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Resumo A reconstrução 3D é a criação de modelos tridimensionais a partir da forma
e aparência capturadas de objetos reais. É um campo que teve origem em
diversos ramos da visão computacional e computação gráfica, e que ganhou
grande importância em áreas como a arquitetura, robótica, condução autó-
noma, medicina e arqueologia. A maioria das tecnologias de aquisição de
modelos atuais são baseadas em LiDAR, câmeras RGB-D e abordagens ba-
seadas em imagens, como o SLAM visual. Apesar das melhorias que foram
alcançadas, os métodos que dependem de instrumentos profissionais e da
sua operação resultam em elevados custos, tanto de capital, como logísti-
cos. Nesta dissertação foi desenvolvido um processo de otimização capaz
de melhorar as reconstruções 3D criadas usando uma câmera RGB-D por-
tátil, disponível ao nível do consumidor, de fácil manipulação e que tem uma
interface familiar para o utilizador de smartphones, através da utilização de
marcadores fiduciais colocados no ambiente. Além disso, uma ferramenta
foi desenvolvida para permitir a remoção dos ditos marcadores fiduciais da
textura da cena, como um complemento para mitigar uma desvantagem da
abordagem adotada, mas que pode ser útil em outros contextos.





Keywords Computer Vision, Geometric Optimization, Camera Calibration, 3D Recons-
truction, Inpainting, Fiducial Markers, Point Clouds, Projection of 3D points

Abstract 3D reconstruction is the creation of three-dimensional models from the cap-
tured shape and appearance of real objects. It is a field that has its roots in
several areas within computer vision and graphics, and has gained high impor-
tance in others, such as architecture, robotics, autonomous driving, medicine,
and archaeology. Most of the current model acquisition technologies are
based on LiDAR, RGB-D cameras, and image-based approaches such as vi-
sual SLAM. Despite the improvements that have been achieved, methods that
rely on professional instruments and operation result in high costs, both cap-
ital and logistical. In this dissertation, we develop an optimization procedure
capable of enhancing the 3D reconstructions created using a consumer level
RGB-D hand-held camera, a product that is widely available, easily handled,
with a familiar interface to the average smartphone user, through the utilisa-
tion of fiducial markers placed in the environment. Additionally, a tool was
developed to allow the removal of said fiducial markers from the texture of the
scene, as a complement to mitigate a downside of the approach taken, but
that may prove useful in other contexts.
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chapter 1
Introduction
This chapter describes the context of the problem, the motivation behind the work carried
out, along with its objectives, ending with an overview of the document’s structure.

1.1 scope

3D reconstruction is the creation of three-dimensional models from the captured shape
and appearance of real objects. It is a field that has its roots in several areas within computer
vision and graphics, and has gained high importance in others, such as architecture, robotics,
autonomous driving, medicine, and archaeology. Most of the current model acquisition
technologies are based on light detection and ranging (LiDAR) [1], [2], RGB-D cameras [3], [4],
and image-based approaches, such as visual Simultaneous Localisation and Mapping (SLAM)
[5]. Despite the improvements that have been achieved, methods that rely on professional
instruments and operation result in high costs, both capital and logistical [6].

The introduction of low-cost RGB-D cameras, which can be used as hand-held devices,
created an opportunity for 3D reconstruction of scenes to be performed at consumer-level.
These instruments allow for the creation of textured 3D models, while being easy to operate.
Considering the high probability of object occlusion in indoor environments, meaning an
object is hidden (occluded) by another object, fixed scanners, which usually require wide space
and several poses, are less practical for indoor reconstruction tasks. The manoeuvrability of
hand-held devices, allowing the user to get closer to parts of the scene and capturing them
from different angles, proves to be an advantage. As such, even though they are generally
less accurate than fixed scanners such as LiDAR, mobile or hand-held scanners are known
to be more suitable to perform indoor scanning [7]. These devices are also compelling for
applications such as indoor navigation, since the way they are operated inherently conveys
information about the empty space, which often corresponds to the navigable space, as the
device is carried through it, by a person or a robot for instance.
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2 chapter 1. introduction

1.2 motivation

Indoor 3D models have great potential in object tracking and interaction, scene under-
standing, virtual environment rendering, indoor localisation and route planning, amongst
others [8]–[10]. Given the rapid development of location-based services (LBS) and indoor
applications, fast acquisition and high-fidelity reconstruction of complete indoor 3D scenes
has become an important task [11]. Currently there is extensive research done into live
3D reconstruction techniques, where the final model is built during the capturing of the
data. However, post-processing techniques show significant potential and need for future
research, particularly in 3D reconstruction using RGB-D cameras [12]. As such, it would be
interesting to complement the existing live 3D reconstruction techniques that use low-cost
RGB-D hand-held cameras, considering their advantages and placement at consumer-level
in the market, with some automatic post processing, to see whether their results can be
improved, creating significant additional value.

1.3 objective

The main objective of this dissertation is to develop an optimization procedure capable
of enhancing the 3D reconstructions created using a hand-held RGB-D camera, through the
utilisation of fiducial markers placed in the environment.

In this project, a lot of importance was given to the idea of implementing something that
could be reused for future work. Approaching the problem by creating a base implementation
of standard tools, with useful abstractions, and defining a structure that would take advantage
of these tools for future implementation of optimizations. Facilitating future work, making
development time shorter, and allowing more resources to be spent on key elements of the
optimization. We ourselves already had a few ideas for future utilisation of these tools, other
projects that require an optimization to be performed, such as the calibration of a set of sensor
in an autonomous vehicle and colour consistency correction in 3D reconstructions. Whilst
researching geometric optimization, experimentation with different techniques, different cost
functions, and different approaches requiring additional information, the idea is to allow the
specialisation of the researcher and the focus of their work to be this, and not everything
else which must be put in place around it. We propose the development of an api for
optimization problems, which allows a more intuitive and systematic approach for testing
various algorithms, and then the utilisation of these tools for a case study, where the previously
discussed optimization procedure is implemented.

2



1.4. document structure 3

1.4 document structure

This dissertation is composed of seven chapters, arranged as follows:

Introduction The current chapter, in which the problem is placed into context, the motiva-
tion behind the work carried out is discussed, along with its objectives.

State of the Art Presents a general overview of the registration problem in the Computer
Vision context and how it relates to SLAM, Structure from Motion (SfM) and Bundle
Adjustment. The hardware of interest, RGB-D devices, is also introduced. The chapter
culminates with the explanation of how our solution fits into this outlining.

Experimental Infrastructure Briefly describes the software and hardware utilised to
develop this work.

Methodology for Optimization Describes the methodology used to implement the tools
and their main functionalities.

Methodology for Fiducial Marker Removal: Describes the methodology used to remove
the fiducial markers from the texture of the scene, as a way to mitigate the effects of the
technique used on the final results.

Results Showcases the experimental results obtained and presents some commentary about
them.

Conclusions Contains conclusions about the work developed and possible future work.

3
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chapter 2
State of the Art
This chapter contains some detail about the hardware on which the work was focused, RGB-D
cameras, and the main subjects this dissertation is related to, starting in a more high-level
abstraction, with the registration problem and SLAM, then presenting some important
algorithms, namely Bundle Adjustment and Structure from Motion, and ending with the
explanation of how our solution fits into this scenario.

2.1 rgb-d cameras

RGB-D cameras are capable of obtaining the depth of an object and the corresponding
texture information, through the combination of a depth image and a standard RGB image,
respectively. The depth image is usually obtained by a depth sensor utilising a Time-of-
Flight (ToF) measurement system [13] or Structured Light triangulation [14], [15]. ToF
works by measuring the round trip time of an artificial light signal, in this case Infrared
radiation (IR), to resolve the distance between the camera and the target object. Structured
light works by projecting known patterns on to the scene and then measuring the way they
are deformed, allowing for the calculation of depth and surface information. Modern RGB-D
approaches are mostly based on the fundamental research by Curless and Levoy [16] who
introduced the work of volumetric fusion, providing the foundation for the first real-time
RGB-D reconstruction methods [17].

2.2 registration

Registration is the process of alignment of multiple captures, with different viewpoints,
of the same scene or object. The result may be an extended version of a 2D image, such
as a panoramic photograph, or a 3D representation of the scene. Within the context of 3D
reconstruction, registration translates to the problem of aligning the multiple point clouds

5



6 chapter 2. state of the art

that make up the 3D model of the scene, see Figure 2.1. When using RGB-D cameras, in
which the RGB data is registered with respect to the depth data, it is also possible to align
the RGB data instead. In this case, it is often a better idea to do so, as opposed to registering
the point clouds directly, because depth data is usually less accurate than RGB data.

Consider the example of an indoor reconstruction performed with a hand held device. This
device would capture information as it travels through multiple positions in the environment,
allowing for the collection of data from various places of the scene in different angles, places
that may be occluded, or too far to be captured from the initial viewpoint of the acquisition.
In order to obtain the completed 3D model, these multiple parts of the scene must be matched
together. The alignment of point clouds is a problem directly tackled by Iterative Closest
Points (ICP) [18]. However, this algorithm works by minimising the difference in a pair of
point clouds. In order to align multiple ones, the algorithm must be applied many times. If
this is done in a chain, for example, it creates a very real possibility of a drift, a cumulative
error that grows as each pair is fit together.

Figure 2.1: Registration of 3D point clouds to create a complete 3D model.

In most cases, the registration process consists of performing the same general steps for
every pair of captures. In each pair, only one of the captures will be transformed using the
estimated model and the other will remain the same. The latter one is referred to as reference
capture. An outline of these steps is represented in Figure 2.2, followed by a brief description.

Figure 2.2: Flowchart of the registration process.

