
Computational and Applied Mathematics (2020) 39:12
https://doi.org/10.1007/s40314-019-0987-1

Some new aspects of main eigenvalues of graphs

Nair Abreu1 · Domingos M. Cardoso2 · Francisca A. M. França3 ·
Cybele T. M. Vinagre4

Received: 6 August 2018 / Revised: 29 September 2019 / Accepted: 13 October 2019 /
Published online: 1 November 2019
© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Abstract
An eigenvalue of the adjacency matrix of a graph is said to be main if the all-1 vector is
non-orthogonal to the associated eigenspace. This paper explores some new aspects of the
study of main eigenvalues of graphs, investigating specifically cones over strongly regular
graphs and graphs for which the least eigenvalue is non-main. In this case, we characterize
paths and trees with diameter-3 satisfying the property. We may note that the importance of
least eigenvalues of graphs for the equilibria of social and economic networks was recently
uncovered in literature.
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1 Introduction

Cvetković (1970) introduced the concept ofmain eigenvalue of a graph, that is, an eigenvalue
of its adjacency matrix for which the associated eigenspace is non-orthogonal to the vector
whose entries are equal to 1 (otherwise, it is called non-main). As a consequence of Perron–
Frobenius’ Theorem, it is well known that a graph G on n ≥ 2 vertices is connected if and
only if its largest eigenvalue (index) is simple and the associated eigenvector has only positive
entries, so it is main, see Cvetković et al. (1979, Ths. 0.3, 0.4). We also note that a graph
is regular if and only if it has only one main eigenvalue, see Cvetković (1971). In Huang
et al. (2015), a method to construct families of graphs with exactly s > 1 main eigenvalues
is given; however, the characterization of such graphs is a problem proposed by Cvetković
(1978) that remains open.

In Sect. 2, someproperties of the graphswith exactly twomain eigenvalues are studied. The
twomain eigenvalues of a cone over a strongly regular graph are identified and conditions for
such a cone to be multiplicative are given. Also, harmonic graphs are characterized through
its main spectral properties without any restriction on its combinatorial structure.

Cvetković (1971) started the investigation on the relation between the main eigenvalues
of a graph and the eigenvalues of its complement. This subject was also approached in Hagos
(2002), Teranishi (2002), and Cardoso and Pinheiro (2009). Particularly in Cardoso and
Pinheiro (2009), such relations were investigated seeking estimates for the maximal size of
regular induced subgraphs in the context of convex quadratic programming. At the end of
the paper, three questions are raised. The first wonders about the existence of a connected
graph G whose complement G has a main eigenvalue between its largest eigenvalue and
−1 − λmin(G), where λmin(G) denotes the least eigenvalue of G. The second raises the
possibility of characterizing graphs G whose spectrum of G contains −1 − λmin(G) as a
main eigenvalue. The third question approaches the characterization of connected graphs for
which the least eigenvalue is non-main.

In Sect. 3, the first question posed in Cardoso and Pinheiro (2009) is discussed. The largest
and the second largest eigenvalues of the complement of a graph are also analyzed, and we
conclude that −1− λmin(G) belongs to the spectrum of G if and only if it coincides with its
second largest eigenvalue. Moreover, we show that, among all connected bipartite graphs,
the balanced complete bipartite graphs Kr ,r are those whose respective complements contain
−1 − λmin(G) as a main eigenvalue.

In Sect. 4, we determine the main spectrum, i.e., the set of distinct main eigenvalues, of
a path with n vertices and conclude that the least eigenvalue of such graph is non-main if
and only if n is even. On the other hand, the main eigenvalues of arbitrary diameter-3 trees
( double stars) are determined and it is shown that their main spectra have cardinality four
when they are not balanced. Finally, we conclude that among such trees, only the balanced
ones have the least eigenvalue non-main.

After completing the present work, its authors became aware of the recent article of
Bramoullé et al. (2014), which announced itself to be the first to uncover the importance
of the least eigenvalue of a graph to economic and social outcomes showing the way this
parameter “captures howmuch the network amplifies agents’ actions”. In the same direction,
an recent paper of Allouch (2017) investigates the welfare effect of income redistribution
in the private provision of public goods on networks. Their analysis leads to the conclusion
that, as far as the direction of welfare-improving transfers is concerned, networks where the
least eigenvalue is a main eigenvalue may have an useful policy implication. The mentioned
article Allouch (2017) cites our examples displayed in Sections 3 and 4, which can also be
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found in a preliminar version of the present paper (Abreu N, Cardoso D, França F, Vinagre
C On main eigenvalues of certain graphs. arXiv:1605.03533v1 [math.CO]).

