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Abstract The asymptotically flat, spherical, electro-vacuum
black holes (BHs) are shown to support static, spherical con-
figurations of a gauged, self-interacting, scalar field, mini-
mally coupled to the geometry. Considering a Q-ball type
potential for the scalar field, we dub these configurations Q-
clouds, in the test field approximation. The clouds exist under
a resonance condition, at the threshold of (charged) super-
radiance. This is similar to the stationary clouds supported
by Kerr BHs, which exist for a synchronisation condition, at
the threshold of (rotational) superradiance. In contrast with
the rotating case, however, Q-clouds require the scalar field
to be massive and self-interacting; no similar clouds exist
for massive but free scalar fields. First, considering a decou-
pling limit, we construct Q-clouds around Schwarzschild and
Reissner–Nordström BHs, showing there is always a mass
gap. Then, we make the Q-clouds backreact, and construct
fully non-linear solutions of the Einstein–Maxwell-gauged
scalar system describing spherical, charged BHs with reso-
nant, scalar Q-hair. Amongst other properties, we observe
there is non-uniqueness of charged BHs in this model and the
Q-hairy BHs can be entropically preferred over Reissner–
Nordström, for the same charge to mass ratio; some Q-hairy
BH solutions can be overcharged. We also discuss how some
well known no-hair theorems in the literature, applying to
electro-vacuum plus minimally coupled scalar fields, are cir-
cumvented by this new type of BHs.
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1 Introduction

The last few years have brought considerable insight on the
interaction between black holes (BHs) and scalar fields, both
in General Relativity (GR) and modified gravity. Let us focus
on GR, thus considering only scalar fields minimally coupled
to the geometry. A surprising result is that asymptotically flat
rotating BHs can support non-trivial configurations of a mas-
sive, free scalar field, when a certain synchronisation condi-
tion holds. Consider the paradigmatic Kerr BH [1]. As a test
field, stationary scalar clouds exist, obtained by solving the
Klein–Gordon equation on the Kerr geometry [2]. Beyond
the linear approximation, these clouds can be made to back-
react on the Kerr geometry, becoming BH hair. Here, BH
“hair” signifies macroscopic degrees of freedom not asso-
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ciated to a Gauss law. Thus a new sort of BH emerges [3],
defying the paradigm that “BHs have no hair” [4], even in
GR. In this case, moreover, the hairy BHs bifurcate from the
Kerr solution. In other words, the scalar hair can be arbitrarily
small.

Synchronised hair can also be added to Kerr–Newman
BHs [5] and spinning BHs in higher dimensional vacuum
GR [6–8]. The case of Myers–Perry BHs [9] shows, how-
ever, a key difference with respect to the Kerr case. The
hairy generalisations of Myers–Perry BHs do not bifurcate
from the vacuum solutions; there is a mass gap. A possible
interpretation of this difference is given by the phenomenon
of superradiance [10]. A massive scalar field can trigger a
superradiant instability of Kerr BHs. In between the stable
and unstable modes there are zero modes. In fact, the syn-
chronisation condition is the zero mode condition. The hairy
generalisations of the vacuum Kerr solution bifurcate from
these zero modes. On the other hand, a massive scalar field
cannot trigger superradiant instabilities of Myers–Perry BHs.
Although superradiant scattering can exist, and extract rota-
tional energy from Myers–Perry BHs, no superradiant bound
states exist, which are the modes triggering the instability.
Thus, there are no zero modes. As such, even though syn-
chronisation provides a mechanism to equilibrate a scalar
configuration with a BH horizon—the scalar flux through
the horizon vanishes [11]—the hairy BHs do not bifurcate
from the vacuum Myers–Perry solutions due to the absence
of zero modes.

Heuristically, the difference between the Kerr and Myers–
Perry case can be associated to balance of the (long range
behaviour of the) competing forces allowing, or not, the
existence of bound states. In four spacetime dimensions, the
attractive gravitational potential decays as 1/r whereas the
repulsive centrifugal potential decays as 1/r2. This creates
a potential well allowing for bound states, in particular for
superradiant states. Thus it allows the existence of superradi-
ant zero modes. On the other hand, in five spacetime dimen-
sions, both the attractive gravitational and the repulsive cen-
trifugal potentials decay as 1/r2, preventing the existence
of a potential well, and, as such, of bound states for scalar
modes.

The Reissner–Nordström (RN) BH of electro-vacuum also
allows a phenomenon akin to rotational superradiance, often
called charged superradiance [12]. This amounts to the abil-
ity of a charged bosonic field to extract Coulomb (rather than
rotational) energy from the BH. In this case, as in the higher
dimensional Myers–Perry case, the competing forces do not
favour the creation of a potential well. Indeed, the attractive
gravitational potential and the repulsive electrostatic poten-
tial both decay as 1/r . As such, a charged bosonic field can
superradiantly scatter from a RN BH, but no superradiant
bound states exist and, consequently, no zero modes. Zero
modes, in this case, obey what we shall call a resonance

condition, c f. (3.2) below. A formal proof of the absence of
superradiant bound states on RN was given by Hod [13,14].

The absence of zero modes for RN does not perclude the
existence of hairy extensions of RN BHs under the resonance
condition, having a mass gap with RN, similarly to what
occurs with the hairy extensions of Myers–Perry BHs. In
fact, such hairy BHs exist and the purpose of this paper is to
report them.

A charged (or gauged) scalar field, with a positive poten-
tial, minimally coupled to electro-vacuum (c f. (2.1) below),
is a model that has been considered in several contexts. The
only spherical BH solution known in this model, up to now,
is the RN family. In fact, a theorem by Mayo and Bekein-
stein [15] is often invoked as proof no other BHs can exist.
As we shall see below, however, this is not the case, and the
theorem can be circumvented. The model, moreover, pos-
sesses particle-like solutions, known as charged (or gauged)
boson stars, a generalisation of the usual (uncharged) boson
stars—see [16–18] for reviews. Mini-gauged boson stars, for
which the scalar potential includes only a mass term, have
been discussed in [19–21]. These are gravitating solitons sup-
ported by the non-linearities of GR, which trivialise in the flat
spacetime limit. A different class of gauged boson stars exists
if one considers a sufficiently non-linear scalar field poten-
tial. In particular, gauged boson stars with a Q-ball potential,
c f. (4.8) below, have been discussed in [22,23]. Due to this
potential, the solutions do not trivialise in the flat spacetime
limit, wherein they became gauged Q-balls, charged gener-
alisations of the flat spacetime scalar solitons named Q-balls
by Coleman [24].