6
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1 Feature Detection
Distinctive features of the captures, such as blobs, edges, contours, line intersections or corners
are detected in order to find correspondences between them. These features are represented
in a feature vector, as represented in Figure 2.31, in such a way that transformations like
scaling and rotation will not influence the feature identifier [19], examples of this would be
Scale-Invariant Feature Transform (SIFT)[20], Speeded Up Robust Features (SURF)[21], and
Histogram of Oriented Gradients (HOG)[22].

The most common algorithms used in feature detection are Canny and Sobel for edge
detection, Harris and SUSAN for edge and corner detection, Shi-Tomasi and Level curve
curvature for corner detection, FAST, Laplacian of Gaussian, and Difference of Gaussians for
corner and blob detection, MSER, PCBR, and Gray-level blobs for blob detection [23].

2 Feature Matching
After the features have been identified in both captures of the pair, they are searched for
matches, i.e. features that are identical in both captures. There is a vast range of different
approaches to solve this problem, from brute-force matcher and Fast Library for Approximate
Nearest Neighbours (FLANN) to pattern recognition [24], all of them very dependent on the
type of scene and the available processing time. This step is still a challenge and there is
always the possibility that a significant number of detections will be matched incorrectly.

Figure 2.3: Representation of feature detection and matching, using feature descriptor.

3 Estimation of the Transformation Model
As mentioned before, the feature matching process seldom works perfectly. Matching features
incorrectly means it is impossible to find a transformation model that works for all matches
found. One way to solve this problem is by recursively estimating a model that works for
a subset of matches, until the size of that subset is considered large enough, RANSAC [25].
The remaining matches are discarded. Another approach is using ICP [18], this algorithm
does not require an individual feature matching process in some implementations [26]. While
there is still a matching procedure, it is merely based on distance. Each feature is paired
with its closest neighbour of the reference capture and the transformation model is recursively

1In https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect6.pdf
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estimated through a hill climbing algorithm, so the distance between neighbours approaches
zero.

4 Application of the Estimated Transformation
The capture is transformed by application of the estimated transformation model.

2.3 slam

Simultaneous Localisation and Mapping (SLAM) [27] refers to the problem of trying to
localise some sensor in the environment, while simultaneously mapping the structure of that
environment. This can be done in many different ways, with different sensors.

In the context of this dissertation, Visual SLAM is of the most interest. It utilises 3D
vision to perform location and mapping, becoming an optimisation problem where the goal is
to compute the best configuration of camera poses and point positions, in order to minimise
the average reprojection error. That is, the difference between a point’s detected location in
an image and where it is expected to be, given the camera pose estimate. The method of
choice to solve this problem is called bundle adjustment, a nonlinear least squares algorithm
which, given a suitable starting configuration, iteratively approaches the minimum error for
the whole system, as explained in section 2.4.

2.4 bundle adjustment

Given a set of measured image feature locations and correspondences, the goal of bundle
adjustment is to find 3D point positions and camera parameters that minimise the reprojection
error. This optimization problem is usually formulated as a non-linear least squares problem,
where the error is the squared `2 norm, or Euclidean norm, of the difference between the
observed feature location and the projection of the corresponding 3D point on the image
plane of the camera (reprojection error). The Levenberg-Marquardt (LM) algorithm [28] is
the most popular algorithm for solving non-linear least squares problems, and the algorithm
of choice for bundle adjustment.

In 2010, Agarwal et. al. [29] presented the design and implementation of a new inexact
Newton type Bundle Adjustment algorithm. Consider the existence of a series of 3D points
in the real world. These points are captured in images by different cameras, each camera
being defined by its orientation and translation relative to a reference frame, its focal length
and distortion parameters. After the desired acquisitions are completed, the 3D points are
projected into the images and the 2D coordinates are then compared to the ones obtained by
feature detection in the images. The goal being to adjust the initial estimation of the camera

8
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parameters and the position of the points, in order to minimise the reprojection errors, i.e.

min
P̂i,X̂j

∑
ij

`2
(
P̂iX̂j ,xi

j

)2
(2.1)

where `2 is the Euclidean norm, xi
j are the coordinates of the j-th point as seen by the i-th

camera, P̂i is the projection matrix of the i-th camera, and X̂j are the 3D points [30].

2.5 structure from motion

Structure from Motion (SfM) is a technique that utilises a series 2D images to reconstruct
the 3D structure of a scene or object. SfM can, using several images captured by one or
multiple cameras, produce point cloud based 3D models, similar to those obtained by RGB-D
cameras or LiDARs. This technique can be used to create models of objects with consumer-
grade digital cameras. This technique has been made possible by advances in computers,
digital cameras, and Unmanned Aerial Systems (UAS). Together, these advances have made
it feasible for a wide range of users to be able to generate 3D models, without extensive
expertise or expensive equipment. It works based on the same principles as stereoscopic
photogrammetry. In stereophogrammetry, triangulation is used to calculate the relative 3D
positions (X,Y, Z) of objects from stereo pairs. A simple example can be seen in Figure 2.4,
where common points B and O are identified within each image and a line of sight can be
constructed from the camera location to the points on the object. The intersection of these
lines determines the three-dimensional location of the points.

Figure 2.4: Simple example of triangulation.

Through SfM, it is possible to create a 3D reconstruction of an area or an object, using a
set of images with a high degree of overlap, taken from different angles, as demonstrated in
Figure 2.52. The camera does not need to be specialised, standard consumer-grade cameras
work well for SfM methods. The images are often captured from a moving sensor, but can
also be taken by a person or multiple people, with different cameras, in different locations
and angles.

2In http://theia-sfm.org/sfm.html
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Some specialised software packages are able to automatically identify matching features in
multiple images. These distinctive features are often corners or line segments, see section 2.2.
In the following step, instead of trying to align captures, as in Figure 2.2, the matching of the
features is used to produce estimates of the camera positions and orientations (pose) and the
3D coordinates of these said features, producing a point cloud. It is important to note for
section 2.6 that, the better these estimates are, the better alignment of the captures we should
expect to see. A key component of this process in most SfM systems is Bundle adjustment,
defined as the joint non-linear refinement of camera and point parameters. This solves a
problem analogous to visual SLAM, see section 2.3, the main difference being that SLAM is
usually meant to work in real-time on an ordered sequence of images, while SfM approaches
often work on an unordered set of images as a kind of post-processing, many times done in
the cloud.

Figure 2.5: Creating a 3D reconstruction using SfM.

2.6 proposed approach

As mentioned in section 1.3, the main objective of this dissertation is to develop an
optimization procedure capable of enhancing the geometry of 3D reconstructions created
using a consumer-level hand-held RGB-D camera, utilising fiducial markers placed in the
environment, by applying an automatic post processing that targets the alignment of RGB-D
data, making use of Bundle Adjustment.

One problem to deal with, when tackling the registration problem, as discussed in sec-
tion 2.2, is that the matching of detected features between captures is not very reliable. In
the case of Bundle Adjustment, the minimisation of the reprojection may be computed using
a wrongly matched feature in a pair of images, causing errors in the alignment of captures.
Therefore, we have chosen to make use of fiducial markers, particularly aruco markers [31],
[32], to ease the feature detection and matching step, placing them on the environment as

10
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the visual features to be detected for this post-processing. Aruco markers are binary square
fiducial markers that can be used for camera pose estimation. Their main benefit is that
their detection is robust and fast. Each marker has an identifier (id), recognisable by the
processing of a small grid of black and white pixels. The detection and matching of features
will depend on the processing and identification of this id, see Figure 2.6, making it very hard
for false matching to occur. Although under poor lighting conditions or in blurred images
some aruco markers may go undetected, it is highly improbable that they will be identified
with the wrong id.

Figure 2.6: Representation of detection and matching of aruco markers for a pair of captures.

The biggest downside to this approach is the pollution of the acquired scene’s texture
with these fiducial markers. Therefore, along with the optimization procedure, an additional
tool was developed, that allows the automatic removal of aruco markers from the texture of
the scene, taking advantage of the relationship between different captures.

11
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chapter 3
Experimental
infrastructure
This chapter briefly describes the hardware and software used in this project. The device used
to create the initial 3D reconstruction, Zenfone AR, is showcased in section 3.1 and all the
software used is described in section 3.2.

3.1 the device: zenfone ar (google tango enabled)

The platform chosen to obtain the starting point for the developed solution was Google
Tango. The reasoning behind this choice is that it is a consumer-level product that is widely
available, accessible, easily handled, and with a familiar interface to the average smartphone
user. The 3D reconstruction to be enhanced could have been produced by another platform
and device. As far as our implementation goes, this choice influences only the format of the
available data and the original structure of the datasets in disk.

Google Tango is a project developed by Google Inc. that aimed to create a mobile device
capable of 3D reconstruction, powered by computer vision, image processing, and special
sensors. The set of sensors includes the components of an RGB-D camera, along with a motion
tracking camera, and was embedded into a few ordinary, consumer-level Android devices. The
one being explored in this dissertation is the Zenfone AR. Along with an RGB camera and
an IR depth sensor (which make up the RGB-D camera), and the motion tracking camera,
see Figure 3.11, this device also takes advantage of an accelerometer, gyroscope, ambient light
sensor, barometer, compass, and GPS, commonly found in smartphones.

Tango enabled devices are capable of capturing and processing information about their
surrounding environment. For this purpose, three main technologies are used: motion tracking,
area learning and depth perception, see Figure 3.22.

1In https://www.techpinas.com/2017/01/asus-zenfone-ar-specs-features.html
2In https://www.asus.com/pt/Phone/ZenFone-AR-ZS571KL/
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Figure 3.1: ASUS ZenFone AR sensors setup.

Figure 3.2: Main features of Google Tango.

