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Lúıs Filipe Ávila da Silveira dos Santos

Advisor:

Isabel Maria Dias Proença

A thesis submitted in fulfillment of the requirements

for the degree of Ph.D.

in

Applied Mathematics for Economics and Management

July 2020

http://www.ulisboa.pt
www.iseg.ulisboa.pt
https://www.iseg.ulisboa.pt/aquila/homepage/lsantos
https://www.iseg.ulisboa.pt/aquila/homepage/isabelp


Universidade de Lisboa
Instituto Superior de Economia e Gestão

Essays in Spatial Econometrics

Author:
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Abstract

This thesis addresses the specification and estimation of Spatial Lag Models

for dichotomous or fractional responses. Three essays are presented. The first es-

say suggests a new method to approximate the inverse of the spatial lag operator,

used in the estimation of Spatial Lag Models for binary outcomes. Related matrix

operations are approximated, as well. Closed formulas for the elements of the ap-

proximated matrices are deduced. Computational time and complexity is greatly

reduced. The second essay focus on the specification of Spatial Lag Models for

fractional responses. Observations at the corners, zero and one, are allowed. Two

specifications are proposed. The Fractional Response Spatial Lag Model (FRSLM),

extends the seminal approach of Papke and Wooldridge (1996) to spatial frame-

works. The approximate Fractional Response Spatial Lag Model (aFRSLM), allows

to write the FRSLM as an approximate reduced form. Of particular relevance is

the interpretation of policy effects. The third essay extends the second essay to the

panel data setting. The individual unobserved effects are allowed to be correlated

with the explanatory variables. The treatment of the unobserved heterogeneity is

addressed as a central issue. Estimation is based on an iterative Generalized Method

of Moments (iGMM) procedure, with well-known instruments. Inference is robust

to spatial heteroskedasticity and spatial autocorrelation. The performance of the

iGMM estimator is evaluated through detailed simulation studies. Results show

that the iGMM estimator tends to perform well in terms of computational time,

accuracy and precision. The adequacy of the proposed approaches is also assessed

through empirical applications on the U.S. Metropolitan Statistical Areas. The first

essay analyzes environmental effects over regional competitiveness and the degree

of competitiveness spillovers. A new definition for binary competitiveness is intro-

duced. Results show that competitiveness is significantly affected by air quality.

Also, being competitive plays an important role in the competitiveness of neighbor-

ing areas. The third essay discusses regional knowledge and innovation spillovers,

based on the proportion of high-tech patents. Results show that human capital plays

a major role in regional innovative processes. However, due to regional aggregation,

the degree of knowledge spillovers is significantly low.
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Chapter 1

Introduction

In the words of Anselin (1988), Spatial Econometrics consists “of those meth-

ods and techniques that, based on a formal representation of the structure of spatial

dependence and spatial heterogeneity, provide the means to carry out the proper

specification, estimation, hypothesis testing, and prediction for models in regional

science”. Spatial heterogeneity is a particular case of coefficient instability. This

form of variability is driven by factors such as distance, location and/or regional size.

The treatment of spatial heterogeneity in econometric modeling can be addressed

in three ways. One, as a special case of unobserved heterogeneity, commonly used

in panel data settings (Baltagi, 2013). Two, as a small number of regimes, with

heterogeneous regression coefficients and/or explanatory variables (see section 9.4.3.

of Anselin, 1988, – “Spatially Switching Regressions”). Three, as a large number of

regimes, with heterogeneous regression coefficients and/or explanatory variables as

well (Gamerman et al., 2003; Gelfand et al., 2003, – Random Coefficients Models).