The main result in this paper is that electro-vacuum mini-
mally coupled to a gauged scalar field with a positive poten-
tial admits new spherical BH solutions with scalar hair,
under the aforementioned resonance condition, but self-
interactions are mandatory in the scalar potential. We shall
construct explicit examples with a Q-ball potential, naming
the new BHs as having Q-hair. That the Q-hairy BHs are
an extension of RN BHs can be argue as follows. In a cer-
tain decoupling limit, the field equations reduced to a test
gauged scalar field on a fixed RN background. Non-trivial
solutions can be found, that we name Q-clouds, following
[26]. The existence of these solutions was recently pointed
out in [25]. The hairy BHs can be seen as the backreaction of
these Q-clouds. Interestingly, since the resonance condition
can be taken in a gauge wherein the electrostatic potential
vanishes at the event horizon, in a different decoupling limit,
gauged Q-clouds can be found on a fixed Schwarzschild BH
background. So our hairy BH solutions can also be seen as a
hairy extension of Schwarzschild BHs.

This paper is organised as follows. In Sect. 2 we present
the Einstein–Maxwell-scalar model, the field equations, the
ansatz for the fields and discuss a virial identity. In Sect. 3
we discuss the boundary behaviour of the different fields, in
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particular introducing the resonance condition. In Sect. 4 we
discuss gauge fixing and some quantities of interest for the
analysis of the following results. In Sect. 5 we address how
the Mayo–Bekenstein theorem is circumvented, as well as
other no-go theorems, namely by Peña and Sudarsky [27] and
Hod [13,14]. The numerical results are presented in Sect. 6,
where we analyse some properties, in particular the non-
uniqueness of charged BHs in the our model. Some further
remarks are presented in Sect. 7.

2 The Einstein–Maxwell-scalar model

2.1 The action and the field equations

We consider the Einstein–Maxwell-scalar model described
by the following action

S =
∫

d4x
√−g

[
R

16πG
− 1

4
FαβF

αβ

−Dα�∗Dα� −U (|�|)
]

, (2.1)

where G is the gravitational constant, R is the Ricci scalar
associated with the spacetime metric gμν , which has deter-
minant g, Fαβ = ∂αAβ −∂β Aα is the Maxwell 2-form, Aα is
the gauge 4-potential, � is a complex scalar field, ‘*’ denotes
complex conjugate and

Dα� ≡ ∇α� + iq Aα�, (2.2)

is the gauge covariant derivative, where q is the gauge cou-
pling constant and ∇ is the geometric covariant derivative.
U (|�|) > 0 denotes the scalar potential, which in this work
is taken to be always non-negative; the scalar mass is defined
by μ2 ≡ (d2U/d|�|2)∣∣

�=0.
The Einstein–Maxwell-scalar field equations, obtained by

varying (2.1) with respect to the metric, scalar field and elec-
tromagnetic field, are, respectively,

Rαβ − 1

2
gαβ R = 8πG

[
T (EM)

αβ + T (�)
αβ

]
, (2.3)

DαD
α� = dU

d |�|2 �,

∇αF
βα = iq

[
�∗(Dβ�) − (Dβ�∗)�)

] ≡ q jβ, (2.4)

where the two components of the energy-momentum tensor
are

T (EM)
αβ = F γ

α Fβγ − 1

4
gαβFγ δF

γ δ,

T (�)
αβ = Dα�∗Dβ� + Dβ�∗Dα� − gαβ

×
[

1

2
gγ δ(Dγ �∗Dδ� + Dδ�

∗Dγ �) +U (|�|)
]

.

(2.5)

This model is invariant under a local U (1) gauge transfor-
mation

� → �e−iqχ(xα), Aβ → Aβ + ∂βχ(xα), (2.6)

where χ(xα) is any real function. The Maxwell equations in
(2.4) define the 4-current jα , which is conserved, ∇α jα = 0.

2.2 The ansatz

For addressing spherically symmetric solutions we choose
the following ansatz: for the metric,

ds2 = −N (r)σ 2(r)dt2 + dr2

N (r)

+r2(dθ2 + sin2 θdϕ2), with

N (r) ≡ 1 − 2m(r)

r
, (2.7)

where t is a time coordinate (outside the horizon), r is the
areal radius and θ, ϕ are the standard spherical coordinates;
for the scalar field and 4-potential,

� = ψ(r)e−iwt , A = V (r)dt, (2.8)

where w is the (real) oscillation frequency of the scalar
field. The ansatz therefore introduces four radial functions:
σ(r),m(r), ψ(r), V (r). The corresponding field equations,
resulting from (2.3)–(2.4) read,1 denoting radial derivatives
by “primes”,

m′ = 4πGr2
[
V ′2

2σ 2 + Nψ ′2 +U (ψ) + (w − qV )2

Nσ 2 ψ2
]

,

(2.10)

σ ′ = 8πGrσ

[
ψ ′2 + (w − qV )2ψ2

N 2σ 2

]
, (2.11)

V ′ +
(

2

r
− σ ′

σ

)
V ′ + 2q(w − qV )ψ2

N
= 0, (2.12)

ψ ′′ +
(

2

r
+ N ′

N
+ σ ′

σ

)
ψ ′

+ (w − qV )2ψ

N 2σ 2 − 1

2N

dU

dψ
= 0. (2.13)

Inspection of these equations reveals a number of features.
Firstly, outside a BH horizon, wherein N > 0, the met-
ric functions m(r) and σ(r) are increasing functions of r ,
whereas the electric gauge potential V (r) is a strictly mono-
tonic radial function. The latter conclusion becomes clearer

