
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2020

Inês Mariana
Lemos Lopes

Conectividade Definida por Software em
Ambientes Móveis

Software-Defined Connectivity in a Mobile
Environment

�Unless someone like you cares a whole awful lot, nothing is going

to get better. It's not.�

� Dr. Seuss in "The Lorax"

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2020

Inês Mariana
Lemos Lopes

Conectividade Definida por Software em
Ambientes Móveis

Software-Defined Connectivity in a Mobile
Environment

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2020

Inês Mariana
Lemos Lopes

Conectividade Definida por Software em
Ambientes Móveis

Software-Defined Connectivity in a Mobile
Environment

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação científica do Doutor João
Paulo Silva Barraca, Professor Auxiliar do Departamento de Eletrónica, Tele-
comunicações e Informática da Universidade de Aveiro, e do Doutor Diogo
Nuno Pereira Gomes, Professor Auxiliar do Departamento de Eletrónica, Tele-
comunicações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Professor Doutor Arnaldo Silva Rodrigues de Oliveira
Professor Auxiliar, Universidade de Aveiro

vogais / examiners committee Professor Doutor Pedro Miguel Alves Brandão
Professor Auxiliar, Faculdade de Ciências da Universidade do Porto

Professor Doutor João Paulo Silva Barraca
Professor Auxiliar, Universidade de Aveiro

agradecimentos /
acknowledgements

Agradeço ao Professor Doutor João Paulo Barraca por toda a disponibilidade,
pelos conhecimentos transmitidos, apoio e motivação dados para que eu con-
seguisse ultrapassar dificuldades e melhorar o meu trabalho. Ao Instituto de
Telecomunicações de Aveiro, pelos recursos disponibilizados e por propor-
cionar as condições necessárias à realização desta dissertação.

Um grande obrigada aos meus colegas, que me ajudaram a ultrapassar
momentos difíceis e que deixaram marca ao tornarem o meu percurso
académico inesquecível. Guardarei para sempre todas as boas memórias.

Para finalizar, quero agradecer às pessoas mais importantes da minha vida,
que sempre me apoiaram incondicionalmente: a minha família. Agradeço
aos meus irmãos, Sara e João, por me terem animado quando me sentia
em baixo e por me terem dado forças para continuar nesta batalha. À minha
mãe, Leonor, dedico o maior agradecimento de todos, por ter sido a pessoa
com quem sempre pude contar, nos bons e nos maus momentos, e mais
importante que tudo, por me ter dado a oportunidade de frequentar o ensino
superior na universidade que eu queria. Nunca irei esquecer todo o apoio
que me deram ao longo destes anos para que eu conseguisse alcançar esta
meta.

Palavras Chave Internet em comboios, alta mobilidade, congestionamento de rede, balancea-
mento de carga, redundância de gateway, rede definida por software, Open-
flow.

Resumo O acesso à Internet de banda larga em comboios tornou-se num serviço es-
perado por parte dos passageiros e o aumento na exigência de qualidade tem
constituído um desafio para os prestadores de serviços. Existem soluções de
acesso à Internet em comboios que carecem da flexibilidade e redundân-
cia necessárias para uma melhor qualidade de serviço na rede. Assim, esta
dissertação estuda duas novas soluções de balanceamento de carga, uma
distribuída e outra centralizada. Numa rede de comboio emulada, routers
de cada carruagem comunicam as suas estatísticas de rede para outros nós
da rede, para posteriormente serem tomadas decisões de balanceamento de
carga. Na solução distribuída, cada router tem capacidade de tomar decisões
de balanceamento de carga, enquanto que na solução centralizada, um con-
trolador dentro do comboio toma essas decisões. Esta última solução baseia-
se num balanceamento de carga em ambiente SDN. Neste sistema, uma enti-
dade remota agrega o tráfego dos passageiros e encaminha-o para uma rede
externa, ou para a Internet. Os sistemas devem proporcionar uma qualidade
de experiência melhorada aos passageiros do comboio e a largura de banda
total disponível deve ser distribuída mais uniformememente por todas as car-
ruagens. Requisitos foram estabelecidos para os sistemas, que foram desen-
volvidos após uma análise aprofundada das soluções de acesso à Internet
em comboios encontradas na literatura. Após a obtenção dos resultados dos
testes de desempenho, concluiu-se que as duas soluções melhoram o QoE
dos passageiros, desde que as condições da rede sejam aproximadamente
constantes durante um certo período.

Keywords Internet access on board, high mobility, network congestion, load balancing,
gateway redundancy, software-defined networking, Openflow.

Abstract Broadband Internet access on trains has become an expected service for pas-
sengers, and the rise in quality demand has been posing a challenge to ser-
vice providers. There are solutions for Internet access on trains that lack the
flexibility and redundancy needed for an improved QoS in the network. Thus,
this dissertation studies two new load balancing solutions, one distributed and
the other centralized. In an emulated train network, routers of each car com-
municate their network statistics to other nodes of the network, to be used
in load balancing decisions. In the distributed solution, each router has the
capacity to make load balancing decisions, while in the centralized solution,
an onboard controller makes those decisions. The latter solution is based on
load balancing in an SDN environment. In this system, a remote entity aggre-
gates the passengers’ traffic and forwards it to an external network, or to the
Internet. The systems must provide an improved quality of experience to the
passengers on the train and the total avaliable bandwidth should be distributed
evenly by all cars. Requirements were established for the systems, which were
developed after an in-depth analysis of solutions for Internet access on board
found in the literature. After obtaining the results of the performance tests, it
was concluded that the systems improve the QoE of the passengers, as long
as the network conditions are approximately constant for an extended period.

Contents

Contents . i

List of Figures . v

List of Tables . vii

Acronyms . ix

1 Introduction . 1

1.1 Motivation . 2

1.2 Objective . 2

1.3 Structure of the Document . 3

2 State of the Art . 5

2.1 Introduction . 5

2.2 Internet Access on Trains . 5

2.2.1 Terrestrial Solutions for Broadband Internet Access 6

2.2.2 Communication With the Cellular Network 11

2.2.3 Future Technologies . 14

2.2.4 Communication Challenges and Issues 15

2.3 Software-Defined Networking . 17

2.3.1 OpenFlow . 19

2.4 Link and Traffic Aggregation . 20

i

2.5 Gateway Redundancy . 21

2.6 Load Balancing . 22

2.6.1 Load Balancing Algorithms . 23

2.6.2 Load Balancing in SDN . 26

2.7 Chapter Considerations . 28

3 Solution for Load Balancing in Trains 31

3.1 Train Network Scenario . 31

3.2 Requirements . 32

3.2.1 Functional Requirements . 32

3.2.2 Nonfunctional Requirements . 33

3.3 Network Architecture Overview . 34

3.4 Message Flows . 37

3.5 Load Balancing Solution in a Software-Defined Network 38

4 Implementation . 43

4.1 Overview of Used Technologies . 44

4.2 Distributed Load Balancing . 46

4.3 Centralized Load Balancing . 52

4.3.1 Setup of the Solution . 53

4.3.2 Load Balancing System Processes . 56

5 Evaluation and Results . 63

5.1 Distributed Solution’s Testing Scenarios . 64

5.1.1 Scenario A - Constant Delay . 65

5.1.2 Scenario B - Constant Delay . 66

5.1.3 Limitations of the Distributed Solution 67

5.2 Centralized Solution’s Testing Scenarios . 68

5.2.1 Scenario A - Constant Delay . 69

5.2.2 Scenario B - Constant Delay . 72

5.2.3 Scenario C - Constant Delay . 73

5.2.4 Scenario D - Sequential Delay . 75

5.2.5 Limitations of the Centralized Solution 77

6 Conclusions . 81

ii

6.1 Future Work . 82

References . 85

iii

List of Figures

2.1 a) the RADIATE architecture and b) the RADIATE control system. Retrieved

from [7]. 7

2.2 Typical ground-to-train FSO communications system, retrieved from [13]. 8

2.3 Onbard network architecture, retrieved from [15]. 9

2.4 High-speed train scenario and discontinuous service in a T-RAT due to handover,

retrieved from [16] . 10

2.5 Cell Array reconfiguration, retrieved from [20]. 12

2.6 Architecture for Internet connectivity in a train, retrieved from [6]. 13

2.7 SDN architecture diagram . 18

2.8 Left: APs transmitting with equal power level. Right: AP b adjusts transmission

power level. Retrieved from [55]. 24

2.9 Network architecture for high-speed trains, retrieved from [3]. 25

3.1 Diagram of the network architecture . 35

3.2 Sequence diagram of the message flows in the system 37

3.3 Flowchart of the backup assignment . 41

4.1 Network elements and related technologies . 44

4.2 Publish-subscribe pattern, retrieved from [76] . 49

4.3 Request-reply pattern, retrieved from [76] . 52

4.4 Setup of the solution and communication between the network elements 54

4.5 Flowchart of the preprocessing of the routers . 58

v

5.1 Distributed solution network setup . 64

5.2 Percentage of passengers in cars 3 and 4 that downloaded one website 66

5.3 Percentage of passengers in cars 3 and 4 that downloaded one website 67

5.4 Network setup with one web server . 69

5.5 Percentage of passengers in cars 3 and 4 that downloaded one website 70

5.6 Network setup with two web servers . 72

5.7 Percentage of passengers in cars 3 and 4 that downloaded the two websites . . . 73

5.8 Percentage of passengers in cars 3 and 4 that downloaded the two websites, without

load balancing, and the prioritized website, with load balancing 74

5.9 Delay added to the router in the first car during each test 75

vi

List of Tables

2.1 Load balancing algorithms . 23

5.1 Average of website downloads per client - scenario A 65

5.2 Average of website load times per client - scenario A 65

5.3 Average of website downloads per client - scenario B 66

5.4 Average of website load times per client - scenario B 67

5.5 Average of website downloads per client - scenario A 69

5.6 Average of website load times per client - scenario A 70

5.7 Average of website downloads per client - scenario B 72

5.8 Average of website load times per client - scenario B 72

5.9 Average of website downloads per client - scenario C 73

5.10 Average of website load times per client - scenario C 74

5.11 Delays added to the routers (milliseconds) every five seconds 76

5.12 Average of website downloads per client - scenario D 76

5.13 Average of website load times per client - scenario D 77

vii

Acronyms

AP Access Point

API Application Programming Interface

CIDR Classless Inter-Domain Routing

CPE Customer Premises Equipment

DNS Domain Name System

eNodeB Evolved Node B

GRE Generic Routing Encapsulation

IP Internet Protocol

JSON JavaScript Object Notation

LACP Link Aggregation Control Protocol

LAN Local Area Network

MAC Media Access Control

MEC Multi-access Edge Computing

NAT Network Address Translation

OS Operating System

OVS Open vSwitch

OVSDB Open vSwitch Database

QoE Quality of Experience

QoS Quality of Service

RoF Radio-over-Fiber

RSRP Reference Signal Received Power

RSRQ Reference Signal Received Quality

RTT Round-Trip Time

SDN Software-Defined Networking

STA Station

TCP Transmission Control Protocol

UCI Unified Configuration Interface

VM Virtual Machine

WAN Wide Area Network

WLAN Wireless Local Area Network

ix

1
Introduction

“Even if you are on the right track, you’ll get run over if you just sit there.”
- Will Rogers

Nowadays, nearly every person owns a smartphone, tablet, or computer with 3G/4G
and Wi-Fi (IEEE 802.11) capabilities that allows them to be connected most of the
time, if not all the time, to the Internet. Also, society has the constant need to be
well-informed of the news, social updates, and other information that the Internet
provides them. Due to the mobile nature of smartphones, smartwatches, and other
technologies that connect to the Web, they follow along with its users every day.

Transportation companies try more and more to meet the requirements of an
increasingly interconnected world, to allow passengers to spend their trip time working
or entertaining themselves, and also to keep up with competitors. For this reason, in a
world with various transportation companies, a good and efficient Internet connection
may be a decisive factor when choosing the next trip. Thus, Internet services have
become a must on modern public transports, and the rise of Internet access’ quality
demand has been posing a considerable challenge to service providers. As explained in
the State of the Art, there are numerous solutions for providing Internet access on trains,
but the most widely used is broadband access using the cellular network. However, this
technology also poses significant difficulties, due to the high speed achieved by some
trains, linked to a rapidly changing signal quality, and the limited coverage in some
locations, among others. A good and fast Internet connection can also be related to
safety since it allows operation centers to monitor the train-related information and
receive close to real-time updates.

It is worth noting that an increasing number of Internet users resorts to streaming
services for entertainment or video calls for work meetings, for instance. These online

1

applications usually take up the most bandwidth and, since it is shared between all
passengers in a car, if not shared equally or used responsibly, network congestion
becomes very common.

So, the above described increasingly popular pattern of Web usage is a big challenge
in a network environment of limited bandwidth and rapidly changing signal strength.

1.1 motivation
Some network architecture solutions for Internet access on trains in the railway

industry and others found in the literature, consist of placing one or more wireless
routers in each car, which will then connect to an access network. These solutions may
lack in control and management components (local or remote), with an isolation of
the routers in each car, only serving their own passengers. Thus, the routers are never
aware of their operational peers.

As expected, this poses a significant problem for passengers in the car, mainly
because the router’s gateway becomes a single point of failure that is susceptible to
increasingly slower Internet connection speed or worse, total disconnection.

In this network topology, routers do not balance their client’s traffic, and they do
not report their uplink status to some local or remote monitoring entity that could
easily control them and avoid the situation of cars without an Internet connection or
slow Internet speed for their passengers.

The mentioned problems of this network solution illustrate the need for a new
network architecture that would take into consideration the existing issues and improve
the management of the network elements significantly so that they can cooperate and
report their current status to peers.

1.2 objective
The main objective of this dissertation is to develop load balancing mechanisms

that can assure that all passengers of the train have an uniform access to the Internet
with increased QoE. After further improvements and adaptations, the solution could
be used in a real-world train’s network.

In order to fulfill this goal, it was first developed a distributed load balancing system,
used to evaluate and validate the reliability of such a load balancing algorithm in
an environment of Linux-based routing devices. The analysis and evaluation of the
performance of the system allowed to conclude it could bring positive improvements to
the train network. However, its issues had to be tackled in a more complex environment,

2

which is the case of the developed centralized load balancing system.
The centralized solution consists of a load balancing algorithm implemented in an

SDN [1] environment. This solution aims to bring greater flexibility and redundancy to
a train’s network, as well as increase the number of web services the passengers in some
cars can access, and decrease the time it takes to access them.

Testing scenarios were described for both solutions, to further evaluate the degree
to which the QoE of the passengers would increase with their usage and which could be
the drawbacks of both solutions. The testing scenarios varied in the type of access by
clients and the network degradation applied to the gateways of the network. The main
results that evaluate the QoE associated with the systems are the number of downloads
of a website per client and the total time it took to download them completely.

1.3 structure of the document
The remainder of this document is structured like so:
• Chapter 2 - State of the Art: state of the art and related work is presented in

this chapter, including key-concepts of network access inside trains and high-speed
trains, as well as of SDN, Openflow and load balancing algorithms. Similar
network architectures already deployed in trains or theoretical architectures found
in the literature are also described.

• Chapter 3 - Solution for Load Balancing in Trains: introduces a reference
network architecture and the proposed load balancing solution to minimize the
negative effects of its associated problems. Also, the requirements of the system,
the centralized solution’s network architecture, and network elements needed for
the normal operation of the system. It is also presented the flow of the messages
exchanged by the system’s elements.

• Chapter 4 - Implementation: first, a summary of the technologies used in
this dissertation was made in order to contextualize the reader who may not be
familiar with them. Following, an in-depth description of the implementation
of the systems in a virtual environment details the distributed load balancing
mechanism, followed by the centralized mechanism in an SDN environment.

• Chapter 5 - Evaluation and Results: Diverse testing scenarios were used to
evaluate the performance of the solutions. The chapter contains a discussion of
all the obtained results and of the possibility of a real-world implementation of
the system.

• Chapter 6 - Conclusions: contains the main conclusions of the dissertation,
including its limitations. It is also of great interest to discuss the future work,
which can be found at the end of this chapter.

3

2
State of the Art

2.1 introduction
The purpose of this chapter is to introduce the reader to concepts that are relevant in

the scope of this dissertation and related work found in the literature. Section 2.2 covers
various topics regarding Internet access on trains, such as terrestrial technologies for
broadband access on trains, architectures described in the literature assessing train-to-
infrastructure, inter and intra-car communication, future technologies, communication
issues and challenges of Internet provisioning. Next, section 2.3 explores the Software-
Defined Networking and OpenFlow concepts and architectures. Sections 2.4 and 2.5
describe, respectively, the gateway redundancy concept with related protocols and link
and traffic aggregation concepts with associated protocols and solutions found in the
literature. Finally, section 2.6 contains an overview of load balancing algorithms used
in traditional networks and SDN.

2.2 internet access on trains
Nowadays, there are millions of mobile devices connected to the Internet. Onboard

Internet services are becoming a need in modern trains, and the rise of Internet access
quality demand has been posing a challenge to service providers, due to the high speeds
achieved by some trains (higher speed equals to more handovers per unit of time), the
rapidly changing signal quality, the limited coverage, among others.

Since trips tend to be long, people feel the need to spend this time working or
entertaining themselves. An efficient Internet connection may be a decisive factor when

5

clients choose a type of transportation.
So, Internet users have high demands for service quality and Internet speed. Passen-

gers not only require mobile coverage, but they also want to successfully and efficiently
use various broadband services inside trains.

Two major options to be considered when providing Internet access onboard are:

• Satellite architectures: satellites are a solution used to provide onboard Inter-
net services and were the first solution to be put into practice [2]. This technology
has some advantages and also some limitations. It is simple to deploy because, as
there is no need for a terrestrial network, there is also no need for an agreement
between the railway operators and the network infrastructure administrators.
Also, their coverage is broader than in terrestrial networks.

Some disadvantages include the bandwidth limitation, latency, and the lack
of connectivity when trains are inside tunnels [3]. It is also usually necessary to
place big antennas on trains’ roofs in order to communicate with the satellites,
which has an impact on aerodynamics [2].

Distinct types of satellites are available: Geostationary Orbit, Low, and
Medium Earth Orbit [4]. They use different frequency bands and may provide
unidirectional or bidirectional communications. Geostationary Orbit satellites can
cover a wide geographical area and provide broadband connectivity for mobile
users. For this reason, they are used in many communication and broadcasting
systems [5].

• Terrestrial architectures: terrestrial networks may rely on existing networks,
like the public cellular network (2G, 3G, 4G, and soon, 5G), or may require ground
infrastructure to be deployed, which is the case of leaky coaxial cable, optical
solutions, Radio-over-Fiber, Wi-Fi and WiMAX [4].

2.2.1 terrestrial solutions for broadband internet access
In this section, some technologies that were proposed as solutions to provide broad-

band access to train passengers are described. The authors of [5] and [6] compiled a
variety of methods for broadband access on trains. Further reading of these works is
advised for the detail they present. The following compilation of terrestrial technologies
(nonproprietary) takes into consideration the information in these two works and others
on the theme:

6

Radio-over-Fiber (RoF)
Radio-over-Fiber consists of the use of an optical fiber link to transmit modulated

Radio Frequency signals.
The Distributed Antenna System is an application of RoF technology. In that

system, Remote Antenna Units are connected to a central processor via RoF links [7].
Refer to [8] for a review on RoF communication system.

The authors of [9] proposed the moving cell concept to reduce the handover time
of passengers’ stations in high-speed trains. They came up with this concept by using
RoF-based DAS architecture. During a normal handover process, the STAs are required
to adapt their frequency. Instead, with the “moving cell” concept, the Base Stations will
track the movement of the trains to reconfigure their operating frequency subsequently,
thus maintaining the communication links with the train passengers.