Motion tracking technology allows the device to know, in real time, its own position and
orientation (pose) in the 3D space. For Google Tango, a Visual-Inertial Odometry (VIO)
[33] approach was adopted. It is based on feature tracking in images, combined with the
analysis of the data provided by the Inertial Measurement Unit (IMU) [34] of the device.
Images are captured with the motion tracking camera that benefit of a large field of view
(up to 160°). Image processing algorithms are used to detect features, such as corners and
edges, and study their optical flow across the acquired frames (up to 60 images/s), which,
in this context, may be defined as the pattern of apparent motion of the features between
consecutive captures, caused by the movement of the camera. In addition, the accelerometer
and the gyroscope (forming the IMU) provide orientation and acceleration of the device. This
combined information is used to obtain the pose of the device at all times.

Area learning in Tango works based on the well known Simultaneous Localisation and
Mapping (SLAM) feature-based approach [27]. This approach extracts sparse features from
the sensors and creates a map exclusively comprised of them. In Tango, these features are
saved in an Area Description File (ADF) during the motion tracking process. Such information
provides some advantages, namely making the motion tracking more accurate by performing
correction of drifts, which occur due to the cumulative error and loss of accuracy.

Depth perception relies on an IR depth sensor. This sensor, as described in section 2.1,

14
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relies on a ToF technique to measure the distance of the device to the surrounding objects. It
can handle a range of objects at a distance from 0.5m to 4m, and, much like IR sensors in
general, does not perform well while scanning areas lit with high IR light sources, or objects
that do not reflect IR light, such as black surfaces.

3.2 software

This section consists of brief descriptions of the pieces of software used in this dissertation.
It is divided in Smartphone apps, Libraries and Frameworks, File formats, and Graphical
Software.

Smartphone apps

Open Constructor Android app from Google Play that enables Tango compatible devices
to perform 3D reconstructions. A modified version, which allows the saving of the internal
dataset, was used. This dataset is used as the starting point for the optimization implemented.
The Open Constructor app essentially functions as an interface between the Google Tango
api and our optimization api.

Libraries and Frameworks

Python is a general purpose programming language that became popular for its syntax
and gentle learning curve. It is the de facto language for science, along with MATLAB.
However, unlike MATLAB, it is open source. It benefits from a very large community and
plenty of libraries that provide many algorithms and efficient data structures. It is also a
dynamically-typed, garbage-collected language, which positively affects development time.

SciPy is an open source library, which contains routines commonly used in scientific
work. There are routines for computing integrals numerically, solving differential equations,
optimization, operations using sparsity matrices, etc. This library is implemented in the
python programming language. One of those routines, useful for Large-scale bundle adjustment
optimization problems, is utilised in this dissertation (scipy.optimize.least_squares).

Numpy is a library that contains an implementation of nd-arrays, as well as algorithms to
manipulate them. This library was fundamental for this work to store and process data. The
main advantage of this library is that it is implemented in compiled languages like C and
Fortran, allowing for high performance and optimized data structures, all available through a
clean interface in Python.

OpenCV is an open source computer vision and machine learning software library. OpenCV
was built to provide a common infrastructure for computer vision applications and to accelerate
the use of machine perception in commercial products. It contains a large number of optimized

15
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algorithms, which include a comprehensive set of both classic and state-of-the-art computer
vision and machine learning algorithms. Some examples are: object detection, recognising full
or partial objects, camera calibration, and object tracking. OpenCV has C++, Python, and
Java interfaces, being supported in Windows, Linux, Mac OS, iOS, and Android.

Module ArUco is an extra module of the OpenCV library. It contains functionalities to
detect and identify aruco markers, as well as obtaining the marker pose relative to the camera
reference frame in the 3D space.

File formats

PLY or Polygon File Format is one of the most used and supported file formats to store
three dimensional data, like point clouds and meshes. It was originally developed and used
in the Stanford University to store data from 3D scanners. It supports a wide number of
properties, such as colour, transparency, surface normals, and texture coordinates.

JPEG is a commonly used format for images and it is used to store the RGB image of each
capture in an Open Constructor dataset.

YAML is an human-readable format that is used to store parameters of the acquisitions,
namely the calibration of the sensors. The advantage of this format is that files are very easy
to read and modify by the user.

XML or Extensible Markup Language is a markup language that allows the definition of a
set of rules for encoding documents in a format that is human-readable. It provides a flexible
way to electronically share structured data via the Internet. As such, it was used to manage
the shared dataset information, being processed by the dataset sharing script.

TXT is a plain text document. The Open Constructor app uses this format to save
transformations, in separate files, relative to each capture in the dataset.

Graphical Software

CloudCompare is a software to render, process, and manipulate 3D point clouds. It includes
many algorithms, namely point cloud registration, re-sampling, handling scalar fields, and
automatic or interactive segmentation. It can render point clouds using different shaders and
support point cloud decimation, which is a technique that allows manipulation of large point
clouds without a decrease in performance. It was used to merge and downsample laser scans
to be used as a groundtruth for the result analysis. CloudCompare was also used to apply the
ICP algorithm to each point cloud and the laser scan result, so they would be transformed to
the same frame of reference, and could then be compared. A screenshot of this software can
be seen in Figure 3.3.

16
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Figure 3.3: Cloud Compare software screenshot.

Meshlab is a 3D mesh processing software system that is oriented to the management
and processing of unstructured large meshes and provides a set of tools for editing, cleaning,
healing, inspecting, rendering, and converting these kinds of meshes. MeshLab is a free and
open-source software. It was used to observe and compare coloured point clouds, to calculate
Hausdorff distance between them, and to apply the values obtained as a colour coded quality
function. A screenshot of this software can be seen in Figure 3.4.

Figure 3.4: Meshlab software screenshot.
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chapter 4
Methodology for
Optimization
This chapter describes the methodology for the implementation of a generic optimization
procedure, followed by a case study where it is applied to the problem of enhancing the
geometry of 3D reconstructions created using an RGB-D camera. The software developed
was divided into the following modules:

OCDatasetLoader is a loader class for OpenConstructor datasets. It contains the essential
functionalities to load all the information from disk to memory, keeping it in a well defined
structure that makes its use logical and coherent.

OCArucoDetector implements detection and pose estimation of aruco markers fit for an
OpenConstructor dataset, keeping information in a well structured manner. Also contains
useful visualisation functions.

OptimizationUtils is a set of utilities and wrappers for using the python scipy optimizer
functions.

4.1 dataset management: ocdatasetloader

The datasets used in this work were generated by the Open Constructor for Tango app. A
tool called OCDatasetLoader (Open Constructor Dataset Loader) was created to manage all
the information required from these datasets in disk, namely images, transformations, and
point clouds, which are saved in .png, .txt, and .ply formats respectively. This information
is kept in a well defined structure that makes its use practical.

This module also holds the code for dealing with the processing of all the required command
line arguments. This includes the paths to various files, options for visualisation, and criteria
for filtering of the information loaded.
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The datasets are normally used by multiple people working in these projects. As such, a
practical way of sharing them and easily keeping up with changes was developed. The datasets
are compressed and uploaded to the cloud. A script was created to automatically download
and extract each dataset to a local folder. There is also the option to obtain single datasets by
name or URL. The list of available datasets is managed easily through an Extensible Markup
Language (XML) file, containing the name, URL, and extension of each archive.

4.2 aruco information: ocarucodetector

The OCArucoDetector (Open Constructor Aruco Detector) module was created to com-
plement the data loaded by the OCDatasetLoader, in optimizations where information about
aruco markers in the scene is required. This tool contains the utilities to detect and estimate
the pose of the aruco markers in all the images of the dataset. It also implements abstractions
of conversions between translation and Rodrigues form to transformation matrices, visuali-
sation functions for detections, and the 3D visualisation of the aruco markers’ pose in the
scene.

4.3 generic optimization module: optimizationutils

This section describes a generic optimization implementation, making use of the tools
implemented, and showcasing its main features. In Figure 4.1, an outline of the steps for said
implementation is represented, followed by a brief explanation of each of them. In section 4.4,
the concretization of these steps is detailed for the case of the optimization of camera poses.

Optimization functions usually receive all the parameters to be optimized within a single
vector. In complex optimization problems, such as 3D reconstruction, the data structures
involved tend to be naturally more complex than a vector. Hence, the need arises to use more
complex data structures to ease the comprehension and aid challenging problem solving, by
keeping the implementations more intuitive. On the other hand, the variables contained in
these data structures must then be placed within a vector before they can be optimized. The
approach taken to tackle this problem was to develop an api that uses the concept of data
model. A data model is a generic data structure, which may be quite complex in some cases,
and that holds in memory a set of parameters. As many data models as needed may be defined
for one implementation. The is that these models help maintain the information structured
and separated, and the code sane. When a new parameter is introduced to the optimization,
one must indicate what data model it is saved in and two functions: the getter, a function
that, given the data model as an argument, returns the current value of the parameter; the
setter, given the data model and a value as arguments, this function updates the field within
the data model that corresponds to the parameter. The definition of getters and setters
for all the parameters we want to optimize allows for the full synchronisation between the

20



4.3. generic optimization module: optimizationutils 21

values within the vector that is optimized and the corresponding fields within the data models.
Moreover, during the optimization, this synchronisation is done automatically by the api,
every iteration, before the call of the cost function, keeping the whole program consistent.
The main advantage of this is that the functions implemented by the user, namely cost and
visualisation functions, need not retrieve the data from the vector, and may instead use the
data models, which having been defined by the user themselves, should make things simpler
and more intuitive.

Figure 4.1: Flowchart of the Generic Optimization implementation.

1 Loading of the dataset(s)
The dataset loader is instantiated and used to load all the needed information to memory.
This could be done using OCDatasetLoader, see section 4.1, another tool, or multiple tools.

