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Resumo À medida que o conceito Internet of Things se aproxima cada vez mais da
realidade, são também identificadas novas lacunas que necessitam de ser
preenchidas. São necessários novos avanços na tecnologia de leitores, de
maneira a que os mesmos fiquem mais capazes, baratos e adaptáveis. Os
leitores convencionais situam-se presentemente, a nível de custo, na ordem
dos dos milhares de euros. É importante baixar esta barreira de entrada,
pois quanto menor esta for, mais atraentes serão as soluções IoT e maior
será a velocidade de crescimento desta rede global. Melhorias de desem-
penho e preço em single board computers comercialmente disponíveis como
o Raspberry Pi, e em receptores RF como os RTL-SDR abriram as portas
a uma nova classe de leitores ultra-low-cost. Esta dissertação procurará ex-
plorar uma nova possibilidade de recepção e desmodulação sinal RF oriundo
de tags passivos utilizando as tecnologias já mencionadas. A arquitetura do
protótipo final foi desenhada e implementada de maneira a que o front end
RF baseado numa dongle RTL-SDR, receba o sinal ASK oriundo da tag, e
o acondicione e discretize/quantize, para então ser passado através de USB
para o Raspberry Pi, onde o mesmo será processado sob a forma de fil-
tragem, decimação, desmodulação, validação e integração em rede. Este
processo é primeiro introduzido do ponto de vista arquitetural e depois, mais
detalhadamente, é feita uma descrição da implementação. Serão também
apresentados resultados de teste com variações de distância entre antennas
e grau de decimação do sinal. O protótipo foi testado em condições de labora-
tório e de campo, os resultados obtidos são promissores. São adicionalmente
deixados algumas sugestões de tópicos de trabalho futuro, juntamente com
um manual de utilizador e um pacote de ferramentas uteis a eventuais futuros
desenvolvimentos.





Keywords IoT, backscattering, wireless sensor networks, reader, receiver, digital signal
processing, SDR, Python.

Abstract As the Internet of Things concept moves closer to reality, some technolog-
ical gaps come to light and require addressing. Advancements in reader
technology are needed in order to achieve higher degrees of capability and
adaptability at lower costs. Conventional readers are currently priced in the
range of thousands of euros. It’s crucial to lower this entry barrier, because
the lower it gets, the more attractive IoT solutions will become and the faster
the global network of sensors will grow. Improvements in the performance
and cost of single board computers such as the Raspberry Pi and also of
RF front-ends such as the RTL-SDR have opened the way to a new class of
ultra-low-cost readers. This dissertation aims to explore a new possibility of
reception and demodulation of an RF signal transmitted from a passive sen-
sor using the aforementioned technologies. The final prototype’s architecture
was designed and implemented to facilitate the reception, conditioning and
discretization/quantization of the ASK modulated RF signal by the RTL-SDR
based front-end, so that it can then be sent via USB into the Raspberry Pi
where its information will be processed through steps such as filtering, dec-
imating, demodulating, validating and integrating into the network. This pro-
cess is first introduced under the architectural point of view and then, under a
more detailed approach, in a description of the implementation. Testing results
are presented with variations of antenna distance and decimation ratio. The
prototype was tested in laboratory and field environments and the results are
promising. Also included are some potential future development suggestions
and a package of development tools.
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Chapter 1

Introduction

The Internet of Things (IoT) consists on the inclusion of electronic components in
everyday objects, making them able to provide information into or be managed remotely
by a global network. These tags can be retransmitting previously stored information,
like a product Identification (ID) or a virtual license plate, but it can also be real-time
harvested information, such as temperature or humidity of its environment.

The logistical advantages created through the deployment of such a large scale
automated product identification and contact-less information exchange are highly
beneficial for a number of different industries. Aerospace engineering [1], agriculture,
food monitoring [2], bioimplants [3] and worker safety protocols [4] are some of the
practical applications of this technology.

Figure 1.1 illustrates the IoT concept.

Figure 1.1: The internet of Things (icons from [5]).

The architecture of a tag network can be as simple as a tag and a reader attached to
a processing station, like the one seen in Figure 1.2. This is expandable, multiple tags
and readers can be connected to the same network facilitating the harvest of multiple
kinds information from different sources.

Each tag can be read by multiple readers simultaneously. One reader can interact
with potentially thousands of different tags, each fulfilling a specific role such as managing
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vacancy levels, item types, and atmospheric conditions inside a warehouse. If there is a
malfunction in either a single tag or reader, each can be replaced individually without
inducing a massive reconfiguration ripple into the system. All of this labour, which
would otherwise be costly if executed manually, is now automated into a configuration
with much lower upfront and maintenance costs.

Even though the potential benefits of an ever expanding source of actionable custom
tailored information are extremely appealing, this venture brings its own challenges
[6] to the table, in particular it requires a massive deployment of billions of sensors,
acting as the groundwork for a global interconnection system. Casting such a wide
hardware net causes, in turn, the emergence of added barriers. Interconnectivity [7],
need for privacy [8] and energetic autonomy are a few examples of focus points within
the scientific community.

Figure 1.2: Basic RFID system

With the growth in network size, an ever increasing amount of sensors will be
deployed simultaneously, each of them performing energy draining activities such as
sensing, processing or transmitting. This energy must be sourced from somewhere,
and battery-based approaches are unfavoured here. Efficiency can be increased and
consumption lowered, but batteries eventually deplete, and depending on the network
architecture and number of nodes, replacement can be infeasible or outright impossible.

As a potential solution to the energy concerns, alternate ways of power supply have
been explored, namely Wireless Power Transfer (WPT). By having a central Radio
Frequency (RF) source from which the nodes can draw power, batteries can be avoided
altogether. This has significant logistical, economical and environmental benefits.
Disadvantages are also present, WPT is inefficient at higher energy requirements, and
even more so as the distance between source and sink increases. Additionally, even in
battery based approaches higher power requirements mean shorter tag lifespans. For
both cases a strong argument exists towards efficient power management.

In order to decrease tag energy consumption, modulated backscattering methods
have been implemented [9] [10]. These rely on encoding information in an incoming
carrier wave by pattern switching between different reflection coefficients. Doing so
transports the sensed data out of the sensor and into a listening reader without resorting
to any active transmission components on the sensor side.
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Figure 1.3: Visualization of the process by which the signal is modulated.

Due to the low-power consumption orientation of these tags, other aspects have also
been optimized in that direction. Namely the communications protocol, it consists of
small packets, with simple validation methods and a low bitrate.

Regarding existing readers for this scenario, there are some market options. The
Ettus Universal Software Radio Peripheral (USRP) N210 motherboard [11] + daugh-
terboard [12] combo which is currently priced at 2.493€ or the Alien ALR-9680 [13]
which comes with a price tag of 999 United States Dollars (USD). None of these could
be considered a low-cost solution, and this market opportunity represents an additional
incentive.

Additionally, in 2017, a research team from Instituto de Telecomunicações published
developments on a semi-passive sensor [9], able to backscatter information created in
real-time. This event would give the final push necessary to jump-start this project.

1.1 Motivation

The main goal of this dissertation is to conceptualize and build a reader prototype.
This system would need to be able attain the following goals:

• Backscattered ASK demodulation ability
The reader must primarily be able to receive and extract information from an
incoming RF ASK backscattered signal.

• Adaptability to different communication protocols

This prototype can serve as a basis for solving logistical problems across a
large heterogeneous group of industries, each of them imposing their own custom
requirements and limitations. It is beneficial that the reader can adapt as much
as possible to different environments.

• Be low-cost
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Over the past few years technological developments have lowered the price-tag
on SDR based RF transceivers, thus facilitating a new approach to this problem,
the low-cost mindset.

As development progressed through its stages, facing different challenges and suffering
adaptive demands, these three were maintained as the fundamental guiding principles.

1.2 Project Time-line

During early development stages a proof-of-concept methodology was adopted. MAT-
LAB [14] was used as the initial project grounds, it was an easy-to-implement path to
gauge achievable reliability levels. At this stage, special focus was given to the maxi-
mum attainable distances between reader and sensor antennas in order to maximize
the number of potential applications.

A few months into development, and after the concept was proven via lap-
top/MATLAB implementation to perform at appropriate levels, a shift in direction
was introduced. A new and lower cost platform was adopted, the Raspberry PI [15].
This in turn prompted the change from MATLAB to Python [16]. Existing code was
translated and new working setups were designed.

After a new round of development and testing, a new barrier was identified, it
consisted of a low data throughput due to chosen low-cost platform. A second directional
change happened at a later time, focus shifted from improving range into optimizing code
interpretation speed. This is the reason why three different data recovery algorithms are
implemented, each spawned from different necessities at different stages in the project,
and each with its usages and drawbacks.

A ton of avenues are still left open to explore, care was taken in order to facilitate
as much as possible the work of future developers, suggestions on this area were left on
section 6.2.

1.3 Document structure

This document is sliced into the following chapters.

• Introduction
This chapter.

• Basic Concepts
Contextualization of several concepts mentioned throughout the document.
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• Reader architecture
Abstract description of the project. Data pipeline architecture laid out in "black-
box" like segments.

• Reader implementation
Detailed description of the critical path implementation. Overall implementation
schemes, technologies used, thread architectures, compromises made and reasoning
behind them. Strengths, drawbacks and ideal usage scenarios.

• Hardware Setup and Results
List of Hardware required to reproduce measurements. Measured results

• Conclusion
Conclusions drawn from the project.

• Annex - User’s Guide
Usage guide aimed at the end user.

• Annex - Developers’ Tools
Inclusion of all non-critical additions in the project. Filter and signal simulation
tools. Useful for future developments.
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Chapter 2

Basic Concepts

2.1 Introduction

In order to facilitate the transmission of knowledge, the best approach is often to begin
by the most abstract, simpler concepts. This helps introduce the thesis’ context on
a smoother, easier to absorb way, and also aids on placing author and reader on the
same page. On this chapter, we will approach some key fundamental ideas which will
be built upon later throughout this document.

2.2 Amplitude shift keying

ASK is a digital modulation technique that encodes information into a carrier wave
by modifying its amplitude over time. This type of modulation offers simplicity of
implementation at the expense of susceptibility to noise. This type of modulation usually
encodes one bit into two possible states of the modulated wave, corresponding two
different constants being multiplied by the carrier’s amplitude. The biggest amplitude
state is commonly referred as the ‘HIGH’ state, whilst the smaller one is the ‘LOW’
state. These states can be corresponded to ‘0’ and ‘1’ bit values in the demodulation
process, thus facilitating the transfer of information via RF wave over a medium.

On the top of Figure 2.1, we can see the main input of this process. The signal on
the bottom represents the output.
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Figure 2.1: Binary sequence converted into ASK (image from [17]).

The techniques used to modulate or demodulate information using ASK are described
in more detail in the following subsections.

2.2.1 Modulation

During the modulation process, a carrier wave is multiplied with a digital modulating
signal, resulting in the modulated wave. The method is illustrated on Figure 2.2.

Figure 2.2: ASK modulation of a binary modulating signal

Starting with an analogue sinusoidal wave, designated as the carrier, we shift the
amplitude (Ac ∗ms) to different thresholds according to the sequence of values in a
discrete signal (ms). The angular frequency (ω) and phase (φ) remain untouched.

The process happens according to the following formula.

x(t) = Ac ∗ms ∗ cos(ωt+ φ) (2.1)

Furthermore, ASK can vary on modulation index, also occasionally designated as
depth level. This is value can be directly obtained from HIGH/LOW states’ relative

8



amplitude levels.

Mindex = VH − VL

VH + VL

(2.2)

The ratios between carrier, discrete input signal, and produced modulated signal,
for a case where the modulation index equals 0.5 can be seen on Figure 2.3.

Figure 2.3: Different signals involved in the modulation process. Depth level equals 0.5 in
this example.

The resulting analogue signal x(t) now contains in itself all the information in ms,
while giving the benefit of choosing the frequency band at which transmission occurs.
At the receiving end, the inverse of this method must be applied in order to recover ms,
as described in the next section.

2.2.2 Demodulation

In order to recover the original message from a modulated ASK signal, three distinct
processes are required. To start, the signal must be submitted to full-wave rectifier.
Secondly, a filter must be applied in order to remove the carrier component of the
modulated signal. And finally, the filter output must be run through a comparator/data
recovery algorithm in order to extract the message bits, previously designated ms.

Figure 2.4: ASK demodulation process
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In typical cases the next step is the parsing of information within the bit, this
includes error detection, an example of such a method is described on subsection 4.7.3.

2.3 Modulated backscattering

In chapter 1, the concept of a communications system with a tag and reader has already
been introduced. Let’s now analyse in closer detail the tag’s function and inner workings.
From the whole system’s point of view, it acts as a source of relevant information, this
information can be directly sourced from an inbuilt sensor, or deduced by the tag’s
presence or absence on a key location. But for any of this to be possible a method of
sending information from tag to reader is required.

Firstly, however, it’s important to identify different classes of tags according to
power source. There are three main classes, but only the last two are relevant in the
context of this thesis.

• Active
This class of tags sources energy from an wired external power source.

• Semi-passive
This class of tags sources energy from an inbuilt battery.

• Passive
This class of tags sources energy from WPT methods, or harvests it from the
environment.

In the last two cases, especially on the last, energy consumption management
is a relevant concern. Sourcing power from a battery means it will eventually need
replacement, and, in the case of fully passive sensors, WPT and ambient power harvesting
both become less appealing as we increase potency requirement levels. Recognizing the
need to transport information from tag to reader, but at the same time knowing that
these energy concerns discourage the inclusion of an active transmitter component on
the tag, leaves us in a position to favour a modulated backscattering approach.

2.3.1 Inner workings

In the context of a backscatter system, a tag is a piece of hardware that includes an
antenna, a power source/energy harvester, a microprocessor and, optionally, a sensor.
However, from an RF circuit point of view, and to an external observer, such as the
reader, all these details can be abstracted into a load. This load is intentionally variable
via internal switching between different circuit paths, managed by a microcontroller.
This means that, by extension, so is the tag’s reflection coefficient. By controlling
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the pattern in which this coefficient changes over time, the tag can effectively force
amplitude pattern modifications into the reflected component of the incoming carrier
wave, essentially imposing information into it via an amplitude based modulation.
Relevant information generated in the tag’s sensing components can be encoded in this
reflected signal, thereby creating a system capable of transmitting information without
consuming power on the transmission itself, such as the one in Figure 1.3.

If we consider ZA and ZL to be line and load impedances, respectively, we can
calculate the reflection coefficient (Γ) using the following formula:

Γ = ZL − ZA

ZL + ZA

(2.3)

Because the reflection coefficient is the ratio between incident (Vi) and reflected
(Vr) voltages, we can also apply:

Vr = Vi ∗ Γ (2.4)

In practical terms, the carrier wave is received by the sensor’s antenna, and then
directed through a transistor into one of multiple possible paths. These paths will
reflect the wave back through the same antenna, however with different reflection
coefficients. For example, one of them will attempt to fully reflect the signal (Γ = 1)
whilst another will try to absorb rather than reflect it (Γ = 0). By switching between
these two states it becomes possible to encode into the resulting reflected signal an
ASK modulated message, with an ideal depth of 100%. From the reader’s point of
view, an ASK modulated signal is being received, with a frequency equal to the original
transmitter’s carrier wave deviated by the backscattering sensor’s symbol rate. Other
modulation schemes such as [18] have been implemented.

