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Palavras Chave Drones, Aprendizagem Automática, Redes Neuronais Convolucionais,

Detecção de Objectos, Visão por Computador.
Resumo O recente progresso tecnológico registado nas últimas décadas no

campo da Visão por Computador introduziu novos métodos e algo-

ritmos com um desempenho cada vez mais elevado. Particularmente,

a criação de algoritmos de aprendizagem automática tornou possível

a detecção de objetos aplicada a feeds de vídeo capturadas em tempo

real. Paralelo com este progresso, a tecnologia relativa a veículos aéreos

não tripulados, ou drones, também beneficiaram de avanços tanto na

miniaturização dos seus componentes de hardware assim como na op-

timização do software. Graças a essas melhorias, os drones emergiram

do seu passado militar e são agora usados tanto pelo público em geral

como pela comunidade científica para aplicações tão distintas como

fotografia e monitorização ambiental.
O objectivo da presente dissertação pretende tirar proveito destes re-

centes avanços tecnológicos e aplicar algoritmos de aprendizagem au-

tomática de última geração para criar um sistema capaz de realizar

seguimento automático de pessoas com drones através de visão por

computador.
Para realizar a detecção de objetos, dois algoritmos distintos de apren-

dizagem automática são apresentados. O primeiro é dotado de uma

abordagem baseada em Support Vector Machine (SVM), enquanto o

segundo é caracterizado por uma arquitetura baseada em Redes Neu-

ronais Convolucionais. Ambos os métodos serão avaliados usando uma

base de dados de imagens criada para os propósitos da presente dis-

sertação.
As avaliações realizadas relativas ao desempenho dos algoritmos de de-

tecção de objectos demonstraram que o método baseado numa arquite-

tura de Redes Neuronais Covolucionais foi o melhor tanto em termos

de tempo de processamento médio assim como na precisão das de-

tecções, revelando-se portanto, como sendo o método mais adequado

de acordo com os objectivos pretendidos.
O sistema desenvolvido foi testado num contexto real, com os resul-

tados obtidos a demonstrarem que o sistema é capaz de realizar o

seguimento de pessoas a velocidades comparáveis a um ritmo normal

humano de caminhada.





keywords Drones, Machine Learning, Convolutional Neural Networks, Object De-

tection, Computer Vision.
Abstract Recent technological progress made over the last decades in the field

of Computer Vision has introduced new methods and algorithms with

ever increasing performance results. Particularly, the emergence of

machine learning algorithms enabled class based object detection on

live video feeds. Alongside these advances, Unmanned Aerial Vehi-

cles (more commonly known as drones), have also experienced ad-

vancements in both hardware miniaturization and software optimiza-

tion. Thanks to these improvements, drones have emerged from their

military usage based background and are now both used by the general

public and the scientific community for applications as distinct as aerial

photography and environmental monitoring.
This dissertation aims to take advantage of these recent technological

advancements and apply state of the art machine learning algorithms

in order to create a Unmanned Aerial Vehicle (UAV) based network

architecture capable of performing real time people tracking through

image detection.
To perform object detection, two distinct machine learning algorithms

are presented. The first one uses an SVM based approach, while the

second one uses an Convolutional Neural Network (CNN) based ar-

chitecture. Both methods will be evaluated using an image dataset

created for the purposes of this dissertation’s work.
The evaluations performed regarding the object detectors performance

showed that the method using a CNN based architecture was the best

both in terms of processing time required and detection accuracy, and

therefore, the most suitable method for our implementation.
The developed network architecture was tested in a live scenario con-

text, with the results showing that the system is capable of performing

people tracking at average walking speeds.
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Chapter 1

Introduction

Unmanned Aerial Vehicle (UAV)s, more commonly known as drones, have benefited

from recent technological advances in the last few decades that contributed towards their

miniaturization and optimization. This progress expanded their utility and usage into a

wide range of possible applications for both scientific purposes (e.g.: atmospheric monitor-

ing and data gathering, topographic monitoring of coastal areas, oceanographic research)

as well as more casual uses for the general public (e.g.: photography). This recent devel-

opment presents a paradigm shift from the inception of UAVs that, previously, focused

mainly on military applications.

Parallel to the UAVs development over the years, the fields of image classification and

object detection have also seen great strides, with the advent of machine learning algorithms

that leverage huge image databases to produce fast and accurate computer based image

assessment.

The present work aims to take advantage of both UAV’s characteristics and state of the

art machine learning algorithms to implement a network architecture capable of real-time

person tracking through image detection using UAVs.

1.1 Objectives

The main goal of this dissertation is the implementation of a network architecture

capable of conducting real-time person tracking through image detection using UAVs.

With this goal in mind, the present dissertation has the following objectives:

• Design the overall elements of the architecture required to gather live video data from
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an airborne UAV, perform object detection on said data and issue drone commands

based on this input so as to correctly track a person present on an open terrain;

• Evaluate current state of the art object detectors and their suitability to perform

real-time person detection on a given video feed;

• Create the UAV control logic based around the constraints found when performing

object detection on the live video footage gathered by an airborne UAV;

• Evaluate the overall performance of the proposed solution in real world scenarios;

1.2 Contributions

The work developed in this dissertation led to the following contributions:

• Creation of an image Database comprised of frames depicting people on an open

terrain environment and shot from the point-of-view of an airborne UAV, complete

with boundary box labels for each person depicted;

• Comparison of two machine learning based object detectors, one using the SVM ap-

proach and the other one using a Convolutional Neural Network (CNN) architecture,

when performing person detection on footage recorded by an airborne UAV;

• Development of a REST based server capable of performing person detection on an

input video feed and issue movement based commands over to an active UAV in

order to perform a tracking mission. The commands are based on the UAV platform

designed by Bruno Areias et al. [24].

• Experimentation of a multi-technology network approach for the real-time image

detection and drone control.

1.3 Document Structure

This section outlines the structure of this dissertation.

• Chapter 1 - Provides a brief description of this dissertation’s work along with the

context, motivation and objectives;
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• Chapter 2 - Presents the advancements in areas relevant to this dissertation, cov-

ering drones, current machine learning algorithms used for object detection and the

methodology used to evaluate their performance;

• Chapter 3 - Contains the description of the proposed architecture, covering each

element present and its respective description;

• Chapter 4 - Contains the algorithm description and implementation used for issuing

commands to the UAV based around the output from an object detector;

• Chapter 5 - Presents the results obtained with regards to the performance of two

different types of machine learning based object detectors when used solely for de-

tecting people from images gathered by an airborne UAV. It also provides the final

results obtained when conducting tracking experiments using the proposed solution;

• Chapter 6 - Presents the conclusions of this dissertation and proposes additional

improvements that can be implemented in order to enhance the overall performance

of the proposed architecture.
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Chapter 2

State of the Art

This chapter introduces the main concepts and topics involved in this dissertation’s

work. Firstly, there is a brief discussion about drones and their usage in today’s landscape.

An overview on methods of object detection in the field of image processing is then

followed. The main approaches discussed follow the most recent trends in this field and

will focus mainly on deep learning methodologies developed over the last recent decades

with a primary focus on the approaches using Convolutional Neural Network (CNN) and

Support Vector Machine (SVM).

2.1 Drones

Ever since the first documented flight accomplished in 1903 by the Wright brothers,

drones or Unmanned Aerial Vehicle (UAV)’s were seen as a possibility for scientists and en-

gineers at the time. The ability of controlling an aircraft remotely and without an on-board

pilot opened a wide range of possible applications. UAV technology took its first steps dur-

ing the first World War [25]. The ability to transmit real-time intelligence, surveillance,

and reconnaissance information from hostile territory made these types of technology very

appealing to military leaders. This lead to continued financial backing from governments

to pursue new, more advanced prototypes. Nowadays, thanks to: (1) new advances; (2)

UAV’s characteristics of small size; (3) strong mobility; (4) low communication overhead;

(5)the emergence of new sensors with improved geometric and radiometric resolution; (6)

new platforms that provide robustness and increased autonomy; (7) new software developed

that ranges from navigation and communications; and (8) the processing and analysis of

5



the data gathered by sensors [26], made a whole new host of applications in several different

possible fields, as explained below.

Agriculture Estimate harvest volumes using digital images collected by UAVs [27]. Crop

monitorization, analyses and protection [28] [29].

Surveillance UAVs are deployed in either coastal or land borders in order to perform

patrol missions [30].

Environmental Monitoring UAVs are used to monitor harmful gas concentrations in

the atmosphere [31].

Atmospheric Data Gathering UAVs are used to retrieve various types of localized at-

mospheric readings [32].

Figure 2.1: Fixed wing UAV. Figure 2.2: Single-rotor UAV. Figure 2.3: Multi-rotor UAV.

UAVs can vary greatly in shape and size depending on the applications’ requirements

where the given UAV is deployed. The type of technology used to keep the drone airborne

determines the type of drone. The three main types of drones are: fixed-wing, single-rotor

and multi-rotor, depicted in Figures 2.1, 2.2 and 2.3 respectively.

A brief summary of the different types of UAVs and their main characteristics is shown

in Table 2.1.

2.2 Image Processing

Computer vision took its first steps in the 1970s. Back then it was considered that

solving the “visual input” problem would be an easy step along the path to solving more

6



Table 2.1: Types of UAVs and corresponding features (adapted from [22]).