1 There is a also the constraint Eq.

N ′′

2
+

(
σ ′

r
+ σ ′′

)
N

σ
+

(
1

r
+ 3σ ′

2σ

)
N ′ (2.9)

+ 8πG

[
Nψ ′2 − V ′2

2σ 2 − (w − qV )2ψ2

Nσ 2 +U (ψ)

]
= 0,

which is a combination of (2.10)–(2.13).
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after gauge fixing, c f. Sect. 4.1, and rewriting (2.12) in the
form (5.1) below. Secondly, the model possesses the gauge
freedom:

w → w + ζ and V → V + ζ

q
, (2.14)

where ζ is a constant that will be fixed below. Thirdly, there
is also a discrete symmetry

V → −V and q → −q, (2.15)

which allows us to consider the case q ≥ 0 only.
Within this framework, the only non-vanishing compo-

nent of the conserved 4-current is the temporal one:

j t = 2(qV − w)ψ2

Nσ 2 , (2.16)

the associated Noether charge, QN , which is interpreted as
the particle number, being

QN = 1

4π

∫
d3x

√−g j t =
∫ ∞

r0

dr
2r2(qV − w)ψ2

Nσ
,

(2.17)

where r0 = rh for BHs, with rh denoting the event horizon
radius, and r0 = 0 for solitons.

For completeness, we include here the expression of the
non-vanishing components of the energy-momentum tensor

T r(EM)
r = − V ′2

2σ 2 ,

T r(�)
r = Nψ ′2 + (w − qV )2ψ2

Nσ 2 −U (ψ),

T θ(EM)
θ = T ϕ(EM)

ϕ = V ′2

2σ 2 ,

T θ(�)
θ = T ϕ(�)

ϕ = −Nψ ′2 + (w − qV )2ψ2

Nσ 2 −U (ψ),

T t (EM)
t = − V ′2

2σ 2 ,

T t (�)
t = −Nψ ′2 − (w − qV )2ψ2

Nσ 2 −U (ψ). (2.18)

2.3 Virial identity

A virial identity, which is independent of the equations of
motion, can be obtained for this model by using the approach
in [28], which amounts to a scaling argument. Assuming a
BH spacetime the result is:
∫ ∞

rh
dr r2σ

{[
1 − 2rh

r

(
1 − m

r

)]
ψ ′2

+
(

3 − 2rh
r

)
U (ψ)

}

=
∫ ∞

rh
dr r2

{(
1 − 2rh

r

)
V ′2

2σ
+

[
3 − 2rh

r

(
1 − 3m

r

)

−8m

r

]
(w − qV )2ψ2

N 2σ

}
. (2.19)

On the one hand, both factors in front of the (non-negative)
scalar quantities on the l.h.s. have a fixed, positive sign.
Thus, the l.h.s. integrand is non-negative, making the inte-
gral strictly positive. It immediately follows that for V = 0
(no Maxwell field) and w = 0, there can be no solution
with a non-trivial scalar field. On the other hand, the fac-
tors in front of the (non-negative) Maxwell quantities on the
r.h.s. of (2.19) are indefinite, although they become positive
asymptotically. Thus, for V 
= 0 and/or w 
= 0 a solution
becomes possible (but not guaranteed). In fact, only w 
= 0
is insufficient to allow non-trivial solutions [27].

Another use of the relation (2.19) is to check the accuracy
of the numerical solutions. Indeed this was done in our work.

3 Approximate solution and boundary conditions

In this work we are mostly interested in integrating the field
equations (2.10)–(2.13) to obtain BH solutions. Since this
is done numerically, we should first discuss the asymptotic
behaviours at the boundaries of the domain of integration.
For spherically symmetric solutions this corresponds to the
behaviour near the horizon and near spatial infinity.

3.1 Near horizon expansion and the resonance condition

Let the BH horizon be located at r = rh > 0. In this work we
shall focus on non-extremal2 BHs, i.e. N (r) ∼ (r − rh) as
r → rh . Then, requiring finiteness of the energy-momentum
tensor (2.18), or of the current density (2.16), on the horizon,
implies the following condition

ψ(rh)[w − qV (rh)] = 0. (3.1)

If one chooses ψ(rh) = 0, this turns out to imply that
dkψ/drk |rh = 0, i.e. the derivatives of the scalar field van-
ish order by order in a power series expansion close to the
horizon. This implies that the scalar field is trivial. Thus, in
order to consider a non-trivial scalar field and finite physical
quantities at the horizon, we are forced to consider the second
choice

w = qV (rh). (3.2)

We dub (3.2) the resonance condition. Choosing (3.2), the
scalar field can take a nonzero value at the horizon and one
can construct a power series expansion of the solution as

2 The model is unlikely to possess regular (on and outside a horizon)
extremal BH solutions. One hint in this direction is the absence of the
usual attractor solutions, i.e. generalizations of the Bertotti-Robinson
solution, with a metric AdS2 × S2. A detailed investigation of extremal
solutions will not, however, be addressed here.
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r → rh . Without fixing the gauge freedom, this approximate
solution reads

m(r) = rh
2

+ 4πGr2
h

[
v2

1

2σ 2
h

+U (ψh)

]
(r − rh) + · · · ,

ψ(r) = ψh − 1

2

rhU̇ (ψh)(r − rh)

1 − 8πGr2
h

[
v2

1
2σ 2

h
+U (φh)

] + · · ·

σ(r) = σh +
8πGσh

[
q2v2

1ψ2
h

σ 2
h

+ U̇ (ψh )
2

4

]

{
8πGr2

h

[
v2

1
2σ 2

h
+U (ψh)

]
− 1

}2 (r − rh) + · · · ,

V (r) = V (rh) + v1(r − rh) + · · · , (3.3)

and contains four essential parameters,

{σh, ψh, V (rh), V ′(rh)}. (3.4)

We have used the notation U̇ (ψh) ≡ (dU/dψ)|ψh .

