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Palavras Chave nfv, osm, integração contínua, validação de descritores do osm

Resumo Com a evolução dos equipamentos com capacidade de se ligar à rede, as exigências
de tráfego tornam-se muito altas. Os operadores precisam de garantir que oferecem
os seus serviços rapidamente, com a mesma qualidade, mas mantendo os custos
baixos. Dada a arquitetura tradicional de redes, isso não é possível uma vez que
para alcançar essas necessidades é fundamental a aquisição de novos equipamentos,
sendo que a sua substituição é cara e pouco flexível. Com a proposta de separação
de funções de rede do seu hardware específico, NFV é a tecnologia que permite
aos operadores alcançar o pretendido. No entanto, esta abordagem traz consigo
problemas relacionados com a fiabilidade do código produzido, uma vez que é
imperativo assegurar que as funções de rede implementadas (VNFs) se comportam
como esperado. O 5GinFIRE é um projeto que tem como objetivo manter uma
plataforma de experimentação de 5G-NFV. Como este projeto lida com múltiplas
VNFs de vários colaboradores, é necessário haver um mecanismo automatizado
que valida as mesmas. Esta dissertação aborda a solução referenciada tendo em si
descrito um sistema que valida a sintaxe, semântica e referências de uma VNF de
uma forma totalmente automatizada e sem qualquer necessidade de intervenção
humana. Assim, o 5GinFIRE contém já uma plataforma de testes totalmente
integrada no seu sistema e os seus resultados são analisados neste Documento.





Keywords nfv, osm, continuous integration, osm descriptors validation

Abstract With the current evolution of network connectable devices, traffic demands are
becoming very high. Network operators need to ensure that they can provide new
services faster but with the same quality while keeping the costs low. Given the
traditional network architecture, that is not possible because the high demands re-
quire new hardware, and its substitution is costly and not flexible. By introducing
the decoupling of network functions from traditional hardware, NFV is the technol-
ogy that enables the step that network operators are trying to take. However, this
approach also brings reliability concerns since it is mandatory to ensure that the
virtual network functions (VNFs) behave as expected. 5GinFIRE is a project that
aims to provide a 5G-NFV enabled experimental testbed. As this project handles
multiple VNFs from the various experimenters, it is necessary to have an automated
mechanism to validate VNFs. This dissertation provides a solution for the stated
problem by having a system that verifies the syntax, semantics, and references of a
VNF in an automated way without needing any further human interaction. As a re-
sult, a fully integrated testing platform is deployed in the 5GinFIRE infrastructure,
and the results of the tests are issued in this Document.
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CHAPTER 1
Introduction

In 2017, mobile connectivity rose by 71 percent [1]. By 2022, worldwide mobile traffic
will reach 77 exabytes per month. That means nearly one zettabyte per year. These
numbers are anticipated since society has evolved in a way where one person uses
multiple internet-connected devices. Furthermore, the rise of Internet of Things (IoT)
also contributes to the increase in traffic since devices and services that used to be
offline are now online, such as cars, sensors, robots, and services like immersive media
application, smart-manufacturing, surveillance, among others. These services, which
nowadays include a lot of heavy traffic operations like video streaming, rely a lot on
the network infrastructure for their connectivity needs [2]. This necessity makes the
verticals the key drivers of Fifth Generation of Cellular Mobile Communications (5G)
networks adoption [3]. 5G networks need to have high bandwidth, low latency, low
power consumption and be cost-effective to meet the traffic and vertical demands [4].
In order to reach these requirements, it is necessary to change the network paradigm
and start not relying on the manufacturers’ hardware.

NFV is of interest to network operators and providers because it facilitates the
development of new mechanisms for the delivery and maintenance of network and
infrastructure services [5] [6]. NFV provides the decoupling of Network Function (NF)
from manufacturers’ hardware by providing the service through software running on
Commercial off-the-shelf (COTS) devices. The services are then deployed through
VNFs, which can be tailored and adjusted to any demands. However, the migration
of hardware-based functions to software raises concerns about software reliability [4],
since it is necessary to ensure that the VNFs behave as expected. Consequently, one of
the biggest challenges is the validation of VNFs and NSs [7].

Projects like 5GTango1 try to tackle this problem by having a full Software De-
1https://www.5gtango.eu/
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velopment Kit (SDK) that validates VNFs and NSs. However, the platform requires
high customization, and its integration with other projects is not straightforward. It is,
therefore, possible to make improvements.

1.1 Motivation

5GinFIRE2 is a project funded by the European Horizon 2020 Programme with several
partners from all around the world. Its main objective is to provide a 5G NFV enabled
experimental framework able to instantiate and support vertical industries while using
leading and open source technologies [8]. Identifying itself as a "forerunner experimental
playground" [9], 5GinFIRE relies on its experiments to validate the infrastructure.
Making sure everything runs evenly is therefore mandatory to have a reliable unified
testbed. The experiments are activities that are conducted over the 5Ginfire environment
and make use of NSs. These NSs are composed of VNFs, which have to be previously
submitted on the 5GinFIRE portal.

A crucial step to take is to guarantee that the packages submitted are well built and
ready to be deployed on the orchestrator. Currently, the validation is being carried out
manually by the 5GinFIRE portal administrator. However, such a solution is neither
sustainable, scalable, or practical. These constraints lead to the necessity of having a
fully automated validation [10].

1.2 Goals

The focus of this Dissertation is to provide a tool that allows validation of VNFDs and
NSDs. The tool should grant quick debugging by providing explicit and direct logs
with enough information to identify errors easily. Moreover, it should not require much
configuration and should be lightweight.

A CI server should be deployed and integrated with the 5GinFIRE infrastructure.
Subsequently, CI pipelines should be configured on the framework in order to call the
validation tool and automate its usage. In the end, it is expected that the pipeline is
triggered whenever a developer submits a new VNF in the portal, and the produced
tests are performed over the VNFD.

Nevertheless, the developed solution must be independent of the CI server so that it
can be used in other situations, for example, without automation associated or with
another server.

2https://5ginfire.eu/
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1.3 Dissertation structure

To make the reader acquainted with the most relevant concepts of this document,
Chapter 2 describes the necessary background as well as related work. Chapter 3
provides the requirements needed in order to build a solution as well as a full description
of its architecture. Afterward, Chapter 4 gives a comprehensive overview of the system
implementation, which includes either the package development as well as the integration
with the automation platform. Next, Chapter 5 is presented, which lays out the analysis
of the results gathered. Finally, Chapter 6 provides the work conclusion. Lastly, the
references are presented.
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CHAPTER 2
Background concepts

This chapter gives an overview of all the concepts that are important for understanding
this Document. With the primary goal of this Dissertation being the creation of a
mechanism to validate OSM VNFs and NSs and integrate it with 5GinFIRE, it was
first necessary to understand the 5GinFIRE scope and then learn about automation
techniques.
5GinFIRE is a project that aims to provide an open and extensible testing platform for
NFV related experiments. Therefore, the first section of this chapter addresses NFV by
exposing the reasons for its development and a description of its architecture.
One of the main components of NFV is MANO. Many entities have made efforts do de-
velop their MANO implementation. In particular, SONATA, Open Network Automation
Platform (ONAP), Open Baton and OSM are the most popular projects. The first three
have a dedicated section with a brief description of their characteristics. A more detailed
study is provided for OSM since it is the orchestrator used by 5GinFIRE. With the
clarification of these concepts, the next section describes the 5GinFIRE architecture and
the project workflow. The last two sections address the DevOps and CI concepts, which
are fundamental understanding the automation concept followed on this Dissertation.

2.1 Traditional networks architecture

The traditional network system has always been approached as a physical equipment
world. Throughout the years, networks have become quicker, more capable, and resilient;
however, they are still struggling to meet the evolving market requirements [11]. For
network operators, deploying a new service involves purchasing new physical equipment
for each of its features. This approach leads to a set of problems for service providers.
[11] gives an in-depth overview of those difficulties, which are described in section 2.1.1.

5



2.1.1 Current architecture problems

Flexibility

Network operators rely on proprietary equipment. This equipment is usually bundled
as one - hardware and software - and limited to the vendors’ implementation. This
approach leads to a limitation of flexibility and customization of such devices.

Scalability

Being dependent on physical network equipment raises problems on space availability
and power consumption. Software-wise, these devices are designed to handle limited
data. Once that cap is reached, operators have no options rather than upgrading the
device.

Time-to-Market

With the evolution of applications, new services often grow on requirements. So, to
implement new services and meet their demands, buying new networking equipment
and redesigning the network are challenges that operators have to go through. Service
providers are, therefore, delaying the launch of new services, resulting in company and
revenue losses.

Manageability

Although networks implement standardized monitoring protocols such as Simple Network
Management Protocol (SNMP), Netflow1, or Syslog2, vendor-specific parameters are
usually monitored using non-standard tools. Thus, with the different variety of devices
and vendors, monitoring and controlling logs may become too overwhelming.

High Operational Costs

As previously stated, buying new equipment to sustain new services is expensive.
Besides, manufacturers require highly trained staff to deploy and maintain their devices,
contributing to the raise of additional costs.

Migration

Considering the situations when no new services are to be launched, after some time,
networks and devices have to be upgraded and reoptimized. This update includes
on-site physical access and workers to deploy new equipment, reconfigure connectivity,
and enhance site infrastructure.

1https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
2https://tools.ietf.org/html/rfc5424
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Operators need to find a way of providing their services with the same quality while
keeping the costs low. NFV was proposed to mitigate the identified challenges. Section
2.2 presents a more in-depth description of this technology.

2.2 Network Function Virtualization

NFV’s main idea is to isolate physical network equipment from the service running on
it. With this approach, it is possible to centralize network devices on COTS hardware.
COTS are equipment for general use that do not require the adoption of proprietary
hardware or software. These types of devices are, for example, servers, switches, or
storage. Network services are then developed in software that is compatible with the
referred equipment [5]. The resources are sufficiently abstracted for network services to
make use of them without knowing their location and organization.

This cloud model paradigm is about improving how to implement and control
network services; therefore, NFV promises to deliver agile operations, quicker role
creation, and efficient use of resources.

In the end, NFV differs from the current network practices mainly in three aspects
[12], [13]: (i) it decouples software from hardware, which allows the network service to
not be a combination of interconnected hardware and software, making these components
independent of one another; (ii) enables flexible network function deployment because,
as software is detached from hardware, there is more room to combine these components
and performing different network functions faster over the same physical platform; and,
as a consequence of the described characteristics, (iii) it allows dynamic scaling because
as the network function is instantiable software, it is then easier to scale its performance
more dynamically. Figure 2.1 pictures the changes on the migration from traditional
networks to NFV.

Currently, the entity responsible for the standardization and development of NFV
in Europe is ETSI. To guide the research on this field, ETSI created an Industry
Specification Group (ISG) for NFV. ETSI NFV ISG was created in 2012 by seven
leading telecommunication operators [14]. Since then, the group released over eighty
different documents that cover all the architecture specifications, requirements as well
as functional components, their interfaces, Application Programming Interfaces (APIs),
and protocols [15].

NFV is intended to address the demands of flexibility, agility, and scalability [2].
The goals of NFV proposed by ETSI are [12]:
• Use COTS hardware to deploy NFs through software virtualization. These NFs

will then be called VNFs.
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Figure 2.1: Transition to NFV[11].

• Improve scalability and decouple functionality from location by boosting flexibility
in assigning VNFs to hardware. This approach makes it possible to store software
at the most appropriate locations, such as data centers.

• Fast service upgrades through software-based service deployment.
• Reduced power consumption accomplished by moving workloads and shutting

unused hardware down.
• Standardized and open interfaces between the VNFs, the infrastructure, and

the management entities so that different vendors can supply these decoupled
components.

In order to achieve the stated goals, ETSI built NFV architecture displayed on
figure 2.2.

The referenced diagram shows three main components: the Virtual Network Func-
tion, the Network Function Virtualization Infrastructure and the Network Function
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Figure 2.2: ETSI NFV architectural reference[16].

Virtualization Management and Orchestration. A full description about these compo-
nents based on [11] and [12] is provided in the next following sections.

2.2.1 Virtual Network Function

A VNF is the software virtualization of a NF that can be deployed in a Network Function
Virtualization Infrastructure (NFVI) [17]. This NFV component aims to perform the
actions of a network device such as routers, switches, firewalls, among others, through
software while operating on generic hardware. VNFs use Virtual Machines (VMs) to
deploy their software. The VMs are provided by the NFVI. When two or mone VNFs
are connected they form a NS.

2.2.2 Network Service

A NS is a group of VNFs described by their functional and behavioral characteristics
[17]. NS’ objective is to describe the relationship between its constituent VNFs and
the links that connect them in the NFVI network. Such connections link VNFs to
connection points that provide an interface to the existing network [18].

2.2.3 Network Function Virtualization Infrastructure

NFVI is the combination of hardware and software components that build up the
environment where VNFs are deployed [17]. Given that description and figure 2.2,
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NFVI is composed by COTS, a virtualization layer (which may be, for example, an
hypervisor) and virtual resources.

For ETSI, hardware resources, which, as referred above, are COTS, are of three
types: computing, storage, and network. Computing resources include both Central
Processing Unit (CPU) and memory; storage may be network-attached or local storage;
network hardware includes the network interface cards and ports.

The virtualization layer is responsible for abstracting the hardware resources as
well as isolating the VNF software from them. Furthermore, this layer communicates
directly with the hardware resources making them accessible for the VNF as a VM. In
the end, this layer is the component that decouples the software from the hardware.

Figure 2.3 displays the communication provided by the virtualization layer between
the physical hardware and the VNFs.

Figure 2.3: Virtualized resources provided to VNFs [11].

2.2.4 Network Function Virtualization Management and Orchestration

NFV MANO covers all the orchestration and lifecycle management operations of the
physical and software resources as well as the VNF’s. There are three functional blocks
on the NFV MANO framework and four data repositories. As it is portrayed on figure
2.4, the functional blocks are the Network Function Virtualization Orchestrator (NFVO),
the Virtual Network Function Manager (VNFM) and the Virtual Infrastructure Manager
(VIM) and the repositories are the NS catalog, VNF instances, NS catalog and NFVI
resources [19], [20].

The mentioned repositories handle all data from the ETSI NFV framework. Each
database has a specific function and targets other framework components [20].
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The NS catalog is a collection of predefined models that describe how to build
and deploy services as well as its functions and their connectivity. On another hand,
the VNF catalog is a compilation of models detailing the deployment and functional
features of the VNFs available. The NFVI resources repository holds information on
the availability of the NFVI resources. Last but not least, the NFV instances repository
stores lifetime data on all function and service instances.

Figure 2.4: ETSI NFV MANO main components [20].