This method allows for information transmission between tag and reader without an
active transmitting component built into the sensor, which comes with the advantage
of lower power consumption, making WPT a more feasible implementation.

2.4 Software defined radio

SDR is the designation given to a platform which relies on software or flexible hardware
and its software based reconfigurability to process a radio signal. It has the big software-
backed advantage of being able to quickly adapt into changing circumstances. A system
like this is easier to maintain, as an update can be rolled out through the network even
from the other side of the globe. It can be kept up to date in a much easier fashion
as regulations, communication protocols, frequencies and modulation schemes change,
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without being bound to the higher inertia of the more hardware based counterparts as
small updates do not require a complete redesign and redeployment of the system.

Until recently, a common SDR setup would be a USRP motherboard [11] attached
to a daughterboard [12] working as a transceiver [19], connected in turn to a Personal
Computer (PC) (often running GNURadio[20]). This changed with the introduction of
low-cost DVT-B USB Dongle [21], pictured in Figure 2.5. This hardware revolution
combines a tuner such as the Rafael Micro R820T or the Elonics E4000 (now discontin-
ued) with the Realtek RTL2832U chip. This combination allows for signal harvesting
and conversion to baseband and then into discrete digital samples for a price of 20€.
Current publicly available software libraries [22] allow the user to bypass the inbuilt
demodulation methods and use debug mode included in the dongle, turning it into an
IQ sampler with a configurable sampling rate of up to 3.2MS/s.

Figure 2.5: Caseless DVT-B USB dongle [23]

In Figure 2.6 we can see diagram of this device.

Figure 2.6: High level overview of the typical SDR transceiver.

The RF front-end in this project consists of a similar concept, but without transmit-
ting capabilities. SDR based receivers aim towards converting the front-end collected
incoming RF signal into the digital domain as quickly and efficiently as possible. In
order to do so the signal must first be conditioned via a an approach similar to a
super-heterodyne receiver. This happens through the application of a bandpass filter
with cut-off frequencies matching the desired tuning, followed by an amplifier and a
up/down-converter to bring the incoming RF signal to into a constant Intermediate
Frequency (IF). At this stage, narrower filtering and amplification occur in order to
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prepare the signal for the following ADC. In Figure 2.7 we can see an overview of this
channel.

Figure 2.7: Diagram of the R820T tuner used in the receiver.

After the signal as been shifted into an adequate intermediate frequency, it is then
fed into an ADC and digitally shifted into baseband via a digital down-converter, as
illustrated in Figure 2.8.

Figure 2.8: Diagram of the RTL2832U chip used in the receiver.

This system outputs IQ samples, which in turn would require to be further processed.
An efficient solution to this need is a single board computer, such as the Raspberry
PI (RPI). This combination (RPI/RTL-SDR) has been tried before in situations like
spectrum analysis [24], spectrum management [25] and disaster relief [26]. This is in
part due to its extremely low monetary entry barrier, both of its parts are cheap (50€
total), commercially available, and already possesses freeware options for operation [27]
[22]. These are also reasons as to why it was adopted for this project.

Now that these important concepts have been introduced, let’s introduce the archi-
tectural design in chapter 3.

13





Chapter 3

Reader architecture

3.0.1 Introduction

In this chapter, an abstract description of the whole system architecture will be exposed,
firstly as a whole and then each individual step, with added detail.

The system consists of a pipelined processing chain with different modules, each with
a specific function and place in the whole. For now these modules will be approached
as a black box, however a detailed description regarding each implementation’s inner
workings can be found in chapter 4.

Let’s begin by defining inputs and desired outcomes. As stated on chapter 1 the,
goal of this project is to work as a reader for a passive backscattering tag. This means
the RF waves reflected towards the reader will serve as the input, or the source, of this
project. This RF signal will carry packets of information according to a previously
agreed upon protocol, as explained in section 2.3 and subsection 4.7.1. The desired
output, or sink, will be act of digitally storing in memory the payloads extracted from
validated incoming packets.

A set sequence of actions is required in order to process de radio waves digitally and
extract the payloads from incoming ASK signal. In Figure 3.1, we can see a simplified
pipeline of the whole process.
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Figure 3.1: Simplified data pipeline (icon used from [5]).

3.1 RF to baseband signal processing

A representation of the RF to baseband downconversion step can be seen in Figure 3.2.

Figure 3.2: RF to baseband downconversion.

It is not feasible to directly feed the signal from antenna into the ADC, doing so
would leave the latter sampling from the entire spectrum, and most likely saturating
its analogue inputs. Some signal conditioning is necessary, such as a frequency filter,
an amplifier and a mixer to down convert a select frequency band into workable levels,
this process separates signal from the carrier wave. It was introduced in section 2.4 and
illustrated in Figure 2.7 and Figure 2.8.

3.2 Analogue to digital converter

A representation of the ADC step can be seen in Figure 3.3.

Figure 3.3: ADC stage.

After conditioning, the signal is then fed through an ADC. The output of this stage
will be a frame of discretized and quantized real values.
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3.3 Digital filter

A representation of the digital filtering step can be seen in Figure 3.4.

Figure 3.4: Digital filter stage

A second filter is applied, this time on the digital domain. This filter has a much
narrower passband, it serves as a mean to remove unwanted noise leftover from the
previous while also muting any Direct Current (DC) component in the signal. The
reasoning for using two separate filters is further explained in section 4.4.

3.4 Decimation

A representation of the decimation step can be seen in Figure 3.5.

Figure 3.5: Decimation stage.

Depending on the setup and configuration, in some cases oversampling might be
occurring, as explained in section 4.5. This might, during the following stage, cause
unnecessary Central Processing Unit (CPU) drain and, in more severe cases, the loss
of signal as described in subsection 4.2.3. For this reason, and in order to provide
an additional degree of freedom to the end user, this optional decimation stage is
included in the architecture of this project. Its ratio is configurable and can be set to
1:1, effectively disabling it. In most cases the ratio should be set to the highest possible
value that does not compromise the quality of results. Depending on user configurations,
the output of this stage is identical to the previous one or a subset of it.

3.5 Data recovery

A representation of the data recovery step can be seen in Figure 3.6.
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Figure 3.6: Data recovery stage.

Having prepared the samples via filtering and decimation, it is now time for the
most CPU intensive aspect of the project, data recovery. Given that the adopted
modulation scheme for this project contains one bit per symbol, the decision is binary.
Selected input samples are compared against a condition (a quantization threshold),
and depending on the result a value of ‘0’ or ‘1’ is obtained.

3.6 Parsing

A representation of the parsing step can be seen in Figure 3.7.

Figure 3.7: Parsing stage (icon used from [5]).

After recovering the bits, it is necessary to parse the bitstream in order to detect
frames and decode them. A communications protocol has been agreed upon with the
developers of the sensor. As explained in subsection 4.7.1, expected within each packet
are fields such as a preamble, a payload and stop bits. It is up to this module to identify
packets, validate them through implemented error detection methods and finally extract
the payloads from validated packets and store them in a database to be used later in
an application specific manner.

The project is now architecturally complete, inputs and outputs have been defined
both at a global level but also in each of the modules. On the next chapter, an
implementation based approach will be exposed, detailing at a more technical level the
chosen development avenues and accepted trade-offs.
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Chapter 4

Reader implementation

4.1 Introduction

In this chapter, the central implementation aspect of this thesis will be introduced.
First the software package will be introduced, followed by a description of the data
flow and resource management methods. After that a more detailed description of the
pipeline will be detailed, starting with the signal inputs and proceeding all the way to
parsing and validation.

4.2 Software

ID.all (pronounced ideal) is the name given to the entire software package developed
as a management tool for a platform of communications capable of listening to a
backscattering sensor. Powered by Python [16] and developed with the Raspberry
Pi [15] platform in mind, this script is able to, through an antenna, receive RF ASK
modulated signals from the air, demodulate and parse them into network-ready database
entries.

Python was adopted for this project due being an already established coding language
with a multitude of available libraries online. The Raspberry Pi was adopted for cost
and easiness of development reasons.

This software makes use of third party libraries such as pyrtlsdr [22], scipy [28],
and RPi.GPIO [29] but also custom modules developed in the scope of this project which
will be explained further in this chapter.

In Figure 4.1 we can see a simplified design of this project.
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Figure 4.1: Simplified signal processing pipeline.

4.2.1 General structure

A modular approach was taken to the different blocks of software that compose this
project. The goal behind this decision was to have a product that was easy to maintain
and build upon without sacrificing flexibility or overall result quality.

A main module, titled IDall.py is called upon by the user via terminal, it acts as the
main function. It has two major roles, the first one being defining the sequence of signal
processing steps described in chapter 3, each of these steps is performed by invoking
it’s relevant library and providing it with its necessary input parameters. Its second
major function is thread management, this is explained further in subsection 4.2.3.

On Figure 4.2 we can see a diagram of ID.all’s internal dependencies.

Figure 4.2: ID.all's general architecture.

By adopting this implementation design, instead of serial one in which each successive
step is being called by the previous module, eventual required editions to the code
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become easier, as new modules can be added or existing ones edited without requiring
changes or compromising the overall structure.

This chapter will focus on explaining in detail the essential software parts, the
critical path. Even though a few other non-essential libraries, also developed by the
author in the scope of this project, are included in this package, they will only be
mentioned in Appendix A. These extra libraries preform functions primarily aimed at
increasing the productivity of future developers.

4.2.2 Data flow

The pipeline of data goes through many different stages, and throughout the process is
handled by two different types of threads. A producer and a consumer. The point of
contact between these two threads is a FIFO. This FIFO is filled by the producer thread
and emptied by the consumer thread. An operating scheme can be see in Figure 4.3

Figure 4.3: ID.all’s data flow architecture. The data travels through steps in packets, whose
sizes are configurable by the user. Ratios between packet sizes in this picture
are not representative.

As further detailed in subsection 4.2.3, each regular iteration of the script’s main
loop deposits one item into the FIFO, but also pulls another from it, thus ensuring
its occupancy remains at a steady level of 1 to 2 items throughout interpretation,
preventing bottlenecks or overflows.

With such stable and low FIFO occupancies, why even use one at all in detriment of
simpler data storing mechanisms? The answer is scalability. Even though the software
itself is only currently planned to handle one SDR kit and one sensor at once, this can
potentially change in the future. Future changes might bring increases in throughput
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and even imbalances between data production and consumption, thus it was decided as
the best course of action to leave this growth door open.

4.2.3 Thread structure

Let’s first approach the resource allocation aspect of thread management.
As explained in the previous section, during script interpretation two different

threads work in tandem to ultimately deliver to the database the payloads contained
in incoming RF ASK backscattered signal. The first thread, the producer, interacts
with an RTL-SDR USB dongle via the pyrtlsdr software library to convert RF signal
into a discrete and quantized digital list of samples, which are then stored into a FIFO.
Because currently the dongle works exclusively in burst-mode, a new instance of this
thread is created for each burst of data. These bursts can also be called frames. In
Figure 4.4 we can see a state machine representation pertaining this thread.

Figure 4.4: ID.all's producer thread state machine.

The second thread, the consumer/main, removes items from the FIFO and, after a
demodulation/validation process, obtains a binary payload which it stores into memory.
This output can then be displayed in a terminal or passed along into the network, at
the user’s discretion. This thread also manages the creation of producer threads. We
can observe its state machine in Figure 4.5.
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Figure 4.5: ID.all's main thread state machine.

FIFO pre-initializing Multi-threading was implemented in order parallelize some
of the required steps and thus reduce the critical path’s time duration. The ‘Create
Collector Thread’ step at the start of execution appears unnecessary, but is not so. The
initial number of items in the FIFO is 0, this happens because producer threads are
created once during each consumer thread iteration, and only place one item into the
FIFO per call, and because the main thread consumes an equal amount itself per loop
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cycle. Without this initial call, FIFO occupancy would almost always be 0, except for a
few infinitesimal moments after the conclusion of each producer thread, where it would
equal 1. Execution between the main thread would always be halted in the ‘is FIFO
empty?’ decision until collection was finished, effectively reverting the process back
from parallel into serial. In Figure 4.6 we can see a time-line of side-by-side thread
executions exposing this problem.

Figure 4.6: Side-by-side thread diagram, without FIFO pre-initialization. Green areas
represent signal processing intervals while blue areas represent signal collection.
Red areas represent signal not collected due to poor software optimizations and
should be avoided.

As the script begins interpretation, it attempts to both collect and process signal.
But since no signal was collected yet, the FIFO is empty and there is nothing to
process, so execution remains halted at the ‘is FIFO empty?’ step of Figure 4.5 until
the producer thread concludes its job and deposits data on the FIFO. The data is then
immediately consumed by the produced thread and as such the FIFO occupancy only
attains the value of 1 for an infinitesimal moment.

However, if we include the mentioned pre-initialization step, the situation changes,
and becomes what we can see on Figure 4.7.
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Figure 4.7: Side-by-side thread diagram, with FIFO pre-initialization. Green areas represent
signal processing intervals while blue areas are equivalent for signal collection.
Notice the absence of signal loss due to poor optimizations.

With this implementation the data consuming main thread always has at least
one item in the FIFO to process, with each new producer thread producing data to
be consumed in the next consumer loop iteration, and correspondingly, each of these
iterations consuming data that was produced by a thread initialized during the previous
cycle. Because this is the currently working state of the program, from now on, when
explaining other aspects, it should always be assumed a pre-initialization was done.

Producing vs consuming data - time interval ratios This thread forking ap-
proach raises other details that benefit from an explanation. Producer threads have an
explicit lifetime, they are started, request data from the USB dongle, deposit this data
into a FIFO and then are terminated. This chain of events takes a certain interval of
time which is more or less constant. Conversely, the main thread is operating in a loop,
with each iteration also having its own approximate temporal duration. Due to the fact
that the software took a modular approach, time intervals may vary depending on user
choices and settings. In some cases different modules execute the same function but
with varying degrees of speed optimization, it’s up to the user to select the one most
suited to his needs (see subsection 4.6.1 for more information).

Two possibilities arise here, either the producer threads’ lifetime is longer than one
iteration of the main loop, or it is shorter.
For cases where the consumer concludes its iteration faster than the producer, we have
a situation where data is being consumed faster than it can be produced. An indefinite
loop was purposefully introduced in the script (and can be seen in picture 4.5) with
the exit condition ‘FIFO not empty’ in order to throttle data consumption down to
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production levels and manage this bottleneck, as otherwise there would be no data
to consume and the thread would simply be continuously polling an empty FIFO for
data, wasting system resources in the process. For cases where the producer terminates
before a new main loop iteration, we have a situation where data is being produced
faster than it can be consumed. Because a new producer thread will only be created
after the consumer is done processing its current batch of information, a ‘standby’ time
during which there are no producer threads active is inevitable. Although this prevents
FIFO overflow it also represents a data throughput decline via loss of opportunity to
collect signal and is to be avoided if possible. This ‘standby’ time is not to be confused
with the deafness period described later in subsection 5.3.1 even tough both have the
same practical additive outcome, which is sampling downtime.

