repeat and Ig domain containing 2 9 protein coding
340895 MAM and LDL receptor class A domain containing 1 10 protein coding
53904 myosin IIIA 10 protein coding
83938 chromosome 10 open reading frame 11 10 protein coding
283303 MRGPRG antisense RNA 1 11 ncRNA
5140 phosphodiesterase 3B 11 protein coding
23085 ELKS/RAB6-interacting/CAST family member 1 12 protein coding
408186 OVOS 12 protein coding
341346 single-pass membrane protein with coiled-coil domains 2 12 protein coding
6857 synaptotagmin 1 12 protein coding
399671 HEAT repeat containing 4 14 protein coding
9369 neurexin 3 14 protein coding
3492 immunoglobulin heavy locus 14 protein coding
79091 methyltransferase like 22 16 protein coding
92017 sorting nexin 29 16 protein coding
645027 envoplakin like 17 protein coding
54828 BCAS3, microtubule associated cell migration factor 17 protein coding
79839 coiled-coil domain containing 102B 18 protein coding
596 BCL2, apoptosis regulator 18 protein coding
9524 trans-2,3-enoyl-CoA reductase 19 protein coding
8537 breast carcinoma amplified sequence 1 20 protein coding
80161 ASMTL antisense RNA 1 X ncRNA
57502 neuroligin 4, X-linked X protein coding
2182 acyl-CoA synthetase long-chain family member 4 X protein coding
644717 sarcoma antigen 2 and pseudogene X pseudo

provides list of genes present in at least half of the regions when the threshold is 0.90. Majority of the
detected regions are protein coding. From these regions, we highlight the following genes: (a) sper-
matogenesis associated 45, that has an important role in reproductive e�cacy and success [251];
(b) myosin IIIA, by which the protein encoded plays an important role in hearing in humans. Three
di�erent recessive, loss of function mutations in the encoded protein have been shown to cause
nonsyndromic progressive hearing loss [252]; (c) ELKS/RAB6-interacting/CAST family member 1,
by which the protein encoded is a member of a family of RIM-binding proteins. RIMs are active

5.2. PROTEOMIC LEVEL 85

zone proteins that regulate neurotransmitter release. Changes in the gene have been associated
with autism [253]; and (d) synaptotagmin 1, which encodes a protein that participates in trigger-
ing neurotransmitter release at the synapses [254]. It is worth mentioning that ampli�cation of the
sequencing process might create several mutations, namely C → T and G → A [255]. Therefore,
there is a potential for future work to study if the di�erences between these regions may or may not
be given by these characteristics, and if yes, to assess its impact.

5.2 Proteomic level

In this section we propose FRUIT, an alignment-free and probabilistic tool that is able to �nd and
visualize distinct regions between two collections of protein sequences.

5.2.1 Introduction

Palaeoproteomics is an emerging �eld that focuses on the study of ancient proteomes and intersects
evolutionary biology, archaeology and anthropology. It has the potential to provide researchers
with the information about new or existing phylogenetic trees, species identi�cation and past mi-
grations [256]–[260].

Proteins can last longer than DNA, since they have more stable bonds for connecting them, are
deposited in greater volumes and have more degradation-proof molecular structures. This makes
them appropriate for recovering information from much longer periods back in time [261]. Even
with the best preservation conditions, the oldest DNA samples date back to 0.4–1.5 million years
ago, while the oldest proteins are hundreds of millions years old [262], [263].

The sequences of Neanderthals, as one of the closest hominins to modern humans, have been
provided in the literature as complete genome [57], [58] and complete exome [264]. We use the
complete exomes of a ∼50,000 year old Neanderthal from Denisova Cave in the Altai Mountains in
Siberia, a ∼49,000 year old one from El Sidron Cave in Spain and a ∼44,000 year old one from Vindija
Cave in Croatia [264]. In the following sections, we use Altai, Sidron and Vindija Neanderthals
proteins to �nd and visualize distinct regions of the reference proteome of modern human.

5.2.2 Methods

The model that we use to �nd regions in target sequences that are absent in reference sequences is
described in Section 5.1.2, with a di�erence that to obtain a family of universal hash functions we
use the multiply-add-shift scheme [265]:

fa,b(x) = ((ax + b) mod 2w) div 2w−M , (5.5)

86 CHAPTER 5. FINDING AND VISUALIZATION OF DISTINCT REGIONS IN OMICS SEQUENCES

where w is the number of bits in a machine word, e.g., 64, M is log2m, assuming the number of bins,
i.e., m, is a power of two, a is a random positive integer less than 2w and b is a random non-negative
integer less than 2w−M . Such family of functions can be implemented in the C++ language by

ℎa,b(x) = (uint64_t) (a*x+b) >> (w-M).

Note that there are di�erences in implementing such model for genomic and proteomic sequences,
namely (a) in genomes we face with sequences with cardinality (number of bases) of usually 4,
while in proteomes the cardinality is usually 20; and (b) sizes of genomic sequences are in general
larger; therefore, we have to use larger Bloom �lters to keep the same false positive probability (see
Equations 5.1 and 5.2).

Implementation

FRUIT has been implemented in the C++ language and the executables are publicly available1 under
GNU GPLv3 license. The implemented tool contains three programs: (a) fruit-map, to map relatively
unique regions; (b) fruit-�lter, to �lter the regions and save the positions; and (c) fuit-visual, to
visualize positions of the relatively unique regions. The three �le formats of FASTA, FASTQ and
SEQ (including solely amino acid letter codes, e.g., M, A, R, D) can be fed to this tool.

5.2.3 Results and discussion

To analyze the behavior of FRUIT for di�erent rates of mutations, we applied it to real and synthetic
datasets, shown in Table 5.2, and measured uniqueness ratios. The datasets are available at the
Github repository associated with the proposed tool. We tested the proposed tool on a machine
which had an 4-core 3.40GHz Intel® Core™ i7-6700 CPU with 32GiB RAM.

The uniqueness ratio falls within the range [0.0, 1.0], and is obtained by size of the relatively
unique region divided by size of the sequence. It shows the portion of a target �le which does not
exist in the reference, with respect to the k-mer size. Fig. 5.3 demonstrates uniqueness ratios versus
mutation rates, for k-mer sizes of 5 to 10, for a synthetic dataset plus three samples of Altai, Sidron
and Vindija Neanderthals. Note that when k = 1, 2, 3, 4, the uniqueness ratio is 0 for all mutation
rates, i.e., all words of size up to 4 in the targets are found in the references. Fig. 5.3 shows that the
higher the mutation rate, the higher the uniqueness ratio, and also, the greater the k, the greater is
the uniqueness ratio. As an example, with 50% of mutation, given a uniform distribution, we expect
a target to be highly dissimilar to the reference. This can be seen for all datasets, when k ≥ 7.

For the next experiment, we picked as targets all the 20,412 proteins of modern human2, and cal-
1www.github.com/cobilab/fruit
2www.uniprot.org/uniprot

www.github.com/cobilab/fruit
www.uniprot.org/uniprot

5.2. PROTEOMIC LEVEL 87

Table 5.2: Datasets used by FRUIT, including synthetic and real data from Neanderthals and modern human.

Dataset Species No. amino acids No. reads Cardin.1

Ref Synthetic – 5,000,000 – 20
Tar Mutated2 – 5,000,000 – 20
Ref Altai H. neanderthalensis 22,829,171 42,394 21
Tar Mutated2 – 22,829,171 42,394 21
Ref Sidron H. neanderthalensis 22,829,205 42,394 21
Tar Mutated2 – 22,829,205 42,394 21
Ref Vindija H. neanderthalensis 22,829,173 42,394 21
Tar Mutated2 – 22,829,173 42,394 21
Ref Altai H. neanderthalensis 22,829,171 42,394 21

Sidron H. neanderthalensis 22,829,205 42,394 21
Vindija H. neanderthalensis 22,829,173 42,394 21

Tar Modern human3 H. sapiens 11,374,527 20,412 21
1 Cardinality shows number of di�erent amino acids in a protein sequence.
2 To make this data, we duplicated the reference file 50 times, and mutated with “mutate” tool (www.github.com/
cobilab/fruit) the first file by 1%, the second file by 2%, up to the 50th file by 50%.

3 Reviewed reference proteome–manually annotated. The modern human multi-FASTA file is divided into 20,412 FASTA
files. Each of which is considered as a target, and the three samples of Altai, Sidron and Vindija Neanderthals are
considered as references altogether.

culated their unique regions relatively to the Altai, Sidron and Vindija Neanderthals1, as references.
For this purpose, we �rst used fruit-map to map amino acids of the targets to the �les showing

1cdna.eva.mpg.de/neandertal/exomes/proteins

Sidron Vindija

Synthetic Altai

0 10 20 30 40 50 0 10 20 30 40 50

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Mutation rate %

U
ni

qu
en

es
s

ra
tio

k

5

6

7

8

9

10

Figure 5.3: Uniqueness ratios for di�erent rates of mutation and di�erent k-mer sizes applied to synthetic
and real (Neanderthals) datasets.

www.github.com/cobilab/fruit
www.github.com/cobilab/fruit
cdna.eva.mpg.de/neandertal/exomes/proteins

88 CHAPTER 5. FINDING AND VISUALIZATION OF DISTINCT REGIONS IN OMICS SEQUENCES

their existence in the references. In this phase, we considered as data structure a highly accurate
Bloom �lter with the false positive probability of 0.00001. Then, we used fruit-�lter to �lter the
results of fruit-map and �nd the positions of relatively unique regions. Finally, we used fruit-visual
to visualize the relative positions found in the previous step.

Fig. 5.4a shows distributions of uniqueness ratios for modern human sequences relatively to Ne-
anderthals sequences, for di�erent k-mer sizes. As can be seen, the shapes of distributions changes
for k = 5, 6, 7, but thereafter, it changes only slightly with k. Fig. 5.4b demonstrates the total unique-
ness ratios for di�erent k values. For k = 7, the sign of the second derivative changes from positive
to negative, meaning that it is the lowest upper-bound that can be chosen for our purpose. Fig. 5.4c
shows the probability of a target word being seen in the reference, considering di�erent k-mer sizes.
As shown, its value is ∼0 for k ≥ 4. The probabilities of the k-mers are considered to be 1/21k , in
which 21 is the maximum cardinality of alphabet representing the target and references.

The top ten unique modern human proteins relatively to the Neanderthals proteins are described
in Table 5.3, in detail, and illustrated in Fig. 5.5, using fruit-visual. Each color in the �gure represents
a continuous relatively unique region. As an example, 2 out of 145 amino acids in 60S ribosomal

5

6

7

8

9

10

0.0 0.2 0.4 0.6 0.8 1.0
Uniqueness ratio

k−
m

er
 s

iz
e

a

● ● ● ●

●

●

●

●
●

0.0

0.1

0.2

0.3

0.4

2 3 4 5 6 7 8 9 10
k−mer size

U
ni

qu
en

es
s

ra
tio

b

●

●
● ● ● ● ● ● ●0.0000

0.0005

0.0010

0.0015

0.0020

2 3 4 5 6 7 8 9 10
k−mer size

P
ro

ba
bi

lit
y

(1
21

k)

c

Figure 5.4: (a) Distribution of uniqueness ratios; (b) total uniqueness ratios; (c) probability of a target word
being seen in the reference, for di�erent k-mers.

5.2. PROTEOMIC LEVEL 89

Ta
bl
e
5.
3:

Th
e

m
os

tu
ni

qu
e

pr
ot

ei
ns

of
m

od
er

n
hu

m
an

ab
se

nt
in

th
e

N
ea

nd
er

th
al

s.

A
cc

es
si

on
1

M
od

er
n

hu
m

an
pr

ot
ei

n
Le

n.
(b

)
U.
ra
tio

D
es

cr
ip

ti
on

Q
3S

Y
05

pu
ta

ti
ve

un
ch

ar
ac

te
ri

ze
d

pr
o-

te
in

en
co

de
d

by
LI
N
C
00
30
3

12
8

09
9

pr
od

uc
t

of
a

du
bi

ou
s

C
D

S
pr

ed
ic

ti
on

.L
ev

el
of

ev
id

en
ce

is
“u

nc
er

ta
in

”;
th

er
ef

or
e,

it
is

ei
th

er
(a

)d
e-

ri
ve

d
fr

om
th

e
er

ro
ne

ou
s

tr
an

sl
at

io
n

of
a

ps
eu

do
ge

ne
or

no
n-

co
di

ng
R

N
A

,t
ha

t
sh

ou
ld

be
re

m
ov

ed
fr

om
pr

ot
ei

n
da

ta
ba

se
,i

n
ca

se
th

e
ev

id
en

ce
of

ps
eu

do
ge

ni
za

ti
on

is
ov

er
w

he
lm

in
g

fo
r

in
st

an
ce

,o
r

(b
)i

t
sh

ou
ld

be
up

gr
ad

ed
to

th
e

ce
rt

ai
n

le
ve

l,
w

hi
ch

ha
s

ha
pp

en
ed

to
e.

g.
,E

.c
ol

ip
se

ud
og

en
e

ym
iA

th
at

ha
s

no
w

be
en

fo
un

d
to

pr
od

uc
e

a
pr

ot
ei

n
pr

od
uc

t.
Q

5Q
FB

9
pr

ot
ei

n
PA

PP
A

S
10
2

09
9

pr
od

uc
t

of
a

du
bi

ou
s

C
D

S
pr

ed
ic

ti
on

.
Q

15
6A

1
at

ax
in

-8
80

09
9

in
vo

lv
ed

in
sp

in
oc

er
eb

el
la

ra
ta

xi
a

8
(S

C
A

8)
di

se
as

e,
th

at
is

ca
us

ed
by

m
ut

at
io

ns
a�

ec
ti

ng
th

e
AT

XN
8

ge
ne

.I
t

is
un

kn
ow

n
w

he
th

er
th

is
pr

ot
ei

n
ex

is
ts

in
no

n-
SC

A
8

in
di

vi
du

al
s.

Q
5V

T3
3

pu
ta

ti
ve

un
ch

ar
ac

te
ri

ze
d

pr
o-

te
in

en
co

de
d

by
LI
N
C
01
54
5

79
09
9

pr
ot

ei
n

pr
ed

ic
te

d.

P6
12

54
60

S
ri

bo
so

m
al

pr
ot

ei
n

L2
6

14
5

09
9

co
m

po
ne

nt
of

th
e

la
rg

e
ri

bo
so

m
al

su
bu

ni
t.

It
is

in
vo

lv
ed

in
D

ia
m

on
d-

B
la

ck
fa

n
an

em
ia

11
(D

B
A

11
)

di
se

as
e,

th
at

is
ca

us
ed

by
m

ut
at

io
ns

a�
ec

ti
ng

th
e
R
PL

26
ge

ne
.

A
8M

TZ
7

un
ch

ar
ac

te
ri

ze
d

pr
ot

ei
n

C
12

or
f7

1
26
5

09
9

pr
ot

ei
n

pr
ed

ic
te

d.

Q
01

62
8

in
te

rf
er

on
-i

nd
uc

ed
tr

an
s-

m
em

br
an

e
pr

ot
ei

n
3

13
3

09
9

IF
N

-i
nd

uc
ed

an
ti

vi
ra

lp
ro

te
in

w
hi

ch
di

sr
up

ts
in

tr
ac

el
lu

la
r

ch
ol

es
te

ro
lh

om
eo

st
as

is
.

H
3B

R
N

8
un

ch
ar

ac
te

ri
ze

d
pr

ot
ei

n
C

15
or

f6
5

12
1

09
8

ex
pe

ri
m

en
ta

le
vi

de
nc

e
at

tr
an

sc
ri

pt
le

ve
l.

P0
38

97
N

A
D

H
-u

bi
qu

in
on

e
ox

id
or

e-
du

ct
as

e
ch

ai
n

3
11
5

09
8

co
re

su
bu

ni
t

of
th

e
m

it
oc

ho
nd

ri
al

m
em

br
an

e
re

sp
ir

at
or

y
ch

ai
n

N
A

D
H

de
hy

dr
og

en
as

e
(C

om
pl

ex
I)

th
at

is
be

lie
ve

d
to

be
lo

ng
to

th
e

m
in

im
al

as
se

m
bl

y
re

qu
ir

ed
fo

r
ca

ta
ly

si
s.

It
is

in
vo

lv
ed

in
Le

ig
h

sy
nd

ro
m

e
(L

S)
an

d
m

it
oc

ho
nd

ri
al

co
m

pl
ex

Id
ef

ic
ie

nc
y

(M
T-

C
1D

)d
is

ea
se

s.
P0

04
03

cy
to

ch
ro

m
e

c
ox

id
as

e
su

b-
un

it
2

22
7

09
8

C
yt

oc
hr

om
e

c
ox

id
as

e
is

th
e

co
m

po
ne

nt
of

th
e

re
sp

ir
at

or
y

ch
ai

n
th

at
ca

ta
ly

ze
s

th
e

re
du

ct
io

n
of

ox
yg

en
to

w
at

er
.S

ub
un

it
s

1-
3

fo
rm

th
e

fu
nc

ti
on

al
co

re
of

th
e

en
zy

m
e

co
m

pl
ex

.S
ub

un
it

2
tr

an
sf

er
s

th
e

el
ec

tr
on

s
fr

om
cy

to
ch

ro
m

e
c

vi
a

it
s

bi
nu

cl
ea

r
co

pp
er

A
ce

nt
er

to
th

e
bi

m
et

al
lic

ce
nt

er
of

th
e

ca
ta

ly
ti

c
su

bu
ni

t
1.

It
is

in
vo

lv
ed

in
m

it
oc

ho
nd

ri
al

co
m

pl
ex

IV
de

fic
ie

nc
y

(M
T-

C
4D

)d
is

ea
se

.
1

A
un

iq
ue

id
en

ti
fie

r
of

an
en

tr
y

in
th

e
U

ni
Pr

ot
K

B
da

ta
ba

se
(w

w
w
.u
ni
pr
ot
.o
rg
/u

ni
pr
ot

).

www.uniprot.org/uniprot

90 CHAPTER 5. FINDING AND VISUALIZATION OF DISTINCT REGIONS IN OMICS SEQUENCES

Unique.
ratio

127 / 128

101 / 102

79 / 80

78 / 79

143 / 145

265 / 269

131 / 133

119 / 121

113 / 115

223 / 227

Pos 20 40 60 80 100 120 140 160 180 200 220 240 260

Pos 20 40 60 80 100 120 140 160 180 200 220 240 260

Putative uncharacterized protein encoded by LINC00303

Protein PAPPAS

Ataxin-8

Putative uncharacterized protein encoded by LINC01545

60S ribosomal protein L26

Uncharacterized protein C12orf71

Interferon-induced transmembrane protein 3

Uncharacterized protein C15orf65

NADH-ubiquinone oxidoreductase chain 3

Cytochrome c oxidase subunit 2

Figure 5.5: Modern human proteins with the most distinct regions against Altai, Sidron and Vindija Nean-
derthals. The format m / n shows that considering k-mer size of 7, m out of n amino acids are
relatively unique.

protein L26 are not relatively unique, leading to the separation of the protein into two regions, each
one represented by a distinct color.

Table 5.4 describes the most similar exomes of non-human primates to the ones listed in Table 5.3.
This table shows that the found modern human exomes exist, fully or partially, in the listed primates,
but not in the Neanderthals. This can have multiple reasons, such as ambiguity of computational
models in prediction of proteins, inclusion of contaminant exogenous sources [266] and ancient
DNA damage [267].