3.2 Far field expansion and the bound state condition

We are interested in asymptotically flat solutions. Thus, at
infinity, Minkowski spacetime is approached, while the scalar
field and the gauge field strength vanish. Without fixing the
residual gauge freedom (2.14), one finds the approximate
solution

m(r) = M − 4πGQ2
e

2r
+ · · · ,

σ (r) = 1 − 4πGc2
0μ

2

μ∞r
e−2μ∞r · · · , (3.5)

V (r) = � − Qe

r
+ · · · ,

ψ(r) = c0
e−μ∞r

r
+ · · · , (3.6)

where we have denoted

μ∞ ≡
√

μ2 − (w − q�)2. (3.7)

The free parameters in this expansion are

{M, �, Qe, c0}, (3.8)

where M and Qe are the ADM mass and total electric charge,
� is the asymptotic value of the electrostatic potential, while
c0 is an arbitrary constant.

From the above asymptotics, one notices the following
bound state condition

w − q� ≤ μ. (3.9)

4 Gauge fixing, quantities of interest and scaling
symmetries

4.1 Fixing the gauge

As discussed above, the model possesses the residual gauge
symmetry (2.14). In principle, the gauge choice is arbitrary.
However, not all gauge choices are physical for the problem
at hand; for instance, they may not be compatible with the
boundary conditions. A discussion of these aspects for stan-
dard model solitons can be found in [29]. Two possible gauge
choices are

V (rh) = 0, (4.1)

or

V (∞) = 0. (4.2)

Our numerical results were found for the first choice. Then
the resonance condition (3.2) implies w = 0. It follows that
the complex scalar field reduces to its amplitude, c f. (2.8).
Consequently, this gauge choice is equivalent to consider the
model (2.1) with a real, rather than complex, scalar field.

After fixing the gauge in the way just described, the matter
Lagrangian of the model can be written in the suggestive form

Lmatter = −1

4
FαβF

αβ − ∂αψ∂αψ − AαA
αψ2 −U (ψ).

(4.3)

This can be interpreted as the scalar field endowing the gauge
field with a dynamical mass term. In this gauge, the poten-
tial at infinity, �, is also the chemical potential, the differ-
ence between the values of the electric potential at infinity
and at the horizon. Moroever, the bound state condition (3.9)
implies � ≤ −μ/q.

We emphasize, however, that similar results are found for
the second choice (4.2). Formally, passing from one gauge
choice to another is provided by the relation (2.14), with
ζ = q�. The physical results are, of course, independent of
the gauge choice.

4.2 Quantities of interest and measures of hairiness

Let us now introduce some physical quantities of interest for
the solutions we shall be discussing. The Hawking temper-
ature, TH , and the event horizon area, AH , of a solution are
found from the horizon data,

TH = N ′(rh)σ (rh)

4π
, AH = 4πr2

h . (4.4)

On the other hand, the ADM mass M , the total electric charge
Qe and the chemical potential � are determined by the far
field asymptotics (3.5)–(3.6).
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For the chosen gauge (4.1), w = V (rh) = 0, one finds the
following intuitive decomposition of the total electric charge

Qe = QH + qQN , where

QH = 1

4π

∮
H
dSr F

tr = r2
hv1

σh
, (4.5)

where QN is the Noether charge given by (2.17), while
QH corresponds to the horizon electric charge. Thus, the
total electric charge is the sum of the electric charge within
the horizon plus the Noether charge outside the horizon—
which counts the number of scalar particles—multiplied by
the charge of a single particle. This decomposition suggests
defining the following measure of hairiness, denoted h:

h ≡ qQN

Qe
= 1 − QH

Qe
. (4.6)

This measure takes the value h = 0 for RN BH, which has
no scalar field, ψ = 0, and is 0% hairy, and takes the value
h = 1 for a soliton, for which rh = 0 and it is 100% hairy.

Another possible measure of hairiness is [30]

p ≡ MH

M
, (4.7)

where MH = 1
2TH AH is the horizon mass. This corresponds

to the fraction of the ADM mass which is stored inside the
horizon. This measure, however, does not give p = 1 for
RN BHs, since part of the spacetime energy is due to the
electromagnetic field outside the horizon. Thus, this mea-
sure is sharper for uncharged BHs, such as Kerr BHs with
synchronised scalar [3] or Proca hair [31].

4.3 Symmetries and scalings

Below we shall focus on the simplest potential in the Q-ball
literature [24]:

U (ψ) = μ2ψ2 − λψ4 + νψ6. (4.8)

As before, μ is the scalar field mass; λ, ν are positive param-
eters controlling the self-interactions of the scalar field.

Inspection of the field equations, with the choice (4.8),
shows the existence of the following scaling symmetries of
the (spherically ymmetric) model:3

i) t → at, V → V/a, σ → σ/a, (4.9)

i i) r → ar, m → am, q → q/a, μ → μ/a,

λ → λ/a2, ν → ν/a2, (4.10)

i i i) φ → aφ, V → aV, q → q/a,

λ → λ/a2, ν → ν/a4, G → G/a2, (4.11)

where a is an arbitrary non-zero parameter.

3 All functions or constants which are not explicitly mentioned do not
change under the corresponding transformation.

Symmetry i) is fixed when imposing the boundary con-
dition σ(∞) = 1. As for the (ungauged) Q-balls case, sym-
metries i i) and i i i) are used to set μ = 1, λ = 1 in the
numerics.4 Thus we take

r → r/μ m → m/μ, φ → φμ/
√

λ ,

V → Vμ/
√

λ and q → q
√

λ. (4.12)

At the end of this procedure, the model possesses three
independent dimensionless input parameters

α2 ≡ 4πGμ2

λ
, β2 ≡ νμ2

λ2 ,

e ≡ q√
λ

. (4.13)

For completeness, we exhibit here the reduced Lagrangian
of the rescaled model:

Leff = σ
dm

dr
− α2σ

[
N

(
dψ

dr

)2

r2

−
(
dV

dr

)2 r2

2σ 2 + (ψ2 − ψ4 + β2ψ6)r2

−e2V 2r2ψ2

Nσ 2

]
. (4.14)

Working with scaled variables, the first law of thermody-
namics in this model reads

dM = 1

4
THd AH + α2�dQe, (4.15)

while the Smarr law is

M = 1

2
TH AH + α2 [

M(ψ) + �Qe
]
, (4.16)

where M(ψ) is the mass outside the horizon stored in the
scalar field

M(ψ) = 2
∫ ∞

rh
dr r2σ

[
e2V 2ψ2

Nσ 2 −U (ψ)

]
. (4.17)

5 Circumventing no-hair theorems

Different results in the literature establish the impossibility of
having BHs with scalar hair in the model (2.1), or endowing
RN BHs with minimially coupled scalar hair. Let us clarify
how these results are actually circumvented by our setup.