In Figure 4.8 we can see a comparison between both of those cases.

Figure 4.8: Side-by-side thread diagram, on the left is the depicted a situation where signal
processing takes longer than signal collection, and vice-versa on the right. Green
areas represent signal processing intervals while blue areas are equivalent for
signal collection. The column on the left in each table represents FIFO occupancy
level.

A stand-by on signal collection is considered a more serious issue than an equivalent
standby period on signal processing. This is because while the first represents an
additional loss of information, assuming the transmitter is continuously emitting, the
latter is actually a growth avenue. By only taking a fraction of the time to process the
signal, we can host several producer threads in parallel, each handling a different RF
front-end, and have all the data produced by these threads being processed during a
different time-slot of the consumer thread.

Currently, two of the three comparators included in this thesis, Pass By Zero (PBZ)
(subsection 4.6.3) and FAST (subsection 4.6.5) are able to process signal faster or as
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fast as it can be generated.

4.3 Signal input

Even though under regular circumstances the incoming signal will be provided via
the work of the producer thread and obey the specifications described in the previous
section, it’s actual origin will be one of two possibilities. The first one is the harvesting
of RF waves from the air, this is the standard option and the one described in this
section. A second one was added as a feature for debugging purposes, the software also
has the ability of generating/simulating the signal internally, more can be read about
this additional feature on section A.1.

4.3.1 Signal reception

Using the publicly available, librtlsdr [30] and pyrtlsdr [22], which are respectively,
a C language package developed to turn the RTL2832U [31] into an SDR kit and its
Python language wrapper, the Raspberry Pi connects to the kit and harvest samples of
electromagnetic radiation levels from the environment, thus fulfilling the architectural
requirements for signal conditioning and analogue to digital conversion mentioned in
chapter 3.
Several input parameters are necessary in order to calibrate the readings [32] [22],
amongst them, the user will have to define a tuning frequency and a sampling rate.

Once script interpretation begins, a producer thread is created and tasked with
querying the IQ sampler embedded in the SDR kit for an array of complex information
with a number of entries equalling twice the amount of samples harvested, consisting of
their interleaved real and imaginary components. Since we are using ASK, a modulation
that does not care about phase, we convert these entries into their absolute value and
discard the originals, thus halving list size. The result is a parametrization of the
ambient RF power levels at the previously specified tuning frequency, as seen in 4.10.
The signal power in Watts is unknown to the user, and cannot be easily extrapolated
due to an un-configurable Auto-Gain Controller (AGC) within the RTL2832U, this does
not cause issues as, firstly, the process is abstracted, requiring only the differentiation
between two distinct power levels, and secondly, more focus is placed on what happens
from this point onwards, instead of looking back.

Additionally, this chosen RF front-end also applies a low pass filter with a cut-off
frequency equal to the sampling rate set by the user. As far as we know, there isn’t
publicly available documentation nor can it be deactivated.

27



On Figure 4.9, we can see a complex plane plot of the samples as they are received
from the RTL2832U, before the calculation of their absolute values.

Figure 4.9: Asynchronous communication between sensor and reader. The two different
ASK amplitude levels are too close to be visible in this plot. IQ sample collection
result.

After we calculate their absolute values and remove the DC component we get an
array such as the one plotted on Figure 4.10.

Figure 4.10: Absolute values of samples after removal of DC component. 11 complete
packets are visible in this figure. All of them inter-spaced by a silence period.

If we take a closer look into one single packet from picture 4.10, we obtain Figure 4.11.

28



Figure 4.11: One packet, preceded and followed by silence and noise.

Limitations Using this RF front-end kit comes with its own drawbacks. They come
in the form of tuning frequency, sampling method and rate limitations. The tuner
bundled with the adopted hardware, Rafael Micro R820T, has a tuning range of 24 -
1766 MHz. As for the sampler, it can record samples at a rate from 226kHz up to 3.2
MHz, although some unreliability exists towards the higher end of this interval. It’s
specifications state that the highest sampling rate at which sample loss does not occur
is 2.56 MHz [23].

Additionally, due to the quantization intervals provided by the ADC, the result of
this process in proper working conditions is an array of values, either a real or complex
part of a sample, both between 0 and 1. We can observe in figure 4.9 a scatter plot
of the raw complex samples, note that due to the format’s nature, and as pictured in
Figure 4.12, it is possible to collect samples with a higher absolute value than 1, this
however means that ADC saturation is occurring, information is potentially being lost
and the software gain or antennas need to be adjusted.

Figure 4.12: Asynchronous IQ sample collection result. Notice the saturation around the
horizontal and vertical edges due to inadequate antenna/software gains.
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4.4 Digital bandpass filter

After interfacing with the RF front end and collecting the results of its discretization
and quantization processes, the next step is to filter any unwanted information out of
the signal, as described in this section.

In order to reduce noise and facilitate the comparator’s work downstream, a band-
pass filter is applied to the signal. This is implemented by importing and using the
signal module from Scipy [28], a Python library. This was implemented even though
the SDR dongle already provides a low pass filter, for two reasons. Firstly, in some
scenarios the sampling rate will be considerably higher than the symbol rate. The SDR
kit internally calibrates its cut-off frequency to the same value as the user provided
sampling rate. It also forces a minimum value of 226kHz on the sampling rate, as
mentioned in subsection 4.3.1. This leaves, in some cases, with sub 226kHz signal
symbol rates, an undesirable pass-band region between actual signal symbol rate, and
internal SDR filter cut-off which would allow noise to contaminate other steps further
down the pipeline. Secondly, sometimes lower frequency components, such as DC, might
be undesirable, and the previous low pass filter alone would be ineffective at removing
them.

For this step, a Butterworth filter is designed with user selected cut-off frequencies,
these are set by default at 1 and 3700Hz, this is because for most testing scenarios the
symbol rate of the signal equalled 3600Hz. The lower cut-off frequency exists in order
to remove any DC and extremely low frequency components from the signal while the
higher is set in order to remove all the harmful noise above the desired symbol rate.

As an example, in 4.13 we can see the simulation of an order 2 Butterworth bandpass
filter with cut-off frequencies of 5 and 3650 Hz.
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Figure 4.13: Filter projection plotted with the simulation tool described in subsection 4.7.1

A secondary effect of applying this filter is that, due to the removal of all the
harmonic components of the desired signal located above the higher cut-off frequency,
the signal’s shape itself changes, adopting smoother, slower, more rounded transition
edges (as demonstrated in 4.34). This might have effects down the line, specifically
during threshold setting and synchronization attempts. Increasing the higher cut-off
frequency might reduce these effects at the expense of increasing the amount of noise
post-filtering. Care must be taken while raising the order of the filter, as it might cause
gain considerable gain variability in the passband region. For the pictured example,
second order was the maximum the code allowed before compromising filter results.

4.5 Signal decimation

Due to hardware restrictions on both sides, the RF front-end and tag, substantial
oversampling occurs. Assuming the minimum possible sampling rate allowed by the
RTL2832U ADC sampler (226kHz) is paired with the highest possible symbol rate
supported by the backscattering tag used during testing rounds (3650Hz) the expected
amount of samples per symbol is:

226000
3650 ≈ 61.92 (4.1)

This is considerably higher than required for signal demodulation. If the data
recovery algorithm is not properly optimized for speed, complications might occur
due to the forced oversampling of the signal. In order to prevent this, decimation is
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applied after the filter and immediately before the comparator. Decimation order is a
configurable setting and must equal an integer greater or equal than 1.

By applying a decimation order of 10 on the given example, the number of samples
per symbol can be brought down from 61 to roughly 6, as seen on the stem plot in 4.14.

Figure 4.14: Signal decimation example, order of 1:10

By doing this, the amount of samples passed on, and therefore the CPU time
required to process them, gets reduced while still maintaining enough information in
the signal not to compromise the next steps.

4.6 Data recovery

In order to explore different possibilities, in terms of result accuracy and processing
performance, several different options for this stage were projected and implemented.
Each of them preforms the same task, but in a different way, and aiming to optimize
different aspects.

Four different comparators were developed, they were named TMC,the PBZ, Smart
Pass By Zero (SPBZ) and FAST. Three of them were implemented, SPBZ was eventually
discarded. During initial development stages, viable distance between antennas was
seen as the defining quality metric, which led to the development of TMC. It excelled
at interpreting weak signals substantially contaminated by noise, at the expense of
increased necessary processing power. This necessity would eventually clash with a
development environment based around a Raspberry Pi platform, which has limited
processing power.
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As development progressed, and because the chosen platform, avoiding high CPU
load scenarios became a more concerning issue. Eventually, it turned into a strong
enough pressure to justify a different, lighter approach, and thus the second iteration,
titled PBZ, materialized. It applied simpler temporal synchronization algorithms to
achieve similar results much faster. And because the approach was simpler in nature, it
also brought about vulnerabilities not present in TMC. Noise was a major hindrance
to synchronization attempts implemented in this new comparator. Attempting to iron
them out branched a new, eventually unsuccessful approach, which was named SPBZ.

Feeling that these improved implementations still weren’t taking full advantage of
adopted small packet sizes, an even faster and lighter method was developed. Titled
FAST, due to its main focus on execution speed (not an acronym), this last implemen-
tation manages to be the fastest one at the expense of expected loss of synchronization
on longer packets.

The data recovery module is essential and the most complex piece in the entire
architecture. Handled by the main thread, it performs the signal pattern recognition
part of the demodulation process, taking as an input the filtered decimated samples
and, after applying an ASK demodulation method, returning a list of binary values
which are considerably easier for the program to manipulate. It has been customized to
work not only with the burst mode requirement of the used SDR kit but also with the
silence periods between packets transmitted by the sensor.

The following paragraphs detail a list of guiding principles behind the inner workings
of each algorithm.

TMC - Transition Match Comparator This comparator starts by analysing signal
variance in order to locate packet timings, and after doing so discards samples outside a
packet neighbourhood. It takes the user configurations such as sample and symbol rates
to estimate distances between symbol boundaries and uses this information to build
a ‘ghost grid’ of symbol transition timings. After this, it attempts to achieve timing
synchronization by matching this grid to the signal based on the degree of equivalence
between the ´ghost’ and the real transitions. Once this is achieved, a threshold is
applied and the resulting bitstream passed along to the next module.

PBZ - Pass By Zero Based on the assumption that transitions between the two
symbols force the quantization levels to pass by an intermediate constant pre-established
value, this comparator uses the timings on those intersections to establish synchroniza-
tion. It then applies a threshold to obtain the bitstream.
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SPBZ - Smart Pass by Zero Currently non-functional. Identical to PBZ, with
added noise management methods.

FAST When the signal’s quantization levels raise above a certain threshold after
a prolonged period of silence, this comparator assumes a packet reception is taking
place. It then selects a few relevant samples in the packet beginning and attempts to
match them with the expected preamble. If it succeeds, it re-samples a following pre-set
interval of samples at adequate times, compares the result against the same threshold
and outputs a bitstream.

Three of these four are currently usable and choosing the most adequate is up to
the final user. Some guiding points are provided on the next subsection.

4.6.1 Choosing an algorithm

A summarized list of data recovery algorithms and adequate contexts can be see in
Table 4.1 and Table 4.2, respectively.

Algorithm Advantages Drawbacks

TMC Best noise immunity
Harmonics filtering immunity

Very CPU intensive
Signal variance dependent

PBZ Lightweight CPU-wise Biggest noise vulnerability
Vulnerable to harmonic filtering

SPBZ - Extremely CPU intensive

FAST Very lightweight CPU-wise De-synchronization on longer packets
Noise vulnerability

Table 4.1: Comparison between developed algorithms

Algorithm Adequate context

TMC Powerful CPU
Noisy environment

PBZ Long packet sizes
Low noise

SPBZ -

FAST Short packet sizes
Low noise

Table 4.2: Ideal context for each algorithm.

Having now introduced an initial description, advantages, drawbacks and ideal
contexts for each algorithm, let’s analyse and describe them in detail.
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4.6.2 Transition Match Comparator

As we step into the data recovery part of this thesis it is important to establish to the
reader a visual representation of how the software identifies areas of the signal where
information can be extracted from. This subsection will explain things in a more visual
way, with extra attention to detail. The remaining algorithms will be explained in a
more succinct manner with references to this subsection when relevant, so as to prevent
redundancies.

General diagram

In Figure 4.15 we can see a diagram describing the general process flow of this algorithm.

Figure 4.15: Transition Match Comparison process.
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Detailed explanation

Defining decision thresholds ASK modulation is relatively simple to decipher from
a logic standpoint. Assuming ideal conditions, two states and 100% depth, there either
is or isn’t a carrier wave present, with each of these states corresponding to a different
binary value. This is depicted in Figure 4.16

Figure 4.16: Example packet with denoted bit levels.

From the receiver’s point of view this would hypothetically be a simple process,
RF power would continuously be switching between two possible levels while being
detected as inputs via the antenna, and a binary sequence of digits could be directly
derived from the readings. However, when background noise is taken into account,
the possible number of inputs can no longer be considered discrete. It isn’t practical
to check if equality exists between each input and an expected value, even more so
because in practice there would be no exact matches. A better approach now would be
to define a threshold to separate between two different binary outcomes, as exemplified
in Figure 4.17.

Figure 4.17: Example packet with denoted threshold.

Further issues are now raised, at what level do we define this threshold? What
would happen if the relative position of the tag and reader changed between readings?
What if different antennas are used? Or the temperature/weather changes? All of
these factors can have an impact on signal strength and completely throw off track the
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threshold calibration. It is imperative that the demodulator can maintain the ability to
dynamically adjust itself in real time, and as such, rigid, hard-coded threshold levels
are an unwise option here.
The adopted solution was the implementation of percentiles and geometrical centres.
There is a certain nuance on this approach, one could simply declare that the threshold
equals 50% percentile, or in other words, the average value of all the samples in a
given frame. This approach would be suboptimal as major problems would arise later
on due to the fact that imbalances in the ratio of received 0’s and 1’s would skew
the average (and by extension, the threshold) away from its optimal position. On
the other side, if we simply take the amplitude geometrical centre value of all the
quantization levels we are welcoming into the process a huge vulnerability to noise bursts.

Figure 4.18 demonstrates graphically the vulnerabilities in the first approach.

Figure 4.18: Signal excerpt containing 9 packets and its average value.

It is important to note in the above plot that due to the imbalance between packet
and silence durations in the signal, the total average value can dip below even the noise
level, making it an unfavourable avenue for setting thresholds.

On the other hand if we base our decision threshold on the average value of upper and
lower amplitude limits of the signal, noise becomes a considerable obstacle, Figure 4.19
simulates a scenario where this method is used, but the signal reception suffers a noise
burst.
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Figure 4.19: Signal excerpt with deliberate noise introduction.

As we can see, going purely by the geometrical centre of the signal isn’t a good
approach either, as any brief deviation from the current power levels would corrupt the
whole frame of samples.