5.3 Conclusions

We introduced two unsupervised alignment-free tools, CHESTER and FRUIT, that are able to �nd
and visualize relatively unique (distinct) regions between two collections of omics data, including
genomic and proteomic sequences. In genomic level, we tested CHESTER on modern human chro-
mosomes and Neanderthal high-quality genome (> 418GiB of raw data). The results showed several
regions that are associated with brain, namely neurotransmiters and synapses, hearing, blood, fer-
tility and immune system, among others. These regions may now be studied according to their
expression and meaning in the evolution path. Other regions have also been detected that, although
undocumented, may reveal unique functionalities in Neanderthal or modern human. In proteomic
level, we tested FRUIT on synthetic and real (Neanderthals) datasets to analyze the impact of di�er-
ent rates of mutations on uniqueness ratios. We also employed FRUIT to map, �lter and visualize
unique proteins in modern humans relatively to Altai, Sidron and Vindija Neanderthals. The top ten

5.3. CONCLUSIONS 91

Ta
bl
e
5.
4:

Th
e

m
os

ts
im

ila
rn

on
-h

um
an

pr
im

at
e

ex
om

es
to

m
od

er
n

hu
m

an
,t

ha
ta

re
lis

te
d

in
Ta

bl
e

5.3
.

M
od

er
n

hu
m

an
pr

ot
ei

n
Si

m
ila

r
pr

im
at

e
pr

ot
ei

n
A

cc
es

si
on

1
Sp

ec
ie

s
Le

n.
(b

)
Id

en
.%

2
Q

.c
ov

.%
3

Pu
ta

ti
ve

un
ch

ar
ac

te
ri

ze
d

pr
ot

ei
n

en
co

de
d

pr
ed

ic
te

d
pu

ta
ti

ve
un

ch
ar

ac
te

ri
ze

d
pr

ot
ei

n
X

P_
00

40
88

13
8.

1
N
.l
eu
co
ge
ny
s

12
8

92
.19

10
0

by
LI
N
C
00
30
3

en
co

de
d

by
LI
N
C
00
30
3

Pr
ot

ei
n

PA
PP

A
S

pr
ed

ic
te

d
pr

ot
ei

n
PA

PP
A

S
X

P_
01

52
92

16
5.

1
M
.f
as
ci
cu
la
ri
s

10
5

94
.06

99
A

ta
xi

n-
8

–4

Pu
ta

ti
ve

un
ch

ar
ac

te
ri

ze
d

pr
ot

ei
n

en
co

de
d

pu
ta

ti
ve

un
ch

ar
ac

te
ri

ze
d

pr
ot

ei
n

en
co

de
d

X
P_

00
89

60
19

8.
1

P.
pa
ni
sc
us

79
10
0.0
0

10
0

by
LI
N
C
01
54
5

by
LI
N
C
01
54
5

60
S

ri
bo

so
m

al
pr

ot
ei

n
L2

6
60

S
ri

bo
so

m
al

pr
ot

ei
n

L2
6

is
of

or
m

X
1

X
P_

00
80

59
32

7.
2

C
.s
yr
ic
ht
a

14
9

10
0.0
0

10
0

U
nc

ha
ra

ct
er

iz
ed

pr
ot

ei
n

C
12

or
f7

1
un

ch
ar

ac
te

ri
ze

d
pr

ot
ei

n
C

12
or

f7
1

ho
m

ol
og

X
P_

52
08

10
.1

P.
tr
og
lo
dy
te
s

26
9

99
.26

10
0

In
te

rf
er

on
-i

nd
uc

ed
tr

an
sm

em
br

an
e

pr
ed

ic
te

d
in

te
rf

er
on

-i
nd

uc
ed

X
P_

00
40

50
38

5.
1

G
.g
or
ill
a
go
ri
lla

13
3

10
0.0
0

10
0

pr
ot

ei
n

3
tr

an
sm

em
br

an
e

pr
ot

ei
n

3
is

of
or

m
X

2
U

nc
ha

ra
ct

er
iz

ed
pr

ot
ei

n
C

15
or

f6
5

un
ch

ar
ac

te
ri

ze
d

pr
ot

ei
n

C
15

or
f6

5
ho

m
ol

og
X

P_
00

33
14

72
8.

1
P.
tr
og
lo
dy
te
s

12
1

99
.17

10
0

is
of

or
m

X
2

N
A

D
H

-u
bi

qu
in

on
e

ox
id

or
ed

uc
ta

se
ch

ai
n

3
N

A
D

H
de

hy
dr

og
en

as
e

su
bu

ni
t

3
A

B
U

47
84

1.
1

P.
tr
og
lo
dy
te
s

11
5

95
.65

10
0

C
yt

oc
hr

om
e

c
ox

id
as

e
su

bu
ni

t
2

cy
to

ch
ro

m
e

ox
id

as
e

su
bu

ni
t

II
A

C
J6

38
18

.1
G
.g
or
ill
a
go
ri
lla

22
7

99
.56

10
0

(m
it

oc
ho

nd
ri

on
)

1
A

un
iq

ue
id

en
ti

fie
r

of
an

en
tr

y
in

th
e

N
C

B
Id

at
ab

as
e

(w
w
w
.n
cb
i.n

lm
.n
ih
.g
ov

).
2

Id
en

ti
ty

de
sc

ri
be

s
th

e
pe

rc
en

ta
ge

of
id

en
ti

ca
lc

ha
ra

ct
er

s
in

pr
ot

ei
ns

.
3

�
er

y
co

ve
r

de
sc

ri
be

s
ho

w
m

uc
h

of
th

e
pr

im
at

e
pr

ot
ei

n
is

co
ve

re
d

by
th

e
m

od
er

n
hu

m
an

pr
ot

ei
n.

4
U

si
ng

�
ic

kB
LA

ST
P

[2
68

],
no

si
m

ila
rp

ro
te

in
w

as
fo

un
d.

U
si

ng
D

EL
TA

-B
LA

ST
[2

69
],

w
hi

ch
yi

el
ds

be
�

er
ho

m
ol

og
y

de
te

ct
io

n,
w

e
fo

un
d

at
ax

in
-8

,p
ar

ti
al

pr
ot

ei
n

fr
om

Va
rr
oa

de
st
ru
ct
or

sp
ec

ie
s

w
it

h
th

e
le

ng
th

of
89

,1
00

.0
0%

id
en

ti
ty

an
d

98
%

qu
er

y
co

ve
r,

bu
t

it
do

es
no

t
be

lo
ng

to
a

pr
im

at
e.

www.ncbi.nlm.nih.gov

92 CHAPTER 5. FINDING AND VISUALIZATION OF DISTINCT REGIONS IN OMICS SEQUENCES

distinct proteins were reported in this chapter, of which some are associated with diseases, including
SCA8, DBA11, LS, MT-C1D and MT-C4D, and some others are putative uncharacterized proteins,
that are products of dubious CDS prediction. Furthermore, we have listed and described the most
similar primate exomes to the found modern human ones.

Chapter 6

Detection and visualization of genomic rear-

rangements

The development of high-throughput sequencing technologies and, as its result, the production of
huge volumes of genomic data, has accelerated biological and medical research and discovery. Study
on genomic rearrangements is crucial due to their role in chromosomal evolution, genetic disorders
and cancer. In this chapter is presented Smash++, an alignment-free and memory-e�cient tool to
�nd and visualize small- and large-scale genomic rearrangements between two DNA sequences.
This computational solution extracts information contents of the two sequences, exploiting a data
compression technique, in order to �nd rearrangements. We also present Smash++ visualizer, a
tool that allows the visualization of the detected rearrangements along with their self- and relative
complexity, by generating an SVG (Scalable Vector Graphics) image. Tested on several synthetic
and real DNA sequences from bacteria, fungi, Aves and mammalia, the proposed tool was able
to accurately �nd genomic rearrangements. The detected regions complied with previous studies
which took alignment-based approaches or performed FISH analysis. The maximum peak memory
usage among all experiments was ∼1GiB, which makes Smash++ feasible to run on present-day
standard computers.

6.1 Introduction

With the ever-increasing development of HTS technologies, a massive amount of genomic informa-
tion is produced at much higher speed and lower cost than was possible before [270]. Analysis of
such information has led to the advancement of our understanding of biology and disease, over the
past decade [271], [272]. Computational solutions play a key role in dry-lab analysis of the deluge
of HTS data by using e�cient and fast algorithms.

93

94 CHAPTER 6. DETECTION AND VISUALIZATION OF GENOMIC REARRANGEMENTS

Genome rearrangements are mutations that alter the arrangement of genes on a genome, and
usually occur in the presence of errors in cell division following meiosis or mitosis. These structural
abnormalities in chromosomes include, but are not limited to, insertions, deletions, duplications,
translocations, inversions, �ssions ans fusions, mostly occur as an accident in the sperm or egg cell
and hence are present in every cell of the body [273], [274].

Studies on chromosomal aberrations, which underlie many genetic diseases and cancer, are cru-
cial for diagnostics, prognostics and targeted therapeutics [275], [276]. Examples of such diseases
are the Wolf–Hirschhorn syndrome (WHS), that is caused by a partial deletion from human chromo-
some location 4p16.3 [277], the Charcot–Marie–Tooth disease (CMT), that is most commonly caused
by duplication of the gene encoding peripheral myelin protein 22 (PMP22) on human chromosome
17 [278], and the acute myeloid leukemia (AML), that may be caused by translocations between
human chromosome 8 and 21 [279].

Various computational methods have been proposed in the literature that perform alignment,
that is aligning regions which are conserved in two (or more) genomic sequences, for the purpose
of detecting chromosomal rearrangements (comparing sequences) [280]–[285]. Alignment-based
methods cannot be solely employed to detect rearrangements, since they follow the assumption that
order of homology is maintained between the sequences to be compared [62], [286]. Alignment-free
(AF) approaches, on the other hand, do not have this limitation; in addition, they o�er computational
speedup advantages over alignment-based algorithms [64].

Among AF methods are information theory-based ones, that measure the amount of shared in-
formation within the sequences to quantify the similarity/dissimilarity between them. Information
theory-based approaches have a broad range of applications, including but not limited to global and
local characterization of DNA, e.g., prediction of transcription factor binding sites and classi�cation
of motifs, and gene mapping [65]. In the year 2015 another application of such approaches, namely
�nding rearrangements between DNA sequences, was introduced [131]. Here, we provide a signif-
icant improvement over the mentioned method. It should be noted that the two alignment-based
and alignment-free approaches can be accompanied by genomic data visualization tools, that pro-
vide researchers with facilities to explore and analyze the genomic data [287].

We present Smash++, an alignment-free tool that �nds chromosomal rearrangements between
two DNA sequences based on their information content, which is obtained by a data compression
technique. This computational solution follows a combination of probabilistic and algorithmic ap-
proaches for having a quantitative de�nition of information, although it can be seen as more of a
probabilistic one [86]. Associated with Smash++ is a visualizer that is capable of visualizing as SVG
images informationally similar regions between two genomic sequences. This tool also provides
self- and relative redundancy (complexity) for the similar regions.

Smash++ is the improved version of Smash [131], featuring (a) improved accuracy, obtained by

6.2. METHODS 95

using multiple �nite-context models along with substitution-tolerant Markov models to �nd �ne-
grained and coarse-grained chromosomal rearrangements, (b) presenting self-complexity (redun-
dancy) and relative redundancy of informationally similar regions between two DNA sequences,
(c) improved user interface (UI) in command line, by adding several options to customize the tool
for running, and resulting SVG image, by adding markers for positions of DNA bases and also plot-
ting self- and relative redundancy, and (d) improved performance, in terms of memory usage.

6.2 Methods

The schema of the proposed method is illustrated in Fig. 6.1. Smash++ takes as inputs a reference
and a target sequence and produces as output a position �le, including local similarities of the two
sequences, which can then be used by the Smash++ visualizer to produce an SVG image illustrating
the similarities. This process has eight major stages: (1) compression of the original target �le, based
on the model of the original reference �le, (2) �ltering the information pro�le, which is the output
of stage 1, and segmenting the target sequence after �ltering, (3) reference-free compression of the
segmented sequences, obtained by the previous stage, (4) compression of the original reference �le,
based on the model of segmented sequences, which are obtained by stage 2, (5) �ltering the informa-
tion pro�le and segmenting the reference sequence, (6) reference-free compression of the segmented
sequences, (7) aggregating positions, that are generated by stages 3 and 6, and (8) visualizing the
positions. The following sections describe the process in detail.

Positions Aggregation

ref

tar

tar

ref

SeqLow-pass filter

Inputs Output

SVG
Image

Visualization
Reference-based

Compression
Filtering & Segmentation

Reference-free
Compression

SeqLow-pass filter

Reference-based
Compression

Filtering & Segmentation
Reference-free
Compression

Positions Aggregation

Final Pos
Target

Pos

Reference
Pos

Visualization

Target
Seq

Reference
Seq

1 2 3 7 8

4 5 6 7 8

Inf. profile

Inf. profile

Figure 6.1: The schema of Smash++. The process of �nding similar regions in reference and target sequences
and computing the redundancy in each region includes eight stages. Smash++ outputs a *.pos �le
that includes the positions of the similar regions, and can be then visualized as an SVG image.

96 CHAPTER 6. DETECTION AND VISUALIZATION OF GENOMIC REARRANGEMENTS

6.2.1 Data modeling

For the purpose of modeling genomic data, we exploit a combination of �nite-context models and
substitution-tolerant Markov models that are described in detail in Section 2.2.

6.2.2 Storing models in memory

The FCMs and STMMs include count values which need to be saved in memory. For this purpose,
four di�erent data structures have been employed considering the context-order size k, as follows:

• table of 64 bit counters, for 1 ≤ k ≤ 11,

• table of 32 bit counters, for k = 12, 13,

• table of 8 bit approximate counters, for k = 14, and

• Count-Min-Log sketch of 4 bit counters, for k ≥ 15.

The table of 64 bit counters, that is shown in Fig. 6.2a, simply saves the number of events for each
context. The table of 32 bit counters saves in each position the number of times that the associated
context is observed. When a counter reaches the maximum value 232 − 1 = 4,294,967,295, all the
counts will be renormalized by dividing by two, as shown in Fig. 6.2b.

Approximate counting is a method that employs probabilistic techniques to count large number
of events, while using a small amount of memory [288]. Fig. 6.3 shows the algorithm for two major
functions associated with this method, Update and �ery. In order to update the counter, a pseudo-
random number generator (PRNG) is used the number of times of the counter’s current value to
simulate �ipping a coin. If it comes up 0/Heads each time or 1/Tails each time, the counter will be
incremented. Fig. 6.2c shows the di�erence between arithmetic and approximate counting, and also
the values which are actually stored in memory. Note that since an approximate counter represents
the actual count by an order of magnitude estimate, one only needs to save the exponent. For
example, if the actual count is 8, we store in memory log2 8 = 3.

Count-Min-Log Sketch (CMLS) is a probabilistic data structure to save frequency of events in
a table by means of a family of independent hash functions [289]. The algorithm for updating
and querying the counter is shown in Fig. 6.4. In order to update the counter, its current value
is hashed with d independent hash functions; then, if the increment condition as in approximate
counting (described above) is satis�ed, the minimum hashed value (out of d values) will be updated,
as shown in Fig. 6.2d. For the purpose of producing the family of hash functions we employ universal
hashing, which is described in Chapter 5.

6.2. METHODS 97

minmin

+ 1

+ 1

d

val
h2(val)

𝑤

a
CountContext & curr base

135AAAAAAAAAAA

389

...
252CGATTTGCGCAA

AAAAAAAAAAC

275CGATTTGCGCAC

226CGATTTGCGCAG

TTTTTTTTTTT

269CGATTTGCGCAT

31

...

...

...

Pos

0

1

224 ‒ 4 ‒ 𝑛

224 ‒ 3 ‒ 𝑛

224 ‒ 2 ‒ 𝑛

224 ‒ 1 ‒ 𝑛

224 ‒ 1

...

...

Pos

0

1

224 ‒ 4 ‒ 𝑛

224 ‒ 3 ‒ 𝑛

224 ‒ 2 ‒ 𝑛

224 ‒ 1 ‒ 𝑛

224 ‒ 1

...

...

c

Arithmetic
Counting

..
.

..
.

..
.

0
0

1
2

4

5

3

6

7

8

11

12

13

14

15

10
9

12
3

13
3

8
3

10
3

6
2

5
2

7
3

3
2

4
2

2
1

1
1

1
2

2

4

4

4

4

8

8

8

8

8

8

8

8

9
3

14
3

Approximate
Counting

Position

Stored Count

Position

Stored Count

b

231 + 1

232 – 2

231 – 12

1

232 – 1

231

0 232 – 3

Count

Maximum count
value

𝑑

11
3

Figure 6.2: The data structures used by Smash++ to store the models in memory. (a) table of 64 bit counters
that uses up to 128MiB of memory, (b) table of 32 bit counters that consumes at most 960MiB of
memory, (c) table of 8 bit approximate counters with memory usage of up to 1GiB and (d) Count-
Min-Log sketch of 4 bit counters which consumes up to 1

2w × d B of memory, e.g., if w = 230 and
d = 4, it uses 2GiB of memory.

6.2.3 Finding similar regions

To �nd similar regions in reference and target sequences, a quantity is required to measure the
similarity. We use “per symbol information content”, in bpb (bit per base), that can be calculated as

I (x) = − log2 P (x), ∀x ∈ S, (6.1)

where P (x) denotes the probability of observing a nucleotide x in the sequence S (Eq. 2.17).

The information content is the amount of information required to represent a symbol in the
target sequence, based on the model of the reference sequence. The less the value of this measure

98 CHAPTER 6. DETECTION AND VISUALIZATION OF GENOMIC REARRANGEMENTS

1: function IncreaseDecision(x)
2: return True with probability 1/2x , else False
3: end function

4: function Update(x)
5: c ← table[x]
6: if IncreaseDecision(c) = True then
7: table[x]← c + 1
8: end if
9: end function

10: function �ery(x)
11: c ← table[x]
12: return 2c − 1
13: end function

Figure 6.3: Approximate counting update and query.

is for two regions, the more amount of information is shared between them, and, therefore, the
more similar the two regions are. Note that a version of this measure has been introduced in [131],
which employs a single FCM to calculate the probabilities. Here, however, we exploit a cooperation
between multiple FCMs and STMMs for highly accurate calculation of such probabilities.

The procedure of �nding similar regions in a reference and a target sequence, illustrated in
Fig. 6.5, is as follows: after creating the model of the reference, the target is compressed based
on that model and the information content is calculated for each symbol in the target. Then, the
content of the whole target sequence is smoothed by a Hann window [290], which is a discrete
window function given by w[n] = 0.5 − 0.5 cos (2�nN), where 0 ≤ n ≤ N and length of the window
is N + 1. Next, the smoothed information content is segmented considering a prede�ned threshold,
meaning that the regions with the content greater than the threshold are �ltered out. This is carried
out for both regular and inverted repeat homologies and, at the end, the result would be the regions
in the target sequence that are similar to the reference sequence (Fig. 6.5a). The described phase
repeats for all of the target regions found, in the way that after creating the model for each region,
the whole reference sequence is compressed to �nd those regions in the reference that are similar
to each of the target regions (Fig. 6.5b). The �nal result would have the form of Fig. 6.5c.