Network Function Virtualization Orchestrator

NFVO has two main roles separated into two distinct categories: resource orchestration
and service orchestration. The former includes tasks related to the orchestration of
NFVI resources, such as the management of the VNF instances that share resources
with the NFVI and providing services that support NFVI access isolated from the VIM.
The latter contains duties linked to the lifecycle management of the NSs [19], [20]. The
NFVO interacts with all the referred databases [2].

Virtual Network Function Manager

The VNFM is responsible for managing the VNFs’ lifecycle [2], [19], [20]. It is possible
for a vendor to create their own VNFM which means that one VNFM does not have to
be responsible for managing all the VNFs [11]. This functional block has access only to
the VNF catalog.
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Virtual Infrastructure Manager

A VIM is the component that manages NFVI physical and virtual resources. There
may be more than one VIM. Besides the management task, they are also capable of
monitoring the performance and status of the hardware resources and, among others,
providing network connectivity between VNFs at the VM level. If there are many VIMs,
they do not need to be physically located in the same place [2], [11], [19].

With the conceptualization of NFV, several open-source and commercial projects
have made efforts to implement a MANO framework (the orchestrator) that meets the
described requirements. The biggest projects are: ONAP, OpenBaton, SONATA, and
OSM.

2.3 Open Network Automation Platform

ONAP is an open-source project currently backed by Linux Foundation and founded
by AT&T and China Mobile, which aims to allow physical and virtual networks
orchestration in order to deliver reliable network services faster while keeping the costs
low by providing a multi-site and multi-VIM platform [21].

Its architecture relies on two significant frameworks denominated by design-time
environment and run-time environment. The former consists of the environment with all
the tools needed for the development and improvement of existing network capabilities
as well as the management of policies and rules for proper orchestration, and, on
another hand, the latter is responsible for the execution of the design-time defined
rules and policies [22]. By giving answers for the increasing demands of networks
and having proven use cases in real-world situations such as Voice over Long Term
Evolution (VoLTE) and Virtual Customer Premises Equipment (vCPE), ONAP has
the advantage of being used by big network operators such has AT&T leading to more
reliability on the market.

2.4 Open Baton

Open Baton is an open-source project aligned with ETSI NFV that defines its primary
goal to build an extensible architecture to orchestrate network services through NFV
environments [23].

This orchestrator distinguishes itself from the others because of its features, which
are: (i) openness and extensibility because it was developed so it is integratable within
heterogenous NFs and cloud infrastructures; (ii) provides VNFM interoperability since
not only supports multiple VNFM solutions (by providing mechanisms for new VNFM
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integrations) as well as a generic VNFM and multiple VIMs; (iii) it provides multi-
site deployments and, lastly, (iv) allows different VNF IMs, supporting different VNF
deployments [23].

Although Open Baton emerged on the community before other projects like OSM,
its infrastructure is not used as much. However, projects like SoftFIRE3 make use of its
features.

2.5 SONATA

SONATA is a vendor-agnostic MANO platform, aligned with ETSI NFV, that provides
a virtualization infrastructure for the management and orchestration of network elements
in NFV environments [24], [25]. This project was under development from 2015 until
2017 and it is currently being extended by 5GTango4.

This orchestrator defines that a NS lifecycle is divided into three phases: (i) develop-
ment, (ii) testing, and (iii) operations. The described stages are taken into account on
SONATA’s architecture by the SDK, verification, and validation, and service platform
blocks [24].

The SDK provides the tools to help developers to build the softwarized network
services. The service platform supplies a fully adaptable design of the MANO framework
offering service customization in two levels: the orchestration platform may be modified
in order to offer support to desired business models and, on another hand, the service
developer can influence the management and orchestration operations of their network
services platform by configuring, for example, scaling operations [25]. The platform for
verification and validation offers advanced mechanisms to qualify VNFs and NSs [24].

The architectural aspects of the verification and validation component of SONATA
are described in section 2.9.1 as they are considered related work on the scope of this
Dissertation.

2.6 Open Source Mano

OSM is, as the name suggests, an open source solution for the MANO component of
NFV that aims to manage lifecycle, configuration and in-life aspects of the hosted
functions [26]. This project is supported by ETSI, therefore, its development is aligned
with the ETSI NFV [27]. Figure 2.5 represents that alignment by showing ETSI NFV
MANO architectural specification on the left and OSM components over the diagram on
the right. On the OSM approach, the NFV orchestrator is represented by the resource

3https://www.softfire.eu/
4https://www.5gtango.eu/

13



orchestrator, the VNF manager by the VNF configuration & abstraction and the VIM
by OpenVIM5, OpenStack6, VMware7 or Amazon Web Services (AWS)8.

Virtualised
Infrastructure
Manager(s)

VNF
Manager(s)

NFV 
Orchestrator

NFV Management and Orchestration

Or-Vi

Or-Vnfm

Vi-Vnfm

Service, VNF and 
Infrastructure 
Description

Figure 2.5: Comparison between ETSI NFV MANO architectural specification [16] (left)
and OSM (right) [28].

Besides, a Graphical User Interface (GUI) is also provided for the interaction between
the users and the framework.

When planning OSM, four principles were taken into account that should be followed
throughout its development: layering, abstraction, modularity, and simplicity.

First of all, it is crucial to keep the architecture modular and layered so that
new features can be quickly introduced and previously implemented ones modified.
Nevertheless, the abstraction provided between these layers should be sufficient to
make it easy to interact between them and higher-level features. Last but not least,
the interaction with the users should be smooth and straightforward. Although it
would be interesting to understand the architectural aspects of all of the OSM modules,
for this Document, it is more important to understand how they operate and what
is their role in the lifecycle of VNFs and NSs. However, to accomplish that, it is
imperative to understand what VNF and NS packages are in this context. Each MANO
implementation has its specifications (IM) for these packages. In fact, OSM Information
Model covers the specifications of VNFD, NSD, Network Slice Template (NST), Virtual
Network Function Record (VNFR), and Network Service Record (NSR). Nevertheless,

5https://www.openvim.com/
6https://www.openstack.org/
7https://www.vmware.com/
8https://aws.amazon.com/
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for this Document, the focus is on the NSD and VNFD since the others are out of the
scope of this Document.

Currently, OSM is on release six; however, for the scope of this Document, the focus
will be on release five. The main reason for this approach is because 5GinFIRE is
aiming to support release five. Another reason is the fact that, currently, the release six
white paper is not published yet, so there is no access to the new specifications.

2.6.1 OSM VNF

In OSM, the VNF has the same role as described in the section 2.2.1. In order to
onboard the virtualized network function in OSM, the VNFs are distributed as packages
which hold information regarding its capacity and functionality aspects. The directory
tree presented on figure 2.6 the structure of a VNF package.

VNF package/
README
vnfdescriptor.yaml
checksums.txt
images/
icons/
cloud_init/
charms/

<charm name>/

Figure 2.6: VNF package structure tree.

The package components are (i) the VNFD, which is displayed on the tree as
vnfdescriptor.yaml, (ii) the charms, which are inside the charms directory, (iii) additional
configurations components such as the cloud_init folder, and (iv) some additional
metadata like the icons and the README file.

A VNFD is a YAML Ain’t Markup Language (YAML) template file that describes
everything related to the topology of a VNF, as well as the resources required by the
Resource Orchestrator to deploy the VMs defined in the descriptor. Furthermore, it also
contains the primitives that are available for that VNF to execute. It ultimately describes
a VNF deployment and operational behavior, and is used in both the onboarding and
management of a VNF lifecycle [17].

The charms are optional elements of a VNF, and its specifications are described in
subsection 2.6.4.

2.6.2 OSM NS

Just like the VNFs, the NS goal has been already described in section 2.2.2. The NSs
are also distributed in packages and contain information about the connection between
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the VNFs that form the described virtualized Network Service. The structure of a NS
package appears on figure 2.7.

NS package/
README
nsdescriptor.yaml
checksums.txt
icons/
ns_config/
vnf_config/
scripts/

Figure 2.7: NS package structure tree.

Similarly to the VNF, the NS package is comprised of (i) multiple configuration files,
(ii) metadata, and (iii) a descriptor file. For this Document, however, the emphasis is
on the descriptor file defined as nsdescriptor.yaml on figure 2.7.

The NSD is a YAML template that describes a NS by defining the desired topology
by providing configurations for the constituent VNFs as well as the relationships
between them through Virtual Links (VLs), the Virtual Network Function Forwarding
Graph (VNFFG), and all the necessary characteristics for the onboarding and lifecycle
management of its instances [17].

2.6.3 OSM IM

In order to achieve consistency in the development of VNFs and NSs, OSM has an
infrastructure agnostic Information Model, aligned with ETSI NFV that is able to
describe and automate the full lifecycle of VNFs and NSs [29]. The explanation and
description of the IM is heavily based on the official IM documentation [18].

The IM may be seen as a tree composed of a group of elements. The elements of
each descriptor have two different designations: leaf or container.

A leaf element is a single piece of information that defines a value in the context
of the descriptor. The value datatype may be a string, integer, boolean, reference, or
enum. On another hand, a container is a component that defines another level in the
tree; therefore, it does not have any datatype associated.

In the end, in order to facilitate, all the different elements are called tags. Figure
2.8 portrays the differences between the elements designations.

Since the OSM IM covers many configurations, presenting the full trees would be
very extensive. Thus, only the first level of elements is shown.

The first tree level of the VNFD is provided on figure 2.9.
The sub-elements are displayed in bold. In this case, apart from the sub-elements,

the rest are only leafs since there are no reference elements.

16



Tag

Leaf Container

String
Integer
Boolean
Reference
Enum

Leaf
Container

Figure 2.8: Difference between the elements designations in OSM IM.

vnfd-catalog/
schema-version
vnfd/

id
name
short-name
vendor
logo
description
version
operational-status
service-function-chain
service-function-type
vnf-configuration/
mgmt-interface/
internal-vld/
ip-profiles/
connection-point/
vdu/
vdu-dependency/
http-endpoint/
scaling-group-descriptor/
monitoring-param/
placement-groups/

Figure 2.9: VNFD structure tree.

In terms of leafs, only the operational-status, service-function-chain, and service-
function-type do not represent metadata of the VNF. The operational-status, as the
name suggests, refers to the operational status of the VNF (init, running, upgrading,
terminate, terminated, failed). The service-function-chain and service-function-type are
both related to Service Function Chaining (SFC), with the former being the type of
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node in the SFC architecture and the latter being the type of service function. The
ID, schema-version, name, short-name, vendor, logo, description, and version are all
metadata elements that are used to give the package a unique identity. Regarding the
sub-elements in this first level, they define most of the configurations that are possible
to apply to a VNF.

Table 2.1 discriminates the utility of each sub-element presented on the first level of
the VNFD tree by describing each one of them.

Sub-element Description

vnf-configuration/ Tag that provides the elements for configuring the
VNF. It allows to define if the VNF is configured via
a script or a JuJu charm. If the choice is the latter
then the primitives have also to be specified. More
information regarding JuJu Charms is provided in
section 2.6.4.

connection-point Contains the list of the VNF external connection-
points.

mgmt-interface/ Interface over which the VNFM manages the VNF.
vdu Sub-element on which the configurations of the

Virtual Deployment Units (VDUs) that compose the
VNF are provided.

vdu-dependency Informs the orchestrator on which order the configured
VDUs should start.

internal-vld/ Provides information regarding the network topology
between the VNF internal components such as the
VDU.

ip-profiles List of ip-profiles that describe ip characteristics for
a VLs.

placement-groups Catalog of placement-groups at VNF level. Describe
the strategy for the placement of computer resources
in a cloud environment, therefore, the VDUs that are
within the placemenht-group have to be specified.

scaling-group-descriptor Defines a group and ratio of VDUs in the VNF that
are used as a target for scalling actions.

monitoring-param Contains monitorable VDU or VNF parameters.
Continues on next page
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Sub-element Description

http-endpoint The http-endpoint contains a group of endpoints to
be used by the monitoring-params.

Table 2.1: VNF possible configurations overview.

Further details on the elements of the VNFD descriptor are present on [30] and [18].
A VNFD example is presented on code block 1.

vnfd:vnfd-catalog:
vnfd:
- id: hackfest_basic-vnf

name: hackfest_basic-vnf
short-name: hackfest_basic-vnf
version: '1.0'
description: A basic VNF descriptor w/ one VDU
logo: osm.png
connection-point:
- name: vnf-cp0

type: VPORT
vdu:
- id: hackfest_basic-VM

name: hackfest_basic-VM
image: ubuntu1604
alternative-images:
- vim-type: aws

image: ubuntu-artful-17.10-amd64-server-20180509
count: '1'
vm-flavor:

vcpu-count: '1'
memory-mb: '1024'
storage-gb: '10'

interface:
- name: vdu-eth0

type: EXTERNAL
virtual-interface:

type: PARAVIRT
external-connection-point-ref: vnf-cp0

mgmt-interface:
cp: vnf-cp0

Code block 1: Hackfest Basic VNFD [31].

This example, provided on the 6th OSM hackfest, describes a VNF with one VDU.
This VNFD starts with a description and definition of basic configurations like the
name, ID, description among others. Then, a connection-point named vnf-cp0 of the
type VPORT is described.

The VDU defines, in the field count, that one VM based on the image ubuntu1604,
should be instantiated. The VM should have only one VCPU with 1024MB of memory
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and 10GB of storage. This VDU should have one external interface named vdu-eth0.
This interface will be the point of connection between the VNF capsule and the VM.
That link is described in the external-connection-point-ref field, which has the VNF
connection-point associated. As there is only one VDU, there is no need to specify an
internal interface. The management interface is a connection-point and, therefore, the
vnf-cp0.

This VNF does not handle any cloud-init file nor any JuJu charm. Hence, no service
primitive is configured. An example using primitives is shown in section 2.6.4.

Figure 2.10 displays a graphical representation of the VNFD described.

Name: hackfest_basic-vm
Image: ubuntu1604

VM Flavor: 
     - 1 VCPU

        - 1GB RAM
              - 10GB storage

VNF: hackfest_basic-vnf

VDU

Interface: vdu-eth0

External-connection-
point: vnf-cp0

Figure 2.10: Hackfest basic VNF diagram.

As previously stated for the VNFD, in the NSD tree presented on figure 2.11, the
sub-elements are displayed in bold. Besides that, the leafs are all metadata. Some
sub-elements are common to both of the descriptors, such as the connection-point,
scaling-group-descriptor, ip-profiles, placement-groups, and the monitoring-param. The
differences in specifications from the VNF and the NS in these elements are minimal.
They mostly differ because the VNFs operate with the VDUs and the NSs work directly
with the VNFs. Thus, in, for example, the monitoring-param, instead of monitoring the
VDU, the NSD refers to monitoring VNFs. Another example is the sub-element vnf-
dependency, which has the same role as the vdu-dependency. However, the dependencies
should be VNFs from the constituent-vnfds and not, again, VDUs. Due to these reasons,
for the NSD, the description of these sub-elements will not be provided. Table 2.2.2
provides the description of the elements that are unique to the NSD.