2 Instantiation of the optimizer
This optimizer is a class implemented in the OptimizationUtils module. This module contains
a set of utilities that try to simplify the workflow when using the scipy optimizer functions.
The information loaded from the dataset can be structured and added to the optimizer as a
data model, utilising the optimizer.addModelData function. A data model may be defined
as any combination of data structures, such as dictionaries, lists, ndarrays, etc, because the
interface with it (getter and setter) is defined by the user. At this stage, any other data
models may be added to be used in the optimization.
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3 Definition of getter and setter functions for data
Using the set of optimizer.pushParam functions, it is possible to define specialised getter and
setter functions for each parameter of each data model. This is done to abstract the necessary
conversions to copy information from the data models to the vector used in the optimization
and vice versa. At this point, one should make sure the initial value, or first guess, for each
parameter is stored correctly in the datamodel where the getter will retrieve it from.

4 Definition of the objective function
The objective function, or cost function, must be defined and set for the optimizer (op-
timizer.( setObjectiveFunction)). This is the function that computes the vector of errors
associated with the optimization state at any given moment. This function should be defined
as receiving the data model references through an argument, as they will be passed by the api
automatically. When this function is used internally, there is a wrapper that gets the values
from the vector being used in the optimization and updates the values in the data models,
processing the defined necessary convertions.

5 Definition of the residuals
The residuals must be defined and set for the optimizer. In this context, a residual is a list
with two elements, the first element is a string representing the residual, and the second
element is a list of the parameters that influence the residual. The residual may then be
added to an ordered dictionary contained in the optimizer (optimizer.pushResidual). This
will allow for the printing and visualisation of the errors, as well as the creation of the sparse
matrix. The definition of the residuals is closely related to the way the objective function is
implemented and has to do with what error is being measured.

6 Definition of the sparse matrix
This matrix is also known as a Jacobian sparsity structure. It is useful in order to avoid the
explicit computation of a Jacobian matrix (first-order partial derivatives) and instead use
the finite difference approximation. The sparse matrix makes this process time feasible by
marking elements which are known to be non-zero. The matrix contains information about
the relationship between each of the parameters and the residuals. It is a matrix of ’1’s and
’0’s, where a ’1’ means the parameter of that column has an influence on the residual of that
row and a ’0’ means it does not.
This is powerful in terms of computation complexity because it guides the optimizer in
which parameters will influence each residual. It can be somewhat cumbersome to generate
because of all the existing combinations of parameters and the need for the definition of their
relationship with the residuals. However, because of the way the residuals are defined in Step

5, a function was implemented to derive the sparse matrix automatically. After the definition
of the parameters and the residuals, the function optimizer.computeSparseMatrix may be
called to extrapolate the sparse matrix.
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7 Definition of the visualisation function
A custom visualisation function, fit for the problem, should be defined and set for the optimizer
(optimizer.setVisualizationFunction). It is not required, but it is very useful for debugging,
and in general, to try to understand if the optimization is working as intended. It serves as a
display of the internal state of the optimization, along with a default graph implemented for
OptimizationUtils, that shows error associated with each residual at the current and initial
moments.

8 Starting the optimization
The optimization can be started by calling optimizer.startOptimization. Optimization options
may be passed as arguments, such as tolerance of termination parameters and relative step size.
During the optimization, along with the defined visualisation function, some OptimizationUtils
functions are called that print out relevant information about the optimization and allow for
the visualisation of the evolution of the error.

9 Outputting the final state
After the optimization is finished, the final state of the parameters may be saved to disk.
What is to be saved and how it is done depends on the nature of the optimization and the
context in which its results will be put to use.

Additional functionality
Some functionality of OptimizationUtils not mentioned includes: obtaining a list of all the
available parameters and filtering it, particularly useful when defining the residuals; adding
noise to the vector of parameters; and many different functions for printing out to the terminal,
this includes information regarding the vector, models, residuals, etc. These last ones are
instrumental for debugging purposes.

23



24 chapter 4. methodology for optimization

4.4 optimization case study: optimization of camera poses

The purpose of this case study was to apply the generic optimization approach outlined in
section 4.3 to the problem of refining the poses of each camera with respect to a common
reference frame.

A camera is defined by the sensor’s internal properties and its positioning in space, relative
to a reference frame. The former is represented by the intrinsic camera matrix, which was
consistent since the same device was always used. It was retrieved using a camera calibration
procedure and can be represented as:

K =


fx 0 cx

0 fy cy

0 0 1

 (4.1)

where cx, cy are the principal point coordinates, and fx, fy are the focal lengths expressed in
pixel units. The latter is represented by an extrinsic camera matrix, such as:

T =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 (4.2)

which may be decomposed into two components, a translation and a rotation. The translation
can be represented as the vector T = (tx, ty, tz), and the rotation can be represented as a
3× 3 rotation matrix R.

The optimization is performed as a bundle adjustment, meaning the objective of the
optimization is to refine the camera poses and the 3D point positions. As such, the set of
parameters to be optimized Φ, is defined as:

Φ =
[ Camera poses︷ ︸︸ ︷
xi=1, yi=1, zi=1, r1i=1, r2i=1, r3i=1, . . . , xi=I , yi=I , zi=I , r1i=I , r2i=I , r3i=I ,

Marker translations︷ ︸︸ ︷
xj=1, yj=1, zj=1, . . . , xj=J , yj=J , zj=J

] (4.3)

where i refers to the i-th camera, of the set of I cameras, and j refers to the j-th aruco
marker, of the set of J aruco markers. Notice that, in this vector, the rotation for one camera
(r1, r2, r3) is represented through the axis/angle parameterization, as opposed to the 3 × 3
rotation matrix format of the camera’s extrinsic matrix. Because a rotation matrix has
3× 3 = 9 elements, but only 3 degrees of freedom, a different parameterization is necessary in
order to intrinsically incorporate constraints on the rotations during the optimization.

Popular parameterization for rotations are Euler angles, quaternions, and axis/angle repre-
sentation. However, not all representations are suitable for an optimization. Parameterization
should not introduce more numerical sensitivity than the one inherent to the problem itself,
as this decreases the chances of convergence in optimizations. When the parameterization
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formats follow this rule, they can be referred to as fair parameterization [35]. For example,
Euler angles, which are probably the most used angle parameterization, are not suitable for
optimizations [36], because they do not yield smooth movements, each rotation is non-unique
and, most notably, there are singularities, known as Gimbal lock, where one degree of freedom
is lost [36]. Because quaternions have 4 components which are norm-1 constrained, and this
introduces some complexity in the algorithms, they are usually not used for optimizations
[36], even though they are a fair parameterization. The axis/angle parameterization is the
most widely used to represent a rotation in an optimization. It is a fair parameterization and
has only three components, two values to define an axis and one value to define an angle. In
this way, any rotation can be represented as a rotation around this axis, by an angle θ.

To convert between the axis/angle format and the 3× 3 rotation matrix format used in
the data model to ease implementation, the Rodrigues’ rotation formula is used. It provides
an efficient method for computing the rotation matrix R ∈ SO(3) corresponding to a rotation
by an angle θ about a fixed axis specified by the unit vector ω̂ = (ωx, ωy, ωz) ∈ R3:

R = I
sinθ

θ
ω̃ + 1− cosθ

θ2 ω̃ (4.4)

where I is the 3× 3 identity matrix, and ω̃ is defined as:

ω̃ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (4.5)

The starting poses of the cameras are given by the Open Constructor dataset. We also
need a first guess for the position of the 3D points, which correspond to the aruco marker
centers. Their poses must be determined in the world reference frame. Because the camera
poses found in the Open Constructor dataset provide us with the transformation from each
camera to the world, we only need a transformation from the aruco marker reference frame to
one camera, which can be retrieved using the utilities of OpenCV’s ArUco Library. Thus, the
initial positions for the 3D points are obtained by, when going over the cameras to detect the
aruco markers, whenever a marker is detected for the first time, calculating the aggregate
transformation from the aruco marker to the world reference frame as:

AjTW = CiTW · AjTCi
(4.6)

where Aj refers to the j-th aruco marker detected, Ci refers to the i-th camera (the first in
which the j-th aruco marker can be detected), and W refers to the world reference frame.
Then applying that transformation to the point corresponding to the center of the aruco
marker in the marker’s frame of reference. If the geometry of the scene were perfect, doing
this for any camera that detected the aruco marker would result in the calculation of the
same position.

The cost function is based on the reprojection error, i.e. the geometric error corresponding
to the image distance between a projected point and a measured one, see section 2.4. The
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relationship between a 3D point in the world and the pixels that correspond to its projection
on an image plane can be expressed as:

s


u

v

1

 =

IntrinsicMatrix︷ ︸︸ ︷
fx 0 cx

0 fy cy

0 0 1


ExtrinsicMatrix︷ ︸︸ ︷

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz




X
Y
Z
1

 (4.7)

where X,Y, Z are the coordinates of a 3D point in the world; u, v are the coordinates of
the projection point in pixels; cx, cy is the principal point; and fx, fy are the focal lengths
expressed in pixel units. This explains how the changes to extrinsic parameters of a camera,
which correspond to its pose, will have an influence on the error measured.

The optimization is performed using a nonlinear least-squares regression, as indicated for
Bundle Adjustment problems. The function least squares from the SciPy library is used. It
only requires the cost function, the vector of parameters, the bounds (infinite by default),
and the sparse matrix (none used by default) to carry out the optimization. All of these
things are set in place by the OptimizationUtils methods, simply by following the outline
described in section 4.3. At the end of the optimization, the function returns a vector with
the optimized parameters for the pose of the cameras and the position of the 3D points, which
minimises the reprojection errors. Because of the wrapper implemented, these values are
automatically converted and copied from this vector to their place in the data models.