Pros Cons Typical Uses

Multi-Rotor

• Accessibility

• Ease of use

• Vertical Take-off and Landing (VTOL)

and hover flight

• Good camera control

• Can operate in a confined area

• Short flight times

• Small payload capacity

• Aerial photography and video

• Aerial inspection

Fixed-Wing

• Long endurance

• Large area of coverage

• Fast flight speed

• Requires take-off and landing area

• No VTOL/hover

• Harder to fly, more training required

• Expensive

• Aerial mapping

• Pipeline and Power line inspection

Single-Rotor

• VTOL and hover flight

• Long endurance

• Heavier payload capability

• Less reliable

• No VTOL/hover

• Harder to fly, more training required

• Expensive

• Aerial LIDAR laser scanning

• Pipeline and Power line inspection

difficult problems such as higher-level reasoning and planning [1]. However, this task has

proven to be more difficult to solve than previously imagined.

Figure 2.4 shows a brief overview of the most significant advances in the field of com-

puter vision over the last few decades.

Figure 2.4: A timeline overview of some of the most active topics of research in computer

vision (from [1]).

The efforts that were made pushed the boundaries of computer vision to new frontiers.

Each new step brought us closer to what is possible nowadays, with object detection being

used in different areas such as Automated Parking Systems [33] (shown in Figure 2.5) and

detection of tumors [3] (shown in Figure 2.6).
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Figure 2.5: Object detection used in

parking application (from [2]).

Figure 2.6: Brain Tumor Segmentation

in MRI Images (from [3]).

2.2.1 Background

One of the most sought-after goals in the field of computer vision is the analysis of a

given image, and the recognition and labelling all of the objects present in the input image

(Figure 2.7).

The difficulty behind this problem arises from the fact that, in the real world, objects

are usually, not arranged in an organized manner and separated from each other. They can

appear to have different shapes and sizes depending on the perspective. Furthermore, each

class belonging to a specific object (e.g., dogs, chairs, people...) has an intrinsic variability.

For example, in the object class belonging to birds there can be extreme variations in size

and shape due to the many different types of bird breeds that exist (shown in Figure 2.8).

This makes it unlikely that we can simply perform exhaustive matching against a database

of exemplars [1].

The most challenging aspect in object recognition in computer based algorithms arises

from this fact alone: to determine whether a certain type or class of object is present

(e.g., dogs, people, cars...), it is needed to take into account all the different factors (e.g.,

lighting conditions, object orientation, deformation, class variability...) and context behind

the analyzed image: this is where Artificial Neural Networks (ANN) have played a major

role in tackling these problems over the most recent years.
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Figure 2.7: Example of Object Detection (from [4]).

2.2.2 ImageNet challenge

The ImageNet challenge [34] was created in a collaboration between the Standford and

Princeton Universities, and was first presented in 2009 at the Conference on Computer

Vision and Pattern Recognition. It provides a large database composed of millions of

images where each one depicts a class of object and is labelled accordingly. In it, at least

one million images bounding boxes are also provided, pertaining to the pixel position of

the object shown in the image.

The challenge was originally a classification task where the final objective is to identify

the object present in the input image. In this case, the input images represent only a

single object belonging to one class (e.g., dogs, person, chair). The challenge has evolved

to further include a multi-classification task where the objective is to label each object

shown with the respective class and bounding box.

Traditional methods of image classification were first applied to tackle this challenge.

However, in 2012 a significant performance boost was achieved using Deep Neural Net-

works [35]. The results showed an error rate of 15.3%, outperforming considerably the
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Figure 2.8: Birds shown as an example of intra-class variability (from [5]).

second best contest entry that achieved an error rate of 26.2%.

2.2.3 Deep Neural Networks

The term Deep Learning or Deep Neural Network refers to ANN with multiple layers.

ANNs are commonly used in artificial intelligence and machine learning applications. Its

importance in pattern recognition has grown over the last decades [36]. Deep neural net-

works were first inspired by the fields of Neuroscience or Biology and Mathematics. More

specifically, ANN emulate what happens in the visual cortex when it receives sensory input

from the eyes. It was shown in an experiment designed by D.H. Hubel and T.N. Wiesel

[37] that certain individual cells, present in the visual cortex, only fire when exposed to

certain patterns present in the image being perceived (these patterns include, for example,

vertical or horizontal edges). The notion of specialized components inside a network that

respond to specific patterns is an integral part of the theory behind Deep Neural Networks.

The first approach at achieving a computational model of neural networks was introduced

by the neurophysiologist Warren McCulloch, and by the mathematician Walter Pitts in

1943 [38]. The model proposed ushered in a new field of study: ANN. ANNs are composed

of an interconnected set of artificial neurons, Figure 2.9 depicts a simple model of one such

neuron.

The artificial neurons are responsible for using the inputs received by their neighbours

and obtain an output signal to be propagated to other neurons. A basic artificial neuron

is comprised of a set of inputs xi, each with an associated weight wi and a corresponding

bias θ. The output y is obtained by applying an activation function to the weighted sum

between inputs and their associated weights, and is expressed in Equation 2.1:
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Figure 2.9: Model of an artificial neuron (from [6]).

y = f(ξ) = f(
n∑

i=1

xi.wi + θ) (2.1)

There are two different types of ANN topologies: Feedforward and Feedback [7]. On

Feedforward ANN the output signal is always sent over to the next layer of neurons; in other

words, the data flow is unidirectional. By contrast, in Feedback ANN neurons are able to

use data from succeeding layers. Figures 2.10 and 2.11 depict examples of a Feedforward

and Feedback topologies respectively.

Figure 2.10: Example of a Feed Forward

topology ANN (from [7]).

Figure 2.11: Example of a Feedback

topology ANN (from [7]).

When dealing with object recognition in images, one specific type of Deep Neural
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Networks has been shown to be particularly efficient: Convolutional Neural Networks

(CNNs). When compared to standard feed forward neural networks with similarly-sized

layers, CNNs have much fewer connections and parameters, and so, they are easier to train,

while their theoretically best performance is likely to be only slightly worse [35].

2.2.3.1 Convolutional Neural Networks

CNNs are multi-layer feed-forward networks. Their architecture is very similar to the

architecture of ANNs discussed in the previous chapter: they are comprised of neurons

that have learnable weights and biases. Each neuron has a set of inputs used to obtain

that output given by performing a dot product between them followed, in some cases, by

a non-linearity function.

Typical applications when designing these types of networks consist of object recog-

nition, however, CNNs have also been successfully designed for various different types of

tasks [39] [40].

The main building blocks behind the architecture of CNNs are convolutions, hence their

name. In CNNs convolutions are mainly used to perform feature extraction on the input

image. A two-dimensional convolution can be expressed by:

f [m,n]⊛ g[m,n] =
∞∑

i=−∞

∞∑

j=−∞

f [i, j].g[m− i, n− j] (2.2)

In CNNs the matrices used to perform the convolutional operation and, consequently,

feature extraction are very small when compared to the inputted data thus preserving the

spacial relationship between pixels. These matrices can be designated as: kernels, filters

or feature extractor. The convolution operation is achieved by sliding the kernel along

the input matrix and obtaining the dot product as shown in equation 2.2. An example

of a filter matrix for horizontal edge detection applied to an image and the corresponding

feature map is depicted in Figure 2.12.

Each filter has a specific set of weights attributed to it. The weights are treated as

neuron parameters while the convolution operation replaces the logical operations of a

regular ANN. These weights determine which features are to be detected on the input

data. Changing these values produces different feature maps and, consequently, produces

different outputs between each layer of the CNN. During the training process of one CNN

these values are adjusted between each iteration, to minimize the error rate at the output.
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Figure 2.12: Examples of 2D image filters (adapted from [8]).

Sets of different filters can be combined to form a convolutional layer. Besides convolutional

layers, a CNN architecture is usually comprised of the following layers:

Input Layer Composed of the raw pixel data from the image (usually a 3 dimension

matrix corresponding to the three color channels R,G,B).

Convolutional Layer This layer is made up of a set of filters whose parameters are

learnable. These filters convolve across the width and height of the input matrix.

The result is an activation matrix that shows the presence, or not, of a certain feature

intrinsic to that filter. These features typically correspond to simple shapes in the low

level Convolutional layers (e.g. edges with a specific orientation), to more complex

ones in the high level layers (e.g. roundness patterns).

Pool Layer Given an input matrix this layer performs a downsampling across the height

and width of the matrix.

Fully-Connected Layer This layer outputs each class confidence score, corresponding

to the level of certainty that the network has about the fact that the object of class

X is present in the image.

A simple overview of a CNN is shown in Figure 2.13.

The Network receives an input image (3 dimensional vector: width, height, channels).

This input is then transformed through a set of hidden layers, changing the shape and size
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Figure 2.13: Example of a Convolutional Neural Network (from [9]).

of the original data to obtain an output vector consisting of each class scored according to

the level of certainty about the fact that the class is present in the input image.

Each layer has an input volume and outputs a certain volume to the next layer. The

size of each output volume is dependent on the layers’ hyperparameters:

Depth This first parameter corresponds to the number of filters present in the layer.

These filters have different goals, each producing different feature maps. They can

be used to detect edges, gradients, downsample the input, etc.

Stride This represents the number of pixels when shifting the filter across the input.

Increasing this parameter will reduce the output volume and reduce computational

effort at the cost of possibly decreasing the overall accuracy of the network.

Zero-Padding This final parameter is used to signal the number of zeros added, or not,

around the input volume. It is commonly used to obtain an output volume equal to

the input volume when applying the layers’ filters.

Each convolutional layer is preceded by a Rectified Linear Unit (ReLU) operation, and

can be expressed by:

f(x) = max(0, x) (2.3)

The purpose behind this operation is to introduce nonlinearity to the network since,

without this, the network would consist of only computing linear operations.