6.2.4 Computing complexity

After �nding the similar regions in reference and target sequences, we evaluate redundancy in each
region, knowing that it is inversely related to Kolmogorov complexity (see Section 2.1.1), i.e., the
more complex a sequence is, the less redundant it will be [93]. The Kolmogorov complexity is not
computable, hence, an alternative is required to compute it approximately. It has been shown in
the literature that a compression algorithm can be employed for this purpose [291]–[293]. Here,

6.2. METHODS 99

Require: sketch widthw , sketch depth d ,m bins, prime
p ≥ m, randomly chosen integers a1..d and b1..d mod-
ulo p with a ≠ 0

1: function Hash(k, x) ⊳ Universal hash family
2: return ((akx + bk) mod p) mod m
3: end function

4: function MinCount(x)
5: minimum← 15 ⊳ Biggest 4 bit number
6: for k ← 1 to d do
7: ℎ ← Hash(k, x)
8: if sketch[k][ℎ] < minimum then
9: minimum← sketch[k][ℎ]

10: end if
11: end for
12: return minimum
13: end function

14: function IncreaseDecision(x)
15: return True with probability 1/2x , else False
16: end function

17: function Update(x)
18: c ← MinCount(x)
19: if IncreaseDecision(c) = True then
20: for k ← 1 to d do
21: ℎ ← Hash(k, x)
22: if sketch[k][ℎ] = c then
23: sketch[k][ℎ]← c + 1
24: end if
25: end for
26: end if
27: end function

28: function �ery(x)
29: c ← MinCount(x)
30: return 2c − 1
31: end function

Figure 6.4: Count-Min-Log Sketch update and query.

we employ a reference-free compressor to approximate the complexity and, consequently, the re-
dundancy of the found similar regions in the reference and the target sequences. This compressor
works based on cooperation of FCMs and STMMs, which has been previously described in detail.
Note that the di�erence between reference-based and reference-free version of such compressor is
that, in the former mode, a model is �rst created for the reference sequence and, then, the target
sequence is compressed based on that model, while in the latter mode, the model is progressively
created at the time of compressing the target sequence.

100 CHAPTER 6. DETECTION AND VISUALIZATION OF GENOMIC REARRANGEMENTS

In
fo

rm
a

ti
o

n
 c

o
n

te
n

t
(b

p
b)

Base position 500 1000250 750Base position 500 1000250 750

Base position 1000250 750500Base position 1000250 750500

In
fo

rm
a

ti
o

n
 c

o
n

te
n

t
(b

p
b)

Target

Base position 500 1000250 750Base position 500 1000250 750

Reference

Reference

Target

2

0

thr

2

0

thr

2

0

thr

2

0

thr

2

0

thr

Finding target regions similar to the referencea

Finding reference regions similar to the detected target regionsb

Similar regions foundc

inverted

3

regular

1 2

inverted

3

regular

1 2

regular

1

regular

2

inverted

3

regular

1

regular

2

inverted

3

Figure 6.5: Finding similar regions in reference and target sequences. Smash++ �nds, �rst, the regions in the
target that are similar to the reference, and then, �nds the regions in the reference similar to the
detected target regions. This procedure is performed for both regular and inverted homologies.

6.3 Results and Discussion

Smash++ is implemented in the C++ language and is publicly available1 under GNU GPLv3 license.
The tool comes with a visualizer, that can be called in the command line with a �ag called “-viz”.
Similar regions in reference and target sequences are shown with the same color, that are chosen ran-
domly using HSV color model. The machine used for the tests had a 4-core 3.40GHz Intel® Core™ i7-

1www.github.com/smortezah/smashpp

www.github.com/smortezah/smashpp

6.3. RESULTS AND DISCUSSION 101

6700 CPU and 32GiB of RAM.

6.3.1 Dataset

Smash++ and several other methods have been tested on a collection of synthetic and real sequences,
that are described in Table 6.1. We used the GOOSE toolkit1 to make the synthetic sequences of
which the sizes vary from 1.5 kb to 100Mb. We applied mutations and reversely complemented parts
of the sequences. For a real dataset, we chose di�erent sequences from bacteria, Aves, mammalia
and fungi, with the sizes of ∼1Mb to ∼127Mb.

6.3.2 Application on synthetic data

Fig. 6.6 illustrates the result of running Smash++ and the associated visualizer on a synthetic dataset.
The top sections show how we have built the reference and the target sequences. For example, to
build the reference sequence in Fig. 6.6a, we generated three random sequences of size 500 b, using
GOOSE, and concatenated them. For building the target sequence, we made reverse complements
of parts I and III from the reference, and also mutated part II 2%, then we concatenated the parts
in the order shown in the Figures 6.6b, c and d follow the same procedure. To build the target in
Fig. 6.6e, we mutated the �rst 1 kb block of the reference 1%, the second block 2%, the third block
3%, up until the 60th block that we mutated 60%.

The bottom sections of Fig. 6.6 show the output of the Smash++ visualizer, detecting similar
regions regardless of their sizes. Note that for each detected region, the average value of redundancy
and relative redundancy is illustrated. In Fig. 6.6b, part II of the reference is mutated 90%, i.e., nine
out of every ten bases is mutated, on average. As expected, Smash++ does not recognize similarity
between this pair of regions. Also, in the case of parts III and IV of the reference, since we detect
similarity between part III of the reference and I of the target, and also part IV of the reference and
II of the target, and there is no space between these regions, we join them and consider them as a
bigger region of size 50 kb. Fig. 6.6e shows that Smash++ is able to detect ∼43% of mutation, that has
been made possible by the usage of STMMs (see Section 2.2.2). Fig. 6.6 shows that Smash++ can be
employed to detect small-scale and large-scale similarities between DNA sequences.

6.3.3 Application on real data

Fig. 6.7 shows similarities between real sequences, found by Smash++. Figures 6.7a and 6.7b show
similarities of chromosomes 18 and 14 of Gallus gallus (chicken) with orthologous chromosomes 20
and 16 ofMeleagris gallopavo (turkey), respectively. These avian species, that are of great agricultural

1www.github.com/pratas/goose

www.github.com/pratas/goose

102 CHAPTER 6. DETECTION AND VISUALIZATION OF GENOMIC REARRANGEMENTS

Table 6.1: Synthetic and real dataset used in the experiments.

Sequence Group Length (b) Description

GGA18 Aves 11,373,140 Access. CM000110 – Gallus gallus chromosome 18.
MGA20 Aves 10,730,484 Access. CM000981 – Meleagris gallopavo isolate NT-WF06-2002-

E0010 breed Aviagen turkey brand Nicholas breeding stock chro-
mosome 20.

GGA14 Aves 16,219,308 Access. CM000106 – Gallus gallus chromosome 14.
MGA16 Aves 14,878,991 Access. CM000977 – Meleagris gallopavo isolate NT-WF06-2002-

E0010 breed Aviagen turkey brand Nicholas breeding stock chro-
mosome 16.

HS12 Mammalia 133,275,309 Access. NC_000012 – Homo sapiens chromosome 12,
GRCh38.p13 Primary Assembly.

PT12 Mammalia 130,995,916 Access. NC_036891 – Pan troglodytes isolate Yerkes chimp pedi-
gree #C0471 (Clint) chromosome 12.

PXO99A Bacteria 5,238,555 Access. CP000967 – Xanthomonas oryzae pv. oryzae causes the
major disease of bacterial blight of rice (Oryza sativa L.). X.
oryzae pv. oryzae PXO99A strain is virulent toward a large num-
ber of rice varieties representing diverse genetic sources of resis-
tance [294].

MAFF 311018 Bacteria 4,940,217 Access. AP008229 – X. oryzae pv. oryzae MAFF 311018 is a
Japanese race 1 strain [295].

ScVII Fungi 1,090,940 Access. NC_001139 – Saccharomyces cerevisiae S288C chromo-
some VII.

SpVII Fungi 1,105,967 Access. CP020299 – Saccharomyces paradoxus strain UFRJ50816
chromosome VII.

RefS Synthetic 1500 It consists of three segments of 500 base size.
TarS Synthetic 1500 To build TarS, segment I is mutated 2%, II is inversely repeated

and III is duplicated.
RefM Synthetic 100,000 It has four segments of 25 kilobase size.
TarM Synthetic 100,000 For building TarM, segment I of RefM (out of total four) is in-

versely repeated, II is mutated 90%, III is duplicated and IV is
mutated 3%.

RefL Synthetic 5,000,000 It includes two segments, 2,500,000 bases each.
TarL Synthetic 5,000,000 Segment I is inversely repeated and II is mutated 2% for building

TarL.
RefXL Synthetic 100,000,000 It is made of four segments, 25,000,000 bases each.
TarXL Synthetic 100,000,000 Segment I is mutated 1%, segments II and III are inversely re-

peated and segment IV is duplicated to make TarXL.
RefMut Synthetic 60,000 It includes 60 segments of 1 kilobase size.
TarMut Synthetic 60,000 To build TarMut, the first segment (I) is mutated 1%, the second

segment is mutated 2%, the third one is mutated 3%, and so on.
RefComp Synthetic 1,000,000 It consists of 10 segments of 100 kilobases.
TarComp Synthetic 1,000,000 For building it, the first segment (I) of RefComp is duplicated,

the second, third and fourth segments are mutated 1%, 2% and
3%, respectively. The segments V, VI and VII of RefComp are
inversely repeated, then mutated 4%, 5% and 6%, respectively.
Finally, the segments VIII, IX and X are mutated 7%, 8% and 9%,
respectively.

RefPerm Synthetic 3,000,000 It includes three segments of 1 megabase size. In addition to the
original sequence, it is permuted, using GOOSE toolkit, by blocks
of sizes 450 kb, 30 kb, 1 kb and 30 b.

TarPerm Synthetic 3,000,000 To build TarPerm, the first segment is mutated 1%, the second
segment is inversely repeated and the third one is mutated 2%.

Note: the real dataset can be download from NCBI via accession number (access.) provided in the descriptions.

6.3. RESULTS AND DISCUSSION 103

0 b

10 Kb

20 Kb

30 Kb

40 Kb

50 Kb

60 Kb

70 Kb

80 Kb

90 Kb

100 Kb

0 b

10 Kb

20 Kb

30 Kb

40 Kb

50 Kb

60 Kb

70 Kb

80 Kb

90 Kb

100 Kb

RefM TarM

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

0 b

150 b

300 b

450 b

600 b

750 b

900 b

1.0 Kb

1.2 Kb

1.4 Kb

1.5 Kb

0 b

150 b

300 b

450 b

600 b

750 b

900 b

1.0 Kb

1.2 Kb

1.4 Kb

1.5 Kb

RefS TarS

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

0 b

500 Kb

1 Mb

1.5 Mb

2 Mb

2.5 Mb

3 Mb

3.5 Mb

4 Mb

4.5 Mb

5 Mb

0 b

500 Kb

1 Mb

1.5 Mb

2 Mb

2.5 Mb

3 Mb

3.5 Mb

4 Mb

4.5 Mb

5 Mb

RefL TarL

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

0 b

10 Mb

20 Mb

30 Mb

40 Mb

50 Mb

60 Mb

70 Mb

80 Mb

90 Mb

100 Mb

0 b

10 Mb

20 Mb

30 Mb

40 Mb

50 Mb

60 Mb

70 Mb

80 Mb

90 Mb

100 Mb

RefXL TarXL

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

0 b

5 Kb

10 Kb

15 Kb

20 Kb

25 Kb

30 Kb

35 Kb

40 Kb

45 Kb

50 Kb

55 Kb

60 Kb

0 b

5 Kb

10 Kb

15 Kb

20 Kb

25 Kb

30 Kb

35 Kb

40 Kb

45 Kb

50 Kb

55 Kb

60 Kb

RefMut TarMut

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

a b c d e
RefS

(Reference)

I
(500 b)

II
(500 b)

III
(500 b)

Inv.
Repeat

Mutated
2%

Inv.
Repeat

TarS
(Target)

RefS
(Reference)

I
(500 b)

II
(500 b)

III
(500 b)

Inv.
Repeat

Mutated
2%

Inv.
Repeat

TarS
(Target)

RefS
(Reference)

I
(500 b)

II
(500 b)

III
(500 b)

Inv.
Repeat

Mutated
2%

Inv.
Repeat

TarS
(Target)

RefM
(Reference)

I
(25 Kb)

II
(25 Kb)

III
(25 Kb)

IV
(25 Kb)

Dupl.

Mutated
3%

Mutated
90%

Inv.
Repeat

TarM
(Target)

RefM
(Reference)

I
(25 Kb)

II
(25 Kb)

III
(25 Kb)

IV
(25 Kb)

Dupl.

Mutated
3%

Mutated
90%

Inv.
Repeat

TarM
(Target)

RefM
(Reference)

I
(25 Kb)

II
(25 Kb)

III
(25 Kb)

IV
(25 Kb)

Dupl.

Mutated
3%

Mutated
90%

Inv.
Repeat

TarM
(Target)

RefL
(Reference)

I
(2.5 Mb)

II
(2.5 Mb)

Mutated
2%

Inv.
Repeat

TarL
(Target)

RefL
(Reference)

I
(2.5 Mb)

II
(2.5 Mb)

Mutated
2%

Inv.
Repeat

TarL
(Target)

RefL
(Reference)

I
(2.5 Mb)

II
(2.5 Mb)

Mutated
2%

Inv.
Repeat

TarL
(Target)

RefXL
(Reference)

I
(25 Mb)

II
(25 Mb)

III
(25 Mb)

IV
(25 Mb)

Mutated
1%

Inv.
Repeat

Dupl.

Inv.
Repeat

TarXL
(Target)

RefXL
(Reference)

I
(25 Mb)

II
(25 Mb)

III
(25 Mb)

IV
(25 Mb)

Mutated
1%

Inv.
Repeat

Dupl.

Inv.
Repeat

TarXL
(Target)

RefXL
(Reference)

I
(25 Mb)

II
(25 Mb)

III
(25 Mb)

IV
(25 Mb)

Mutated
1%

Inv.
Repeat

Dupl.

Inv.
Repeat

TarXL
(Target)

RefMut
(Reference)

..
.

I
(1 Kb)

II
(1 Kb)

..
.

LX
(1 Kb)

Mutated
1%

Mutated
2%

Mutated
60%

TarMut
(Target)

RefMut
(Reference)

..
.

I
(1 Kb)

II
(1 Kb)

..
.

LX
(1 Kb)

Mutated
1%

Mutated
2%

Mutated
60%

TarMut
(Target)

RefMut
(Reference)

..
.

I
(1 Kb)

II
(1 Kb)

..
.

LX
(1 Kb)

Mutated
1%

Mutated
2%

Mutated
60%

TarMut
(Target)

Figure 6.6: Similarities between synthetic sequences with di�erent sizes, detected by Smash++. The param-
eters used are k-mer size = 14 and number of substitutions in STMM = 5, which are the default
parameters used by Smash++. For the threshold, the default value of 1.5 and 1.97 are used for pan-
els a-d and e, respectively. (a) 1.5 kb sequences; (b) 100 kb sequences. No similarity is detected
for part II of the reference, since it is mutated 90%. Parts III and IV of the reference and I and II
of the target are joined, since there is no space between consecutive regions; (c) 5Mb sequences;
(d) 100Mb sequences; (e) 60 kb sequences. Roughly 43% of mutation is detected.

and commercial importance, are estimated to have diverged at 37.2 Mya [296]. Figures 6.7a and 6.7b
demonstrate that Smash++ was able to �nd the inversions con�rmed by FISH analysis, reported
at [133], [297].

Fig. 6.7c demonstrates similarities between chromosomes 12 ofHomo sapiens and Pan troglodytes,
that are estimated to have diverged at 6.7 Mya. Fig. 6.7d illustrates similarities betweenXanthomonas

oryzae pv. oryzae PXO99A and Xanthomonas oryzae pv. oryzae MAFF 311018, two strains of Xan-
thomonas oryzae pv. oryzae (Xoo) pathogen, which causes the disease of bacterial blight of
rice (Oryzae sativa L.). It is the most serious bacterial disease of rice that can reduce yields by as
much as 50% [294]. Note that to have a clearer picture, we have not plotted the shades connecting
similar regions; this can be achieved by “-l 6” option while calling the Smash++ visualizer.

Figures 6.8 and 6.9 show the result of applying Smash++ and other methods on GGA 18 / MGA 20
and GGA 14 / MGA 16 chromosomes, respectively. The methods included in these �gures are as
follows: (a) Smash++; (b) progressiveMauve [280], which uses an alignment objective score to detect
rearrangement breakpoints when genomes have unequal gene content. It also applies a probabilistic
alignment �ltering method in order for removing erroneous alignments of unrelated sequences;

104 CHAPTER 6. DETECTION AND VISUALIZATION OF GENOMIC REARRANGEMENTS

b

0 b

1.5 Mb

3 Mb

4.5 Mb

6 Mb

7.5 Mb

9 Mb

10.5 Mb

12 Mb

13.5 Mb

15 Mb

0 b

1.5 Mb

3 Mb

4.5 Mb

6 Mb

7.5 Mb

9 Mb

10.5 Mb

12 Mb

13.5 Mb

15 Mb

GGA 14 MGA 16

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

a

0 b

1 Mb

2 Mb

3 Mb

4 Mb

5 Mb

6 Mb

7 Mb

8 Mb

9 Mb

10 Mb

11 Mb

0 b

1 Mb

2 Mb

3 Mb

4 Mb

5 Mb

6 Mb

7 Mb

8 Mb

9 Mb

10 Mb

GGA 18 MGA 20

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

c

0 b

15 Mb

30 Mb

45 Mb

60 Mb

75 Mb

90 Mb

105 Mb

120 Mb

135 Mb

0 b

15 Mb

30 Mb

45 Mb

60 Mb

75 Mb

90 Mb

105 Mb

120 Mb

135 Mb

HS 12 PT 12

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

d

0 b

500 Kb

1 Mb

1.5 Mb

2 Mb

2.5 Mb

3 Mb

3.5 Mb

4 Mb

4.5 Mb

5 Mb

0 b

500 Kb

1 Mb

1.5 Mb

2 Mb

2.5 Mb

3 Mb

3.5 Mb

4 Mb

4.5 Mb

5 Mb

PXO99A MAFF 311018

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

Figure 6.7: Similarities in a real dataset, detected by Smash++. (a) G. gallus chr. 18 and M. gallopavo chr. 20.
The parameters were k-mer size = 14, No. substitutions in STMM = 5, threshold = 1.9 and
min block size (m) = 500,000, i.e., the regions smaller than 500,000 bases were not considered
for further processing; (b) G. gallus chr. 14 and M. gallopavo chr. 16. The result is obtained by
setting k = 14, No. substitutions = 5, threshold = 1.95 and m = 400,000; (c) H. sapiens chr. 12 and
P. troglodytes chr. 12. The parameters were k = 14, without using STMM, threshold = 1.9 and
m = 100,000; (d) X. oryzae pv. oryzae PXO99A and X. oryzae pv. oryzae MAFF 311018 (two rice
pathogens). The result obtained by setting k = 13, threshold = 1.55 and m = 10,000.

(c) the method proposed in [297], that takes a bacterial arti�cial chromosome (BAC)-based approach
along with FISH analysis to develop an integrated physical, genetic and comparative map of chicken
and turkey; (d) SynBrowser [284], which constructs synteny blocks using prebuilt alignments in the
UCSC genome browser database; and (e) FISH analysis [133].

A comparison of Smash++ and other methods applied on chromosomes 12 of H. sapiens and
P. troglodytes is provided in Fig. 6.10. The methods include (a) Smash++; (b) progressiveMauve;
(c) Cinteny [285], that performs sensitivity analysis for synteny block detection and for the sub-
sequent computation of reversal distances, by means of an extended version of ternary search
trees (TST). Embedded in this extension are “walks” through the leaves of the tree, that correspond
to walks on the genome markers in their linear order; (d) SynBrowser; and (e) D-GENIES [298], that
works based on alignment of genomes by minimap2 software package [299].