In [7], the authors propose a solution named “RADIATE” (RADio-over-Fiber as
AnTenna Extender), to provide broadband Internet services in high-speed trains. The
architecture is depicted in figure 2.1. This solution explores both the cellular network
and the moving cell concept (explained previously). The architecture consists of wireless
APs inside the cars (radio interfaces of multiple access technologies), an on-roof antenna
system (using fiber links), which communicates with the cellular network and the
RADIATE control system (RCS). The RCS is in charge of scheduling of passengers’
traffic (fairness and distribution of workload) and optimization and control of the
antenna system.

Figure 2.1: a) the RADIATE architecture and b) the RADIATE control system. Retrieved
from [7].

In [10], an integrated WiMAX-RoF system was proposed and deployed along a
high-speed railway track of the company Taiwan High-Speed Rail Corporation. In
the proposed topology, base stations are placed along the tracks and connected by a
broadband optical fiber backbone. They are managed by an Access Service Network
Gateway whose main functions include establishing a connection between the BS and
the WiMAX Customer Premises Equipment (CPE), deciding on handover events, and
sending requests to the Connectivity Service Network (the element providing Internet

7

services). RoF technology is used to cope with the signal attenuation (or loss of signal)
inside the tunnels, extending the cell coverage and avoiding disconnection. The authors
also propose a communication solution consisting of ground-to-train communication
using WiMAX, communication inside the cars using IEEE 802.11b/g, and between cars
using IEEE 802.11a. They consider that a WiMAX-RoF system “is a powerful solution
for providing broadband Internet to the fast-moving train passengers”.

Although associated with improved coverage and capacity in short-range communi-
cations, a big disadvantage of RoF-based solutions is the cost of deploying fiber along
the railway.

Optical solutions
Free space optics (FSO), a form of optical communication, uses light in various

frequencies of the spectrum to carry out a signal. Li-Fi [11] is an example of a FSO
system. These types of communications achieve data rates of 1 Gbps and up, are immune
to electromagnetic interference, and cannot penetrate walls. An FSO communication
system has three main elements [12]: a transmitter sending the optical signals, a
free-space transmission channel, and a receiver of the transmitted signals.

In [13], the authors evaluate the performance of an FSO system for broadband
Internet access on trains, presenting a mathematical modeling for a ground-to-train FSO
communication link. They also depict a typical FSO network architecture deployment
along a railway (refer to figure 2.2). The authors state that “FSO technology with the
proposed system modeling can be an alternative to provide a high bandwidth broadband
access to high-speed trains”.

Figure 2.2: Typical ground-to-train FSO communications system, retrieved from [13].

In a recent study, [12], the authors investigated two different laser beam modalities
(narrow and wide beams) for FSO communication in ground-to-train communications
(for high-speed trains - 300km/h). They compared both and presented their advantages

8

and disadvantages in different conditions, such as weather effect, range, light intensity,
coverage length, security, parallel beams, among others.

Leaky Coaxial Cables (LCX)
In [14], a communication architecture was proposed for bullet trains in Japan,

considering technical challenges of providing broadband Internet access to high-speed
trains. The authors explain that Leaky Coaxial Cable has been utilized in Japan for radio
communications on trains, being laid along railways, tunnels, subways, underground
facilities, and other places where normal radio communication is not possible. However,
at least at the time the work was written, it was used only for communication between
operators (control center) and train drivers, to manage the train services. The authors
also developed and tested (in an outdoor environment) an LCX communication system.
The results indicated that data rates of up to 768 kbps could be achieved using LCX,
which is not enough to satisfy bandwidth requirements for most Internet services.

A major disadvantage of LCX solutions is the cost of the deployment of the cable
along the tracks.

IEEE 802.11-based Architectures (Wi-Fi)
Wi-Fi is a technology that allows good performance and good resistance to the

train’s high velocity. It can be used to link cars on the train into a computer network
and provide Internet access to passengers. It is largely used nowadays inside trains
since most devices have wireless communication capabilities. It also has the advantage
that there is no need to wire the train or rewire it in case of reconfiguration.

In the architecture proposed on [15], users are connected to the Internet via a satellite
gateway, through a Train Server. However, the server also has gateway functions to
connect to other networking technologies, in case of a satellite link outage or when an
802.11 connection may be more convenient. The network architecture is depicted in
figure 2.3.

Figure 2.3: Onbard network architecture, retrieved from [15].

9

The authors propose two architectures for the implementation of a wireless distribu-
tion network. In both of them, there is a wireless access point in each car and several
STAs (user terminals) trying to connect to the Internet.

• In the first topology, adjacent cars are connected using separate wireless links.
Those links can be based on 802.11b or more advanced technologies, like 802.11a.
The antennas should be located outside the cars to avoid signal attenuation (a
result of the cars’ infrastructure);

• In the second topology, APs are arranged in each car so that each one serves
as a client STA for the AP in the previous car, but also as a host for the STAs
within their car. In other words, the access network is also used as a distribution
network.

The authors conclude by stating that their topologies must be tested on the real-
world to measure how interference and propagation issues affect the performance and
the feasibility of the architectures.

In [16], the authors propose a network architecture where onboard connectivity is
provided to passengers by placing Wi-Fi APs inside each car. The APs connect to the
cellular network using train-to-ground radio-access terminals (T-RATs). Figure 2.4
depicts the proposed architecture as well as onboard connectivity upon handover.

Figure 2.4: High-speed train scenario and discontinuous service in a T-RAT due to handover,
retrieved from [16]

WiMAX-based Architectures
This wireless technology based on the IEEE 802.16 set of standards has a bandwidth

capacity that makes it suitable for broadband Internet access on high-speed trains.
In [17], a novel (2008) technology was introduced: the SWiFT (Seamless Wireless

Internet for Fast Trains), a three-tier architecture. It is based on the deployment of
WiMAX (IEEE 802.16m) base stations along the railway network (Level-1). Each base

10

station (IEEE 802.16m) consists of directional antennas, and an optical backbone is
used to link the base stations together (Level-2) and to the Internet. WLAN (802.11e)
access points are placed inside the train cars for onboard network (Level-0). In this
architecture, each car of the train will have multiple users connecting to one or two
Internet gateways. Therefore, handoffs are simplified since the Internet gateway acts
as a single subscriber STA. The overhead and latency caused by handoff are, thus,
reduced.

The authors of [18] compared different technologies for network connection (HSPA,
E-UTRA, WiMAX). They concluded that WiMAX base stations provide acceptable
coverage for several data rates and that Wi-Fi technology is only suited for connectivity
inside the train. Nevertheless, 3G and 4G technologies still offer the best coverage.

Finally, in [19], the authors present a table with a comparison of Internet services
on trains, in which they state that the middle-speed trains “Narita Express” of the East
Japan Railway Company (JR-EAST) use WiMAX to provide Internet connection, with
a maximum bandwidth of 40 Mbps.

It is important to note that WiMAX, even though possessing the capabilities
needed to provide adequate Internet access, has been overshadowed by the current LTE
standard.

2.2.2 communication with the cellular network
In this dissertation, broadband access through the public cellular network is in the

spotlight. In the current days, most smart personal devices are multi-radio and capable
of both cellular 3G and 4G communications. They are also capable of communicating
through Wi-Fi.

A simplified network architecture for trains would be not to install any additional
equipment, which means the passengers would have to connect directly to the cellular
network. However, this architecture delivers a decreased service quality to the passengers,
mainly due to the attenuation and loss of radio signals.

Some network architectures found in the literature to provide broadband Internet
access to users on trains are described next.

The work [20] presents an LTE-based solution to support high throughput and
continuous multimedia services on high-speed trains. The solution is based on a Cell
Array, which organizes cells in a smart way along a railway (refer to figure 2.5). The
architecture used to provide Internet on board consists of the use of two LTE femtocells
within each car. Each femtocell covers half of a car and up to 50 simultaneous users. Two
directional antennas at both ends of the train are used to connect to distant eNodeBs

11

and thus increase the number of cells the train may be connected to (simultaneously).
Communication inter-car is provided through optical fiber. The femtocell base station
has two interfaces working within two different frequency bands. One interface is used
for car-to-infrastructure communications (sends requests and receives the aggregated
download traffic from the infrastructure LTE network), the other is used to communicate
with the mobile stations within the cars.

Figure 2.5: Cell Array reconfiguration, retrieved from [20].

In [21], studies were performed taking into account an architecture where there is a
train access terminal, or aggregation router, that provides clients with Wi-Fi access
(LAN side), aggregates traffic, and transports it via rooftop antennas (WAN side),
using mobile broadband access or satellite. A similar architecture is considered in [18].
Here, the authors propose a topology where a base station transmits to a receiving
antenna on the roof of each train car, then the receiving antenna connects to Wi-Fi
APs inside the cars and wireless reception is finally ensured inside them. The work
analyzes train communications based on real-life measurements, which were captured
at train aggregation routers.

In [3], each car of a train is connected to the LTE network through one train-to-
ground radio-access terminals (T-RAT). The onboard Internet access is provided by
a LTE femtocell, one per car. The femtocell access points are connected through a
dispatcher to the multiple T-RATs of the train. This dispatcher will allow forwarding of
traffic between cars according to the status of the T-RATs’ queues and service capability.

12

The T-RATs receive packets from onboard dispatchers and send them to the cellular
network.

The work [6], presents a reference architecture to guide the discussion on broadband
Internet access on trains (refer to figure 2.6). The architecture uses gateways in each
car to build a train-level network. Broadband access is provided through a train access
terminal (TAT), which can support one or more technology types. It connects to the
access network using an antenna on the rooftop of one chosen car. The incoming signal
from TAT is forwarded to gateways located in each car, which will then forward it to
APs (one per car). Wi-Fi (IEEE 802.11) is the preferred technology used to provide
connectivity to passengers, but a wired network is also feasible.

Figure 2.6: Architecture for Internet connectivity in a train, retrieved from [6].

The authors remark some benefits of using this architecture, including:
• The cellular network system is not strained while attempting to make handovers

for many fast-moving users simultaneously;
• TAT can combine different access technologies and smartly select a better means

for communication between the train and the access network.

Diving into real-world trains’ Internet access, the website [22] provides extensive
information about how numerous railway companies based in the UK provide Wi-Fi
access to their passengers. The web page explains that Wi-Fi is widely available in
trains doing long-distance routes but is uncommon for short-distance routes. The
tendency is to provide free Wi-Fi, if available.

Comparing the different network architectures described before, it is possible to
conclude that the communication inside cars will bring better results if achieved through
Wi-Fi (IEEE 802.11), and the communication between cars, if necessary, should be
achieved through a high data rate and low latency wireless network (refer to [23]). This

13

is because wiring a train for network access is costly, and rewiring would be necessary
in case of reconfiguration of the train topology.

2.2.3 future technologies
Technology is constantly changing, and the railway industry will have to evolve with

it. Some emerging technologies that could be used for Internet access on trains are
analyzed next.

Currently, LTE can provide data rates of up to 1 Gbps [24] (peak data rate in low
mobility scenario). 5G networks, in contrast, are able to provide users with data rates
of up to 20 Gbps in urban areas [25].

Considering the existent access network technologies, 5G would be a good improve-
ment for train-to-ground communication. It will be based on the foundation created
by 4G LTE [24]. This near-future communication generation will increase the capacity
and speed of networks in order to provide a more reliable connection to an increasing
number of mobile users.

Considered to be an important technology to enable the evolution to 5G, Multi-
access Edge Computing (MEC) will provide cloud-computing capabilities to the edge
of the mobile network and, therefore, will be closer to mobile subscribers [26]. This
technology will reduce latency, ensure higher efficiency in network operation and service
delivery, and lastly, provide a better QoS and QoE. Refer to [26] for more detailed
information on MEC.

Wi-Fi is the most common WLAN deployment inside trains, using APs for users’
connection [4]. However, Li-Fi and WiGig are two suitable candidates for future intra-car
communication.

Li-Fi (Light-Fidelity), standard IEEE 802.15, is a Visible Light Communication
system. Thus, its frequency spectrum is located in the visible light band and can provide
users with a data rate superior to 10 Gbps [27]. One characteristic of this technology
is that the Internet cannot be accessed without a light source, which can limit its
deployment location since light cannot penetrate opaque physical barriers (unlike radio
frequency signals) [28]. This could be an advantage since there is no interference from
one room to another; however, other sources of light may interfere with the signal.

WiGig (Wireless Gigabit), standard IEEE 802.11ad, operates at the 60GHz band [4].
It provides high-speed, low latency connections and throughput up to 7Gbps (distance
up to 10 meters), which makes it a candidate for inter-car communications.

14

2.2.4 communication challenges and issues
The communication between the train or user and the mobile network suffers from

delay, limited bandwidth, packet loss, or even prolonged connection loss. These might
be due to:

1. Frequent handovers: The high frequency of handovers associated with the
high speed of the trains greatly increases the probability of service interruption
and overall delay, reducing QoS. The most affected services can be, for instance,
streaming or other multimedia-related services that demand both high throughput
and a stable connection.

2. Weak or inexistent cellular coverage: Companies which deploy public cellular
networks’ infrastructure need to profit from the network, which is why most recent
cellular technologies like 4G are first deployed in places that will provide a better
return of investment, such as more populated areas (cities) [29]. So, taking into
account that railways are installed in a variety of types of locations (cities, rural
areas, among others), Internet access will not always have the same quality during
a trip and may even be nonexistent. Trains may travel through remote locations
between cities during the trip.

3. Blocking of radiofrequency: if the mobile user connects directly to the cellular
network, the signal to/from the base station as to penetrate the car, which may
result in a loss of up to 24 dB [3], [29]. This issue is tackled when devices
communicate within a train’s local access network (as described in previous
sections).

4. Number of active passengers: the more passengers access the Internet inside
a train, the less bandwidth will be available for each. Inside a house, a reduced
number of people (for instance, four) may be accessing the Internet. In a train,
the number of passengers trying to access the Internet may be up to hundreds
per gateway. It is observed an increase in the load of the network and bottlenecks
may occur in some cars, causing significant service response delay. Moreover, each
passenger may have more than one device connected to the network.

Thus, to improve the quality of services inside trains, cellular and railway companies
must plan the deployment of the network very carefully, also taking into account the
variety of architectures for the distribution link. The choices they make will have a
direct impact on the challenges stated above.

In [29], the following scenario of communication is proposed:

• Considering 130 to 180 passengers in each car, if half of those passengers demanded
real-time HD video (720p or 1080p), a bandwidth of up to 3.6 GHz would be
required. The authors state that this bandwidth requirement cannot be fulfilled
by LTE (4G), which only makes use of 20 MHz.

15

Another possible scenario would be:

• In a train with a total of 300 seats, the train is full and half of the passengers
(150) want to watch an HD video from a streaming service, in this case, Netflix.
For this video quality, it is recommended by the company to allocate 5 Mbps to
each device [30]. LTE has a peak speed of 100 to 1000 Mbps [31], and the 3GPP
website states that the peak for LTE is 300 Mbps [32].

Thus, the same conclusion is obtained for this scenario: LTE will not be able to cope
with the ever-increasing demand of video streaming (or other high-throughput traffic),
not only of train passengers but of all connected users around the world. The key to
follow this demand would be, naturally, to switch to faster communication systems like
5G.

There are two ways to tackle communication issues and prevent bottlenecks, assuming
a 3G/4G access network, while also providing a good quality of service. First, a railway
company may limit the bandwidth and data usage of the passengers. Second, the traffic
can be processed according to an assigned priority (for instance, low priority would
include streaming services which consume a lot of capacity).

Some railway companies have data usage limits per customer for both downlink and
uplink, and sometimes they even block services such as audio and video streaming. A
few examples are enumerated next:

• Trenitalia c2c Limited: in trains of this English railway company, each passen-
ger has a limited data usage of 100 MB (3G and 4G mobile network) in a day
[33].

• Deutsche Bahn: a German company, offers different Wi-Fi services depending
on the class the passenger travels in. In the first class, passengers may watch
videos and listen to music, as well as send and receive large e-mail attachments
[34]. Second class passengers, on the other hand, have their data usage limited.
The website of the company calls it a basic Internet service, only allowing access
to low-throughput websites and services.

• Eurostar: according to the company’s Terms and Conditions, in [35], the Wi-Fi
service “is intended to support general web browsing activities and use of the
train’s pre-loaded entertainment content”. The company’s Wi-Fi service does not
allow music or video streaming and download of large files. Also, additional speed
restrictions may be applied.

• Queensland Rail: to ensure a good quality of the Wi-Fi services, in this
Australian company’s trains, each passenger has a limit of 20 MB of data usage
per session [36].

16

The cost of data transmission is an important aspect when applying the limitations
described above. An increasing number of users want to connect to the Internet using
the trains’ network, which means that more data needs to be transmitted, resulting
in an increased cost of the service paid by railway operators [37]. The cost of mobile
Internet varies from country to country.

2.3 software-defined networking
Traditional IP networks are highly dynamic and complex. Thus, managing and

configuring them becomes a major challenge, particularly the high-level policies/control
functions implementation, since these must be specified in low-level configuration.

Nowadays, network operators must deal with an increasing set of complex network
policies and tasks, although only having a limited and constrained set of low-level
configuration commands. Each network device must be, therefore, configured with
low-level or vendor-specific commands, and because the state of the network changes
continuously, its configuration must also change. Ad hoc scripts and external tools may
be used to reconfigure the network [38]. However, frequent reconfigurations may lead
to errors that may compromise the network.

An additional disadvantage of the management of traditional networks is that current
networks are vertically integrated [39]. The control plane, responsible for network traffic
management decisions, and the data plane, that forwards traffic according to previous
decisions by the control plane are both inside each network device.

Software-Defined Networking (SDN) is a relatively new paradigm that tackles the
limitations of traditional networks mentioned above. It provides both centralized control
and a global view of the network. This mechanism decouples the control plane from
the devices that forward traffic (data plane). Network devices, such as switches and
routers, become mere forwarding elements while a centralized controller manages the
whole network, simplifying its reconfiguration and policy enforcement and facilitating
optimization. Flexibility and resource management is also improved.

In an SDN architecture, forwarding decisions are flow-based instead of destination-
based [39]. A flow is, therefore, a sequence of packets forwarded from a source to a
destination. The packets are associated with identical service policies in the forwarding
devices.

Although Internet access on trains presents numerous issues and challenges, as
explained in the previous section, it is still possible to manage the network in order to
tackle or minimize their effects. Thus, an SDN architecture can be of significant value
for efficient management and control of a train network, while increasing the QoS.

17

The SDN architecture is divided into three layers [40]: application layer, controller
layer (control plane), and forwarding layer (data plane). These layers communicate
with each other via APIs. The layers and their communication interfaces are described
next, with the diagram of figure 2.7 depicting an overview of the SDN architecture.

Figure 2.7: SDN architecture diagram

• Data plane: contains all types of forwarding devices, such as routers and switches,
which are interconnected wirelessly or through physical wires.

• Control plane: logically centralized in a server, the control plane uses south-
bound interfaces to program and manage forwarding devices of the data plane,
defining rules and instructions on how they should forward the traffic. A controller
is, therefore, the “brain” of the network.

Some well-known SDN controllers are: OpenDaylight, Floodlight, NOX/POX,
Ryu, among others.

• Application plane: contains network applications and services that, through
the northbound interface, define policies for the control and the management of
the network behavior. These applications use the controller to collect information
about the network.

• Northbound Interface: typically, an API is provided to application developers,
to establish a common interface for the development and implementation of
management applications and high-level control programs. This interface is used
for the communication between the application plane and the control plane.
It abstracts low-level instruction sets that are used by southbound interfaces

18

https://www.opendaylight.org/
https://github.com/floodlight/floodlight/wiki
https://github.com/noxrepo/
https://github.com/faucetsdn/ryu/wiki

to program the forwarding devices. RESTful APIs are typically used for the
communication between the application and control planes [40].

• Southbound Interface: this interface provides a protocol that formalizes the
communication and management between the controller and physical/virtual
switches, routers, and other low-level nodes of the network. The southbound API
defines the instruction set of the forwarding devices. OpenFlow is an example of
this interface.

Two interesting works, [39] and [41], explore deeply the SDN concept. In the first
one, the authors provide an extensive review of the concepts, challenges, and existing
solutions of the SDN architecture and its components. The second contains an overview
of programmable networks and examination of the SDN architecture, as well as the
OpenFlow standard, which is also explored in the first work and will be described in
the next section.