20



nsd-catalog/
schema-version
nsd/

id
name
short-name
vendor
logo
description
version
connection-point/
scaling-group-descriptor/
vnffgd/
ip-profiles/
initial-service-primitive/
terminate-service-primitive/
input-parameter-xpath/
parameter-pool/
key-pair/
user/
vld/
constituent-vnfd/
placement-groups/
vnf-dependency/
monitoring-param/
service-primitive/

Figure 2.11: NSD structure tree.

Sub-element Description

vnffgd/ Graph specified by a network service provider that
connects network function nodes in a bi-directional
way where at least one node is a VNF through which
the traffic is directed.

user/ The user is composed of the name and key pair of the
person using the NS.

key-pair/ List of public keys to be injected on the NS.
constituent-vnfd/ List of the VNFs that form the NS.

Continues on next page
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Sub-element Description

initial/terminate-
service-primitive/

The initial and terminate service primitive have the
same configuration. Both of them deal with the def-
inition of primitives to be executed on the NS level.
The difference is that the initial service primitive ex-
ecutes the primitives on the initialization of the NS
and the terminate service primitive executes on the
termination of the NS.

parameter-pool/ Specifies a range of values to use during the configu-
ration of NS.

input-parameter-xpath/ Sub-element which handles a list of XPaths9 that
point to parameters inside the NSD that can be cus-
tomized during instantiation.

vld/ Deployment model that describes the connection re-
quirements between the VNFs and the NS endpoints.
This sub-element resembles the internal-vld element
from the VNF in terms of configurations.

service-primitive/ The service primitive works similarly to the
initial/terminate-service-primitive; however, this one
is not associated with any time frame on the lifecycle
of the NS. The primitive is expected to be executed
whenever necessary as it is available on service-level
for the NS.

Table 2.2: NS possible configurations overview.

Further details on the elements of the NSD descriptor are present on [32] and [18].
A NSD example using the VNF presented on codeblock 1 is provided on code block

2.
This NSD, which was bundled with the previous VNF on the 6th OSM hackfest,

provides the description of a simple NS using one VNF and a single VL.
Firstly, all the metadata is set. Then, the constituent-vnfd is specified. Since this

NS only holds one VNF, only one vnfd-id-ref is filled and it contains the ID of the VNF
previously specified: hackfest_basic-vnf.

Lastly, the Virtual Link Descriptor (VLD) is created. It is named mgmtnet, is
a management network and it describes which connection-points should be inter-
connected. Given the constituent-vnfd, the hackfest_basic-vnf ’s connection-point

9https://www.w3.org/TR/1999/REC-xpath-19991116/
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nsd:nsd-catalog:
nsd:
- id: hackfest_basic-ns

name: hackfest_basic-ns
short-name: hackfest_basic-ns
description: Simple NS with a single VNF and a single VL
version: '1.0'
logo: osm.png
constituent-vnfd:
- vnfd-id-ref: hackfest_basic-vnf

member-vnf-index: '1'
vld:
- id: mgmtnet

name: mgmtnet
short-name: mgmtnet
type: ELAN
mgmt-network: 'true'
vnfd-connection-point-ref:
- vnfd-id-ref: hackfest_basic-vnf

member-vnf-index-ref: '1'
vnfd-connection-point-ref: vnf-cp0

Code block 2: Hackfest Basic NS [33].

should be connected to this VLD.Figure 3.1 displays the connections between the VNF
and the NS’s VLD.

Name: hackfest_basic-vm
Image: ubuntu1604

VM Flavor: 
     - 1 VCPU

        - 1GB RAM
              - 10GB storage

VNF: hackfest_basic-vnf

VDU

Interface: vdu-eth0

External-connection-
point: vnf-cp0

VL: mgmtnet

NS: hackfest_basic-ns

Figure 2.12: Hackfest basic NS diagram.

2.6.4 JuJu Charms

Juju is an open-source modeling platform for cloud software service. It allows its users to
quickly and efficiently deploy, configure, manage, maintain, and scale cloud applications
[34].
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There are three main concepts in charms: actions, hooks, and layers. Actions are
the programs that the user needs to be executed, hooks are signals that may or may
not occur, and layers are an aggregation of actions and hooks.

Charms are built in layers, which means that a charm is a collection of actions and
hooks. In addition to those, a layer may import other layers resulting in a new set
of functionalities. This approach is right because it allows charms to be reusable and
easily modifiable.

Given the layered architecture, when developing a new charm, what is being created
is a new layer.

Figure 2.13 and 2.14 present two distinct tree directories. The former presents the
structure of a new layer, and the latter presents the final charm after being built, this is,
combining the imported layers and the newly created. Starting by figure 2.13, five main
files need to be configured: metadata.yaml, actions.yaml, layer.yaml, reactive/action.py,
and actions/action.

The metadata.yaml includes all the high-level information of the charm, such as the
creator name, description, among others. The layer.yaml file states all the layers on
which the new layer is based. Two layers are mandatory when developing a new charm
in the OSM context: the basic and the VNF proxy layer. The former is required for all
the charms because it contains the necessary configuration for making a charm work.
The latter is necessary to set configurations to make the charm a proxy charm. In the
OSM context, proxy charms are used because they are the bridge of communication
between the OSM infrastructure and the deployed VMs. The actions.yaml contain the
high-level description of the actions implemented on the charm. However, to perform
the actions, there are two extra steps: the actions folder has to be created, and for each
necessary action, a new script, which has to be an executable file, has to be added to
that folder. In the tree, the script is presented as actions/action, and it is the connection
point between the signal to perform the action and the reactive platform. Therefore, a
Python10 script containing the actual implementation of the action must be created
and stored on the reactive folder. The reactive programming pattern allows the charm
to respond to changes in state, including lifecycle events, in an asynchronous way [35],
[36]. In the tree, this is mapped as reactive/action.py

After these steps, the charm has to be built. In this process, the configurations of
the layers described in the layer.yaml and the code of the new layer are joined and form
the brand new charm, which will be ready to use. The final tree after this process is
presented on figure 2.14.

10https://www.python.org/
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$JUJU_REPOSITORY/layers/
<charm name>/

README
config.yaml
icon.svg
layer.yaml
metadata.yaml
actions.yaml
actions/

action
reactive/

action.py
tests/

Figure 2.13: Charm new layer structure.

$JUJU_REPOSITORY/builds/<charm
name>/

requirements.txt
README
icon.svg
copyright
tox.ini
config.yaml
actions.yaml
Makefile
actions/

action
reactive/

action.py
deps/
bin/
hooks/
tests/

Figure 2.14: Charm new layer after building.

Having charms by themselves does not add anything to OSM. They are only useful
if there is a way of mapping the charms actions to the descriptors. As described in
section 2.6.1, the VNFD holds a set of operations to define primitives. The definition
of these primitives provides the necessary connection between the descriptors and the
charms since they are responsible for calling the actions to be run on the VNF. The
role of these primitives in the OSM ecosystem is described in section 2.6.5.

2.6.5 Open Source Mano architecture

Looking at figure 2.15, the modules that compose OSM’s architecture are easily identified:
the OSM client as well as the lightweight User Interface (UI), the Northbound Interface
(NBI), the Lifecycle Manager (LCM), the VNF Configuration and Abstraction (VCA),
the Resource Orchestrator (RO), the Policy Manager (POL) and the Monitoring
Module (MON) components. There are also common databases. The communication
between these modules occurs via a Kafka11 bus. One multi present component is the
OSM IM.

According to figure 2.15, the OSM access point to the users occurs via the OSM
client or the lightweight UI. As it was stated before, OSM was envisioned as a simple
system. Therefore, having a transparent interaction with the users is mandatory.

Lightweight UI and the OSM client were developed to provide a fluid user experience
by offering straightforward management of the VNFs’ and NSs’ lifecycle. It also provides

11https://kafka.apache.org/
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real-time data of the virtualized services and functions as well as a full description
of network topologies. The communication between this module and the other OSM
components takes place via the Northbound Representational State Transfer (REST)
API (NBI). The OSM client, is a Command Line Interface (CLI) tool that replicates
most of the functionalities of the lightweight UI.

OSM’s NBI, which is based on NFV SOL005 [37], is the hidden access point between
the user and OSM’s functionalities.

Figure 2.15: OSM architecture [38].

Having now the context of the VNF and NS packages and given the architecture
presented in figure 2.15, the interaction between these components and modules can
now be described. Figure 2.16 presents a high-level overview of the operations on the
OSM environment.

Considering the information contained in the VNF and NS packages, their content
can be split into two groups: in the case of the VNFs there are the resource descriptions
and the management procedures. On another hand, the NS packages have information
about topology and management procedures, as well.

When a new NS is onboarded into OSM, the resource descriptions and the topology
information go through the NBI to the RO.

The RO module orchestrates the resources available for the OSM environment. It
manages and controls the allocation of resources through multiple geo-distributed VIMs
and multiple Software-Defined Networks (SDNs) controllers. Therefore, the RO deploys
the necessary VMs in order to match the resources and topology manifested in the
descriptors using the VIM connectors. In figure 2.16, the purple lines illustrate the
described workflow.

The other group of content, the management procedures, are also driven by the
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Figure 2.16: Interaction between OSM modules over the deployment of NSs and VNFs [29].

NBI. Nevertheless, they follow a different path since this content is forwarded to the
VCA. The VCA works as a VNFM. Consequently, it is the component responsible for
enabling configurations to/from the VNF. When allied with JuJu, this module is in
charge of signalizing the VNF to perform a specific action. The actions are encapsulated
in charms. The blue lines highlight this workflow in figure 2.16.

In conventional networks, day zero involves the configuration of all the physical
equipment; this is, connecting all the cables and ensuring connectivity between them.
Day 1 is related to making the network ready to work. To do this, the Operational
Support System (OSS) extends to all hardware its configurations, including the final
network and its neighbors. Licenses injection is also performed at this stage. Finally,
day 2 includes all the configurations to keep day-to-day operations running.

When it comes to NFV, the significant differences between the traditional network
configurations happen on day zero and day one configurations. However, day two is
the same for both approaches. As there is no need for specific hardware configuration
in NFV the NSs and VNFs deployments are handled by the orchestrator (MANO
component in NFV). Due to this reason, and since the configuration of the components
is done basically at the same time as the deployment, day zero and day one co-occur.
As OSM implements the ETSI MANO specifications, the same path is followed on its
lifecycle.

In OSM, the day zero configuration is done via the cloud-init file. When a NS
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is instantiated and the request arrives to the RO, this module starts the process of
deploying VNFs. To do so, the RO contacts the VIM to request the necessary VMs with
the requirements specified on the VNFD. With the VMs deployment, the cloud-init
file present on the VNF package is injected and its configuration takes place. These
configurations are not related to the VNF itself but only to the configuration of the
Virtual Machine.

Happening basically at the same time, when the RO completes the deployment of
the VMs, day one configuration takes place. The initial-config-primitive is run for each
VNF, and the charm actions that are associated with this primitive are executed.

Regarding day two configuration, the primitives that can be executed are the config-
primitive or the service-primitive. If the NBI receives a request for a NS primitive,
then the sequence of charm actions associated with the service-primitive are executed.
On another hand, if the request is for a VNF primitive, then the config-primitive is
triggered, and its sequence of charm actions is run. The request may also be about
a scaling operation. A scaling operation may require the deployment of new VMs. If
that is the case, the RO needs to take care of that deployment, and the additional
configuration should be provided. Apart from that, the primitive process is the same
as before. However, the primitive triggered is the pre/post-scaling-primitive, which
executes the sequence of charm actions described in the VNFD.

2.7 5GinFIRE

5GinFIRE is a project that started in 2017, and it is expected to end in 2019, funded
by the European Horizon 2020 Programme, which aims to build an extensible 5G-NFV
based ecosystem focused mainly on vertical industries. This project is identified as a
"forerunner experimental playground" since it intends to be the platform where new
components, architectures, or APIs are tried before being deployed into production [9].

The described motivation relies on two principles: (i) being driven by ETSI standards
and open source code and (ii) focusing on automotive and smart cities verticals [39].
The former principle is crucial since it is one of the aspects on which 5GinFIRE stands
out, given that it is the first platform to have leading standardization practices at its
core [9].

Figure 2.17 presents the 5GinFIRE architecture. Although the overall concept is, as
previously stated, aligned with the ETSI NFV architecture, the project aims to extend
it, so it becomes suitable for every vertical’s requirements and specifications [9].

From figure 2.17, is is possible to identify four main architectural blocks: (i) the
Experimental Instances of Verticalss (EVIs), (ii) the 5GinFIRE Network Virtualized
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Infrastructures (NVIs), (iii) the automated MANO, and (iv) the 5GinFIRE design and
architecture framework.

Figure 2.17: 5GinFIRE architecture [8].

The EVIs is the agglomeration of the multiple virtual functions from each vertical
[9].

The 5GinFIRE NVI is comprised of the NFVI, which, as previously described in
section 2.2.3, offers the resources for the VNFs execution by providing the virtualization
layer to abstract the physical hardware from the VNFs. This block also holds the VIMs,
which are responsible for the management of the infrastructures’ operation. 5GinFIRE
is a geographically distributed multi-VIM environment. This approach raises resources
placement challenges for each EVI. This issue is addressed by the automated MANO,
which, for this project, is OSM. Therefore, the auto-MANO block is responsible for the
orchestration and lifecycle management [9].

Last but not least, the 5GinFIRE design and architecture framework contains all the
APIs and platforms to provide facilities for experiences and integration of new services
[9].

There are multiple designations for each user on the scope of the project. In order
to understand each user’s interaction and role within the project, the definition of each
stakeholder is described in table 2.3.
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Actor Description

Experimenter User that takes advantage of the 5GinFIRE environ-
ment to deploy an experiment.

VNF Developer User responsible for uploading the VNF and NS on
the 5GinFIRE portal.

Testbed Provider User that provides the testbed and is responsible for
its administration, configuration, integration, among
others.

Experimenter Mentor User responsible for keeping track of the experiences
status and resource usage.

Services Administrator User that mantains the 5GinFIRE infrastructure.
Table 2.3: Possible roles on the 5GinFIRE environment [9], [40].