Fig. 6.11 provides the comparison of our tool with progressiveMauve and the study [294], which
uses an alignment method to �nd genome rearrangements in Xoo. As seen, the result provided by

6.3. RESULTS AND DISCUSSION 105

a 0 b 1 Mb 2 Mb 3 Mb 4 Mb 5 Mb 6 Mb 7 Mb 8 Mb 9 Mb 10 Mb 11 Mb

0 b 1 Mb 2 Mb 3 Mb 4 Mb 5 Mb 6 Mb 7 Mb 8 Mb 9 Mb 10 Mb

R
e

la
tiv

e
 R

e
d

u
n

d
a

n
c

y

R
e

d
u

n
d

a
n

c
y

0.0

2.0

0.5

1.0

1.5

0 b 1 Mb 2 Mb 3 Mb 4 Mb 5 Mb 6 Mb 7 Mb 8 Mb 9 Mb 10 Mb 11 Mb

0 b 1 Mb 2 Mb 3 Mb 4 Mb 5 Mb 6 Mb 7 Mb 8 Mb 9 Mb 10 Mb

R
e

la
tiv

e
 R

e
d

u
n

d
a

n
c

y

R
e

d
u

n
d

a
n

c
y

0.0

2.0

0.5

1.0

1.5

b

c

d

e

GGA 18

MGA 20

GGA 18

MGA 20

MGA 20

GGA 18

MGA 20

GGA 18 MGA 20
p arm

q arm

GGA 18 MGA 20
p arm

q arm

GGA 18

Figure 6.8: Pair-wise comparison of G. gallus chr. 18 and M. gallopavo chr. 20. (a) Smash++, with k = 14
and 5 used by an FCM and an STMM, respectively. The blocks smaller than 500 kb are discarded;
(b) progressiveMauve [280], with LCB (locally collinear block) weight of 18,692. Reverse comple-
ments are shown in lower level; (c) adopted from [297], which is con�rmed by FISH analysis. The
box shows a local rearrangement; (d) SynBrowser [284], with the resolution of 150 kb (minimum
size of a reference block); (e) adopted from [133], which con�rms an inversion rearrangement of
size ∼5Mb by FISH analysis.

Smash++ conforms to the one presented in the study [294], without performing an alignment.

106 CHAPTER 6. DETECTION AND VISUALIZATION OF GENOMIC REARRANGEMENTS

a

b

c

d

GGA 14

MGA 16

GGA 14

MGA 16

MGA 16

GGA 14

MGA 16

GGA 14

0 b 2 Mb 4 Mb 6 Mb 8 Mb 10 Mb 12 Mb 14 Mb 16 Mb

0 b 2 Mb 4 Mb 6 Mb 8 Mb 10 Mb 12 Mb 14 Mb

R
e

la
tiv

e
 R

e
d

u
n

d
a

n
c

y

R
e

d
u

n
d

a
n

c
y

0.0

2.0

0.5

1.0

1.5

0 b 2 Mb 4 Mb 6 Mb 8 Mb 10 Mb 12 Mb 14 Mb 16 Mb

0 b 2 Mb 4 Mb 6 Mb 8 Mb 10 Mb 12 Mb 14 Mb

R
e

la
tiv

e
 R

e
d

u
n

d
a

n
c

y

R
e

d
u

n
d

a
n

c
y

0.0

2.0

0.5

1.0

1.5

Figure 6.9: G. gallus chr. 14 compared to M. gallopavo chr. 16. (a) Smash++, employing an FCM and
an STMM with k = 14 and 5, respectively. The blocks smaller than 400 kb are discarded;
(b) progressiveMauve, with LCB weight of 27,424; (c) adopted from [297]. The box shows an
inversion rearrangement; (d) SynBrowser, with the resolution of 150 kb.

6.3.4 Comparison to Smash

To have a better understanding of the improvement made over the �rst version (Smash), we compare
the two tools on a synthetic and a real dataset (see Figures 6.12 and 6.13). In Table 6.1, the procedure
of making the synthetic data (RefComp and TarComp) is described. Fig. 6.12 shows the comparison
of Smash and Smash++ running on the synthetic dataset. Smash used an FCM with k-mer size of 14
and Smash++ used a cooperation of an FCM with k-mer size of 14 and an STMM with number of
substitutions of 5. As the information pro�les show, Smash++ is able to model better the data, since
it uses less information (lower information contents) to describe the target based on the reference;
this is possible because of employing a cooperation of the FCM and the STMM instead of using solely
an FCM. We expect the output to have the following format: parts I, II, III and IV of the reference
and the target are similar (including rearrangements), there is also inverted repeats between parts
V, VI and VII of the sequences, and �nally, there are rearrangements between parts VIII, IX and
X of the sequences. When there is no space between consecutive regions, Smash++ joins them;
therefore, we expect Smash++ to detect three similar regions: the one including parts I, II, III and

6.3. RESULTS AND DISCUSSION 107

a

b

c

d

e

HS 12

PT 12

HS 12

PT 12

PT 12

HS 12

HS 12

0 b 15 Mb 30 Mb 45 Mb 60 Mb 75 Mb 90 Mb 105 Mb 120 Mb 135 Mb

0 b 15 Mb 30 Mb 45 Mb 60 Mb 75 Mb 90 Mb 105 Mb 120 Mb 135 Mb

R
e

la
tiv

e
 R

e
d

u
n

d
a

n
c

y

R
e

d
u

n
d

a
n

c
y

0.0

2.0

0.5

1.0

1.5

0 b 15 Mb 30 Mb 45 Mb 60 Mb 75 Mb 90 Mb 105 Mb 120 Mb 135 Mb

0 b 15 Mb 30 Mb 45 Mb 60 Mb 75 Mb 90 Mb 105 Mb 120 Mb 135 Mb

R
e

la
tiv

e
 R

e
d

u
n

d
a

n
c

y

R
e

d
u

n
d

a
n

c
y

0.0

2.0

0.5

1.0

1.5

HS 12

P
T

 1
2

PT 12

Figure 6.10: Comparison of H. sapiens chr. 12 and P. troglodytes chr. 12. (a) Smash++, with k = 14 used by
an FCM. The blocks smaller than 100 kb are discarded; (b) progressiveMauve, with LCB weight
of 55,186; (c) Cinteny [285], with minimum length of synteny block = 1 kb, maximum gap
between adjacent markers = 5Mb and minimum number of markers = 1; (d) SynBrowser, with
the resolution of 150 kb; (e) D-GENIES [298], in “strong precision” mode.

108 CHAPTER 6. DETECTION AND VISUALIZATION OF GENOMIC REARRANGEMENTS

a

b

c

MAFF 311018

P
X

O
9

9
A

PXO99A

MAFF 311018

PXO99A

MAFF 311018

0 b 500 Kb 1 Mb 1.5 Mb 2 Mb 2.5 Mb 3 Mb 3.5 Mb 4 Mb 4.5 Mb 5 Mb

0 b 500 Kb 1 Mb 1.5 Mb 2 Mb 2.5 Mb 3 Mb 3.5 Mb 4 Mb 4.5 Mb 5 Mb

R
e

la
tiv

e
 R

e
d

u
n

d
a

n
c

y

R
e

d
u

n
d

a
n

c
y

0.0

2.0

0.5

1.0

1.5

0 b 500 Kb 1 Mb 1.5 Mb 2 Mb 2.5 Mb 3 Mb 3.5 Mb 4 Mb 4.5 Mb 5 Mb

0 b 500 Kb 1 Mb 1.5 Mb 2 Mb 2.5 Mb 3 Mb 3.5 Mb 4 Mb 4.5 Mb 5 Mb

R
e

la
tiv

e
 R

e
d

u
n

d
a

n
c

y

R
e

d
u

n
d

a
n

c
y

0.0

2.0

0.5

1.0

1.5

Figure 6.11: Pair-wise comparison of PXO99A and MAFF 311018. (a) Smash++, with k = 13 used by an FCM.
The blocks smaller than 10 kb are discarded. In order to make the �gure clearer, the shaded paths
for connecting corresponding regions are not drawn; (b) progressiveMauve, with LCB weight
of 3926; (c) adopted from [294], which employs an alignment-based method to obtain this dot
plot. The blue and red colors shows regions of PXO99A that align to the same or opposite strand
of MAFF 311018, respectively.

IV, the one with parts V, VI and VII, and the one including parts VIII, IX and X. The rearrangements
map shows that Smash++ ful�lls our expectation. On the other side, Smash was not able to detect
all rearrangements, showing that to model such dataset we need more than a single FCM.

The result of running Smash and Smash++ on a real dataset, Saccharomyces cerevisiae chromo-
some VII and Saccharomyces paradoxus chromosome VII, is demonstrated in Fig. 6.13. S. cerevisiae is
a species of yeast that plays a key role in winemaking, baking and brewing. It has been a eukaryotic
model organism that gives insights into molecular functioning of human cells [300]. S. paradoxus

6.3. RESULTS AND DISCUSSION 109

T
ar

C
o

m
p

(T
a

rg
et

)

R
ef

C
o

m
p

(R
e

fe
re

n
ce

)
S

y
n

th
e

ti
c

D
a

ta
s

et

I
(1

0
0

K
b

)

X
(1

0
0

 K
b

)

II
(1

0
0

 K
b

)

II
I

(1
0

0
 K

b
)

IV
(1

0
0

K
b

)

V
(1

0
0

K
b

)

V
I

(1
0

0
K

b
)

V
II

(1
0

0
K

b
)

V
II

I
(1

0
0

K
b

)

IX
(1

0
0

K
b

)

D
u

pl
.

M
ut

at
ed

9%
M

ut
at

ed
1%

M
ut

at
ed

2
%

M
ut

at
ed

3
%

In
v.

 R
e

pe
a

t &

M
u

ta
te

d
 4

%
In

v.
 R

e
pe

a
t &

M

u
ta

te
d

 5
%

In
v.

 R
e

p
e

a
t &

M

u
ta

te
d

 6
%

M
u

ta
te

d
7%

M
u

ta
te

d
8

%

S
m
as

h
+
+

M
o

d
e

ls

In
fo

rm
a

ti
o

n
 p

ro
fi

le

R
ea

rr
an

g
e

m
e

n
ts

M
o

d
e

l

In
fo

rm
a

ti
o

n
 p

ro
fi

le

R
ea

rr
an

g
e

m
e

n
ts

S
m
as

h

k
=

 1
4

a
 =

 0
.0

0
1

F
in

it
e-

c
on

te
xt

M

o
de

l

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

R
e

f

T
a

r

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

R
e

f

T
a

r
Rela tive Redundanc y

Redundancy

0.
0

2.
0

0.
5

1.
0

1.
5

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

R
e

f

T
a

r
Rela tive Redundanc y

Redundancy

0.
0

2.
0

0.
5

1.
0

1.
5

S
u

b
st

it
u

ti
o

n
-T

o
le

ra
n

t
M

ar
k

o
v

M
o

d
e

l
F

in
it

e-
c

on
te

xt

M
o

de
l

k
=

 1
4

a
 =

 0
.0

0
1

g
 =

 0
.9

5

t
=

 5
a

 =
 0

.0
0

1
g

 =
 0

.9
5

Fi
gu

re
6.
12

:C
om

pa
ris

on
of

Sm
as

h+
+

an
d

Sm
as

h
on

th
e

sy
nt

he
tic

da
ta

se
t.

Us
in

g
co

op
er

at
io

n
of

an
FC

M
an

d
an

ST
M

M
(in

Sm
as

h+
+)

pr
od

uc
es

m
or

e
ac

cu
ra

te
re

su
lts

ra
th

er
th

an
us

in
g

a
sin

gl
e

FC
M

(in
Sm

as
h)

.

110 CHAPTER 6. DETECTION AND VISUALIZATION OF GENOMIC REARRANGEMENTS

R
ea

l
D

a
ta

s
et

S
a

c
c

h
a

ro
m

y
ce

s
 c

e
re

vi
s

ia
e

c

h
ro

m
o

s
o

m
e

 V
II

(R
e

fe
re

n
ce

)

S
a

c
c

h
a

ro
m

y
ce

s
 p

a
ra

d
o

xu
s

c

h
ro

m
o

s
o

m
e

 V
II

(T
a

rg
et

)

S
m
as

h
+
+

M
o

d
e

ls

In
fo

rm
a

ti
o

n
 p

ro
fi

le

R
ea

rr
an

g
e

m
e

n
ts

M
o

d
e

l

In
fo

rm
a

ti
o

n
 p

ro
fi

le

R
ea

rr
an

g
e

m
e

n
ts

S
m
as

h

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

1
.1

 M
b

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

1
.1

 M
b

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

1
.1

 M
b

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

1
.1

 M
b

S
u

b
st

it
u

ti
o

n
-T

o
le

ra
n

t
M

ar
k

o
v

M
o

d
e

l
F

in
it

e-
c

on
te

xt

M
o

de
l

k
=

 1
4

a
 =

 0
.0

0
1

g
 =

 0
.9

5

t
=

 5
a

 =
 0

.0
0

1
g

 =
 0

.9
5

k
=

 1
4

a
 =

 0
.0

0
1

F
in

it
e-

c
on

te
xt

M

o
de

l

S
c.

V
II

S
p

.V
II

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

1
.1

 M
b

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

1
.1

 M
b

Rela tive Redundanc y

Redundancy
0

.0

2
.0

0
.5

1
.01.
5

S
c.

V
II

S
p

.V
II

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

1
.1

 M
b

0
 b

1
0

0
 K

b
2

0
0

 K
b

3
0

0
 K

b
4

0
0

 K
b

5
0

0
 K

b
6

0
0

 K
b

7
0

0
 K

b
8

0
0

 K
b

9
0

0
 K

b
1

 M
b

1
.1

 M
b

Rela tive Redundanc y

Redundancy
0

.0

2
.0

0
.5

1
.01.
5

S
c.

V
II

S
p

.V
II

Fi
gu

re
6.
13

:C
om

pa
ris

on
of

Sm
as

h+
+

an
d

Sm
as

h
on

th
e

re
al

da
ta

se
t,

in
cl

ud
in

g
S.
ce
re
vi
si
ae

ch
r.

VI
Ia

nd
S.
pa
ra
do
xu
s

ch
r.

VI
I.

Th
e

re
ar

ra
ng

em
en

ts
m

ap
sc

le
ar

ly
sh

ow
th

e
im

pr
ov

em
en

tm
ad

e
ov

er
Sm

as
h,

us
in

g
an

FC
M

al
on

g
w

ith
an

ST
M

M
.

6.3. RESULTS AND DISCUSSION 111

is closest known species to the S. cerevisiae, that has proved its importance on di�erent �elds of
the life sciences, including evolution, ecology and biotechnology [301]. For the experiment, we ran
Smash using an FCM with k-mer size of 14, and Smash++ using an FCM with k-mer size of 14 co-
operated with an STMM with number of substitutions of 5. As can be seen, using an FCM along
with an STMM could drastically improve modeling the data, which led to �nd rearrangements more
accurately. The rearrangements map of Smash++ conforms to the previous study [300].

6.3.5 Robustness against fragmented data

Inherited from Smash, Smash++ is capable of �nding similarities between a fragmented reference
and a target sequence. Fig. 6.14 shows robustness of the proposed tool against fragmented data, for
di�erent randomly permuted block sizes. As can be seen, the same three target regions are detected
even when the reference is fragmented to 100,000 blocks of 30 bases. This capability might be of
interest in case of non-assembled sequences or in presence of assembly errors.

6.3.6 Benchmarking

Fig. 6.15 illustrates the performance of the proposed tool in terms of memory and time usage for all
datasets (see Table 6.2 for more details). Size of the datasets and number of detected similar regions
between each pair of sequences (“# Rearr”) are shown at the bottom of the �gure. The pair dataset
“Perm30” and the pair “Perm1000” are, as outliers, not shown. Fig. 6.15a shows the peak memory
in gigabytes used by Smash++ on all synthetic and real datasets. As can be seen, it is ∼1GiB for
all datasets. The maximum peak memory, ∼1.08GiB, was used when the proposed tool was run
on human and chimpanzee chromosomes 12. It should be mentioned that the memory usage of
Smash++ is related to the k-mer size that is used to model the data because di�erent data structures
are used for di�erent k-mer sizes (see Section 6.2.2). Sizes 13 and 14 were used to perform the
experiments. The maximum memory usage of ∼1GiB enables Smash++ to run on any present-day
standard computer.

Fig. 6.15b demonstrates elapsed (wall clock) times, in minutes. The elapsed times rely on the
�le sizes along with the number of detected similar regions, meaning that the greater the number
of regions and/or the greater the dataset size, the more time will be taken. Note that it is not a
linear relation. As an example, the pair dataset “Large” and the pair “PXO99A_MAFF311018” have
approximately the same total size of 10Mb; but in the former case that two similarities is detected,
Smash++ takes ∼16 seconds, and in the latter case with 23 similarities (∼12 times more than the
former case), the proposed tool takes ∼48 seconds (3 times more) to run. As another example, car-
rying out Smash++ on the pair “Large” with 50 times larger size than the pair “Medium” leads to
detection of the same number of rearrangements, i.e., 2, while it takes only ∼3 times more time.
Regarding the pair “Perm30” with 11,565 similarities detected (Table 6.2), we note that it has a mas-

112 CHAPTER 6. DETECTION AND VISUALIZATION OF GENOMIC REARRANGEMENTS

0
 b

5
0

0
 K

b

1
 M

b

1
.5

 M
b

2
 M

b

2
.5

 M
b

3
 M

b

0
 b

5
0

0
 K

b

1
 M

b

1
.5

 M
b

2
 M

b

2
.5

 M
b

3
 M

b

R
e

la
ti

v
e

R
e

d
u

n
d

a
n

c
y

R
e

d
u

n
d

a
n

c
y

0
.0

2
.0

0
.5

1
.0

1
.5

R
e
fP

e
rm

T
a
rP

e
rm

0
 b

5
0

0
 K

b

1
 M

b

1
.5

 M
b

2
 M

b

2
.5

 M
b

3
 M

b

0
 b

5
0

0
 K

b

1
 M

b

1
.5

 M
b

2
 M

b

2
.5

 M
b

3
 M

b

R
e

la
ti

v
e

R
e

d
u

n
d

a
n

c
y

R
e

d
u

n
d

a
n

c
y

0
.0

2
.0

0
.5

1
.0

1
.5

R
e
fP

e
rm

4
5
0
0
0
0

T
a
rP

e
rm

R
e
fP

e
rm

3
0
0
0
0

T
a
rP

e
rm

0
 b

5
0

0
 K

b

1
 M

b

1
.5

 M
b

2
 M

b

2
.5

 M
b

3
 M

b

0
 b

5
0

0
 K

b

1
 M

b

1
.5

 M
b

2
 M

b

2
.5

 M
b

3
 M

b

R
e
fP

e
rm

1
0
0
0

T
a
rP

e
rm

0
 b

5
0

0
 K

b

1
 M

b

1
.5

 M
b

2
 M

b

2
.5

 M
b

3
 M

b

0
 b

5
0

0
 K

b

1
 M

b

1
.5

 M
b

2
 M

b

2
.5

 M
b

3
 M

b

0
 b

5
0

0
 K

b

1
 M

b

1
.5

 M
b

2
 M

b

2
.5

 M
b

3
 M

b

0
 b

5
0

0
 K

b

1
 M

b

1
.5

 M
b

2
 M

b

2
.5

 M
b

3
 M

b

R
e
fP

e
rm

3
0

T
a
rP

e
rm

0
 b

5
0

0
 K

b

1
 M

b

1
.5

 M
b

2
 M

b

2
.5

 M
b

3
 M

b

0
 b

5
0

0
 K

b

1
 M

b

1
.5

 M
b

2
 M

b

2
.5

 M
b

3
 M

b

0
 b

5
0

0
 K

b

1
 M

b

1
.5

 M
b

2
 M

b

2
.5

 M
b

3
 M

b

0
 b

5
0

0
 K

b

1
 M

b

1
.5

 M
b

2
 M

b

2
.5

 M
b

3
 M

b

R
e

la
ti

v
e

R
e

d
u

n
d

a
n

c
y

R
e

d
u

n
d

a
n

c
y

0
.0

2
.0

0
.5

1
.0

1
.5

R
e

la
ti

v
e

R
e

d
u

n
d

a
n

c
y

R
e

d
u

n
d

a
n

c
y

0
.0

2
.0

0
.5

1
.0

1
.5

R
e

la
ti

v
e

R
e

d
u

n
d

a
n

c
y

R
e

d
u

n
d

a
n

c
y

0
.0

2
.0

0
.5

1
.0

1
.5

R
e

la
ti

v
e

R
e

d
u

n
d

a
n

c
y

R
e

d
u

n
d

a
n

c
y

0
.0

2
.0

0
.5

1
.0

1
.5

R
e

la
ti

v
e

R
e

d
u

n
d

a
n

c
y

R
e

d
u

n
d

a
n

c
y

0
.0

2
.0

0
.5

1
.0

1
.5

R
e

la
ti

v
e

R
e

d
u

n
d

a
n

c
y

R
e

d
u

n
d

a
n

c
y

0
.0

2
.0

0
.5

1
.0

1
.5

Fi
gu

re
6.
14

:S
im

ila
rit

y
of

a
ta

rg
et

se
qu

en
ce

to
a

re
fe

re
nc

e
se

qu
en

ce
,w

he
n

th
e

re
fe

re
nc

e
is

pe
rm

ut
ed

by
bl

oc
ks

of
di

�e
re

nt
siz

es
of
45
0k
b,
30
kb

,1
kb

an
d
30
b.