2.3.1 openflow
OpenFlow is an open protocol that was proposed to standardize the communication

between an SDN Controller and the forwarding plane (network devices), and thus
control flow transfer by programming the flow table(s) of switches.

A controller makes control and management decisions in a plane separate from
the forwarding devices, as explained before. The nodes of the data plane are only
required to match the incoming packets and forward them according to predefined rules
(established by the controller), simplifying the process [42].

This open-source model removes the limitations imposed by commercial solutions
to researchers and supports high-performance and low-cost implementations.

The main components of the OpenFlow architecture are:

• OpenFlow Switch: these switches use rules defined in their flow tables (local
databases) to forward packets. A flow table consists of a list of flow entries, and
each entry has fields such as counters, priority, instructions, match fields, among
others.

Incoming packets are compared against match fields of each entry. In the case
of a match, the packet is processed according to the instructions in that entry.

The use of aggregation schemes, like wildcard rules, helps to deal with limited
flow table size. Multiple rules may be aggregated into one, reducing not only
communication between the controller and the switch but also the number of
redundant flow entries that would otherwise express the same semantics.

19

• Secure channel: The secure channel is the interface that connects the controller
to all switches. This channel is used by the controller to manage the switches and
also exchange packets with them.

• OpenFlow Controller: the controller consists of a software program with the
ability to manipulate the switches’ flow tables. It uses the OpenFlow protocol to
connect and configure the network nodes.

A survey of this protocol and a detailed explanation of its components and capabilities
can be found in [42].

2.4 link and traffic aggregation
Link aggregation is a technique used in a network to combine multiple connections

into a single one, thus increasing the system throughput and improving the overall
system’s performance. Some aggregation solutions found in the literature are described
next.

In [43], the authors present an implementation of Link Aggregation Control Protocol
(LACP) (IEEE 802.1AX) using the Ryu controller and Open vSwitch. The results
demonstrate how this SDN topology can use link aggregation to solve the link failure
problem. LACP is a protocol that enables the configuration of link aggregation in
traditional switches. It allows the bundling of several Ethernet links to form a single
logical channel. It is, thus, an active monitoring protocol enabling devices to add or
remove links from the LAG (Link Aggregation Group). A network administrator must
perform the configuration manually, and the number of physical interfaces in a bundle
cannot be greater than eight [44].

The authors of [45] describe the design of an implementation of a Virtual Aggregation
method. This method provides scalability to a network by dividing and distributing a
forwarding table over multiple forwarding elements in an SDN network (using OpenFlow
and NOX).

The work [46] proposes a service for traffic flow aggregation. Its main purpose is
to reduce the number of OpenFlow rules (flow entries) needed in the devices without
impacting control logic. After analyzing the results of the tests to the service on
topologies specific to the backhaul network, the authors concluded by stating that
dynamically aggregating traffic flows into bigger flows would reduce the number of
rules in the devices up to 48% (approximately). With smaller flow tables, the devices
can process a higher amount of traffic. Similar to this work is [47], where the authors
propose using a flow aggregation method to minimize the number of flows, using a

20

heuristic algorithm.
A link aggregation architecture in SDN was defined in [44]. It allows automatic,

scalable, and self-adaptive link aggregations. Three link aggregation algorithms were
created to evaluate the architecture: Hash Table, Traffic Analysis, and Virtual Round-
Robin. They were tested in an environment consisting of an Open vSwitch used for
packet switching, and a Ryu controller to control the switches.

• Hash Table: upon receiving the first flow packet, a switch will retransmit it to
the controller, which will identify its flow fields and calculate a hash, determining
which interface should be used to transmit data from that flow. It will then insert
a flow entry into the switch’s flow table.

• Traffic Analysis: the switch sends the first flow packet to the controller, and
it will identify the bandwidth utilization of each aggregated interface, to decide
about which interface should be used to transmit data from that flow. Accordingly,
a flow entry is inserted into the switch’s flow table.

• Virtual Round-Robin: the controller creates rules for all existent sources and
targets using all aggregated interfaces. The amount of rules created is thus
decreased, comparing to the two previous algorithms.

2.5 gateway redundancy
Current network designs must include redundancy of its elements so as to achieve high

availability and reliability of the system. Single points of failure should be nonexistent
so as not to compromise the network.

One of the most critical elements that should be redundant in a network is the
gateway. If a failure occurs in the gateway, communication with external networks is
not possible. Inside a train, passengers may be denied access to the Internet due to a
faulty gateway and lack of redundancy.

The work [48] explores and compares solutions for default gateway redundancy,
focusing on the First Hop Redundancy Protocols (FHRP). These redundancy protocols,
which enable the establishment of a fault-tolerant default gateway, are explained next.

The Hot Standby Router Protocol (HSRP) [49] was designed by Cisco to enable
two or more routers to create a virtual router with associated virtual IP and MAC
addresses. One router is responsible for packet routing (active state), and a backup
router (standby state) will take the role of the active router in case of failure. The
protocol allows clients to access external networks even when they cannot obtain the
IP address of the default gateway.

21

The Virtual Router Redundancy Protocol (VRRP) [50] also solves the problem of
single gateway failure. One virtual router with virtual IP is created. A master router is
responsible for forwarding packets that were sent to the address of that virtual router.
Multiple backup routers monitor the activity of the master and must be ready to assume
its role in case of failure.

Finally, Gateway Load Balancing Protocol (GLBP) [51], a Cisco proprietary protocol,
adds a load balancing component to the gateway redundancy, which means it can load
balance over multiple gateways. In GLBP, a virtual router uses one IP address and up
to four MAC addresses.

A router is selected as an AVG (Active Virtual Gateway), and a standby router is
ready to replace it in case of failure. The AVG router will assign different virtual MAC
addresses to other routers, named AVF (Active Virtual Forwarder). It will receive ARP
requests sent to the virtual default gateway and respond to them by indicating different
MAC addresses belonging to the other routers (AVF). As the name suggests, these
routers will be used to route incoming packets.

The mechanism of load balancing can be configured using the following techniques:
round-robin, host-dependent, and weighted.

2.6 load balancing
Load balancing is a technique to distribute the local workload evenly across all

nodes in the computer network, improving response time and resource allocation. Using
this mechanism, the overall performance of the network may be improved, along with a
fair computing resource distribution.

The basis of load balancing algorithms involves one or more nodes in a network
that forward traffic to other nodes according to various metrics and the node status
(availability, load, performance, among others).

Table 2.1 describes common load balancing techniques. These are widely known
primitive strategies that are still used today and inspired the creation of other load
balancing algorithms.

22

Technique Type Description
Round-robin Static Each request is forwarded to servers sequentially

and circularly. This means that sequential servers
will process each request, and when the last server
receives a request, the assignment jumps again to
the first server.

Weighted round-
robin

Static This technique is similar to the previous, except
that a weight is assigned to each server based on
its capacity and efficiency to process a request.
Therefore, requests are assigned to servers from
higher to lower weight value.

Least-
connection

Dynamic This technique will avoid the overload of servers
by choosing the server with the least active con-
nections to service an incoming request. Thus,
the load balancer must monitor continuously the
transactions of the servers in the system.

Weighted least-
connection

Dynamic The least-connection technique is used for load dis-
tribution, taking into account a previously assigned
server weight.

Random Static Requests are assigned to any randomly chosen
server of the system.

Source IP hash Static The selection of a server is based on a hash of the
source IP address of the request.

Table 2.1: Load balancing algorithms

2.6.1 load balancing algorithms
In this section, some load balancing techniques found in the literature are described.

These techniques and the ones in section 2.6.2 are suitable to be implemented in a train
network (after some adaptations) and comprise various types: static, dynamic, random,
centralized, decentralized, among others.

In [52], three distributed load balancing solutions have been identified and described.
These algorithms are to be applied in large scale cloud systems [53].

23

The first is the Honeybee Foraging algorithm. It uses a group of servers that are
organized into virtual servers, and these serve a “virtual service queue” of requests.

The second algorithm is Biased Random Sampling. Here, “the load on a server
is represented by its connectivity in a virtual graph”. This algorithm is implemented
using that same graph, which contains as many inward edges as available resources. So,
when a node in the system executes a new job, it will remove an inward edge (one less
resource), and when it completes the job, it will create a new inward edge (one more
resource). This node is the last one in the “sampling walk”.

Finally, the third algorithm, Active Clustering, is a self-aggregation load balancing
technique that groups similar instances of the network together (similar services) and
thus optimizes job assignments.

The authors of [54], propose a decentralized content-aware load balancing technique,
named Workload and Client Aware Policy, WCAP. Content-aware algorithms use the
content requested as a basis to schedule a request. This technique is to be applied in
distributed computing environments (grid, cloud, cluster, among others). This approach
considers a USP (Unique and Special Property) for each computing node and request.
It helps the scheduler to decide on the most suitable node for the processing of requests.

A suitable node for the processing of a request is searched among a reduced list
of nodes with the desired USP, which will improve the performance of searching for a
suitable node. Therefore, each node is assigned a request that best fits its capability and
specialization, reducing the processing time. At each node, the Round Robin algorithm
was used as a technique to process the requests in a queue. According to the authors,
the performance improvement of the search for a suitable node increases the overall
performance of the system.

In [55], it is proposed a new load balancing algorithm that works by controlling the
size of the APs’ coverage range (or WLAN cells). Thus, the load of congested APs is
reduced by forcing users on the limit of their coverage to shift to less congested adjacent
APs, as seen in figure 2.8. This is achieved by reducing the transmission power of the
APs.

Figure 2.8: Left: APs transmitting with equal power level. Right: AP b adjusts transmission
power level. Retrieved from [55].

24

The authors of [3] propose an architecture for Internet access on trains and designed
two load balancing algorithms for it, focused on possible handover events along the route
and relief of connectivity loss. These algorithms have the common goal of providing a
fair service provisioning, or a good QoS.

The network architecture is depicted in figure 2.9. The dispatchers deployed in
each car are a crucial element to the load balancing mechanism. They coordinate the
number of packets to be forwarded to other cars when T-RATs are out-of-service and a
handover event arises. To exchange packets and thus redirect the traffic, dispatchers
are interconnected through optical fiber.

Figure 2.9: Network architecture for high-speed trains, retrieved from [3].

In the first algorithm, Fully Cooperative Load Balancing (FCLB), an out-of-service
dispatcher will forward a fraction of “backlog” traffic to every other dispatcher located
in different cars. That fraction is the result of a mathematical model described by the
authors. There is also an exchange of queue status information among the dispatchers.

The second algorithm, Partially Cooperative Load Balancing (PCLB), is similar to
the previous, but here the “backlog” traffic is only forwarded to the dispatchers located
on adjacent cars (adjacent to the out-of-service dispatcher). One advantage is that
signaling is significantly reduced (one-hop solution).

This algorithm is also described in [16]. The cars’ systems are organized in overlapped
groups of 3 cooperating nodes, where the node N will exchange packets with the nodes
N-1 and N+1. The forwarding of packets from one node (T-RAT queue) to another is
directly proportional to the size difference between both queues.

The authors of [56] propose the Central Load Balancing Policy for Virtual Machines
(CLBVM). This load balancing policy contains a central dispatcher and intends to

25

distribute the network load uniformly. It makes the load balancing decisions based on
global state information of the system.

Each VM has a unique identification, and multiple VMs are hosted by a server
(named pServer). Aggregate CPU load and system utilization by guests is continuously
collected. The gathered data is sorted into Heavy (H), Moderate (M), or Light (L) load
categories. Messages are exchanged with a Master Server, which takes load balancing
decisions periodically. If servers are unevenly loaded, it will balance heavily loaded
servers with lightly loaded servers until no further migration is necessary.

The works [53], [57], [58], [59], [60] review load balancing techniques in cloud
computing. In addition, the first three compare the techniques in terms of metrics such
as throughput, performance, fault tolerance, scalability, among others.

2.6.2 load balancing in sdn
Load balancing in Software-Defined Networking is an approach to network load

balancing that eliminates the need for protocols at the hardware level, allowing a higher
performance of the network, improved management and status report. An SDN-based
load balancer has control over the entire network, which brings some advantages: lower
processing time, lower cost, flexibility, greater scalability, and higher reliability.

Diverse load balancing techniques applied to Software-Defined Networking are
described in the literature. Some examples are presented next.

In [61], the authors present a load balancing mechanism for SDN where, first, a
dynamic least-loaded server policy is used to choose the server that will process a
request, and then, the Ant Colony System (ACS) algorithm is applied to find the best
path to the least-loaded server chosen. This algorithm is a variant of the Ant Colony
Optimization (ACO).

Ant Colony Optimization algorithms include the following steps:
1. Forward ants try to discover new paths to the servers and will gather information

on the current state of the existing known paths (forward update);
2. If, meanwhile, one of the ants reaches a destination node, backward ants will

follow the previously explored path and reach the source node.
3. During this backward trip, routing tables of the nodes along the explored path

are updated (backward update).
By using SDN, both the forward and the backward updates can be eliminated since

the SDN controller has a global view of the network.
The authors’ proposed architecture consists of a network of OpenFlow switches,

virtual hosts, and an OpenFlow controller. The load balancer is implemented as one

26

of the controller’s modules. In their proposed ACS-based algorithm, all servers of
the system must report their current CPU status to the SDN controller so that it
dynamically determines the best-suited server (least loaded).

The authors of [62] implemented a Round-Robin load balancing mechanism for
SDN. The architecture consists of an OpenFlow switch network and multiple servers
connected to the switch’s ports. The chosen SDN controller is POX, and it maintains a
list of the live servers.

Upon the arrival of a client request packet to the OpenFlow switch, it will analyze
the information in the packet header and compare it against its flow entries. If the
information matches an entry, the switch will forward the packet to a server according
to the load balancing strategy. If the information does not match an entry, the packet is
forwarded to the controller, which will decide what to do with it. The authors compare
two load balancing strategies, Round-Robin and Random, using the results of total
transactions per second and average response time of the server.

In [63], the authors propose a dynamic algorithm, directed to link utilization
optimization in Data Center Networks. The algorithm searches for the shortest paths
from a node to the others and computes the link’s cost. Also, traffic flows are ordered
according to their priority. Dijkstra’s algorithm is used to find multiple paths of equal
length and thus reduce the search to a smaller area in the network topology. In case of
congestion of a path, it will be replaced with the newly discovered best route. This
route is, therefore, associated with a minimum link cost and low traffic flow.

The simulation results reveal that the proposed algorithm achieves lower delays,
higher throughput, and lower packet loss.

The authors of [64] analyze, evaluate, and implement some SDN-based load balancing
strategies, namely: round-robin, weighted round-robin, dynamic algorithm, and flow
statistic algorithm. Load balancing parameters like response time, throughput, and
availability were utilized for comparison and experimental evaluation of the previous
algorithms.

In [65], it is proposed an algorithm that avoids congestion in SDN environments, by
rerouting a minimum number of flows and thus reduce the network nodes’ overhead.

When a new flow arrives, it will be routed according to the current network condition,
which is being monitored by the controller, therefore preventing switch overload and
congestion in the network. However, when the average link utilization surpasses a
threshold, the controller predicts congestion on the link, then the proposed algorithm
chooses a minimum number of flows and reroutes them to the best-suited backup paths.
These paths will not be congested after the addition of the rerouted flows.

Regarding the results of the experiments, this algorithm leads to improved through-

27

put and decreased packet loss.

In [66], two algorithms were implemented. The network architecture consists of a
POX controller, an OpenFlow switch, multiple servers, and clients connecting to the
ports of the OpenFlow switch.

The first algorithm, Direct Routing Based on Server Load, chooses the least loaded
server (CPU) to process a request. Servers inform the load balancer about their load,
and the one possessing the lowest value is chosen. The second, Direct Routing Based on
Server Connection, chooses the server with a minimum of active connections. If more
than one server has the same value, the server with the lowest identifier is chosen.

Although both algorithms are similar to already existent ones, they distinguish
themselves by the fact that the load balancer is not involved in the return message
from the web server to the client. The server will, thus, respond directly to the client,
improving performance and decreasing latency.

In [67], load balancing strategies in SDN present in the literature are reviewed and
compared. The techniques are divided into deterministic and nondeterministic. It is an
extensive and informative survey, describing and discussing the benefits, weaknesses,
and challenges of each technique. The work [68] does a similar but less extensive review.

2.7 chapter considerations
This chapter describes important concepts regarding broadband access on trains,

load balancing, SDN, among others. In each section, the related work found in the
literature was presented and discussed, and the most relevant and informative works
were explored.

First, there was a description of topics regarding broadband access on trains,
including access technologies, train network architectures, issues associated with Internet
access on trains, and future technologies.

Software-Defined Networking concepts were explained, and its architecture depicted.
OpenFlow, an important standard in SDN, was also covered with a brief overview of
its components.

Link aggregation and gateway redundancy were covered since they improve the
performance and reliability of network systems by increasing their fault tolerance.

Finally, to explore the full potential of a network, its nodes’ resources should be
used in an efficient and organized way by using load balancing techniques. Since SDN
and load balancing are the most relevant areas of this dissertation, load balancing
algorithms used in SDN topologies were described.

Internet access on trains presents a great challenge due to limited bandwidth,

28

degradation of radio signals, weak mobile network coverage, among others. These
contribute to a decrease in the QoS of the system and thus, decrease in the QoE
of passengers. However, a properly-defined network architecture with distributed or
centralized management and control of the APs inside the train may attenuate the
effects of the referred issues.

29

3
Solution for Load Balancing in Trains

In the delay commute of many people, Internet access can be a deciding factor when
choosing the transportation type. However, equal access to the Internet is not al-
ways guaranteed to all passengers traveling in public transportation and the lack of
management of the network may lead to a degraded experience.

On section 3.1 it is described an example of network architecture on trains, explored
in the literature, and adopted in real-world trains. The issues with this architecture
led to the beginning of this dissertation’s work, which consists of, generically, new load
balancing mechanisms that improve the quality of Internet access to passengers on a
train. Two approaches to a load balancing mechanism were developed, in a distributed
and a centralized environment. A single point of failure is to be avoided in the gateways
of the train, fault-tolerance increased and resource utilization improved.

Section 3.2 describes the functional and operational requirements of the developed
systems. Then, section 3.3 contains an overview of the architecture of the system, and
section 3.4 describes the system’s messages exchange and processes. Finally, section 3.5
proposes a load balancing solution in an SDN environment.

3.1 train network scenario
Trains that provide Internet access to their passengers do it by setting up a Wi-Fi

service. With this service, the passengers do not need to use their mobile data. As
explored in the state of the art, some railway companies limit the data usage of their
passengers, but others do not impose that limit.

A typical network architecture consists of placing one or more APs in each car, to
which passengers will connect to, and set up a connection to the cellular network or a

31

satellite link. In the adopted network architecture, there is only one AP per car.
As described in the state of the art, the cellular network is widely used for Internet

access on trains. However, it poses several issues, mainly due to handover latency and
signal quality degradation. These are due to the speed of the train, and also the remote
locations long-trip trains usually go through, with inadequate coverage or far from base
stations.

For the development of the load balancing solutions, it is considered a network
without a centralized or distributed management, where each access router is isolated in
the car and does not communicate with other routers or another local or remote entity.
The routers never report their network state, and there is no redundancy whatsoever.
This network architecture is prone to issues like disconnection of a whole car of the
train or unfair distribution of the entire network capacity of the train. The developed
solution aims to mitigate these problems.

3.2 requirements
Features of a system are developed according to predefined system requirements.

These requirements encompass mainly system and management demands.
First, the system’s functional requirements will be described. These are a description

of the service(s) that the software system must offer. Then, nonfunctional requirements
highlight conditions that can be used to analyze and evaluate the operation of the
system.

It is crucial to note that these requirements do not solve the majority of the problems
inherent to the type of Internet access on trains detailed in previous sections. However,
they are needed to develop the system in a way that improves the negative effects of
those problems.