Figure 2.18 shows the different collaborators of 5GinFIRE and their role in the
project. University Carlos III of Madrid provides the centralized OSM deployment that
orchestrates all the testbeds. The testbeds give different test platforms for different
verticals applications such as automotive, media, health, among others, geo-distributed
in many different locations. Finally, the 5GinFIRE portal, developed and supported by
the University of Patras, offers the connection point between the experimenters and
VNF developers and the OSM and testbeds.

Figure 2.18: 5GinFIRE colaborators and their purposes (adapted from [41]).
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The experimentation workflow incorporates each one of the actors and components.
Firstly, the VNF developers construct the experiment VNF by providing an OSM
compliant VNFD and uploading it into the 5GinFIRE portal. The experimenters are
then able to develop the NS with the submitted VNF. Once finished, they can select
the testbed in which they want to deploy the experiment and define some other details
such as metadata or scheduling. The experiment is then submitted to approval. The
experimenter mentor is responsible for taking care of the submitted experiment and has
to ensure that the testbed owners and the experimenters are on the same page regarding
scheduling, amount of resources, among others. At this point, it is also necessary to
ensure that the VNFs utilized by the NS can be deployed. As a consequence, the service
administrator has to validate the VNF manually to ensure that the package is ready to
be on-boarded. When everything is set, the mentor approves the experiment submission,
and the onboarding occurs.

On this workflow, one critical step is the manual validation of the VNFs since it
consumes much time, and it is not scalable. Therefore, the need for an automated
process arises [10]. This Dissertation aims to provide an automated solution for this
step and integrate it on the 5GinFIRE design and architecture framework.

Once the package is validated, the experiment starts. The centralized OSM receives
the request to deploy the NS utilizing its constituent VNFs and which VIM (testbed)
should utilize resources from. Then, it proceeds to instantiate the necessary VMs, and
the required configurations are applied. Once everything is set, the experiment is ready
to operate, and the process is completed.

2.8 DevOps

Market requirements are not a problem just for networks. Software also suffers from
constant customers’ demands since users expect fast delivery of their unceasing new
features. Frequent releases are not only essential for fulfilling such requisites but also to
create an advantage in the market [42]. Although the usage of Agile [43] methodology
brought optimization related to software development, operation tasks are not included
in these procedures [44], since the goals of each sector are misaligned: the development
teams aim for change whether the operations teams strive for stability [45].

DevOps, which was firstly introduced in 2009 by Patrick Debois, acknowledges the
need to incorporate software development and operational deployment [46] continually.
Derived by the combination of Development (Dev) and Operations (Ops) [47]–[50], it
composes a paradigm that enables the collaboration between developers and operation
teams, resulting in more efficient teamwork [49]–[51]. By providing such interconnection,
DevOps extends Agile [44], [47], [52].
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There are four key enablers of DevOps: culture, automation, measurement, and
sharing. Regarding culture, both operations and development teams must make an
effort to participate in each other’s tasks in order to be aware of what is happening at
each end. Build, deployment, and testing automation allows faster feedback contributing
to the referred gain of efficiency. Measurement embraces the monitoring by collecting
metrics not only from the deployment itself but also from the developers. Furthermore,
collecting system logs should be another collaborative measurement task between
both teams. Finally, sharing is about spreading knowledge, specifically by providing
information about development tools or, on another hand, techniques for managing the
infrastructure [53].

The main goals of DevOps are to continuously deliver high-quality services while
emphasizing simplicity and agility as well as blend the development and operations
tasks by encouraging collaboration and trust [52].

DevOps main components are pictured on figure 2.19, which is based on [54]. On the
referred image, it is possible to acknowledge four stages within DevOps: CI, Continuous
Testing (CT), Continuous Monitoring (CM), and Continuous Delivery (CD).

Plan Code Build Test Release Deploy Operate

Devops

Continuous Integration

Continuous Testing

Continuous Monitoring

Dev Ops

Continuous Delivery

Figure 2.19: DevOps different components.

Continuous Testing is the component in which tests are configured to run automati-
cally as soon as the code is committed to the repository. This approach reduces the
time between the introductions of errors and their detections. Continuous Monitoring
provides the monitoring of the hardware and software after deployment. Continuous
Delivery is the methodology of continuously ensuring that the software is ready to be
deployed in the production environment. Lastly, Continuous Integration is an automat-
ically triggered process that provides code testing and validation and its subsequent
packaging in order to be deployed later. There should be multiple code submissions for
CI during the day, and failure details should also be provided [54], [55].

The work described in this Document is inserted on the DevOps approach, most
precisely on the CI step. Thus, the next subsection, 2.8.1, provides a more detailed
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overview of this process.

2.8.1 Continuous Integration

In software engineering, Continuous Integration was firstly introduced by Grady Booch
in 1991 [56] as the practice of interactively building software once a day. Nowadays, CI
is, as previously stated, a software development practice where whenever a new code
change is committed, and automated build is triggered. The submission is verified in
order to detect and solve integration errors quickly [57].

The CI definition is associated with the term "build". In this context, building is
more than compiling. It defines a combination of processes such as compilation, testing,
inspection, deployment, among others [58]. In the end, it is the operation that holds the
necessary processes that the code should be put through in order to reach the final stage.
The definition of what is meant to execute in each build is done via a configuration
script.

The code produced by developers is usually committed to a version control repository.
The repository is used to keep track of the software changes between users. This approach
also provides a centralized access point for the source code. By applying CI to the
repository, it is possible to verify whenever a change occurs and perform the desired
tasks through building [58].

A CI server is a tool that allows the automation of the development process by being
able to test, build, and deploy code changes submitted in a version control repository. It
is also responsible for holding the configuration script that composes the defined build.

Although not necessary, a CI server is useful since it provides a set of helpful features
such as a convenient dashboard for results visualization as well as scheduling features
[58].

Multiple tools provide CI frameworks. A detailed overview of the most popular ones
is described further in this Document in section 3.2.2.

2.9 Related work

2.9.1 5GTango

With SONATA, 5GTango introduced a verification and validation SDK that aims to
validate VNFs in two different stages: the first stage contains three different steps,
which are: (i) structural validation of the descriptor, (ii) functional testing and (iii)
performance evaluation; the second stage refers to a deeper level of testing. This next
level involves a fully test of the virtualized function by using test plans according the
function of the VNF [59].
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The first phase starts by validating the structure of the VNF. For that, there are
four tests associated: syntax, integrity, topology, and custom rules. The syntax test
validates the submitted descriptors regarding the 5GTango schemas; the integrity test
checks if all the fields have correct values; the topology test verifies the sub-networks
formed inside the VNFD and NSD; last but not least, the custom rules are an open
concept for users to validate whatever they need. To do so, the developer must provide
another YAML file with the rules that wants to verify. The functional testing at this
stage happens by deploying the NSD on a NFV emulation platform and verifying if the
deployment works as expected. Lastly, the last evaluation measures the performance of
the network services when instantiated in multiple scenarios [59].

For the second phase, 5GTango introduced the concept of test plans. This concept
is defined by the association of tests with the NS using a new descriptor. For this, the
user has to define which functional tests wants to perform on the service and write
them using a YAML file. The test plan is then packaged with the NS and deployed.
After the execution, it is possible to get results and metrics in order to understand the
performance of the NS towards the test [59].

Although it is a complete solution, there are a few reasons why it is not feasible
to implement 5GTango’s validation and verification system on 5GinFIRE. The first
reason is that despite being possible to implement just the validation and verification
module without the whole SDK, it still demands many configurations. Another reason
is that 5GinFIRE needs a fully automated service, as previously described. The second
validation phase of 5GTango requires human configuration of the test plans, which does
not seem possible to automate yet since it requires detection of the type of service it is
described on the packages.

2.10 Summary

This chapter started by addressing the traditional network problems, with section 2.1
being reserved for this matter. It was possible to understand that network operators
have trouble with releasing new services without having to deal with problems such
as high costs, lack of flexibility, among others. Such problems lead to delays in the
delivery of new services, resulting in market losses.

NFV is exposed as the solution for these problems in section 2.2. With the decoupling
of software from hardware, NFV brings flexibility, agility, and scalability solutions for
network operators. For this reason, it is one of the most promising technologies of 5G
networks.

Sections 2.3, 2.4, 2.5 and, 2.6 have descriptions of the main features of each or-
chestrator. All of the orchestrators are alike, although Open Baton is the less used.

34



SONATA, on another hand, provides the most features outside orchestration, such as
VNF and NS validation, which constitutes related work to this Dissertation. OSM
has the most in-depth description. The main component described is the IM, as it is
the focus for the development of the validation tests. The IM is very wide; it offers
many different configurations and handles multiple datatypes, providing a huge range
of possible descriptors set.

5GinFIRE architecture and workflow are described in section 2.7. Its architecture is
aligned with ETSI NFV using OSM as the orchestration engine and JuJu Charms (2.6.4)
as the VNFM. A simple usage of the platform is by uploading a VNF package into
the portal, designing its corresponding NS, waiting for the approval of the experience,
and then deploy it on the desired VIM. It is at the submission stage that the solution
proposed by this Dissertation should be applied.

Sections 2.8 and 2.8.1 issue the overview of both concepts, and it described their main
components. CI is part of the DevOps methodology. Therefore, DevOps is presented as
the theoretical background of the CI concept. The CI server is the framework that has
to be integrated with 5GinFIRE in order to produce automation of the validation.

Finally, section 2.9.1 addresses the related work regarding this Document. 5GTango
project is the maintainer of SONATA. As part of its development, an SDK that validates
VNFs and NS was developed. The tool provides structural and functional validation.
None of the approaches is automated, although the former could be. Nevertheless, the
latter relies on the creation of a template file that describes the tests to be performed,
which can not be automated. The installation and integration of this framework with
5GinFIRE was also not straightforward. For these reasons, this work is not a viable
solution for the problem stated.
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CHAPTER 3
Architecture and Specifications

To achieve a final architecture, it is necessary to make choices in terms of what tests to
make, which automation tool fits the requirements and how to integrate all components
into one final architecture. This chapter provides an overview of all the specified
challenges.
Section 3.1 starts by addressing the problem statement. Then, in section 3.2, the type of
tests to be developed are defined. Since syntactic, semantic, and reference validation is
intended to be performed, it is necessary to understand the range of values and tags that
it is necessary to deal with and their interconnections. The second challenge focused
on this section is the choice of the CI server. Subsection 3.2.2 starts by outline the
requirements of a CI tool in order to be feasible for the final architecture. Then, the
most common automation servers are analyzed, their performance over the defined
requirements is provided, and the tool is chosen. Finally, section 3.3 describes the
proposed solution. Subsequently, two architectures are presented: firstly, the validation
tool’s and then the 5GinFIRE automated platform’s.

3.1 Problem statement

Given the 5GinFIRE scope, described previously in section 2.7, 5GinFIRE developers
can submit VNFs through the portal. However, these submissions are not controlled,
since there is no validation on whether the package submitted contains a valid VNFD.
While manual validation was already carried out, it is time-consuming as it is usually a
trial-error task. The aim is, thus, to create an automated process so that when a new
VNF is submitted through the portal, the validation process is activated, the tests are
conducted, and the results are returned to the experimenters. Nevertheless, the tests
applied should be platform-independent so they can be used in other scenarios.
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To this end, it is necessary to develop validation scripts, configure a CI server, and
integrate this system with the 5GinFIRE architecture.

3.2 Requirements and specifications

3.2.1 Validation scripts

When thinking about validating VNFs and NSs, there are two possible paths to follow:
functional validation or structural validation. Given that the main scenario is to
apply validation in the scope of 5GinFIRE and, currently, the validation is carried
out manually, one of the main goals is to automate the process. Functional validation
implies the necessity of knowing what type of operations the VNFs are meant to perform.
Therefore, the process automation would always be dependent on a description by the
user regarding which functionalities the VNF has. Another problem is that VNFs rely
on VMs to run. The names of the images are specified in the descriptors, but most of
the time, they are not available for the 5GinFIRE portal. Instead, the experimenters
would talk directly with the testbed providers for them to upload the images directly
on their VIMs. Given that the images sometimes contain pre-packaged configurations
for the VNF execution, it becomes impossible to test the functionalities without them.
Consequently, only structural validation will be performed.

Given the IM specifications displayed in section 2.6.3, three structural tests were
defined: a syntactical test, a semantic test, and a reference test. The reference test
can also be extended to cross validate VNF with NS. OSM has Yet Another Next
Generation (YANG) models provided by Rift.io [60], [61] which define the rules to
develop VNFDs and NSDs correctly. These models have to be the base for each one of
the tests.

The syntactic test should perform an evaluation of all the tags, evaluating if their
name is correct and if they are defined correctly according to the OSM IM trees [30],
[32].

The semantic test validates the content of each tag. This test approaches two things:
it verifies if the datatype of the tag content is correct and, for tags with pre-defined
values, it verifies if the content is within the possible values for that tag. When analyzing
the datatypes provided on the OSM YANG models, it was noted that apart from the
normal datatypes, there were also custom datatypes, which are defined to specific
configurations of the descriptors. These datatypes are the ones that have only a range
of selected possibilities that may be assigned to the tags. To facilitate the process,
these types have enum assigned to their datatype and then a list of possible options
associated.
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References are used to enumerate dependencies between descriptor elements; there-
fore, they are a possible tag datatype. As a consequence, a tag can contain a reference
to another tag. Nevertheless, that can only happen if the reference value was declared
somewhere else on the descriptor, leading to the necessity of verifying if those values are
well referenced. Moreover, if both a VNF and NS are provided, it should be possible
to validate the NS over the VNF to understand if the dependencies between both
descriptors are correct.

Last but not least, the outputs should be straightforward and contain as much detail
as possible so that the developer can quickly identify its mistakes.

The aim is to develop the scripts in Python 3.61. Although they can be directly
developed adopting the CI server language, this would lead to a restriction of its usage
to the CI platform. The intent is to build a solution that is independent of other
frameworks so it can be executed anywhere without many requirements.

3.2.2 Selection of the CI server

Regarding the CI server, the first step is to choose between the various options available.
There are four requirements that the CI server needs to meet in order to fulfill the

5GinFIRE demands: (i) it has to be highly customizable, so any operation could be
performed from the server, (ii) has to have a REST API so that the integration with
the portal is straightforward, (iii) has to be free or at least offer free functionalities
that can cope with the projects demands a lastly (iv) has to offer the possibility of the
creation of a CI project non-based on Source Code Mananagement (SCM) repositories.

This last requirement is vital for the integration with the 5GinFIRE project. As
previously stated in section 2.8.1, the traditional CI approach is to keep listening to
a SCM repository, and whenever new changes are committed, the automated scripts
are executed. In this case, there is no repository involved as the VNFs arrives directly
from the portal. However, the process is fundamentally the same. The difference is that
instead of having a code submission, the request from a VNF submission via the portal
is what triggers the tests. If none of the CI servers supports configurations outside SCM
environments, then another layer will have to be added to the portal, and whenever a
package is submitted, it is committed to a repository and the tests are executed from
there.