If, however, we implement a method that makes use of both these tools simultane-
ously, we can work around these issues. The percentile numbers themselves represent
the compromise between vulnerability to bit ratio imbalances and to the presence of
noise bursts and must be adjusted to the signal one is hoping to demodulate. They
were determined a good fit though a process of trial and error and are currently hard
coded to the value described in Equation 4.2.

[P1, P2] = [N, 100−N ], N = 3 (4.2)

On Figure 4.20 we can se the visual representation of this approach.
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Figure 4.20: Signal excerpt with deliberate noise. Visual representation of final implemented
technique.

Having reached an algorithm able to robustly set decision thresholds adequate to an
ASK demodulation, the focus shifts to the next step, timing synchronization.

Timing synchronization It is important to mention here the development and
testing of this software relied heavily on a specific semi-passive sensor [9]. Due to energy
constraints, this piece of hardware transmits intermittently, which means that during a
significant portion of the time we spend listening to the channel, there is no message
being transmitted at all, just continuous periods of silence. This can be visualized in
Figure 4.21.

To achieve a proper temporal synchronization it becomes then necessary to, first,
differentiate between periods of transmission and silence. We can achieve this by taking
successive slices of the signal and measuring the variance of all the samples values
contained within. Knowing that during a silence period the power levels will remain
more or less contained inside the background noise interval it becomes possible to infer
that spikes in the variance of a certain neighbourhood coincide temporally with an
incoming packet. This is the idea behind the synchronization method introduced in the
next two paragraphs.
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Figure 4.21: Signal excerpt measured from the sensor directly via oscilloscope. Tag 1
represents a backscattered transmission. While tag 2 is a silence period.

Defining rough packet boundaries This routine begins by taking all the samples
in an interval [n− a, n+ a] and calculating their variance value, which is then stored
in position n of an array. The process is then repeated in a cycle for all the different
possible a sized intervals and, afterwards, the variance array is compared against its own
average value. This process allows us to, through identification of spikes in variance,
locate the packets in the signal. Additionally it allows the isolation of each packet from
the global samples array and its future processing separately. This is a big advantage
as it represents a considerable CPU performance boost.

If we define s[n] as the discrete function that contains in sequence all the samples
harvested in a frame, we can obtain z[n], a variance value of a 2a sized neighbourhood
of s[n].

z[n] = σ(s[n− a, n+ a]), a < n < |s| − a (4.3)

And now we can approximate all the packet boundaries’ array indexes, meaning the
beginning OR end of a packet, with:

WF := {n ∈ N : z[n] ≈ z̄} (4.4)

The neighbourhood size (a) should be large enough to build some immunity to noise
bursts but not so large as to drain valuable processing time.

A visual representation of the algorithm written above can be seen in Figure 4.22.
In this example, the variance value has been multiplied by a factor of 10 in order to
facilitate visualization.
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Figure 4.22: Signal excerpt with added variance plot.

In the above example, the value of a is given by Equation 4.5.

a = (SamplingRate/SymbolRate) ∗ 5 (4.5)

The sampling rate considered is post-decimation, this provides a 10 symbols worth
of samples as a neighbourhood inside which to calculate variance.

The intersections between neighbourhood variance level and its global average value
are considered as rough approximations to packet boundaries. If we plot vertical lines
in all these intersections it becomes easier to visualize the approximation made by the
script to these boundaries. Figure 4.23 is an example of this.

Figure 4.23: Signal excerpt with added variance plot.
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It is not strictly necessary at this stage that a defined packet boundary coincides
exactly with its real beginning or end, care was taken to have them be a bit before if a
beginning, or a bit after if an end. This discrepancy will be compensated for further
into the script execution and is left for now as tolerance room to make sure no packet
is accidentally bisected.

Limitations This method is not without its disadvantages. Firstly, in order to
infer synchronization from variance spikes one has to guarantee beforehand that none
of the packets have too many consecutive identical bits which might cause a drop in
variance in an undesirable place. The maximum number itself might be regulated
by changing the value of a in Equation 4.3 With a higher value we are calculating
the variance over a larger interval and therefore increasing the amount of consecutive
identical bits necessary to force an error into the demodulation process. This, however,
consumes more CPU time when calculating z[n] in equation 4.4 . Another way to
prevent this issue is to include in the most vulnerable areas of the message protocol a
symbol that is always the negation of its previous/following symbol. This will force
some variance at the expense of increasing packet size. Furthermore, the calculation of
variance, even with low neighbourhood interval sizes (a) is still a very time consuming
aspect of the process. In order to ameliorate this, an extra decimation exclusive this step
was applied to the samples within neighbourhood interval [n-a, n+a]. This is because
consecutive samples will in the majority of cases have very similar values thus making
somewhat redundant the processing of all of them for variance calculation purposes.

Once we have established that a certain consecutive subgroup of samples contains
a packet of modulated information, the next step is to determine symbol boundaries
within that same packet.

Defining symbol boundaries In this context, synchronization is the process of
identifying the moment at which one symbol ends and another begins, this event will
from now on be referred to as a symbol boundary.

During the course of this paragraph, two types of symbol boundaries will be referred.

• Real-world boundaries
The actual real-world moment at which the transmitting tag switched from one
symbol to another during it’s transmission, due to discretization induced errors
by the ADC, this exact value is impossible to obtain, we can only estimate it.

• Simulated boundaries
A ‘ghost’ boundary. The current best guess the comparator is making in regards
to the timing of a real-world boundary.
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By the end of this process, the timing difference between these two events should be
reduced to the possible minimum.

After, concluding the previous step, we will already have a rough approximation
regarding where to look for information, it becomes now necessary to temporally
synchronize the received signal. No data can be extracted unless we know where inside
the message one symbol ends and another begins. Achieving this is somewhat resource
intensive and a big processing time sink. Figure 4.24 illustrates the symbol boundaries
we are attempting to locate during this step, in an ideal noiseless scenario. The black
vertical signal transitions represent the real-world boundaries, while the light blue dotted
lines represent the simulated ones. In this example synchronization would already have
been achieved as the two match.

Figure 4.24: Example packet with denoted symbol boundaries.

It should be noted that for cases where the signal consecutively maintains identical
symbols, there are no sharp amplitude changes. For explanation purposes we will still
consider those events as real-world boundaries.

Four premises are assumed and built upon for this method, they are:

• The communication channel is asynchronous
• The sampling frequency is constant (Fs)
• The symbol rate is constant. (Sr)
• Fs � Sr

Given that we have no shared clock with the emitter upon which to locate the symbol
boundaries, we must use the sequence of samples themselves as a way to estimate and
eventually synchronize. Knowing that all the real-world boundaries are separated by a,
known, constant (k) number of samples is helpful, so lets start by finding that value.
Equation 4.6 gives us the value of k, meaning the number of samples during a symbol
period.

k = Fs

Sr

(4.6)
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By knowing that the number of samples in every symbol is identical, we can infer
that there is always at least one symbol boundary in any k sized consecutive sample
interval, defined by Equation 4.7.

[n, n+ (k − 1)] , with [n+ k ≤ total sample number] (4.7)

In Figure 4.25, we take a closer look at the one of the packets identified earlier by
the script during the stage depicted in 4.23.

Figure 4.25: Example packet.

Lets define the left packet boundary as sample 0, and the right one as sample L so
we can state this is an L sized interval.

Due to the continuous nature of the signal, plus the fact that sampling is a discrete
process, we must accept that none of our samples will be an exact match of the
real-world temporal boundary event, the strategy here is to find which sample is the
best approximation. The next logical step becomes arbitrarily selecting a k-sized
interval, and from there building a grid of simulated boundaries.

In Figure 4.25, we can see a rough estimate for the beginning and end of packet
represented by the vertical brown lines.

If we apply the earlier conclusion regarding bit boundary locations from Equation 4.7
to the arbitrarily chosen interval [0, (k − 1)] we can conclude that there is at least one
symbol boundary inside the interval highlighted in Figure 4.26.
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Figure 4.26: Interval [0, (k − 1)]

Starting at sample 0, the comparator will simulate boundaries at every kth sample
until we reach sample L, thus we obtain the group of all simulated boundaries for this
packet, designated B. B is given by Equation 4.8. Let’s assume G = 0, for now.

B =
{
m ∗ k +G : m ∈ N ∧m <

L

k

}
(4.8)

After doing this, we also indirectly obtain a group of intervals, visible in Figure 4.27.
These intervals correspond to the groups of all samples separated by the same two
consecutive members of B, and because they are k sized, we know that during each of
them there is at least one real-world boundary. Plus, knowing that real-world boundaries
are equidistant from each other (due to a constant symbol rate) also tells us they will
all be at the same distance from the closest left and right simulated boundaries. If we
treat these distances as an offset, it becomes now a matter of adding the correct offset
to the entire simulated boundary grid so that it aligns with the real-world boundaries.

We do not know however, the value of this offset. In order to determine it, we test
for all possible values (given by Equation 4.9), measure the alignment quality index for
each case and then select the highest quality index as the best match.

G ∈ [0, k − 1] ∧G ∈ N (4.9)

Spacing
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Figure 4.27: Consecutive k sized intervals.

Because each bar of the simulated boundary grid is k samples apart, there are k
potential grid variations, or in other words, k non-redundant offsets.

We can measure how good of an alignment the real-world symbol boundaries are to
a given simulated black grid variation by applying Equation 4.11 after Equation 4.10.
In order to do this it is necessary to include the previously calculated threshold value
(T ) demonstrated in figure 4.20.

Qindex =
∣∣∣∣∣
n+k∑
x=n

s[x]− T
∣∣∣∣∣ (4.10)

Aquality =
∑

Qindex (4.11)

After calculating the value of Aquality, we increment G by one (or we can define a
different step size and use it) and repeat the process until G ≥ k.
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Figure 4.28: Consecutive k size intervals shifted 5 samples to the right for easier visualization

Overall, the process is repeated k
StepSize

times, which will result in a list of all the
Aquality of all the tested values of G. The highest value of this list represents the
simulated ‘ghost’ grid that best matches the real symbol boundaries. We take the index
of that value, add it as an offset to sample 0 and build the rest of the grid from there.
The final result is pictured in Figure 4.29.

Figure 4.29: Best alignment quality between simulated and real symbol boundaries.

Now that the optimal simulated symbol boundary placement has been found, lets
also define it via Equation 4.12. This is still taking into account the reference for sample
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0 given earlier. Each information packet identified in the previous step will have its
own origin reference.

Sboundary[i] = k ∗ i+G (4.12)

This concludes the temporal synchronization process. As all the relevant symbol
timing information is now gathered, we can begin to start differentiating the binary
values.

Symbol value assignment Now that both temporal synchronization and decision
thresholds have been defined, it becomes possible to begin extracting binary values from
the received signal. The average values (SAV ) for all the samples corresponding to each
symbol (delimited by the boundaries we previously established) are calculated, and this
value is then compared to the threshold level (T ), the result is obtained according to
Equation 4.13.

SAV [i] = s̄[Sboundary[i] : Sboundary[i+ 1]] (4.13)

Which visually translates to Figure 4.30.

Figure 4.30: Average value of all the k sized subgroups.

After this step, a binary bitstream (C) can be obtained via application of Equa-
tion 4.14.

C(i) =

0, if SAV [i] ≤ T

1, if SAV [i] > T
(4.14)
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Resulting in what we can see in Figure 4.31.

Figure 4.31: Result of the horizontal threshold comparation process.

The result of all the applied methodology so far is an array of binary values visible
at the bottom part of Figure 4.31. The same process will be applied to all the received
packets (but not to the periods of silence in-between, for optimization reasons). The
resulting bit array in this specific packet, and in a majority of cases includes two blocks
of zeroes at the ending that must be trimmed in order to retrieve the payload. This
is done in the next step, the parsing, detailed in section 4.7. However, before that
subject is approached, it’s important to elaborate on a few alternative methods of signal
processing regarding comparison, they will be explained in the following subsections.

4.6.3 Pass By Zero

Pass by Zero is a processing method that attempts to use the timings at which the
signal equals a constant pre-set value to extract clock information.

This method outshines its counterpart, the TMC algorithm, in its simplicity. Whilst
the previously described comparator was built with antenna range maximization in
mind, for this approach a more CPU efficient route was adopted.

General diagram

In Figure 4.32 we can see a diagram describing the general process flow of this algorithm.
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Figure 4.32: Pass By Zero process.

Detailed explanation

Defining decision thresholds In order to favour a faster execution time time, this
comparator defines the threshold (T ) simply by measuring the global maximums(Gmax)
and minimums (Gmin) of all quantized values in each frame. It then applies the following
formula:

T = (Gmax −Gmin) ∗R +Gmin (4.15)

Where R is a configurable ratio, its value in figure 4.33 was 0.35.
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Figure 4.33: Pass By Zero comparative process applied to a slice of internally generated
signal

Timing synchronization Not all symbol boundaries include a sharp quantization
increase/decrease. For example, in scenarios with several consecutive identical symbols
in a row quantization levels would remain similar. However, all deliberate sharp
transitions will occur in very close proximity to a symbol boundary. If we piggyback
on these sharp transition timings to find one boundary, we can use this knowledge
to extrapolate timings for the remaining ones. In figure 4.33 we can see a visual
representation of this process.

Despite the fact that signal is received from the RF frontend in frames and not
continuously, it is still interpreted from left to right. Because the horizontal black line
represents the threshold separating different symbol amplitudes, we can assume that in
normal operating conditions every time the blue signal line crosses the horizontal black
line, we are in relative close proximity to a real-world symbol transition. By estimating
the first synchronization point (Sp[0]) as a close match to a real symbol boundary and
moving to the right we can start re-sampling the signal at relevant points, ideally chosen
mid-symbol. This is done according to Equation 4.16.

k = Sp[n] + SR

2 ∗ Sr

+ SR

Sr

∗ a : k < Sp[n+1] ∧ a ∈ N (4.16)

This will give us the index offsets for the re-sampling process, which when applied
to the signal function return the desired samples. Unlike the previous algorithm, PBZ
uses single samples and not group averages as a basis for the decision process described
in the next step.
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Symbol value assignment After re-sampling is done, the extracted sample values
are compared against the threshold. Being then attributed a value of either ‘0’ or ‘1’
according to equation 4.14.

Limitations In real-world applications, the added external factor of slower (i.e. non-
instantaneous) transition times may introduce issues. The interval of time between start
of transition and threshold-signal intersection will cause a deviation between real-world
and estimated symbol boundary timing. This delay becomes a considerable source of
error as the ratio between transition time and signal period gets closer to 1. A visual
representation of this flaw can be seen in figure 4.34.

Figure 4.34: Synchronization issue arising from non-instantaneous transitions, partly caused
by the digital filter. The red line represents the symbol boundary, the ideal
point at which the comparator should synchronize with the signal. The red
points represent the actual synchronization moments.