3.2.1 functional requirements
The systems must be developed following guidelines and rules, in order to be

functional during their execution and in anomalous situations. Next are described some
functional aspects regarding the load balancing systems and respective networks.

• REQ-1: The load balancing mechanism must be aware of the existing active
access routers.

For the correct operation of the system, nodes of the system must be aware,
at all times, of the currently operating routers and the ones who are not active.
In the centralized solution, only the controller needs this information.

32

• REQ-2: Statistics collected in each access router are reported to other nodes in
less than one second.

A train’s speed is, most of the time, below its maximum speed and when
arriving at stations, it slows down significantly until the train stops. The collection
of statistics in the routers and their communication needs to be updated regularly
in other nodes. Considering a train with 150 meters of length and 6 cars, with
an operating speed of 250 km/h. The time it takes for the router inside car N to
arrive at the position of car N-1 is exactly 360 milliseconds. On the other hand,
if the train’s speed lowers to 100 km/h, that value increases to 900 milliseconds.
Thus, statistics should be collected and reported to other nodes in less than one
second.

• REQ-3: Messages exchanged for reporting of statistics, between an access router
and other nodes of the network, should only contain network information. This is
to avoid operation overhead.

• REQ-4: The report of rapidly changing metrics and the forward of traffic (due to
load balancing) should use high-speed links for the least latency on communication.

The connection between the routers and between the routers and the SDN
controller should be either a wired high-speed link, a wireless high-speed link (like
60GHz Wi-Fi), or the combination of both.

• REQ-5: NAT of the passengers’ traffic should be performed only in a remote
aggregator node.

If NAT is performed in the gateway of each router, which is what happens
in the proposed train scenario, the forwarding of traffic between congested and
backup routers would result in a break of the TCP sessions.

• REQ-6: Connection to the aggregator node should be ensured by, at least, half
of the existing access routers.

The aggregator is crucial for the regular operation of the whole network system,
and at all times, the routers that are operating normally or serving as backup
must have an active link to the aggregator. The number of links must be at least
N/2, where N is the number of existing routers, considering that one congested
router must forward traffic to one backup router, and one backup router will serve
one and only one congested router.

• REQ-7: The software developed must be compatible with the access routers’ OS.
The operating system used will be looked into in more detail in chapter 4.

3.2.2 nonfunctional requirements
The following requirements are used to evaluate the usability and operation of the

load balancing systems.

33

• REQ-1: All access routers must be accessible and manageable through the SDN
controller machine.

The ability to manage the routers remotely is a centralized feature that makes
it easier for a system administrator to manage the train network elements.

• REQ-2: An improperly configured access router should not compromise the
operation of the load balancing system.

The system cannot allow an incorrectly configured router to compromise the
load balancing algorithm. The router should be left out of the system.

• REQ-3: Each access router can forward its passengers’ traffic to another router.
A network connection must be established between the routers so that, in the

event of congestion in a router, it is possible to send its passengers’ traffic through
a communication link to a backup router.

• REQ-4: It must be possible to add or remove access routers in the train network,
without compromising the load balancing mechanism.

3.3 network architecture overview
The diagram of figure 3.1 depicts the overview of the proposed software-defined

network architecture for trains, used in the centralized solution. Then, the components
of the system are described.

The network architecure is divided in three main layers. First, the client network
layer, containing the wireless networks created in every car of the train (one per car).
Then, the internal network layer, that allows communication between the nodes that
provide Internet access to the passengers and the control nodes. Finally, the remote
layer, consisting of the aggregator, which receives all the traffic of the passengers and
forwards it to the Internet.

34

Figure 3.1: Diagram of the network architecture

Each element has its functionality and purpose on the system. Without one of these
elements, its normal operation is not possible.

Access Router
The access router is responsible to create the wireless access network inside a car.

The passengers will then connect to the Wi-Fi service and start using web services.
As explained in the proposed network architecture in section 3.1, there is one router

placed in each car of a train. This router will connect to the cellular network. A train
travels through different locations, sometimes distant from cities, which have increased
capacity and thus increased available bandwidth. The router may have, sometimes, no
connection to the cellular network, as some locations have no coverage of the chosen
operator(s).

The traffic will be aggregated in a remote entity before being forwarded to the

35

Internet.
In summary, passengers are connected to the access router of their car, which

forwards the traffic to a gateway to the cellular network, reaching the aggregator entity
afterwards.

Station
A Station (STA) is a device that is capable of using the 802.11 protocol. Inside the

train, they correspond to the mobile devices used by passengers: smartphones, laptops,
tablets, among others. Passengers connect them to the train network to avoid using
costly data services provided by their mobile network operator.

SDN Controller
The controller in an SDN environment is the element where the control logic

is centralized, and thus has direct control over the data plane elements, through a
southbound interface.

The SDN controller located on the train should be incorporated in the load balancer,
controlling the forwarding of passengers’ traffic according to load balancing decisions.
This controller has an interface to an internal network of the train. This internal
network allows the traffic to be forwarded between the routers (load balancing event),
and the exchange of control messages between the controller and the routers.

Since the controller is also the load balancer of the system, it will evaluate routers to
decide on which ones are congested and decide on the backups that should be assigned
to them.

Aggregator
This remote network element aggregates the routers’ traffic. As explained before,

NAT should not be performed on the routers’ gateway, because each car has its network
and the forwarding of traffic from a congested router to a backup would break the TCP
connections to the external network. So, each router sends the aggregated traffic of its
car to the aggregator which will then apply NAT on its gateway interface.

The aggregator must know at all times through which tunnel to send responses
because, in the event of load balancing, it is crucial to send responses destined to a
congested router through the backup router’s tunnel. So, if traffic from a car arrives at
the aggregator through the tunnel of another car, the forwarding plane of the aggregator
must be updated so that the response is sent through the tunnel the request was received
from.

This node may also be used by a network administrator for diverse purposes, like
managing and controlling the routers and the passengers’ traffic. However, its full
potential is not explored in this dissertation and should be covered in future work.

36

3.4 message flows
The sequence diagram of figure 3.2 illustrates the messages exchanged between the

network elements of the system and processes, providing a better understanding of each
nodes’ purpose and how they must act in the system. The most relevant interactions
of the system are described below the diagram. The processes described here will be
detailed in section 3.5, which explains the load balancing mechanism in depth.

Figure 3.2: Sequence diagram of the message flows in the system

1. Connection to the access routers
Multiple STAs inside a car will connect to the network created by the routers, and

start using web services.

2. Collection of statistics
Information should be collected in all interfaces of the router. The gateway statistics

will provide the latency value, while the car network interface statistics provide the value
of the TCP retransmissions. These are the two statistics to be used in the evaluation
process.

37

3. Report of statistics
The statistics must be sent to the controller/load balancer so that it can evaluate

the routers’ network status. This communication should occur through a messaging
queue system, which must always be operational, else a router may be left out of the
load balancing mechanism.

4. Evaluation of routers
Once received the statistics of each router, the load balancer will create the pairs of

congested and backup routers, according to the evaluation calculated for each router.

5. Addition of forwarding rules and notification of the aggregator
When a congested-backup pair is processed, the controller should communicate the

new forwarding rules to the routers. The SDN controller should be aware of all existing
switches (inside each router) that it can manage, so that it can install forwarding rules
in them and do other management operations.

The controller will send a notification to the aggregator informing about the new
forwarding rules of the routers. Upon receiving the notification, the aggregator will
change its own forwading rules to match the train’s network topology.

6. Redirection of traffic to backup router
Both congested and backup routers have new forwarding rules commanding the

balancing of the traffic between them. From this moment on, the aggregated traffic will
be forwarded to the backup router, except traffic to blacklisted destinations in the case
of version 2 of the centralized solution.

7. Aggregation of traffic
The traffic from the routers reaches the aggregator, and NAT is applied in its

gateway. The aggregator, upon receiving a notification from the load balancer, or when
its controller notices changes in the traffic sources of the incoming tunnels, must update
its forwarding rules. This is so that responses to the congested router are sent through
the backup tunnel. It quickly becomes the most critical process in the system because
an outdated rule may send the responses through the wrong tunnel.

3.5 load balancing solution in a software-
defined network

Diverse load balancing techniques are used in data centers and other cooperating
environments in order to utilize the system’s resources fully. Some of these techniques
were explored in this document’s state of the art. The developed distributed and the

38

centralized load balancing mechanisms are similar to a weighted algorithm, in the sense
that load is distributed to routers according to their capacity and efficiency to process
traffic, which translates into an evaluation value. Every machine may have a different
role in the system, depending on the current state of their network interfaces. Machines
with a higher evaluation, or in other words, evaluated as more congested than others,
will have a chance to assign their load to another machine. The contrary happens to
lower evaluation machines, which have a high probability of being chosen as a backup
for another router’s load.

In this section, the centralized solution’s load balancing algorithm is explained in
detail. Note that some steps of the process are similar between the distributed and
centralized solutions.

The centralized load balancing mechanism is based on the reporting of statistics
from the access routers to a controller on the train. In the first version of this algorithm,
all traffic is forwarded to the backup router. In the second version, traffic to blacklisted
destinations is dropped, while the other portion of the traffic is forwarded to the backup.
The foundation of both algorithms is the same, and the difference can only be seen
when installing the forwarding rules in the congested router, as will be explained later
in this text.

Statistics collection and reporting
Each router collects network statistics of its interfaces periodically, with a high

frequency. Then, an asynchronous messaging queue is established between the routers
and the controller and the routers send the collected information to the controller, also
with a high frequency. This is so that the load balancer has always the most updated
information about the routers it manages. Each router will thus, publish the messages
containing the statistics information and the controller, the subscriber, will receive
those messages.

Evaluation of routers
An evaluation program containing the load balancing logic, located in the controller,

will store the statistics values received from the routers, and divide the ones relevant for
the load balancing algorithm by their maximum value. In this algorithm, the latency
and TCP retransmissions are the statistics used for the evaluation. The maximum
value of the TCP retransmissions is its highest value to date in all routers. However,
the latency measurement must have a stipulated limit, corresponding to the maximum
latency in the connection between the routers and the aggregator. These values are, thus,
affected by the network conditions and amount of traffic generated by the passengers.
This solution is the most adequate since it is not possible to establish a theoretical limit
for the two statistics.

39

A decimal weight value from 0 to 1 is predefined for each statistic that takes part in
the evaluation and may be tweaked by the system administrator to better adapt to the
usual traffic of the train. The sum of the weights must be 1.

Then, the values of the evaluation statistics are divided by their maximum value
and the obtained results are multiplied by their corresponding weight. At the end of the
calculations, the values obtained from this multiplication for all statistics are summed,
and the result is multiplied by 100. The evaluation of each router is, thus, a value
between 0% and 100%, providing an objective measurement of the congestion status of
the router.

A router is labeled as congested if the subtraction of its evaluation with the evaluation
of any other router is equal to or greater than a predefined number, the “difference”
value. Therefore, the “congested” label does not necessarily mean that there is a
bottleneck in the network or that the router is out-of-service. It does mean that there
is another router in the train with better network conditions than the congested router,
and that could provide a better QoE to its passengers. So, if the subtraction between
router A’s evaluation and router B’s is a positive number equal to or above the difference
value, B becomes a backup candidate for the traffic of A. What this means is that B is
in a state where it can withstand A’s traffic and even though its evaluation may also be
elevated, it can assure that A’s passengers have access to the Internet by sharing its
bandwidth and may even obtain lower response times in the accessed web services.

The difference between the evaluations of each router also determines the frequency
to which the system administrator wants the system to trigger the load balance. For
instance, choosing a high difference value means that the load balancing is triggered
only when a router has both statistics close to their limit, and there is at least one
router with a significantly low evaluation. This is likely to happen if the first router
has a very weak or no Internet connection, which means the load balancing mechanism
would be used as a gateway redundancy technique. It is important to notice, however,
that the difference should not assume values that are too low, for instance, less than
half of the weight assigned to a statistic, to prevent false positives (refer to the testing
scenario in section 5.2.4). The system administrator must find a balance for this value.

Backup assignment and load balancing
The routers and their backup candidates should be sorted in descending order of

their evaluation. Their position becomes their priority order. Each congested router
is sequentially assigned to a backup candidate. If it has multiple candidates, it must
choose the one with the highest evaluation, or the one with the lowest evaluation if no
other router has it in their candidates list. For the explanation of this design choice,
consider a scenario with routers A, B, C, and D, sorted in descending order. Router A

40

(congested), the one with the highest evaluation, has two backup candidates, C and
D, and router B (congested) as only D as its backup candidate. If A does not choose
its backup candidate with the highest evaluation (C), B will not get a chance to load
balance, even if its evaluation is similar to A’s. Finally, only one congested router gets
to hold a backup candidate that was chosen by multiple routers.

The following figure 3.3 illustrates the backup assignment process that all routers
go through.

Figure 3.3: Flowchart of the backup assignment

With the congested and backup pairs discovered, the load balancer may now send
messages to install new forwarding rules in the switches (inside each router). From this

41

point on, the load balancing should be divided into two versions:

• Version 1: congested routers will forward all their traffic to the respective backups.
After the installation of the forwarding rules (or flow entries), a congested router
will send its aggregated traffic to the chosen backup, and the backup must forward
the response packets to the congested router.

• Version 2: congested routers will forward their traffic to a backup router, except
for traffic with blacklisted destinations, or blacklisted web services, which will be
dropped. The list must contain destinations that are typically associated with
high bandwidth-consuming web services. Therefore, this traffic is discarded in
order to improve the QoS of the remainder of the traffic.

Aggregation of traffic
The traffic from the routers reaches the remote entity, or aggregator, through tunnels

of a specified protocol. The load balancer will send a message to the aggregator, in
a request-reply pattern, informing it to update its forwarding rules, so that response
packets to the congested routers are sent through the backups’ tunnels instead.

Load balancer operation
The forwarding rules added to the switches inside the routers should not be removed

until the router loses its congestion status or is obligated to choose a different backup
router. An iteration of the load balancer should give enough time to allow the installation
of the load balancing forwarding rules and to update the aggregator. The connection
between a backup and the aggregator must always be ensured; however, the backup
may not have good connection quality in a particular location of the railway. So, the
chosen iteration time should allow the decisions made by the load balancer on the train
to be reflected in the aggregator before a new iteration starts.

If, in the following iterations, a previously congested router loses its status, the
load balancing forwarding rules are removed from the routers. If, on the other hand,
it chooses a new backup, the outdated flow entries are replaced with new ones. If a
previously congested router returns to its normal state, it may serve as a backup router
to others or keep on routing only its passengers’ traffic.

The evaluation of the routers must be performed regularly so that the service quality
experienced by the passengers is improved and not compromised.

42

4
Implementation

The solution design was extensively described in the previous chapter. This chapter
proposes an implementation for the distributed and centralized solutions.

The centralized load balancing system aims to balance the passengers’ traffic in a
train, between the existing routers, with centralized management of the switches inside
each router and respective forwarding rules. The distributed solution also load balances
traffic between active routers, but the management and load balancing decisions are
distributed by the network nodes. A virtualized network was created to test the
performance and efficiency of the proposed load balancing mechanisms. The load
balancing mechanism in an SDN environment may later be adapted to be used in a
physical implementation of the system. The software was built so that the exchange
of messages between the network nodes occurs in the least time possible, without
overwhelming the CPUs. This is because, with the elevated speed of the train, network
conditions may vary frequently.

In the centralized solution, each access router, or in this case, Virtual Machine (VM),
has a virtualized switch (Open vSwitch) that can be controlled and managed by an
SDN controller, located in another VM. The router VMs send statistics information to
the controller through a message queue. Upon receiving it, the controller will evaluate
their status of congestion and decide about the congested-backup datapath pairs. When
the decision is made, it will add to the flow tables of the switches, new flow entries with
higher priority than the ones already installed in them, using the southbound protocol
Openflow (version 1.3). The construction of the flow entries depends on information
collected about tunnel ports using the OVSDB protocol.

The traffic of the clients reaches the aggregator through GRE tunnels and, during
normal operation, it simply forwards the traffic to the gateway. In the event of load

43

balancing, the aggregator must first update its switch’s flow entries accordingly, when
it receives a notification from the controller on the train or when a “packet in” message
is received in its controller (using the Ryu API and Packet library).

In the following sections, the decisions taken during the development of the solution
and the implementation design are described in depth. In section 4.1, the technologies
used are listed, and their purpose in the system described. Next, the implementation of
the distributed load balancing system is explained, on 4.2, and finally, the centralized
solution and associated processes, on 4.3.

4.1 overview of used technologies
The technologies and protocols used in the developed systems are described next,

with an explanation of why they were chosen instead of other similar solutions and what
is their purpose in the operation of the load balancing mechanism. First, a diagram of
the elements of the system and respective technologies is depicted in figure 4.1.

Figure 4.1: Network elements and related technologies

44

Open vSwitch
Open vSwitch (OVS) is a “multilayer software switch licensed under the open-source

Apache 2 license“ [69]. It is used in hardware virtualization environments and supports
multiple network standards and protocols.

The OVS has diverse components and tools that make it easier to manage and
control the switch, like ovs-vsctl, to update and retrieve the configuration of the
switch daemon and ovs-ofctl, a tool for monitoring and controlling the switches, that
also allows managing of the flow tables.

OpenFlow v1.3
Openflow is an SDN standard and a southbound interface. It defines the communi-

cation protocol in an SDN environment, enabling the controller to manage the network
devices of the data plane.

The OpenFlow version used in the solution is the v1.3 [70], which is widely supported
and the most used version currently [71, p. 118].

Open vSwitch Database
The Open vSwitch Database (OVSDB) management protocol [72] allows program-

matic access to the OVS database holding the configuration of an OVS daemon. Al-
though OpenFlow is used to add or delete flow entries (for instance), OVSDB is needed
in order to configure the switch itself.

Ryu
Ryu is a Python-based SDN controller that provides an API for the creation of

management and control applications directed to software-defined networks. It supports
Openflow v1.3, which is the Openflow version used in the systems.

Ryu was the technology chosen for the SDN controller in the system because the
majority of the modules of the solutions was also written in Python. It also provides a
well-performing and well-documented API.

OpenWrt
The OpenWrt Project 1 is a Linux OS with a fully writable filesystem and package

management, that is targetted to embedded devices, and is especially popular in
wireless routers. Using this OS, devices with vendor-specific configurations become
fully customizable. The router VMs of the virtualized network use the OpenWrt 18.06.4
release.

This OS uses the Unified Configuration Interface (UCI) system [73], which aims to
centralize the configuration of the device and other OpenWrt services. It is an integral

1https://openwrt.org/

45

https://openwrt.org/

part of the distributed solution but was not used in the SDN environment. Its usage is
relevant for the distributed algorithm because it allows controlling the forwarding of
traffic in the router VMs.

ZeroMQ
ZeroMQ 2 or ØMQ, is an asynchronous messaging library that provides a message

queue service to send and receive messages without the need for a broker.
It supports messaging patterns such as publish-subscribe, request-reply, client-server,

among others. For this dissertation, only the first two are relevant. Although it offers
diverse types of transport, only TCP was used.

GRE
Generic Routing Encapsulation (GRE) [74] is a tunneling protocol developed by

Cisco Systems 3. It is used in the establishment of a point-to-point or point-to-multipoint
secure connection between network nodes, through a public network. It can encapsulate
a diverse range of network-layer protocols.

GRE tunnel ports were set up in each switch to forward traffic between the access
routers or between them and the aggregator. The tunnels are necessary since the virtual
switch does not have control over the physical interfaces that are not added as ports
to it, which is the case in this solution. With the tunnels set up, the forwarding of
passengers’ traffic may be controlled with flow entries.

4.2 distributed load balancing
Before developing the centralized solution, it was decided that this work would

benefit from an initial load balancing solution to test its reliability in an emulated train
network. This is the distributed load balancing mechanism.

A fully functional solution based on routing tables manipulation and default gateway
modification was developed, with a load balancing algorithm similar to the one used in
the centralized (or SDN) solution and explained in chapter 3, section 3.5. The most
significant difference between the two is that this solution is distributed, whereas the
SDN-based mechanism is centralized. It is categorized as distributed because routers
send statistics information between them and can evaluate each other independently.
They each come up with the decision to balance their traffic or not, without the need
for a central entity to control the forwarding. Thus, the load balancing decision results
from a mutual agreement between the congested and the backup router.