Previous work used the nonlinear functions tanh and sigmoid, but recently researchers

found that ReLU operators work better because the network is able to train faster (because
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of the computational efficiency) without making a significant difference to the accuracy

benchmarks [41].

A strong advantage behind CNN is the fact that convolutions are an integral part of

computer graphics (at the hardware level, convolutions are implemented in the GPU),

making this task very efficient and fast.

2.2.3.2 Examples of Convolutional Networks

You Only Look Once (YOLO) is an example of an implemented CNN. It presents

a new approach to object detection when compared to previous attempts made in the

field of object recognition. Prior detection systems repurpose classifiers or localizers to

perform detection. They apply the model to an image at multiple locations and scales in

order to detect a wether a certain object is present. High scoring regions of the image

are considered detections. Instead, YOLO uses a different approach where a single neural

network is applied to the full image. The YOLO network divides the input image into

grids and proceeds to predict bounding boxes and probabilities associated to a given class

for each grid element as shown in Figure 2.14. These bounding boxes are then weighted

by the predicted probabilities to infer the location of each detection [11].

Figure 2.14: Visual representation of YOLO network output (from [10]).

Figure 2.15 shows the architecture present in the YOLO network. This network consists

of 24 convolutional layers followed by 2 Fully Connected (FC) layers.

The initial convolutional layers of the network are used to extract low level features from

the image while the FC layers predict and output conditional probabilities and coordinates

for each class.

The images used when training this CNN belong to the PASCAL VOC2007 detection

project [12]. Resources provided by this project are the following:
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Figure 2.15: Example of a Convolutional Neural Network Architecture (from [11]).

• Standardized image data sets for object class recognition.

• Common set of tools for accessing the data sets and annotations.

• Enables evaluation and comparison of different methods.

Figure 2.16 shows a description of the contents present in the provided image dataset.

2.2.4 SVM

Initial work done to tackle the detection of types of objects in static images, such as:

traffic signs [42] and human faces [43], used template matching approaches where a set of

rigid templates or handcrafted parameterized curves are used to determine whether a type

of object is present in the given image. These methods, although intuitive and simple, are

difficult to implement when the type of object intended to be detected and its background

becomes more complex. This happens because these methods require a significant amount

of prior information and domain knowledge [44]. To account for the increase in complex-

ity of detection described previously, new methods were proposed that use learning-based

algorithms. These new implementations leverage large sets of data to achieve higher lev-

els detection accuracy in more complex imagery. One such implementation that showed

promising results in the field of object detection uses SVM [45].
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Figure 2.16: VOC2007 Image Dataset description (from [12]).

SVMs were first described by Vapnik and collaborators in 1992 [46]. SVM, in ma-

chine learning, are supervised learning models that are based on statistical learning theory

[47]. These models have recently been successfully applied to classification and regression

problems, leading to applications in various fields. Examples of these applications are:

object recognition [48], handwritten digit recognition [49], speaker identification [50], face

detection in images [51], text categorization [52] and many others. When compared to neu-

ral networks, SVMs are more intuitive and generally easier to implement, with the latter

method being more opaque when trying to recognize the "intention" behind each neuron’s

function and the connections formed between them.

The general principle behind SVMs, when applied to object detection, uses feature

vectors as points in a higher dimensional space to try and find planes that "slice" the

volume in such a way as to optimally separate between different classes of objects present

in the training data. The feature vectors can originate, in the field of image classification,

through Histogram Oriented Gradients (HOG), wavelets, Scale-Invariant Feature Trans-

form (SIFT), Speeded Up Robust Feature (SURF), etc. A simplified representation of the

idea described is shown in Figure 2.17.
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Figure 2.17: Visual representation of a SVM dataset containing 2 different classes (from

[13]).

In the example shown, the data points consist of two different classes, one class repre-

sented by crosses and the other one by circles. Each point has 2 corresponding features,

leading to the 2D mapping shown. The support vectors, where the name SVM is derived

from, are the ones found closest to the hyperplane, forming the "frontier" between the two

different classes.

In order to perform the task of classification optimally, there needs to exist an n-

dimensional (corresponding to n different features) space where the different classes of

objects are clearly separated. To achieve this, during the training phase, different types

of feature extractors and image correction schemes are used. An example showing this

concept is shown in Figure 2.18.

Following this phase, the next step is to find the most suitable hyperplane that separates

the different classes in the most optimal way. This optimal hyperplane corresponds to the

one that maximizes the distance between the two classes. This characteristic allows fewer

classification errors when dealing with inputs that are near the hyperplane and thus leading

to better accuracy. Depending on which methods are used during the development of the

SVM model, the model can be either linear or non-linear. Once this is achieved, it is

possible to map out any input data to the given class prediction. This is done simply by
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Figure 2.18: Examples of different 3 different SVM models using the same data(from [14]).

using the mathematical expression that encodes the extracted feature vector, from the input

data, to the n-dimensional plane and the associated distance in relation to the hyperplane.

When testing if the model is accurate, besides being able to predict the training data,

the model must also be able to correctly predict new data fed into it. In cases where the

developed model shows a high level of accuracy when predicting the training data but

does not accomplish the same for non-training data leads to a model that suffers from

overfitting. This is usually due to either a small set of training data, too many feature

descriptors or a combination of the two. Underfitting is also a possible result; this occurs

when the training samples under represent the scope of possible class variation or when

the model is too simple.

Extrapolating these notions to feature vectors in higher dimensions: f : IRN →

{−1,+1}, where n is the number of features present, and the value of the function refers

to each class to be classified by the model.

2.3 Evaluation of Object Detection Algorithms

The task of evaluating the performance of object classifiers is a simple one since these

classifiers are only required to predict whether a certain class of objects is present or not in

the input image. When performing a classification on a given object class, we can obtain

4 different types of results at the output:

True Positives (TP) True positives represent the instances where the predicted class is

equal to the actual class present in the image.
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True Negatives (TN) True negatives represent the instances when the class is not present

in the image and the classifier, correctly, does not predict that class.

False Positives (FP) False positives represent the instances where the predicted class is

not present in the image.

False Negatives (FN) False negatives represent the instances where an image containing

the object class is, incorrectly, predicted as having none.

Using these definitions, we can evaluate the object classifier in terms of: accuracy,

precision, recall and specificity. Accuracy corresponds to the models’ correct predictions

compared to the total number of possible correct predictions, and it can be expressed by,

Accuracy =
TP + TN

TP + FP + FN + TN
(2.4)

Precision is a measure that shows the proportion of positive predictions that are actually

true expressed by,

Precision =
TP

TP + FP
(2.5)

Recall measures the ratio of true object detections to the total number of objects in

the data set, and is expressed by,

Recall =
TP

TP + FN
(2.6)

Since object detectors are tasked with assigning, in an image, a bounding box to the

predicted object there needs to be a new metric designed to evaluate its precision. To

achieve this, the set of image data must first contain correct labels in each image with the

bounding box values for each class. These bounding box values are usually hand labelled

and referred to as ground truth. The most widely metric used to evaluate the predicted

bounding box level of accuracy is Intersection over Union (IoU). This metric measures the

area of overlap between the predicted bounding box Bp and the ground truth bounding

box Bgt in relation to their area of union [53], as shown in Figure 2.19, according to the

formula:

IoU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(2.7)
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Figure 2.19: Example of an IoU from an arbitrary Object Detector (from [15]).

This metric can be used to evaluate a given Object Detector performance by establishing

a minimum value of IoU required for a TP to be validated.

Using the concepts described, we can evaluate a given algorithm in terms of Average

Precision (AP). AP computes the average precision for equally spaced recall values that

range from 0 to 1 evaluated for a particular class of objects. For example, in the VOC2007,

the AP is calculated as the mean precision at a set of eleven equally spaced recall levels

[0,0.1,0.2,...,1], using the formula [54]:

AP =
1

11

∑

rǫ{0,0.1,...,1}

pinterp(r) (2.8)

The precision at each recall value of r is interpolated by taking the maximum precision

obtained for a method for which the corresponding recall exceeds r:

pinterp(r) = max
r̃:r̃≥r

p(r̃) (2.9)

where p(r̃) is the measured precision at recall r̃. This method of evaluation proposed in

[55] is the most widely used method for evaluating Object Detectors with slight variations

on the formula being used in different visual object recognition research papers. Finally,

when evaluating, for a dataset comprised of multiple different classes, the AP scores ob-

tained for each class are averaged out to obtain the Mean Average Precision (mAP). The

mAP score measures the overall performance accuracy across multiple types of classes Fig-

ure 2.20 shows the mAP scores obtained in the PASCAL VOC 2012 competition with the

results obtained by the YOLO network being highlighted.
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Figure 2.20: PASCAL VOC 2012 Leaderboard(from [11]).

2.4 Summary

This Chapter provided a brief overview to the field of image processing with a special

focus in machine learning algorithms used in object detection tasks. The two main al-

gorithms discussed were the ones that implement the SVM and CNN approaches. These

methods will be the ones used in this dissertation’s architecture to perform person de-

tection, and will be explored more thoroughly in Chapter 5 in order to decide which one

performs this task more efficiently.

Furthermore, an introduction to UAV technology was presented, characterizing the dif-

ferent types of UAVs available to today’s developers, and the different types of applications

in which they are inserted.
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Chapter 3

Proposed Architecture

This chapter provides an insight on the architecture implemented for both the drone

and ground systems in order to achieve the goal set out of using an Unmanned Aerial

Vehicle (UAV) to track a person through the video captured on the on-board camera.