Other synchronization issues arise in specific oncoming packet configurations. This
approach relies on semi-frequent symbol changes in order to re-synchronize the clock.
For cases when the transmitter attempts to send a configuration of several identical
symbols in a row, timing errors might accumulate during the relatively larger period
between synchronizations leading to errors such as a miscount in the number of received
symbols. This can be counteracted by changes in the communications protocol, padding
the packets with periodical forced transitions, for example with a rule such as every
sixth bit always being the negation of its previous one. Another example could be
switching to a Manchester or Return to Zero approach.
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Another flaw in this comparator, one that eventually propelled the development of
SPBZ is the fact that sharp noise bursts might force the signal across the threshold,
thereby forcing synchronization at the wrong moment, effectively de-synchronizing.
This is pictured on Figure 4.35

Figure 4.35: Not all threshold transitions are intentional (green), some are product of noise
(red).

On subsection 4.6.4, a workaround attempt to this last limitation is detailed.

4.6.4 SPBZ - Smart Pass By Zero

The Smart Pass by Zero algorithm began development as an exploration of a solution
to the problem depicted on 4.35. As exposed earlier on section 4.6.3. Having an
algorithm that relies on transitions over a certain threshold to synchronize can leave
us exposed to ambient noise bursts. How does it differentiate between intended and
noise-based threshold transitions? Attempting to answer this question was ultimately
what branched this comparator from PBZ.

A solution was eventually built and it did achieve its purpose, but not with good
reliability and efficiency. Because of this, it was later abandoned. Reading this
subsection is, therefore, not required in order to get a full understanding of the current
state of the program. It exists merely to document already explored avenues of
development. And because it builds upon the previous one, its structure is somewhat
similar. Usual aspects like defining decision thresholds, temporal synchronization
methods and symbol value attributions won’t be detailed here and should be assumed
as identical to subsection subsection 4.6.3. Let’s begin then at the so-far unsolved flaw
described on the aforementioned section and depicted on 4.35. Three main methods
at filtering out the undesired transitions were adopted, they relied on the following
premises:
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1. Synchronization issues arising from slow transition times must first be
minimized

As we can see in figure 4.34 the PBZ comparator was using intersections of the
signal with a pre-defined threshold as a guidance for synchronization. However
because due to real-world limitations, transitions are non-instantaneous, an error
was introduced which could jeopardize future developments in this area. In order
to improve upon this method, the error source must be solved/minimized.

2. Packets must arrive at a consistent rhythm
By assuring the time interval between transmitted packets remains constant,

over time a consistent pattern of packets and periods of silence can be observed on
the transmission line. We are able to used that pattern, on the receiving end, to
learn how to predict during which windows of time transitions should be expected
and considered, and during which we they should be ignored because they are
certainly unintended.

3. The symbol rate is constant
Because the signal period does not change, and because transitions are located

in the borders between two symbols, it can be inferred that deliberate transitions
will be approximately located in intervals of k samples (equation 4.6) or multiples
of that number, for cases with consecutive identical symbols. This allows us to
designate hotspots inside which the probability of a transition being intended
increases, and conversely it allows us to tag as unintended any transitions which
deviate from this pattern.

Now that three objectives have been established, alongside their reasoning, we can
proceed to approach them in order.

To guarantee premise 1, some shifting of the synchronization points was necessary
depicted in Figure 4.33. Until now, synchronizations would happen too late in rising
edge cases and too early in falling edges. In order to rectify this issue the following
approach was taken:

1. Calculate the signal’s integral.
2. For each transition:

• Designate as point A the current value for the transition.
• Designate as point B the closest relevant point at which the integral equals

zero. Use the closest previous point for rising edges and the closest following
point for falling edges.

3. Designate as the new transition value the geometrical middle of points A and B.

In figures 4.36 and 4.37 we can see an excerpt the signal, encompassing a few symbols,
depicting this shifting:
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Figure 4.36: Points of interest before synchronization shifting. The yellow function is the
blue signal’s integral. The vertical red lines are located at points where the
integral equals zero. The black dotted line represents the threshold described
in the PBZ filter subsection. The red dots represent points at which the PBZ
comparator synchronized with the signal. The blue dots represent the sampling
points.

Figure 4.37: Points of interest after synchronization shifting. The yellow function is the
blue signal’s integral. The vertical red lines are located at points where the
integral equals zero. The black dotted line represents the threshold described
in the PBZ filter subsection. The red dots represent points where the PBZS
comparator will synchronize with the signal. The blue dots represent the
sampling points.

By applying this method to all the signal-threshold transitions, and therefore
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shifting all synchronization points closer to their real values we have made possible the
improvements built upon this premise. Some error will still persist, as the system is
fundamentally asynchronous, but now at manageable levels.

In order to apply premise 2. We must attempt to discern the pattern caused by
intermittent packet transmission. In order to do this two steps are taken.

Firstly an arbitrary transition is selected, with its position in the horizontal axis
deemed as the origin. All transitions located within a certain neighbourhood of the
origin are have their respective relative positions stored (this being difference between
their actual horizontal axis position and the position of the current origin). This value
was named as the ’deltas’ of a transition. The process is then repeated but with a
different transition as the origin until every single one has been selected. All the relative
positions can then be grouped into bins and displayed as an histogram. In figure 4.38
we can visualize a representation of this process.

Figure 4.38: Histogram depicting the frequency of intervals between packets. Vertical black
lines represent identical parts of previous/following packets.

Having found the rhythm at which transitions occur, it can then be used to differen-
tiate intended from unintended ones.

In figure 4.39 we can see the comparison between Figure 4.38 and two other plots,
one of them containing the deltas of a previously selected intended transition, and
another from an unintended one.
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Figure 4.39: Comparison between figure 4.38, deltas of an intended transition and a noise-
caused one.

The highlighted red areas represent areas of high expected delta density for cases
when current origin is an intended transition. Another way to describe would be that
if for any given intended transition one can look forward or backwards temporally in
the signal and expect to find other intended transitions at constant intervals of time.
However, for cases when an unintended transition is the current origin, the pattern
observed will not match the initial histogram of patterns between packets.

This allows us to filter out the transitions that do not match the pattern, if for any
given transition we attribute a score system based on the amount of deltas within the
red zone we will obtain the result seen in figure 4.40.
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Figure 4.40: Comparison of relative scores in-between threshold transitions. Each red dot
represents one transition, its vertical positioning being proportional to the
likelihood it is an intended one.

All that’s left now is to apply a score threshold and discard all the transitions who
fail it. Thus concluding implementation of premise 2.

It is now possible to establish ’transmission’ and ’silence’ areas in the signal (without
resorting to CPU intensive methods used before, like variance monitoring), this means
that all transitions occurring during a ’silence’ are assumed to be caused by undesirable
factors, such as noise, and won’t be taken into account at the later synchronization
stage.

But part of the problem still persists, what about the unintended transitions
happening during a ’transmission’ area? This problem is tackled with the implementation
of premise 3. Because the number of samples in each symbol (also designed as k in
equation 4.6) is constant. By knowing a single transition, designated as the origin, we
can predict an interval for the location of each of the remaining ones within the same
packet. And if that prediction matches reality, in theory we are likely looking at an
intended transition. On the other hand if we make predictions based on an origin and
no actual transitions match them, that origin was likely an noise-caused transition.
This is a variation of the previous method but only applied at an individual packet
level instead of in-between packets. Figure 4.41 describes this process.
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Figure 4.41: Implementation of premise 3. Red line is this example’s origin. Green lines
represent intervals centred in multiples of k distance from the origin. By
accepting the transition marked with the red line as the origin we should be
finding other transitions inside the intervals delimited by the vertical green
lines. An accumulation of two different sources of error makes it not always be
the case.

Limitations Here a major problem arises. Because there is an error between the
real value of k and its integer estimate used by the program. And because that error
accumulates as we get further from the origin, it eventually becomes impossible to
sync-up with other intentional transitions. It is not productive either to make the
intervals wider, as that would weaken the method substantially by also potentially
incorrectly identifying unintentional transitions as correct. This is amplified by the fact
that, as described earlier and depicted on figures 4.36 and 4.37, synchronization points
are an approximation of their real value.

Two signal areas have been established before in Figure 4.21, ’transmission’ and
’silence’. Intended transitions will by definition only occur during predictable intervals,
always on a ’transmission’. Unintended transmissions however, can happen during both
occasions. If we split them according to this characteristic we can also verify that this
comparator has a different degree of success on identifying a noise-based transition
based on when it happens. Unintended transitions occurring during a silence period are
identified more easily, but those are also the ones that represent the smallest impact
on the program’s ability to preform correctly. Even if they cause an out-of-phase
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synchronization during the silence period, it would eventually be re-synced at the first
intentional transition of the next packet, making all the effort of identifying them
unnecessary.

On the other hand, for those that occur during a packet, on a ’transmission’ area,
have a dire impact on the comparators ability to correctly define boundaries between
symbols and thus re-sample at the appropriate times. Identifying these unwanted
transitions proves a much more demanding task for the developed algorithm.

Furthermore, the selected approach relied on factors which would impose significant
restrictions at a later point. For example, if timing between packets was assumed
to always be identical, it would be much harder to implement multiple transmitter
compatibility later.

Overcoming these new obstacles would require adding more lines of code. However,
by this point, the comparator was already tremendously CPU heavy. The calculations
required at different steps, such as integration, synchronization point shifting and
signal analysis with infinitesimal step sizes were taking a tremendous toll and bringing
execution times up to at least one order of magnitude higher than its other counterparts.

A context is created where the PBZS was not very good at executing its task. And
was particularly ineffective at the most crucial details. In addition, its execution was
consuming prohibitive amounts of processing resources which made it not worth the
implementation even if any other problems were disregarded. This was the breaking
point that instigated development into new directions. Instead of investing more time
into the fine-tuning of this comparator, it was opted to mitigate the amount of noise in
the signal, attempting to prevent the issue of noise-caused transitions in the first place.

Development was shifted away from this avenue before implementation was fully
finalized, and as such, this comparator is not mentioned in any other area of this thesis.

4.6.5 FAST

In Figure 4.42 we can see a diagram describing the general process flow of this algorithm.

60



Figure 4.42: FAST process.

Detailed explanation

This fourth comparative method is similar to PBZ, with its main difference being the
incorporation information parsing methods to accelerate execution speed even further.

FAST was designed because PBZ’s execution speed was not sufficiently fast. Under
some circumstances data was still being harvested faster than it could be processed,
forcing a signal harvesting ‘stand by’ state that impacted data throughput levels as
described in subsection 4.2.3. This motivated the creation of FAST.

As we can see in Figure 4.43, this comparator is similar to PBZ, its major difference
being fewer timing synchronization points.
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Figure 4.43: FAST comparative process applied to a slice of internally generated signal

Defining decision thresholds The threshold definition process is identical to the
one described in the PBZ comparator sub-section

Temporal synchronization As mentioned before, a similar methodology to PBZ is
implemented here, albeit with sparser synchronization points. In this algorithm, they
only occur at the beginning of each packet. Such beginnings are identified by a rising
transition after a long period of permanence in the lower level. This means that the
time interval between packets must always be equal or greater to a known, pre-set,
value. After packet start identification occurs, samples will start being taken at regular
intervals according to Equation 4.17.

k = Sp[n] + SR

2 ∗ Sr

+ SR

Sr

∗ a : 0 < a < Ps (4.17)

Where Ps is expected packet size. This means that advantage is being taken from
the fact that packet sizes are known, constant, and relatively small. As an added feature,
advantage is taken from the fact that received packets begin with a preamble that is
both constant and known. For a size N preamble sampling will be stopped in any
instances where the first N samples of any packet do not match the preamble, being
resumed again at the beginning of next packet. This has an impact on the output of this
comparator. Where others will produce a bitstream with large amounts of consecutive
zeroes (silence) separating the occasional sequence of 1’s and 0’s (transmission), in this
comparator, because of the re-sampling method, the silences will not be present in the
output. This happens as a side-effect of speed optimization and is inconsequential.
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Symbol value attribution The symbol value attribution process is identical to its
equivalent described in the PBZ comparator sub-section

Limitations Using this comparator represents a major boon in terms of speed in
contrast to the previous two. As a trade-off, several limitations are placed upon
the possible adopted communications protocol. Due to the once-per-packet time
synchronization points, it is expected for temporal adjustment to fall off if packet size
is increased, imposing a theoretical upper packet size limit. Another disadvantage is
that because of the method used to differentiate the beginning of packets from regular
transitions, a silence period must be maintained between packet transmissions, with a
minimum recommended duration of Symbol period ∗ (Packet size+ 1). Any sufficient
noise forcing a transition during that period will cause the algorithm not to correctly
identify the preamble later. And lastly, for setups where the signal level for silence
periods also equals one of your symbols (in this case silence equals 0), it becomes
infeasible to begin any of your packets with that same symbol.

4.7 Data parsing

We have now, after filtering, decimating and data recovering, abstracted the signal into
a stream of bits. In this step we will attempt to retrieve any relevant information and
validate it. Let’s first make a structural introduction on the communications protocol
currently adopted.

4.7.1 Custom Packet Protocol

ID.all exists in order to provide means to receive the data encapsulated within a signal
backscattered by a tag. It is then captured by the readers antenna before being filtered,
compared and eventually parsed. Parsing is only possible because a protocol has been
previously established and the reader knows how the incoming information is structured.
Measures were taken in order to facilitate the customization of this protocol by the
end user, and as such, adaptation into other protocols such as Zigbee[33], is easy to
implement. The standard option is a custom protocol specifically structured with this
project in mind. This structure depicted in figure 4.44 and consists of (in order):

• Preamble
With the primary purpose of providing frame-sync, it’s size and content can

be customized by the user. The default preamble is [1,0,1,0].
• Payload

Data storing field. Customizable size with a default of 8.
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• Cyclic Redundancy Check (CRC)
Used in packet validation. Detailed explanation in subsection 4.7.3, default

divisor is [1,0,1,0].
• Stop bits

Signals the end of frame. Optional, given the (currently) constant packet size,
default value is [1,0].

Figure 4.44: Adopted signal protocol structure.

All of these packet fields, along with other signal properties such as symbol rate,
can be edited by the user. For information on how to achieve this, please refer to
Appendix B.

4.7.2 Identifying packets

In regular working conditions, the output of the previous stage will be a bitstream such
as the one pictured in Figure 4.45. It will be preceded and succeeded by unnecessary
irrelevant bits, and the first step of the parser will be to discard them.

Figure 4.45: Bit sequence resulting from the output of the previous step.

In order to do so, the program will iterate sequentially through all bits in the list
and attempt to find a sequence that matches the preamble, in our example this means
[1 0 1 0]. After doing so it’ll also know where to find all the other fields from their
relative position to the preamble itself. This means that now all the overhead bits can
be trimmed away.

Figure 4.46: Packet after removal of unnecessary data.

Having now an array of bits, demodulated from the signal wave, the focus shifts
into how to interpret the sequence and extract desirable information. As we also know
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the protocol’s structure, it becomes trivial to find the remaining fields. The bit array is
then sliced on the relevant index offsets. This also prevents the accidental flagging of
preambles inadvertently inside payloads, as the parser analyses the bit list sequentially
and will correctly disregard preambles for areas already identified as non-preambles,
such as the payload or CRC field.

After tagging each packet field, they are then passed on to the next stage, the
validation.