The following is the direct concretization of the abstraction outlined in section 4.3 for
camera pose estimation optimization:

1 The OCDatasetLoader, see section 4.1, was instantiated and used to load all the information
from the dataset to memory, namely the images and transformations for each capture. The
OCArucoDetector, see section 4.2, was used to detect and estimate the poses of the aruco
markers, loading all related information to memory.

2 The optimizer was instantiated. The cameras’ dataset and the aruco markers’ dataset
were each added to the optimizer as a data models (using the addModelData function).

3 A getter and a setter for the camera’s translation matrix and a getter and a setter for
the camera rotation matrix were defined. A getter and a setter for the marker’s translation
matrix were defined.

4 The error was computed as the Euclidean distance between the projected coordinates of
the aruco marker’s centers and the coordinates given by the detection of the aruco markers in
each image. These distances correspond to the reprojection errors. As such, the cost function
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f was defined as:

f =
Nd∑
i=1

√(
xi

reproj − xi
det

)2
+
(
yi

reproj − yi
det

)2
(4.8)

where Nd is number of detections of camera-marker pairs, xreproj , yreproj are the coordinates
of the reprojection of the 3D points, and xdet, ydet are the coordinates of the points detected
in the image.

5 The residuals were identified as all detected camera-marker pairs. A string representing
the residual ("C{cameraNumber}A{arucoID}") was obtained by, for each camera, going over
the list of detected markers. Afterwards, the list of parameters that influence each of these
pairs was defined, with the help of optimizer.getParamsContainingPattern. This function
takes advantage of naming conventions to extrapolate, from the complete list of parameters
(translation and rotation of each camera and translation of each marker), only the ones
related to a specific residual (camera-marker pair). Finally, a list containing the two elements
(residual representation and list of parameters that influence it) is added to the optimizer
using optimizer.pushResidual.

6 The function optimizer.computeSparseMatrix is called to calculate the sparse matrix. Fig-
ure 4.2 shows a fragment of the sparse matrix that would be generated for a couple of cameras,
with a few detections each. The missing columns should have the rest of the parameters for
camera 0 (C000r2 and C000r3), all the parameters for camera 1, and all the parameters for
the rest of the aruco markers detected in the scene by any camera. The naming convention
used for the parameters were "C{cameraNumber}{parameter}" for the camera parameters
and "A{arucoID}{parameter}" for the aruco marker parameters.

C000tx C000ty C000tz C000r1 . . . A504tx A504ty A504tz



C000A529 1 1 1 1 . . . 0 0 0
C000A527 1 1 1 1 . . . 0 0 0
C000A555 1 1 1 1 . . . 0 0 0
C000A412 1 1 1 1 . . . 0 0 0
C000A536 1 1 1 1 . . . 0 0 0
C000A504 1 1 1 1 . . . 1 1 1
C001A529 0 0 0 0 . . . 0 0 0
C001A527 0 0 0 0 . . . 0 0 0
C001A412 0 0 0 0 . . . 0 0 0
C001A536 0 0 0 0 . . . 0 0 0
C001A504 0 0 0 0 . . . 1 1 1
C001A554 0 0 0 0 . . . 0 0 0

Figure 4.2: Fragment of a sparse matrix.

7 The custom visualisation function was defined and set for the optimizer (opti-
mizer.setVisualizationFunction). It consists of showing all the images, each with the aruco
markers centers detected, the initial projections connected to the target by a blue line, and the
projections at the current step of the optimization, as seen in Figure 4.4. This is complemented
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by a 3D representation of the pose of the cameras and position of the 3D points in the scene,
showcased in Figure 4.5. The default visualization function is shown in Figure 4.3.

8 The optimization is started (optimizer.startOptimization).

9 After the optimization is finished, the final state of the models is saved to disk. This is
described in detail in subsection 4.4.1.

Figure 4.3: Default visualisation function of OptimizationUtils: Graph of the value of error associated
with each residual. Initial reprojection error in green, current reprojection error in blue.

Figure 4.4: Example of reprojection visualisation for one of the images of the dataset. Aruco marker
detection in red (target of optimization), initial projection in green, current projection in
dark blue.
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Figure 4.5: 3D representation of the position of the cameras and aruco markers in the scene, produced
by the visualisation function.

4.4.1 to output a dataset

In this particular problem, it was considered that the best way to output the result of the
optimization would be to create a new, optimized dataset, in Open Constructor fashion. In
order to accomplish this, the folder must be created programmatically and all the images are
copied from the original dataset. The .txt files for each camera must be written to the new
folder, these contain transformations from the world to the camera, from the world to the depth
sensor, and from the world to the device. Next, the point clouds must be written to .ply files
in the same folder. Each point cloud is read from its original .ply file and the transformation
from the old world coordinates to new world coordinates is applied ("old" meaning before
optimization and "new" meaning after optimization). Effectively, this is a transformation from
the world to the camera frame of reference, saved from before optimization, followed by a
transformation from the camera to the world, obtained after the optimization:

oldWiTnewW = CiTnewW · oldWTCi
(4.9)

where W refers to World and Ci refers to the i-th camera. At this point, the transformation
calculated previously is applied to each of the point clouds and they are saved to separate
.ply files, along with a colour selected from a colour map. The function of this colour is to
help differentiate the point clouds when they are analysed together. Since we want to clearly
distinguish the colours of point clouds next to each other, a qualitative colour map was chosen.
The colour map tab10 was imported from Matplotlib, see Figure 4.6. Finally, one point cloud
composed of all the original point clouds merged, and one composed of all the optimized point
clouds merged, are created. This is to facilitate the handling of the clouds for result analysis.

Figure 4.6: Matplotlib’s qualitative colormap tab10.
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Figure 4.7: Optimization of OfficeDemo result comparison using Matplotlib’s tab10 colormap (view
1). Before optimization on the left, after optimization on the right.

Figure 4.8: Optimization of OfficeDemo result comparison using Matplotlib’s tab10 colormap (view
2). Before optimization on the left, after optimization on the right.

Figure 4.9: Optimization of OfficeDemo result comparison using Matplotlib’s tab10 colormap (view
3). Before optimization on the left, after optimization on the right.
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chapter 5
Methodology for Fiducial
Marker Removal
This chapter focuses on a module developed to automatically remove fiducial markers from the
texture of a scene. In section 4.4, a method to enhance the registration of a 3D reconstruction
using fiducial markers was presented. The module showcased in the present chapter was
created as an attempt to avoid the pollution of the acquired scene’s texture with these markers.
There are other scenarios, besides 3D reconstruction, where having fiducial markers in the
environment is advantageous, such as Augmented Reality (AR) applications, and being able
to remove them may improve the final product significantly.

This module relies on the OCDatasetLoader to provide access to the data, namely
transformations, point clouds and corresponding images. This means that the code is agnostic
to the way the dataset is stored and loaded to memory. By using a different version of
a dataset loader, one may utilise this inpainting tool in a different context. The tool was
programmed to detect and remove aruco markers, since this was the kind of fiducial marker
used in section 4.4. However, it could be used for different markers by adapting the detection
and pose estimation functions.

ArucoInpaintingTool contains the implementation to automatically process RGB-D data,
removing aruco markers from the RGB images and projecting the information to point clouds.
Works with OCDatasetLoader, see section 4.1, and OCArucoDetector, see section 4.2, to
remove aruco markers from the texture of a 3D model saved in OpenConstructor dataset
format.

The starting point for the removal of the markers from the texture of the scene was the
decision to use an inpainting algorithm, more specifically the Navier-Stokes-based Inpainting
from OpenCV’s inpaint. Besides a few parameters, this function requires a mask for the areas
to be inpainted. Initially, the masks used were the ones obtained by detecting the marker
corners in the image.
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32 chapter 5. methodology for fiducial marker removal

All the masks showcased in this chapter were blended with images to better showcase
where they fit and what regions are the target.

5.1 creation of the masks

In order to use the OpenCV inpaint function, which is intended to restore a selected region
in an image using the region neighbourhood, one must create a mask in order to define this
region. The plan was to remove the fiducial markers from the texture of the scene, and as
such, their very detection was used to create these masks. This can be observed in Figure 5.1.

The problem with this is that the are detected only includes symbol itself, not accounting
for the margin around it. This creates a mask that would not allow for the inpainting of the
whole item, leaving blank cards scattered through the scene. The first attempt to solve this
problem was to dilate the masks, using OpenCV’s dilate function, as shown in Figure 5.2.
Being a 2D operation, this didn’t work very well. For instance, markers an angle and closer
to the camera need a bigger mask dilation, possibly in different directions.

The solution found for this was to create a 3D object with the same measurements as
the markers, including thickness, so the masking would work even when the angle towards
the camera is so large that it is possible to see the sides of the marker. This object is made
up of only the vertices. It must be transformed from each detected marker’s reference frame
to the camera’s reference frame and then projected to a 2D image. This is accomplished by
using the OpenCV function projectPoints with the translation and rotation vectors associated
with each marker (and the intrinsic parameters and distortion coefficients associated with the
camera). Then, taking advantage of the created function drawMask, it is possible to draw the
vertices and fill in the figure. These masks are showcased in Figure 5.3. A representation of
the difference observed is shown in Figure 5.4.

Figure 5.1: Simple mask created from fiducial marker detection.
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Figure 5.2: Mask after dilation was applied.

Figure 5.3: Mask created from the projection of the 3D object.

Figure 5.4: Results for 2D dilation and 3D projection methods for mask creation.
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5.2 navier-stokes-based inpainting

The first step was to create an accurate representation of the region covered by the marker,
see Figure 5.5. Afterwards, the challenge was to define the colours which will be used to
restore that region. The results of the Navier-Stokes-based Inpainting from OpenCV’s inpaint
were underwhelming, as shown in Figure 5.6. The examples found online for the testing of
this function are usually about removing lines from the images or restoring damage from
folding photographs. Inpainting in this manner is usually done in small areas, while the size
of a fiducial marker in the scene is substantial.