Section 3.1 presents an overview of the proposed network architecture along with the main

challenges it faces. Section 3.2 describes the main hardware and software components of

the architecture.

3.1 Scenario Overview

The aim of this work is to build an architecture capable of conducting real-time person

tracking with UAVs through image detection. The architecture proposed is based on an

UAV platform [24] which already contains features such as UAV control and monitoring

implemented for multi-rotor UAVs. The scenario envisioned, depicted in Figure 3.1, con-

sists of a drone equipped with a camera that gathers video while airborne. This video is

streamed to a server located the ground side of the architecture. Since video streaming

requires the use of a significant amount of bandwidth, WiFi is chosen to deliver the video to

the server located on the ground. This server will produce the positional commands to be

sent to the active UAV based on the relative position of the person inside each frame. The

resulting commands are issued over to the drone platform presented in [24] that proceeds

to communicate them over to the UAV through cellular technology. The use of cellullar

technology by the drone platform to monitor and control UAVs is meant to prevent them

from being in a situation where they find themselves out of range. These commands aim to
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continuously update the UAV’s position relative to the person targeted, so as to effectively

track its movement.

Figure 3.1: Scenario Overview.

The main challenges faced by this architecture to achieve the goal of real-time people

tracking are:

Video feed In order to provide real-time tracking, a low delay in the video feed between

camera and Ground Side elements is required. Also, in order to perform object

detection, the captured video needs to have a base level of quality and resolution,

where the improvement of both these factors will result in better object detection

performance. The trade-off in this case will be between bitrate levels required to

transmit the video feed and its quality.
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Detection time vs Accuracy Each frame collected needs to be processed by an object

detector to detect the presence and position of a person relative to the frame. The

predicted position obtained through the Object detector allows for an estimation of

the person’s position relative to the UAV. This information is crucial when calculat-

ing the positional commands sent to the UAV. Also, since the purpose is to achieve

real-time tracking, the time needed for the Object detector to process each frame

must be minimized as much as possible, while maintaining an acceptable level of

performance in regards to its detection accuracy (see Section 5.3.1).

Delay Between Commands The latency between each positional command sent to the

drone is crucial when performing real-time tracking, since high levels of latency may

compromise the whole process.

3.2 Network Elements

This section describes the various modules and their interconnection, Subsection 3.2.1

gives some details regarding the hardware equipment used, and Subsection 3.2.2 describes

the software architecture.

3.2.1 Hardware Equipment

3.2.1.1 Drone

To carry out the proposed mission scenario the choice of the type of drone to use is

limited to multi-rotor drones, since the capability of stationary flight is crucial for both clear

video acquisition and point-to-point movement when tracking a specific target. Another

characteristic to be taken into consideration is the payload capacity since the drone needs

to carry external equipment required to perform the mission. To accommodate these

characteristics, the hexacopter Flame Wheel 550 (F550) developed by DJI, depicted in

Figure 3.2, was chosen as the preferred drone to be used. Table 3.1 presents a brief

summary of the characteristics of the chosen drone.
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Figure 3.2: DJI Flame Wheel 550 (F550) (from [16]).

Table 3.1: DJI Flame Wheel 550 (F550) specifications(from [16]).

DJI Flame Wheel 550 (F550)

Frame Weight 478g,

Diagonal Wheelbase 550mm

Takeoff Weight 1200g 2400g

Recommended Propeller 10 x 3.8in ; 8 x 4.5in

Recommended Battery 3S 4S LiPo

3.2.1.2 Raspberry Pi 2 Model B

Raspberry Pi, depicted in Figure 3.3, is a single-board computer mainly used in appli-

cations that require low-power consumption and computational effort, with the hardware

specifications described in Table 3.2.

Table 3.2: Raspberry Pi 2 Model B specifications (from [17]).

Raspberry Pi 2 Model B

Processor 900MHz quad-core ARM Cortex-A7 CPU

RAM Memory 1 GB

Operating System Raspbian 4.9.2

This single-board computer was chosen to provide an interface between the on-board

camera (Raspberry Pi Camera Module v2) deployed on the UAV, as well as providing the

required transcoding and transmission of the video feed created using FFmpeg [56]. Since
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Figure 3.3: Raspberry Pi 2 Model B (from [17]).

this version of Raspberry Pi does not have an embedded WiFi interface, a USB Wireless

adapter TL-WN722N was used.

3.2.1.3 Camera

The camera used is a Raspberry Pi Camera Module v2 with a Sony IMX219 sensor.

This camera has a native resolution of 8 megapixels, and has a fixed focus lens on board.

It is capable of 3280x2464 pixel static images, and it also supports 1080p at 30 frames

per second (fps), 720p at 60 fps and 640x480 at 90 fps video [18]. The video compression

format used is H.264 (MPEG-4). The interface between the camera and the Raspberry Pi

module is made through a ribbon cable connected to the CSI camera port. The Raspberry

Pi Camera Module v2 is shown in Figure 3.4.
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Figure 3.4: Raspberry Pi Camera Module v2 (from [18]).

3.2.2 Software Architecture Overview

Figure 3.5 overviews the software architecture implemented, showing the network’s ele-

ments as well as their interconnections. Both the Drone Manager and the Drone Controller

as well as their interconnection belong to the drone platform developed by Bruno Areias

et al. in [24]. The desired tracking behaviour is achieved through the loop formed by the

video feed collected on the drone side and the drone control logic performed by the net-

work elements present on the ground side. The proposed architecture presents a modular

approach with the following components:
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Figure 3.5: Overview of the implemented architecture.

UAV: Carries out the tracking mission, as well carries the required hardware payload for

the network elements present in the drone side.

On-Board Camera: Responsible for gathering video data.

FFmpeg: Used for transcoding the raw video data collected to the required format. The

resulting output of this element is a video feed used as an input for the FFserver.

FFServer: Used to stream the live video feed captured by the camera to the Object

Detection Endpoint and other clients if required.

Object Detection Endpoint: Receives as an input the video feed captured by the on-

board camera published by the FFServer, and implements the drone control logic

behind each output command issued to the UAV.

Drone Manager: Enables high-level drone control available to users through Hypertext

Transfer Protocol (HTTP) requests.
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Drone Controller: Implements the commands issued from the Drone Manager on the

target UAV.

3.2.2.1 FFmpeg

FFmpeg is an open source, very powerful multimedia framework, widely used for for-

mat transcoding. This platform supports multiple transmission protocols, media container

formats, as well as video / audio coding standards, and it provides a unified data struc-

ture to store the information extracted from multimedia data, thus it effectively solves the

difficulty in analysis of wide range of media data formats. In addition, FFmpeg provides

highly efficient transcoding algorithms that can meet requirements of real-time video anal-

ysis [57], such as the one aimed for this dissertation’s work. Present in the Drone Side

of the architecture, this module is used to encode the data collected by the Pi Camera

(H.264 raw video data) to a mjpeg video feed. In addition, FFmpeg allows to define the

characteristics of the video feed created such as: bitrate, frames per second transmitted

and resolution. This video feed is used as an input for the FFserver module.

3.2.2.2 FFServer

FFserver is a streaming server for both audio and video. It supports several live feeds,

streaming from files in the device as well as time shifting on live feeds. FFserver receives

as an input pre-recorded files or FFM streams from an FFmpeg instance as input, and

produces as an output streams that can be transmitted over RTP, RTSP or HTTP. The

FFserver process listens to a port as specified in the configuration file. The process can

handle more than one instance of FFM streams sent over from FFmpeg. Input streams

sent to the server are called feeds, and each one is specified by a <Feed> section in the

configuration file. The configuration file is read at the startup. The configuration file used

can be seen below:

ffserver.conf

HTTPPort 8090

HTTPBindAddress 0.0.0.0

MaxHTTPConnections 200

MaxClients 10

MaxBandwidth 100000
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CustomLog -

<Feed feed1.ffm>

File /tmp/feed1.ffm

FileMaxSize 1M

</Feed>

<Stream test.mjpg>

Feed feed1.ffm

Format mpjpeg

VideoFrameRate 4

VideoQMin 2

VideoQMax 5

VideoBufferSize 200000

VideoSize 800x600

NoAudio

Strict -1

</Stream>

For each feed, there can be different output streams in various formats, each one spec-

ified by a <Stream> section in the configuration file.

FFserver acts as an HTTP server, accepting POST requests from FFmpeg to acquire

the stream to publish, and serving RTSP or HTTP clients’ GET requests with the stream

media content.

Each feed is identified by a unique name, corresponding to the name of the resource

published on FFserver, and is configured by a dedicated Feed section in the configuration

file.

The stream formats that are supported by an FFServer instance are shown in Table

3.3.

3.2.2.3 Object Detection Endpoint

The implementation environment for the Object Detection Endpoint is an ASUS X550j

laptop computer with an Intel Core i7-4710hq 2.50 GHz CPU, 8 GBs of RAM and an
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Table 3.3: Stream formats supported by FFserver (from [23]).

Format Brief Description

mpeg MPEG-1 multiplexed video and audio.

mpegvideo only MPEG-1 video.

mp2 MPEG-2 audio (use AudioCodec to select layer 2 and 3 codec).

ogg Ogg format (Vorbis audio codec).

rm RealNetworks-compatible stream. Multiplexed audio and video.

ra RealNetworks-compatible stream. Audio only.

mpjpeg Multipart JPEG (works with Netscape without any plugin).

jpeg Generate a single JPEG image.

asf ASF compatible streaming (Windows Media Player format).

swf Macromedia Flash compatible stream.

avi AVI format (MPEG-4 video, MPEG audio sound).