Throughout this paper, unless otherwise stated, G denotes a simple graph of order n with
edge set E(G) and vertex set V (G) = {1, . . . , n}. By NG(i), we indicate the set of neighbors
of the vertex i . As usually, Pn and Kn denote, respectively, the path and the complete graph
of order n. The adjacency matrix ofG,A = [ai j ], is the n×n matrix for which the entries are
ai j = 1, if i j ∈ E(G), and 0 otherwise. The eigenvalues of A are also called the eigenvalues
of G. Unless otherwise stated, the eigenvalues of G are considered in non-increasing order,
that is, λmax = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin. When necessary, we write A(G) instead of A
and λi (G) instead of λi , for i ∈ {1, 2, . . . , n}. The eigenspace associated with the eigenvalue
λ(G) is denoted by εG(λ). We recall that a partition π of the set V (G) of the graph G is
equitablewhen, given two cells Vi and Vj of π , there is a constantmi j , such that each vertex
v ∈ Vj has exactly mi j neighbors in Vj . The matrixM = [mi j ] is called the quotient matrix
of G with respect to π . It is known (Th. 3 of Cvetković 1978) that the main eigenvalues of
G are eigenvalues ofM. The graph G is said to be equitable when its valency partition, that
is, the partition of V (G) according the vertex degrees, is equitable. The all one n × n matrix
is denoted J and j denotes a column of the matrix J.

For basic notions and notation from spectral graph theory not herein defined, the reader
is referred to the book by Cvetković et al. (2010) or Brouwer and Haemers (2012).

2 Graphs with exactly twomain eigenvalues

Graphs with just two main eigenvalues have been studied in several papers as the works by
Lepović (2001), Hagos (2002), Teranishi (2002), Hou and Tian (2006), Nikiforov (2006), and
Rowlinson (2007). Namely, in Rowlinson (2007), a complete survey on the main eigenvalues
of a graph (up to 2007) is given and the graphs with exactly two main eigenvalues deserve
particular attention. New results on these graphs appear in more recent publications as the
works by Cardoso et al. (2010), Shi (2009), Hu et al. (2009), and Hayat et al. (2016, 2017).

Let us call the graphs with the same main eigenvalues co-main-spectral graphs. Infi-
nite families of non-isomorphic co-main-spectral graphs with exactly two main eigenvalues
appear in the paper by Cardoso et al. (2010). For instance, the biregular graphs Hq

k obtained
from a connected k-regular graph Hk of order p after attaching q ≥ 1 pendent vertices to
each vertex of Hk (then the order of Hq

k is n = (q + 1)p) were considered. All of these

graphs (independently of p) have exactly the two main eigenvalues λi (H
q
k ) = k±

√
k2+4q
2 ,

i = 1, 2. For k = 2, H2 is the cycle Cp , and for all p ≥ 3

λ1(H
q
2 ) = 1 + √

1 + q and λ2(H
q
2 ) = 1 − √

1 + q

are their two main eigenvalues. Notice that for p = 3, 4, . . ., we obtain an infinite sequence
of co-main-spectral graphs of increasing order equal to (q + 1)p [see Cardoso et al. (2010,
Fig. 2)].

The cone over G is the join K1∇G; that is, the graph obtained by adding a vertex to G
and connecting this vertex to all the vertices of G. When G is regular and non-complete, the
cone over G is a biregular equitable graph. According to a result by Hayat et al. (2016, Th.
2.1(b)), it has two main eigenvalues. Furthermore, if Gk,n denotes the family of connected
k-regular non-complete graphs of order n, we may conclude the following proposition.
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Proposition 1 If H ∈ Gk,n, then the cone K1∇H has exactly the following two main eigen-
values:

ρ, θ = k ± √
k2 + 4n

2
. (1)

Moreover, with the exception of the index, each eigenvalue of H remains as an eigenvalue of
the cone K1∇H with at least the same multiplicity.

Proof Let us assume that τ is amain eigenvalue ofG = K1∇H with an associated eigenvector

v =
[

β

u

]
non-orthogonal to

[
1
j

]
, where β is a constant to be determined. Then, it follows

that:

A(G)v =
[
0 j�
j A(H)

] [
β

u

]
= β

[
0
j

]
+

[
j�u

A(H)u

]
= τ

[
β

u

]
.

Therefore, βj + A(H)u = τu and j�u = τβ, and then, we have β �= 0 and τ �= 0.
Furthermore, from j� (βj + A(H)u) = τ j�u, it follows that βn + kτβ = τ 2β, and then,
τ 2 − kτ − n = 0. Thus:

τ1, τ2 = k ± √
k2 + 4n

2
,

(and βi = 1
τi
j�u, i = 1, 2). Taking into account that any eigenvalue α of H with associated

eigenvector w non-orthogonal to j is an eigenvalue of A(G) with eigenvector

[
0
w

]
, the last

part follows. �	
Remark 1 As immediate consequence of Proposition 1, it follows that the cones over graphs
in Gk,n are co-main-spectral with main eigenvalues given by (1).