4.7.3 Error detection / Packet validation

Noise is always a given when working with communication systems, it’s important to
be sure the information received matches what was transmitted. A CRC is a code that
aims at identifying the presence of errors in a given transmission, it makes no attempt
at recovering information when discrepancies are found, typically in those cases the
flagged information is simply tagged as unreliable and/or discarded. Because this reader
is aimed at interfacing with sensors that can transmit the same message several times
in a second, recovering from errors is not very rewarding. As it becomes more efficient
to simply detect them and discard affected packets. CRC becomes a good choice here,
as it is merely used for detection and is also easy to implement, while not being very
resource intensive on either side of transmission, nor having a large message overhead.

It consists of a polynomial division between two blocks of data, carried out by series
of alternate xor’s and right shifts. Before transmission, the blocks of data are divided by
previously agreed upon value, the divisor, and the remainder of this division is included
with the data packet being sent, as a CRC field. After transmission, the same operation
is repeated on the receiving end, and because the divisor is constant and known to both
sides, the remainders will match in circumstances where no errors happened during
transmission. This event is called a validation. For cases where noise has corrupted one
or more bits during transmission, the results of these operations will almost certainly
not be identical, making the packet fail validation.

The division process is illustrated on Figure 4.47.
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Figure 4.47: Cyclic Redundancy Check

According to [34, p.494],the probability of a false positive happening in this process
is seen in Equation 4.18.

PF P (ε) ≤ 2−(n−k)[1− (1− ε)n] (4.18)

Where ε is the probability of data recovery error in a symbol, k represents the
payload size, and n represents k + CRCfieldsize. This sets an upper bound at a level
we can define in Equation 4.19

PF P ≤ 2−(n−k) (4.19)

4.7.4 Validated information storage

After each successful validation the respective payload is added into a list. Each list
corresponds to the validated payloads of a given frame. When the program is done
parsing a frame it will save its respective list in a .npy [28] file within the sub-folder
./outfiles/. The creation time-stamp for this file will also be used as its name. No
more than 5 files will ever be in this sub-folder at any given time, the program will
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delete oldest file before creating a new one if the file number exceeds 4. This is done to
prevent memory bloating.

After storage, the contents can be freely accessed by another agent with network
access and read permissions, enabling network integration.

Having concluded the demodulation process, we have also contextualized the methods
behind the results presented in the next chapter.
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Chapter 5

Hardware Setup and Results

In this chapter, a list of hardware used throughout the testing phase will be introduced,
followed by a diagram with pictures on how to assemble it. In the second half, tables and
graphs of testing results will be presented, before a conclusion with results interpretation.

5.1 Hardware Setup

The following sections detail a list of required materials and final design for the setups
used to measure the values presented on section 5.3.

5.1.1 Hardware list

The following sub-sub-sections detail all the hardware used during tests.

RTL-SDR USB dongle

This dongle provides the interfaces between antenna and Raspberry PI, acting as an RF
frontend. Incorporates an R820T2 tuner chip and the RTL2832U Coded Orthogonal
Frequency Division Multiplexing (COFDM) demodulator. Forces restrictions upon the
setup, tuning and sampling wise. Tuning frequency is restricted to the 24 - 1766 MHz
interval, whilst sampling frequency must be in the 0.226 - 3.2 MHz range.
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Figure 5.1: An example of an SDR USB dongle, image retrieved from amazon.com.

868 MHz rectangular patch antenna

Three rectangular patch antennas, designed for usage in the 868MHz spectrum zone
were used, one of them can be see in Figure 5.2.

Figure 5.2: 868 MHz rectangular patch antenna

Raspberry PI

A Raspberry PI Kit, as seen in Figure 5.3 was used as the central hosting platform,
included in the kit are a Raspberry Pi 3 Model B+, a case, a micro USB power supply
and a microSD memory card. The chosen operating system was Raspbian 9.
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Figure 5.3: Raspberry Pi 3 model B+ (image from [15]).

Semi-Passive backscattering sensor

The tag [9] used during the testing phase. Restrictions included a maximum symbol rate
of 3600 Hz on the transmission and non-instantaneous transition times. In Figure 5.4
and Figure 5.5 we can see both of its sides.

Figure 5.4: Adopted sensor, front.

Figure 5.5: Adopted sensor, back.

An example of its backscattering commutation pattern can be seen in Figure 5.6.
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Figure 5.6: One packet, measured directly from the sensor with the help of a digital oscillo-
scope. The communications protocol is explained in detail in subsection 4.7.1.

Keyboard, USB mouse and screen

These items are required in order to interact with the Raspberry PI, a Wi-Fi based
Secure Shell (SSH) connection can be used as an alternative.

Rohde & Schwarz SMJ100A VSG

The signal generator show in Figure 5.7 was used to provide a carrier wave to the tag,
which was backscattered into the reader.

Figure 5.7: SMJ100A VSG (image from [35]).

Spectrum analyser (Optional)

Used for debugging purposes.
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SMA cables

SubMiniature version A (SMA) cables, such as the ones pictured in Figure 5.8 are
required to connect between the antennas and VSG/tag/RPI.

Figure 5.8: SMA cables (image from [36]).

5.2 Assembled setups

Two different setups were used during the testing phase. Setup 1 is intended as a
"vacuum" testing platform, and a support measure to debug by potential issues with
setup 2 via isolation. Because setup 2 also includes a tag developed by another party,
every time a problem occurred, testing would be switched to setup 1 as an attempt to
troubleshoot and identify if the source of the problem resided reader side.

Setup is meant as a close representation of final implementation of the system. It
attempts to simulate practical, real-world, applications of this technology.

5.2.1 Setup 1

On Figure 5.9 we can see a schematic for setup 1. On Figure 5.10 we can see the entire
setup from the reader’s and transmitter’s perspective. In Figure 5.11 and Figure 5.12
we have frontal views of the reader and transmitter, respectively.
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Figure 5.9: Schematic for setup 1

Figure 5.10: Setup 1

Figure 5.11: Setup 1
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Figure 5.12: Setup 1

5.2.2 Setup 2

In Figure 5.13 we can see a schematic for setup 2. In Figure 5.14 we can see the entire
setup from the reader’s and VSG’s perspective. In Figure 5.11 and Figure 5.12 we have
frontal views of the tag and generator/reader, respectively.

Figure 5.13: Schematic for setup 2

75



Figure 5.14: Setup 2

Figure 5.15: Setup 2 - Side 1
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Figure 5.16: Setup 2 - Side 2

5.3 Results

Let’s now first contextualize and then present the results.

5.3.1 Packet loss

Before taking a dive into the raw data provided by the experimental testing phase, it
is important to contextualize the different limitations of the setup and how they can
influence the testing results.

Figure 5.17: SDR-PI data pipeline

Let’s begin with the SDR USB dongle and it’s interfacing method with Python. The
software library[22] used to integrate this piece of hardware into the project provides a
burst-mode method of communication in order to transmit the sampling information
collected by the dongle, each burst being denominated as a frame. It is important
to keep in mind that there is no guarantee that last sample of a frame was collected
immediately before the first sample of the following frame. Depending on the setup, an
unspecified amount of time might have passed in-between collections. And although
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this is not an issue for currently intended practical applications, caution must be taken
when adapting this work into other projects.

Picture 5.18 is a visual simulation of the described problem, green area corresponds
periods where samples are being taken, while red area represents instants where the
receiver is not actively sampling the airwaves (’deafness’ periods). During these instants
the software is executing other tasks, such as storing harvested information in an
internal memory or setting up a new harvesting action. The ratios between areas were
arbitrarily chosen and are not representative of this project.

Figure 5.18: Contrast between hypothetical signal transmitted into the receiver (top) and
perceived signal by the data recovery algorithm (bottom). Each green slice
represents a frame.

Another way to look at this is to interpret the SDR kit working akin to a camera
shutter, in that it only allows the signal to pass during specified intervals of time. The
RPI, and by extension, the demodulator, only receives a series of concatenated slices
of the original signal (green areas). The intended use for this setup is to demodulate
an ASK signal encoded according to the protocol packets described in subsection 4.7.1.
Figure 5.19 represents the difference between raw signal and the information that
reaches the RPI. For demonstration purposes all packets are represented entirely by
1’s, with 0’s being the channel silence period between packets. Any ratios in the figure
are not representative.
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Figure 5.19: Contrast between signal backscattered by the sensor (top) and perceived signal
by the comparator (bottom). One green slice represents a ‘frame’ of samples.

Because the signal within red areas is never sampled by the reader, it never proceeds
down the pipeline in order to be fed into the RPI and eventually validated. Because
these packets are lost at the reader, it becomes important to differentiate different kinds
of packet loss, according to the part of the system in which the packets are lost.

It is also important to mention that because this deafness period was not an
obstruction towards achieving the project goals, it has only been measured at a superficial
level.

Three types of packet loss present here are:

SDR packet loss

This refers to the ratio between packets never sampled by the SDR kit and total packets,
it can be roughly estimated with Equation 5.1.

PLSDR = total sampling time

δt
(5.1)

Or more precisely, as seen in Equation 5.2, by calculation the ratio between number
of packets in signals S_1 and S_2 (Figure 5.17), calculating this value requires some
degree of knowledge regarding the tag/transmitter. Namely, if the tag is transmitting
constantly, and what’s its transmission rate.

PLSDR = pckt S_2
pckt S_1 (5.2)
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RPI packet loss

This refers to the ratio between packets that occurred during sampling times and
thus reached the RPI, and those which were not successfully validated by the software
demodulator. There are several reasons as to why this can happen, noise during the
sampling might send a sample into the wrong side of the threshold, synchronization
problems might occur or even imperfections with the data recovery algorithm or
validation method might cause the loss of packets.

This statistic was treated as the most relevant of the three as it had a closer relation
to the overall quality level of the developed software. Development was heavily directed
in order to minimize this value. In order to measure it, the amount of validations is
divided by the number of expected packets. Expected packet number (EPN) for a
given time interval is calculated according to the following formula.

EPN = ( SR

PS + SBP ∗ SR
) ∗∆t (5.3)

Where PS is the packet size in symbols, SR is the symbol rate, SBP the interval
of time between packets during which the channel is silent, in seconds, and ∆t being
the interval of time, also in seconds, for which we are calculating the EPN

This ensures that losses due to SDR sampling methods are not weighted while other
potential disturbances like noise in the channel still are. Reliable 0% RPI packet loss
rates will still not be feasible due to bisection of packets either at the beginning or end
of burst-mode frames, which prevents their validation. The method used to validate is
described in further detail on subsection 4.7.3. A potential workaround to this issue
has been identified but not explored, it is detailed further under chapter 6 section 6.2

Cumulative packet loss

The product of both previous items

PL = PLSDR ∗ PLRP I (5.4)

5.3.2 Nomenclature

The following section contains the measurement results done either in a lab environment
or outdoors. Different comparators were used, and for each one at least two different
kind of test were made, distance and decimation factor.

Some designations should be properly clarified before proceeding. As previously
explained, data is produced and processed in bursts of samples. During each test, three
bursts of samples were collected.
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The first table in each category refers to directly measured values, such as the
absolute number of packets validated, the interval of time required by the processing
unit to complete demodulation, the signal power measured at the receiving antenna.
The second table refers to data extrapolated from the results shown in the first one.
Things like average number of validated packets per frame, average time required to
demodulate and RPI packet loss.

The following list serves as a reference for the result tables:

• packet#
Number of packets successfully validated during collection. Each collection
corresponds to a burst of data collected by the RF frontend. Two packets and
the silence period between them can be seen in figure Figure 5.6. Results are
numbered 1 trough 3, so packet2 would correspond to the number of packets
successfully validated during the second repetition of testing.

• runtime#
This value corresponds to the interval of time in seconds required by SoundGen
to process the signal contained in each collection. Results are numbered 1 trough
3, so runtime2 would correspond to the interval of time in seconds required by
SoundGen to process the signal contained in the second repetition of testing.

• dBm rcv
This value corresponds to the signal power measured at the reader’s antenna.
Expressed in dBm.

• d
Distance in meters between the transmitting and receiving antennas. A1/A2 for
setup 1 and A2/A3 for setup 2.

• avg p
The average of values packet1, packet2 and packet3 for the respective measurement.

• percent
The percent of packets correctly validated by respective to all packets harvested.
This value is calculated by subtracting the RPI packet loss value from 1.

• pcket loss
Corresponds to the RPI packet loss. Calculated according to equation 5.3.

• avg t
The average of values runtime1, runtime2 and runtime3 for the respective mea-
surement. Expressed in seconds.

• pps - packets per second
The average number of packets validated per unit of time during code interpreta-
tion. Calculated based of the values of avgp and avgt. Expressed in Hertz.
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• decim
Decimation order. Decimation occurs between signal filtering and comparison, as
shown in Figure 4.5.

• L Ratio
Upper boundary for the ratio between sampling window duration and sampling
turnaround time. This turnaround is the time interval between the start of two
consecutive sampling windows. Sampling window duration is represented by the
green areas on Figure 5.19.

5.3.3 False Positives

The error detection mechanism implemented does not guarantee 100% accuracy. Ac-
cording to Equation 4.19 and knowing that during testing our payload size was 8 and
CRC remainder size was 3, we can calculate an upper bound of 12.5% for false positive
validations. This value corresponds to the worst case scenario of a 50% bit error rate.

5.4 Lab results

The following sub-sections present the raw data obtained via testing both of the setups.
Testing variables were distance between tag and reader antennas and decimation order.
All of these tests were subjected to uncontrollable influences which might have affected
the results. Some happened in an indoors environment, with signal reflections between
walls and different setups from other researchers also emitting signal to the air in different
spectrum areas. Others were outdoors which subjected the antennas to displacement
by wind and uneven terrain.

5.4.1 TMC

For the following measurements setup 2 was used with a signal generator emitting at a
power of 5dBm. The sensor was calibrated with a symbol rate of 3650 Hz and a packet
transmission frequency of 65.3 Hz. Three frames of samples were collected for each
tested distance. The sampling rate was 226kHz and each frame consisted of 327680
samples or 1.45 seconds worth of signal. The theoretical maximum for validated packets
under these conditions is 95.

Distance

No signal decimation was applied in the following test.
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d packet1 runtime1 packet2 runtime2 packet3 runtime3 dBm rcv
1 93 9.656 93 9.566 93 9.559 -70.3
1.5 88 9.274 84 9.371 85 9.363
2 74 9.587 84 9.393 85 9.394 -75.2
2.5 80 9.49 76 9.45 82 9.359
3 86 9.475 86 9.437 91 9.208 -77.6
3.5 22 10.649 43 9.388 42 10.01
4 0 8.87 0 5.55 0 4.66 -78.3

Table 5.1: Number of packets validated using the TMC comparator relative to antenna
distance.

d avg p percent pcket loss avg t pps L Ratio
1 93.00 0.98 0.02 9.59 9.69 0.15
1.5 85.67 0.90 0.10 9.34 9.18 0.16
2 81.00 0.85 0.15 9.46 8.56 0.15
2.5 79.33 0.84 0.16 9.43 8.41 0.15
3 87.67 0.93 0.07 9.37 9.35 0.15
3.5 35.67 0.38 0.62 10.02 3.56 0.14
4 0.00 0.00 1.00 6.36 0.00 0.23

Table 5.2: Packet validation data using the TMC comparator relative to antenna distance.