To
ru

n
Sm

as
h+

+,
an

FC
M

w
ith

k-
m

er
siz

e
of

14
an

d
th

e
th

re
sh

ol
d

of
1.5

w
as

us
ed

.I
ts

ho
w

st
he

pr
op

os
ed

m
et

ho
d

is
re

sis
ta

nt
to

fra
gm

en
ta

tio
n

of
se

qu
en

ce
;

fo
re

xa
m

pl
e,

in
th

e
ca

se
of
30
b,

al
th

ou
gh

th
e

re
fe

re
nc

e
is

hi
gh

ly
fra

gm
en

te
d,

Sm
as

h+
+

co
ul

d
de

te
ct

th
e

sa
m

e
th

re
e

sim
ila

rr
eg

io
ns

in
th

e
ta

rg
et

as
th

e
or

ig
in

al
ca

se
.

6.3. RESULTS AND DISCUSSION 113

● ● ●●● ● ● ● ●● ● ● ● ●

Real Synthetic

0

1

2

P
ea

k
m

em
or

y
(G

B
)

a

●
●

●

●

●
● ●

●

●

●
● ● ●

●

0

1

2

E
la

ps
ed

 ti
m

e
(M

in
)

b

22 Mb 32 Mb 264 Mb10 Mb2 Mb 3 Kb 200 Kb 10 Mb 200 Mb120 Kb 2 Mb 6 Mb 6 Mb 6 Mb

S
iz

e

5 3 4238 3 2 2 41 3 3 8 51

CompReal

PXO99A_MAFF311018

GGA18_MGA20

GGA14_MGA16

HS12_PT12

Small
Mutate

Medium
CompSynth

PermOrig

Perm450000

Perm30000

Large
XLarge

R

ea
rr

1 Mb 130 Mb 260 Mb

Size
1 25 50

Rearr

Figure 6.15: (a) The peak memory consumption, in gigabytes; and (b) the elapsed (wall clock) time usage, in
minutes, of Smash++ by running on all synthetic and real datasets described in Table 6.1.

sively fragmented reference sequence with 10,000 fragments of 30 b; therefore it is by far the most
time-consuming dataset. Note that the di�erence between the values of 10,000 (number of reference
fragments) and 11,565 (number of similar regions) arises from the fact that a number of the reference
chunks are similar to more than one target region and vice versa.

A major advantage of Smash++ over Smash is using a combination of FCMs and STMMs to
better model the data; however, to have an idea about how the performance of these two tools can
be compared, we let Smash++ run with only one FCM on the dataset described in Table 6.1. We
also did not compute self-complexity, similarly to Smash. Fig. 6.16 and Table 6.3 show the results.
In Fig. 6.16a, the range of peak memory usages (from minimum to maximum usage) are compared,
while running Smash and Smash++ on di�erent real and synthetic datasets. The diamond symbol
shows the mean value. The results show that the maximum peak memory usage by Smash++ is 1.9
times less than that by Smash. In Fig. 6.16b, the range of wall clock times is compared for these two
tools. As mentioned in the �gure, Smash++ runs 5.4 times faster than Smash on the tested datasets.
It is worth mentioning that due to the absence of another tool that provides relative compression
in addition to detecting rearrangements, we cannot have a fair quantitative comparison to other
tools, in terms of time and memory usage; therefore, we have only included the results obtained by
Smash++ and Smash.

114 CHAPTER 6. DETECTION AND VISUALIZATION OF GENOMIC REARRANGEMENTS

Table 6.2: Performance of Smash++, in terms of memory and time usage, running on all synthetic and real
datasets described in Table 6.1.

Dataset Size (b) # Rearr Memory (KB) Elapsed User System
(Reference + Target) time (s) time (s) time (s)

Synthetic

Small 3000 3 1,053,528 6.95 1.76 5.22
Medium 200,000 2 1,053,328 5.11 1.45 3.68
Large 10,000,000 2 1,055,860 16.06 12.20 3.73
XLarge 200,000,000 4 1,126,892 88.61 78.67 7.95
Mutate 120,000 1 1,053,308 2.93 0.87 2.06
PermOrig 6,000,000 3 1,055,304 10.98 4.43 6.50
Perm450000 6,000,000 8 1,055,128 15.37 5.74 9.55
Perm30000 6,000,000 51 1,054,900 84.02 24.58 59.14
Perm1000 6,000,000 702 1,054,660 652.58 176.82 474.16
Perm30 6,000,000 11,565 1,057,804 24,958.90 16,542.13 7629.04
CompSynth 2,000,000 3 1,054,236 10.98 5.58 5.26
Real

GGA14_MGA16 31,542,564 3 1,067,380 53.74 44.80 8.57
GGA18_MGA20 22,419,393 5 1,062,700 46.75 37.77 8.73
HS12_PT12 264,271,225 4 1,137,216 105.21 95.15 7.36
PXO99A_MAFF311018 10,324,186 23 1,056,048 48.39 16.24 31.86
CompReal 2,228,294 8 1,054,532 22.66 9.21 13.35

Real Synthetic

0.0

0.4

0.8

1.2

1.6

2.0

P
ea

k
m

em
or

y
(G

B
)

Max peak memory Smash / Smash++ = 1.9

a

Real Synthetic

0

2

4

6

8

10

E
la

ps
ed

 ti
m

e
(M

in
)

Speedup Smash++ / Smash = 5.4

b

Method

Smash

Smash++

Figure 6.16: Comparison of Smash++ and Smash, in terms of (a) memory usage; and (b) time usage, run-
ning on real and synthetic data described in Table 6.1. To have a fair comparison, only one
model (FCM) is used by Smash++, and also self-complexity is not computed. Diamonds indicate
the mean, and bars, the ranges from minimum to maximum values.

6.4. CONCLUSIONS 115

Table 6.3: The memory and time usage of Smash++ and Smash, running on synthetic and real dataset (Ta-
ble 6.1). To have a fair comparison, Smash++ uses only one model (FCM), as Smash does.

Dataset
(Reference + Target)

Size (b) Memory (KB) Elapsed time (s)

Smash Smash++ Smash Smash++

Synthetic

Small 3000 8440 1,053,416 0.03 2.14
Medium 200,000 366,624 1,053,560 0.95 1.77
Large 10,000,000 2,104,976 1,055,852 12.15 2.75
XLarge 200,000,000 2,101,496 1,102,036 196.29 24.36
Mutate 120,000 18,268 38,136 0.61 1.78
PermOrig 6,000,000 48,252 137,784 3.76 0.97
CompSynth 2,000,000 1,789,796 1,053,960 24.33 22.39
Real

GGA14_MGA16 31,542,564 2,113,716 1,053,672 19.74 7.01
GGA18_MGA20 22,419,393 2,055,804 1,054,124 31.20 25.06
HS12_PT12 264,271,225 2,098,868 1,122,652 621.70 68.87
PXO99A_MAFF311018 10,324,186 1,771,048 1,055,612 80.38 26.23
CompReal 2,228,294 36,992 136,588 1.79 1.36
Note: the pair datasets “Perm450000”, “Perm30000”, “Perm1000” and “Perm30” were excluded from this experiment, since

they were basically used to show the potential of Smash++ to handle fragmented data.

6.4 Conclusions

Finding genomic rearrangements is crucial, since they play an important role in genetic disorders,
cancer and chromosomal evolution. We presented Smash++, an alignment-free tool that accurately
�nds small- and large-scale genomic rearrangements between pairs of DNA sequences, by employ-
ing a data compression approach. This memory-e�cient tool was successfully tested on several
synthetic and real data from bacteria, fungi, Aves and mammalia. The presented results showed that
the detected rearrangements complied with previous studies which used alignment-based methods
or performed FISH analysis. Smash++ consumed a maximum of ∼1GiB of memory, among all ex-
periments, which showed that it can be run on any computer, nowadays. The proposed tool has
the potential to improve accuracy of diagnostic and genetic counselling, and also to guide future
investigations into development of personalized therapeutic.

116 CHAPTER 6. DETECTION AND VISUALIZATION OF GENOMIC REARRANGEMENTS

Chapter 7

Conclusions

The present thesis is motivated by the increasing growth of the production of omics data that has
been led by advancements in high-throughput sequencing technologies along with accessing new
samples, e.g. those coming from archaeological remains. These data need to be stored, analyzed
and transmitted. In this thesis, we have investigated methods that are able to provide e�cient
representations of omics data by means of compression or encryption, and then, employed them for
the purpose of analysis.

In order to quantify the amount of information in and between omics sequences, we have de-
scribed a number of measures, among which the normalized relative compression is the most light-
weight comparative measure in terms of time and memory consumption. We have also presented
a number of models, such as �nite-context models and substitution-tolerant Markov models, that
can be employed for compression and analysis of omics data. As an application to the mentioned
measures and models, we investigated the role of inverted repeats on similarities of pairs of genomic
sequences, and found that applying IRs will make our models better �t the genomic data.

To facilitate the storage and analysis of genomic and proteomic data, we proposed three lossless
compression methods: GeCo2 and Jarvis for DNA and AC for protein sequences. GeCo2 and AC
work based on a combination of FCMs and STMMs and Jarvis exploits repeat models and a compet-
itive prediction model in addition to FCMs and STMMs. Applying them on various synthetic and
real genomic and proteomic sequences showed that they can outperform previously proposed algo-
rithms in terms of compression ratio. Moreover, we applied AC on 10,677 sequences from viruses,
eukaryota, archaea and bacteria domains for the purpose of analyzing their complexity. The results
showed that viruses and eukaryota are the most and the least complex sequences to compress.

The omics data used in the �elds such as personalized medicine is naturally sensitive; therefore,
its security needs to be preserved. We have designed a tool, Cryfa, that can securely encrypt genomic
data and at the same time, is able to compact FASTA and FASTQ sequences by a factor of three. It

117

118 CHAPTER 7. CONCLUSIONS

employs AES encryption and a shu�ing mechanism to enhance the security of data. Applied on
numerous synthetic and real data showed that the proposed method is faster than general-purpose
and special-purpose algorithms. Also, it has only a few megabytes RAM usage.

Aside from e�cient representation of omics data in compressed or encrypted manners, we can
exploit the compression methods and compression-based measures for the purpose of analysis. We
have investigated the detection of unique regions in a species with respect to close species to have
an insight into evolutionary traits. As a result, we proposed two alignment-free tools, CHESTER and
FRUIT, that are capable of �nding and visualization of distinct regions between a pair of collections
of genomic or proteomic sequences. These tools employ Bloom �lters for detection and localization
of distinct regions. By applying the proposed methods on genomic and proteomic sequences of mod-
ern human and Neanderthals, as one of the closest hominins to humans, we identi�ed a number of
regions (present in modern humans and absent in Neanderthals) which may express new functions
linked with evolution of modern human.

Finally, as another application of data compression in omics data analysis, we investigated the
identi�cation of genomic rearrangements, which play an important role in chromosomal evolution,
genetic disorders and cancer. We have proposed an alignment-free tool, Smash++, that is able to
identify and visualize small- and large-scale rearrangements between pairs of genomic sequences.
Tested on various synthetic and real data from bacteria, fungi, Aves and mammalia showed that
the proposed method can �nd accurately the rearrangements that were partially reported by other
methods such as FISH analysis, which is a wet laboratory approach.

In the following we mention some research directions for future work. Concerned with omics
data compression, it is worthwhile to provide random access capability, which allows one to access
only a part of genome or proteome and removes the need to decompress the entire compressed �le.
Moreover, it may be desired to perform operations directly on compressed data, which can lead to
a faster analysis. These ideas can also be extended to the context of security preservation (encryp-
tion/decryption).

Another idea worth exploring is to reconstruct phylogenetic trees by means of the compres-
sion models that are developed in the current thesis, since they are able to measure the distance
of information. It would be an application of data compression in omics data analysis, in which
evolutionary relationships between a group of organisms is represented.

Bibliography

[1] L. Pray, “Discovery of DNA structure and function: Watson and Crick,” Nature Education, vol. 1, no. 1,
p. 100, 2008.

[2] B. Alberts, A. Johnson, J. Lewis, et al., Molecular Biology of the Cell, 6th edition. Garland Science, 2017.

[3] M. E. Hudson, “Sequencing breakthroughs for genomic ecology and evolutionary biology,” Molecular
ecology resources, vol. 8, no. 1, pp. 3–17, 2008.

[4] A. E. Shearer, A. P. DeLuca, M. S. Hildebrand, et al., “Comprehensive genetic testing for hereditary
hearing loss using massively parallel sequencing,” Proceedings of the National Academy of Sciences,
vol. 107, no. 49, pp. 21 104–21 109, 2010.

[5] P. Bradley, N. C. Gordon, T. M. Walker, et al., “Rapid antibiotic-resistance predictions from genome
sequence data for Staphylococcus aureus and Mycobacterium tuberculosis,” Nature communications,
vol. 6, no. 1, pp. 1–15, 2015.

[6] D. Marco, Metagenomics: current innovations and future trends. Horizon Scienti�c Press, 2011.

[7] S. D. J. Pena and R. Chakraborty, “Paternity testing in the DNA era,” Trends in Genetics, vol. 10, no. 6,
pp. 204–209, 1994.

[8] N. Fierer, C. L. Lauber, N. Zhou, et al., “Forensic identi�cation using skin bacterial communities,”
Proceedings of the National Academy of Sciences, vol. 107, no. 14, pp. 6477–6481, 2010.

[9] T. Lan and C. Lindqvist, “Paleogenomics: Genome-scale analysis of ancient DNA and population and
evolutionary genomic inferences,” in Population Genomics, Springer, 2018, pp. 323–360.

[10] A. T. Duggan, M. F. Perdomo, D. Piombino-Mascali, et al., “17th century variola virus reveals the
recent history of smallpox,” Current Biology, vol. 26, no. 24, pp. 3407–3412, 2016.

[11] R. Wu, “Nucleotide sequence analysis of DNA: I. Partial sequence of the cohesive ends of bacterio-
phage � and 186 DNA,” Journal of molecular biology, vol. 51, no. 3, pp. 501–521, 1970.

[12] F. Sanger, S. Nicklen, and A. R. Coulson, “DNA sequencing with chain-terminating inhibitors,” Pro-
ceedings of the national academy of sciences, vol. 74, no. 12, pp. 5463–5467, 1977.

[13] A. M. Maxam and W. Gilbert, “A new method for sequencing DNA,” Proceedings of the National
Academy of Sciences, vol. 74, no. 2, pp. 560–564, 1977.

[14] S. Beck and F. M. Pohl, “DNA sequencing with direct blotting electrophoresis,” The EMBO journal,
vol. 3, no. 12, pp. 2905–2909, 1984.

[15] L. M. Smith, J. Z. Sanders, R. J. Kaiser, et al., “Fluorescence detection in automated DNA sequence
analysis,” Nature, vol. 321, no. 6071, pp. 674–679, 1986.

[16] J. M. Prober, G. L. Trainor, R. J. Dam, et al., “A system for rapid DNA sequencing with �uorescent
chain-terminating dideoxynucleotides,” Science, vol. 238, no. 4825, pp. 336–341, 1987.

[17] R. Y. Tsien, P. Ross, M. Fahnestock, et al., “DNA sequencing,” pat. WO1991006678A1, Oct. 1990.

[18] M. Ronaghi, S. Karamohamed, B. Pettersson, et al., “Real-time DNA sequencing using detection of
pyrophosphate release,” Analytical biochemistry, vol. 242, no. 1, pp. 84–89, 1996.

119

120 BIBLIOGRAPHY

[19] E. Kawashima, L. Farinelli, and P. Mayer, “Method of nucleic acid ampli�cation,” pat.
WO1998044151A1, Apr. 1998.

[20] S. Brenner, M. Johnson, J. Bridgham, et al., “Gene expression analysis by massively parallel signature
sequencing (MPSS) on microbead arrays,” Nature biotechnology, vol. 18, no. 6, pp. 630–634, 2000.

[21] A. Grada and K. Weinbrecht, “Next-generation sequencing: Methodology and application,” The Jour-
nal of investigative dermatology, vol. 133, no. 8, e11, 2013.

[22] J. Straiton, T. Free, A. Sawyer, et al., “From Sanger sequencing to genome databases and beyond,”
BioTechniques, vol. 66, no. 2, pp. 60–63, 2019.

[23] F. S. Collins, M. Morgan, and A. Patrinos, “The Human Genome Project: Lessons from large-scale
biology,” Science, vol. 300, no. 5617, pp. 286–290, 2003.

[24] S. Behjati and P. S. Tarpey, “What is next generation sequencing?” Archives of Disease in Childhood-
Education and Practice, vol. 98, no. 6, pp. 236–238, 2013.

[25] C.-S. Chin, D. H. Alexander, P. Marks, et al., “Nonhybrid, �nished microbial genome assemblies from
long-read SMRT sequencing data,” Nature methods, vol. 10, no. 6, pp. 563–569, 2013.

[26] D. A. Rasko, D. R. Webster, J. W. Sahl, et al., “Origins of the E. coli strain causing an outbreak of
hemolytic–uremic syndrome in Germany,” New England Journal of Medicine, vol. 365, no. 8, pp. 709–
717, 2011.