It should be noted that if H ∈ Gk,n and θ = k−√
k2+4n
2 is an eigenvalue of H (and thus,

it is non-main), then θ becomes a main eigenvalue for the cone K1∇H . Therefore, in this
cone, the number of distinct eigenvalues remains the same as in the graph H . We can give
examples of this situation for some strongly regular graphs H . We may recall that a graph of
order n is called strongly regular with parameters (n, k, a, c) (more simply, a (n, k, a, c)-srg)
when it is k-regular, each pair of vertices has a or c common neighbors depending whether
they are adjacent or non-adjacent and the graph is not complete or edgeless. Such graphs
have exactly three distinct eigenvalues, say k > μ > λ, being that only λ is negative. From
the eigenvalues of H , their parameters may be obtained as follows (see Cvetković (1971, Th.
3.6.4)):

n = (k − μ)(k − λ)

k + μλ
, (2)

a = k + μλ + μ + λ, (3)

c = k + μλ. (4)

Thus, if H is a strongly regular graph of order n with eigenvalues k > μ > λ, from (1), it
follows that K1∇H remains having three distinct eigenvalues if and only if −λ(k − λ) = n
as it was stated by Muzychuk and Klin (1998, Prop. 6.1(b)). Theorem 1 (item 2), in the next
subsection, gives an alternative necessary and sufficient condition in terms of the parameters
of the strongly regular graph H . Now, we are ready to present some examples of graphs of
Gk,n with θ as an eigenvalue. Let H be one of the following graphs: the Petersen graph, the
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Shrikhande graph, the Gewirtz graph, or any one of the three Chang graphs. The first one is
a (10, 3, 0, 1)-srg that belongs to G3,10, the second graph is a (16, 6, 2, 2)-srg belonging to
G6,16, the third one is a (56, 10, 0, 2)-srg in the class G10,56, and the three Chang graphs are
(28, 12, 6, 4)-srg belonging to G12,28.

2.1 Cones over strongly regular graphs

The characterization of graphs with three distinct eigenvalues is a challenging problem in
Combinatorics that remains open, since the question posed by Haemers, during the 15th
British Combinatorial Conference (Stirling, July 1995): are there any connected graphs
apart from strongly regular and complete bipartite graphs which have just three distinct
eigenvalues? Haemers’ question was investigated by several researchers, but, among the
published results, the non-regular connected graphs with just three distinct eigenvalues all of
them not less than − 2 were characterized in the paper by van Dam (1998, Th. 7) and those
graphs with index less than 8 were characterized by Chung and Omidi (2009) [a particular
family of cones had already been obtained by Mena and Bridges (1981), in 1981]. More
recently, the characterization of connected biregular graphs with three distinct eigenvalues
and second largest eigenvalue equal to 1 appeared in the paper by Cheng et al. (2016, Prop.
4.11) and in Cheng et al. (2018), the connected graphs with three distinct eigenvalues and
second largest eigenvalue at most 1 were characterized. In Rowlinson (2016, 2017), some
particular graphs were determined using the concept of main/non-main eigenvalue.

Now, it is worth recalling a remark that appears in Rowlinson (2016) as a consequence of
results by van Dam (1998, Prop. 2 and 3), herein stated as the following lemma.

Lemma 1 (Rowlinson 2016) A non-integral connected graph G with three distinct eigenval-
ues is either complete bipartite or its two smaller eigenvalues are algebraic conjugates. In
the later case, G has exactly 1 or 3 main eigenvalues.

Proposition 2 If G is a connected non-complete bipartite graph with three distinct eigenval-
ues where two of them are main, then G is a biregular integral graph.

Proof Let G be a connected graph with three distinct eigenvalues two of which are main.
Then, it is immediate that G is biregular, see Rowlinson (2016, Lem. 2.2). If we assume that
G is non-integral, since it is non-complete bipartite, applying Lemma 1, G has exactly 1 or
3 main eigenvalues, which is a contradiction. �	

A strongly regular graph is called primitive if both the graph and its complement, which
is also a strongly regular graph, are connected; otherwise, it is called imprimitive. A strongly
regular graph with parameters (n, k, a, c) is imprimitive if and only if c = k or c = 0. Thus,
the eigenvalues of a primitive strongly k-regular graph satisfy k > μ > 0 and λ < −1.
For more details, see Brouwer and Haemers (2012). Combining (1) and known facts about
strongly regular graphs, we have the following result.