There are several CI tools available. Table 3.1 offers an overview of how diverse
technologies accomplish the specifications defined.

1https://www.python.org/
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Requirements

Tools Customization
Configuration
outside SCM

systems

Has
API

Cost

Jenkins [62]
Wide plugin
repository

Yes Yes Free

TravisCI [63]
Custom builds
with restricted

options
No Yes Free for open source

projects but limited
to three concurrent

jobs.

BitBucketCI
[64]

Good plugin
repository

No No Free 50 minutes of
builds per month

and up to five users
if working on cloud.
No free options for
self-hosted service.

CircleCI [65]

Interface
integrated options;

possibility to
configure new

features via bash
scripts

No Yes Free for cloud
deployments but
limited builds and

user.

GitlabCI [66]
Customization via

plugins
No Yes Free with build

time restrictions on
cloud; free self-host

with features
restriction.

Bamboo [67]
Good apps
repository

No Yes No free options.

Continues on next page
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Codeship [68] Low flexibility No Yes 100 builds per
month for free.

TeamCity [69]
Wide range of

plugins
Yes Yes 100 builds per

month for free and
three build agents.

Buddy [70] Low flexibility No Yes Free for open-source
projects on s cloud;
self-hosted service

without free
options.

DroneCI [71]
Wide plugin
repository

Yes Yes Free on cloud; Paid
enterprise version.

Table 3.1: Performance of the different CI servers over the established requirements.

TravisCI and Bamboo are not good choices because none offers free services.
For the development of this work, the possibility of pipelines configuration without

relying on SCM systems is essential. Due to this reason, except for Jenkins and DroneCI,
the other technologies are not viable for the implementation needed.

Jenkins and DroneCI are a lot similar in terms of features since they both provide
high customization, a REST API, and the possibility of configuring a project without
having to associate it to a repository. The difference point is on the cost. Jenkins is
free without any limitations. DroneCI has two approaches: they offer a free service
on the cloud, and an enterprise paid service that has to be deployed by the user. The
former is not a viable option for the pretended use case since it only works with SCM
repositories. The latter offers a free option with a limitation of five thousand builds per
year. Although this number is high enough, between a completely free option and one
with limitations, the decision relied on the free option, Jenkins. Furthermore, Jenkins
community is more prominent, which solidifies the choice even more.

3.2.3 Jenkins

Jenkins is the chosen CI server, therefore, its configuration is mandatory. This au-
tomation tool provides a dashboard, and all the configurations can be done through
it. Nevertheless, before configuring the Jenkins environment itself, it is necessary to
understand some key concepts of the framework, which are (i) jenkinsfiles, (ii) pipeline,
(iii) jobs, and (iv) builds.
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A Jenkinsfile is a file that configures a pipeline. To do so, it is usually placed on the
SCM repository. Whenever the pipeline connected to it is triggered, it performs the
rules associated.

A pipeline is a set of operations that are meant to be performed on the CI workflow.
In Jenkins, there are two types of pipelines: declarative and scripted.

The scripted pipeline is usually written directly on the Jenkins dashboard, and it
offers more flexibility since the configurations are directly done using the Jenkins base
language, Groovy 2. On another hand, the declarative pipeline limits the user to a more
structured approach, and it is more approximate of the traditional CI.

Given the requirements and since the traditional approach will not be followed, the
configuration will rely on a scripted pipeline. Therefore, in the dashboard, a job of the
type pipeline must be created and then configured.

The builds are the execution of the jobs. Consequently, the process of triggering
the code defined on the scripted pipeline is referred to as a build. Whenever a job is
built, Jenkins creates a workspace for that job on the machine where it is running. This
workspace is used to store possible elements that can be resultant of the build or to
provide other necessary elements for the pipeline execution.

In order to configure the pipelines, it is necessary to prepare the environment. The
first step to take is to deploy Jenkins on the virtual machine assigned for running the
CI server. The server is hosted outside the 5GinFIRE domain; therefore, Jenkins API
must be used to ensure the communication with the 5GinFIRE Portal. The CI server
must be configured in order to have a scripted pipeline that holds a set of configurations,
which allows the execution of the VNFD tests automatically. The portal should be
responsible for triggering the pipeline job that runs the tests. The pipeline, when ready,
must send a response back to the portal with the results of the tests. All of these tasks,
except for the tests, must be configured directly using Groovy.

3.3 Proposed solution

Given the goals described on chapter 1, the aim is to build a fast, lightweight, easy-to-use
tool for validating NSD and VNFD. It is expected that this tool provides extensive and
straightforward logs that indicate the state of the descriptors submitted for analysis.
Although the work is expected to be integrated with 5GinFIRE, the solution proposed
does not aim only to serve the project, it aims to serve all the VNF and NS developers
that want to assure that their descriptors are well built.

To fulfill the 5GinFIRE demands, Jenkins should be installed, a pipeline must be
created, and the configurations to install the validation tool should be performed. The

2http://groovy-lang.org/
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connection between the CI server and the 5GinFIRE portal should also be made. The
pipeline should be triggered every time a package is submitted to the portal. After the
tests are performed, the logs should be sent back to the portal. Although the scripts
have the features to validate VNF and NS, the solution will be deployed using only
VNFDs since it is what the 5GinFIRE project demands.

3.3.1 Architecture

In order to meet the proposed solution, two steps have to be taken: develop the scripts
and integrate them into the CI framework, which is itself integrated with the 5GinFIRE
portal. As previously referred, the aim is not to build a solution for 5GinFIRE only,
and, therefore, the architecture of the scripts is independent of the CI server.

Starting by the validation tool, its name is osm-descriptor-validator and its high-level
architecture is pictured on figure 3.1.

OSM IM Wrapper

VNFD
Model

NSD
Model

Syntactic
 validation

Semantic 
validation

Reference
validation

NS over VNF
validation

osm-descriptor-validator

datatypes

Figure 3.1: osm-descriptor-validator architecure.

The first step is to create a connection point between the YANG models and the
package. That is the purpose of the block OSM IM Wrapper. This module handles all
the necessary data structures to create the VNFD and NSD model. In this case, the
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YANG models provide the skeleton of both the VNF and NS descriptor, all the tags,
and relationships between them.

The VNFD and NSD models components are responsible for filling all the necessary
information for each tag and container. Both models use the OSM IM Wrapper to
retrieve constituent tags of each container. They also use the datatypes module to get
each tag datatype as well as their possible values. It is also at this stage that the path
of each tag and container is added as well as the reference paths, if applicable.

The four tests pictured make use of both models to get all the necessary details
to perform the validation. The syntactic test retrieves the names and paths of each
tag and container; the semantic test accesses the datatypes and possible values, the
reference test as well as the NS over VNF validation test gather the reference paths.
The reference test and the NS over VNF test are connected because the latter reuses
some of the former functions to perform its validation.

Finally, the osm-descriptor-validator is the higher-level module that provides the
necessary functions for the user to call the tests quickly.

The tests are independent of the models that they are using. Therefore, if it is
necessary to adopt any other VNF or NS information model, it is just necessary to
substitute the Wrapper, both the VNFD and NSD models and the datatypes, making
the solution easily integrable with other IMs.

To achieve an automated solution for 5GinFIRE, the validator should be integrated
with Jenkins, which should be able to communicate with the portal. The architecture
is pictured on figure 3.2.

The portal communicates with Jenkins via REST API. Whenever a new package is
submitted, the portal sends a request to Jenkins to trigger the validation pipeline.

The validation pipeline, which was previously configured in Jenkins, goes through
two stages when triggered for the first time: its environment is configured, and then the
actual tests run. When the pipeline is created, a Dockerfile3 is added to its workspace.
The Dockerfile contains configurations that are run the first time that the pipeline is
triggered, and it sets up the environment with all the tools that are necessary to run
the tests and communicate the results successfully. The environment configuration only
happens the first time the pipeline is triggered. Jenkins then saves the Docker container
and runs all the jobs there.

Five stages should compose the pipeline. When Jenkins receives a request from the
portal, it triggers the pipeline. The first stage to run is the VNF fetching stage. At this
point, the pipeline, with the information received from the portal request, fetches the
VNF package from the portal’s VNF repository. Then, in the next stage, the package is

3https://www.docker.com/
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Figure 3.2: Deployment architecture of the automated solution.

extracted, the descriptor file identified, and the tests start. The tests run independently
from the pipeline; therefore, they only occupy one stage. When the tests are completed,
at the results stage, the results of the tests are sent to the portal. Lastly, Jenkins’
workspace is cleaned, eliminating the resulting package and other files that may have
been created during the execution.

3.4 Summary

In this chapter, three essential steps in the development of this Dissertation have
been addressed: the identification of the problem, the study of the requirements
and specifications for encountering solutions, and lastly, the found solution and its
architecture.

In section 3.1, it was possible to understand that 5GinFIRE has trouble with its
VNF submissions since they are manually validated, which is time consuming and
neither scalable or practical. Therefore, the need for an automated validation tool arises.
To do so, it is necessary to define which tests should be performed, which tool should
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be used for automation, and how to integrate everything with 5GinFIRE.
Section 3.2 starts by addressing which types of tests should be performed. Although

it would be essential to perform functional and structural tests, the decision relies on
just performing structural tests since the functional rise problems of lack of automation
possibilities and limitations on the necessary resources to perform them. Therefore, it
is decided to validate the VNFs via syntactic, semantic, and reference tests.

With the type of tests decided, it is necessary to choose between the available
automation tools. Subsection 3.1 defines three requirements that the CI server needs
to fulfill in order to fit the projects demands: high customization, existence of a
REST API and allowing configurations outside SCM systems. After analyzing multiple
automation tools, the chosen one was Jenkins since it was the CI server that met
the most requirements without any cost associated. Afterward, on subsection 3.2.3,
a description of Jenkins was provided, defining its main components and features, in
particular, the type of pipelines and jobs. It was then decided to advance with a scripted
pipeline job because it offered higher flexibility.

Having all the details sorted, section 3.3 provides the proposed solution, which is to
have the Jenkins scripted pipeline integrated with the OSM VNFD and NSD validation
scripts connected to the 5GinFIRE portal, so that whenever a VNF is submitted the
tests are performed. The results are then sent back to the portal.

Lastly, the subsection 3.3.1 presents two architectures: one for the validation tool
and the other with the full integration of the CI server, the scripts, and the 5GinFIRE
portal.
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CHAPTER 4
Implementation

With the architectures defined, the next step is to implement the necessary modules.
Sections 4.1, 4.2, and 4.3 address the in-depth description of the strategies that were
followed in order to develop the osm-descriptor-validator tool by describing the methods
and structures created as well as the algorithms developed and their workflows. For
each test developed, examples of errors and their outputs are also shown, so it is more
understandable the type of output that the user will be dealing with.
Regarding the full architecture, section 4.4 provides the solutions for integrating the
osm-descriptor-validator with Jenkins and the subsequent integration of Jenkins with the
5GinFIRE infrastructure. The steps performed on the validation pipeline are provided,
and the techniques used are described.

4.1 OSM IM Wrapper

When developing the OSM IM wrapper, the main idea is to have well-defined structures
that is able to provide the needed information in a structured way. Consequently, this
module holds three classes: the wrapper class, the tag class, and the datatype class.

The wrapper class is composed of a set of endpoints that retrieve all the tags of
each container from the YANG model. An example of such endpoint is provided on
code block 3.

def get_vdu_tags(self):
return get_tags(vnfd_model.yc_vdu_vnfd__vnfd_catalog_vnfd_vdu)

Code block 3: Endpoint to retrieve the VDU possible tags.

The get_tags is a helper function that produces the expected output, since the
YAML returns the tags in their specific class.
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The tag class is constituted by the crucial elements that define a tag: the name,
path, datatype, child, possible values, and reference path. As not all the tags have child
nodes, possible values, or reference path, these elements are characterized as optional
for the definition of a tag.

The child, possible values, and reference path are all optional because they are not
part of every tag denotation. The class definition is exposed on code block 4.

class Tag:
def __init__(self, name, path, datatype, child=None, possible_values=None,
reference_path=None):

self.name = name
self.path = path
self.datatype = datatype
self.child = child
self.possible_values = possible_values
self.reference_path = reference_path

Code block 4: Tag class.

The other class defined in this module is the datatype class. The datatype class
contains two methods, one for retrieving the datatype and another to retrieve the
possible values for a certain datatype. These two functions get the information from
a JavaScript Object Notation (JSON) file named datatypes.json, that was developed
concerning the values provided by the IM. A snippet of the datatypes file is presented
on the code block 5, and the datatype class is presented on the code block 6.

{
"ALARM_VALUE": {

"type": "decimal64",
"options": [

""
]

},
"PARAMETER_DATA_TYPE": {

"type": "enum",
"options": [

"STRING",
"INTEGER",
"BOOLEAN"
]

}
}

Code block 5: Snippet of the file datatypes.json.

The Wrapper is the base for all the validation process. Without it, there is no way
to know the rules that the descriptors should follow. Therefore, as seen on the package
architecture in figure 3.3.1, all the other modules are dependent on this file.
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class Datatype:
def get_datatype(self, value):

return datatypes[value]['type']

def get_datatype_options(self, value):
return datatypes[value]['options']

Code block 6: Datatype class.

4.2 VNFD and NSD models class

In order to define all of the VNFD and NSD tags, each of the possible tags must be
filled into the models by making use of the tag class defined on the OSM IM wrapper.
A container is defined by the name, path, and the tags that it holds. A property, on
another hand, is defined by the name, path, datatype, possible values, and reference
path. As previously referenced, the last two are optional.

Although the tag class is generic for both containers and properties, the calls differ
given the elements that define each one of them. Therefore, two functions were created,
one to add containers and another to add tags to the class. They are displayed on code
block 7.

def add_container(tags_list, name, path, child):
tags_list.append(Tag(name, path, "container", child=child))

def add_property(tags_list, name, path, datatype, possible_values=None,
reference_path=None):
tags_list.append(Tag(name, path, datatype, possible_values=possible_values,

reference_path=reference_path))

Code block 7: Functions to add containers and properties to the models.

The containers datatype is always the same; on another hand, a property does not
have child properties; therefore, that parameter is always None. Consequently, both of
these values are not defined on the functions in order to facilitate the calls and avoid
repetition.