NVIDIA GeForce 850M GPU. The operating system used is Ubuntu 18.04.1 LTS. This

server consists of a Representational State Transfer (REST) endpoint that provides person

detection to the images posted to it, as well as produce the commands sent to the active

UAV. This server receives as an input a single frame sent by the client; this frame is

received via the HTTP POST method. The formats accepted are: png, jpg and jpeg.

To provide Object Detection, this node uses Darkflow [58]. Darkflow is an open-source

object detector that implements the Convolutional Neural Network (CNN) architecture of

YOLO [21] in Python. Darkflow uses the machine learning Framework Tensorflow 1.0 [59]

and OpenCV libraries [60]. To enable Graphics Processing Unit (GPU) computation and

achieve more efficient allocation of computational resources during Object Detection tasks,

Darkflow was installed alongside CUDA v9.0 Toolkit [61] and cuDNN v7.1 [62]. A more

detailed overview of this CNN is given in Section 5.3.

The output of this CNN, for an input frame, is given in the JavaScript Object Notation

(JSON) format with the information on the class detected (label), the level of confidence

(from [0,1]) and the pixel coordinates of the corresponding bounding box as shown in

Figure 3.6.

Following the detection process and based on the output from the YOLO network, this

REST endpoint then proceeds to determine which commands are to be issued in order
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Figure 3.6: Example of the YOLO CNN output for a given input frame.

to continue (or start) the tracking procedure (the control logic implemented is detailed

in Section 4.3). The commands are issued using the HTTP POST method to the Drone

Manager. The frame size will influence this server’s response time, since each frame needs to

be processed by the YOLO network, with larger sized frames requiring more computational

effort on the server side.

3.2.2.4 Drone Manager

The Drone Manager consists of a REST endpoint that enables high-level drone control

and monitoring accessible to users through HTTP GET and POST requests. This node

will provide the Object Detection Endpoint with drone control based on geographical

coordinates as well as drone telemetry data acquisition. Table 3.4 describes the methods

used by the Object Detection Endpoint when communicating with the Drone Manager.
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Method Command Additional Parameters Description

POST horizontalChange

droneID: Drone Identifier

North: distance in meters

East: distance in meters

Routed to the Drone

Controller.

Commands the drone to move

in the North-South and

East-West bound direction by

a specified number of meters.

GET getheading droneID: Drone Identifier

Routed to the Drone

Controller.

Retrieves the orientation

of the drone in relation

to the Geographic North.

Table 3.4: Methods used by the Object Detection Endpoint (from [24]).

3.3 Summary

In this chapter we presented the proposed architecture implemented to carry out person

tracking missions using UAVs. The proposed solution is a computer vision based control

architecture comprised of multiple software and hardware modules deployed in the drone

side and the ground side. These modules interact with each other in order to carry out the

tracking mission. The UAV control is accomplished using the Drone Platform presented

in [24], which already provides GPS based control and monitoring of UAVs. Once imple-

mented, the proposed architecture aims to be able to perform UAV tracking missions with

people as targets without user inputs.
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Chapter 4

Integration and Implementation

This chapter describes some of the challenges and limitations faced by the architecture

proposed in the previous chapter, and the control choices that were implemented in order

to circumvent them. Section 4.1 shows the method used to derive an estimate of the

distance from the target, person, to the active Unmanned Aerial Vehicle (UAV). Section 4.2

presents the “Noise” introduced in the live video feed by the airborne UAV when capturing

video from a stationary GPS position without any stabilization mechanisms applied to the

on-board camera (e.g., gimbal support). Lastly, Section 4.3 provides an overview of the

control algorithm implemented in the Object Detection Endpoint, taking in consideration

the limitations imposed and described in the Sections 4.1 and 4.2.

4.1 Camera Calibration

To determine which commands are to be sent to the UAV when performing the tracking

mission, an estimate of the distance from the target detected inside each frame relative

to the camera is needed. In other words, there needs to be a translation of the position,

in terms of pixel coordinates, of the tracked object (in this case a person) to the actual

real world position of the object relative to the camera. To obtain this estimate, it is

important to know that each pixel in the frame is going to translate to different lengths in

the corresponding scene being depicted, as shown in Figure 4.1.

In order to get an estimate of pixel size as it relates to the real world, the UAV, with

the camera mounted on it, flies to a marked terrain where the ground distance to the drone

in known for several placed pins, depicted in Figure 4.2.
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Figure 4.1: Example of sizing difference between pixels when compared to the actual

distance they depict.

Figure 4.2: Relative pin placement used for distance estimation.

The UAV is positioned at the height required for carrying out the tracking mission:

5 meters above ground. This height was chosen as a good compromise between distance
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to the target when centered inside the frame (between 5 and 8 meters when standing

directly in front of the camera, optimal for Object detector performance as shown in

Section 5.3.3), and maximizing the overview of the surrounding landscape area beneath

the drone. Knowing the position of each pin placed on the ground relative to one another,

we can obtain the following estimate values shown in Figures 4.4 and 4.3. Figure 4.3 shows

a estimated distance in the horizontal direction perpendicular to the UAV’s heading for

each pixel in relation to its height value inside the frame.

Figure 4.3: Horizontal distance estimation based on the pixel height value.

Figure 4.4 shows the estimated distance in the vertical direction parallel to the UAV’s

heading for each pixel in relation to its height value inside the frame. The values obtained

show an exponential relationship between them that can be described by the following

mathematical model:

y(x) = Aebx + Cedx (4.1)

Table 4.1 shows the values of the coefficients obtained using a non linear least squares

regression, where f1 and f2 correspond to the data shown in Figures 4.4 and 4.3 respectively.

Using these values, we can approximate dx, in cm, as a function of the pixels’ height

value using the equation:
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Figure 4.4: Vertical distance estimation based on the pixel height value.

A b C d

f1 4.2659× 104 −5.2516× 10−3 −4.2642× 104 −5.2515× 10−3

f2 5.4922 −6.8118× 10−3 4.5767× 10−1 1.5656× 10−3

Table 4.1: Coefficient values obtained.

dx(p_height) = 5.4922e−0.0068118×p_height + 0.45767e0.0015656×p_height (4.2)

In addition, we can also get an estimate of dy, in cm, as a function of the pixels’ height

value using the following equation:

dy(p_height) = 42659e−0.0052516×p_height + 42642e−0.0052515×p_height (4.3)

These estimations do not take into account variations in terrain inclination as well as

drone altitude fluctuations. Fluctuations in these parameters will introduce errors in the

estimated distance calculated, since the perspective of the camera is changed.
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4.2 Noise Generated in the Image by a Stationary Drone

The camera used to create the video stream is directly mounted at the base of the UAV.

Considering the fact that the UAV when airborne does not behave like a fixed object, the

camera mounted on it will produce a video feed that has an inherent “wobble” due to

different factors that the drones’ motors try to correct (e.g., wind, atmospheric pressure

changes,etc.). This "wobble" will, consequently, introduce noise to the video feed in the

form of a slight change in the perspective between each consecutive frame. An example of

this is shown in Figure 4.5.

Figure 4.5: Object pixel position shift between consecutive frames.

As we can see, consecutive frames shift the perspective of the camera slightly leading

to the objects being photographed, changing the position within each frame by a different

amount. This will in turn have consequences when translating the object position inside

the frame to real world coordinates in relation to the UAV. We can expect this noise,

generated in the image by the UAV flight stabilization mechanisms reacting to the changing

flight circumstances, to have a normal distribution (or bell shaped curve). The following

results shown in Figure 4.6 show the different values of shift observed between frames when

recording video (800x600) from the chosen UAV at 4 frames per second. The values are in

terms of pixels for both shift along the width of the image as well as the height. Results

were measured for each different frame quadrant.

Figure 4.7 shows one of the histogram obtained, in this case, for the first quadrant.
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Figure 4.6: Scatter plot of the observed object shift between frames.

Figure 4.7: Histogram for the observed object shift between frames in the first quadrant.

As expected, the results show that the noise introduced is indeed similar to a normal

distribution. Table 4.2 displays the values that characterize the noise introduced in each
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Horizontal (nr. pixels) Vertical (nr. pixels)

σ µ σ µ

1st Quadrant 12.84 0.43 13.27 0.26

2nd Quadrant 12.52 0.74 13.3 -0.26

3rd Quadrant 12.9 0.77 14.88 0.32

4th Quadrant 12.49 0.49 14.12 0.37

Table 4.2: Mean and standard deviation values of noise for each quadrant.

quadrant of the frame. This effect will have to be taken into account when performing

the translation between the objects’ pixel position and the distance from drone estimation.

Also, when the object is detected in the first two quadrants, this noise will inevitably

produce higher distance translation errors, since the pixels in these quadrants correspond

to larger distances as shown in Section 4.1. For example, on a given frame, a shift in the

height value of a detection from 163 to 150 (which is close to the value of the standard

deviation found for the vertical noise introduced) will represent approximately a difference

of 1 meter when performing the distance prediction described in Section 4.1. To minimize

these errors and obtain a more reliable distance to target prediction, two strategies are

used:

• Perform 3 consecutive positive detections and average out the resulting predicted

bounding boxes.

• Consider the true bounding box to be within 2 standard deviation factors for a 95%

certainty on the objects’ position.

4.3 Control Algorithm

To perform the proposed tracking mission, the commands issued to the UAV will be

based on the position of the detected target (person) inside the frames being streamed, so

as to position the UAV in such a way that the target will be centered upon performing

each command. The control logic implemented is shown in Figure 4.8.