Theorem 1 Let H be a primitive strongly regular graph with parameters (n, k, a, c) and
distinct eigenvalues k > μ > λ. Then

1. if H is non-integral, the cone K1∇H has more than three distinct eigenvalues;
2. K1∇H has three distinct eigenvalues ρ > μ > λ if and only if√

k2 + 4n − √
(a − c)2 + 4(k − c) = k − (a − c).
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Proof 1. Let us suppose that K1∇H has three eigenvalues. Since H is connected and k-
regular, the cone K1∇H has exactly two main eigenvalues, by Proposition 1. Furthermore,
since H is non-integral and K1∇H is not bipartite, according to Lemma 1, the two smaller
eigenvalues of K1∇H are algebraic conjugates and, so, it has exactly one or three main
eigenvalues, which is a contradiction.
2. It is well known that the eigenvalues of a (n, k, a, c)-srg like H are k and the roots of the
polynomial x2 − (a − c)x − (k − c) = 0. Therefore, it follows that the least eigenvalue of
H is given by the expression:

λ = (a − c) − √
(a − c)2 + 4(k − c)

2
. (5)

Taking into account Proposition 1 and the fact that K1∇H has three distinct eigenvalues if
and only if θ in the equality (1) is also the eigenvalue λ of H , using (5) the result follows. �	

The above conditions are satisfied by an infinite number of strongly regular graphs, and
thus, there is an infinite number of cones with three distinct eigenvalues where two of them
are main. The strongly regular graphs previously mentioned are examples satisfying these
conditions.

Remark 2 Applying Theorem 1 (item 2) to the case of primitive strongly regular graphs H
with parameters (n, k, a, c) and distinct eigenvalues k > 1 > λ, it follows that K1∇H
has three distinct eigenvalues ρ > 1 > λ if and only if n = (2k − c)(k − c) and k =
2c − a + 1. However, from Cheng et al. (2016, Lem. 4.9), we know that the cone over the
Petersen graph is the unique cone over a strongly regular graphwith three distinct eigenvalues
ρ > 1 > λ. Therefore, without resorting to the classical feasibility conditions for strongly
regular graphs [see (Brouwer and Haemers 2012, Th. 9.1.3)], we may conclude that there
are no primitive strongly regular graphs distinct from the Petersen graph with parameters
((2k − c)(k − c), k, a, c), where k = 2c − a + 1.

Corollary 1 Let H be a primitive strongly regular graph with parameters (n, k, a, c) and
distinct eigenvalues k > μ > λ. Then:

1. λ = −μ if and only if a = c.
2. If a = c, then K1∇H has three distinct eigenvalues ρ > μ > λ if and only if n + c =

k(1 + √
k − c).

Proof 1. From (3) and (4), it is immediate that λ = −μ if and only if a = c.
2. Applying item 2 of Theorem 1, K1∇H has three distinct eigenvalues ρ > μ > λ if and

only if
√
k2 + 4n − √

4(k − c) = k ⇔
√
k2 + 4n = 2

√
k − c + k

⇔ k2 + 4n = 4(k − c) + k2 + 4k
√
k − c

⇔ n = k − c + k
√
k − c

⇔ n = k
(
1 + √

k − c
)

− c.

�	
According to Bridges and Mena (1979), a graph whose adjacency matrix is the incidence

matrix of a multiplicative design is called amultiplicative graph. In Bridges andMena (1979,
Th. 4.1), it is stated that a connected graphG is multiplicative if and only if it has three distinct
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eigenvalues ρ > μ > −μ. It should be noted that if G has order n and μ has multiplicity
p, from ρ + pμ − (n − p − 1)μ = 0, it follows that ρ = (n − 2p − 1)μ. In addition, in
the same paper, it is stated that when G is a multiplicative cone over a graph H , either H
is a strongly regular graph with parameters (μ2(μ + 2), μ(μ + 1), μ,μ) or G is a graph
described therein. Now, using Corollary 1, we furnish the following necessary and sufficient
condition for obtaining multiplicative cones over connected k-regular multiplicative graphs.

Proposition 3 A cone over a connected k-regular multiplicative graph H with three distinct
eigenvalues k > μ > −μ ismultiplicative if and only if H is strongly regularwith parameters

(μ2(μ + 2), μ(μ + 1), μ,μ).

In such a case, the multiplicative graph K1∇H has distinct eigenvalues k+√
k2+4n
2 > μ >

−μ, where k = μ(μ + 1) and n = μ2(μ + 2).