[27] B. Tran, A. M. Brown, P. L. Bedard, et al., “Feasibility of real time next generation sequencing of cancer
genes linked to drug response: Results from a clinical trial,” International journal of cancer, vol. 132,
no. 7, pp. 1547–1555, 2013.

[28] A. H. Van Vliet, “Next generation sequencing of microbial transcriptomes: Challenges and opportu-
nities,” FEMS microbiology letters, vol. 302, no. 1, pp. 1–7, 2010.

[29] A. Payne, N. Holmes, V. Rakyan, et al., “BulkVis: A graphical viewer for Oxford nanopore bulk FAST5
�les,” Bioinformatics, vol. 35, no. 13, pp. 2193–2198, 2018.

[30] P. J. A. Cock, C. J. Fields, N. Goto, et al., “The Sanger FASTQ �le format for sequences with quality
scores, and the Solexa/Illumina FASTQ variants,” Nucleic Acids Research, vol. 38, pp. 1767–1771, 2009.

[31] D. J. Lipman and W. R. Pearson, “Rapid and sensitive protein similarity searches,” Brie�ngs in Bioin-
formatics, vol. 227, no. 4693, pp. 1435–1441, 1985.

[32] H. Li, B. Handsaker, A. Wysoker, et al., “The sequence alignment/map format and SAMtools,” Bioin-
formatics, vol. 25, no. 16, pp. 2078–2079, 2009.

[33] C. Alberti, M. Mattavelli, A. Hernandez, et al., “Investigation on genomic information compression
and storage,” ISO/IEC JTC 1/SC 29/WG 11 N15346, pp. 1–28, 2015.

[34] T. S. F. S. W. Group, “The sequence alignment/map format speci�cation,” pp. 1–16, 2015.

[35] K. Sayood, Introduction to data compression, 5th edition. Morgan Kaufmann, 2017.

[36] J. K. Bon�eld and M. V. Mahoney, “Compression of FASTQ and SAM format sequencing data,” PLoS
ONE, vol. 8, no. 3, e59190, 2013.

[37] Z. Zhu, Y. Zhang, Z. Ji, et al., “High-throughput DNA sequence data compression,” Brie�ngs in Bioin-
formatics, vol. 16, no. 1, pp. 1–15, 2013.

[38] D. Hu�man, “A method for the construction of minimum redundancy codes,” in Proceedings of the
IRE, vol. 40, 1952, pp. 1098–1101.

[39] S. W. Golomb, “Run-length encodings,” IEEE Transactions on Information Theory, vol. 12, no. 3, pp. 399–
401, 1966.

[40] C. E. Shannon, “A mathematical theory of communication,” Bell system technical journal, vol. 27, no. 3,
pp. 379–423, 1948.

121

[41] J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM Journal of research and development, vol. 23,
no. 2, pp. 149–162, 1979.

[42] G. P. Patrinos, Applied Genomics and Public Health. Elsevier, 2020.

[43] K. H. Chuong, D. R. Mack, A. Stintzi, et al., “Human microbiome and learning healthcare systems:
Integrating research and precision medicine for in�ammatory bowel disease,” OMICS: A Journal of
Integrative Biology, vol. 22, no. 2, pp. 119–126, 2018.

[44] A. J. Titus, A. Flower, P. Hagerty, et al., “SIG-DB: Leveraging homomorphic encryption to securely
interrogate privately held genomic databases,” PLOS Computational Biology, vol. 14, no. 9, e1006454,
2018.

[45] ISO/IEC 19772:2009, “Information technology – security techniques – authenticated encryption,”
2009.

[46] K. Beckers, Pattern and Security Requirements: Engineering-Based Establishment of Security Standards.
Springer International Publishing, 2015.

[47] J. E. Boritz, “IS practitioners’ views on core concepts of information integrity,” International Journal
of Accounting Information Systems, vol. 6, no. 4, pp. 260–279, 2005.

[48] J. Andress, The basics of information security: understanding the fundamentals of InfoSec in theory and
practice. Syngress, 2014.

[49] L. Y. Zhang, Y. Liu, C. Wang, et al., “Improved known-plaintext attack to permutation-only multimedia
ciphers,” Information Sciences, vol. 430, pp. 228–239, 2018.

[50] B. A. Black, R. R. Neely, and M. Manga, “Campanian Ignimbrite volcanism, climate, and the �nal
decline of the Neanderthals,” Geology, vol. 43, no. 5, pp. 411–414, 2015.

[51] M. Bradtmöller, A. Pastoors, B. Weninger, et al., “The repeated replacement model–rapid climate
change and population dynamics in Late Pleistocene Europe,” Quaternary International, vol. 247,
pp. 38–49, 2012.

[52] D. Wolf, T. Kolb, M. Alcaraz-Castaño, et al., “Climate deteriorations and Neanderthal demise in inte-
rior Iberia,” Scienti�c reports, vol. 8, no. 1, pp. 1–10, 2018.

[53] C. Finlayson and J. S. Carrion, “Rapid ecological turnover and its impact on Neanderthal and other
human populations,” Trends in Ecology & Evolution, vol. 22, no. 4, pp. 213–222, 2007.

[54] W. E. Banks, F. d’Errico, A. T. Peterson, et al., “Neanderthal extinction by competitive exclusion,” PLoS
ONE, vol. 3, no. 12, e3972, 2008.

[55] S. Underdown, “A potential role for transmissible spongiform encephalopathies in Neanderthal ex-
tinction,” Medical hypotheses, vol. 71, no. 1, pp. 4–7, 2008.

[56] A. P. Sullivan, M. de Manuel, T. Marques-Bonet, et al., “An evolutionary medicine perspective on
Neandertal extinction,” Journal of human evolution, vol. 108, pp. 62–71, 2017.

[57] D. Reich, R. E. Green, M. Kircher, et al., “Genetic history of an archaic hominin group from Denisova
Cave in Siberia,” Nature, vol. 468, no. 7327, p. 1053, 2010.

[58] K. Prüfer, F. Racimo, N. Patterson, et al., “The complete genome sequence of a Neanderthal from the
Altai Mountains,” Nature, vol. 505, no. 7481, p. 43, 2014.

[59] J. R. Lupski, “Genomic rearrangements and sporadic disease,” Nature genetics, vol. 39, no. 7, S43–S47,
2007.

[60] P. Stankiewicz and J. R. Lupski, “Genome architecture, rearrangements and genomic disorders,”
Trends in Genetics, vol. 18, no. 2, pp. 74–82, 2002.

[61] J. M. Levsky and R. H. Singer, “Fluorescence in situ hybridization: Past, present and future,” Journal
of cell science, vol. 116, no. 14, pp. 2833–2838, 2003.

122 BIBLIOGRAPHY

[62] A. Zielezinski, H. Z. Girgis, G. Bernard, et al., “Benchmarking of alignment-free sequence comparison
methods,” Genome Biology, vol. 20, no. 1, p. 144, 2019.

[63] J. Xiong, Essential bioinformatics. Cambridge University Press, 2006.

[64] A. Zielezinski, S. Vinga, J. Almeida, et al., “Alignment-free sequence comparison: Bene�ts, applica-
tions, and tools,” Genome biology, vol. 18, no. 1, p. 186, 2017.

[65] S. Vinga, “Information theory applications for biological sequence analysis,” Brie�ngs in bioinformat-
ics, vol. 15, no. 3, pp. 376–389, 2013.

[66] A. J. Pinho, S. P. Garcia, D. Pratas, et al., “DNA sequences at a glance,” PLoS ONE, vol. 8, no. 11, e79922,
2013.

[67] Y. Gao and L. Luo, “Genome-based phylogeny of dsDNA viruses by a novel alignment-free method,”
Gene, vol. 492, no. 1, pp. 309–314, 2012.

[68] Z. Liu, J. Meng, and X. Sun, “A novel feature-based method for whole genome phylogenetic analy-
sis without alignment: Application to HEV genotyping and subtyping,” Biochemical and biophysical
research communications, vol. 368, no. 2, pp. 223–230, 2008.

[69] G. E. Sims and S.-H. Kim, “Whole-genome phylogeny of Escherichia coli/Shigella group by feature
frequency pro�les (FFPs),” Proceedings of the National Academy of Sciences, vol. 108, no. 20, pp. 8329–
8334, 2011.

[70] H. Wang, Z. Xu, L. Gao, et al., “A fungal phylogeny based on 82 complete genomes using the compo-
sition vector method,” BMC evolutionary biology, vol. 9, no. 1, p. 195, 2009.

[71] P. Kolekar, M. Kale, and U. Kulkarni-Kale, “Alignment-free distance measure based on return time
distribution for sequence analysis: Applications to clustering, molecular phylogeny and subtyping,”
Molecular phylogenetics and evolution, vol. 65, no. 2, pp. 510–522, 2012.

[72] K. Hatje and M. Kollmar, “A phylogenetic analysis of the brassicales clade based on an alignment-free
sequence comparison method,” Frontiers in plant science, vol. 3, p. 192, 2012.

[73] C.-A. Leimeister, M. Boden, S. Horwege, et al., “Fast alignment-free sequence comparison using
spaced-word frequencies,” Bioinformatics, vol. 30, no. 14, pp. 1991–1999, 2014.

[74] G. Reinert, D. Chew, F. Sun, et al., “Alignment-free sequence comparison (I): Statistics and power,”
Journal of Computational Biology, vol. 16, no. 12, pp. 1615–1634, 2009.

[75] B. D. Ondov, T. J. Treangen, P. Melsted, et al., “Mash: Fast genome and metagenome distance estima-
tion using MinHash,” Genome biology, vol. 17, no. 1, p. 132, 2016.

[76] R. Bromberg, N. V. Grishin, and Z. Otwinowski, “Phylogeny reconstruction with alignment-free
method that corrects for horizontal gene transfer,” PLOS Computational Biology, vol. 12, no. 6,
e1004985, 2016.

[77] S. Sarmashghi, K. Bohmann, M. T. P. Gilbert, et al., “Skmer: Assembly-free and alignment-free sample
identi�cation using genome skims,” Genome biology, vol. 20, no. 1, p. 34, 2019.

[78] S. Röhling, A. Linne, J. Schellhorn, et al., “The number of k-mer matches between two DNA sequences
as a function of k and applications to estimate phylogenetic distances,” PLoS ONE, vol. 15, no. 2,
e0228070, 2020.

[79] I. Ulitsky, D. Burstein, T. Tuller, et al., “The average common substring approach to phylogenomic
reconstruction,” Journal of Computational Biology, vol. 13, no. 2, pp. 336–350, 2006.

[80] B. Haubold, N. Pierstor�, F. Möller, et al., “Genome comparison without alignment using shortest
unique substrings,” BMC bioinformatics, vol. 6, no. 1, p. 123, 2005.

[81] A. J. Pinho, P. J. S. G. Ferreira, S. P. Garcia, et al., “On �nding minimal absent words,” BMC bioinfor-
matics, vol. 10, no. 1, p. 137, 2009.

[82] L. Yang, X. Zhang, T. Wang, et al., “Large local analysis of the unaligned genome and its application,”
Journal of Computational Biology, vol. 20, no. 1, pp. 19–29, 2013.

123

[83] J. Wen and Y. Zhang, “A 2D graphical representation of protein sequence and its numerical charac-
terization,” Chemical Physics Letters, vol. 476, no. 4-6, pp. 281–286, 2009.

[84] J. S. Almeida, “Sequence analysis by iterated maps, a review,” Brie�ngs in bioinformatics, vol. 15, no. 3,
pp. 369–375, 2013.

[85] M. Hosseini, D. Pratas, B. Morgenstern, et al., “Smash++: An alignment-free and memory-e�cient
tool to �nd genomic rearrangements,” GigaScience, vol. 9, no. 5, giaa048, 2020.

[86] M. Hosseini, D. Pratas, and A. J. Pinho, “AC: A compression tool for amino acid sequences,” Interdis-
ciplinary Sciences: Computational Life Sciences, vol. 11, no. 1, pp. 68–76, 2019.

[87] D. Pratas, M. Hosseini, J. M. Silva, et al., “A reference-free lossless compression algorithm for DNA
sequences using a competitive prediction of two classes of weighted models,” Entropy, vol. 21, no. 11,
p. 1074, 2019.

[88] M. Hosseini, D. Pratas, and A. J. Pinho, “A probabilistic method to �nd and visualize distinct regions
in protein sequences,” in The 27th European Signal Processing Conference (EUSIPCO), IEEE, 2019, pp. 1–
5.

[89] D. Pratas, M. Hosseini, and A. J. Pinho, “Visualization of similar primer and adapter sequences in
assembled archaeal genomes,” in The 13th International Conference on Practical Applications of Com-
putational Biology & Bioinformatics (PACBB), Springer, 2019, pp. 129–136.

[90] ——, “GeCo2: An optimized tool for lossless compression and analysis of DNA sequences,” in The 13th

International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB),
Springer, 2019, pp. 137–145.

[91] M. Hosseini, D. Pratas, and A. J. Pinho, “Clustering DNA sequences by relative compression,” in The
25th Portuguese Conference on Pattern Recognition (RECPAD), Oct. 2019.

[92] M. Hosseini, D. Pratas, A. Amorim, et al., “Improving the detection of mtDNA rearrangements using
a fast and accurate algorithm,” in XV Encontro Nacional de Biologia Evolutiva, Nov. 2019.

[93] M. Hosseini, D. Pratas, and A. J. Pinho, “Cryfa: A secure encryption tool for genomic data,” Bioinfor-
matics, vol. 35, no. 1, pp. 146–148, 2018.

[94] D. Pratas, M. Hosseini, G. Grilo, et al., “Metagenomic composition analysis of an ancient sequenced
polar bear jawbone from Svalbard,” genes, vol. 9, no. 9, p. 445, 2018.

[95] D. Pratas, M. Hosseini, and A. J. Pinho, “Compression of amino acid sequences,” in The 12th Inter-
national Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB),
Springer, 2018, pp. 105–113.

[96] M. Hosseini, D. Pratas, and A. J. Pinho, “On the role of inverted repeats in DNA sequence similarity,” in
The 11th International Conference on Practical Applications of Computational Biology & Bioinformatics
(PACBB), Springer, 2017, pp. 228–236.

[97] D. Pratas, M. Hosseini, and A. J. Pinho, “Substitutional tolerant Markov models for relative compres-
sion of DNA sequences,” in The 11th International Conference on Practical Applications of Computa-
tional Biology & Bioinformatics (PACBB), Springer, 2017, pp. 265–272.

[98] ——, “Cryfa: A tool to compact and encrypt FASTA �les,” in The 11th International Conference on
Practical Applications of Computational Biology & Bioinformatics (PACBB), Springer, 2017, pp. 305–
312.

[99] D. Pratas, M. Hosseini, R. M. Silva, et al., “Visualization of distinct DNA regions of the modern human
relatively to a Neanderthal genome,” in The 8th Iberian Conference on Pattern Recognition and Image
Analysis (IbPRIA), Springer, 2017, pp. 235–242.

[100] M. Hosseini, D. Pratas, and A. J. Pinho, “A survey on data compression methods for biological se-
quences,” information, vol. 7, no. 4, p. 56, 2016.

[101] G. J. Chaitin, “On the length of programs for computing �nite binary sequences,” Journal of the ACM,
vol. 13, no. 4, pp. 547–569, 1966.

124 BIBLIOGRAPHY

[102] A. Kolmogorov, “Three approaches to the quantitative de�nition of information,” Problems of Infor-
mation Transmission, vol. 1, no. 1, pp. 1–7, 1965.

[103] A. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proceedings
of the London Mathematical Society, vol. 42, no. 2, pp. 230–265, 1936.

[104] M. Li and P. M. B. Vitányi, An introduction to Kolmogorov complexity and its applications, 4th edition.
Springer, 2019.

[105] A. K. Zvonkin and L. A. Levin, “The complexity of �nite objects and the development of the concepts
of information and randomness by means of the theory of algorithms,” Russian Mathematical Surveys,
vol. 25, no. 6, pp. 83–124, 1970.

[106] D. Hammer, A. Romashchenko, A. Shen, et al., “Inequalities for Shannon entropy and Kolmogorov
complexity,” Journal of Computer and System Sciences, vol. 60, no. 2, pp. 442–464, 2000.

[107] C. H. Bennett, P. Gács, P. M. B. Vitányi, et al., “Information distance,” IEEE Transactions on Information
Theory, vol. 44, no. 4, pp. 1407–1423, 1998.

[108] M. Li, X. Chen, X. Li, et al., “The similarity metric,” IEEE Transactions on Information Theory, vol. 50,
no. 12, pp. 3250–3264, 2004.

[109] R. Cilibrasi and P. M. B. Vitányi, “Clustering by compression,” IEEE Transactions on Information The-
ory, vol. 51, no. 4, pp. 1523–1545, 2005.

[110] M. Cebrián, M. Alfonseca, and A. Ortega, “Common pitfalls using the normalized compression dis-
tance: What to watch out for in a compressor,” Communications in Information and Systems, vol. 5,
no. 4, pp. 367–384, 2005.

[111] D. Pratas, “Compression and analysis of genomic data,” Ph.D. dissertation, Universidade de Aveiro
(Portugal), 2016.

[112] N. Nikvand and Z. Wang, “Generic image similarity based on Kolmogorov complexity,” in IEEE Inter-
national Conference on Image Processing, 2010, pp. 309–312.

[113] S. Vickers, “Localic completion of generalized metric spaces i,” Theory and Applications of Categories,
vol. 14, no. 15, pp. 328–356, 2005.

[114] Q. Xia, “The geodesic problem in quasimetric spaces,” Journal of Geometric Analysis, vol. 19, no. 2,
pp. 452–479, 2009.

[115] D. Pratas, R. Silva, and A. J. Pinho, “Comparison of compression-based measures with application to
the evolution of primate genomes,” Entropy, vol. 20, no. 6, p. 393, 2018.

[116] A. J. Pinho and D. Pratas, “MFCompress: a compression tool for FASTA and multi-FASTA data,” Bioin-
formatics, vol. 30, no. 1, pp. 117–118, 2013.

[117] A. J. Pinho, P. J. S. G. Ferreira, A. J. R. Neves, et al., “On the representability of complete genomes by
multiple competing �nite-context (Markov) models,” PLoS ONE, vol. 6, no. 6, e21588, 2011.

[118] E. D. Jarvis, S. Mirarab, A. J. Aberer, et al., “Whole-genome analyses resolve early branches in the
tree of life of modern birds,” Science, vol. 346, no. 6215, pp. 1320–1331, 2014.

[119] M. Wink, P. Heidrich, and C. Fentzlo�, “A mtDNA phylogeny of sea eagles (genus haliaeetus) based
on nucleotide sequences of the cytochrome b-gene,” Biochemical Systematics and Ecology, vol. 24,
no. 7-8, pp. 783–791, 1996.

[120] J. Prado-Martinez, P. H. Sudmant, J. M. Kidd, et al., “Great ape genetic diversity and population his-
tory,” Nature, vol. 499, no. 7459, p. 471, 2013.

[121] T. M. G. Sequencing, K. C. Worley, W. C. Warren, et al., “The common marmoset genome provides
insight into primate biology and evolution,” Nature genetics, vol. 46, no. 8, p. 850, 2014.

[122] A. Lesk, Introduction to bioinformatics. Oxford University Press, 2013.

125

[123] J. Lee, K. Han, T. J. Meyer, et al., “Chromosomal inversions between human and chimpanzee lineages
caused by retrotransposons,” PLoS ONE, vol. 3, no. 12, e4047, 2008.