5.1 The Mayo–Bekenstein no-go result

One of the best known no-hair theorems for BHs that applies
to our model (2.1) was establish by Mayo and Bekenstein

4 i i i) can be used to set G = 1, a choice employed for the (usual mini-
)boson stars. However, the numerical study of the solutions starting with
the probe limit is more intricate in this case.
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[15]. The no-hair result is based on the following arguments,
herein adapted to our framework (see also the discussion in
[25]). One starts with the equation for the electric potential
(2.12), which after the gauge fixing (4.1) is written in the
following form
(
r2V ′

σ

)′
= 2q2r2Vψ2

Nσ
. (5.1)

Multiplying (5.1) by V (r), rearranging the expression and
integrating both sides from rh to infinity yields
(
r2VV ′

σ

) ∣∣∣
r=∞ = Qe�

=
∫ ∞

rh

[
r2V ′2

σ
+ 2q2r2V 2ψ2

Nσ

]
dr, (5.2)

using the gauge choice V (rh) = 0 and the asymptotic
behaviours (3.5)–(3.6). The r.h.s. is strictly positive; thus,
solutions necessarily have � 
= 0.

If � 
= 0, then this chemical potential provides an effec-
tive tachyonic mass for ψ , μ2

tac = −q2�2, as can be seen
from (4.3). If, as assumed by Mayo and Bekenstein, there
is no mass term coming from the potential U (ψ), then this
tachyonic mass term is not compatible with a proper asymp-
toptic behaviour of the scalar field. Therefore, one needs to
impose � = 0. Then, from (5.2) one concludes that the
electric potential vanishes everywhere, reducing the prob-
lem to that of uncharged BHs. Other no-hair theorems, or for
instance the virial identity (2.19), then imply that the scalar
field must also vanish.

It should now be clear that the reasoning in [15] holds for
a massless scalar field only, i.e. μ = 0, which will not be the
case here.

5.2 The Peña–Sudarsly no-go result

The no-hair theorem due to Peña and Sudarsky [27] holds for
Einstein’s gravity minimally coupled to generic matter fields
fulfilling the the weak energy condition, which holds for the
model in this work, together with the condition

T θ
θ ≤ T r

r . (5.3)

One can check that (5.3) is satisfied by the scalar compo-
nents of the total energy-momentum tensor, T θ(�)

θ −T r(�)
r =

−2Nψ ′2 < 0. Thus, for a pure Einstein–Klein–Gordon
model, a static, spherically symmetric BH cannot support
scalar hair [27]. However, the relation (5.3) fails to be satis-
fied for the vector part of the total energy-momentum ten-
sor, T θ(EM)

θ − T r(EM)
r = V ′2/σ 2 > 0, and thus non-

Schwarzschild BHs are possible in Einstein–Maxwell the-
ory; indeed this is the RN solution. Similarly, the full energy-
momentum tensor (2.18) does not satisfy the relation (5.3),
and thus one cannot use this argument to exclude the exis-

tence of charged BH solutions with scalar hair in our model
with the potential (4.8).

5.3 The Hod no-charged-BH bomb result

For a given BH solution, the existence of an instability zero
mode, for any type of perturbation, is a smoking gun for a new
family of solutions. There are many examples of this pattern.
In the context of our work the most relevant example is the
bifuraction of the Kerr family into BHs with synchronised
scalar [3] or Proca [31] hair, due to the superradiant instability
of a massive scalar or vector field. In this case, the zero mode
of the superradiant instability of a massive bosonic field is
a mode with frequency w and azimuthal harmonic index m
which obeys the synchronisation condition

w = m�H , (5.4)

where �H is the angular velocity of the Kerr BH horizon.
The RN BH is afflicted by charged superradiance [12].

The zero mode of the charged superradiant instability of a
charged bosonic field is a mode with frequency w and charge
q obeying the resonance condition (3.2). So, in principle,
the RN family could bifurcate towards a new family of BH
solutions with massive bosonic hair. It turns out, however,
that there are no zero modes of the instability that are also
bound states.5 This was shown by Hod in the case of a test,
massive, charged scalar field on the RN background [13,14],
and, in principle, rules out the existence of RN BHs with
scalar hair that are asymptotically flat. However, the analysis
of Hod is based on a linear Klein–Gordon equation, without
self-interactions. As we shall see, this is compatible with our
results, since not only the self-interactions are fundamental,
but also, the hairy BHs do not bifurcate from a zero mode
around the RN background.

5.4 Other Bekenstein-type relations

It is of interest to derive other general relations, which provide
further insight into the existence of the hairy BH solutions
we will be reporting.

First, for the gauge choice employed here (4.1), the scalar
field equation can be written in the suggestive form

(r2Nσψ ′)′ = r2σμ2
effψ, (5.5)

where we have defined the effective mass

μ2
eff ≡ μ2 − q2V 2

Nσ 2 − 2λψ4 + 3νψ6. (5.6)

We observe that μ2
eff > 0 asymptotically, but actually μ2

eff
must change sign. Indeed, integrating (5.5) between the hori-
zon and infinity one finds

5 There are, however, zero modes that are marginally bound states [32,
33].
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∫ ∞

rh
drr2σμ2

effψ = 0, (5.7)

since N (rh) = 0 and ψ ′(∞) = 0 For a nodeless scalar
field (the case in this work), this implies that μ2

eff takes both
positive and negative values outside the horizon.