Proof Let H be a connected k-regular multiplicative graph with three distinct eigenvalues
k > μ > −μ. Then, H is a primitive strongly regular graph, implying μ �= 1 and, taking
into account Corollary 1, it has parameters (n, k, c, c). Still by Corollary 1, the cone over H
has three distinct eigenvalues ρ > μ > −μ if and only if n + c = k(1 + √

k − c), that is,
applying (2) and (4), if and only if

k2 − μ2

k − μ2 + k − μ2 = k
(
1 +

√
k − k + μ2

)
⇔ k2 − μ2

k − μ2 = k(1 + μ) − k + μ2

⇔ (k − μ)(k + μ) = μ(k + μ)(k − μ2)

⇔ k − μ = μ(k − μ2)

⇔ k(1 − μ) = μ(1 − μ)(1 + μ)

⇔ k = μ(1 + μ). (6)

Finally, from (2) and (6), it follows that n = μ(k + μ) = μ2(μ + 2) and from (4) and (6),
we obtain c = k − μ2 = μ(1 + μ) − μ2 = μ. The expression of ρ is obtained taking into
account (1). �	

The Shrikhande graph, which is a strongly regular graph with parameters (16, 6, 2, 2)
and distinct eigenvalues 6 > 2 > −2, is an example of a multiplicative strongly regular
graph with parameters (μ2(μ + 2), μ(μ + 1), μ,μ). Thus, its cone has the three distinct
eigenvalues 8 > 2 > −2, where the main eigenvalues are 8 and −2.

More general, the main eigenvalues of a multiplicative cone over a strongly regular graph
with distinct eigenvalues k > μ > −μ and parameters (μ2(μ + 2), μ(μ + 1), μ,μ) are

ρ = k+√
k2+4n
2 and −μ = k−√

k2+4n
2 , according to Propositions 3 and 1.

2.2 Harmonic graphs

A graph H is said to be harmonic when dH (the degrees vector of H ) is an eigenvector
associated with a (necessarily) integer eigenvalue, that is, if there is a positive integer 


such that AdH = 
dH . It is immediate that every regular graph is harmonic. The harmonic
graphs were introduced by Grünewald (2002) and Dress and Gutman (2003). In the paper by
Nikiforov (2006), such a graph without isolated vertices is called pseudo-regular graph and
it is defined as being a graph H , such that

∑
j∈NH (i)

dH ( j)
dH (i) is constant for every i ∈ V (H).

The particular case of harmonic trees was studied by Grünewald (2002), where the author
considers the trees T
, with 
 ≥ 2, such that one of its vertices v has degree 
2 − 
 + 1,
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while every neighbor of v has degree 
 and all the remaining vertices have degree 1. He
proved that these are the unique harmonic trees. These trees are among the ones with two
main eigenvalues, which have been characterized by Hou and Zhou (2005) [see also Hou and
Tian (2006)]. We may recall that a balanced double star is a tree with diameter equal to 3 in
which the two non-pendent vertices have the same degree.

Proposition 4 (Hou and Zhou 2005) The stars, the balanced double stars, and the harmonic
trees T
, for 
 ≥ 2, are the unique trees with exactly two main eigenvalues.

Nikiforov (2006, Th. 8) proved that everymain eigenvalue of an harmonic graph H belongs
to the set {−λ1, 0, λ1}. It is also stated in Nikiforov (2006, Th. 8) that if H is a graph without
a bipartite component, such that all main eigenvalues are in {−λ1, 0, λ1}, then it is harmonic.
A similar result for connected graphs is obtained by Rowlinson (2007, Prop. 3.3), using a
different approach. It is immediate to extend the spectral characterization of harmonic graphs
without any restriction regarding their combinatorial structure, namely, considering arbitrary
graphs (connected or not).

Proposition 5 A graph H is harmonic if and only if every main eigenvalue of H belongs to
the set {0, λ1}.

As immediate consequence from Proposition 1, it follows that there are no harmonic cones
over regular graphs.

Now it is worth recalling the following reformulation of a result by Rowlinson (2007,
Prop. 2.1).

Proposition 6 (Rowlinson 2007) If G is a graph with n vertices, m edges, and exactly two
main eigenvalues λ1 > λi , for some i ∈ {2, . . . , n}, then

λi =
∑n

j=1 d
2
j − 2mλ1

2m − nλ1
. (7)

The following proposition gives an alternative characterization of harmonic graphs.

Proposition 7 A graph G with n vertices andm edges is harmonic if and only if λ1 =
∑n

i=1 d
2
i

2m ,
and it has no more than two main eigenvalues.