After initializing the chosen Convolutional Neural Network (CNN) model characterized

in Section 5.3, the Object Detection Endpoint proceeds to issue an Hypertext Transfer
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Protocol (HTTP) GET request to the FFServer to acquire the video stream being pub-

lished by the FFmpeg instance present on the drone side. Each frame received is then

inputted to the already loaded CNN. The output from the CNN will either show a pos-

itive detection with the corresponding Object pixel coordinates predicted by the network

or no valid detection. Multiple positive detections inside the same frame are considered

as non detections by the control algorithm. The coordinates for a positive detection are

fed into a data buffer called Position_Stack; this buffer is implemented as a First in

First out (FIFO) queue with a maximum size of 12 integers (corresponding to 3 positive

detections in 3 different frames, each represented by 4 pixel coordinates). In order to get

to the final step where the drone command is calculated and sent, the Position_Stack

must verify the following requirements:

Contents The data buffer is full.

Range Tolerance The 3 detections must be within a distance, in pixels, between each

other of no more than 10% of the frame’s width and height values. The reasoning

behind choosing 3 different and consecutive valid detections arises from the fact that

the airborne UAV cannot be considered a perfectly stable platform to gather video;

even when simply hovering above the desired location there is always an inherent

"wobble" in its position. This "wobble" will consequently be present in the video

feed as well as the detection’s coordinate values, details on this behaviour. The value

of 10% was achieved through heuristic methods.

Expiration The coordinates corresponding to the head of the queue belong to a frame

dating back no longer than 15 frames from the tail of the queue.
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Figure 4.8: Diagram of the Control Algorithm.
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4.3.1 Command Calculation

When calculating the command to be sent, two factors are taken into consideration:

Drone Heading This value corresponds to the direction that the drone faces in relation

to the cardinal directions, and is aligned with the camera’s perspective allowing

for an estimation on the position of detected objects in relation to the drone. When

airborne, the drone will experience constant slight changes in its heading. To account

for this behaviour, the heading values are updated for every frame that has a positive

detection and are obtained through the Drone Manager via HTTP request. The value

obtained in response is a float value between [-180,180] and represents the current

heading of the UAV in relation to the North direction, as shown in Figure 4.9.

Detection Pixel Position The detected position used for each command corresponds

to the averaged out values of the detections’ pixel position saved in the validated

Position_Stack.

Figure 4.9: Possible UAV’s heading values obtained using the Drone Manager.

Using these two factors, the objective of the command issued to the UAV is to move

the drone in the best possible direction and distance, so as to center as close as possible

the target (person) in the video feed being gathered by the active UAV. Each movement

command is sent to the Drone Manager via HTTP POST request and uses the parameter
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command ’horizontalChange’ present in the Drone Managers’ Application Programming

Interface (API): to move the drone in the North direction, the parameter ’north’ is set as

a positive value; while South bound movement corresponds to negative values. The same

logic is applied to movement performed in the East-West direction, where East is set as

positive values.

Example: A command issued to the drone with the aim of moving it 4.5 meters South

and 3 meters East with the drone identifier: REV OLUTION_94E041 can be achieved

by executing the following POST request to https : // < DroneManager_address >

/control with parameters:

command=horizontalChange&north=-4.5&east=3&droneID=REV OLUTION_94E041.

4.3.2 Obtaining the command direction angle

The command sent to the drone can be seen as a 2D vector in terms of the geographic

directions and is therefore characterized by an angle and length. The angle of the vector

is derived from the vector formed between the center of the averaged out values present in

the Position_Stack and the center of the frame in terms of pixels and the current value

for the drone heading.

4.3.3 Obtaining the command values

Knowing the position of the detected person in pixel coordinates inside a given frame,

it is possible to estimate the distance that is required to move parallel to the UAV’s

heading in order to center the person at the frame’s height midpoint. This distance can be

estimated as the area below the curve formed by Equation 4.3 between the height value of

the detected person’s boundary box and the midpoint of the frame’s height, as shown in

Figure 4.10.
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Figure 4.10: Estimation of vertical distance.

This area can be given by the integral of Equation 4.3 from [hb,
Frame_Height

2
]:

distanceY =

∫ Frame_Height

2

hb

(42659e−0.0052516y + 42642e−0.0052515y)dy (4.4)

Where Frame_Height represents the frame’s pixel height and hb represents the bound-

ary box’s height value.

Likewise, it is also possible to estimate the distance that is required to move perpen-

dicular to the UAV’s heading in order to center the person at the midpoint of the frame’s

width. This estimate is based on Equation 4.2 and is expressed by:

distanceX = (5.4922e−0.0068118×hb + 0.45767e0.0015656×hb)(wb −
Frame_Width

2
) (4.5)

Where Frame_Width represents the frame’s pixel width and hw represents the bound-

ary box’s width value.

Knowing the estimated distances distanceX and distanceY , we need to convert these

values into distances in the North-South and East-West bound direction in order to use the

Drone Manager’s API to issue drone movement commands. This can be achieved by using

the transformation matrix T that maps out the vector formed by distanceX and distanceY

to the geographical coordinates plane according to the value of the UAV’s heading:

[
WE

NS

]
=

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)

T

×

[
distanceX

distanceY

]
(4.6)
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Where θ is the value of the drone’s heading and NS, WE are the the estimated distances

to be issued in the North-South and East-West bound direction, respectively. Figure 4.11

shows an example of the final command values obtained knowing the drone’s heading and

the valid values for the Position_Stack.
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Figure 4.11: Example of an output command given the UAV’s heading and 3 validated

detections.
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4.3.4 Logging

Each message traded between the Object Detection Endpoint and the Drone Manager is

logged for debugging purposes for both successful and unsuccessful HTTP requests traded

as shown in Figures 4.12 and 4.13.

Figure 4.12: Activity diagram for HTTP POST requests.

Figure 4.13: Activity diagram for HTTP GET requests.
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4.4 Summary

This chapter, we described the implementation of the vision-based architecture for

UAVs that fulfills the established requirements for person tracking. This includes the

method used to obtain an estimation of the distance from the UAV to the person being

tracked. Next, the uncertainty introduced in the live video feed by the airborne UAV was

measured so as to establish its effect on the distance estimation. Finally, we described the

control loop algorithm implemented, the logic behind validating a detection bounding box

and the method used to convert the estimated distances to the geographical coordinates

plane that is required in order to use the Drone Manager API for the drone control.
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Chapter 5

Results

This chapter’s main goal is to test the feasibility of real-time object recognition through

a video feed captured by an airborne Unmanned Aerial Vehicle (UAV). To provide

person detection in the live video feed, two methods will be tested in terms of accu-

racy as well as time spent by each algorithm between detections (Support Vector Ma-

chine (SVM) human detector based on Histogram Oriented Gradients (HOG)s [19], fol-

lowed by the Convolutional Neural Network (CNN) based architecture of You Only Look

Once (YOLO) [11]).

Section 5.1 describes the image dataset created and used in the testing, and the conse-

quent comparison of both methods.

Sections 5.2 and 5.3 will introduce the two different Object Detection methods. Both

Sections will provide an overview of the methods and the architecture followed by their

results when predicting images from the aforementioned dataset.

Section 5.3.3 will evaluate the accuracy of the chosen CNN when performing people

detection only, for different distances from the camera.

Finally, Section 5.4 shows the final results obtained when carrying out the tracking

mission.

5.1 Image Dataset Used

To test the Object Detection algorithms discussed in the next subsections (Section

5.2 and Section 5.3) when performing purely human detection on images taken from an

airbourne UAV, an Image Dataset was created. This dataset will be used to characterize
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both methods in terms of image processing time, as well as to obtain their Average Precision

(AP) for these types of images. The results are meant to determine which method is most

suited for the task. The dataset consists of 1100 images that depict one person standing

in an open field at different distances and angles from the camera. To account for the

inevitable intra-class variability inherent to human based detection, different poses and

orientations were taken into account besides the basic front-view profile. Of the 1100

images, there are 72 in which no person is present to account for possible false detections.

The images were taken at height of 5 meters using a Raspberry pi camera v2 with a

resolution of 800x600 and using the H.264 codec (this codec was chosen to mimic the data

compression introduced by the video feed). Samples of images from the described dataset

are shown in Figure 5.1.

Figure 5.1: Examples of frames in the Testing Dataset.

Each frame is characterized by two labels that follow the format employed in the Pas-

cal Voc Challenge [54], one uses the Extensible Markup Language (XML) data encoding

while the other uses the JavaScript Object Notation (JSON) format. The labels contain
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information for the corresponding frame in terms of:

• The frames’: width, height and depth values;

• The class present (e.g., person, car, bicycle);

• The objects’ bounding box pixel coordinates;

• The name of the Dataset;

• The filename;

• The file path.

An example showing the labels obtained for a given frame present in this Dataset is

depicted in Figure 5.2.

5.2 Human detection through HOG based SVM

Presented in 2005 at the Computer Society Conference on Computer Vision and Pattern

Recognition, a method was proposed using HOG along a grid to extract feature maps from

images to train a linear SVM with the purpose of distinguishing between images showing

a person/people and those that have none.

HOGs are a type of feature descriptor that can describe a given input image in terms

of shape, color, texture or motion, among others. The purpose of using HOGs in this

implementation is based on the assertion that different types of objects and shapes can

often be characterized, to a certain degree of confidence, by the distribution of localized

gradients or edge directions, even without precise knowledge of the corresponding gradient

or edge positions [19].