Second, multiplying (5.5) by either ψ or μ2
eff and integrat-

ing between the horizon and infinity, one finds the following
Bekenstein-type identities

r2Nσψψ ′
∣∣∣∣
∞

rh

=
∫ ∞

rh
dr

(
r2Nσψ ′2 + r2σμ2

effψ
2
)

, (5.8)

r2Nσψ ′μ2
eff

∣∣∣∣
∞

rh

=
∫ ∞

rh
dr

[
r2Nσψ ′ dμ2

eff

dr

+1

2
r2σ(μ2

eff)
2

]
. (5.9)

Since N (rh) = 0 and ψ(∞) = ψ ′(∞) = 0 the l.h.s. of
(5.8)–(5.9) vanishes. Then, the condition for the existence of
physical solutions is that the one term in the r.h.s. integrand
which is not manifestly positive is actually negative in some
radial interval; that is,

μ2
eff < 0, and ψ ′ dμ2

eff

dr
< 0, (5.10)

for some range of r > rh . In particular, this confirms that the
effective mass square must change sign.

6 Numerical results

6.1 The numerical approach

The set of four ordinary differential equations (2.10)–(2.13)
is solved under suitable boundary conditions which result
from the near horizon/far field approximate form of the solu-
tion, as described in Sect. 3 for BHs and also below for soli-
tons. In most of the numerics we have employed a collocation
method for boundary value ordinary differential equations
equipped with an adaptive mesh selection procedure [34,35].
Typical mesh sizes include 103−104 points, the relative accu-
racy of the solutions being around 10−10. A large part of the
solutions were also constructed by using a standard Runge–
Kutta ordinary differential equation solver. In this approach
we evaluate the initial conditions at r = rh+10−8, for global
tolerance 10−14, adjusting for the shooting parameters ψ(rh)
and σh and integrating towards r → ∞.

6.2 Solitonic solutions

The model (2.1) possesses smooth particle-like solitonic
solutions, which are recovered as the limit rh → 0 of the
hairy BHs to be described below. These gauged boson stars

have been discussed in the literature, albeit less so than the
usual uncharged boson stars. Their study can be traced back,
at least, to [19,20] which considered gauged boson stars with-
out a sextic term in the potential and λ < 0, although the pres-
ence of the quartic term is not crucial. More recently, their
were considered in [21]. We are not aware of any systematic
discussion of the gauged boson stars with the Q-ball poten-
tial (4.8), a.k.a. gravitating gauged Q-balls, in the literature;
some partial results can be found in [22,23].

The far field asymptotics of these globally regular config-
urations is similar to the BH case described in Sect. 3. Their
small-r form, however, is different and reads6

m(r) = 4πG

3

[
q2V 2

0 ψ2
0

σ 2
0

+U (ψ0)

]
r3 + · · · ,

σ (r) = σ0 + 4πGq2V 2
0 ψ2

0

σ0
r + · · · ,

ψ(r) = ψ0 + 1

6

[
−q2V 2

0

σ 2
0

ψ0 + 1

2

dU (ψ)

dψ

∣∣∣∣
ψ0

]
r2 + · · · ,

V (r) = V0 + 1

3
q2V0ψ

2
0 r

2 + · · · , (6.1)

which contains three free parameters σ0, V0 and ψ0. Note
that the electric potential does not vanish at r = 0. The first
law in this case reads

dM = α2�dQe. (6.2)

Whereas we shall not scan the domain of existence of
the solitonic solutions, let us provide a sketchy overview of
it. Firstly, fixing the input parameters of the model (4.13)
(α, β, e), the gauged boson stars exist for a finite range of
the chemical potential �, the upper limit being fixed by the
bound state condition (3.9), � ≤ −μ/q. Secondly, for given
(α, β) and fixed �, the solutions exist for a finite range of
the gauge coupling constant 0 ≤ q < qmax. This domain has
been studied for non-self-interacting scalar fields [20,21], but
not in the general case. Thirdly, in the uncharged limit, these
solutions reduce to the standard ungauged boson stars. For-
mally, this limit isq → ε,V → −w/ε and ε → 0.7 Thus, for
small q the solutions are rather similar to the corresponding
ungauged configurations, while the electric potential V (r) is
large and almost constant, with V (0)  �. Finally, for the
full Q-ball potential (4.8) the solutions admit a flat spacetime
limit wherein they become non-self-gravitating solitons, cor-
responding to α → 0. For this potential, the solutions exist
for a finite range of values of α. Again, this domain has not
been discussed in the literature.

6 We assume the gauge (4.1), thus w = 0 and work with unscaled
variables and a generic scalar field potential.
7 Alternatively, this limit is found by redefining Aα → Aα/q in
the initial action (2.1), such that the Maxwell Lagrangian becomes
FαβFαβ/q2, while the covariant gauge derivative is Dα� = ∂α� +
i Aα�. Then Aα → 0 as q → 0.
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6.3 The hairy BHs-test field limit

Before discussing the BH solutions of the full Einstein–
Maxwell-gauged scalar system, it is of interest to consider a
decoupling limit of the model, which corresponds to ignoring
the backreaction of the scalar (and possibly also the Maxwell)
field(s) on a fixed BH background geometry. The correspond-
ing equations and boundary behaviours result directly from
the general case discussed above.

The study of the test field limit is technically easier and
often instructive about the fully non-linear system. In this
approximation, we shall consider two cases of interest.

6.3.1 Gauged Q-clouds on a Schwarzschild BH
background

First we consider the Maxwell-gauged scalar field system on
a fixed Schwarzschild background. This limit is obtained by
taking α → 0 in the field equations, but keeping rh 
= 0.
Then the Einstein and matter fields equations decouple. The
Schwarzschild background has m(r) = rh/2 (N (r) = 1 −
rh/r ) and σ(r) = 1 in the metric ansatz (2.7).