The VNFD and NSD models are both composed by the invocation of the described
functions for every element of their data model. Code block 8 provides examples of the
function calls.

utils.add_container(all_tags, "placement-groups", "vnfd/",
child=wrapper.get_placement_groups_tags())

utils.add_property(all_tags, "vdu-id", "vnfd/mgmt-interface",
datatype.get_datatype("STRING"), reference_path="vnfd/vdu/id")

Code block 8: Functions for filling the VNFD and NSD classes.
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The function assigned to the element child on the add_container function named
get_placement_groups_tags() returns all the tags of the container placement-groups,
being similar to the example provided on code block 3.

4.3 Tests

The proposed tests have mostly the same structure, with the variations occurring just
on the type of validation, which is being performed. The first common step is to verify
if the file inputted for testing is valid. Firstly, it is verified if the file is a YAML or
JSON since these are the two supported file formats by OSM. The file content is also
loaded at this stage, which makes it available for the rest of the test execution. Then,
it is identified whether a VNFD or a NSD was submitted for validation. Although the
user is obligated to define which type of file is trying to validate, this ensures that
there are no mistakes. The next step is to perform the tests; however, in order to
validate all the tags, it is necessary to navigate through the descriptor structure. The
approach is simple: a list of the container tags from the root path is retrieved. Then,
the necessary tests are performed over that list of tags. When the tests are over, the
list is analyzed, and it is verified if there is any container in that list. If the condition
is false, the function ends. However, if it is true, the path is updated to the path of
the new container that is going to be validated, and the function is called recursively
using the new parameters (new path and new container). This is the basic workflow,
although due to the requirements of each test, some need more steps to be executed.
The navigation workflow is pictured in figure 4.1. The next subsections provide details
about the performed tests and the workflow changes, accordingly.

Get list of the
container tags

Function call Perform tests

Get tags that 
are containers Any

container
left?

EndUpdate path

Call the function 
with the new parameters Yes

No

Figure 4.1: Tests workflow.

4.3.1 Syntactic validation

The syntactical validation aims to ensure that all the tags described exist in the OSM
IM as well as that they are correctly placed in the VNFD or NSD tree. The syntactical
validation should be the first to be done since it prevents further errors, for example, in
references.
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After ensuring the file and descriptor type, the navigation function is invoked. The
function performed is called verify_bad_tags and its workflow is shown in figure 4.2. The
function’s signature is presented on code block 9: The arguments are the container_tags,

def verify_bad_tags(container_tags, im_all_tags, path, logger):

Code block 9: Function to verify invalid tags in a descriptor.

which are the tags of the container that is being validated, im_all_tags which is a list
of all the tags of the VNFD or NSD model, the path which is the path in the model
tree of the container and the logger which is an auxiliary function to provide better
structured logs.

Tag

Tag

Tag

Container

Is this tag on the
given path?

No

Yes

Error

Iterate to the next tag

Figure 4.2: Syntactic test workflow.

The get_path_tags is an auxiliary function that returns all the tags from a given
path according to the IM. Thereby, for each tag in the container provided, it is verified
whether they are in the list of tags of their path (retrieved from the auxiliary function).
This allows the verification of the correct tag path as well as its syntactical aspect.

This function can only provide errors and not warnings since every failure at this
point is considered critical and has to be resolved. An example of the output is presented
here:

ERROR Invalid tag named storge-gb on path vnfd/vdu/vm-flavor/.

where the storage-gb tag was written as storge-gb.

4.3.2 Semantic validation

Semantic validation has the goal of verifying if a tag content is described with the
correct datatype and, in case of a tag having a restricted set of possible values, assuring
that its content is within the list.
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This test does not follow completely the workflow described in figure 4.1, as it needs
the list of containers inside a container for the test execution. Its workflow is described
on figure 4.3. The first step is to verify the tag values; therefore, the verify_tag_values
is invoked. The signature of the tag is presented on code block 10.

def verify_tag_values(container_data, containers_list, im_all_tags,
path, logger):

Code block 10: Function to verify invalid tags in a descriptor.

The container_data holds the tags and values of an individual container, and the
containers_list is the list of the tags inside the container_data that are defined as
containers. The im_all_tags, path, and logger are the same as described before.

In this function, firstly, a loop is created, which iterates over the tags and values
of the current container. Then, it is verified whether the tag is a container or not. If
it is, it means that no datatype analysis is needed, and therefore, the next tag should
be tested. On another hand, if the tag is not a container, its datatype and possible
values should be retrieved. If the tag holds the "enum" datatype, it means that it is a
choice parameter, and its possible values must be checked. If its value is not within the
possible values, an error is thrown. However, if it is, then the verify_datatype function
is invoked. Further details on this function will be provided later. Nevertheless, if the
tag’s datatype is not "enum", then the verify_datatype function should be called right
away.

An error at this stage would have the following appearance:

ERROR Invalid value "ESTERNAL" assigned to type in
vnfd/vdu/interface/.The possible values for this parameter are:
['INTERNAL', 'EXTERNAL'].

In this case, the tag interface can only support INTERNAL or EXTERNAL as configu-
ration values. The user, by mistake, typed "ESTERNAL" on the descriptor, triggering
an error on this test.

The function verify_datatype is responsible for verifying the datatypes. At this
stage, it is verified if the tag value is expressed in the correct datatype and if its within
the datatype’s possible range.

Although the OSM IM has well-defined datatypes for each tag, it accepts that the
numeric tags are expressed in strings as well. Therefore, the output of the verify_datatype
is an error when the value datatype does not correspond to a string or the real datatype,
or a warning message whenever a value is expected to be numeric, but it is assigned
as a string. However, the string value is still tested to ensure that, even though it is
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Figure 4.3: Semantic test workflow.

specified as a string, it is convertible to the expected datatype. If it is not, then an
error is thrown. Consequently, an example output is

WARNING Value "0" assigned to bandwidth in
vnfd/vdu/interface/virtual-interface/ is specified as a string
but should be an uint64.

ERROR Invalid value "two" assigned to vcpu-count in
vnfd/vdu/vm-flavor/. This value should be specified as an
uint16.

Looking at the provided example, the warning is thrown exactly because the tag
bandwidth expects a uint64, but a string was provided. However, the value is convertible
for the specified datatype, so it is not necessary to throw an error. On another hand,
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on the second example, the error, albeit the value assigned to a vcpu-count tag, was a
string; it has still thrown an error instead of a warning because the specified value is
not convertible to the expected datatype, uint16.

4.3.3 Reference validation

The reference validation workflow is significantly more different when comparing to the
other tests, and the one described in figure 4.1. Whereas on the other tests, the second
step is to perform the test; at this test, the tests are only performed after the descriptor
navigation is completed. This happens because the only way to know the value of all
the references is to analyze all the descriptors first. The reference validation workflow
is presented on figure 4.4.

Get list of the
container tags

Function call get_references
Any

container
left?

verify_referencesUpdate path

Call the function 
with the new parameters Yes

No

Get list of 
referenced tags
and tags with

references

Figure 4.4: Reference validation workflow.

The get_references function is responsible for handling four lists: (i) the
tags_referenced, which is the list that contains all the tags from the IM that may be
referenced by other tags; (ii) the tags_with_reference, that contains all the tags from
the IM that expect references for other tags as their values; (iii) the reference_values
list that contains the values of all the existent tags_referenced in the descriptor and,
lastly, (iv) the referenced_tag_values which contains the values that are expected to
be references for other tags. The function as the signature presented on code block 11.

def get_references(container_content, im_all_tags, path):

Code block 11: Function to verify invalid tags in a descriptor.

The container_content and the path field are necessary for retrieving the values of
the tags. On another hand, the im_all_tags are necessary to get the model tags and
their information.

To gather all this information, three independent loops are declared. The first one
goes through a list of all the tags with references and obtains the tags_referenced and
the tags_with_reference directly. The former list tags are appended in a tuple format
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of (name, path). The latter are also appended in a tuple format but with (name, path,
reference_path).

The second loop is made in order to get the values of the tags referenced. For this,
it is verified whether, for each tuple defining a tag in the tags_referenced list, the tag
appears in the containter_content. If this condition is true, then a tuple with the
structure (name, path, value) is appended to the reference_values list.

Tag

Tag

Tag

get_tags_with_ref()

(name, path, reference_path)(name, path)

tags_referenced tags_with_reference

is the
 tag in the
container?

is the
 tag in the
container?

NoNo

(name, path, value) (name, path, value,
reference_path)

reference_values referenced_tag_values

Append Append

Append Append

Yes Yes

Figure 4.5: Second loop workflow.

The third and last loop does the same as the second, but it gathers the values of
the tags in the tags_with_references list instead. The final tuple appended to the
referenced_tags_values is also different because it contains one extra element, the
reference_path. Therefore, the tuple structure is (name, path, value, reference_path).

This procedure is pictured in figure 4.5.
According to figure 4.4, when there is no containers left to analyze, the next step is

to call the verify_references function. This function is the one that performs the test
itself, and its signature is pictured on code block 12.

def verify_references(referenced_tags_values, reference_values, logger):

Code block 12: Function to verify invalid tags in a descriptor.

The arguments of the verify_references function are both the lists filled on the
previous function. The logger is used, as previously mentioned, to provide more explicit
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logging messages.
At the beginning of this function, another loop is created to go through the tuples

on the referenced_tags_values list. For each element and using the reference_path
value, a new tuple is created with the same structure of the ones in the reference_values;
this is (name, path, value). Then, it is verified whether this tuple is or not on the
reference_values list. If it is, the reference is correct. If it is not, an error is thrown.
The manipulation of the tuples in order to proceed with the test is demonstrated in
figure 4.6.

reference_values referenced_tag_values

contains tuples with this 
structure

name path value reference_path

cp eht1 vnfd/connection-point/name

for example

vnfd/mgmt-
interface

name path value

ready to compare

Figure 4.6: Manipulation of the tuples in verify_references.

This test just outputs errors, not warnings, and its appearence is the following:

ERROR Invalid value "eth1" assigned to the tag cp in
vnfd/mgmt-interface/.
The value should be a reference to the tag name in the path
vnfd/connection-point/. Possible values are: ['eth0'].

In this case, the error occurred because of the tag with the path vnfd/mgmt-
interface/cp references values from the tag vnfd/connection-point/name. The latter
only has the value "eth0", and the user is trying to reference "eth1", leading to an error.

4.3.4 NS over VNF validation

In the package architecture described on figure 3.1, the only test that shares a connection
is the NS over VNF validation with the reference test. This is because this test is an
extension of the reference test since it does the same thing but between two different
files: the VNFD and the NSD.
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Given that there are already developed functions on the reference test that can fetch
the referenced values on each file, this test makes direct use of the functions specified
on subsection 4.3.3, which leads to the following exactly the workflow described on 4.4.

Knowing that it is the NSD that references elements from the VNFD, a list con-
taining the reference_values should be retrieved from the VNFD and the list with the
referenced_values should be, therefore, fetched from the NSD. The first step is to
get both of those lists. To do that, the navigation function from the reference test is
invoked.

The navigation function on the reference validation script has the signature provided
in code block 13.

def descriptor_navigation(descriptor_content, im_all_tags,
im_all_tags_names, dtype, path):

Code block 13: Function to verify invalid tags in a descriptor.

The arguments are the descriptor_content, a list with all the tags from the IM, as
well as a list of their names, the descriptor type, and the path to start the analysis.

With this in mind, the invocation proceeds as described in code block 14.

vnfd_reference_values = reference_validation.descriptor_navigation(
vnf_descriptor_data, vnfd_im_all_tags, vnfd_im_all_tags_names,
"vnfd", "vnfd/")

nsd_referenced_values = reference_validation.descriptor_navigation(
ns_descriptor_data, nsd_im_all_tags, nsd_im_all_tags_names,
"nsd", "nsd/")

Code block 14: Invocation of the navigation functions from the reference validation.

Having both of the lists, the next step is, just as in the reference test, to call the
verify_references function with the lists that were just obtained. The output structure
is the same as in the reference test.

4.3.5 osm-descriptor-validator

This module is the connection point between the user and the tests. It provides a set of
options for the user to execute them.

The set of commands that may be executed are presented on code block 15
By executing any of the operations shown, the output will be displayed depending

on the type of errors that may exist. The messages are just as described in previous
sections. If there are no errors or warnings to report, the program will not output
anything.
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$ osm-descriptor-validator -h

usage: osm-descriptor-validator [-h]
(--vnfd vnfd.yaml | --nsd nsd.yaml | -a vnfd.yaml nsd.yaml)

Validate a OSM VNF or NS descriptor.

optional arguments:
-h, --help Shows this help message and exit
--vnfd vnfd.yaml Performs syntactic, semantic and referential tests to

a VNF descriptor. Takes as argument the path to the
VNF descriptor file to be tested.

--nsd nsd.yaml Performs syntactic, semantic and referential tests to
a NS descriptor.Takes as argument the path to the NS
descriptor file to be tested.

-a vnfd.yaml nsd.yaml, --all vnfd.yaml nsd.yaml
Performs syntactic, semantic and referential tests to
a VNF and NS descriptor. Also validates the NSD
towards the VNF.Takes as argument the path to the VNF
and NS descriptor files.

Code block 15: osm-descriptor-validator help menu.

4.4 Jenkins, osm-descriptor-validator and 5GinFIRE integration

4.4.1 5GinFIRE integration

In order to integrate the Jenkins deployment with 5GinFIRE, it is necessary to au-
thenticate Jenkins with the portal and vice versa as well as establishing the connection
points and messages to be exchanged.

The authentication is done via the exchange of API keys. Those API keys are
provided directly on the request headers.

According to the diagram presented in figure 4.7, the portal, and the pipeline have
three interactions: the pipeline trigger, the package retrieval, and the results delivery.

To trigger the pipeline, the 5GinFIRE portal just needs to send a request to the
pipeline endpoint via its REST API with the VNF ID as a parameter whenever a new
package is submitted. The ID is very important since it is through it that the pipeline is
capable of retrieving the package from the portal. To do this, the link to the repository
is hardcoded on the pipeline configuration, with the ID being the only nonstatic element.
Consequently, when the ID is retrieved from the trigger request, the package download
starts.

Once the tests are performed, its results are sent back to the portal via a JSON
message, which is pictured on code block 16.

This message is then processed back on the 5GinFIRE portal. If the validation result
is positive, then the VNF gets verified, and the experimentation process continues. If
the result is negative, then a new issue regarding the VNF is posted to the project’s
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{
"vnfd_id": <integer>,
"build_id": <integer>,
"validation_status": <boolean>,
"jenkins_output_log": {

"Errors": [<list of errors>],
"Warnings": [<list of warnings>]

}
}

Code block 16: Results JSON response.

Bugzilla1 containing the validation logs sent in the response message so that the VNF
developers have access to the results of the tests.