Figure 5.5: Mask used for marker removal.

Figure 5.6: Navier-Stokes-based inpainting from OpenCV inpaint.

34



5.3. improving the inpainting 35

5.3 improving the inpainting

5.3.1 first stage

In order to improve the result of the inpainting, blurring the area where the inpainting
took place seemed like a good idea. To accomplish this, the image where the inpainting was
applied was copied and blurred using the OpenCV function medianBlur with a high aperture
linear size, as seen in Figure 5.8. Then, the mask used to perform the inpainting was used to
replace the pixels in those areas of the original image, with the pixels of the blurred image,
see Figure 5.7. The result is showcased in Figure 5.9.

Figure 5.7: Mask for the pixels which will be replaced by the ones in Figure 5.8.

Figure 5.8: Auxiliar image 1. Median blur of Figure 5.6.
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Figure 5.9: First stage result.

5.3.2 second stage

The overall texture obtained in subsection 5.3.1 looks better than the original inpainting
restoration. However, the limits of where the texture taken from the blurred image was
applied are sharp and visible. To reduce this effect, a new set of masks was created. This
takes advantage of the method described in section 5.1, transforming and projecting a 3D
object with the shape of the marker, yet making the area of the square somewhat larger,
see Figure 5.10. The image obtained in the first stage is copied and blurred using a median
blur again, however this time with a smaller aperture linear size, to avoid mixing colour of
the surrounding objects, resulting in Figure 5.11. This new mask is, much like before, used
to copy the corresponding regions from the blurred image to the original first stage result,
creating Figure 5.12.

Figure 5.10: Mask for the pixels which will be replaced by the ones in Figure 5.11.

36



5.3. improving the inpainting 37

Figure 5.11: Auxiliar image 2. Median blur of the first stage result.

Figure 5.12: Second stage result.
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5.3.3 final results

The process is finished by applying a Bilateral Filtering function (OpenCV’s bilateralFilter).
This allows for the preservation of the edges in the image and avoids the mixing of colours,
while smoothing over the surfaces, making the grainy pattern of the walls a little less noticeable
for example, which makes the inpainted areas blend in a little better. The final result of the
whole inpainting process is showcased in Figure 5.14, which may be compared to the original
image in Figure 5.13.

Figure 5.13: Original image from OfficeDemo dataset.

Figure 5.14: Restored image from OfficeDemo dataset.
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5.4 inpainting non-detected markers: cross-inpainting

It is a frequent occurrence that some fiducial markers in the pictures of a dataset are not
detected. This may be because the marker is not fully in the field of vision of the camera,
because the camera was in motion and the picture taken was blurred, or simply because the
marker is at a very awkward angle. Since the transformations from the aruco markers to
cameras and from the cameras to the world are known, see Figure 5.15, it was theorised that
it should be possible to know if a marker can be found within an image, even if it wasn’t
detected in it, for the sake of removing it from the texture.

Figure 5.15: Illustration of conversion between different reference frames.

The solution implemented, named "Cross-Inpainting", takes advantage of transformations
from the aruco markers to the world. Every time a new marker is detected in one of the
images of the dataset, the transformation of the marker to the world is calculated and saved.
This transformation is calculated using the transformation of the marker to the camera where
it was detected, the i-th camera, and the transformation from that camera to the world:

AjTW = CiTW · AjTCi
(5.1)

where Aj refers to the j-th aruco marker detected, Ci refers to the i-th camera, and W refers
to the world reference frame. Given an image captured by a camera k, when this image is
being inpainted, it is possible to access the information for all markers. It is checked if there
are any markers that can be projected within the image, but that have not been detected in
it. This is done by applying the transformation from the aruco marker reference frame to the
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world, as in Equation 5.1, followed by the transformation from the world to camera k:

AjTCk
= WTCk

· AjTW (5.2)

where Aj refers to the j-th aruco marker, Ck refers to the k-th camera, and W refers to the
world reference frame. The 3D marker object is transformed using Equation 5.2 and then
projected to the image captured by camera k. An example of what is obtained from these
projections can be seen in Figure 5.16. The algorithm appears to work, but the poses of the
cameras and the positions of the markers in relation to the world do not match, and as such,
the regions covered by the fiducial markers are not matched by the masks, see Figure 5.18.
However, after an optimization is performed, the placement of the masks is significantly
enhanced, as seen in Figure 5.17, and the results improve accordingly, see Figure 5.19.

Figure 5.16: Final mask before optimization. Masks obtained from aruco marker detection in red
and masks obtained from projections from other cameras (Cross-Inpainting) in blue.

Figure 5.17: Final mask after optimization. Masks obtained from aruco marker detection in red and
masks obtained from projections from other cameras (Cross-Inpainting) in blue.
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Figure 5.18: Restoration result before optimization.

Figure 5.19: Restoration result after optimization.

5.5 3d colour visualisation

In order to better visualise the point clouds and make them closer to a final product it
would be interesting to have them coloured, particularly with images now free of markers.
To achieve this, one has to read the information from the .ply extension files found in the
dataset, see section 3.2, project the 3D points to the images, and extract the RGB value of
the corresponding pixels. The coordinates of the 3D points are found in the world reference
frame, however it is stored in an OpenGL coordinate system. Thus, the points must be read
from the file, converted from OpenGL to the OpenCV coordinate system, transformed from
the world to the camera’s reference frame and projected to the image. The RGB value can
then be extracted. Finally, a new .ply extension file is created and the information of colour
is stored along with the original vertices.

When all of this is done, and the .PLY file is saved correctly, the content of this file can
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be visualised using Meshlab or some CloudViewer class, the PCL library for instance or a
simple viewer provided by the PPTK library, and the output should be something similar
to Figure 5.20, where the restoration of the texture can be observed before and after the
optimization.

Figure 5.20: Point cloud coloured with texture obtained from restored images, using cross-inpainting.
Before optimization on the left and after optimization on the right (meshlab).

For comparison purposes, in Figure 5.21 a merged point cloud, coloured with images
inpainted using only the detected markers can be observed. At first glance, the texture applied
before optimization seems better, this effect is caused by the fact that the points closest to
the viewer happen to correspond to images where more markers were detected. After the
optimization, the merged point clouds are better aligned and, as such, the markers that were
occluded before show through.

Figure 5.21: Point cloud coloured with texture obtained from restored images, no cross-inpainting.
Before optimization on the left and after optimization on the right (meshlab).

In Figure 5.22 we can see a merged point cloud coloured with the original image. The
enhancement of the registration caused by the optimization improves the texture significantly,
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as showcased by Figure 5.23.

Figure 5.22: Merged point cloud coloured with texture obtained from images. Before optimization
on the left and after optimization on the right (meshlab).

Figure 5.23: Merged point cloud coloured with texture obtained from images (detail). Before
optimization on the left and after optimization on the right (meshlab).
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chapter 6
Results
This chapter contains the evaluation methodology and the description of its process, going
over the collection of datasets and showcasing the results obtained in various ways.

6.1 evaluation methodology

Visual comparison of the point clouds before and after optimization may sometimes prove
to be somewhat subjective and inconclusive. Particularly in datasets with a very large number
of point clouds. The reporting of results in a document also means that the changes must be
observed in a side by side manner, which makes them harder to perceive than in Meshlab for
instance, see section 3.2, where it is possible to instantly switch between point clouds placed
in the same exact place. A solution for this would be to have a ground truth. We use a laser
scan of a meeting room in Departamento de Engenharia Mecânica (DEM) at University of
Aveiro. This room, being a lot bigger than the one used for the datasets created previously,
was also an opportunity to create a more difficult challenge for the optimizer. Unfortunately,
the equipment needed for the laser scan was not available at the same time as the Zenphone
AR, and as such, the datasets and the ground truth could not be captured in the same day,
resulting in some physical differences in the scene.

6.2 collecting datasets

The datasets were collected using the ZenFone AR, described in chapter 3. The OfficeDemo
dataset was collected in office 22.2.18 of Departamento de Engenharia Mecânica, Universidade
de Aveiro. It is a relatively small dataset with a large density of fiducial markers. One larger,
more complex dataset was captured within the meeting room mentioned in section 6.1, and
one more was taken out in the lobby, just outside the meeting room.
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As far as the meeting room dataset collection goes, and its comparison to the FARO laser
scan, as mentioned before, they could not be collected in the same day, and as such, a number
of items had been moved within the room, such as couches and chairs. Thus, a decision was
made to capture the area that had been changed the less, focusing on one corner where the
furniture hadn’t been moved. Regardless, there were still some noticeable differences.

6.3 faro dataset

The laser scan of the meeting room was acquired with a FARO Focus Laser Scanner and
the point clouds for what would become the ground truth had to be exported using the FARO
Scene software.

A single point cloud was obtained from the merging of several scans in Cloud Compare,
see section 3.2. However, it was very dense and, as such, computationally hard to work with.
Because it was unnecessarily dense for its purpose, it was downsampled and clipped, also
using Cloud Compare. The final result can be observed in Figure 6.2.

Figure 6.1: FARO generated point cloud after downsampling.
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Figure 6.2: FARO generated point cloud after downsampling and clipping.

6.4 evaluation procedure

The key metric used for the evaluation procedure was the Hausdorff distance. It measures
how far two subsets of a metric space are from each other, and is often applied to the
measurement of distance between point clouds. It is defined as the greatest of all the distances
from a point in one set to the closest point in the other set. The version implemented in
Meshlab, see section 3.2, allows us to know, not only an absolute distance, but the distance at
each point of the cloud visually through the application of a colormap.