The proposed detector is tested against two different datasets. The first one is the

MIT pedestrian database [63] which contains mostly images of people in different urban

scenarios. Samples from the dataset used are shown in Figure 5.3. This database consists

mostly of people in an upright position, either walking or standing, thus limiting the range

of different positions that a person can take. To account for this limitation a second dataset
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Figure 5.2: Example of labels in the XML and JSON format.

was added and used for training and testing purposes: "INRIA" [64]. This dataset includes

different backgrounds including crowds as well as various types of poses taken by the person

depicted.
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Figure 5.3: Examples of images used in [19].

5.2.1 The SVM algorithm

An overview of the feature extraction and object detection chain used by this method

can be seen in Figure 5.4.

Figure 5.4: Overview of the feature extraction and object detection chain present in [19].

The first block is used to accomplish better invariance to illumination and shadowing

on the input image [19], followed by the blocks responsible to extract the feature map used

by the Linear SVM when performing object detection.

A visual representation of a possible feature map obtained when applying HOG to an

image from the Testing Dataset is shown in Figure 5.5.
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Figure 5.5: Example of an HOG feature map.

In the example shown in Figure 5.5, the input image is divided into cells of 16x16

pixels, each cell then has a local histogram of gradient directions with 9 bins (for 9 possible

orientations divided evenly between [0,180]o), where the intensity of each gradient direction

shown represents the relative frequency found in the corresponding block. These features

can then be used to obtain a prediction of what the input image contains. To achieve this,

Navneet Dalal and Bill Triggs [19], use the extracted features and concatenate them into

a single vector for each image. This vector is then inputted into a linear SVM to perform

the classification task.

To obtain the feature vector necessary as input for the linear SVM, the algorithm

proposed scans the image using a sliding window of 64x128 pixels. The sliding window is

divided in 16x16 pixel blocks (with 50% overlap or, in other words, 4 pixel stride), and

each block consists of 2x2 cells of size 8x8. From each cell, a HOG is extracted with the

concatenation of all computed cells’s HOGs forming the final feature vector. To allow this

method to detect objects found in images at different scales, this sliding window is applied

at all different positions with different scales on the original image, as depicted in Figure

5.6.
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Figure 5.6: Image pyramid formed when applying an SVM detector [20].

The number of sliding windows applied for each image depends, as consequence, on two

main factors: the stride and scaling factors used. This will impact on the final resulting

time needed to process a given image as well as the level of accuracy. Smaller increments

used in the scaling of the image pyramid will result in more fine tuned detection for objects

at different scales in respect to the input image, with the disadvantage of requiring more

overall sliding windows and consequent processing time. Similarly, smaller values of stride

will have the same effect.

5.2.2 Evaluation

To find out the effectiveness and suitability of this implementation when applied to the

case study conducted in this dissertation, two main characteristics will be evaluated: the

level of accuracy when performing the detection on people being filmed from an airborne

UAV and processing time between frames. These values are highly correlated with the

stride and scaling factor used. Knowing this the following results, shown in Figure 5.7, are

obtained using the image dataset discussed in Section 5.1 and considering only true positive

detections that have higher than 50% Intersection over Union (IoU) using Equation 2.7.
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Figure 5.7: Results when applying different values of stride and Scaling factors to the SVM

Detector.

As expected, smaller values for the stride and scaling factor result in higher overall

accuracy, with the downside of larger required detection processing times. The best value

for accuracy achieved resulted only in nearly 50% accuracy, and required an average pro-

cessing time of 4162 ms. These results are far from the requirements needed to implement

real-time detection, rendering this method unsuitable with the hardware used.

5.3 Real-Time Object Detection with CNN

The next method proposed to tackle the task of person detection uses a pre-trained

CNN for Real-Time Object Detection. This state of the art object detection CNN, YOLO,

is open source and attempts to predict the position of different types of classes of objects

present in an image (80 classes for YOLOv2) with people being one of them. Previous

work done on the field of object detection used classifiers to perform detection of a specific

class of objects, and evaluated it at various locations and scales in the test image [11].

One of the major drawbacks in these types of implementations resides in the fact that

the context of each different image being analyzed is not taken in to account, leading to
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problems, such as, background patches being mistaken for an object. Also, due to the

need to run the classifier in different regions of the image with different scales makes these

methods very inefficient in terms the the allocation of computational resources.

YOLO uses a single CNN to predict spatially separated bounding boxes, with associated

class probabilities. The input image goes through the network only once to obtain the

desired object predictions, hence the name YOLO: You Only Look Once. This network is

trained using the ImageNet 1000-class competition dataset [65]. When using the PASCAL

VOC 2007 dataset [66], it was able to get a 63,4% Mean Average Precision (mAP) [11]. The

first iteration of YOLO used an architecture comprised of 24 convolutional layers followed

by 2 Fully Connected (FC) layers and is shown in Figure 5.8.

Figure 5.8: YOLO version 1 CNN architecture (from [11]).

In 2017 the version 2 of YOLO was published, improving on the previous performance

achieved by version 1, achieving a 78,6% mAP [21] on the PASCAL VOC 2007 image

dataset [66]. This updated version of YOLO was chosen to perform the object detection

task due to the flexibility in regards to the sizing of the Convolutional Network. This

version uses only convolutional and pooling layers, removing the last 2 FC layers from the

previous architecture. Removing these last layers makes resizing of the network possible,

the only constraint being that the size of the input images must be divisible by 32 (this

is due to the 5 pooling layers present in the architecture that reshape previous layers

to half their original size). The filters used remain the same (mostly 3x3), and so do

the hyperparameters between each layer. An example of a possible CNN compiled using
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YOLOv2 is shown in Figure 5.9 where the size of the input chosen is 608x608x3.

Figure 5.9: Example Architecture of YOLO with input size 608x608x3.

The task of extracting features between layers is computed by every individual convo-

lutional layer, each with a different number and set of filters. To account for nonlinearities

between layers, every convolutional layer is preceded by a leaky rectified linear activation

expressed by:

φ(x) =




x, if x > 0

0.1x, otherwise
(5.1)

The subsampling between layers is performed by the maxpooling layers. Finally, layers

26 and 29 are used to concatenate the higher resolution features with lower resolution ones.
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Figure 5.10 shows in more detail the information outputted to the terminal when build-

ing the YOLO version 2 CNN.

Figure 5.10: Terminal output for the YOLOv2 CNN of input size 608x608.

Figure 5.11 shows a visual representation of the first 2 layers of the network (Convolu-

tional layer followed by a Pooling layer).
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Figure 5.11: First 2 Layers.

The last convolutional layer has a 1x1 filter whose function is to reduce the data to the

shape of 19x19x425. This output tensor divides the input image’s height and width to a

19x19 grid as shown in Figure 5.12, the corresponding 425 channels contain the data for

the bounding boxes associated with each grid cell. Each grid cell has 5 bounding boxes

that try to predict an object that is centered around the corresponding grid cell. The

bounding box attributes are as follows:

tx, ty Represent the coordinates for the center of the bounding box relative to the bounds

of the respective grid cell.

tw, th Represent the width and height of the bounding box relative to the whole image.

po Represents how likely the box is to contain an object (Objectness Score).

px Represents the conditional class probability, meaning, the probability that the detected

object belongs to a specific class (e.g., person, dog, chair, bird...).

Figure 5.12 shows a visual representation of the output tensor pertaining to the input

image. There are 80 classes being evaluated in the input image, each bounding box has 85
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parameters. Since there are 5 bounding boxes per grid, we obtain the previously mentioned

output tensor of size 19x19x425.

Figure 5.12: Relationship between the output tensor and input image.

If we instead build a network with an input size of, for example 320x320x3, the final

output tensor produced will be a 10x10x425. This change in the input size will reduce the

number of convolutions per image, leading to faster detection times at the cost of possibly

reducing the network’s overall accuracy. This behaviour can be seen in Figure 5.13, where

different sizes at the input of the network result in differences in both accuracy and rate

of detection.
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Figure 5.13: Accuracy vs Frames per Second in YOLOv2 (from [21]).

As expected, there is a tradeoff between the accuracy of the predictions and the frame

rate achieved when changing the size of the network. The results shown in Figures 5.13

and 5.14 are based on images from the PASCAL VOC 2007 database [53]. This database

is made up of 20 different classes, meaning that the mAP value of 78% (using the YOLOv2

544x544 Network Size) is related to all 20 classes evaluated. Since the purpose of using

this CNN in our architecture is only to perform detections on people, this value might not

be true and skewed either in favor or against the actual value when this method is used

only as a human detector.

Figure 5.14: YOLOv2 results in the PASCAL VOC 2007 using diferent network sizes (from

[21]).
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5.3.1 Input Net Sizing

Using the dataset described in Section 5.1, the following results, shown in Figure 5.15

are obtained for the average time needed to perform a single detection, and the overall

accuracy for different sizes at the input of the Network. In this test we consider a true

positive to have at least an IoU of over 50%.

Figure 5.15: Processing Time and Overall detection accuracy for different sizes at the input

of the YOLO CNN.

The results obtained demonstrate a large improvement when compared to the ones

obtained for the previous object detector, making this method the preferred one to perform

the proposed task. As the size of the input net increases, so does the time to perform a

detection at a linear rate. This is due to the increase in the number of convolutional

operations performed by the Graphics Processing Unit (GPU) as the size of the layers

increases accordingly. However, the overall detection accuracy does not behave the same

way as we increase the input Net size, leading to diminishing returns in performance as

the input Net size increases. Since real-time detection is the main goal, there needs to be

a compromise between both accuracy and average required processing time. With a goal

of achieving a final value of 3-4 frames per second, the input size of 672x672 was chosen.
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This sizing choice corresponds to an average of 218 ms of processing time required and

overall accuracy values of 81,7%.