Proof Suppose that G is harmonic. By Proposition 5, all its main eigenvalues are in {0, λ1}
and we have two cases: (i) G is regular, with degree say k, and then, λ1 = k is the unique
main eigenvalue, or (ii) G is non-regular, and then, it has two main eigenvalues. In case (i),

λ1 = k = nk2
nk =

∑
i∈V (G) d

2
i

2m . And in the case (ii), by Propositions 6 and 5, it follows that

λ1 =
∑

i∈V (G) d
2
i

2m . Conversely, assume that λ1 =
∑

i∈V (G) d
2
i

2m and G has no more than two
main eigenvalues. If G is regular, then the conclusion is immediate. If G is not regular, by
Proposition 6, the main eigenvalues ofG, λi and λ1, are related by the equality (7). Replacing

λ1 in (7) by
∑

i∈V (G) d
2
i

2m , it follows that the main eigenvalues of G are in {0, λ1}. Therefore,
by Proposition 5, the result follows. �	

3 The largest and the second largest eigenvalues of the complement of
a graph

The set of distinct main eigenvalues of the graph G is herein called the main spectrum
of G and it is denoted MainSpec(G). Therefore, the spectrum of G is described as
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Spec(G) = {λ[q1]
1 , . . . , λ

[qp]
p }, where λ

[q j ]
j means that the eigenvalue λ j has multiplicity

q j . Before proceeding, it is worth recalling the following fundamental result on the main
spectrum of a graph.

Proposition 8 (Cvetković 1971) The sets MainSpec(G) and MainSpec(G) have the same
number of elements. Furthermore, if λ ∈ MainSpec(G) and λ ∈ MainSpec(G), then
λ + λ �= −1.

Taking into account this result and the definition of main/non-main eigenvalue, it is imme-
diate to obtain the basic results stated in the next proposition, partially proved byHagos (2002)
(see also Teranishi 2002).

Proposition 9 (Hagos 2002) Consider a graph G and λ ∈ Spec(G). Then, the following
assertions are equivalent:

(i) the eigenvalue λ is either non-main or main with multiplicity greater than 1;
(ii) there is some eigenvector v of G associated with λ, such that j�v = 0;
(iii) the scalar −1 − λ belongs to Spec(G).

As direct consequence of this proposition, we may note that a necessary and sufficient
condition for a simple eigenvalue λ of a graph G to be non-main is that −1 − λ to be an
eigenvalue of G (see Hagos 2002).

Now, it is worth recalling the following consequence of Weyl’s inequalities, the proof of
which can be found in the book Cvetković et al. (1997):

λ2(G) ≤ −1 − λmin(G) ≤ λ1(G). (8)

The relations (8) furnish a (negative) answer to the question raised in the paper Cardoso
and Pinheiro (2009), about the existence of a graph G for which the complement G has an
eigenvalue less than its index and greater than −1 − λmin(G).

Proposition 10 If G is a graph of order n and −1−λmin �= λ1(G), then G has no eigenvalues
belonging to the open interval (−1 − λmin(G), λ1(G)).

The inequalities (8) motivate us to consider graphs G for which −1 − λmin(G) is an
eigenvalue of G. We have two cases: (a) λ1(G) = −1 − λmin(G) and (b) λ2(G) = −1 −
λmin(G).

In the case (a), we have that−1−λmin(G) = λ1(G) is a main eigenvalue ofG. Therefore,
Proposition 8 guarantees that λmin(G) is a non-main eigenvalue, since −1 = λmin(G) +
(−1 − λmin(G)). In fact, regarding the equality (a), from (8) and Prop. 1.2 in Cardoso and
Rowlinson (2010), we may conclude the following result.

Proposition 11 If G is a graph, then λ1(G) = −1 − λmin(G) if and only if the multiplicity
of λ1(G) is greater than one.

As a consequence of Perron–Frobenius’ Theorem, the condition λ1(G) = −1− λmin(G)

in Proposition 11 implies that λmin(G) is non-main and G is disconnected.

Example 1 The graph G depicted in Fig. 1 is the one numbered 4 in Cvetković and Petrić
(1984), from where we obtain that

Spec(G) = {4,37228, 0,−1,−1,37228,−2},
the numbers in bold being its main eigenvalues. Its complement G has Spec(G) =
{1[2], 0[2], (−1)[2]}, and we note that −1 − λmin(G) = −1 − (−2) = 1 = λ1(G).
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Fig. 1 A graph G satisfying
λ1(G) = −1 − λmin(G) and its
complement G

Fig. 2 A connected graph G
satisfying the conditions of
Proposition 12 and its
complement

On the other hand, regarding case (b), the following proposition is direct consequence of
the above analysis.

Proposition 12 For any graph G, we have that λ2(G) = −1−λmin(G) < λ1(G) if and only
if λmin(G) is main with multiplicity greater than one or it is non-main and λ1(G) is simple.