ICP was used in Cloud Compare to transform point clouds to the same reference frame
as the ground truth point cloud. Afterwards, Meshlab’s Haudorff distance was calculated
between the original point clouds and the ground truth point cloud, and the per vertex quality
function is used to apply a colormap, making it visually understandable. The same process is
then carried out between the optimized point clouds and the ground truth point cloud. It is a
red-yellow-green-blue colormap, where red codes the smallest distance and blue the greatest.

This way, visually it is possible to understand if parts of the scene may be impacted nega-
tively by the improvement of other areas. It is also useful to observe if the differences between
the Tango generated datasets and the FARO dataset are because of error in reconstruction or
just because the scene had physically changed between the capturing of the ground truth and
our datasets.
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6.5 meetingroom dataset

In this section, the results obtained using the MeetingRoom dataset are showcased. This
dataset takes advantage of the fact that there is the possibility of analysing it in comparison
with the FARO generated dataset section 6.3. The results are first compared in a before-and-
after manner, using the texture of the original images in Figure 6.3, Figure 6.5 and Figure 6.4,
then the Hausdorff distance based comparison is discussed, and finally, the fiducial marker
removal results are showcased in Figure 6.8.

6.5.1 optimization of camera poses results

This subsection contains the results for the optimization of camera poses in the Meet-
ingRoom dataset.

Figure 6.3: MeetingRoom dataset coloured with texture obtained from original images. Before
optimization on the top and after optimization on the bottom.

48



6.5. meetingroom dataset 49

Figure 6.4: MeetingRoom dataset coloured with texture obtained from original images (detail 1).
Before optimization on the top and after optimization on the bottom.

Figure 6.5: MeetingRoom dataset coloured with texture obtained from original images (detail 2).
Before optimization on the top and after optimization on the bottom.
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The Hausdorff distance was calculated from the MeetingRoom dataset to the FARO
dataset, before and after optimization. The local values were used to colormap the point
clouds, see Figure 6.6 and Figure 6.7. The mean and Root Mean Square (RMS) values,
see Table 6.1, indicate an improvement of roughly 0.009 m and 0.012 m respectively, which
corresponds to approximately 27%. The maximum distance considered for the measurement
was 150cm, determined as a good limit by trial and error method. It is hard to place these
numbers into context, because the merged point clouds contain a very large number of points,
many of which were not moved significantly during the optimization. These points correspond
to areas already close to the ground truth before the optimization. As a result, areas that
were improved may not have a very high impact on the value of the mean and Root Mean
Square (RMS).

mean (m) RMS (m) min (m) max (m)
Before Optimization 0.0337 0.0442 0.0001 0.1500
After Optimization 0.0247 0.0324 0.0001 0.1500

Table 6.1: Hausdorff distance from the MeetingRoom dataset to the FARO dataset.

Figure 6.6: MeetingRoom dataset colormapped with Hausdorff distance to FARO dataset. Before
optimization on the top and after optimization on the bottom.
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Figure 6.7: MeetingRoom dataset colormapped with Hausdorff distance to FARO dataset (detail).
Before optimization on the left and after optimization on the right.

6.5.2 fiducial marker removal results

This subsection contains the results for texture application and fiducial marker removal in
the MeetingRoom dataset.

Figure 6.8: MeetingRoom dataset coloured with texture obtained from original images on the top
and texture obtained from restored images on the bottom.
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6.6 lobby dataset

In this section, the results obtained using the Lobby dataset are showcased. This dataset
is analysed through visual before-and-after comparison, starting with the texture of the
original images in Figure 6.9 and Figure 6.10, then showing some detail using Matplotlib’s
tab10 colormap, see Figure 6.11, and finally showcasing the fiducial marker removal results in
Figure 6.12.

6.6.1 optimization of camera poses results

This subsection contains the results for the optimization of camera poses in the Lobby
dataset.

Figure 6.9: Lobby dataset coloured with texture obtained from original images. Before optimization
on the top and after optimization on the bottom.
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Figure 6.10: Lobby dataset coloured with texture obtained from original images (detail). Before
optimization on the left and after optimization on the right.

Figure 6.11: Lobby dataset detail coloured with Matplotlib’s tab10 colormap. Before optimization
on the left and after optimization on the right.
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6.6.2 fiducial marker removal results

This subsection contains the results for texture application and fiducial marker removal in
the Lobby dataset.

Figure 6.12: Lobby dataset coloured with texture obtained from original images on the top, and
texture obtained from restored images on the bottom.
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chapter 7
Conclusions
It is possible to observe an improvement in the geometry of the 3D reconstructions that stems
from an enhancement in the alignment of the point clouds. Therefore, it can be concluded that
the optimizer is working as intended. Nevertheless, there are some limitations, derived from
the fact that this optimization only targets the registration problem, while having no influence
on the geometry of each point cloud. In other words, the alignment of the point clouds may
be improved, but if the point clouds are themselves distorted, which may occur with RGB-D
data, the geometry of the scene may not improve significantly from this optimization.

The optimization implemented attempts to improve the results obtained from a 3D
reconstruction using RGB-D cameras. If the dataset obtained from the reconstruction has
poor alignment of the point clouds, even if only on some areas, then we should expect the
optimization to improve the scene’s geometry significantly. However, if a particular dataset
happens to have very good alignment, the improvement will probably prove to be minor.

The optimization was implemented making use of the tools developed and the created
code structure, described in section 4.3. This base api provides useful abstractions and an
environment for future implementation of optimizations. It facilitates building upon and
future work, allowing for the writing of more intuitive code. It also provides structure for a
systematic approach to this kind of problem.

The removal of the fiducial markers from the texture of the scene was achieved. The
technique developed to complement the OpenCV inpainting function was a success. Although,
it is important to note that it was created for restoring areas without a recognisable or sharp
pattern. Employing the arucoInpaintingTool, one can produce point clouds with a texture
that is free of markers, by utilising RGB-D information. The cross-inpainting technique
was successful at removing non-detected aruco markers from the images, as long as there is
good registration of the point clouds. For this reason, the technique also serves as a way to
corroborate the observation that the optimization is working as expected, since its results,
which depend on the good alignment of the point clouds, improve after the optimization is
performed, as observed in section 5.5.
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Point clouds were considered more interesting than meshes as the product of the 3D
reconstructions for this work. This is because the creation of meshes would cause some
information to be lost. Information that could prove important for the analysis of the results
of the optimization. However, for future work, it would be interesting to generate meshes
from the final point clouds, coloured with the texture free of fiducial markers. These meshes
may be created through the implementation of ROS-based CHISEL, for instance. The work
on the development of this tool was started, however it wasn’t given priority, and was put on
hold indefinitely.

There are some doubts about the ideal density of fiducial markers in the scene, i.e. how
many markers should should be detected, on average, in each image, to obtain the best results
from the optimization. In the future, this could be analysed, producing some guidelines to
make the placement of fiducial markers more efficient.

Regarding the removal of fiducial markers, it would be interesting to research techniques
that would allow the restoration of texture containing distinctive patterns, to enable its use
in more different types of environments.

56



57

References
[1] H. Fan, W. Yao, and Q. Fu, «Segmentation of Sloped Roofs from Airborne LiDAR Point Clouds Using

Ridge-Based Hierarchical Decomposition», Remote Sensing, vol. 6, pp. 3284–3301, Apr. 2014. doi:
10.3390/rs6043284.

[2] A. Henn, G. Gröger, V. Stroh, and L. Plümer, «Model driven reconstruction of roofs from sparse LIDAR
point clouds», International Journal of Photogrammetry and Remote Sensing, vol. 76, pp. 17–29, Feb.
2013. doi: 10.1016/j.isprsjprs.2012.11.004.

[3] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton,
S. Hodges, and A. Fitzgibbon, «KinectFusion: Real-time dense surface mapping and tracking», in 2011
10th IEEE International Symposium on Mixed and Augmented Reality, Oct. 2011, pp. 127–136. doi:
10.1109/ISMAR.2011.6092378.

[4] J. Han, L. Shao, D. Xu, and J. Shotton, «Enhanced Computer Vision With Microsoft Kinect Sensor: A
Review», IEEE Transactions on Cybernetics, vol. 43, no. 5, pp. 1318–1334, Oct. 2013, issn: 2168-2267.
doi: 10.1109/TCYB.2013.2265378.

[5] I. Afanasyev, A. Sagitov, and E. Magid, «ROS-Based SLAM for a Gazebo-Simulated Mobile Robot in
Image-Based 3D Model of Indoor Environment», in Advanced Concepts for Intelligent Vision Systems,
S. Battiato, J. Blanc-Talon, G. Gallo, W. Philips, D. Popescu, and P. Scheunders, Eds., Cham: Springer
International Publishing, 2015, pp. 273–283, isbn: 978-3-319-25903-1.

[6] M. Westoby, J. Brasington, N. Glasser, M. Hambrey, and J. Reynolds, «‘Structure-from-Motion’
photogrammetry: A low-cost, effective tool for geoscience applications», Geomorphology, vol. 179,
pp. 300–314, Dec. 2012. doi: 10.1016/j.geomorph.2012.08.021.

[7] A. Diakité and S. Zlatanova, «FIRST EXPERIMENTS WITH THE TANGO TABLET FOR INDOOR
SCANNING», ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. III-4, pp. 67–72, Jun. 2016. doi: 10.5194/isprsannals-III-4-67-2016.

[8] L. Li, F. Su, F. Yang, H. Zhu, D. Li, Z. Xinkai, F. Li, Y. Liu, and S. Ying, «Reconstruction of Three-
Dimensional (3D) Indoor Interiors with Multiple Stories via Comprehensive Segmentation», Remote
Sensing, Aug. 2018. doi: 10.3390/rs10081281.