In this decoupling limit, the input (physical) parameters
to find solutions are {rh, β, e}. The total mass-energy of the
field configuration is computed as the integral

E = 1

4π

∫
d3x

√−g(T α
α − 2T t

t ) = M(ψ) + �Qe. (6.3)

The electric charge and chemical potential are computed
from the far field asymptotics of the Maxwell field (3.6),
whereas M(ψ) is given by (4.17).

Within this setup we have obtained non-trivial field con-
figurations, dubbed gauged Q-clouds, on a Schwarzschild
background. It may seem surprising that such solutions
exist on a Schwarzschild (rather than RN) background.
But recall that the gauge condition (4.1) is fulfilled by the
Schwarzschild horizon. This is somewhat similar to the fact
that, as a test field, Maxwell’s equations admit a spherically
symmetric solution on the Schwarzschild background—see
Sect. 2.1 in [36]. This is a linear version (on the Maxwell
field) of the RN BH. Similarly, the gauged Q-clouds we are
describing correspond to a decoupling limit (rather than a
linearisation) of a charged BH with gauged scalar hair.8

Some salient features of these gauged Q-clouds are the
following. Firstly, there is a mass gap: the solutions cannot
have an arbitrarily small energy or electric charge and thus
do not emerge as zero modes. This gap decreases with rh but
is non-vanishing even in the flat spacetime limit rh = 0—
Fig. 1 (left and right panels). As a related feature, the scalar

8 A similar situation is found e.g. in Einstein–Yang–Mills-SU(2)
theory. The Yang–Mills equations posess an exact solution on a
Schwarzschild background [37], which captures the basic features of
the self-gravitating configurations [38–40].

field never vanishes. Secondly, given a (Schwarzschild) BH
background, the solutions exist for some finite range of the
(modulus of the) chemical potential

�min < |�| < μ/q, (6.4)

a behavior similar to the flat spacetime case. This is also
manifest in both panels of Fig. 1. Thirdly, for given rh , the
solutions exist for a finite range of the parameters q, β.

Let us emphasise that the non-linearities are key for the
existence of these Q-clouds. Indeed, we can show that in
the absence of scalar self-interaction no non-trivial solutions
exist on the Schwarzschild background. To see this, observe
that in the absence of self-interactions the effective mass (5.6)
reduces to

μ2
eff = μ2 − q2V 2

Nσ 2 . (6.5)

It is clear that the effective mass is positive at both the horizon
and asymptotically: μ2

eff(rh) = μ2 > 0 and μ2
eff(∞) =

μ2−q2�2 > 0. Recall the observation that in Section 5.4 that
solutions with the considered asymptotic behaviours require
that μ2

eff must be negative in some range. Thus, there exists
r∗ > rh such that

μ2
eff(r

∗) < 0,
dμ2

eff

dr

∣∣∣∣
r=r∗

= 0,
d2μ2

eff

dr2

∣∣∣∣
r=r∗

> 0.

(6.6)

A straightfoward computation leads to the following relation,
using the middle eq. in (6.6) and the field equation for the
electric potential:

d2μ2
eff

dr2

∣∣∣∣
r=r∗

= −2q2r(2q2rV 2ψ2 + (r − rh)V ′2)
(r − rh)2

∣∣∣∣
r=r∗

< 0.

(6.7)

This contradicts the last condition in (6.6) (we recall that
r∗ − rh > 0). Thus we conclude that the Schwarzschild BH
does not support a gauged scalar cloud for the simple model
with a mass term only.

Finally, let us mention that the virial relation (2.19) takes
a particularly simple form in the probe limit. It reads
∫ ∞

rh
dr r2

{
N 2ψ ′2 +

(
3 − 2rh

r

)
U (ψ)

}

=
∫ ∞

rh
dr r2

{(
1 − 2rh

r

)
V ′2

2
+ 3e2V 2ψ2

}
. (6.8)

6.3.2 Gauged Q-clouds on a RN background

Now we consider a gauged scalar test field on a RN back-
ground. This limit is found by taking again the limit α → 0,
but now rescaling alsoV → V/α and e → αe. The Einstein–
Maxwell and gauged scalar field sectors of the model decou-
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Fig. 1 Gauged Q-clouds on fixed Schwarzschild BH backgrounds. Mass-energy (left panel) and electric charge (right panel) vs. the chemical
potential. rh is the event horizon radius; rh = 0 the Minkowski spacetime limit. All quantities are given in units set by μ

ple. We are left solutions of Eq. (2.13) on a fixed RN BH
background, which has

N (r) = 1 − 2M

r
+ Q2

r2 , σ (r) = 1,

V (r) = Q

rh

(
1 − rh

r

)
, (6.9)

in the metric ansatz (2.7) and gauge field ansatz (2.8). rh is
the largest root of N (rh) = 0.

This limit of the model has been considered in the recent
work [25]. We have confirmed independently the existence of
the solutions reported therein. Our study of the backreacting
solutions in the next section, however, suggests this limit is
never approached by the fully non-linear system, at least for
the range of the parameters explored so far.

6.4 The hairy BHs: non-perturbative results

Let us now consider the fully non-linear solutions obtained
by solving the equations of motion (2.10)–(2.13) with the
potential (4.8). We have explored these equations for a large
set of physical parameters, (α, β, e). The profile of a typical
solution is shown in Fig. 2. As anticipated in Sect. 2.2, the
functionsm(r), σ (r) are increasing radial functions andV (r)
is monotonic—in this case decreasing. Also, the scalar profile
is nodeless and vanishes asymptotically.

We shall not pursue a complete scanning of the domain of
existence of these solutions. Rather, we shall describe some
sequences of solutions which, hopefully, are illustrative of
general patterns.