The inequalities in (8) and Propositions 11 and 12 allow us to conclude that if G is
connected, then −1 − λmin(G) ∈ Spec(G) if and only if λ2(G) = −1 − λmin(G). This
is the case of the graph G depicted in Fig. 2, which is the graph number 23 of Cvetković
and Petrić (1984). Indeed, Spect(G) = {3,56155, 1,−0,56155,−1[2],−2} and Spec(G) =
{2, 1, 0[2],−1,−2}. We have λ2(G) = 1 = −1 − λmin(G), with λ2(G) < λ1(G).

From Proposition 9, for an arbitrary graph G of order n, such that λmin(G) is a simple
eigenvalue, we have that λmin(G) is non-main if and only if −1 − λmin(G) is an eigenvalue
of G. Particularly, within the class of bipartite graphs, we may conclude the following:

(a) For an arbitrary bipartite graph G, λ1(G) = −1 − λmin(G) if and only if λmin(G) is
non-main and λ1(G) has multiplicity greater than one.

(b) If G is connected and bipartite, then λ2(G) = −1 − λmin(G) < λ1(G) if and only if
λmin(G) is non-main and λ1(G) is simple.

The next result gives a combinatorial characterization of bipartite graphs G of order n for
which λ1(G) = −1 − λmin(G).

Theorem 2 Let G be a bipartite graph. Then, λ1(G) = −1 − λmin(G) if and only if G is
complete (bipartite) and balanced.

Proof Let us consider a bipartite graph G with vertex set V = V1∪̇V2, where |V1| = r and
|V2| = s. If λ1(G) = −1−λmin(G), then (a) above implies that G is disconnected, and thus,
G = Kr ∪̇Ks . Since λ1(G) is a multiple eigenvalue, then r = s. Conversely, if G = Ks,s , for
some positive integer s, then G = Ks,s is a disconnected graph with two components that
are complete graphs with s vertices. It follows that λmin(G) = −s and λ1(G) = s − 1, and
therefore, λ1(G) = −λmin(G) − 1. �	
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4 Paths and double stars with non-main least eigenvalues

Concerning the third question of Cardoso and Pinheiro (2009), we may note that among the
connected graphs for which the least eigenvalue is non-main, we can count the harmonic
graphs (see the Proposition 5), which class includes the regular graphs. In this section, the
graphs with non-main least eigenvalue of two families of trees are characterized. We start by
determining the paths with non-main least eigenvalue. For sake of completeness, we calculate
the main spectrum of an arbitrary path.

It is worth recalling the following lemma which can be found in Cvetković et al. (1979),
[the eigenvectors were described by Lee and Yeh (1993)].

Lemma 2 (Cvetković et al. 1979; Lee and Yeh 1993) For each integer n, the eigenvalues of

Pn are simple and given by λ j (Pn) = 2 cos

(
jπ

n + 1

)
, 1 ≤ j ≤ n. Each of these eigenvalues

λ j has an associated eigenvector with entries xi = sin

(
i

jπ

n + 1

)
, for i ∈ {1, 2, . . . , n}.

Theorem 3 For n ≥ 2 and 1 ≤ j ≤ n, λ j = 2 cos

(
jπ

n + 1

)
is a non-main eigenvalue of the

path Pn if and only if j is even. In particular, the least eigenvalue of Pn is non-main if and
only if n is even.

Proof Fix j , 1 ≤ j ≤ n. For the λ j -eigenvector v( j) = (x1, . . . , xn)�, we have λ j xi =∑
t∼i xt , whence λ j

∑
i xi = ∑

i di xi = 2
∑

i xi − x1 − xn . From Lemma 2, λ j �= 2, and

then,
∑

i xi = 0 if and only if x1+xn = 0. Since x1+xn = 2 sin
(

jπ
2

)
cos

(
(n−1) jπ
2(n+1)

)
, wemay

verify that λ j is a non-main eigenvalue if and only if j is even. Indeed, cos
(

(n−1) jπ
2(n+1)

)
= 0

if and only if (n−1) jπ
2(n+1) = π

2 + kπ for k ∈ N, and then, it follows that 1 + 2k < j ≤ n.

Also, it holds that n = j+(1+2k)
j−(1+2k) , which implies n < 2n

j−(1+2k) , and then, j < 2k + 3. Thus,
1 + 2k < j < 2k + 3, which guarantees that j is even. �	
Corollary 2 The path Pn on n vertices has � n

2 �main eigenvalues, where �x� denotes the least
integer not less than x.

AgraphG is said to be semi-regular bipartite if it is biregular and every edge joins a vertex
of minimum degree to a vertex of maximum degree. The following result (see Rowlinson
2007) characterizes the semi-regular bipartite graphs in terms of their main eigenvalues.

Proposition 13 (Rowlinson 2007) A non-trivial connected graph G is semi-regular bipartite
if and only if its main eigenvalues are only λ1(G) and −λ1(G).