[124] A. J. Pinho, A. J. R. Neves, and P. J. S. G. Ferreira, “Inverted-repeats-aware �nite-context models for
DNA coding,” in The 16th European Signal Processing Conference, 2008, pp. 1–5.

[125] J. W. Ijdo, A. Baldini, D. C. Ward, et al., “Origin of human chromosome 2: An ancestral telomere-
telomere fusion,” Proceedings of the National Academy of Sciences, vol. 88, no. 20, pp. 9051–9055, 1991.

[126] J. F. Hughes, H. Skaletsky, T. Pyntikova, et al., “Chimpanzee and human Y chromosomes are remark-
ably divergent in structure and gene content,” Nature, vol. 463, no. 7280, pp. 536–539, 2010.

[127] H. Kehrer-Sawatzki, C. Sandig, N. Chuzhanova, et al., “Breakpoint analysis of the pericentric inversion
distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan
troglodytes),” Human Mutation, vol. 25, no. 1, pp. 45–55, 2005.

[128] T. Mikkelsen, L. Hillier, E. Eichler, et al., “Initial sequence of the chimpanzee genome and comparison
with the human genome,” Nature, vol. 437, no. 7055, 2005.

[129] D. Bachtrog, “Y-chromosome evolution: Emerging insights into processes of Y-chromosome degen-
eration,” Nature Reviews Genetics, vol. 14, no. 2, pp. 113–124, 2013.

[130] D. Pratas and A. J. Pinho, “A conditional compression distance that unveils insights of the genomic
evolution,” in Data Compression Conference (DCC), 2014, p. 421.

[131] D. Pratas, R. M. Silva, A. J. Pinho, et al., “An alignment-free method to �nd and visualise rearrange-
ments between pairs of DNA sequences,” Scienti�c reports, vol. 5, no. 1, pp. 1–9, 2015.

[132] R. V. Samonte and E. E. Eichler, “Segmental duplications and the evolution of the primate genome,”
Nature Reviews Genetics, vol. 3, no. 1, pp. 65–72, 2002.

[133] R. A. Dalloul, J. A. Long, A. V. Zimin, et al., “Multi-platform next-generation sequencing of the domes-
tic turkey (Meleagris gallopavo): Genome assembly and analysis,” PLoS Biology, vol. 8, no. 9, e1000475,
2010.

[134] P. Muir, S. Li, S. Lou, et al., “The real cost of sequencing: Scaling computation to keep pace with data
generation,” Genome Biology, vol. 17, no. 1, pp. 1–9, 2016.

[135] S. D. Kahn, “On the future of genomic data,” Science, vol. 331, no. 6018, pp. 728–729, 2011.

[136] R. Giancarlo, S. E. Rombo, and F. Utro, “Compressive biological sequence analysis and archival in the
era of high-throughput sequencing technologies,” Brie�ngs in Bioinformatics, vol. 15, no. 3, pp. 390–
406, 2014.

[137] E. R. Dougherty, Genomic signal processing and statistics. Hindawi Publishing Corporation, 2005,
vol. 2.

[138] S. Grumbach and F. Tahi, “Compression of DNA sequences,” in Data Compression Conference (DCC),
1993, pp. 340–350.

[139] E. Rivals, J. P. Delahaye, M. Dauchet, et al., “A guaranteed compression scheme for repetitive dna
sequences,” in Data Compression Conference(DCC), 1996, p. 453.

[140] T. Matsumoto, K. Sadakane, and H. Imai, “Biological sequence compression algorithms,” Genome In-
formatics, vol. 11, pp. 43–52, 2000.

[141] X. Chen, S. Kwong, M. Li, et al., “A compression algorithm for DNA sequences and its applications in
genome comparison,” in The 4th Annual International Conference of Research in Computational Molec-
ular Biology (RECOMB), 2000, pp. 107–117.

[142] X. Chen, M. Li, and B. Ma, “DNACompress: Fast and e�ective DNA sequence,” Bioinformatics, vol. 18,
no. 12, pp. 1696–1698, 2002.

[143] I. Tabus, G. Korodi, and J. Rissanen, “DNA sequence compression using the normalized maximum
likelihood model for discrete regression,” in Data Compression Conference (DCC), 2003, pp. 253–262.

126 BIBLIOGRAPHY

[144] G. Korodi and I. Tabus, “An e�cient normalized maximum likelihood algorithm for DNA sequence
compression,” ACM Transactions on Information Systems, vol. 23, no. 1, pp. 3–34, 2005.

[145] M. D. Cao, T. I. Dix, L. Allison, et al., “A simple statistical algorithm for biological sequence compres-
sion,” in Data Compression Conference (DCC), 2007, pp. 43–52.

[146] A. Gupta and S. Agarwal, “A novel approach for compressing DNA sequences using semi-statistical
compressor,” International Journal of Computers and Applications, vol. 33, no. 3, pp. 245–251, 2011.

[147] Z. Zhu, J. Zhou, Z. Ji, et al., “DNA sequence compression using adaptive particle swarm optimization-
based memetic algorithm,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 5, pp. 643–658,
2011.

[148] P. Li, S. Wang, J. Kim, et al., “DNA-COMPACT: DNA compression based on a pattern-aware contextual
modeling technique,” PLoS ONE, vol. 8, no. 11, e80377, 2013.

[149] H. Guo, M. Chen, X. Liu, et al., “Genome compression based on Hilbert space �lling curve,” in The 3rd

International Conference onManagement, Education, Information and Control (MEICI), 2015, pp. 1685–
1689.

[150] X. Xie, S. Zhou, and J. Guan, “CoGI: Towards compressing genomes as an image,” IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, vol. 12, no. 6, pp. 1275–1285, 2015.

[151] M. Chen, J. Chen, Y. Zhang, et al., “Optimized context weighting based on the least square algorithm,”
Lecture Notes in Electrical Engineering Springer, vol. 348, pp. 1037–1045, 2016.

[152] D. Pratas, A. J. Pinho, and P. J. S. G. Ferreira, “E�cient compression of genomic sequences,” in Data
Compression Conference (DCC), 2016, pp. 231–240.

[153] A. A. Ginart, J. Hui, K. Zhu, et al., “Optimal compressed representation of high throughput sequence
data via light assembly,” Nature communications, vol. 9, no. 1, p. 566, 2018.

[154] N. Ramezanipoor and M. Yaghoobi, “A new approach in DNA sequence compression: Fast DNA
sequence compression using parallel chaos game representation,” Expert Systems with Applications,
vol. 116, pp. 487–493, 2019.

[155] S. Chandak, K. Tatwawadi, I. Ochoa, et al., “SPRING: A next-generation compressor for FASTQ data,”
Bioinformatics, vol. 35, no. 15, pp. 2674–2676, 2019.

[156] S. Deorowicz, “FQSqueezer: k-mer-based compression of sequencing data,” Scienti�c Reports, vol. 10,
no. 1, p. 578, 2020.

[157] S. Christley, Y. Lu, C. Li, et al., “Human genomes as email attachments,” Bioinformatics, vol. 25, no. 2,
pp. 274–275, 2009.

[158] S. Kuruppu, S. J. Puglisi, and J. Zobel, “Relative Lempel-Ziv compression of genomes for large-scale
storage and retrieval,” in International Symposium on String Processing and Information Retrieval,
Springer, 2010, pp. 201–206.

[159] ——, “Optimized relative Lempel-Ziv compression of genomes,” in The 34th Australasian Computer
Science Conference, 2011, pp. 91–98.

[160] C. Wang and D. Zhang, “A novel compression tool for e�cient storage of genome resequencing data,”
Nucleic Acids Research, vol. 39, no. 7, e45–e45, 2011.

[161] S. Deorowicz and S. Grabowski, “Robust relative compression of genomes with random access,” Bioin-
formatics, vol. 27, no. 21, pp. 2979–2986, 2011.

[162] S. Wandelt and U. Leser, “Adaptive e�cient compression of genomes,” Algorithms for Molecular Biol-
ogy, vol. 7, no. 1, p. 30, 2012.

[163] A. J. Pinho, D. Pratas, and S. P. Garcia, “GReEn: A tool for e�cient compression of genome resequenc-
ing data,” Nucleic Acids Research, vol. 40, no. 4, e27–e27, 2012.

127

[164] S. Kuruppu, B. Beresford-Smith, T. Conway, et al., “Iterative dictionary construction for compression
of large DNA data sets,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9,
no. 1, pp. 137–149, 2012.

[165] W. Dai, H. Xiong, X. Jiang, et al., “An adaptive di�erence distribution-based coding with hierarchical
tree structure for DNA sequence compression,” in Data Compression Conference (DCC), 2013, pp. 371–
380.

[166] S. Wandelt and U. Leser, “FRESCO: Referential compression of highly-similar sequences,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol. 10, no. 5, pp. 1275–1288, 2013.

[167] S. Jung and I. Sohn, “Streamlined genome sequence compression using distributed source coding,”
Cancer Informatics, vol. 13, pp. 123–131, 2014.

[168] S. Deorowicz, A. Danek, and M. Niemiec, “GDC 2: Compression of large collections of genomes,”
Scienti�c reports, vol. 5, p. 11 565, 2015.

[169] S. Saha and S. Rajasekaran, “ERGC: An e�cient referential genome compression algorithm,” Bioin-
formatics, vol. 31, no. 21, pp. 3468–3475, 2015.

[170] I. Ochoa, M. Hernaez, and T. Weissman, “iDoComp: A compression scheme for assembled genomes,”
Bioinformatics, vol. 31, no. 5, pp. 626–633, 2015.

[171] Z.-A. Huang, Z. Wen, Q. Deng, et al., “LW-FQZip 2: A parallelized reference-based compression of
FASTQ �les,” BMC bioinformatics, vol. 18, no. 1, p. 179, 2017.

[172] Y. Liu, H. Peng, L. Wong, et al., “High-speed and high-ratio referential genome compression,” Bioin-
formatics, vol. 33, no. 21, pp. 3364–3372, 2017.

[173] N. Jammula and S. Aluru, “ParRefCom: Parallel reference-based compression of paired-end genomics
read datasets,” in The 10th ACM International Conference on Bioinformatics, Computational Biology and
Health Informatics (ACM BCB), 2019, pp. 447–456.

[174] Ł. Roguski, I. Ochoa, M. Hernaez, et al., “FaStore: A space-saving solution for raw sequencing data,”
Bioinformatics, vol. 34, no. 16, pp. 2748–2756, 2018.

[175] R. Giancarlo, D. Scaturro, and F. Utro, “Textual data compression in computational biology: Algorith-
mic techniques,” Computer Science Review, vol. 6, no. 1, pp. 1–25, 2012.

[176] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Transactions on
Information Theory, vol. 23, no. 3, pp. 337–343, 1977.

[177] J. J. Liang, A. K. Qin, P. N. Suganthan, et al., “Comprehensive learning particle swarm optimizer for
global optimization of multimodal functions,” IEEE Transactions on Evolutionary Computation, vol. 10,
no. 3, pp. 281–295, 2006.

[178] S. A. Mohamed and M. Fahmy, “Binary image compression using e�cient partitioning into rectan-
gular regions,” IEEE Transactions on Communications, vol. 43, no. 5, pp. 1888–1893, 1995.

[179] S. Chandak, K. Tatwawadi, and T. Weissman, “Compression of genomic sequencing reads via hash-
based reordering: Algorithm and analysis,” Bioinformatics, vol. 34, no. 4, pp. 558–567, 2017.

[180] G. Malysa, M. Hernaez, I. Ochoa, et al., “QVZ: Lossy compression of quality values,” Bioinformatics,
vol. 31, no. 19, pp. 3122–3129, 2015.

[181] R. Grossi and J. S. Vitter, “Compressed su�x arrays and su�x trees with applications to text indexing
and string matching,” in 32nd ACM Symposium on Theory of Computing, 2000, pp. 397–406.

[182] D. Pratas and A. J. Pinho, “A DNA sequence corpus for compression benchmark,” in International
Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB), Springer,
2018, pp. 208–215.

[183] A. Mo�at, R. M. Neal, and I. H. Witten, “Arithmetic coding revisited,”ACMTransactions on Information
Systems, vol. 16, no. 3, pp. 256–294, 1998.

128 BIBLIOGRAPHY

[184] S. M. Ra�zul Haque, T. Mallick, and I. S. Kabir, “A new approach of protein sequence compression
using repeat reduction and ASCII replacement,” IOSR Journal of Computer Engineering, vol. 10, no. 5,
pp. 46–51, 2013.

[185] M. Ward, Virtual organisms: The startling world of arti�cial life. Macmillan, 2014.

[186] M. S. Baker, S. B. Ahn, A. Mohamedali, et al., “Accelerating the search for the missing proteins in the
human proteome,” Nature communications, vol. 8, no. 1, pp. 1–13, 2017.

[187] U. Eckhard, G. Marino, G. S. Butler, et al., “Positional proteomics in the era of the human proteome
project on the doorstep of precision medicine,” Biochimie, vol. 122, pp. 110–118, 2016.

[188] P. Legrain, R. Aebersold, A. Archakov, et al., “The human proteome project: Current state and future
direction,” Molecular & cellular proteomics, vol. 10, no. 7, 2011.

[189] Y.-K. Paik, S.-K. Jeong, G. S. Omenn, et al., “The chromosome-centric human proteome project for
cataloging proteins encoded in the genome,” Nature biotechnology, vol. 30, no. 3, p. 221, 2012.

[190] U. Consortium, “UniProt: The universal protein knowledgebase,” Nucleic acids research, vol. 46, no. 5,
p. 2699, 2018.

[191] I.-I. Comm, “A one-letter notation for amino acid sequences. tentative rules,” Biochemistry, vol. 7,
no. 8, pp. 2703–2705, 1968.

[192] J. C. Wootton, “Non-globular domains in protein sequences: Automated segmentation using com-
plexity measures,” Computers & Chemistry, vol. 18, no. 3, pp. 269–285, 1994.

[193] D. Benedetto, E. Caglioti, and C. Chica, “Compressing proteomes: The relevance of medium range
correlations,” EURASIP Journal on Bioinformatics and Systems Biology, vol. 2007, no. 1, p. 60 723, 2007.

[194] J.-F. Yu, Z. Cao, Y. Yang, et al., “Natural protein sequences are more intrinsically disordered than
random sequences,” Cellular and Molecular Life Sciences, vol. 73, no. 15, pp. 2949–2957, 2016.

[195] Ö. U. Nalbantoglu, D. J. Russell, and K. Sayood, “Data compression concepts and algorithms and their
applications to bioinformatics,” Entropy, vol. 12, no. 1, pp. 34–52, 2009.

[196] C. G. Nevill-Manning and I. H. Witten, “Protein is incompressible,” in Data Compression Conference
(DCC), 1999, pp. 257–266.

[197] A. Hategan and I. Tabus, “Protein is compressible,” in The 6th Nordic Signal Processing Symposium
(NORSIG), 2004, pp. 192–195.

[198] A. Hategan and I. Tabus, “Jointly encoding protein sequences and their secondary structure,” in IEEE
International Workshop on Genomic Signal Processing and Statistics (GENSIPS), 2007, pp. 1–4.

[199] N. M. Daniels, A. Gallant, J. Peng, et al., “Compressive genomics for protein databases,” Bioinformatics,
vol. 29, no. 13, pp. i283–i290, 2013.

[200] M. Hayashida, P. Ruan, and T. Akutsu, “Proteome compression via protein domain compositions,”
Methods, vol. 67, no. 3, pp. 380–385, 2014.

[201] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context tree weighting method: Basic prop-
erties,” IEEE Transactions on Information Theory, vol. 41, no. 3, pp. 653–664, 1995.

[202] W. Kabsch and C. Sander, “Dictionary of protein secondary structure: Pattern recognition of hydrogen-
bonded and geometrical features,” Biopolymers, vol. 22, no. 12, pp. 2577–2637, 1983.

[203] B. Korber, R. M. Farber, D. H. Wolpert, et al., “Covariation of mutations in the V3 loop of human
immunode�ciency virus type 1 envelope protein: An information theoretic analysis,” Proceedings of
the National Academy of Sciences, vol. 90, no. 15, pp. 7176–7180, 1993.

[204] F. Pereira, S. Duarte-Pereira, R. M. Silva, et al., “Evolution of the NET (NocA, Nlz, Elbow, TLP-1) pro-
tein family in metazoans: Insights from expression data and phylogenetic analysis,” Scienti�c reports,
vol. 6, p. 38 383, 2016.

129

[205] D. A. Pelta, J. R. Gonzalez, and N. Krasnogor, “Protein structure comparison through fuzzy contact
maps and the universal similarity metric,” in The 4th Conference of the European Society for Fuzzy Logic
and Technology (EUSFLAT), 2005, pp. 1124–1129.

[206] J. Rocha, F. Rosselló, and J. Segura, “Compression ratios based on the universal similarity metric still
yield protein distances far from CATH distances,” arXiv preprint q-bio/0603007, 2006.

[207] R. P. Bywater, “Prediction of protein structural features from sequence data based on Shannon en-
tropy and Kolmogorov complexity,” PLoS ONE, vol. 10, no. 4, e0119306, 2015.

[208] D. Pratas and A. J. Pinho, “On the approximation of the Kolmogorov complexity for DNA sequences,”
in Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA), 2017, pp. 259–266.

[209] C. Kumar-Sinha and A. M. Chinnaiyan, “Precision oncology in the age of integrative genomics,” Na-
ture biotechnology, vol. 36, no. 1, p. 46, 2018.

[210] T. M. Porter and M. Hajibabaei, “Scaling up: A guide to high-throughput genomic approaches for
biodiversity analysis,” Molecular ecology, vol. 27, no. 2, pp. 313–338, 2018.

[211] K. A. Jagadeesh, D. J. Wu, J. A. Birgmeier, et al., “Deriving genomic diagnoses without revealing
patient genomes,” Science, vol. 357, no. 6352, pp. 692–695, 2017.

[212] T. Bradley, X. Ding, and G. Tsudik, “Genomic security (lest we forget),” IEEE Security and Privacy
Magazine, vol. 15, no. 5, pp. 38–46, 2017.

[213] C. Bouillaguet, P. Derbez, O. Dunkelman, et al., “Low-data complexity attacks on AES,” IEEE Trans-
actions on Information Theory, vol. 58, no. 11, pp. 7002–7017, 2012.

[214] J. Daemen and V. Rijmen, “The design of Rijndael: AES — the Advanced Encryption Standard,” in
Information Security and Cryptography, Springer, 2002.

[215] J. Chen, Y. Feng, and I. Dillig, “Precise detection of side-channel vulnerabilities using quantitative
cartesian hoare logic,” in ACM SIGSAC Conference on Computer and Communications Security, 2017,
pp. 875–890.

[216] J. Xie, K. Qian, J. Si, et al., “Conserved noncoding sequences conserve biological networks and in�u-
ence genome evolution,” Heredity, vol. 120, no. 5, pp. 437–451, 2018.

[217] C. Bouillaguet, P. Derbez, O. Dunkelman, et al., “Low-data complexity attacks on AES,” IEEE Trans-
actions on Information Theory, vol. 58, no. 11, pp. 7002–7017, 2012.

[218] S. Ahmadi, Z. Ahmadian, J. Mohajeri, et al., “Low-data complexity biclique cryptanalysis of block
ciphers with application to Piccolo and HIGHT,” IEEE Transactions on Information Forensics and Se-
curity, vol. 9, no. 10, pp. 1641–1652, 2014.

[219] P. Morawiecki, “Practical attacks on the round-reduced PRINCE,” IET Information Security, vol. 11,
no. 3, pp. 146–151, 2016.