2https://zeromq.org/
3https://www.cisco.com/

46

https://zeromq.org/
https://www.cisco.com/

The positive performance testing results gave the green-light to the use of this type
of load balancing algorithm in the centralized solution, which had to be adapted to fit
an SDN environment (refer to section 4.3).

The modules and processes associated with the system’s operation are explained
next.

Discovery
There is an internal network shared by all network elements of the train. Each

router must have information on the active peers through that same network, more
precisely, the IP addresses of their network interfaces connected to the internal network.
This information is of uttermost importance because it is used to set up the message
queues for the communication of statistics information between the routers.

The network discovery module executes multiple ping commands to the host IP
range of the internal network, every 30 seconds (interval can be changed for closer to
real-time discovery). The routers that respond to the ping will have their IP addresses
stored in a file. At the end of the scan, the file will contain a list of the IP addresses of
all active routers.

In the same module, for every router discovered, a static route to its car network is
stored in the /etc/config/network file, using the UCI. This step is necessary for the
forwarding of traffic between routers to be possible.

Statistics Collection
The network statistics of routers are used for the their status evaluation. The

information is collected by a main statistics collection module and a module that counts
TCP retransmissions.

The main module aggregates information about each interface and stores it in a
file, in the form of a list of JSON objects. This format will simplify not only the
communication operation but also the loading of the information in each router. This
is due to the fact that the evaluation module/load balancer is also written in Python,
which has a JSON API that facilitates the extraction of multiple JSON objects from a
list.

The following information is collected by the module, for each interface:
• Name of the interface, its MAC, IP address and subnet mask;
• Number of received bytes and packets received but dropped. Collected from the

/sys/class/net/<if>/statistics [75] directory;
• Number of transmitted bytes and packets dropped during transmission. Also

collected from the /sys/class/net/<if>/statistics [75] directory;

47

The number of TCP retransmissions and the round-trip delay time, measured with
the fping 4 utility, are only collected for the car network’s interface and for the gateway,
respectively.

All statistics are measured every 550 ms, and the fping command has a timeout
of 500 ms. The information stored in the output file corresponds to the difference
between the current values and the values of the previous iteration. An iteration of the
program lasts 550 ms because if the fping reaches its timeout, the bonus 50 ms will be
a comfortable margin for the execution of the other functions of the program. The load
balancing mechanism does not use all the statistics for the evaluation of the routers.
However, this extra information allows the system administrator to have a summary of
the status of the interfaces remotely.

The interfaces surveyed are, thus, the one connecting to the cellular network, the
one the clients connect to, and the internal network interface. The information is stored
in a local file, and each JSON object has the following generic format:

{
"name_if" : <interface name>,
"IP" : <IP address>,
"netmask" : <subnet mask>,
"MAC" : <MAC address>,
"rx_bytes" : <# received bytes>,
"rx_dropped": <# received but dropped packets>,
"tx_bytes" : <# transmitted bytes>,
"tx_dropped": <# packets dropped during transmission>,
"retrans" : <# TCP retransmissions>,
"latency" : <round-trip delay time>

}

The module counting the TCP retransmissions going through an interface captures
TCP packets and adds their information, sequentially, to a circular buffer. The infor-
mation stored is the packet’s source IP, destination IP, source port, destination port,
sequence and acknowledgment numbers, and flags, which altogether characterize the
packets from the STAs. Then, every time a new TCP packet appears, its information
is compared against previously stored packets. If all fields match between a pair, a
retransmitted packet was found, and the retransmission counter increments its value.

The number of retransmissions since the start of the execution of the program is
continuously saved in a file, which will be used by the statistics collection module to
calculate the number of retransmissions every 550 milliseconds. The module uses the
C/C++ libpcap 5 library, which is used for network traffic capture.

4https://fping.org/
5https://www.tcpdump.org/

48

https://fping.org/
https://www.tcpdump.org/

The developed circular buffer has a maximum size of 50 entries (arbitrary number),
but this value can be modified to fit the traffic of a real train. If the traffic volume
is elevated, the circular buffer should have a large dimension, in order to increase the
probability of finding a matching packet.

Communication of Statistics
For the load balancing to be successful, routers must share updated statistics

information between them.
The communication channel chosen uses the ZeroMQ messaging library in order

to create a message queueing system through which routers can communicate asyn-
chronously. There is no message broker in the communication, and publish-subscribe
was the pattern adopted (refer to figure 4.2).

Every router is a subscriber and a publisher at the same time. A router will subscribe
to all the other routers’ messages being published and will, itself, publish messages that
will be consumed by other routers. The messages are sent from the publisher every 250
ms.

Figure 4.2: Publish-subscribe pattern, retrieved from [76]

In the publisher and subscriber modules, a high water mark was set for each socket.
The high water mark value is a limit for the maximum number of pending messages
that will be queued in memory for each peer the socket is communicating with. This
limit acts as a security measure that prevents the system from running out of memory
and crash.

The publisher module will bind to the internal network interface’s IP address, read
the statistics file that is continuously being updated by the statistics collection module,
and publish the information contained in it. Although the statistics are only updated

49

every 550 ms, each message is being sent from the publisher with a periodicity of 250
ms. Since the two modules (statistics collection and their communication) are not
synchronized, the frequency chosen means that the statistics of a router A stored in a
router B are different from the origin for no longer than 250 ms. This inactivity time in
the ZeroMQ module is needed so as not to overload the CPU.

The subscriber module will receive the messages and store the information in a
different file per router, in a predefined directory. This module operates in a blocking
mode, which means it must receive a message to continue its execution. The files’
information will then be loaded to the load balancer module.

Evaluation and Load Balancing
The load balancing module, located in each router, is based on the evaluation of a

router’s network status and comparison to other routers’. When a router self-diagnoses
as congested, the module will control the forwarding of traffic accordingly.

The load balancer in the router will read the statistics information from the con-
tinuously updated database and evaluate all routers, including itself, based on that
information. The variables used for the evaluation are the round-trip delay time and
TCP retransmissions. In a real-world implementation, other statistics may also be
featured in the evaluation mechanism.

The maximum value of the TCP retransmissions is its highest value to the date,
on every router, and the maximum latency is 500 ms. For the explanation of how the
evaluation value of each router is obtained, please refer to chapter 3, section 3.5.

The load balancer in a router will subtract all routers’ evaluation to its own, and if
the result is equal to or greater than a predefined limit, the router becomes a backup
candidate. If the router has no backup candidates, it is not congested and can serve as
a backup to other routers. Otherwise, it is labeled as congested and may start the load
balancing process.

The backup candidates list is sorted by the routers’ evaluation, in descending order.
The load balancer processes the list so that the router tries, in a loop, to load balance to
the available routers. The backup chosen in an iteration may notify the load balancer
that it is already serving as a backup to another router, and so the load balancer
processes the next backup candidate, and so on. If, in the end, no router is available
for load balancing, no backup assignment is made and the load balancer will restart
from the evaluation process, after two seconds.

If there is a backup available, for the forwarding to succeed, a secondary routing table
must be established in advance. This routing table will allow the traffic to be routed to
a new default gateway, which is the IP address of the internal network interface of the
backup router, while also allowing latency measurements in the interface connected to

50

the cellular network.
Before the execution of the load balancing, the program must verify if the router

itself is not serving as a backup to another router. If it is, the router is prohibited from
continuing with the execution of the load balancing process. Otherwise, an ip-rule 6 is
added to match the traffic coming from the car network and redirect it to the secondary
routing table, which has the new default gateway.

The forwarding rules of the firewall are modified so that the traffic is forwarded
between the router and the backup. This is achieved by using the UCI system. For
forwarding to happen between two interfaces, two firewall rules are necessary, with
interface A as the source and interface B as the destination and vice-versa. In the
system’s firewall configuration file, however, there must be four forwarding rules (or
sections), so that a backup router forwards its own traffic to the gateway and also the
congested router’s traffic.

If in the following iterations of the algorithm, the router loses its congestion status,
the above actions are reverted, and the primary routing table is used instead of the
secondary one. The firewall returns to its original configuration, and the traffic is, once
again, forwarded between the car network interface and the gateway of the router.

If a backup chosen in an iteration of the load balancer is still a candidate in the
following iteration, the load balancer will assign it once again to its router.

The congested router cannot balance its traffic without first being authorized by
the backup router, as will be explained next.

Authorization and Forwarding
Routers cannot forward traffic to other routers as they please. One of the main

reasons is that, even though a backup may be in the candidates list of a congested
router, it might already be serving as a backup to another router. The backup router
would most likely become congested if two (or more) routers were redirecting their
traffic to it.

So, an authorization mechanism was added to the load balancing module, based on
a request-reply pattern (refer to figure 4.3). It requires the congested router to send a
forwarding request to the backup which will answer with an “ok” or “not ok”.

6http://man7.org/linux/man-pages/man8/ip-rule.8.html

51

http://man7.org/linux/man-pages/man8/ip-rule.8.html

Figure 4.3: Request-reply pattern, retrieved from [76]

First of all, a communication channel is created with ZeroMQ. The congested router
will send a message of forwarding request to the backup router and wait for a response,
which will determine if the congested router is allowed or not to forward traffic to the
backup. If it is, the router can modify its forwarding rules, as explained previously, and
start forwarding the traffic.

Upon receiving a request message, the reply module will use the UCI to determine
if the router is being used as a backup router, by parsing the firewall forwarding rules.

If it is already serving as a backup, a “not ok” is sent to the congested router
(requester), which will have to choose another backup. Else, the backup will change
its forwarding rules to accept traffic coming from the internal network interface and
forward it to its gateway. An “ok” message is sent back to the congested router, which
will also change its forwarding rules.

The load balancing finally begins and will continue until the router is no longer
congested, or the backup is no longer suitable. In that case, the router will have to wait
for the assign of a new backup.

4.3 centralized load balancing
As explained before, this work addresses two solutions for load balancing on trains

using a distributed and a centralized algorithm. The later consists of a load balancing
system in an SDN environment, and its implementation will be explained next. The
algorithm’s complete description can be found in chapter 3, section 3.5.

This solution provides many advantages, like the provision of centralized management
and control, a more scalable network, and a dynamic environment where no network
element is isolated. Also, the abstraction of the forwarding plane will provide an
increased simplicity in the load balancing control.

52

In this centralized solution, an SDN controller, which also acts as a load balancer,
is the network element that has information on all routers and decides on how the
forwarding should be processed. Each router communicates with the controller VM,
delivering statistics information and receiving control and management directives,
embedded in Openflow messages.

The developed system uses some modules of the distributed solution since there are
similar or even equal processes between both solutions. Some were improved to be more
robust for a more reliable system. The router VMs’ OS was maintained (OpenWrt).

The load balancing mechanism is divided into two versions. The first is version
1, or “forward all”, where a congested router will forward all its passengers’ traffic to
a backup router, according to the controller’s decision. The second is version 2, or
“blacklist” version. Here, the controller machine has a file with blacklisted destination IP
addresses, or in other words, IP addresses of low priority web services. These websites
or services may put the network under stress if many users are accessing them. Upon
a load balancing event, traffic with these destination IP addresses are dropped, and
the remaining traffic is sent to the backup router. The system administrator defines
the blacklist, and in a real-world implementation, a DNS server could be set up in the
train to simplify the creation of the list so that only domain names were stored and
they could be resolved. However, the solution developed only requires destination IP
addresses to be stored in the file.

Both versions of the algorithm have the same foundation. They were both developed
to ascertain their performance and reliability in a congested network and to compare
their strengths and weaknesses.

It is crucial to notice that the latency in the communication between the network
elements is close to nonexistent, as this is a virtualized environment. In a real-world
implementation, the connection between the network elements must be guaranteed with
a high-speed link. This way, statistics are updated in the controller in near real-time
and the traffic being forwarded between the routers has the lowest latency.

Finally, a new network element was added to the system: the aggregator, whose
purpose on the system and full operation will be explained thoroughly in section 4.3.2.

4.3.1 setup of the solution
The overview of the related technologies and the overview of the network architecture

were already depicted in section 4.1, and chapter 3, section 3.3, respectively. Figure 4.4
depicts an in-depth diagram of the system, with the communication channels, messages
exchanged in the system, and also the major system’s components inside each node.

53

Figure 4.4: Setup of the solution and communication between the network elements

Like in the distributed solution, the communication of statistics occurs through a
ZeroMQ message queue. However, in this centralized solution, the subscriber module
is only located in the controller machine. So, each router is still a publisher, but no
longer sends statistics information to other routers.

OVS is installed in all routers, and one isolated bridge interface is created in each
switch. When STAs’ traffic arrives at the router, it reaches the OVS bridge, and its
forwarding is subject to the controller’s decisions. What this means is that traffic may
be forwarded between the bridge and the gateway or the backup router, depending on
which flow entries are added to the flow table by the controller. Also, all bridges have
an IP address on the same network.

The controller and the routers exchange Openflow messages through the inter-
nal network, and with the execution of HTTP requests using Ryu’s REST APIs
(ryu.app.ofctl_rest 7) and usage of the OVSDB management protocol, the forward-
ing plane is controlled, and the switches queried. The control of the forwarding plane is
done by adding or removing flow entries in the switches’ flow tables. Flow entries are
rules or instructions that tell the switch what to do with an incoming stream of packets.

7https://ryu.readthedocs.io/en/latest/app/ofctl_rest.html

54

https://ryu.readthedocs.io/en/latest/app/ofctl_rest.html

Since the switch’s bridge is isolated, or in other words, has no ports that correspond
to physical interfaces of the router, the redirection of traffic must be done with the
use of tunnel ports. Therefore, the forwarding between the physical interfaces can be
managed by the controller, indirectly.

A GRE tunnel port is created in each switch for each router peer in the train, with
a remote IP address of the peer interface connected to the internal network of the train.
A GRE tunnel is also set up between each router and the aggregator.

The aggregator has OVS installed, with a single bridge, that receives all traffic
coming from the routers. A Ryu controller is also installed, in order to manage the
forwarding of that same traffic (in only one of the modules, refer to section 4.3.2). The
STAs’ traffic of each car travels through different tunnels (one tunnel per router), which
simplifies the management of the traffic flows. So, for instance, when a packet from
router A is received in the tunnel of router B, which happens due to load balancing,
the aggregator will be notified about this change in the topology by the controller
on the train (or will detect the change by itself) and update the switch’s forwarding
rules accordingly. The number of tunnels connecting to the aggregator is equal to the
number of routers in the train. Although only one bridge was added to the switch of
the aggregator, in a real-world implementation, one bridge should be created for every
train the railway company wants to manage.

A bridge added to the switch of a router and the bridge of the aggregator’s switch
both have an IP address in the same network. Thus, the default gateway of each router
is the aggregator’s bridge IP address. This topology facilitates the sending and receiving
of passengers’ traffic between the two entities. However, since switching loops can occur,
due to the communication between the routers, the ARP protocol is disabled in the
interfaces that allow communication between the routers and the aggregator.

NAT no longer occurs in the gateway of each router but in the aggregator’s gateway.
This configuration allows for the traffic to be redirected back and forth between the
routers without the TCP connections of the traffic flows being broken, since the traffic
is aggregated in the aggregator’s switch and only then sent to the external network, or
the Internet.

In summary, in a normal operation of the network, IP traffic from the STAs is sent
to a router, reaches the switch, which will check the OpenFlow flow table and forward
the traffic according to its flow entries. The traffic is sent through a GRE tunnel to the
aggregator, reaching its switch. The flow entries will command the forwarding of the
traffic to the gateway, where NAT rules are applied so that it can finally be sent to the
Internet. The response follows the same path as the request.

55

4.3.2 load balancing system processes
Similar to section 4.2, the development of the centralized solution will be explained

next, along with the associated modules, processes, and operations that compose the
whole system.

Statistics Collection
In this module, reused from the distributed system, the statistics are collected every

550 ms and the format in which they are stored is the same as explained in section 4.2.
The origin of the statistics is also the same: the /sys/class/net/<if>/statistics
directory, fping and the module counting the TCP retransmissions.

All the interfaces of the router are monitored. They are the gateway interface, the
OVS bridge interface, the car network interface, and the internal network interface.
They provide the controller with statistics and configuration information.

Reporting of Statistics
In this centralized solution, the statistics collected in each router are sent only to

the controller. The ZeroMQ publisher and subscriber modules are similar to the ones
of the distributed solution.

There is a continuous communication of messages from the routers (publisher) to
the controller (subscriber), containing all interfaces’ information, in a JSON objects
list format. The messages publishing periodicity was kept (250 ms) because a high
frequency of the communication of the statistics guarantees a regular and closer to
real-time update on the controller.

Switch and Tunnel Information
Before starting the load balancer, the controller VM must start the execution of

a module that collects information about switches’ ports. This module uses Ryu’s
OVSDB library, that enables it to speak the OVSDB protocol [72]. This library initiates
connections from the controller side, so the routers must be listening on a TCP port
beforehand. In the module, operations are executed using commands with a syntax
similar to ovs-vsctl 8 commands.

During an iteration of the program, the discovery module is executed once, and its
output (internal network IP addresses) is read into the module so that the VSCtl class
of the library can describe new OVS instances. Only then, the VSCtlCommand class is
used to build commands that, once executed, will retrieve from each router: the name
of the bridge of the switch, its MAC address, and information about existing tunnels.
This information is stored in a file, along with the respective datapath ID. The file

8http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt

56

http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt

will be used by the load balancer to construct new flow entries that will modify the
forwarding in the devices.

Load Balancing Process
The load balancing algorithm used in the system is described in chapter 3, section

3.5. The decisions made during the development of the solution will be explained in
detail in the following sections.

The load balancer was based on the solution developed for the distributed approach.
This component is now located in the controller VM and suffered several modifications
to comply with the new SDN environment.

The logic behind the maximum values of the statistics used in the evaluation was
kept from the distributed mechanism. Latency is collected from the gateway interface,
and TCP retransmissions from the car network interface, which is the first interface
the passengers’ traffic goes through. Although the Ryu controller has tools to obtain
network statistics of the bridges remotely, the statistics provided are not sufficient for
the evaluation of the routers, and that is why they collect the information locally and
send it to the controller.

The explanation of the logic behind the assignment of backups to congested routers
can be found in chapter 3, section 3.5. The assignment is processed so that if a router
has multiple backups, only one is chosen, and if two or more choose the same backup,
that backup is assigned to only one of the routers. If a router is serving as a backup to
another router, it cannot balance its own traffic. Also, the load balance to a backup is
exclusive, or in other words, a backup cannot be shared.

In every iteration of the load balancer, after the backup candidates list is formed,
each router is subject to a preprocessing that will determine in which state it is and
how it should be processed. Figure 4.5 illustrates this preprocessing, described next.

• The router was not congested in the previous iteration, but now it is, and one
backup was assigned to it. In this case, the router is inserted into a list in order
to be processed by the load balancing algorithm, so that new flow entries are
added to its switch.

• The router was congested in the previous iteration, is still congested, and the
same backup was assigned to it. In this case, the router does not need further
processing, and the load balancing flow entries remain in the switches’ flow tables.

• The router was congested in the previous iteration, is still congested, but now
a new backup is assigned to it. The router is inserted into two processing lists
so that new flow entries are added and old ones removed by the load balancing
mechanism.

57

• The router was congested in the previous iteration, but not anymore or there is
no backup available. The router is inserted into a processing list for removal of
old flow entries.

Figure 4.5: Flowchart of the preprocessing of the routers

With the processing lists created (addition and removal), flow entries may finally
be added to the congested and backup switches, to modify the forwarding of traffic,
and outdated flow entries are removed. This step of the load balancing process uses
Python’s multiprocessing package 9, so that the load balance of each congested router is
processed concurrently. One process is spawned per congested router, and the function
invoked executes two steps. The first step consists of retrieving the ofport value (port
number in the OVS database) of the two tunnel endpoint ports between the congested
and the backup switch and of the two tunnel endpoint ports connecting each switch to
the aggregator. The second adds flow entries to both switches so that requests from
the congested router are forwarded to the backup and the backup delivers its responses,
or otherwise, old forwarding rules are removed.