4.4.2 Jenkins configuration

Jenkins is available as an external service for the 5GinFIRE project. The service
is deployed on a VM, configured, and it is running online2. For security purposes,
apart from the 5GinFIRE administrator and the pipeline maintainers, no one else has
credentials to access the platform. The CI server contains the validation pipeline, which
is responsible for running the osm-descriptor-validator over the VNFs.

Validation pipeline

In figure 4.7, one of the interactions is the Docker build request. In order to be able to
perform many tasks, the pipeline environment has to be prepared with the necessary
tools. The pipeline workspace contains a Dockerfile, as shown in figure 3.2 that runs
the first time the pipeline is triggered and installs every requirement specified. The
environment set up happens the first time that the pipeline runs or whenever a Dockerfile
modification occurs.

The Dockerfile is configured to install tools related to the utilization of JSON and
YAML files, the extraction of compressed packages, and the usage of network tools that
need to be installed.

The osm-descriptor-validator is available for execution via the pipeline because its
files are provided via the validation pipeline workspace.

The pipeline currently has five stages. The first stage being the VNF fetching, sends
a request to the portal to download the package by using the static link with the ID
received with the trigger request. The workflow is provided in code block 17.

First, the package is retrieved from the 5GinFIRE repository, and the information
is saved on a temporary file. The curl call is between set +x and set -x so it is not
visible on the Jenkins logs.

1https://www.bugzilla.org/
2http://ci.5ginfire.eu
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sh '''
set +x

curl -H "X-APIKEY:123456-1233"
https://portal.5ginfire.eu/5ginfireportal/services/api/repo/admin/vxfs/
$VNF_ID > tmp.txt

set -x
'''
(...)
sh "wget -O package $package_url"

Code block 17: Snippet for retrieving the VNF package.

Then, the JSON is read from the saved file, and the link for the VNF is retrieved from
the packageLocation element of the JSON. The link comes without the communication
protocol assigned; therefore, it is necessary to append it to it. Lastly, the package is
downloaded and saved on the validation pipeline workspace.

The second stage starts and pursuits the identification of the descriptor. All the
VNF packages are compressed as tar.gz. Therefore, it is necessary to decompress the
package and retrieve the descriptor path. This stage is described on code block 18.

sh 'tar -xvzf package'
descriptor = sh(

script: "find . -maxdepth 1 -name \"*.yaml*\" -print | tail -c +3",
returnStdout: true
).trim()

Code block 18: Snippet for identifying the VNFD.

The first command intends to decompress the VNF package. Secondly, a bash script
is utilized in order to find the descriptor file. The script defines that a search should be
conducted on the current directory but with a max depth of one, which means that
should also search on the first level inside the existing folders for files that contain
".yaml" on their name. The max depth is vital in order to not retrieve files that are
not descriptors. In the second part of the command, tail -c +3 is utilized to eliminate
unnecessary characters from the name.

Once the path is found, the pipeline moves to the next stage, which is the tests.
The tests are performed by following the package specifications described on code
block 15. For each test, the output is retrieved and saved for the response. The
osm-descriptor-validator execution is very straightforward and is presented on code
block 19.

With this approach, all the logs are saved in a JSON format, which is easily accessible
on the rest of the pipeline execution.

After all, tests are completed, the fields of the code block 16 are filled. The vnfd_id
is the ID of the tested VNFD; the build_id is the number of the Jenkins job, the
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log = sh(
script: "python3.6 osm-descriptor-validator.py

--vnfd ../" + descriptor + "",
returnStdout: true
).trim()

Code block 19: Tests execution on the pipeline.

validation_status is a variable that is true if all the tests are run without any errors
and the jenkins_output_log is an aggregation of all the errors and warnings of each
test. At the results stage, this message is sent to the portal.

The two types of messages that can be sent are provided in code block 20 and 21.
The former sends a notification saying that there is nothing to report regarding the
submitted VNF. On another hand, the latter sends the osm-descriptor-validator log
attached.

response = "{\"vnfd_id\": ${VNF_ID},
\"build_id\": ${BUILD_NUMBER},
\"validation_status\": ${VALIDATION_STATUS},
\"jenkins_output_log\": \"Nothing to report.\"}"

sh "curl -v -H \"Content-Type: application/json\" -H \"X-APIKEY:123456-1233\"
-X PUT -d '${response}'
https://portal.5ginfire.eu/5ginfireportal/services/api/repo/admin/
validationjobs/$VNF_ID"

Code block 20: VNF valid response.

response = "{\"vnfd_id\": ${VNF_ID},
\"build_id\": ${BUILD_NUMBER},
\"validation_status\": ${VALIDATION_STATUS},
\"jenkins_output_log\":
\"{ ERRORS: " + log + "\"}}"

sh "curl -v -H \"Content-Type: application/json\" -H \"X-APIKEY:123456-1233\"
-X PUT -d '${response}'
https://portal.5ginfire.eu/5ginfireportal/services/api/repo/admin/
validationjobs/$VNF_ID"

Code block 21: VNF invalid response.

The last stage is a clean up so that the package is removed from the workspace, and
it is performed by the command provided on code block 22, which deletes all the files
with the exception of the Dockerfile and the osm-descriptor-validator.

With all the integration performed, the messages workflow has to be as pictured in
figure 4.7.
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sh "rm -rf !("osm-descriptor-validator"|"Dockerfile")"

Code block 22: Clean up of the validation pipeline workspace.

:5GinFIRE
Portal

:Jenkins
Pipeline :Workspace

Docker	build

VNF	submission

Pipeline	trigger

Experimenter

return	environment

Request	VNF	package

return

Perform	tests

Send	test	results

return

Send	test	results

Clean	

Figure 4.7: Sequence of events between 5GinFIRE and the Jenkins pipeline.

When an experimenter submits a new VNF, the Jenkins pipeline is triggered. Then,
requests the package from the portal, extract the VNFD file, and perform the tests on
it. Once completed, the results are sent back to the portal, and the environment is
cleaned.

The pipeline is configured to support concurrent runs, so another user may trigger
the pipeline while it is still running without making it fail.
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4.5 Summary

The proposed architecture and modules were developed with success. Starting by the
OSM IM Wrapper, which is the base class of the scripts, it was developed using the
OSM YANG models so that there are no failures on retrieving the list of tags. Then, in
section 4.2, it was possible to understand how the tags are available with the necessary
information for the osm-descriptor-validator execution. The process followed is good
because if it becomes necessary to add any new tag, it is just necessary to modify one
of these classes, and the element will be immediately available for usage in the tests.
Section 4.3 provided and in-depth analysis of how the tests are built.

It was possible to verify that the execution workflow is very similar except for the
test that is being carried out and, in the case of the reference test, that differs mostly
because it needs to run the descriptor twice in order to get the values that are referenced
and the references.

Lastly, section 4.4 provided the description of the necessary configurations from
the three components: 5GinFIRE, osm-descriptor-validator, and Jenkins in order to
perform the desired workflow. It was possible to understand that the configurations
either from the 5GinFIRE portal or from Jenkins were minimal and straightforward
since for triggering the pipeline and to send the pipeline results, it was just necessary
the exchange of API keys and calling an endpoint API. In regards to the integration
of the osm-descriptor-validator and Jenkins, it was also straightforward with just the
necessity of cloning the validator from its SCM repository to the pipeline workspace,
install the minimal list of requirements and executing using Python3.6 directly on the
pipeline configuration.
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CHAPTER 5
Results

After developing the proposed solution, there are two scenarios where the architecture
can be tested, which are presented in section 5.1.
As OSM is a recent technology, there are not many public VNFD implementing its IM
for making tests. Therefore, section 5.2 presents the strategy followed in order to collect
descriptors to test.
Finally, section 5.3 provides the tests for both scenarios. Then, it is also presented a
more in-depth review of all the logs collected the usual errors and warnings gathered
from all the descriptors in order to understand which are the tags with the most failures
associated.

5.1 Scenarios

The solution implemented for this Dissertation was, as previously stated, developed as
part of the 5GinFIRE project. In the end, the CI server was deployed and integrated
with the project’s portal. The Jenkins dashboard deployed for 5GinFIRE is portrayed
in figure 5.1.

Although this was the approach followed, the package developed is not dependent on
the CI server. Therefore, it can be used outside the project scope, leading to two possible
usage scenarios. The first scenario is within the 5GinFIRE project. A VNF developer
starts by producing a VNF. Then, it submits the package in the 5GinFIRE portal from
which the CI job is triggered automatically. The osm-descriptor-validator runs over the
descriptor and sends the results back to the portal. The VNF developer has then access
to the logs generated. Since the deployment to production of the validation pipeline
described in section 4.4.2, this scenario was tested in the real 5GinFIRE environment.
Figure 5.2 presents the scenario’s workflow.
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Figure 5.1: 5GinFIRE’s Jenkins dashboard.

Portal

VxF Developer

VNF

Results

Results

Validation Pipeline

osm-descriptor-
validator

Figure 5.2: 5GinFIRE’s VNF developer scenario.

The second scenario is associated with an independent developer who builds a
VNF and needs to test the package before deploying it. In this case, the user has the
osm-descriptor-validator on its machine and runs the tests directly according to its
needs. The logs are immediately displayed. Figure 5.3 presents this scenario workflow.
Differently from the previous scenario, it was not possible to collect results from a real
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approach to this case. In order to simulate this scenario, it was necessary to have VNFs
to test.

osm-descriptor-
validator

VNF Developer

VNF

Results

Figure 5.3: Independent VNF developer scenario.

Although to validate this scenario, only one VNF had to be tested, many VNF were
gathered during the development of this Dissertation. Therefore, all of the VNFDs
were tested. With this, not only the scenario was tested, but also the number of results
collected was much more prominent. The process of collecting VNF packages to test is
described in the next section.

5.2 Data Gathering

OSM is a very recent technology; therefore, there are not many descriptors available
that make use of its IM to perform tests. 5GinFIRE currently holds a great repository
of VNFs. Nonetheless, just testing the descriptors on that repository would lead to
nowhere because they are only stored when they pass the tests and are instantiated.

Instead of merely deploying the Jenkins platform once the validator was completed,
the pipeline was deployed in August 2018. The validation performed was done via the
OSM simple validation scripts. However, it allowed storing all the descriptors that were
being tested, giving a vast dataset of good and bad descriptors.

With this approach, 460 VNF descriptors were collected. However, for the project
scope, it was only possible to apply the pipeline to VNFs. For this reason, there is no
set of NSDs.

5.3 Results

Until the end of September 2019, the pipeline had been running the OSM validation
tests, which provided an initial syntactical validation of the descriptor. The package
developed was, since then, integrated with Jenkins. The results of the pipeline since
the new tests are described in table 5.1. They are the results of the first scenario.

The debugging fields on the successful column refer to test builds in order to solve
problems with the pipeline configuration. The same can be said about the debugging
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Number of successful runs Number of failures

Descriptors Debugging Descriptor
errors

Debugging/
Connection
problems

Total number
of builds

108 9 1 32 150

Table 5.1: Pipeline results from September to October 2019.

field on the failure columns. However, in this case, it also addresses the failures related
to connection problems.

When looking at the table, it is possible to state that the number of failures when
comparing with the successful builds of the pipeline is meager, since there is only one
failure related to the descriptors. That failure did not happen directly because of the
descriptor itself but actually because the VNF package was not well structured.

Looking at those numbers and subtracting the number of debugging runs, there are
109 builds that were dedicated to VNFDs validation. Given that 108 were successful,
that leads to 99% of the success rate. One thing to state is that 108 runs do not
mean 108 different descriptors. The descriptors may go through the validation process
multiple times. Nevertheless, the results are still impressively high.

Although it was possible to gather 460 VNFDs, a lot of the VNFs were resubmissions.
Therefore, in order to make the results more reliable, all the descriptors that had no
differences between each other were removed, gathering 166 unique descriptors. In order
to test the second scenario, the osm-descriptor-validator tested all the 166 descriptors
filtered. The results are on table 5.2.

Syntactic
test Semantic test Reference

test

Descriptors Errors Errors Warnings Errors No errors/
warnings Pass Fail

166 26 3 1129 8 80 147 19

Table 5.2: Validation results from osm-descriptor-validator.

As previously stated, when using the osm-descriptor-validator, the warnings are
just used to advise the developed in using the correct datatypes. Therefore, having
warnings does not mean that the package is not valid. With this in mind, and looking
at table 5.2, it is possible to verify that in 166 descriptors, only 19 failed the tests with
26 errors related to syntactical issues, three errors because of lousy semantics and eight
errors due to incorrect references. Such results lead to approximately 88.5% of success
rate. That is still a high number given the sample size.
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In order to have a better understanding of what is failing in the descriptors, it is
important to verify the range of errors provided by the osm-descriptor-validator. Figure
5.4 provides an overview of all the different errors detected by the tests. On another
hand, table 5.3 presents statistics about the number of errors from each descriptor
regarding each test. Lastly, figure 5.5 portraits the distribution of tags with errors.

21.6%
21.6%

8.1%

18.9%
8.1%

21.6%

Syntactic Semantic Reference

Tag named node-cnt
does not exist
in this container

Invalid container

Tag named
memory-vdus
does not exist

in this container

Tag named node
does not exist

in this container

"SIZE_2M" is not a
possible value

for mempage-size

Reference
assigned
does not exist

Figure 5.4: Distribution of errors and warnings according the reasons.

Statistics Errors distribution

Test type Files with errors Min Max Mean
(Except 0s) 0 1 2 3 4

Syntactic 8 0 4 3.25 158 0 0 6 2
Semantic 3 0 1 1 163 3 0 0 0
Reference 8 0 1 1 158 8 0 0 0

Table 5.3: Errors per descriptor.

The range of errors collected is, as expected, very low. The syntactic test holds
most of the errors. This result was predicted because the syntactic validation refers
to the structure of the VNFD, which means that if a tag is poorly defined, it may
compromise the other tags. In fact, in figure 5.4, it is possible to verify that the error
"Invalid container" has a significant percentage of syntactic errors. The other two errors
with a higher percentage are both related to the node and node-cnt tags, which on the
OSM IM are defined under the path vnfd/vdu/guest-epa/numa-node-policy.
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Figure 5.5: Distribution of tags with errors.

Given that in figure 5.5 the path vdu/guest-epa is the most common with errors,
it is possible to infer that the numa-node-policy was being poorly defined on many
descriptors, contributing for the increasing of the error "Invalid container" and the
further failure of the node and node-cnt tags. The error with fewer occurrences was
triggered because the tag "memory-vdus" does not exist whatsoever on OSM IM.

The syntactic errors are, according to table 5.3, distributed over eight different
descriptors. The number of errors ranges between zero and four, with the preeminent
value being zero. Given the low number of errors, the mean values were calculated
without taking them into account; otherwise, the mean would always be zero. Therefore,
when only considering descriptors with errors, there are approximately three errors
per file. This value converges into the analysis presented since it represents the errors
concerning badly structured descriptors.