[220] Y. Zhang, X. Liu, and M. Sun, “DNA based random key generation and management for OTP encryp-
tion,” Biosystems, vol. 159, pp. 51–63, 2017.

[221] L. Y. Zhang, Y. Liu, C. Wang, et al., “Improved known-plaintext attack to permutation-only multimedia
ciphers,” Information Sciences, vol. 430, pp. 228–239, 2018.

[222] Z. Shan, K. Ren, M. Blanton, et al., “Practical secure computation outsourcing: A survey,” ACM Com-
puting Surveys, vol. 51, no. 2, pp. 1–40, 2018.

[223] D. McGrew and J. Viega, “The Galois/counter mode of operation (GCM),” submission to NIST Modes
of Operation Process, vol. 20, p. 10, 2004.

[224] S. Lemsitzer, J. Wolkerstorfer, N. Felber, et al., “Multi-gigabit GCM-AES architecture optimized for
FPGAs,” in International Workshop on Cryptographic Hardware and Embedded Systems, 2007, pp. 227–
238.

130 BIBLIOGRAPHY

[225] K.-T. Huang, J.-H. Chiu, and S.-S. Shen, “A novel structure with dynamic operation mode for
symmetric-key block ciphers,” International Journal of Network Security & Its Applications, vol. 5,
no. 1, p. 17, 2013.

[226] D. Pratas, A. J. Pinho, and J. M. O. S. Rodrigues, “XS: A FASTQ read simulator,” BMC Research Notes,
vol. 7, no. 1, p. 40, 2014.

[227] M. H. Mohammed, A. Dutta, T. Bose, et al., “DELIMINATE – a fast and e�cient method for loss-less
compression of genomic sequences: Sequence analysis,” Bioinformatics, vol. 28, no. 19, pp. 2527–2529,
2012.

[228] D. C. Jones, W. L. Ruzzo, X. Peng, et al., “Compression of next-generation sequencing reads aided by
highly e�cient de novo assembly,” Nucleic Acids Research, vol. 40, no. 22, e171–e171, 2012.

[229] Ł. Roguski and S. Deorowicz, “DSRC 2–industry-oriented compression of FASTQ �les,” Bioinformat-
ics, vol. 30, no. 15, pp. 2213–2215, 2014.

[230] A. Dutta, M. M. Haque, T. Bose, et al., “FQC: A novel approach for e�cient compression, archival,
and dissemination of FASTQ datasets,” Journal of bioinformatics and computational biology, vol. 13,
no. 03, p. 1 541 003, 2015.

[231] F. Soler-Toscano, H. Zenil, J.-P. Delahaye, et al., “Calculating Kolmogorov complexity from the output
frequency distributions of small Turing machines,” PLoS ONE, vol. 9, no. 5, e96223, 2014.

[232] R. M. Silva, D. Pratas, L. Castro, et al., “Three minimal sequences found in Ebola virus genomes and
absent from human DNA,” Bioinformatics, vol. 31, no. 15, pp. 2421–2425, 2015.

[233] M. Crochemore, A. Héliou, G. Kucherov, et al., “Absent words in a sliding window with applications,”
Information and Computation, vol. 270, p. 104 461, 2020.

[234] P. Charalampopoulos, M. Crochemore, G. Fici, et al., “Alignment-free sequence comparison using
absent words,” Information and Computation, vol. 262, pp. 57–68, 2018.

[235] M. Höss, P. Jaruga, T. H. Zastawny, et al., “DNA damage and DNA sequence retrieval from ancient
tissues,” Nucleic acids research, vol. 24, no. 7, pp. 1304–1307, 1996.

[236] M. Hofreiter, D. Serre, H. N. Poinar, et al., “Ancient DNA,” Nature Reviews Genetics, vol. 2, no. 5, p. 353,
2001.

[237] M. Krings, A. Stone, R. W. Schmitz, et al., “Neandertal DNA sequences and the origin of modern
humans,” Cell, vol. 90, no. 1, pp. 19–30, 1997.

[238] R. E. Green, J. Krause, S. E. Ptak, et al., “Analysis of one million base pairs of Neanderthal DNA,”
Nature, vol. 444, no. 7117, p. 330, 2006.

[239] J. P. Noonan, G. Coop, S. Kudaravalli, et al., “Sequencing and analysis of Neanderthal genomic DNA,”
Science, vol. 314, no. 5802, pp. 1113–1118, 2006.

[240] R. E. Green, A.-S. Malaspinas, J. Krause, et al., “A complete Neandertal mitochondrial genome se-
quence determined by high-throughput sequencing,” Cell, vol. 134, no. 3, pp. 416–426, 2008.

[241] R. E. Green, J. Krause, A. W. Briggs, et al., “A draft sequence of the Neandertal genome,” Science,
vol. 328, no. 5979, pp. 710–722, 2010.

[242] Q. Fu, M. Hajdinjak, O. T. Moldovan, et al., “An early modern human from Romania with a recent
Neanderthal ancestor,” Nature, vol. 524, no. 7564, p. 216, 2015.

[243] F. J. Ayala and C. J. C. Conde, Processes in Human Evolution: The journey from early hominins to
Neanderthals and modern humans. Oxford University Press, 2017.

[244] J. Hawks, “Signi�cance of Neandertal and Denisovan genomes in human evolution,” Annual Review
of Anthropology, vol. 42, pp. 433–449, 2013.

[245] P. Skoglund, B. H. Northo�, M. V. Shunkov, et al., “Separating endogenous ancient DNA from modern
day contamination in a Siberian Neandertal,” Proceedings of the National Academy of Sciences, vol. 111,
no. 6, pp. 2229–2234, 2014.

131

[246] M. Hofreiter, V. Jaenicke, D. Serre, et al., “DNA sequences from multiple ampli�cations reveal artifacts
induced by cytosine deamination in ancient DNA,” Nucleic acids research, vol. 29, no. 23, pp. 4793–
4799, 2001.

[247] A. W. Briggs, U. Stenzel, P. L. Johnson, et al., “Patterns of damage in genomic DNA sequences from a
Neandertal,” Proceedings of the National Academy of Sciences, vol. 104, no. 37, pp. 14 616–14 621, 2007.

[248] B. H. Bloom, “Space/time trade-o�s in hash coding with allowable errors,” Communications of the
ACM, vol. 13, no. 7, pp. 422–426, 1970.

[249] L. Luo, D. Guo, R. T. Ma, et al., “Optimizing Bloom �lter: Challenges, solutions, and comparisons,”
IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1912–1949, 2018.

[250] A. Goel and P. Gupta, “Small subset queries and Bloom �lters using ternary associative memories,
with applications,” ACM SIGMETRICS Performance Evaluation Review, vol. 38, no. 1, pp. 143–154, 2010.

[251] Y.-L. Lin, P. Pavlidis, E. Karakoc, et al., “The evolution and functional impact of human deletion vari-
ants shared with archaic hominin genomes,” Molecular biology and evolution, vol. 32, no. 4, pp. 1008–
1019, 2015.

[252] R. Qu, Q. Sang, Y. Xu, et al., “Identi�cation of a novel homozygous mutation in myo3a in a Chinese
family with DFNB30 non-syndromic hearing impairment,” International journal of pediatric otorhino-
laryngology, vol. 84, pp. 43–47, 2016.

[253] I. M. Silva, J. Rosenfeld, S. A. Antoniuk, et al., “A 1.5 Mb terminal deletion of 12p associated with
autism spectrum disorder,” Gene, vol. 542, no. 1, pp. 83–86, 2014.

[254] K. Baker, S. L. Gordon, D. Grozeva, et al., “Identi�cation of a human synaptotagmin-1 mutation that
perturbs synaptic vesicle cycling,” The Journal of clinical investigation, vol. 125, no. 4, pp. 1670–1678,
2015.

[255] M. Meyer, M. Kircher, M.-T. Gansauge, et al., “A high-coverage genome sequence from an archaic
Denisovan individual,” Science, vol. 338, no. 6104, pp. 222–226, 2012.

[256] J. Hendy, F. Welker, B. Demarchi, et al., “A guide to ancient protein studies,” Nature ecology & evolu-
tion, vol. 2, no. 5, pp. 791–799, 2018.

[257] E. Cappellini, M. J. Collins, and M. T. P. Gilbert, “Unlocking ancient protein palimpsests,” Science,
vol. 343, no. 6177, pp. 1320–1322, 2014.

[258] M. G. Giu�rida, R. Mazzoli, and E. Pessione, “Back to the past: Deciphering cultural heritage secrets
by protein identi�cation,” Applied microbiology and biotechnology, vol. 102, no. 13, pp. 5445–5455,
2018.

[259] M. Sikora, V. V. Pitulko, V. C. Sousa, et al., “The population history of northeastern Siberia since the
Pleistocene,” Nature, vol. 570, no. 7760, pp. 182–188, 2019.

[260] R. Sawafuji, E. Cappellini, T. Nagaoka, et al., “Proteomic pro�ling of archaeological human bone,”
Royal Society open science, vol. 4, no. 6, p. 161 004, 2017.

[261] M. Buckley, “Paleoproteomics: An introduction to the analysis of ancient proteins by soft ionisation
mass spectrometry,” in Paleogenomics, Springer, 2018, pp. 31–52.

[262] Y.-C. Lee, C.-C. Chiang, P.-Y. Huang, et al., “Evidence of preserved collagen in an Early Jurassic
sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy,” Nature communica-
tions, vol. 8, no. 1, pp. 1–8, 2017.

[263] E. Willerslev, A. J. Hansen, R. Rønn, et al., “Long-term persistence of bacterial DNA,” Current Biology,
vol. 14, no. 1, R9–R10, 2004.

[264] S. Castellano, G. Parra, F. A. Sánchez-Quinto, et al., “Patterns of coding variation in the complete ex-
omes of three Neandertals,” Proceedings of the National Academy of Sciences, vol. 111, no. 18, pp. 6666–
6671, 2014.

132 BIBLIOGRAPHY

[265] M. Dietzfelbinger, “Universal hashing and k-wise independent random variables via integer arith-
metic without primes,” in STACS, Springer, 1996, pp. 567–580.

[266] A. Sajantila, “Editors’ pick: Contamination has always been the issue!” Investigative Genetics, vol. 5,
p. 17, 2014.

[267] J. Dabney, M. Meyer, and S. Pääbo, “Ancient DNA damage,” Cold Spring Harbor perspectives in biology,
vol. 5, no. 7, a012567, 2013.

[268] E. W. Sayers, R. Agarwala, E. E. Bolton, et al., “Database resources of the National Center for Biotech-
nology Information,” Nucleic acids research, vol. 47, no. Database issue, p. D23, 2019.

[269] G. M. Boratyn, A. A. Schä�er, R. Agarwala, et al., “Domain enhanced lookup time accelerated BLAST,”
Biology direct, vol. 7, no. 1, p. 12, 2012.

[270] J. Reuter, D. V. Spacek, and M. Snyder, “High-throughput sequencing technologies,” Molecular Cell,
vol. 58, no. 4, pp. 586–597, 2015.

[271] D. E. V. Villamor, T. Ho, M. Al Rwahnih, et al., “High throughput sequencing for plant virus detection
and discovery,” Phytopathology, vol. 109, no. 5, pp. 716–725, 2019.

[272] S. M. Rego and M. P. Snyder, “High throughput sequencing and assessing disease risk,” Cold Spring
Harbor perspectives in medicine, vol. 9, no. 1, a026849, 2019.

[273] T. Hartmann, M. Middendorf, and M. Bernt, “Genome rearrangement analysis: Cut and join genome
rearrangements and gene cluster preserving approaches,” in Comparative Genomics, Springer, 2018,
pp. 261–289.

[274] R. J. M. Gardner and D. J. Amor, Gardner and Sutherland’s Chromosome Abnormalities and Genetic
Counseling, 5th edition. Oxford University Press, 2018.

[275] A. Theisen and L. G. Sha�er, “Disorders caused by chromosome abnormalities,” The application of
clinical genetics, vol. 3, pp. 159–174, 2010.

[276] J. Damas, D. C. Samuels, J. Carneiro, et al., “Mitochondrial DNA rearrangements in health and
disease–a comprehensive study,” Human mutation, vol. 35, no. 1, pp. 1–14, 2014.

[277] A. Dufke, J. Seidel, M. Schöning, et al., “Microdeletion 4p16.3 in three unrelated patients with Wolf-
Hirschhorn syndrome,” Cytogenetic and Genome Research, vol. 91, no. 1-4, pp. 81–84, 2000.

[278] V. Timmerman, E. Nelis, W. Van Hul, et al., “The peripheral myelin protein gene pmp-22 is contained
within the Charcot-Marie-Tooth disease type 1A duplication,” Nature genetics, vol. 1, no. 3, p. 171,
1992.

[279] L. Huang, L. V. Abruzzo, J. R. Valbuena, et al., “Acute myeloid leukemia associated with variant t(8;21)
detected by conventional cytogenetic and molecular studies: A report of four cases and review of the
literature,” American Journal of Clinical Pathology, vol. 125, no. 2, pp. 267–272, 2006.

[280] A. E. Darling, B. Mau, and N. T. Perna, “progressiveMauve: Multiple genome alignment with gene
gain, loss and rearrangement,” PLoS ONE, vol. 5, no. 6, e11147, 2010.

[281] M. Brudno, S. Malde, A. Poliakov, et al., “Glocal alignment: Finding rearrangements during align-
ment,” Bioinformatics, vol. 19, no. suppl_1, pp. i54–i62, 2003.

[282] S. K. Pham and P. Pevzner, “DRIMM-Synteny: Decomposing genomes into evolutionary conserved
segments,” Bioinformatics, vol. 26, no. 20, pp. 2509–2516, 2010.

[283] P. Pevzner and G. Tesler, “Genome rearrangements in mammalian evolution: Lessons from human
and mouse genomes,” Genome research, vol. 13, no. 1, pp. 37–45, 2003.

[284] J. Lee, W.-y. Hong, M. Cho, et al., “Synteny Portal: A web-based application portal for synteny block
analysis,” Nucleic Acids Research, vol. 44, no. W1, W35–W40, 2016.

[285] A. U. Sinha and J. Meller, “Cinteny: Flexible analysis and visualization of synteny and genome rear-
rangements in multiple organisms,” BMC Bioinformatics, vol. 8, no. 1, p. 82, 2007.

133

[286] M. C. Frith and S. Khan, “A survey of localized sequence rearrangements in human DNA,” Nucleic
acids research, vol. 46, no. 4, pp. 1661–1673, 2017.

[287] C. B. Nielsen, M. Cantor, I. Dubchak, et al., “Visualizing genomes: Techniques and challenges,” Nature
methods, vol. 7, no. 3, S5–S15, 2010.

[288] R. Morris, “Counting large numbers of events in small registers,” Communications of the ACM, vol. 21,
no. 10, pp. 840–842, 1978.

[289] G. Pitel and G. Fouquier, “Count-min-log sketch: Approximately counting with approximate coun-
ters,” in International Symposium on Web AlGorithms, Jun. 2015.

[290] R. B. Blackman and J. W. Tukey, “Particular pairs of windows,” The measurement of power spectra,
from the point of view of communications engineering, pp. 95–101, 1959.

[291] H. Zenil, F. Soler-Toscano, J.-P. Delahaye, et al., “Two-dimensional Kolmogorov complexity and an
empirical validation of the Coding theorem method by compressibility,” PeerJ Computer Science, vol. 1,
e23, 2015.

[292] R. Antão, A. Mota, and J. A. T. Machado, “Kolmogorov complexity as a data similarity metric: Appli-
cation in mitochondrial DNA,” Nonlinear Dynamics, vol. 93, no. 3, pp. 1059–1071, 2018.

[293] C. Faloutsos and V. Megalooikonomou, “On data mining, compression, and Kolmogorov complexity,”
Data Mining and Knowledge Discovery, vol. 15, no. 1, pp. 3–20, 2007.

[294] S. L. Salzberg, D. D. Sommer, M. C. Schatz, et al., “Genome sequence and rapid evolution of the rice
pathogen Xanthomonas oryzae pv. oryzae PXO99A,” BMC Genomics, vol. 9, no. 1, pp. 1–16, 2008.

[295] H. Ochiai, Y. Inoue, M. Takeya, et al., “Genome sequence of Xanthomonas oryzae pv. oryzae suggests
contribution of large numbers of e�ector genes and insertion sequences to its race diversity,” Japan
Agricultural Research Quarterly: JARQ, vol. 39, no. 4, pp. 275–287, 2005.

[296] S. Kumar, G. Stecher, M. Suleski, et al., “TimeTree: A resource for timelines, timetrees, and divergence
times,” Molecular Biology and Evolution, vol. 34, no. 7, pp. 1812–1819, 2017.

[297] Y. Zhang, X. Zhang, T. H. O’Hare, et al., “A comparative physical map reveals the pattern of chro-
mosomal evolution between the turkey (Meleagris gallopavo) and chicken (Gallus gallus) genomes,”
BMC Genomics, vol. 12, no. 1, p. 447, 2011.

[298] F. Cabanettes and C. Klopp, “D-GENIES: Dot plot large genomes in an interactive, e�cient and simple
way,” PeerJ, vol. 6, e4958, 2018.

[299] H. Li, “Minimap2: Pairwise alignment for nucleotide sequences,” Bioinformatics, vol. 34, no. 18,
pp. 3094–3100, 2018.

[300] G. Fischer, E. P. Rocha, F. Brunet, et al., “Highly variable rates of genome rearrangements between
hemiascomycetous yeast lineages,” PLoS Genetics, vol. 2, no. 3, e32, 2006.

[301] G. Charron, J.-B. Leducq, C. Bertin, et al., “Exploring the northern limit of the distribution of Sac-
charomyces cerevisiae and Saccharomyces paradoxus in North America,” FEMS yeast research, vol. 14,
no. 2, pp. 281–288, 2014.

	Introduction
	Next-generation sequencing
	Storage of omics data
	Omics data compression
	Omics data encryption
	Omics data analysis
	Outline
	Contributions
	Publications
	Software

	Measures and models
	Measures for quantifying information
	Introduction
	Normalized information distance
	Normalized compression distance
	Normalized conditional compression distance
	Normalized relative compression
	Normalized compression

	Compression models
	Finite-context model (FCM)
	Substitution-tolerant Markov model (STMM)
	Cooperation of FCMs and STMMs
	FCMs compared to cooperation of FCMs and STMMs

	Application on quantifying inverted repeats
	Conclusions

	Compression of omics data
	Compression of genomic sequences
	Introduction
	GeCo2
	Jarvis

	Compression of amino acid sequences
	Introduction
	Methods
	Results and discussion

	Conclusions

	Secure encryption of genomic data
	Introduction
	Methods
	Pack and unpack
	Shuffle and unshuffle
	Encrypt and decrypt

	Results and discussion
	Experiment setup
	Compare with compression and encryption methods
	Run with different number of threads
	Explore redundancy

	Conclusions

	Finding and visualization of distinct regions in omics sequences
	Genomic level
	Introduction
	Methods
	Results and discussion

	Proteomic level
	Introduction
	Methods
	Results and discussion

	Conclusions

	Detection and visualization of genomic rearrangements
	Introduction
	Methods
	Data modeling
	Storing models in memory
	Finding similar regions
	Computing complexity

	Results and Discussion
	Dataset
	Application on synthetic data
	Application on real data
	Comparison to Smash
	Robustness against fragmented data
	Benchmarking

	Conclusions

	Conclusions
	Bibliography