Adding Flow Entries
Ryu provides REST APIs that allow for the retrieval of the OVS statistics, control

of the forwarding rules, among others.

9https://docs.python.org/3.7/library/multiprocessing.html

58

https://docs.python.org/3.7/library/multiprocessing.html

The load balancing mechanism will add flow entries to the congested and backup
switches’ flow tables. The flow entries must match traffic from and to the car network
in order to apply the desired actions.

In the congested router’s switch, a flow entry commands the forwarding of the
aggregated traffic, received in the bridge, to the GRE tunnel connecting to the backup
router. Another flow entry is also added for the delivery of the response coming from
the tunnel. In the backup router’s switch, two flow entries are added in order to forward
traffic from the peer tunnel to the tunnel connecting to the aggregator, and vice-versa.
The flow entries are added to the backup first and only then to the congested router.
This will avoid a situation where the congested switch’s flow entries were already added,
but the backup is not ready for its traffic.

The structure of a generic flow entry inside an HTTP request is seen below.

data = {
" dpid " : <datapath id >,
" p r i o r i t y " : <p r i o r i t y >,
"match " : {

" in_port " : <incoming ofport >,
" dl_type " : <Ethernet frame type >,

} ,
" a c t i on s " : [{

" type " : "OUTPUT" ,
" port " : <outgoing ofport>

}]
}

The “priority” value must be greater than the priority of the flow entries permanently
stored in the congested and backup switches’ flow tables, which allow the normal
forwarding of the traffic to the routers’ gateway. The “in_port” is the port in which the
traffic is received, the “dl_type” is the Ethernet protocol type, and the “port” inside
“actions” is the port where the traffic should be sent. The input and output ports can
be the LOCAL [70, p. 10] port or a tunnel port, depending on the flow entry.

The load balancing starts as soon as the requests reach the switches, and the flow
tables are updated. The first part of the load balancing mechanism is now complete.

Traffic Aggregation
The traffic reaches the aggregator through a GRE tunnel. There is one tunnel

endpoint per car in the OVS bridge of the aggregator. If a router is not balancing its
traffic, the aggregator will simply forward it to the default gateway, apply NAT, and

59

deliver the response through the appropriate tunnel. For this to be possible, flow entries
are predefined in the switch’s flow table.

However, since this is a load balancing environment, traffic from a car network may
be forwarded to a router in another car, which means that the traffic will flow through
its tunnel to the aggregator.

Since the switch in the aggregator knows beforehand through which tunnel the
response of the traffic should go through, there must be a dynamic component that
updates the flow entries in its flow table when load balancing is taking place, since the
response to the congested router’s traffic should go through the backup tunnel.

Update of the Flow Entries in the Aggregator
Two Python modules were developed for the update of the flow entries in the switch

of the aggregator.
The first module uses Ryu’s API for the creation of a controller application. When

traffic from the congested router arrives through the backup’s tunnel, an Openflow
“packet_in” message sent from the switch is received in the controller (in this case, the
message is exchanged within the same machine) with a captured unmatched packet.
The message results from a miss in the match table of the switch. The control of the
packet is, therefore, transferred to the Ryu controller.

The execution of a “packet in” handler is triggered in the module, which will update
the flow table according to the new topology. So, the traffic from the congested network
is now supposed to appear through the backup tunnel, and its response, coming from
the Internet, must be sent through that same tunnel. This process occurs every time a
packet from a car network appears in the tunnel of a router in another car. When the
congested router returns to its normal operation, the process is once again executed to
update the flow entries to their original configuration.

As long as the unmatched packet is delivered to the controller and the flow entries
are updated immediately by the handler, the aggregator will be synchronized with the
load balancing decisions taken by the controller on the train.

However, the frequency of the sending of requests may be lower than the frequency
of the reception of responses in a TCP connection. What this means is, while the STAs
are receiving multiple response packets, a request packet may not be sent, and thus a
“packet in” is not received in the previous module. So, the load balancing flow entries
may already be installed in the flow tables of the switches, but the aggregator is not
updated immediately. For this reason, only the second module was used in the tests to
the system.

The second module consists of the controller on the train notifying the aggregator

60

of the new network topology, as soon as the load balancing flow entries are installed in
the switches.

First, a message queue is setup with ZeroMQ, with the pattern request-reply. The
controller on the train is the requester, and it sends a notification message to the
aggregator, with two car networks’ CIDR (of the congested and the backup routers).
When the message arrives at the replier (aggregator), it will collect its switch’s flow
entries and the tunnel ports’ information associated with the received car networks’
CIDR and update the flow table according to the new topology. Every time there is a
load balancing event, the controller sends the notification to the aggregator.

The two developed modules cannot be executed in parallel has they may delete or
add flow entries in a way that the flow table is populated in an undefined manner.

Finally, in every two seconds of the execution of the load balancer, the routers’
network state is evaluated and they are categorized as congested or not congested. The
forwarding rules in the flow tables of the switches are updated accordingly.

61

5
Evaluation and Results

This chapter intends to validate the previously described implementation of the system.
Multiple testing scenarios were used to evaluate the performance of both the distributed
and centralized solutions. The tests carried out measure how the train network would
behave if one or more routers started having a slow connection to the Internet or
the connection was lost. Therefore, the tests evaluate the distributed and centralized
solutions in an emulated environment that closely matches real network scenarios, in
order to deliberate about its potential value in a real-world implementation. We first
present the results of the distributed solution, and then, the results of the centralized
solution.

All the scenarios proposed were tested with and without the load balancing algorithm.
The scenarios are based on the download of a website on the clients’ side, while the
statistics about every download are continuously saved. The statistics provide the two
measurements for the performance evaluation of the load balancing algorithm: number
of downloads and load time. The load time, also known as real-time, or total wall clock
time, is the human perception of the passage of the time of the download. It is, thus, a
valuable statistic for the evaluation of the QoE of passengers. The results were also
evaluated by the percentage of the passengers in a car that successfully downloaded
websites in the duration of the tests. It is assumed that each car contains 70 passengers,
accessing the Internet.

The network degradation occurs by applying a delay to the egress traffic in the
gateway of each router, using Linux traffic control 1 and NetEm 2.

The setup for all testing scenarios has three main components: four router VMs,
each one with one client VM, corresponding to the aggregated traffic in a car, and

1https://man7.org/linux/man-pages/man8/tc.8.html
2https://man7.org/linux/man-pages/man8/tc-netem.8.html

63

https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html

finally, one or two web servers that host a website that clients download, using wget 3.
Each one of the routers corresponds to a car of a train. All these network nodes and
their connections are virtualized. Every VM runs a Linux distribution.

The wget command had a timeout of three seconds and a maximum number of tries
equal to one. Each client continuously downloads a website of size 242 kB, without an
interval between the end of a download and the beginning of the following. Each wget is
made recursively, which means that every file that composes the website is downloaded.

The bandwidth in the gateway of all routers (upload and download) was fixed to 4
Mbps, which means that a client VM can download one website in less than one second.
This value is, of course, only the sum of the time it takes to download each item that
composes the website and does not include, for instance, the time to connect to the
web server. The bandwidth was fixed in the testing scenarios so that it was not part of
the degradation of the network. The delay added to the gateways already decreases the
effective bandwidth.

The number of tests performed for each scenario was 15 with and 15 without load
balancing, and each had a duration of 2 minutes. While the tests were running, the
number of downloads made and load times of the website were continuously collected
in each client.

5.1 distributed solution’s testing scenarios
The distributed solution was tested with two scenarios, A and B, with the setup of

figure 5.1. The routers connect directly to the web server.

Figure 5.1: Distributed solution network setup

3https://www.gnu.org/software/wget/

64

https://www.gnu.org/software/wget/

5.1.1 scenario a - constant delay
In scenario A, a fixed network delay of 10 ms was added to routers 1 and 2, and of

450 ms to routers 3 and 4. These values were chosen to test the impact of low and high
latency in the load balancing environment and to see how the last two routers would
compete with each other for the existent backups. Thus, the gateways have different
link quality to the external network, during an extended period.

The value for the difference between the evaluations of the routers was half of the
weight assigned to a statistic so that the load balancing is triggered frequently. The two
statistics used in the evaluation have the same weight (50%), so the difference value
chosen was 25.

Tables 5.1 and 5.2 show the results for the number of website downloads and
respective load times with and without load balancing, in the performed the tests.

Client VM without load balancing with load balancing
1 186 102
2 186 99
3 21 94
4 21 93

Table 5.1: Average of website downloads per client - scenario A

Client VM without load balancing with load balancing
1 0, 640 ± 0, 005 s 1, 202 ± 1, 432 s
2 0, 600 ± 0, 004 s 1, 192 ± 1, 441 s
3 5, 999 ± 0.005 s 1, 180 ± 0, 859 s
4 6.000 ± 0.000 s 1, 207 ± 0, 951 s

Table 5.2: Average of website load times per client - scenario A

During the tests, routers 3 and 4 balanced their traffic most of the time to both
routers 1 and 2. These two VMs had to share their bandwidth with their congested
peers, which resulted in a significant decrease in their number of downloads and an
increase in load times. There were also rare situations where the evaluation of VMs
1 and 2 increased, due to an increase in the latency values or the number of TCP

65

retransmissions. In those moments, VMs 3 and 4 lost their right to use them as backups.
Both VMs 3 and 4 had up to eight load balancing events in each test.

The number of downloads in the clients 3 and 4 increased by approximately four
and a half times with the load balancing mechanism, and the load times decreased by
close to five seconds. Therefore, there was a fairer distribution of the total bandwidth
throughout the routers, and the QoE increased significantly for clients 3 and 4.

Finally, in this scenario, with the load balancing mechanism, 100% of the passengers
in each car downloaded one website each, and 33% of the passengers in cars 3 and 4
downloaded two websites. Without load balancing, in the cars 3 and 4, only 30% of the
passengers downloaded one website (refer to figure 5.2).

Figure 5.2: Percentage of passengers in cars 3 and 4 that downloaded one website

5.1.2 scenario b - constant delay
This scenario has the same network and load balancer configuration as scenario A,

however, router 4 has no Internet connection during the tests. The scenario tests how
the load balancing performs when a gateway is not operational and has no connection
to the cellular network.

The tables 5.3 and 5.4 show the results for the number of website downloads and
their load times, respectively, with and without the load balancing mechanism.

Client VM without load balancing with load balancing
1 187 98
2 187 95
3 21 106
4 - 109

Table 5.3: Average of website downloads per client - scenario B

66

Client VM without load balancing with load balancing
1 0, 640 ± 0, 004 s 1, 297 ± 1, 316 s
2 0, 600 ± 0, 007 s 1, 241 ± 1, 372 s
3 5, 999 ± 0, 007 s 1, 039 ± 0, 687 s
4 - 1, 029 ± 0, 717 s

Table 5.4: Average of website load times per client - scenario B

Client 3 had an increase in the number of downloads of five times the value without
load balancing, similar to scenario A. Router 4, which had no Internet connection, was
able to balance its traffic with other routers so that its client could communicate with
the web server. Both VMs 3 and 4 had up to eight load balancing events in each test,
like in scenario A.

Without load balancing, only 30% of the passengers inside car 3 downloaded one
website. On the other hand, using the load balancing mechanism, all 70 passengers of
cars 3 and 4 downloaded one website each, and on average 53% of the passengers in
cars 3 and 4 downloaded two websites (refer to figure 5.3).

Figure 5.3: Percentage of passengers in cars 3 and 4 that downloaded one website

In this scenario, the QoE increased significantly for clients 3 and 4 and, more
importantly, a router with no Internet access could use a backup’s capacity to provide
it to its passengers.

5.1.3 limitations of the distributed solution
The distributed solution performs as expected, and the traffic balancing operates

successfully. However, this implementation has limitations that had to be tackled in
the centralized solution.

67

First of all, each router does its own NAT in the gateway interface, which means
that TCP sessions will be broken in every load balancing event. If a router is labeled as
congested for a small period (for instance, 2 seconds, which is the iteration time of the
load balancer module), by the end of the reestablishment of the connection, the router
may no longer be congested. So, the load balancing did not have a positive effect.

To overcome this issue in the distributed solution and to obtain improved testing
results, a congested router was assigned the same backup router until it was no longer
congested, or the backup was no longer suitable. Thus, if the backup increased its
evaluation or the router was no longer labeled as congested, the pair was broken. This
was the only moment where the TCP sessions were broken.

However, this technique turns the load balancing system into an unfair mechanism.
If there is only one backup available on the train, the congested router which got hold
of it first will load balance to it until one of the above conditions is met, even if there is
another congested router in the train network. Thus, the backup is never shared.

Although multiple load balancing events may increase the total latency associated
with the mechanism, this technique was removed in the centralized solution for a fairer
load balancing system.

Since this is a distributed solution, there is no central entity with the information of
the routers’ network status. Thus, the system administrator does not have a centralized
tool to monitor the train network. Management of the network would greatly benefit
from a centralized solution.

Furthermore, the solution was developed using the router’s OS capabilities. So, if
the configuration files change their structure on future versions of the OS, the modules
will have to suffer changes to their code. The modules are not easily portable to another
OS, requiring significant modifications to the source code.

Finally, a solution that is not flexible, scalable, and adaptable, resorting only to
the OS’s networking tools, is prone to become obsolete in the future due to the rise
in the usage of virtualized network functions. Nevertheless, because the performance
tests showed positive results, the load balancing technique served as the basis for the
algorithm used in the centralized solution.

5.2 centralized solution’s testing scenarios
In the tests of the centralized load balancing system, four router VMs have one

client VM each. The routers connect to an onboard controller and to the aggregator
(default gateway). The aggregator will then connect to one or two web server VMs. In
this system, routers do not have NAT enabled in their gateway, to reduce the breaking

68

of TCP sessions. The setup of the centralized solution’s testing scenarios is depicted in
figure 5.4, for scenarios A and D, and in the figure 5.6 for scenarios B and C.

This solution was submitted to four testing scenarios to evaluate its performance in
different network conditions.

5.2.1 scenario a - constant delay
This scenario is equal to scenario A of the distributed solution, where the gateways

of each car have different link quality to the external network, during an extended
period. In this scenario, each client continuously executes a wget process and the
difference between the routers’ evaluations must be greater than or equal to 25 for them
to be considered a congested-backup pair. The two statistics used in the evaluation,
latency and TCP retransmissions, have the same weight of 50%, equal to the distributed
solution. The delay added to the routers 1 and 2 is 10 ms and to the routers 3 and 4,
450 ms. So, VMs 3 and 4 should have one backup each for most of the duration of the
tests performed. Figure 5.4 depicts the setup used in the tests.

Figure 5.4: Network setup with one web server

Client VM without load balancing with load balancing
1 183 123
2 183 124
3 20 73
4 20 70

Table 5.5: Average of website downloads per client - scenario A

69

Client VM without load balancing with load balancing
1 0, 646 ± 0, 024 s 0, 985 ± 0, 311 s
2 0, 607 ± 0, 025 s 0, 898 ± 0, 290 s
3 6, 105 ± 0, 339 s 1, 273 ± 0, 580 s
4 6, 085 ± 0, 281 s 1, 281 ± 0, 652 s

Table 5.6: Average of website load times per client - scenario A

Referring to table 5.5, the number of downloads of the two congested VMs increased
by approximately three and a half times with the load balancing mechanism. As
expected, VMs 1 and 2 decreased their number of downloads since their bandwidth had
to be shared with their congested peers.

The column of the results with load balancing of table 5.6 shows that although
the download times of VMs 1 and 2 increased by 300 ms (approximately), the load
times in the VMs 3 and 4 decreased by almost one fifth. Thus, passengers connected to
the two congested car networks will have a significantly improved QoE if the network
conditions are approximately constant during a specific period, and the backup routers
have enough bandwidth for the new traffic.

In this scenario, with the load balancing mechanism, 100% of the passengers in cars
3 and 4 downloaded one website each. Without load balancing, this value decreases to
28% (refer to figure 5.5).

Figure 5.5: Percentage of passengers in cars 3 and 4 that downloaded one website

The load balancer had an average of 32 iterations with load balancing events in the
tests. Although the balancing of the traffic of routers 3 and 4 should be favored, the
event is triggered multiple times due to different factors:

70

• The congested VMs did not choose the same backup in the course of the tests,
because the backups’ latency values and the number of TCP retransmissions
varied.

• The evaluations of routers 3 and 4 are similar for most of the test’s duration since
the same delay is added to them, just like with routers 1 and 2. However, their
statistics are still variable. Due to the backup assignment from the highest to the
lowest congested router, and the sorting of the candidates list in descending order,
explained in chapter 3, section 3.5, the more their evaluation changes, the more
load balancing events occur.

• If VMs 3 and 4 have an equal evaluation, the first to be assigned to a backup
is the one whose statistics information was read first (top-down traversal of the
statistics directory). This router will be assigned to the backup with the highest
evaluation, which may vary between iterations.

• For the setup configuration in this scenario, the percentage of iterations of the
load balancer in which VMs 3 and 4 were load balancing simultaneously is on
average 67%, and not the expected 100%. The number of TCP retransmissions
and the latency of one or more routers may increase spontaneously in a single
iteration of the load balancer, and their evaluation rises to the point where it may
lead to the problematic situations where VMs 1 and 2 load balance between them,
when there is no need for that, or VMs 3 and 4 load balance between them, even
though both their latencies are elevated. These occurrences led to an increase in
the number of load balancing events.

The above situations and behaviors happened in all the centralized solutions’ testing
scenarios.

In the tests, a delay of up to 120 ms occurred in each topology modification in the
aggregator. This delay was a factor in the increase of the download times in the clients
in congested networks, due to packet loss caused by a temporary mismatch between
the forwarding rules in the routers and in the aggregator (refer to section 5.2.5). In
some moments of the tests, this packet loss led to read errors during wget downloads
and the download had to be restarted.

After analyzing the obtained results, it is possible to conclude that, with the load
balancer, the performance of the network can significantly improve, as well as the QoE
of passengers. Thus, the main goal of the solution is attained, which is to increase
the QoE of passengers in congested networks by increasing the number of websites
downloaded and decrease the time it takes to download them.

71

5.2.2 scenario b - constant delay
This scenario, like the previous, evaluates the version 1 of the centralized algorithm

of load balancing. Gateways 1 and 2 have a constant delay of 10 ms and gateways 3 and
4 a delay of 450 ms. However, in this scenario, clients 3 and 4 download simultaneously
the same website from two web servers, while clients 1 and 2 download only one website
(from server 1). Figure 5.6 depicts the setup used in this testing scenario.

Figure 5.6: Network setup with two web servers

Client VM without load balancing with load balancing
1 181 101
2 181 103
3 39 102
4 39 100

Table 5.7: Average of website downloads per client - scenario B

Client VM without load balancing with load balancing
1 0, 651 ± 0, 031 s 1, 212 ± 0, 487 s
2 0, 609 ± 0, 029 s 1, 117 ± 0, 485 s
3 6, 299 ± 0, 463 s 1, 932 ± 0, 867 s
4 6, 304 ± 0, 453 s 1, 937 ± 0, 901 s

Table 5.8: Average of website load times per client - scenario B

72

The results of the tests, compiled in tables 5.7 and 5.8, show that the number of
downloads in the two congested networks was more than the double with load balancing,
and their load times decreased by approximately a third (for both servers).

Without load balancing, only 27% of the passengers in cars 3 and 4 downloaded
both websites. However, using the load balancing mechanism, 72% of the passengers in
cars 3 and 4 downloaded the two websites, from both servers (refer to figure 5.7). This
would translate into a considerable increase in the satisfaction of the passengers with
the Internet service.