The reference test also does not have a considerable variation. The values are
comprised between zero and one with zero being very dominant. This superiority
may be higher than the reality because this test is the last to be performed. The
osm-descriptor-validator has specified that the developer must first solve the existing
problems to progress to the next test whenever the validation fails. This approach
was followed in order to make the logs cleaner since, for example, if a tag were poorly
defined, it would lead to failure of the semantic test because that tag would not exist
and would, therefore, not have an associated datatype. The downside of this approach
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is that, in this case, the results of the eight descriptors that failed the syntactic test plus
the three that failed the semantic test have not had their references tested, contributing
to the zero counts.

The reference errors detected were related to the vnfd/vdu/interface/external-
connection-point-ref and vnfd/mgmt-interface/cp tags with the latter being more
common. Such a statement implies that the references assigned to each tag did not
exist in the descriptor. According to table 5.3, the eight descriptors that failed this test
had one semantic error each, contributing to a mean of errors per file of one.

The semantic test has the same problem described for the reference test; this is, the
eight descriptors that failed the syntactic test did not have their semantics validated.
However, the pictured results defined in figure 5.4 reveal only one type of error for the
semantic test. The error occurred because the value "SIZE_2M" is not a possible value
for the tag "mempage-size". The correct value that could be assigned is "SIZE_2MB".
The three semantic errors detected are all the same, which means that the descriptors
causing such error were probably resubmitted into the validation process without having
the problem solved. The three errors were detected on three different files leading to a
mean of errors per file of one. Differently from the other tests, the semantic validation
also triggers warnings. Figure 5.6 presents the reasons for the triggered warnings and
figure 5.7 provides the distribution of number of warnings per descriptor.

Specified as String
but should be an Integer

Specified as String but
should be a Boolean

95%

5%

Figure 5.6: Distribution of warnings according the reasons.

The number of warnings is very high when compared with the number of errors.
Table 5.2 displays 1129 warnings over 166 descriptors. In figure 5.6, the warning reasons
are distributed in two: assignment of values that should be integers or booleans as
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strings. There is a size and signal separation of Integers within OSM IM; nevertheless,
they are all grouped as Integers in order to provide better plot visualization.

The 166 files provided 6073 tags assignments. Given the 1129 warnings in total,
there are 18.6% of tags with warnings. Given that the majority of the tags are either
strings and some others can only be assigned a strict set of possible values, the result is
very high. In fact, in figure 5.7, it is possible to verify that there are two warnings per
file on average, with the count ranging between zero and eleven.
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Figure 5.7: Distribution of the number of warnings per file.

When looking at figure 5.8, it is possible to verify that tags on the path, "vnfd/vdu"
have the highest number of warnings associated. In fact, three tags - storage-gb,
memory-mb, and vpcu-count - trigger warnings with the same frequency. With the
representation presented in figure 5.7, it is possible to see that the developers do not pay
attention to the IM specifications in terms of the datatypes. The problem is that OSM
parses these values, making the IM datatype specification useless. Another interesting
point is that, just like the errors, there is not much variation on the tags that trigger
warnings.

In fact, OSM provides 313 distinct tags. With a 166 descriptors dataset, only 84
were detected. From those tags, still 82% did not trigger any error or warning as
pictured on figure 5.9.

Since there are not many errors and the warnings seem to always occur on a stringent
group of tags, it is necessary to understand if there is a problem from the developers
in understanding the IM for those tags or if those are the tags that trigger errors and
warnings the most because the others are not used.
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Figure 5.8: Number of errors and warnings from each of the used tags.
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Figure 5.9: Distribution of errors and warnings from each of the used tags.

Figure 5.10, presents the distribution of all the tags under the vnfd/ path used on
the dataset gathered. The plot does not represent all the possible tags because it is too
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much information. Instead, only the tags existent of the first level of the vnfd tree are
represented since all the other configurations must be under a container of these. Thus,
every other tag can only be declared if one of the represented is also declared.
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Figure 5.10: Difference between the tags usage between charmed and non-charmed
descriptors.

On the referred plot, it is possible to verify that four containers and two tag properties
are not designated in any descriptor. Moreover, the tags that have the most occurrences
can be divided into two categories: metadata and configuration tags. The metadata
tags are the ones that do not add any functionality to the VNF and are only used to
give the package identity. These tags are the ID, name, short-name, description, version,
vendor, and logo. On another hand, the configuration tags are the tags that customize
the VNFs and add functionalities. In this case, these tags are the connection-point, the
vdu, the mgmt-interface, and the vnf-configuration.

While the mgmt-interface and connection-point are specified as configuration tags,
they do not add much to the VNFs customization. However, the usage of the vdu and
vnf-configuration tags may be the reason for the non-utilization of other configuration
tags specified in figure 5.10. The vnf-configuration may contribute to this problem
because it is the tag where the charms are specified, and the primitives to execute
the actions are defined. Since this tag is used so much when contrasted with other
configuration tags, the VNF configuration is possibly being done over the charms instead
of the available tags.
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On another hand, and, even though the vdu definition is mandatory for the VNF
description, when analyzing the tags used when there are no charms on the VNF
(without the configuration of the vnf-configuration tag) and as pictured on figure 5.10,
it is possible to verify that, apart from the mgmt-interface and connection-point, the
only extraordinary configuration tag used is the internal-vld and it still has a meager
usage rate.

Given that without charms and that the majority of descriptors will not have any
further configuration rather than the basic, the produced VNFs would all be the same.
However, this is not true; the VNFs are different and serve different purposes and
verticals within the 5GinFIRE project. The problem is that in this type of descriptor
without charms, the configurations are applied directly to the vdu image that is uploaded
to the VIM, and the descriptor is just configured to instantiate VMs with the given
image.

Looking at the utilization of the tags presented in figure 5.10, it already gives a
big hint that the possibility that all the descriptors are very alike and the level of
customization is shallow, leading to a reduced number of errors. However, in order to
prove this statement, it is essential to check the real similarity between the descriptors.
This similarity can be measured by gathering all the tags from each descriptor and
measuring the Jaccard Index [72], which calculates the similarity between two finite
sets, between, firstly, a reference file and then the existent dataset.

Another critical step was to find a reference point to compare the descriptors. OSM
provides a script for generating the basic structure of a working VNF, which is also
prepared to support charms or not [73]. This is the perfect reference point because it is
the most basic working configuration, so it is interesting to understand how different
are the dataset descriptors from this file.

Finally, the comparison was made by just measuring the Jaccard index between the
tags and not its values since the goal is not to prove that the descriptors are completely
equal but that experimenters do not take advantage of such a descriptive and dense IM.

With all the requirements met, the first test was to compare each descriptor to
the reference file. In the first run, the descriptors were compared with a reference file
that did not use charms, and the second time, the descriptors were compared with a
reference with a charm. The results are presented on figure 5.11.

The Jaccard Index results range from zero to one with the former, meaning that
the files are completely different and the latter meaning that the files are exactly equal.
By analyzing the information displayed, it is possible to understand that the similarity
index ranges between approximately 0.35 and 0.95. Regarding the comparison with
a charmed reference, the peak value is 0.6. The reference without charm also scores
many occurrences on this value. Looking at figure 5.10, it is possible to understand
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Figure 5.11: Jaccard index distribution when the dataset is compared with the reference
VNFD.

why since this refers to all the metadata and containers (vdu, connection-point, and
mgmt-interface) that are practically always present on every descriptor. On another
hand, the reference without charms has its peak at approximately 0.85. Such value
conducts to a very high similarity index that is also explained by the lack of tag variation
for non-charmed descriptors on the figure referenced before.

The disparity between the peak values of charmed and non-charmed comparisons is
a consequence of the higher variation in tags used for each type of descriptor presented
before.

Overall, the similarity index, when compared with the reference files, is very high.
The majority of the descriptors scored higher than 0.5, which means that the generality
of the dataset is half equal to the reference. It is also true that the metadata definition
has a significant role in this similarity; however, the reference descriptor does not have
tags that were found on the dataset, such as placement-groups.

In order to have a deeper understanding of how this similarity applies in real
scenarios, all the dataset descriptors were compared with one another, and the Jaccard
Index was calculated for each interaction. Figure 5.12 portrays the similarity of each
dataset descriptor regarding the others.

The referred plot holds a set of relevant information. The first detail that has to be
noted is that the range of the Jaccard Index is practically the same as the results when

76



With charms
Without charms

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.12: Matrix with distribution of the Jaccard Index between all the descriptors.

comparing with the reference. However, in this case, some descriptors score one, which
means that they have precisely the same tags of the other descriptor on the dataset.

The red and white lines are references to help to visualize where the descriptors
which contain charms and the ones who do not are located in the results matrix.

When looking at the similarities, it is possible to note that the most significant
changes on the index occur when comparing charmed with non-charmed descriptors.
This is expected since the charmed descriptors require extra configuration. Nevertheless,
every time the descriptor types are compared directly, this is charmed with charmed
and non-charmed with non-charmed, the similarity index is very high and, sometimes,
even one. The index hardly goes lower than 0.6, and the variation is very low.

Taking into account these results, it is possible to state that the higher variations
on the index occur when comparing descriptors that are from different types (charmed
and non-charmed). When analyzing only the differences between the descriptors from
the same group, it is possible to conclude that the differences are minimal, and many
descriptors are equal to others.

This conclusion endorses the argument that the VNFD configurations have to be
external from the descriptors; otherwise, the 166 descriptors would all have very similar
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functionalities since they are, in general, very homogeneous.
The similarity of these files has then the repercussions displayed on table 5.2. The

configurations on the descriptor files are so low that there are hardly any errors to
report.

In the end, it is possible to state that the main reason for the low number of errors
in the descriptors is due to the lack of utilization of the capabilities of the OSM IM.

5.4 Summary

This chapter started by, in section 5.1, defining the two testing scenarios of the developed
tools: the first was associated with the 5GinFIRE and was intended to test the automated
mechanism. On another hand, the second was associated with the independent usage of
the osm-descriptor-validator. In order to test the second scenario, it was necessary to
gather descriptors from the portal. In order to have a big dataset, the pipeline was firstly
deployed and integrated with the 5GinFIRE portal before the osm-descriptor-validator
was developed, gathering 460 descriptors in total. This process was described in section
5.2.

The scenarios were then tested, and the results were collected being described in
section 5.3. The first scenario was tested in the real world with the integration of
Jenkins with 5GinFIRE and the deployment and integration of the validation pipeline
with the osm-descriptor-validator. Since the integration, the pipeline ran 150 times,
and the descriptors passed the tests 108 times.

The second scenario was tested using 166 unique descriptors and ended up with
88.5% of success rate.

As the high rates sounded odd, a more in-depth study of the results was followed.
A lot of different metrics were analyzed, such as the distribution of errors and warnings,
the most used tags, the tags with the most warnings and errors associated, and, finally,
the Jaccard Index between descriptors.

With the described study performed, it was possible to verify that the majority of
the descriptor files were very alike. In fact, when compared with descriptors of the
same type (descriptors with charms being compared with descriptors with charms and
vice-versa), the similarity index was very high, with sometimes reaching one (maximum
similarity). Nevertheless, if the descriptors are very identical, it also means that their
functionalities are the same unless the configurations are being done via the JuJu
Charms or the VMs. Therefore, it is possible to state that the high success rate is due
to the lack of utilization of the OSM IM.

78



CHAPTER 6
Conclusions

This work presented a way of validating VNFDs and NSD, its integration with a
Continuous Integration server, and the deployment on the 5GinFIRE infrastructure. It
also provided an in-depth study of the problems with the current VNFD development,
as well as the most common errors.

Given the current evolution of networks and the migration to NFV environments, the
softwarization of Network Function brings reliability concerns since network operators
need to assure that the product being deployed behaves as expected. This quality
assurance aspect has to come in an automated way in order to meet other operator
requirements like fast deployments.

The problem stated was faced by the 5GinFIRE project. By working with multiple
partners trying to do experiments with multiple verticals, the VNFs submitted were
being validated manually. Projects like 5GTango have made efforts to produce a full
SDK that performs tests according to the VNF submissions. However, the solution is
not portable, required multiple configurations, and it is hard to integrate with different
projects, like 5GinFIRE.

5GinFIRE needed an easy to integrate platform that would perform the necessary
tests automatically. Having this statement as motivation, an OSM descriptor validator
was proposed. This validator aimed to have extensive, easy to understand logs while
being enough abstracted and lightweight to be deployed anywhere. These features,
allied with Continuous Integration infrastructures, provided a fully automated service
that met the necessities required by the project.

The solution had two parts: the development of the scripts and the setup and
integration of the CI server with both the validator and the 5GinFIRE portal. The
validation addresses syntactic, semantic, and referential possible errors and warnings,
and the CI server handles the VNF fetching and the communication of the results to
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the portal.
As a result, the CI server with the validation tool is currently fully deployed in the

5GinFIRE environment. Currently, the VNFD are tested before being deployed into the
infrastructure, and the success rate is very high. Given that NFV and its components
are such a recent technology, the lack of descriptor errors raised curiosity. Since this
deployment enabled the gathering of many VNFDs, details about its configurations
have been analyzed in order to understand if there was any correlation between the type
of VNFs being deployed in 5GinFIRE and the lack of errors. The Jaccard Index was
calculated for the different descriptors, and the similarity between them was very high.
In the end, it was possible to understand that developers are using the same descriptor
configuration multiple times and doing the extra configuration via the images or the
JuJu Charms. Nevertheless, the reason behind the low usage of some tags may be due
to the fact that OSM was still not parsing some elements from its IM in the RO such
as the scaling-group-descriptor or the monitoring-param, among others.

The solution developed will remain deployed in 5GinFIRE. However, it will not
be completely helpful to ensure that a VNF is correct while developers use external
procedures to configure it.

6.1 Future work

Given the solution proposed and the problems stated, it would be essential to have
functional tests. A connection test was also envisioned for this validator; however, due
to the lack of more complex descriptors that enabled the testing of that tool, it was
decided not to include it on this document. Another problem was that the connection
test relied on the usage of a different image from the one intended by the developer
since there is usually no access to the original image. However, this was a problem
because, as it was possible to understand, many times, the configuration comes with the
VM image itself. Substituting that component would lead to testing a topology that
was not defined by the developer. However, if the descriptor images could be available
beforehand, it would be a good starting point for the functional testing.

Another problem that 5GinFIRE still faces is that the NS validation is still not
implemented. Since the developed tool provides the validation of such descriptors, it
is just necessary to configure another pipeline with the NSD validator with the portal
endpoints for NSD submission.
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