Decimation

Receiver and sensor antennas were 2 meters apart in the following test. SDR kit
sampling rate was fixed at 226kHz, this value is before decimation.

decim packet1 runtime1 packet2 runtime2 packet3 runtime3 dB rcv
01:02 87 6.017 90 6.035 82 6.035 -75.2
01:03 84 4.986 85 4.946 86 5.021 -75.2
01:05 65 3.94 54 3.84 60 3.877 -75.2
01:10 17 3.059 14 2.971 17 2.888 -75.2
01:15 7 2.761 10 2.804 11 2.806 -75.2
01:20 3 2.61 4 2.644 2 2.533 -75.2
01:30 4 2.498 2 2.489 5 2.486 -75.2

Table 5.3: Number of packets validated using the TMC comparator relative to decimation
order.
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decim avg p percent pcket loss avg t pps L Ratio
01:02 86.33 0.91 0.09 6.03 14.32 0.24
01:03 85.00 0.90 0.10 4.98 17.05 0.29
01:05 59.67 0.63 0.37 3.89 15.36 0.37
01:10 16.00 0.17 0.83 2.97 5.38 0.49
01:15 9.33 0.10 0.90 2.79 3.34 0.52
01:20 3.00 0.03 0.97 2.60 1.16 0.56
01:30 3.67 0.04 0.96 2.49 1.47 0.58

Table 5.4: Packet validation data using the TMC comparator relative to decimation order.

5.4.2 PBZ

For the following measurements setup 2 was used with a signal generator emitting at a
power of 5dBm. The sensor was calibrated with a symbol rate of 3650 Hz and a packet
transmission frequency of 65.3 Hz. Three frames of samples were collected for each
tested distance. The sampling rate was 226kHz and each frame consisted of 327680
samples or 1.45 seconds worth of signal. The theoretical maximum for validated packets
under these conditions is 95.

Distance

d packet1 runtime1 packet2 runtime2 packet3 runtime3 dB rcv
1 87 3.589 94 3.587 94 3.576 -70.3
1.5 78 3.55 79 3.554 85 3.547
2 90 3.566 83 3.571 88 3.552 -75.2
2.5 63 3.575 58 3.589 65 3.559
3 94 3.547 92 3.551 89 3.548 -77.6
3.5 0 3.79 0 3.71 0 3.720
4 0 3.562 0 3.56 0 3.572 -78.3

Table 5.5: Number of packets validated using the PBZ comparator relative to antenna
distance.

d avg p percent pcket loss avg t pps L Ratio
1 91.7 96.73 03.3 3.584 25.58 40
1.5 80.7 85.12 14.9 3.550 22.72 41
2 87.0 91.81 8.2 3.563 24.42 41
2.5 62.0 65.42 34.6 3.574 17.35 41
3 91.7 96.73 03.3 3.548 25.83 41
3.5 0.0 0.00 100.0 3.740 0.00 39
4 0.0 0.00 100.0 3.564 0.00 41

Table 5.6: Packet validation data using the PBZ comparator relative to antenna distance.
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Decimation

Receiver and sensor antennas were 2 meters apart in the following test. Sampling rate
was fixed at 226kHz, this value is before decimation.

decim packet1 runtime1 packet2 runtime2 packet3 runtime3 dB rcv
01:02 80 2.981 79 2.967 80 2.981 -75.2
01:03 82 2.777 76 2.773 79 2.776 -75.2
01:05 83 2.603 83 2.598 85 2.604 -75.2
01:10 28 2.469 38 2.469 23 2.467 -75.2
01:15 32 2.408 35 2.407 37 2.427 -75.2
01:20 57 2.401 45 2.395 56 2.398 -75.2
01:30 8 2.372 10 2.371 0 2.371 -75.2

Table 5.7: Number of packets validated using the PBZ comparator relative to decimation
order.

decim avg p percent pcket loss avg t pps L Ratio
01:02 79.7 84.07 15.9 2.976 26.77 49
01:03 79.0 83.36 16.6 2.775 28.47 52
01:05 83.7 88.29 11.7 2.601 32.16 56
01:10 29.7 31.31 68.7 2.468 12.02 59
01:15 34.7 36.58 63.4 2.414 14.36 60
01:20 52.7 55.58 44.4 2.398 21.96 60
01:30 06.0 06.33 93.7 2.371 02.53 61

Table 5.8: Packet validation data using the PBZ comparator relative to decimation order.

5.4.3 FAST

For the following measurements setup 2 was used with a signal generator emitting at a
power of 5dBm. The sensor was calibrated with a symbol rate of 3650 Hz and a packet
transmission frequency of 65.3 Hz. Three frames of samples were collected for each
tested distance. The sampling rate was 226kHz and each frame consisted of 327680
samples or 1.45 seconds worth of signal. The theoretical maximum for validated packets
under these conditions is 95.
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Distance

d packet1 runtime1 packet2 runtime2 packet3 runtime3
1 74 1.458 73 1.457 77 1.442
1.5 70 1.428 73 1.472 73 1.43
2 75 1.445 68 1.445 74 1.453
2.5 55 1.339 60 1.424 54 1.496
3 43 1.187 38 1.304 18 1.887
3.5 5 1.49 4 1.494 1 0.1499
4 0 1.45 0 1.51 0 1.439

Table 5.9: Number of packets validated using the FAST comparator relative to antenna
distance.

d avg p percent pcket loss avg t pps L Ratio
1 74.7 91.33 08.7 1.452 51.41 100
1.5 72.0 88.07 11.9 1.443 49.88 100
2 72.3 88.48 11.5 1.447 49.97 100
2.5 56.3 68.91 31.1 1.419 39.68 100
3 33.0 40.37 59.6 1.459 22.61 99
3.5 03.3 04.08 95.9 1.044 03.19 100
4 00.0 00.00 100.0 1.466 0.00 99

Table 5.10: Packet validation data using the FAST comparator relative to antenna distance.

5.5 Lab results - Graphs

Figure 5.20: Success rate over different antenna distances and comparators
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Figure 5.21: Packet throughput over different antenna distances and comparators

Figure 5.22: Success rate over different decimation orders and comparators

Figure 5.23: Packet throughput over different decimation orders and comparators

5.6 Field results

Field results were measured on an open slightly uneven grass terrain, at least 15 meters
away from any reflective vertical surfaces such as walls.
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5.6.1 FAST

Direct - Setup 1

For the following measurements setup 1 was used with a signal generator emitting at a
power of 5dBm. The generator was calibrated to emit an ASK modulated signal with a
carrier wave of 868MHz, a symbol rate of 3650 Hz and a packet transmission frequency
of 50 Hz. Three frames of samples were collected for each tested distance. The sampling
rate was 226kHz and each frame consisted of 327680 samples or 1.45 seconds worth of
signal. The theoretical maximum for validated packets under these conditions is 72.

d packet1 runtime1 packet2 runtime2 packet3 runtime3
05 71 1.397 71 1.449 70 1.445
10 71 1.451 71 1.442 71 1.457
15 71 1.447 71 1.451 71 1.451
20 71 1.447 71 1.456 71 1.452
25 71 1.452 71 1.439 71 1.452
30 71 1.451 71 1.442 71 1.441
35 68 1.453 69 1.438 66 1.467
40 27 1.458 27 1.438 31 1.433

Table 5.11: Field results regarding number of packets validated using the FAST comparator
relative to antenna distance.

d avg p percent pcket loss avg t pps
05 70.7 98.15 01.9 1.430 49.41
10 71.0 98.61 01.4 1.450 48.97
15 71.0 98.15 01.4 1.449 48.98
20 71.0 98.15 01.4 1.451 48.91
25 71.0 98.15 01.4 1.447 49.04
30 71.0 98.15 01.4 1.444 49.15
35 67.7 93.98 06.0 1.452 46.58
40 28.3 39.35 66.6 1.443 19.64

Table 5.12: Field results regarding packet validation data using the FAST comparator
relative to antenna distance.

Setup 2

For the following measurements setup 2 was used with a signal generator emitting at a
power of 5dBm. The tag was calibrated with a symbol rate of 3650 Hz and a packet
transmission frequency of 65.3 Hz. Three frames of samples were collected for each
tested distance. The sampling rate was 226kHz and each frame consisted of 327680
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samples or 1.45 seconds worth of signal. The theoretical maximum for validated packets
under these conditions is 94.

d packet1 runtime1 packet2 runtime2 packet3 runtime3 dB rcv
1 72 1.447 71 1.449 74 1.440 -70.7
1.5 66 1.450 65 1.453 65 1.451 -74.8
2 72 1.438 70 1.457 68 1.437 -74.3
2.5 64 1.554 63 1.926 59 1.485 -75.3
3 63 1.487 65 1.442 65 1.456 -75.9
3.5 37 1.464 33 1.425 31 1.456 -75.6
4 10 1.441 07 1.468 07 1.402 -76.2
4.5 00 1.448 00 1.448 00 1.454 -75.3

Table 5.13: Field results regarding number of packets validated using the FAST comparator
relative to antenna distance.

d avg p percent pcket loss avg t pps
1 72.3 76.95 23.0 1.445 50.05
1.5 65.3 69.50 30.5 1.451 45.02
2 70.0 74.47 25.5 1.444 48.48
2.5 62.0 65.96 34.0 1.655 37.46
3 64.3 68.44 31.6 1.461 44.01
3.5 33.7 35.82 64.2 1.448 23.25
4 08.0 08.51 91.5 1.437 05.57
4.5 00.0 00.00 100.0 01.45 00.00

Table 5.14: Field results regarding packet validation data using the FAST comparator
relative to antenna distance.

5.7 Result analysis

Some results can be distilled after analysis of the tables and plots in the previous
chapter. In this section we will attempt to extract information from the results.

The most direct interpretation we can infer is that the reader is receiving signal
and demodulation is successfully being concluded. This is true for all three comparison
methods.

Furthermore, regarding these different methods, additional details deserve clarifica-
tion. Let’s start by looking at each comparator individually.

5.7.1 TMC

Starting with the direct results obtained by the project using the TMC option. As seen
in Table 5.1, results are good with almost every transmitted packet being validated
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given a 1 meter distance between antennas, with validation rates initially decreasing
slightly with an increase in distance and then abruptly when a range of roughly 3.25m is
reached. We can also see the average runtime for the entire process from signal receiving
to validation takes on average around 9.5 seconds for each 1.45 seconds of signal, except
in the highest range where it drops to 6. This drop is due to the incapability for the
system to distinguish any packets at all from the background noise led to a uniform
variance level, which in turn caused the comparator to skip to the next step entirely,
saving resources and moving to the next batch of data quicker.

On Table 5.2 we can see that TMC consistently maintains around 10% packet loss
values up to distances of 3, and 60% up to 3.5 meters, the best result in all comparators
in terms of range. This is due to the fact it was implemented with this goal in mind, it
includes a more thorough information processing method, designed to be able to operate
in situations with a lower signal to noise ratio. However, due to this, it also validates on
average the lowest amount of packets per second. Despite being successful at validating
the information in each receiving window, it takes a vastly superior amount of time
to process that information, 3 times as much if compared to PBZ and up to 6 times
if compare with FAST. The direct consequence of this is that these windows become
temporally sparser. And if in the same time interval much less potential packets are
collected, fewer validations will also take place.

Regarding signal decimation pre data recovery, we can see by Table 5.3 and Table 5.4
that it has a big impact on frame processing times. Decimation rations can be increased
at least until 1:3 without a noticeable drop in result quality, further increases do decrease
calculation times at the expense of also decreasing its ability to validate packets, bringing
the overall amount of packets validated per time unit lower.

The results point at this comparator being the best choice for ranges between 3 and
3.5 meters, if CPU load is a concern decimation can be calibrated at up to a ratio of
1:3 without impacting result quality.

5.7.2 PBZ

The PBZ algorithm started out as an attempt to lower runtime intervals measured in
TMC tests. It was a way to explore if moving focus away from antenna distance as the
critical factor, but without disregarding it completely, would yield better global results.
During the first iterations of this recovery method, there was no second digital filter
implemented. This was due to the already heavy strain imposed on the CPU by its
TMC counterpart. This meant that a higher amount of noise was present in the signal,
and while this was no issue for TMC due to its higher resilience to noise, it became
an issue here. Fortunately, the amount of processing resources freed by switching to a

90



more CPU-efficient alternative also meant that there was now room to add additional
signal processing stages to the pipeline, such as the digital bandpass filter described
in section 4.4. So even though this algorithm was designed to maximize computing
efficiency, it also made possible the inclusion of tools which indirectly increased signal
to noise ratio and thus antenna distance.

Regarding this speed optimization, the results are directly noticeable, as displayed
by the average runtime of 3.5 seconds for equivalent amounts of signal, as can be seen
in Table 5.5 and Table 5.6. Lowering the runtime to roughly a third of the value
previously measured in the TMC comparator also achieves three other benefits. Firstly,
not spending so much time doing calculations means collecting signal more often, and as
such the L ratio goes up. Secondly, because the L ratio goes up, so does the maximum
potential amount of packets validated in a fixed time interval. This increase is also
substantial, to the tune of a 2.5 factor, as we can verify by comparing the pps column
of Table 5.2 and Table 5.6. Lastly, in time-critical implementations with ranges up to 3
meters, lower runtimes also mean lower reaction times by the system to environment
changes.

Regarding distances, there is a slight drop in performance. The system is no longer
able to detect tags that are 3.5 meters from the reader’s antenna, as opposed to TMC.

The results presented here alongside the implementation methods described in
subsection 4.6.3 suggest this comparator is ideal for applications with distances below 3
meters, imposing a few communication protocol restrictions.

5.7.3 FAST

FAST existed as a way to capitalize on the short packet sizes used by the tag under
testing. Altough PBZ was already relatively fast, it still was not taking advantage of
this potential optimization.

Due to the once per packet synchronization method implemented by FAST, no
infinitesimal increment sweeping of the samples is necessary. The algorithm synchronizes
only once in the packet beginning. As a result of this, as we can see in Table 5.9 and
Table 5.10 the interval of time necessary to process information is approximately half
as long as PBZ and six times smaller than TMC.

No decimation tests were conducted as processing time was already similar to
collection time, leading to no useful optimization in that front.
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5.7.4 Additional observations

During outdoor testing, regarding setup 1, we can see in tables Table 5.11 and Table 5.12
that unlike any other scenario, removing the tag and testing with a generator simulating
its signal causes the resulting values to be much more stable over a much wider range of
distances, this implies that the previously measured variability in the results is caused
by the tag and not by a fault in the reader or the environment.

Another important aspect is that for the same comparator, FAST, higher distances
were achieved during outdoor testing, validating the fact that laboratory environments
are more prone to RF interference.

In the next chapter we will attempt to contextualize these results with the project
objectives listed in chapter 1 during the next chapter.
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Chapter 6

Conclusion

In the final chapter on this thesis, let us summarily review the entire document’s chain
and draw conclusions.