Figure 5.7: Percentage of passengers in cars 3 and 4 that downloaded the two websites

5.2.3 scenario c - constant delay
Scenario C evaluates the version 2 of the centralized algorithm. With the same

setup and delay scheme as scenario B (refer to figure 5.6), it evaluates the need for a
load balancing algorithm with traffic prioritization. Clients 1 and 2 download a website
hosted in web server 1 and clients 3 and 4 download two equal websites simultaneously
from web servers 1 and 2.

The web server 2 is a blacklisted destination in this scenario, which means all IP
communications from and to it are dropped by the congested switch.

Client VM without load balancing with load balancing
1 182 129
2 182 133
3 39 65
4 39 64

Table 5.9: Average of website downloads per client - scenario C

73

Client VM without load balancing with load balancing
1 0, 647 ± 0, 025 s 0, 930 ± 0, 291 s
2 0, 607 ± 0, 028 s 0, 856 ± 0, 271 s
3 6, 294 ± 0, 479 s 1, 353 ± 0, 760 s
4 6, 278 ± 0, 369 s 1, 364 ± 0, 805 s

Table 5.10: Average of website load times per client - scenario C

The results of scenario C, tables 5.9 and 5.10, show that, by giving priority to the
traffic destined to server 1 and dropping traffic from and to server 2, the number of
downloads of the high priority traffic will increase, comparing to the previous scenario B.
Thus, the QoS was improved for the web service. In a real-world scenario, high priority
destinations may be low-bandwidth consuming websites, while blacklisted destinations
may be streaming services, for instance.

In this scenario, 92% of the passengers in cars 3 and 4 downloaded one website from
the prioritized destination (refer to figure 5.8).

Figure 5.8: Percentage of passengers in cars 3 and 4 that downloaded the two websites,
without load balancing, and the prioritized website, with load balancing

In conclusion, version 2 of the algorithm can provide an improved QoS for high
priority web services. However, comparing the results on tables 5.7 and 5.9, if there is
sufficient bandwidth in the backup router for all the congested router’s traffic (to web
servers 1 and 2) and its own, the prioritization of the traffic may be unnecessary. Even
though the load times in the congested networks decreased in this scenario, the number
of downloads from server 1 increased only by an average of 14, compared to scenario B.

Dropping the traffic of popular web services, like video streaming, should be a
practice used only if the bandwidth is limited in the backup router. The train network
should avoid forbidding passengers to access the web services of their choice.

74

5.2.4 scenario d - sequential delay
In this scenario, a sequential network degradation was added to the routers, unlike

the previous scenarios. This scenario arises from the assumption that, taking into
account the single direction in which the train travels, a router in car N will have the
same network conditions and connection quality to the cellular network as a router in
car N-1 after a specific time interval.

Each client runs a wget command, and the difference between the evaluations must
be greater than or equal to 15. This value, lower than the previous 25, was chosen to
trigger the load balancing more frequently, considering the delay values of table 5.11.

During a high-speed train trip, we used an Android app in a smartphone to monitor
the cellular network continuously. The monitoring results captured how the signal
strength varies during the trip.

A small sample of the measurement of one of the collected statistics, the Reference
Signal Received Power (RSRP) (in dBm), was extracted from the obtained results.
Then, we mapped a range of values, spanning from the highest to the lowest RSRP
value of the sample, to delay values from 18 ms to 522 ms. In the collected sample,
the RSRP value associated with the highest signal strength is -77 dBm, and the value
associated with the lowest signal strength (or total disconnection) is -105 dBm. There
is an interval of 18 ms between each consecutive RSRP value.

During each test, the delays of table 5.11 were sequentially added to the gateways
of the routers. Each value was fixed for 5 seconds, and the time-lag between the routers
was also 5 seconds. Thus, router N has the same delay as router N-1 after 5 seconds.

The following graph 5.9 and table 5.11 show the variation of the delays added to the
routers. The graph shows the delay applied to the first router during a test. Afterwards,
the results of the testing scenario are compiled in tables 5.12 and 5.13.

Figure 5.9: Delay added to the router in the first car during each test

75

https://www.android.com/

Time Router 1 Router 2 Router 3 Router 4
0 162 18 18 18
5 162 162 18 18
10 18 162 162 18
15 18 18 162 162
20 18 18 18 162
25 18 18 18 18
30 18 18 18 18
35 18 18 18 18
40 144 18 18 18
45 144 144 18 18
50 288 144 144 18
55 288 288 144 144
60 288 288 288 144
65 288 288 288 288
70 450 288 288 288
75 450 450 288 288
80 288 450 450 288
85 288 288 450 450
90 288 288 288 450
95 288 288 288 288
100 288 288 288 288
105 522 288 288 288
110 396 522 288 288
115 396 396 522 288

Table 5.11: Delays added to the routers (milliseconds) every five seconds

Client VM without load balancing with load balancing
1 62 54
2 68 62
3 73 66
4 79 65

Table 5.12: Average of website downloads per client - scenario D

76

Client VM without load balancing with load balancing
1 1, 971 ± 1, 758 s 1, 837 ± 1, 795 s
2 1, 680 ± 1, 664 s 1, 541 ± 1, 607 s
3 1, 576 ± 1, 576 s 1, 542 ± 1, 536 s
4 1, 463 ± 1, 476 s 1, 539 ± 1, 527 s

Table 5.13: Average of website load times per client - scenario D

This scenario with sequential degradation did not benefit from the use of the load
balancing mechanism. The negative results are due to the fact that the network
degradation is elevated in all machines during the tests, most specifically in the second
half of table 5.11, and with a low evaluation difference, the load balancing is triggered
between machines who have similar network degradation. For instance, a machine with
a delay of 450 ms may load balance to a machine with a delay of 288 ms, although this
backup also has an elevated latency. Furthermore, the fact that the delay is changed
every five seconds may bring some issues, since an iteration of the load balancer lasts
two seconds and the statistics information collected by the program may be outdated
for more than one second after the application of the delay on the routers.

Adding the described issues to the latency that results from the execution of the
multiple steps associated with the load balancer (refer to section 5.2.5), if router N has
the same network conditions of router N-1 after a short time (which may be the case
on a train), the network will not benefit from this type of load balancing.

In conclusion, the developed system only provides positive results when the network
conditions are approximately constant for a longer period, and the difference between
the evaluations is increased.

5.2.5 limitations of the centralized solution
Although the load balancing system provided positive results in scenarios A, B, and

C, there are some issues associated with the solution that emerged when performing the
multiple tests. Some were already described in the discussion of the results of scenario
A, in subsection 5.2.1, and in the discussion of scenario D, in subsection 5.2.4. Below,
two additional issues are described.

TCP retransmissions
The counting of the TCP retransmissions did not increase or decrease in the same

proportion as the latency values. What this means is, specially on the congested
networks, the TCP retransmissions count did not have a regular value with each

77

statistics collection. Thus, this value did not “coincide” with the delay values applied.
Furthermore, the routers with the lowest delay applied also retransmitted packets
occasionally.

Since the TCP retransmissions have a weight of 50% in the evaluation of the routers,
this statistic may elevate a router’s evaluation to the point where it chooses a backup
with the same delay as itself. If the maximum latency stipulated in the connection
between the routers and the aggregator increased, for instance, greater than 1 second, the
frequency of the TCP retransmissions counted by the module would increase. However,
the consequent rise in the RTT timeout means that the statistics are not collected as
frequently, which may have consequences upon load balancing decisions.

In conclusion, although an increase in the number of TCP retransmissions may
indicate congestion in a network, since it was not a regular value in the tests, the
routers’ network status was incorrectly evaluated in some moments.

Overall, this statistic does not provide a correct evaluation of the state of the link
to the aggregator and should not be used in the system. In future work, the system
would benefit from the addition of other evaluation statistics that may improve the
evaluation of the network state, like signal strength or the number of dropped packets,
for instance.

Flow entries delay
The aggregator and the controller on the train should be synchronized so that

modifications in the forwarding plane of the train are reflected immediately in the
aggregator’s switch (in a load balancing event). However, if there is latency in the
communication from the controller to the aggregator, there may be a time window
where the aggregator sends packets destined to routers through the wrong tunnel (for
instance, old backup router). In this case, some packets may be lost and retransmissions
appear.

In the tests, although there was no delay applied to the egress traffic of the controller,
there was a delay between the moment a notification from the load balancer arrived at
the aggregator to the end of the topology modification, that could be up to 120 ms.
This delay caused a temporary inconsistency between the forwarding rules installed in
the routers and the aggregator. In a real-world implementation, adding to this latency,
there is an increased latency in the communication between the remote node and the
controller and routers, which will aggravate the issue.

One solution to this problem would be to place the aggregator’s functionalities inside
the train. However, that would remove the possibility of remote control, management,
and monitoring of the access routers and clients’ traffic. Another solution, the one we
believe is the most adequate to the usage of this system, is to only load balance when the

78

congested router is close to disconnection to the cellular network (or is disconnected),
in order to avoid “unnecessary” load balancing events. Thus, the developed system
would behave like a gateway redundancy mechanism.

Also, the HTTP requests executed during the addition and deletion of flow entries
may take a different time to get a response and in a real-world implementation, the
delay may be aggravated depending on the type of connection and technology used for
the communication between the controller and the routers. If the latency is increased
in the communication, the execution time of the load balancing process will increase.

79

6
Conclusions

The train network topology that is considered in this work does not allow an efficient
usage of the existent resources as each network node is isolated in each car, and there is
no communication of network state. The main goal of this dissertation was to develop
two load balancing systems, one distributed and the other centralized, that would
provide an environment where routers could communicate their network statistics to
other nodes in a train and balance their traffic according to their network state.

The state of the art of this document covered different concepts and topics related
to Internet access on trains, load balancing, SDN, gateway redundancy, among others.
The described solutions for Internet access on trains found in the literature helped to
conceptualize a solution for the later developed systems.

A distributed solution was developed for an initial approach to a load balancing
mechanism. In this solution, routers communicate statistics information with each other
and each router has the capacity to decide on load balancing events. Then, a more
robust and flexible centralized solution was developed. This solution is based on an
SDN environment where routers send information to an onboard controller, which then
uses the collected information to decide on load balancing events and informs a remote
node about changes in the forwarding plane. This node aggregates the passengers’
traffic before sending it to the Internet.

All functional and nonfunctional requirements were met, except for nonfunctional
requirement number four (refer to chapter 3, section 3.2.2). If a router is removed from
the network after the scanning of the internal network to retrieve IP addresses of active
routers, the module that collects OVS ports information (refer to chapter 4, section
4.3.2) hangs for more than 2 seconds (one iteration of the load balancer). This issue will
compromise the load balancing mechanism as it depends on the information collected
from that module. Thus, it should be solved in future work.

81

The two testing scenarios of the distributed solution provided positive results, with
a uniform distribution of the total capacity of the train. In the centralized solution,
the scenarios proposed which had a constant network degradation produced positive
results, and it was proved that QoS and QoE could be significantly improved when
using the load balancing mechanism. However, the results of the last testing scenario
of this solution (refer to chapter 5, section 5.2.4) showed that if the latency in the
communication to the outside changes frequently, within a small time window, and the
difference between the evaluations is lower than half of the weight of a statistic, the load
balancing mechanism is not beneficial to the train network. Considering the possibility
that, on a real train, router N has the same network degradation as router N-1 after
some time (depending on the speed of the train), the developed load balancing system
can be beneficial to the train network if used as a gateway redundancy mechanism.

Finally, this work lays the foundation of a solution for load balancing in the Internet
services of moving vehicles, especially trains. The results obtained prove that the
solutions can provide an increased QoE to passengers since they allow a fairer sharing
of the aggregated network capacity of the train. Indeed, a future implementation in
trains would increase the satisfaction of the passengers with the Wi-Fi service, as they
would have a more productive and entertaining trip.

6.1 future work
As described previously in this document, especially in chapter 5, there are some

issues with the centralized solution that need to be tackled in the future to improve the
reliability of the solution and allow a possible implementation in a real train network.
Some guidelines for future work are mentioned below:

• Add and remove routers: it should be possible to add or remove access routers
in the train network without compromising the load balancing mechanism.

• Adding new statistics: of the two statistics used for the evaluation of the
routers, latency was the one that provided a reliable evaluation of the congestion
status. New statistics should be added for the evaluation to be closer to the real
network status. Two possible statistics are the number of dropped packets and
the signal strength (RSRP or RSRQ).

• Aggregation of traffic in a 5G network: use the aggregator as a MEC entity,
when the technology becomes more developed in 5G networks. In this environment,
latency would decrease between the train and the remote node.

• Changes in the backup allocation: instead of just establishing a minimum
difference value between the evaluations, the choice of a backup should be more

82

flexible. One idea would be to develop a machine learning algorithm that explores
the traffic pattern of the passengers and uses past statistics of the routers’ interfaces
to infer not only the behavior of the passengers in the access to the Internet but
also the moments on the trip and locations where that access was degraded. This
information would be used to make improved load balancing decisions.

• Potential of the remote node: considering that the aggregator is located
outside the train, like in the developed system, add more functionalities to it
so that not only it aggregates traffic from the train but also remotely controls,
manages, and monitors the onboard routers and clients’ traffic.

• Security: add security mechanisms to the various elements of the system.

83

References

[1] E. Haleplidis et al., Software-Defined Networking (SDN): Layers and Architecture Terminology,
RFC 7426 (Informational), Internet Research Task Force, Jan. 2015. [Online]. Available: https:
//www.ietf.org/rfc/rfc7426.txt.

[2] J. Moreno, J. M. Riera, L. Haro and C. Rodriguez, “A Survey on Future Railway Radio
Communications Services: Challenges and Opportunities”, IEEE Communications Magazine,
vol. 53, no. 10, pp. 62–68, Oct. 2015. doi: 10.1109/MCOM.2015.7295465.

[3] A. Parichehreh, S. Savazzi, L. Goratti and U. Spagnolini, “Seamless LTE connectivity in High
Speed Trains”, in 2014 IEEE Wireless Communications and Networking Conference (WCNC),
2014, pp. 2067–2072. doi: 10.1109/WCNC.2014.6952608.

[4] P. Fraga-Lamas, T. Fernández-Caramés and L. Castedo, “Towards the Internet of Smart
Trains: a Review on Industrial IoT-Connected Railways”, Sensors, vol. 17, Jun. 2017. doi:
10.3390/s17061457.

[5] É. Masson, M. Berbineau and S. Lefebvre, “Broadband Internet Access On Board High Speed
Trains, a Technological Survey”, May 2015, pp. 165–176. doi: 10.1007/978-3-319-17765-6_15.

[6] D. T. Fokum and V. S. Frost, “A Survey on Methods for Broadband Internet Access on
Trains”, IEEE Communications Surveys & Tutorials, vol. 12, no. 2, pp. 171–185, Apr. 2010.
doi: 10.1109/SURV.2010.021110.00060.

[7] T. Han and N. Ansari, “RADIATE: Radio Over Fiber as an Antenna Extender for High-Speed
Train Communications”, IEEE Wireless Communications, vol. 22, no. 1, pp. 130–137, Mar.
2015. doi: 10.1109/MWC.2015.7054728.

[8] R. Singh, M. Ahlawat, and D. Sharma, “A Review on Radio Over Fiber Communication System”,
vol. 6, no. 4, pp. 2319–7471, Apr. 2017.

[9] B. Lannoo, D. Colle, M. Pickavet and P. Demeester, “Radio-Over-Fiber-Based Solution to
Provide Broadband Internet Access to Train Passengers [Topics in Optical Communications]”,
IEEE Communications Magazine, vol. 45, no. 2, pp. 56–62, Feb. 2007. doi: 10.1109/MCOM.
2007.313395.

[10] H. W. Chang, M. C. Tseng, S. Y. Chen, M. H. Cheng and S. K. Wen, “Field Trial Results for
Integrated WiMAX and Radio-Over-Fiber Systems on High Speed Rail”, in 2011 IEEE 22nd
International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 2011,
pp. 2111–2115. doi: 10.1109/PIMRC.2011.6139887.

85

https://www.ietf.org/rfc/rfc7426.txt
https://www.ietf.org/rfc/rfc7426.txt
https://doi.org/10.1109/MCOM.2015.7295465
https://doi.org/10.1109/WCNC.2014.6952608
https://doi.org/10.3390/s17061457
https://doi.org/10.1007/978-3-319-17765-6_15
https://doi.org/10.1109/SURV.2010.021110.00060
https://doi.org/10.1109/MWC.2015.7054728
https://doi.org/10.1109/MCOM.2007.313395
https://doi.org/10.1109/MCOM.2007.313395
https://doi.org/10.1109/PIMRC.2011.6139887

[11] S. Hassan and K. Saeed, “Li-fi technology: Data transmission through visible light”, IJECE,
vol. 11, Aug. 2017. doi: 10.5281/zenodo.1132246.

[12] Y. Kaymak, R. Rojas-Cessa, J. Feng, N. Ansari and M. Zhou, “On Divergence-Angle Efficiency of
a Laser Beam in Free-Space Optical Communications for High-Speed Trains”, IEEE Transactions
on Vehicular Technology, vol. 66, no. 9, pp. 7677–7687, Mar. 2017. doi: 10.1109/TVT.2017.
2686818.

[13] R. Paudel, Z. Ghassemlooy, H. Le-Minh and S. Rajbhandari, “Modelling of Free Space Optical
Link for Ground-to-Train Communications Using a Gaussian Source”, IET Optoelectronics,
vol. 7, no. 1, pp. 1–8, Apr. 2013. doi: 10.1049/iet-opt.2012.0047.

[14] K. Ishizu, M. Kuroda and H. Harada, “Bullet-Train Network Architecture for Broadband and
Real-Time Access”, in 2007 12th IEEE Symposium on Computers and Communications, Jul.
2007, pp. 241–248. doi: 10.1109/ISCC.2007.4381563.

[15] G. Bianchi, N. Blefari-Melazzi, E. Grazioni, S. Salsano and V. Sangregorio, “Internet Access on
Fast Trains: 802.11-Based On-Board Wireless Distribution Network Alternatives”, in 12th IST
Mobile & Wireless Communications Summit, Jun. 2003, pp. 15–18.

[16] L. Goratti, S. Savazzi, A. Parichehreh and U. Spagnolini, “Distributed Load Balancing for
Future 5G Systems On-Board High-Speed Trains”, in Proceedings of the 2014 1st International
Conference on 5G for Ubiquitous Connectivity, 5GU 2014, Feb. 2015, pp. 140–145. doi: 10.
4108/icst.5gu.2014.258110.

[17] K. R. Kumar, P. Angolkar, D. Das and R. Ramalingam, “SWiFT: a Novel Architecture for
Seamless Wireless Internet for Fast Trains”, in VTC Spring 2008 - IEEE Vehicular Technology
Conference, May 2008, pp. 3011–3015. doi: 10.1109/VETECS.2008.322.

[18] L. Verstrepen et al., “Making a Well-Founded Choice of the Wireless Technology for Train-to-
Wayside Data Services”, in 2010 9th Conference of Telecommunication, Media and Internet,
Jun. 2010, pp. 1–7. doi: 10.1109/CTTE.2010.5557701.

[19] M. Terada and F. Teraoka, “Providing a High-Speed Train With a Broadband and Fault Tolerant
IPv4/6 NEMO Environment”, in 2012 IEEE Globecom Workshops, Dec. 2012, pp. 1052–1056.
doi: 10.1109/GLOCOMW.2012.6477723.

[20] O. B. Karimi, J. Liu and C. Wang, “Seamless Wireless Connectivity for Multimedia Services
in High Speed Trains”, IEEE Journal on Selected Areas in Communications, vol. 30, no. 4,
pp. 729–739, 2012. doi: 10.1109/JSAC.2012.120507.

[21] J. Garcia, S. Alfredsson and A. Brunstrom, “Examining Cellular Access Systems on Trains:
Measurements and Change Detection”, in 2017 Network Traffic Measurement and Analysis
Conference (TMA), Jun. 2017, pp. 1–6. doi: 10.23919/TMA.2017.8002916.

[22] National Rail Enquiries, WiFi Facilities. [Online]. Available: https://www.nationalrail.co.
uk/stations_destinations/44866.aspx, (Accessed on: Apr., 14, 2020).