Figure 3 exhibits the behaviour of the mass and electric
charge of the hairy BHs in terms of their horizon area, for
illustrative values of β, e and a sample of values of α. Fixing
these parameters, the solutions with a fixed chemical poten-

Fig. 2 Profile functions of an illustrative BH with gauged scalar hair,
as functions of the radial coordinate

tial � (i.e. in a grand canonical ensemble) exist from an
arbitrary small size up to a maximal BH size, as specified
by the event horizon area AH . This defines the fundamen-
tal branch. Along this fundamental branch, both the mass
and the electric charge increase with AH . At the same time,
the value of the scalar field at the horizon decreases—Fig. 4
(left panel). As AH → A(max)

H , a secondary branch emerges,
with a backbending in AH . Thereafter, the numerics becomes
increasingly challenging, the scalar field being confined in a
region close to the horizon. We suspect there may exist a
spiraling structure, with extra branches and a critical central
configuration.

In Fig. 4 we can appreciate that neither the scalar field
ever trivializes, nor the hairiness parameter h = qQN/Qe,
defined in (4.6), ever vanishes. This corroborates that these
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Fig. 3 ADM mass M (left panel) and electric charge Qe of the RN BHs with resonant scalar hair, for a fixed chemical potential � and several
values of the coupling constant α, vs. the horizon area AH

Fig. 4 Value of the scalar field at the horizon ψh (left panel) and the hairiness parameter qQN /Qe (right panel) vs. the horizon area, for the same
solutions as in Fig. 3

solutions have a mass gap with respect to the bald RN BHs
and do not bifurcate from them.

One can take different perspectives on these hairy BH
solutions. A first perspective is that any gauged boson star
solution with the Q-ball potential appears to possess a BH
generalization. That is, one can place a BH horizon within this
gravitating soliton, under the resonance condition. Given the
parameter (α, β, e;�), the BHs are found by slowly increas-
ing from zero the value of rh in the metric ansatz (2.7). It
is worth pointing out that the solitonic limit is smooth for
the functions δ(r), ψ(r) only, while, as rh → 0, the inner
boundary behavior of N (r) and V (r) jump from 0 to 1 and
0 to V0 
= 0, respectively. Nonetheless, various global quan-
tities like M , Qe and � are continuous as the soliton limit is
approached.

A second perspective is that any Q-cloud on Schwarzschild/
RN can be made backreact. These test field configurations
arise for α = 0 and a given rh > 0. The self-gravitating gen-
eralizations are found by slowly increasing the parameter α.
We have found that given (β, e; rh,�), the solutions exist up
to maximally value of α.

Finally, perhaps the most surprising perspective is that
in the Einstein–Maxwell-scalar model (2.1) the RN BH is
not the unique spherically symmetric charged BH. Indeed,
for the same charge to mass ratio there may exist also Q-
hairy BH solutions, depending on the value of the remaining
parameters. Moreover the hairy BHs can have larger area
and hence entropically favoured. This is illustrated in Fig. 5.
Fixing β, e and the chemical potential �, the hairy BHs for
fixed α have a two branch structure. The fundamental branch
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Fig. 5 Reduced area (left panel) and temperature (right panel) of both Q-hairy BHs and the RN BH in terms of their charge to mass ratio for fixed
(β, e,�) and three sample values of α. The Q-hairy BHs can become entropically favoured sufficiently close to extremality and there is always a
gap with the RN BH

connects to the solitonic limit AH → 0; after a backbending
there is a second branch of larger area. One can see that, for
the two values of α, sufficiently close to extremality the hairy
BHs have a larger area than the corresponding RN BH with
the same charge to mass ratio. Moreover, there is a region
where the non-uniqueness is three-fold: there are two hairy
BHs and a RN BH with the same charge to mass ratio. In
this sense, the situation resembles that recently reported in
[41]. The right panel of Fig. 5, moreover, shows both that the
temperature of the Q-hairy BHs never vanishes and also the
gap between RN and the hairy solutions.

7 Further remarks

In this work we have shown that, contrary to common belief
based in particular on the no-hair theorem by Mayo and
Bekenstein [15], a gauged scalar field minimally coupled
to electro-vacuum can give rise to BH hair, as long as suffi-
cient self-interactions are allowed.9 Observe, however, that
the type of self-interactions necessary need not violate the
weak or the dominant energy conditions; in fact, the exam-
ples herein use the common and physical Q-ball type poten-
tial. The obtained BHs can be interpreted as extensions of
Schwarzschild or RN BHs with gauged, resonant, scalar
hair. Their existence was anticipated by the results in [25].
Together with the results for synchronised scalar hair around
Kerr [3] and Kerr–Newman BHs [5], the result herein estab-
lishes that all basic electro-vacuum solutions of GR allow

9 Boson shells harbouring BHs with charged scalar hair were consid-
ered in Ref. [42,43]. However, those solutions require a V -shaped scalar
potential which is not of the form (4.8), and they possess rather different
properties as compared to the case in this work.

some sort of extensions with BH hair, still within GR, with a
minimally coupled scalar field, albeit with different idiosyn-
crasies in each case. In this sense, BHs allow hair as a rule,
rather than as an exception.

Perhaps the most intriguing apect of these new hairy
BH solutions is why the solutions seem to require self-
interactions of the scalar field, unlike the case of Myers–Perry
BHs, described in the introduction. Further insight into this
need would be desirable. Another issue concerns dynami-
cal/stability properties of these solutions, which is an inter-
esting direction of further research.

Also, let us mention that we have not fully explored the
domain of existence of these Q-hairy BHs, although a sys-
tematic study of the solutions seems possible. In this direc-
tion, we have confirmed that besides the simple zero node
(for the scalar field) solutions herein, there are also solutions
with nodes, corresponding to excited states. Furthermore, we
predict the existence of similar hairy BHs for a gauged Proca
field. Solitonic solutions with a gauged Proca field have been
discussed in e.g. [44].

Finally, we remark that BH solutions of the Einstein–
Maxwell-gauged scalar field model exist for AdS asymp-
totics, providing the gravity duals of s-wave superconduc-
tors [45]. The main difference w.r.t. the asymptotically flat
case is that those solutions emerge as perturbations around a
RN-AdS background. Thus, the nonlinearities of the scalar
field potential play no key role in this context.
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