Combining Propositions 13 and 6, it follows that a connected semi-regular bipartite graph

G of order n has λ1(G) =
√∑

i∈V (G) d
2
i

n . This is a known result obtained in Hofmeister (1983),
where it was stated that for a graph H of order n,

∑
i∈V (H) d

2
i ≤ λ21(H)n with equality if

and only if H is a semi-regular bipartite graph.
Since stars are connected semi-regular bipartite graphs, there exist no diameter-2 tree with

non-main least eigenvalue. Regarding diameter-3 trees, it should be noted that these trees (the
so-called double stars, see Fig. 3) are not semi-regular bipartite graphs, and then, combining
Propositions 13 and 4, we may conclude that the least eigenvalue of a balanced double star
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Fig. 3 Double star T (k, s)

is non-main. On the other hand, we claim that there are no non-balanced double stars with
least eigenvalue non-main.

To prove our assertion, we first introduce the notation W(B) to designate the matrix
W(B) = [j Bj B2j · · · Bn−1j], where B is an arbitrary square matrix. When B = A, the
adjacency matrix of G, W(A) = [wi j ] is such that wi j gives the number of walks in G of
length j starting at vertex i , 1 ≤ i ≤ n, 1 ≤ j ≤ n−1, and then, it is called thewalk matrix of
G. A fundamental result due to Hagos (2002) [see also Powers and Suleiman (1982, Th. 4)]
asserts that the rank of the walk matrix of G is equal to the number of its main eigenvalues.
To prove the next theorem, which includes our claim, we determine the main spectrum of a
double star, combining the result obtained by Huang et al. (2015, Lem. 2.4) with the result
due to Cvetković (1978, Th. 3). Note that, according to these results, the number of main
eigenvalues of G is equal to the rank ofW(M), forM being the quotient (or divisor) matrix
of any equitable partition of the vertex set of G, and the spectrum of M includes the main
eigenvalues of G.

Theorem 4 Let T be a double star with n vertices. If T is balanced, then its two main
eigenvalues are λ1 and λn−1; otherwise, it has four main eigenvalues, namely λ1, λ2, λn−1,
and λmin.

Proof Let k �= s be positive integers and T = T (k, s) be a double star of order n = k+ s+2
whose vertices are labeled as in Fig. 3.

Let us consider V1 = {1}, V2 = {2}, V3 = {3, . . . , k+2}, and V4 = {k+3, . . . , k+s+2}.
Then, V1∪̇V2∪̇V3∪̇V4 is an equitable partition of V (T ) with associated quotient matrix:

M =

⎡

⎢⎢
⎣

0 1 k 0
1 0 0 s
1 0 0 0
0 1 0 0

⎤

⎥⎥
⎦ ,

for which

W(M) =

⎡

⎢⎢
⎣

1 k + 1 k + s + 1 s + k2 + 2k + 1
1 s + 1 k + s + 1 s2 + 2s + k + 1
1 1 k + 1 k + s + 1
1 1 s + 1 k + s + 1

⎤

⎥⎥
⎦ .

It can be verified that detW(M) = −ks(s − k)2, which is nonzero, since s �= k. As M has
characteristic polynomial q(x) = x4−(k+s+1)x2+ks and, according to Del-Vecchio et al.
(2009), the characteristic polynomial of T is p(x) = xs−1xk−1(x4 − x2(k+ s+1)+ks), we
conclude that the four nonzero eigenvalues of the graph T = T (k, s) are main when k �= s.
In particular, it follows that λmin is a main eigenvalue (clearly, the others are λ1, λ2, and
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λn−1). On the other hand, when k = s, the tree T = T (k, s) is a balanced double star that has
exactly two main eigenvalues, according to Proposition 4. In this case, the equitable partition
of V (T ) has the only two cells V1 = {1, 2} and V2 = {3, . . . , k + 2, k + 3, . . . , 2k + 2} and
quotient matrix:

M =
[
1 k
1 0

]
.

Applying a result due to Cvetković (1978, Th. 3), the two main eigenvalues of T are the

eigenvalues of M, namely λ1,n−1 = 1±√
1+4k
2 , as λmin = −λ1.Therefore, our assertions are

proved. �	
By combining Propositions 8 and 12 and Theorems 3 and 4, wemay conclude immediately

the next corollary.

Corollary 3 If G is the path on n vertices, then its complement has � n
2 � main eigenvalues

and, for an even n, the second largest eigenvalue of G is equal to −1−λmin(G). In addition,
the second largest eigenvalue of the complement of a balanced double star T is equal to
−1 − λmin(T ).
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Cvetković D, Doob M, Sachs H (1979) Spectra of graphs: theory and application. Academic Press, New York
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