[23] B. Ai et al., “Future Railway Services-Oriented Mobile Communications Network”, IEEE
Communications Magazine, vol. 53, no. 10, pp. 78–85, 2015. doi: 10.1109/MCOM.2015.7295467.

[24] S. Li, L. D. Xu, and S. Zhao, “5G Internet of Things: a Survey”, Journal of Industrial Information
Integration, vol. 10, pp. 1–9, Jun. 2018. doi: 10.1016/j.jii.2018.01.005.

[25] GSMA, 5G Spectrum - GSMA Public Policy Position, Mar. 2020. [Online]. Available: https:
//www.gsma.com/spectrum/wp-content/uploads/2020/03/5G-Spectrum-Positions.pdf.

[26] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher and V. Young, “ETSI White Paper No. 11: Mobile
Edge Computing - a Key Technology Towards 5G”, ETSI, White Paper, Sep. 2015.

86

https://doi.org/10.5281/zenodo.1132246
https://doi.org/10.1109/TVT.2017.2686818
https://doi.org/10.1109/TVT.2017.2686818
https://doi.org/10.1049/iet-opt.2012.0047
https://doi.org/10.1109/ISCC.2007.4381563
https://doi.org/10.4108/icst.5gu.2014.258110
https://doi.org/10.4108/icst.5gu.2014.258110
https://doi.org/10.1109/VETECS.2008.322
https://doi.org/10.1109/CTTE.2010.5557701
https://doi.org/10.1109/GLOCOMW.2012.6477723
https://doi.org/10.1109/JSAC.2012.120507
https://doi.org/10.23919/TMA.2017.8002916
https://www.nationalrail.co.uk/stations_destinations/44866.aspx
https://www.nationalrail.co.uk/stations_destinations/44866.aspx
https://doi.org/10.1109/MCOM.2015.7295467
https://doi.org/10.1016/j.jii.2018.01.005
https://www.gsma.com/spectrum/wp-content/uploads/2020/03/5G-Spectrum-Positions.pdf
https://www.gsma.com/spectrum/wp-content/uploads/2020/03/5G-Spectrum-Positions.pdf

[27] A. Sarkar, S. Agarwal and A. Nath, “Li-Fi Technology: Data Transmission Through Visible
Light”, IJARCSMS, vol. 3, no. 6, pp. 1–10, Jun. 2015.

[28] X. Bao, G. Yu, J. Dai, and X. Zhu, “Li-Fi: Light Fidelity - a Survey”, Wireless Networks, vol. 21,
Jan. 2015. doi: 10.1007/s11276-015-0889-0.

[29] B. Naudts et al., “Internet on Trains: a Multi-Criteria Analysis of On-Board Deployment
Options for On-Train Cellular Connectivity”, in 2014 16th International Telecommunications
Network Strategy and Planning Symposium (Networks), 2014, pp. 1–7. doi: 10.1109/NETWKS.
2014.6959256.

[30] Netflix Help Center, Internet Connection Speed Recommendations. [Online]. Available: https:
//help.netflix.com/en/node/306, (Accessed on: Apr., 10, 2020).

[31] G. M. Su et al., “QoE in Video Streaming Over Wireless Networks: Perspectives and Research
Challenges”, Wireless Networks, vol. 22, no. 5, Aug. 2015. doi: 10.1007/s11276-015-1028-7.

[32] 3GPP, LTE. [Online]. Available: https://www.3gpp.org/technologies/keywords-acronyms/
98-lte, (Accessed on: Apr., 10, 2020).

[33] c2c, How Does WiFi Work Onboard? [Online]. Available: https://www.c2c-online.co.uk/
help_centre/onboard/how-does-wifi-work-onboard/, (Accessed on: Apr., 17, 2020).

[34] Deutsche Bahn, WiFi On Board Trains and at Stations. [Online]. Available: https://www.bahn.
com/en/view/trains/on-board-service/wifi.shtml, (Accessed on: Apr., 17, 2020).

[35] Eurostar, Eurostar Terms and Conditions. [Online]. Available: https://www.eurostar.com/rw-
en/website-terms-and-conditions, (Accessed on: Apr., 17, 2020).

[36] Queensland Rail, Wi-FiFAQ. [Online]. Available: https://www.queenslandrail.com.au/Wi-
Fi/Pages/Wi-FiFAQ.aspx/#limitations, (Accessed on: Apr., 17, 2020).

[37] Railway Technology, WiFi Woes: the Difficulties of Improving Onboard Internet Services, Oct.
2017. [Online]. Available: https://www.railway-technology.com/features/featurewifi-
woes- the- difficulties- of- improving- onboard- internet- services- 5943140/, (Ac-
cessed on: May, 25, 2020).

[38] H. Kim and N. Feamster, “Improving Network Management With Software Defined Networking”,
IEEE Communications Magazine, vol. 51, no. 2, pp. 114–119, Feb. 2013. doi: 10.1109/MCOM.
2013.6461195.

[39] D. Kreutz et al., “Software-Defined Networking: a Comprehensive Survey”, vol. 103, no. 1,
pp. 14–76, Jan. 2015. doi: 10.1109/JPROC.2014.2371999.

[40] S. K. Tayyaba et al., “Software-Defined Networks (SDNs) and Internet of Things (IoTs): a
Qualitative Prediction for 2020”, International Journal of Advanced Computer Science and
Applications, vol. 7, no. 11, pp. 385–404, 2016. doi: 10.14569/IJACSA.2016.071151.

[41] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka and T. Turletti, “A Survey of
Software-Defined Networking: Past, Present, and Future of Programmable Networks”, IEEE
Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617–1634, Feb. 2014. doi: 10.1109/
SURV.2014.012214.00180.

[42] A. Lara, A. Kolasani and B. Ramamurthy, “Network Innovation Using OpenFlow: a Survey”,
IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 493–512, Aug. 2013. doi:
10.1109/SURV.2013.081313.00105.

[43] I. Irawati, S. Hadiyoso and Y. Hariyani, “Link Aggregation Control Protocol on Software Defined
Network”, International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 5,
pp. 2706–2712, Oct. 2017. doi: 10.11591/ijece.v7i5.pp2706-2712.

87

https://doi.org/10.1007/s11276-015-0889-0
https://doi.org/10.1109/NETWKS.2014.6959256
https://doi.org/10.1109/NETWKS.2014.6959256
https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306
https://doi.org/10.1007/s11276-015-1028-7
https://www.3gpp.org/technologies/keywords-acronyms/98-lte
https://www.3gpp.org/technologies/keywords-acronyms/98-lte
https://www.c2c-online.co.uk/help_centre/onboard/how-does-wifi-work-onboard/
https://www.c2c-online.co.uk/help_centre/onboard/how-does-wifi-work-onboard/
https://www.bahn.com/en/view/trains/on-board-service/wifi.shtml
https://www.bahn.com/en/view/trains/on-board-service/wifi.shtml
https://www.eurostar.com/rw-en/website-terms-and-conditions
https://www.eurostar.com/rw-en/website-terms-and-conditions
https://www.queenslandrail.com.au/Wi-Fi/Pages/Wi-FiFAQ.aspx/#limitations
https://www.queenslandrail.com.au/Wi-Fi/Pages/Wi-FiFAQ.aspx/#limitations
https://www.railway-technology.com/features/featurewifi-woes-the-difficulties-of-improving-onboard-internet-services-5943140/
https://www.railway-technology.com/features/featurewifi-woes-the-difficulties-of-improving-onboard-internet-services-5943140/
https://doi.org/10.1109/MCOM.2013.6461195
https://doi.org/10.1109/MCOM.2013.6461195
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.14569/IJACSA.2016.071151
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1109/SURV.2013.081313.00105
https://doi.org/10.11591/ijece.v7i5.pp2706-2712

[44] R. Junior, M. Vieira and A. Loureiro, “Dynamic Link Aggregation in Software Defined Net-
working”, in 2018 IEEE Symposium on Computers and Communications (ISCC), Jun. 2018,
pp. 615–620. doi: 10.1109/ISCC.2018.8538685.

[45] P. Sköldström and B. C. Sanchez, “Virtual Aggregation Using SDN”, in 2013 Second European
Workshop on Software Defined Networks, Oct. 2013, pp. 56–61. doi: 10.1109/EWSDN.2013.16.

[46] A. Mimidis, C. Caba and J. Soler, “Dynamic Aggregation of Traffic Flows in SDN: Applied to
Backhaul Networks”, in 2016 IEEE NetSoft Conference and Workshops (NetSoft), Jun. 2016,
pp. 136–140. doi: 10.1109/NETSOFT.2016.7502459.

[47] T. Kosugiyama, K. Tanabe, H. Nakayama, T. Hayashi and K. Yamaoka, “A Flow Aggregation
Method Based on End-to-End Delay in SDN”, in 2017 IEEE International Conference on
Communications (ICC), May 2017, pp. 1–6. doi: 10.1109/ICC.2017.7996341.

[48] J. Pavlik, A. Komarek, V. Sobeslav and J. Horalek, “Gateway Redundancy Protocols”, in 2014
IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI),
Nov. 2014, pp. 459–464. doi: 10.1109/CINTI.2014.7028719.

[49] T. Li, B. Cole, P. Morton, and D. Li, Cisco Hot Standby Router Protocol (HSRP), RFC
2281 (Informational), Internet Engineering Task Force, Mar. 1998. [Online]. Available: http:
//www.ietf.org/rfc/rfc2281.txt.

[50] R. Hinden, Virtual Router Redundancy Protocol (VRRP), RFC 3768 (Draft Standard), Obsoleted
by RFC 5798, Internet Engineering Task Force, Apr. 2004. [Online]. Available: http://www.
ietf.org/rfc/rfc3768.txt.

[51] Cisco, GLBP - Gateway Load Balancing Protocol. [Online]. Available: https://www.cisco.
com/en/US/docs/ios/12_2t/12_2t15/feature/guide/ft_glbp.html, (Accessed on: June,
19, 2020).

[52] M. Randles, D. Lamb and A. Taleb-Bendiab, “A Comparative Study Into Distributed Load
Balancing Algorithms for Cloud Computing”, in 2010 IEEE 24th International Conference on
Advanced Information Networking and Applications Workshops, Apr. 2010, pp. 551–556. doi:
10.1109/WAINA.2010.85.

[53] N. Jain and I. Chana, “Cloud Load Balancing Techniques: a Step Towards Green Computing”,
International Journal of Computer Science Issues, vol. 9, no. 1, pp. 238–246, Jan. 2012.

[54] H. K. Mehta, P. Kanungo and M. Chandwani, “Decentralized Content Aware Load Balancing
Algorithm for Distributed Computing Environments”, in Proceedings of the ICWET ’11 Inter-
national Conference and Workshop on Emerging Trends in Technology, Jan. 2011, pp. 370–375.
doi: 10.1145/1980022.1980102.

[55] Y. Bejerano and S. J. Han, “Cell Breathing Techniques for Load Balancing in Wireless LANs”,
IEEE Transactions on Mobile Computing, vol. 8, no. 6, pp. 735–749, Feb. 2009. doi: 10.1109/
TMC.2009.50.

[56] A. Bhadani and S. Chaudhary, “Performance Evaluation of Web Servers Using Central Load
Balancing Policy Over Virtual Machines on Cloud”, in COMPUTE ’10: Proceedings of the Third
Annual ACM Bangalore Conference, Jan. 2010, pp. 1–4. doi: 10.1145/1754288.1754304.

[57] N. Mishra and N. Mishra, “Load Balancing Techniques: Need, Objectives and Major Challenges
in Cloud Computing - a Systematic Review”, International Journal of Computer Applications,
vol. 131, pp. 11–19, Dec. 2015. doi: 10.5120/ijca2015907523.

[58] K. A. Nuaimi, N. Mohamed, M. A. Nuaimi and J. Al-Jaroodi, “A Survey of Load Balancing in
Cloud Computing: Challenges and Algorithms”, in 2012 Second Symposium on Network Cloud
Computing and Applications, Dec. 2012, pp. 137–142. doi: 10.1109/NCCA.2012.29.

88

https://doi.org/10.1109/ISCC.2018.8538685
https://doi.org/10.1109/EWSDN.2013.16
https://doi.org/10.1109/NETSOFT.2016.7502459
https://doi.org/10.1109/ICC.2017.7996341
https://doi.org/10.1109/CINTI.2014.7028719
http://www.ietf.org/rfc/rfc2281.txt
http://www.ietf.org/rfc/rfc2281.txt
http://www.ietf.org/rfc/rfc3768.txt
http://www.ietf.org/rfc/rfc3768.txt
https://www.cisco.com/en/US/docs/ios/12_2t/12_2t15/feature/guide/ft_glbp.html
https://www.cisco.com/en/US/docs/ios/12_2t/12_2t15/feature/guide/ft_glbp.html
https://doi.org/10.1109/WAINA.2010.85
https://doi.org/10.1145/1980022.1980102
https://doi.org/10.1109/TMC.2009.50
https://doi.org/10.1109/TMC.2009.50
https://doi.org/10.1145/1754288.1754304
https://doi.org/10.5120/ijca2015907523
https://doi.org/10.1109/NCCA.2012.29

[59] V. Sreenivas, M. Prathap and M. Kemal, “Load Balancing Techniques: Major Challenge in
Cloud Computing - a Systematic Review”, in 2014 International Conference on Electronics and
Communication Systems (ICECS), Feb. 2014, pp. 1–6. doi: 10.1109/ECS.2014.6892523.

[60] M. Rahman, S. Iqbal and J. Gao, “Load Balancer as a Service in Cloud Computing”, in
2014 IEEE 8th International Symposium on Service Oriented System Engineering, Apr. 2014,
pp. 204–211. doi: 10.1109/SOSE.2014.31.

[61] S. Sathyanarayana and M. Moh, “Joint Route-Server Load Balancing in Software Defined Net-
works Using Ant Colony Optimization”, in 2016 International Conference on High Performance
Computing & Simulation (HPCS), Jul. 2016, pp. 156–163. doi: 10.1109/HPCSim.2016.7568330.

[62] S. Kaur, K. Kumar, J. Singh and N. S. Ghumman, “Round-Robin Based Load Balancing
in Software Defined Networking”, in 2015 2nd International Conference on Computing for
Sustainable Global Development (INDIACom), Mar. 2015, pp. 2136–2139.

[63] U. Zakia and H. B. Yedder, “Dynamic Load Balancing in SDN-Based Data Center Networks”,
in 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), Oct. 2017, pp. 242–247. doi: 10.1109/IEMCON.2017.8117206.

[64] A. Ikram, S. Arif, N. Ayub and W. Arif, “Load Balancing in Software Defined Networking (SDN)”,
MAGNT Research Report, vol. 5(1), pp. 298–305, 2018. doi: 1444-8939.2018/5-1/MRR.33.

[65] S. Attarha, K. H. Hosseiny, G. Mirjalily and K. Mizanian, “A Load Balanced Congestion Aware
Routing Mechanism for Software Defined Networks”, in 2017 Iranian Conference on Electrical
Engineering (ICEE), May 2017, pp. 2206–2210. doi: 10.1109/IranianCEE.2017.7985428.

[66] S. Kaur and J. Singh, “Implementation of Server Load Balancing in Software Defined Net-
working”, in Proceedings of Third International Conference INDIA 2016, vol. 2, Feb. 2016,
pp. 147–157. doi: 10.1007/978-81-322-2752-6_14.

[67] A. A. Neghabi, N. J. Navimipour, M. Hosseinzadeh and A. Rezaee, “Load Balancing Mechanisms
in the Software Defined Networks: a Systematic and Comprehensive Review of the Literature”,
IEEE Access, vol. 6, pp. 14 159–14 178, Mar. 2018. doi: 10.1109/ACCESS.2018.2805842.

[68] P. Kaur, J. K. Chahal and A. Bhandari, “Load Balancing in Software Defined Networking: a
Review”, Asian Journal of Computer Science and Technology, vol. 7, no. 2, pp. 1–5, Apr. 2019.

[69] Open vSwitch, What Is Open vSwitch? [Online]. Available: http://docs.openvswitch.org/
en/latest/intro/what-is-ovs/, (Accessed on: May, 20, 2020).

[70] The Open Network Foundation, “OpenFlow Switch Specification - Version 1.3.0 (Wire Protocol
0x04)”, ONF TS-006, Jun. 2012. [Online]. Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-spec-v1.3.0.pdf.

[71] O. Galinina, S. Andreev, S. Balandin and Y. Koucheryavy, Internet of Things, Smart Spaces,
and Next Generation Networks and Systems: 17th International Conference, NEW2AN 2017,
and 10th Conference, ruSMART 2017. St. Petersburg, Russia: Springer, Aug. 2017, isbn:
978-3-319-67379-0.

[72] B. Pfaff and B. Davie, The Open vSwitch Database Management Protocol, RFC 7047 (Infor-
mational), Internet Engineering Task Force, Dec. 2013. [Online]. Available: http://www.ietf.
org/rfc/rfc7047.txt.

[73] OpenWrt, The UCI System, Sep. 2019. [Online]. Available: https://openwrt.org/docs/guide-
user/base-system/uci, (Accessed on: Apr., 10, 2020).

[74] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, Generic Routing Encapsulation (GRE),
RFC 2784 (Proposed Standard), Updated by RFC 2890, Internet Engineering Task Force, Mar.
2000. [Online]. Available: http://www.ietf.org/rfc/rfc2784.txt.

89

https://doi.org/10.1109/ECS.2014.6892523
https://doi.org/10.1109/SOSE.2014.31
https://doi.org/10.1109/HPCSim.2016.7568330
https://doi.org/10.1109/IEMCON.2017.8117206
https://doi.org/1444-8939.2018/5-1/MRR.33
https://doi.org/10.1109/IranianCEE.2017.7985428
https://doi.org/10.1007/978-81-322-2752-6_14
https://doi.org/10.1109/ACCESS.2018.2805842
http://docs.openvswitch.org/en/latest/intro/what-is-ovs/
http://docs.openvswitch.org/en/latest/intro/what-is-ovs/
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
http://www.ietf.org/rfc/rfc7047.txt
http://www.ietf.org/rfc/rfc7047.txt
https://openwrt.org/docs/guide-user/base-system/uci
https://openwrt.org/docs/guide-user/base-system/uci
http://www.ietf.org/rfc/rfc2784.txt

[75] The Linux Kernel Archives, sysfs-class-net-statistics. [Online]. Available: https://www.kernel.
org/doc/Documentation/ABI/testing/sysfs-class-net-statistics, (Accessed on: Apr.,
10, 2020).

[76] ZeroMQ, ØMQ - The Guide. [Online]. Available: http://zguide.zeromq.org/page:all,
(Accessed on: Apr., 10, 2020).

90

https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-net-statistics
https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-net-statistics
http://zguide.zeromq.org/page:all

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Objective
	Structure of the Document

	State of the Art
	Introduction
	Internet Access on Trains
	Terrestrial Solutions for Broadband Internet Access
	Communication With the Cellular Network
	Future Technologies
	Communication Challenges and Issues

	Software-Defined Networking
	OpenFlow

	Link and Traffic Aggregation
	Gateway Redundancy
	Load Balancing
	Load Balancing Algorithms
	Load Balancing in SDN

	Chapter Considerations

	Solution for Load Balancing in Trains
	Train Network Scenario
	Requirements
	Functional Requirements
	Nonfunctional Requirements

	Network Architecture Overview
	Message Flows
	Load Balancing Solution in a Software-Defined Network

	Implementation
	Overview of Used Technologies
	Distributed Load Balancing
	Centralized Load Balancing
	Setup of the Solution
	Load Balancing System Processes

	Evaluation and Results
	Distributed Solution's Testing Scenarios
	Scenario A - Constant Delay
	Scenario B - Constant Delay
	Limitations of the Distributed Solution

	Centralized Solution's Testing Scenarios
	Scenario A - Constant Delay
	Scenario B - Constant Delay
	Scenario C - Constant Delay
	Scenario D - Sequential Delay
	Limitations of the Centralized Solution

	Conclusions
	Future Work

	References