5.3.2 Average Precision Results

To further determine the viability of the choices made in regards to optimizing object

detection and described in the previous Sections, another metric that is widely used in com-

puter vision to assess object detectors is the Average Precision (AP). This metric measures

the methods’ precision at different recall values resulting in a plot called: Precision-Recall

curve. The resulting data points in the curve are obtained for a specific ranking method

used by the object detector to determine the predicted detection’s hierarchy. The results

depicted in Figure 5.16 show the precision-recall curves obtained for 3 different levels of

IoU thresholds. The ranking method used when computing each curve and corresponding

AP result is based on YOLO’s confidence threshold level.

Figure 5.16: Precision Recall curve obtained with the image dataset created for the YOLO

CNN at an IoU of 0,75.

Using Equation 2.8, we obtain the results shown in Table 5.1.
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IoU@50% IoU@62,5% IoU@75%

Average Precision 88,4% 78,7% 52,59%

Table 5.1: Average Precision results obtained at different IoU levels.

5.3.3 Person Detection Accuracy vs Distance From Drone

Using the same database from Section 5.1, it is also possible to compute the average

accuracy of the implemented CNN when detecting people at different distances from the

UAV.

Figure 5.17: Detection Accuracy as a function of distance to object (person) for YOLOv2

using our Image Dataset.

Figure 5.17 shows the results obtained for the detection accuracy when the target

distance ranges from 3 to 15 meters from the UAV. This distance corresponds to the

upper and lower limits of distance to the target aimed to be maintained when the UAV is

performing a tracking mission. The accuracy is measured for 3 different sizes at the input

of the CNN.
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5.4 Tracking Experiment

For the experimental evaluation, a wide open area located inside the University of Aveiro

campus was chosen. For each tracking mission test, a drone starts to fly to a designated

starting position. Once the drone reaches the desired location and hovering at 5 meters

above the ground, the video feed is initiated. Next, a person who is the experiment’s target

proceeds to get in range of the drone’s camera field of view, triggering the first movement

command issued to the drone. An already planned path is then traversed by the target.

The path taken by both the drone and the person being tracked in one of the experiments

is shown in Figure 5.18. Each drone position depicted is labelled with the drone’s current

orientation (the values shown follow the coordinate system described previously in Section

4.3.1).

Figure 5.18: Path followed by UAV and target person during tracking experiment.
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The heading of the drone is constantly changing its value as it moves from point to

point. This can be perceived in Figure 5.18 with the changes in the position the drone

takes relative to the person, as it tracks the person during this experiment. Table 5.2

shows in more detail the telemetry data obtained during the experiment. The data shown

characterizes the drone’s GPS position and heading values, as each movement command is

issued by the object detection endpoint, as well as the time elapsed since the start of the

experiment.

GPS Position Command Issued Time Elapsed Heading

S
40◦63’41.99"N

8◦66’04.32"W
NS=-6.5m WE=2.1m 0:02s 112◦

1
40◦63’41.41"N

8◦66’04.13"W
NS=-5.7m WE=-2.2m 0:08s 103◦

2
40◦63’40.89"N

8◦66’04.33"W
NS=-4.3m WE=3.8m 0:12s 104◦

3
40◦63’40.50"N

8◦66’03.99"W
NS=-4.8m WE=-1.5m 0:17s 114◦

4
40◦63’40.07"N

8◦66’04.13"W
NS=-4.2m WE=1.5m 0:23s 121◦

5
40◦63’39.69"N

8◦66’04.00"W
NS=-5.5m WE=-1.8m 0:29s 129◦

6
40◦63’39.20"N

8◦66’04.16"W
NS=-6.5m WE=1m 0:37s 129◦

7
40◦63’38.62"N

8◦66’04.07"W
NS=-5.1m WE=1.0m 0:42s 130◦

8
40◦63’38.16"N

8◦66’03.98"W
NS=-7.9m WE=3.0m 0:49s 134◦

9
40◦63’37.45"N

8◦66’03.71"W
0:55s 147o

Table 5.2: Telemetry data from the conducted tracking experiment.

The average speed by the target obtained for this tracking experiment is approximately

3,4Km/s, which corresponds to a normal walking speed for the average person. The maxi-
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mum speed allowed for tracking a given target with this implementation is mainly depen-

dent on the rate at which the movement command is issued to the drone. This rate is given

by the number of frames required to fill the Position_Stack (described in Chapter 4.3)

with valid detection inputs. In order to obtain these valid inputs, the video feed must be

gathered with the drone in stationary hovering position. This means that, while the drone

is performing the issued movement command and has not reached the next stationary po-

sition, there will be a significant amount of frames with no validated Position_Stack.

After a stationary position is reached by the drone, new valid detection inputs will be added

until the Position_Stack is filled with valid detections triggering the next command to

be sent to the drone. The relative weight that both these factors have on the rate at which

new movement commands are issued is depicted in Figure 5.19.

Figure 5.19: Average frames required between each stage of drone flight.

Figure 5.19 clearly shows that the major limiting factor on the tracking speed cap is due

to the time required to obtain a stable video feed from the drone between each command.

Adding camera stabilization in a future implementation would increase the rate of issued

commands, and therefore, the maximum speed that a target can be tracked at.

5.5 Summary

This chapter tested and evaluated two different machine learning algorithms used for

object detection on images in order to determine which one would be more suitable for real-
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time human detection. The method using CNNs was proven to be the superior approach

in both terms of: time between detections and overall accuracy on the predictions. Finally

it was presented the evaluation scenario used to assess the overall performance of real-time

person tracking relative to the proposed implementation. The results obtained demonstrate

that real-time person tracking is achievable for average walking speeds, with the largest

constraint experienced when trying to achieve better performance in the system is the

usage of an on-board camera without stabilization.
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Chapter 6

Conclusions and Future Work

This thesis presents the implementation of a system architecture capable of performing

real-time tracking of people using Unmanned Aerial Vehicle (UAV)s. To achieve this goal,

the UAV platform described in [24] is used to accomplish drone control and flight data

acquisition.

The method used to detect in-frame objects that belong to the person class uses a

Convolutional Neural Network (CNN) architecture and is described in [11]. This method

enabled a detection rate of approximately 4,6 frames per second (or 218 ms per detection)

at a resolution of 800x600 pixels with an Average Precision (AP) of 88,4%, 78,7%, 52,6%

at 0.5, 0.625 and 0.75 Intersection over Union (IoU), respectively, for the person class, and

thus, legitimizing the possibility of performing real-time object detection on a video feed

for tracking purposes. This result was obtained for an image dataset created specifically

for this dissertation’s purpose. The dataset created is comprised solely of imagery taken

from the perspective of a hoovering UAV at an open terrain and featuring persons at

different distances from the drone displaying different types of poses. To obtain these

object detection performance results, we had to both introduce some modifications on the

"vanilla" version of the You Only Look Once (YOLO) CNN architecture, namely the size

at the input net and detection threshold values, as well as optimizing the hardware used

for convolutional matrices operations.

In order to achieve the desired tracking behaviour with a person as the target sub-

ject, a control logic based around the output obtained from the object detector used was

developed. The implemented architecture is comprised of several modules connected in

such a way as to form a feedback loop between the video being gathered on the airborne
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UAV and the positioning commands issued over to it. These commands are in turn based

on the pixel position of the target obtained via the employed object detector, and aim to

continuously position the UAV in such a way so as to center the target being tracked at

the center of the video feed.

Finally, the tracking experiments conducted showed that the developed system is capa-

ble of performing tracking of an individual at normal walking speeds; further performance

boosts requiring a method of stabilizing the video feed collected at the UAV.

6.1 Future Work

The work conducted during this dissertation implements and interconnects the basic

building blocks required to achieve the desired objective of performing real-time tracking

of people using UAVs.

Although the aim of this dissertation was achieved, there are some elements that can be

improved to increase the overall performance obtained. Examples of possible improvements

are the following:

Gimbal Camera Support A gimbal is an hinged support that enables the rotation of an

object about a single axis. The addition of this component on the drone to work as

the camera’s support would enable stabilized video feeds to be acquired by an active

UAV and, thus, increase both the performance of the employed object detector as

well as allowing for less time required to issue each drone positioning command.

Object Detection Performance The hardware used throughout this dissertation to im-

plement the YOLO CNN is far from what current technology is capable of perfor-

mance wise. Upgrading the hardware used would lead to the consequent increase in

object detection performance, would enable higher resolutions for the UAV’s gath-

ered video feed, which would in turn lead to a more refined object detection allowing

for objects standing at a greater distance to be detected.

Camera Calibration and Distance to Target Estimation The method used to ob-

tain estimated distances from UAV to target, although effective, as shown in the

tracking experiment conducted, is limited in its usage. This method constrains the

UAV’s allowed elevation from the ground to 5 meters while also accruing errors in
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the distance estimation as the terrain inclination increases or decreases drastically. A

more accurate and flexible method would lift these constrains and allow for expansion

of possible tracking scenarios.

Expand list of trackable object types The object detector used, YOLO, allows for

the detection of many different types of objects (200 possible classes for YOLOv2),

meaning, the system implemented is already capable of tracking objects on the

ground. This assumption is only valid for classes of objects that would have similar

levels of AP as the person class when photographed from the airborne UAV. Ad-

ditionally, since there are 200 possible types of objects able to be detected, means

there is a whole new range of applications possible to implement besides the object

tracking ones.

Mobile Access Point The airborne UAV can be used to provide Internet access to the

person on the ground for either personal use or the retrieval of information from

possible sensors in his possession.
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