6.1 Final Remarks

With each passing year, IoT takes shape as less of a concept and more of a reality. In
order to keep up new technologies have a strong development incentive. Battery-less
backscattering sensing tags are one of these examples, and by extension, a reader able
to interface with them. Low cost is a very welcome addition as it removes entry barriers
to implementation, and as such it was added to the list of goals.

This project began as a proof-of-concept challenge regarding the viability of reliable
information transfer between a sensor and the network. This has been achieved.
Distances of up to 4 meters have been validated. Very low packet losses (under 5%)
have also been verified over short distances. This reader is able to receive ASK signal
from a backscattering source and also from any other transmitter, in the case of direct
transmission, distances of up to 35 meters have been measured. Additionally, decimating
capabilities have also been implemented in order to optimize execution speeds. As
itemized before in chapter 1, the specific objectives were three, lets re-approach them
now individually.

6.1.1 Signal reception and demodulation

As we can infer by the results in section 5.3, the reader preforms these functions.
Performance levels vary depending on range, environment and decimation ratios. It is
safe to conclude that validations can be achieved to a satisfactory degree (±85%) in
ranges up to 2.5 meters.
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6.1.2 Low-cost

The prototype is priced at 50€, consisting of a RPI costing 31€ and an RTL-SDR priced
at 19€. It currently beats the cheapest alternative named in chapter 1 by a factor of 20.

6.1.3 Adaptability

Due to the inherent advantages software based implementation, adapting to changing
requirements is simple. Furthermore, three distinct data-recovery methods are already
provided, each with its own ideal use-cases. At the communications protocol level,
freedom is also given to the user, as the protocol itself can be calibrated to suit specific
needs of a given implementation. A guide on how to do this is available to the end user
and can be found in Appendix B.

6.2 Future Work

In order to maximize the usefulness and potential applications of this prototype, it
would be beneficial to minimize the limitation described in subsection 5.3.1 regarding
the ‘deafness’ periods in-between each burst-mode collection. One potential solution to
this problem resides in the rtlsdraio module included in the pyrtlsdr [22] library.

Other vectors vectors of improvement still persist, such as:

• Forward Error Correction Recuperating corrupted information instead of
simply discarding it might add value and open the door to other potential
implementations.

• Testing with several simultaneous tags or readers Pushing in the expand-
ability direction will help us identify potential challenges to coverage limits.

• Development of a more sophisticated network integration method A
more elaborate process than a file dump could improve the desirability of this
project. IoT Gateways are an example on how to bridge the gap between this
thesis and the cloud.
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Appendix A

Developers’ Tools

During development, several tools were created which do not have a specific place in the
main data pipeline. They exist for debugging, ease of development of testing purposes
and will be described in this chapter.

A.1 Internal signal generator

As an alternative to external signal reception, the program also has the ability to
generate simulated signal internally. This is useful as a debugging tool and also as a
test-bed for feature implementation. No user interface exists at the time and in order
for the user to tweak signal generation configurations a direct code edition is necessary.

The internal generator was made with the aim of reproducing as faithfully as possible
stretches of signal that were commonly harvested from the real world setup illustrated
in subsection 4.3.1, this includes the intentional addition of white noise. Settings that
can be tweaked by the user include:

• Signal amplitude
• Signal frequency
• Packet protocol structure

– Preamble size/content
– Payload size/content
– CRC divisor size/content

• Temporal spacing between packets
• Noise amount/distribution

An introduction on how to tune these settings can be found on the User’s Guide
attached to this thesis. In figure A.1 we can see an excerpt of internally generated
signal, with and without deliberately added noise.
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Figure A.1: Internal signal generation with optionally added noise.

A.2 Filter simulation tool

A filter simulation tool is included in the project, titled filterSim.py. It plots several
filter characteristics on the same chart in order to facilitate design and adjustment by
the user.

It features 4 sub-plots:

• Power Spectral Density plot
• Filter frequency response plot
• Signal Excerpt pre-filtering
• Signal Excerpt post-filtering

The user interface is visual only, changes require code edition and re-running the
script. This tool outputs a plot, an example can be seen on Figure A.2.
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Figure A.2: Filter simulation tool

A.3 Debugging Tools

One of the most important aspects of software development is its debugging tools depth.
In order to facilitate this project’s development, and also to keep the door open for
any future contributors, a set of debugging mechanisms were also implemented. They
execute heavy lifting tasks that would be too burdensome and not entirely essential for
default mode execution but provide helpful insight in diagnosing possible misdirections
which may arise or be identified. These tasks include signal slicing, graph creation and
runtime interval measurements.

Each data recovery function comes with inbuilt information feedback mechanisms,
these are not meant to be activated during default usage but only in irregular situations
to diagnose issues. Using them will slow down and at certain points even halt the
normal flow of the program. Distinct debug variables must be turned True or False in
the code. They are assigned in the very first few lines of the its respective file. Called
debug, debug1 and debug2, their default value on a fresh installation comes as False.

A.3.1 During script interpretation

TMC

debug
Activates the plotting mode, two different plots will be generated per frame,

Figure A.3 and Figure A.4. In the first one we are able to visualize all the
received samples, their neighbourhood variance levels and respective variance
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threshold level, in a similar fashion to figure 4.22 on page 41. On the second plot
a visualisation of the final symbol synchronization will be displayed, akin to figure
4.29 on page 47. The program execution will halt while any of the plots remains
on the screen, to proceed the user must close the plot and press enter.

Figure A.3: Debug variance plot.

Figure A.4: Debug synchronization plot.

debug1
Activates the partial time-stamp mode. A stamp of each function’s execution

duration, in seconds, will be displayed on the terminal, as seen in Figure A.5. An
additional stamp with the total runtime will be printed just before the library
concludes executing and returns to the main. This is useful to understand which
blocks of code are consuming the biggest slices of processor time.
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Figure A.5: Debug time-stamps.

debug2
Activates the global time-stamp mode. Prints on terminal the total runtime

of each data recovery method call. Equivalent to the previous option but prints
only the last line, without the step-by-step stamps.

A.3.2 PBZ and FAST

debug
Generates a graph similar to the one seen on Figure 4.33, but encompassing

the whole signal instead of simply a packet. Information in the plot contains
horizontal threshold level, synchronization points and also sampling points.

A.3.3 After script interpretation

Another built in tool useful to debug your code are the various logs produced by the
program. This is only possible if the user set the debug variable to True when initializing
the program. The program will overwrite over these files without asking if they already
exist from a previous execution. All of these files will come in .npy format, they are:

outfile_samples.npy
Contains a list with all the samples harvested since program start.

outfile_signal.npy
Contains a list with all the symbols demodulated since program start.

oufile_SPB.npy
Contains a single value, which equals k, as seen in equation 4.6 on page 43

All of these files can be opened and plotted in MATLAB. A MATLAB script capable
of doing so, titled ‘Graphmaker.mat’ can be found in the repository.
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A.4 Repository / Documentation

A repository of this software is maintained online via GitLab [37]. A User’s guide is
also provided in Appendix B, for setup and usage instructions, it serves as the official
documentation.

A.5 MATLAB version

The original implementation of this project was done in MATLAB. Its repository
can be found in GitHub[38], it includes a smaller amount of features, no support or
documentation is provided for this release.
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Appendix B

User’s Guide

Welcome to ID.all’s documentation!
What is ID.all:
SoundGen is a flexible burst mode ASK signal demodulator and frame processor,

created with commercial DVB-T USB dongles in mind. For a larger contextualization
consult the dissertation this document is annexed to.

This software couples an easy setup with the advantage of a flexible tuning mechanism
included in the SDR kit. It includes the possibility of network integration. The script
has been tested only for scenarios where an emitter is transmitting ASK encoded
frames in bursts, spaced by periods of silence, with constant distinct RF power levels
for different symbols. This user guide is oriented towards the final user, if you are a
developer who wishes to contribute please read the master thesis associated with this
project. Furthermore, all the details in this document assume you have a working with
a clone of the master SD card.

Example:
Demodulating a signal with a 5kHz symbol rate riding on a 95MHz carrier wave is

as simple as:
python3 SoundGen.py -f 95000000 -sym 5000
The code repository can be found on Gitlab [37].

B.1 Required material

For an alternative illustrated list with on the required material please read section 5.3
on the annexed dissertation.

1. Rasperry Pi[15] (with Raspbian[27] installed)
2. SDR-RTL kit [23] acting as your RF front-end.
3. Three antennas designed for the same carrier frequency
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4. A backscattering sensor, or any sort of modulated signal source

B.2 How to setup

The following is a step-by-step guide on how to setup the required hardware.
1. Install all the dependencies. This step is only necessary if you have not been

provided with a cloned microSD card.
- PyLab

- RtlSdr
- argparse
- numpy
- matplotlib

2. Connect the RF front-end to your RPI via USB. Connect one antenna to the
front-end remember to use an adequate antenna to the carrier wave you intend to
receive.

Run rtl_test on the command line to check if the kit was properly detected and no
warnings or errors were returned.

3. Make sure you are on the project’s root folder. It should be located at
./SoundGen_Python/SoundGen_Python/.

4. You are good to go! :)
How to use
python3 SoundGen.py -h on the terminal will give you an updated list of all the

arguments you can pass into the script. They are:

Arg Argument description type
-f * Center frequency tuning, should equal the carrier frequency int
-sym Symbol rate of expected ASK signal. Defaults to 3650. int
-s Sampling rate. Defaults to 226kHz. Acceptable range is 226kHz - 3.2MHz. int
-ff Size of the internal FIFO. Default value is 5, must be 5 or greater. int
-sf Frame size in samples. Defaults to 327 680. Must be a multiple of 512. int
-g Software gain. Defaults to 15. Acceptable range is 0 - 50. int
-it Number of main loop cycles before program exits. Meaningless if -i True. int
-i Infinite mode, program runs indefinitely if True. Defaults to True. bool
-db Debug mode, dumps debugging info into three distinct outfiles. bool
-cp Which comparator to use, -DEEP -PBZ, or -FAST. Defaults to -FAST. bool
-gen Generate signal internally (True) or use an external input. Default is False. bool
-h Ignore all other arguments, print this table and exit. None

Table B.1: Implemented input arguments. Asterisk means mandatory.
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Proper format is:

python3 SoundGen.py [arg] [value] [arg] [value] ... [arg] [value]

For example, in order to capture a signal with a 10k symbol rate on a 868MHz carrier
wave, with debugging mode on and a gain of 10dB, I would type into the terminal:

python3 SoundGen.py -f 868000000 -sym 10000 -db True -g 10

B.3 Frame processing

Not only will this package demodulate ASK frames, it will also process them according
to the following packet protocol.

Figure B.1: Adopted signal protocol structure.

Every time a preamble is detected and the subsequent packet passes the CRC
validation, its payload field will be added to a list of all the data fields successfully
harvested from the current frame.

At the end of program execution (or between cycles if infinite mode is turned on),
all the payload fields in that list will be dumped into a .npy file in the "./outputs/"
folder. The user can run the following script in order to read the contents of this folder.

python3 readGen.npy

No more than 5 .npy files will ever be in that folder at any given time, if the number
exceeds the limit then the oldest one will be overwritten in order to prevent memory
bloating.

Each file’s name will equal the time-stamp of its creation.
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B.3.1 Message protocol changes

The protocol can be changed by editing the file SoundGen.py. In order to do so, open
the file in your favourite text editor, do a text search for ‘Packet characteristics’
and edit the line immediately after. By default the line it should look like the following:

Packet = classGen.Packet([1,0,1,0], 8, [1,0,1,0], [1])

Each field is identified by comments in the code and separated by commas. They
are four in total.

1. Preamble - [1,0,1,0] by default
2. Payload size - 8 by default
3. CRC divisor - [1,0,1,0] by default
4. Stop bits - [1] by default

B.4 Network integration

Currently, the easiest way to provide network integration is to remotely access the RPI
(see Remote Connection) and harvest the .npy files in "./outputs/" in real time.

B.5 Debugging mode

WARNING: ENABLING INFINITE MODE AND DEBUGGING MODE IN THE
SAME EXECUTION IS NOT ADVISABLE.

When the argument -db is set to ’True’, the program will produce three aditional
.npy files in parallel to it’s normal "./outputs". These files will be placed in the script’s
root folder. Any debugging files from previous executions of the script still present in
the destination folder will be overwritten. They contain the following information:

• outfile_samples.npy A list with all the samples collected during the
programs execution. This file can get very big very fast. After a few minutes of
continuous execution this will become a major resource hog, it will slowdown the
script considerably.

• outfile_signal.npy A list with the demodulation result of the entire
program execution. It will exclusively consist of 1’s and 0’s. If multiple frames
were processed the results will be concatenated into a single list.

• outfile_SPB.npy A numeric value which equals the ratio:
SamplingRate/SymbolRate
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These will provide you with helpful graphs and timestamps that might help with
diagnosing issues or identifying optimization routes.

B.6 Infinite mode

Toggle this on if you wish for the program to run in an infinite loop, indefinitely.

B.7 GPIO

Some General Purpose Input/Output (GPIO) pins are configured for Light Emitting
Diode (LED) control, in order to provide the user with additional real-time feedback.

This method works only in rigid packet mode. During normal working of the
program, output signals will be produced from the RPI. These signals are intended to
be used to control leds. Five different LEDs will be supported. Four of them [1-4] will
be indicative of the success rate in receiving expected packets, calculated via number of
received packets versus time interval. A fifth LED [5] will serve as a heartbeat display.

All resistances in Figure B.2 should equal 1kΩ.

Figure B.2: Adopted signal protocol structure.
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The conversion rate between packet loss and number of active leds can be seen in
Table ??.

Number of LEDs turned on Packet loss
0 100 - 75%
1 75 - 50%
2 50 -25%
3 25 - 10%
4 <10%

B.8 Remote connection

The main outputs produced by the program are printed via terminal, and therefore are
fully compatible with remote SSH connections. File Transfer Protocol (FTP) is also
possible in order to access all the outfiles. The Raspberry PI will by default create a
hotspot called RPI2. The password to connect is password123.

Relevant software: PuTTY (SSH)[39] and FileZilla (FTP)[40]
By default the address the RPI will assign itself will be 192.168.4.1, this can be

customized. Here’s [41] a good RPI wifi access point tutorial.
Once connected to the RPI hotspot:

Figure B.3: PuTTy.

Username: pi
Password: raspberry

Code 1: Default RPI user credentials.

Note: These are the default login credentials for Raspbian, and also the configured
ones in the environment included in the microSD card image annexed to this thesis.
This fact combined with SSH being enabled represents a security concern. The default
credentials should be changed by the user, alternatively SSH can be disabled.
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B.9 Autonomous mode

On the RPI’s root directory a shell executable file can be found (startup.sh), it is
configured to run on start-up, this file can be edited to make the RPI automatically start
demodulating upon power on without any necessary user input. In order to activate
this mode the user should edit the file with:

sudo nano startup.sh

Code 2

And uncomment the second line of code, adding input arguments as necessary. (See
How to use) When all the desired changes are done. Save and close the before rebooting
the RPI with:

sudo restart

Code 3

In order to deactivate the autonomous mode, the same line of startup.sh must be
commented again.
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