[9] Y. Zhou, X. Zheng, R. Chen, X. Hanjiang, and S. Guo, «Image-Based Localization Aided Indoor
Pedestrian Trajectory Estimation Using Smartphones», Sensors, vol. 18, p. 258, Jan. 2018. doi: 10.
3390/s18010258.

[10] A. Hermans, G. Floros, and B. Leibe, «Dense 3D semantic mapping of indoor scenes from RGB-D
images», May 2014, pp. 2631–2638. doi: 10.1109/ICRA.2014.6907236.

[11] A. Jamali, P. Boguslawski, and A. Abdul Rahman, «A Hybrid 3D Indoor Space Model», The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W1,
pp. 75–80, Oct. 2016. doi: 10.5194/isprs-archives-XLII-2-W1-75-2016.

[12] M. Zollhöfer, A. G. Patrick Stotko, C. Theobalt, M. Nießner, R. Klein, and A. Kolb, «State of the Art
on 3D Reconstruction with RGB-D Cameras», 2018. [Online]. Available: https://web.stanford.edu/
~zollhoef/papers/EG18_RecoSTAR/paper.pdf.

57

https://doi.org/10.3390/rs6043284
https://doi.org/10.1016/j.isprsjprs.2012.11.004
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/TCYB.2013.2265378
https://doi.org/10.1016/j.geomorph.2012.08.021
https://doi.org/10.5194/isprsannals-III-4-67-2016
https://doi.org/10.3390/rs10081281
https://doi.org/10.3390/s18010258
https://doi.org/10.3390/s18010258
https://doi.org/10.1109/ICRA.2014.6907236
https://doi.org/10.5194/isprs-archives-XLII-2-W1-75-2016
https://web.stanford.edu/~zollhoef/papers/EG18_RecoSTAR/paper.pdf
https://web.stanford.edu/~zollhoef/papers/EG18_RecoSTAR/paper.pdf


58 references

[13] S. Gokturk, H. Yalcin, and C. Bamji, «A Time-Of-Flight Depth Sensor - System Description, Issues and
Solutions», Jul. 2004, pp. 35–35. doi: 10.1109/CVPR.2004.17.

[14] M. Minou, T. Kanade, and T. Sakai, «METHOD OF TIME-CODED PARALLEL PLANES OF LIGHT
FOR DEPTH MEASUREMENT.», pp. 521–528, Aug. 1981.

[15] P. Will and K. Pennington, «Grid coding: A preprocessing technique for robot and machine vision»,
Artificial Intelligence, vol. 2, no. 3, pp. 319–329, 1971, issn: 0004-3702. doi: https://doi.org/10.1016/
0004-3702(71)90015-4. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
0004370271900154.

[16] B. Curless and M. Levoy, «A Volumetric Method for Building Complex Models from Range Images»,
in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques,
ser. SIGGRAPH ’96, New York, NY, USA: ACM, 1996, pp. 303–312, isbn: 0-89791-746-4. doi: 10.1145/
237170.237269. [Online]. Available: http://doi.acm.org/10.1145/237170.237269.

[17] S. Rusinkiewicz, O. Hall-holt, and M. Levoy, «Real-Time 3D Model Acquisition», ACM Transactions
on Graphics, vol. 21, May 2002. doi: 10.1145/566570.566600.

[18] J. Minguez, L. Montesano, and F. Lamiraux, «Metric-based iterative closest point scan matching for
sensor displacement estimation», Robotics, IEEE Transactions on, vol. 22, pp. 1047–1054, Nov. 2006.
doi: 10.1109/TRO.2006.878961.

[19] B. Manjunath, C. Shekhar, and R. Chellappa, «A New Approach to Image Feature Detection With
Applications», Pattern Recognition, vol. 29, pp. 627–640, Apr. 1996. doi: 10.1016/0031-3203(95)00115-
8.

[20] D. Lowe, «Distinctive Image Features from Scale-Invariant Keypoints», International Journal of
Computer Vision, vol. 60, pp. 91–, Nov. 2004. doi: 10.1023/B:VISI.0000029664.99615.94.

[21] H. Bay, T. Tuytelaars, and L. Van Gool, «SURF: Speeded Up Robust Features.», vol. 110, Jan. 2006,
pp. 404–417.

[22] M. J. A. Patwary, S. Parvin, and S. Akter, «Significant HOG-Histogram of Oriented Gradient Feature
Selection for Human Detection», International Journal of Computer Applications, vol. 132, pp. 20–24,
Dec. 2015. doi: 10.5120/ijca2015907704.

[23] A. Babaryka, «Recognition from collections of local features», Master of Science Thesis Stockholm,
2012.

[24] D. Mount, N. Netanyahu, and J. Le Moigne, «Efficient Algorithms for Robust Feature Matching»,
Pattern Recognition, vol. 32, Apr. 2003. doi: 10.1016/S0031-3203(98)00086-7.

[25] C.-S. Chen, Y.-P. Hung, and J.-B. Cheng, «RANSAC-Based DARCES: A new approach to fast automatic
registration of partially overlapping range images», Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 21, pp. 1229–1234, Dec. 1999. doi: 10.1109/34.809117.

[26] J. Martínez, J. González-Jiménez, J. Morales, A. Mandow, and A. Garcia, «Mobile robot motion
estimation by 2D scan matching with genetic and iterative closest point algorithms», Journal of Field
Robotics, vol. 23, pp. 21–34, Jan. 2006. doi: 10.1002/rob.20104.

[27] S. Thrun and J. J. Leonard, «Simultaneous Localization and Mapping», Springer Handbook of Robotics,
pp. 871–889, 2008. doi: 10.1007/978-3-540-30301-5_38.

[28] S. J. W. Jorge Nocedal, «Numerical optimization», Springer, 2000.

[29] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, «Bundle Adjustment in the Large», Nov. 2010,
pp. 29–42. doi: 10.1007/978-3-642-15552-9_3.

[30] A. Harltey and A. Zisserman, Multiple view geometry in computer vision (2. ed.). Jan. 2006, isbn:
978-0-521-54051-3.

[31] F. Romero Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer, «Speeded Up Detection of Squared
Fiducial Markers», Image and Vision Computing, vol. 76, Jun. 2018. doi: 10.1016/j.imavis.2018.05.
004.

58

https://doi.org/10.1109/CVPR.2004.17
https://doi.org/https://doi.org/10.1016/0004-3702(71)90015-4
https://doi.org/https://doi.org/10.1016/0004-3702(71)90015-4
http://www.sciencedirect.com/science/article/pii/0004370271900154
http://www.sciencedirect.com/science/article/pii/0004370271900154
https://doi.org/10.1145/237170.237269
https://doi.org/10.1145/237170.237269
http://doi.acm.org/10.1145/237170.237269
https://doi.org/10.1145/566570.566600
https://doi.org/10.1109/TRO.2006.878961
https://doi.org/10.1016/0031-3203(95)00115-8
https://doi.org/10.1016/0031-3203(95)00115-8
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.5120/ijca2015907704
https://doi.org/10.1016/S0031-3203(98)00086-7
https://doi.org/10.1109/34.809117
https://doi.org/10.1002/rob.20104
https://doi.org/10.1007/978-3-540-30301-5_38
https://doi.org/10.1007/978-3-642-15552-9_3
https://doi.org/10.1016/j.imavis.2018.05.004
https://doi.org/10.1016/j.imavis.2018.05.004


59

[32] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and R. Medina-Carnicer, «Generation of
fiducial marker dictionaries using Mixed Integer Linear Programming», Pattern Recognition, vol. 51,
Oct. 2015. doi: 10.1016/j.patcog.2015.09.023.

[33] S. Weiss, M. Achtelik, S. Lynen, M. Chli, and R. Siegwart, «Real-time Onboard Visual-Inertial State
Estimation and Self-Calibration of MAVs in Unknown Environments», May 2012. doi: 10.1109/ICRA.
2012.6225147.

[34] «Inertial measurement unit», 4 711 125, Dec. 1987.

[35] J. Hornegger and C. Tomasi, «Representation issues in the ML estimation of camera motion», vol. 1,
Feb. 1999, 640–647 vol.1, isbn: 0-7695-0164-8. doi: 10.1109/ICCV.1999.791285.

[36] J. Schmidt and H. Niemann, «Using Quaternions for Parametrizing 3-D Rotations in Unconstrained
Nonlinear Optimization», Jan. 2001.

59

https://doi.org/10.1016/j.patcog.2015.09.023
https://doi.org/10.1109/ICRA.2012.6225147
https://doi.org/10.1109/ICRA.2012.6225147
https://doi.org/10.1109/ICCV.1999.791285

	Contents
	List of Figures
	Glossary
	Introduction
	Scope
	Motivation
	Objective
	Document structure

	State of the Art
	RGB-D cameras
	Registration
	SLAM
	Bundle Adjustment
	Structure from Motion
	Proposed approach

	Experimental infrastructure
	The device: ZenFone AR (Google Tango Enabled)
	Software

	Methodology for Optimization
	Dataset management: OCDatasetLoader
	Aruco information: OCArucoDetector
	Generic Optimization Module: OptimizationUtils
	Optimization case study: Optimization of Camera Poses
	To output a dataset


	Methodology for Fiducial Marker Removal
	Creation of the masks
	Navier-Stokes-based Inpainting
	Improving the inpainting
	First stage
	Second stage
	Final Results

	Inpainting non-detected markers: Cross-Inpainting
	3D colour visualisation

	Results
	Evaluation methodology
	Collecting datasets
	FARO dataset
	Evaluation procedure
	MeetingRoom Dataset
	Optimization of Camera Poses Results
	Fiducial Marker Removal Results

	Lobby Dataset
	Optimization of Camera Poses Results
	Fiducial Marker Removal Results


	Conclusions
	References