Spatial dependence is a special case of cross-sectional dependence. It is related to

the way that different units interact in space. Spatial interactions are usually ex-

pressed by the means of a spatial weighting matrix, where each element represents

the relative importance of a given spatial unit on its neighbors. The definition of the

spatial weights typically follows geostatistical concepts, such as contiguity (Cressie,

2015) and nearest neighbor distances (Cliff and Ord, 1981), or uses proxies for eco-

nomic “distances” (Case et al., 1993). Under an econometric framework, spatial

dependence can be approached and interpreted in two ways. First, by introducing

spatial correlation through the dependent variable – the Spatial Lag Model (SLM).
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Introduction 2

This is an equilibrium model. It specifies that the values of the outcomes, for every

unit in the spatial system, are jointly determined. Second, by introducing spatial

correlation through the error term – the Spatial Error Model (SEM). This is a special

case of non-spherical error and does not require a formal specification of the spatial

interactions. Combinations of the two previous specifications are possible. Without

loss of generality, this thesis will focus on the specification and estimation of the

former. Due to the simultaneous nature of the Spatial Lag Model, computational

and/or interpretative issues generally occur. Of particular relevance are the ways

that such problems can be addressed under nonlinear frameworks.

In the last 30 years, the access to regional-level and firm-level data, as well

as the development of geostatistical software, has substantially increased. At the

same time, new challenges were posed to both theoretical and applied researchers in

Spatial Econometrics. One of the growing areas of research in this field concentrates

on the specification, estimation and inference for spatial models with discrete, lim-

ited and fractional outcomes. Unlike the continuous unbounded dependent variable

case, considering a spatial linear approach to model discrete, limited and fractional

dependent variables can produce misleading predictions, implausible estimated mag-

nitudes for the effects on the predicted outcomes and incorrect statistical inference

(see Case, 1992; McMillen, 1992). Alternatively, several examples can be found in

the literature, that properly address the previous issues. Naming a few, Pinkse and

Slade (1998), Holloway et al. (2002), Beron et al. (2003) and Smith and LeSage

(2004), for dichotomous dependent variables; Wang and Kockelman (2009) and Ro-

orda et al. (2010) for ordered dependent variables; Bolduc et al. (1997), Garrido

and Mahmassani (2000) and Chakir and Parent (2009) for multinomial dependent

variables; LeSage (2000), Qu and Lee (2012), Qu and Lee (2013) and Xu and Lee

(2015b) for limited dependent variables; Agarwal et al. (2002) and Lambert et al.

(2010) for count dependent variables; Lin and Lee (2010) and Xu and Lee (2015a)

for fractional dependent variables.

With regard to the specification of Spatial Lag Models for discrete, limited and

fractional outcomes, Qu and Lee (2012) define a taxonomy that allows to distin-

guish two ways to address the specification of such spatial models. They differ in
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the modeling approach and in the way the spatial interactions are interpreted. The

first specification considers a latent variable approach. A spatial lag of the latent de-

pendent variable is introduced in the specification of a linear latent variable model.

This can be viewed as a linear structural model. In addition, it can be written as a

reduced form, assuming that standard stability conditions hold, such that a partic-

ular matrix – the spatial lag operator – is invertible. Under this approach, it follows

that the stance of a given agent, towards a particular decision, is determined by the

stance of neighboring agents, towards the same decision. In this way, the spatial lag

latent variable model is an equilibrium model for decision. The second specification

follows a nonlinear simultaneous framework. A spatial lag of the dependent variable

enters the specification in a nonlinear way, inside a nonlinear function. Similarly, this

can be viewed as a structural model. However, in this case, obtaining a reduced form

relies in complex numerical methods. In general, no analytically tractable formula is

available. Additionally, this approach is no longer appropriate to address problems

involving the decision of agents. The nonlinear spatial lag model is a simultaneous

model for behavior (eventually in an equilibrium state). Here, the effective behavior

of a given agent is determined by the behavior of neighboring agents.

In this thesis, particular attention is given to the specifications discussed by Qu

and Lee (2012). The latent variable approach is used to derive a spatial lag model

for dichotomous outcomes. The nonlinear simultaneous framework is used to define

a spatial lag model for fractional responses. Of interest are the issues related to

estimation and interpretation of the previous Spatial Lag Models. For the latent-

based binary choice model, estimation is known to be computationally burdensome.

Maximum Likelihood based methods and/or Bayesian based methods require N di-

mensional integrals to be computed, with N the sample size. Generalized Method

of Moments (GMM) estimators require the computation of N dimensional matrix

operations, most of them involving the inversion of the spatial lag operator, a full

N ×N matrix. In Chapter 2 of this thesis, a computationally simple method is de-

veloped to approximate the inverse of the spatial lag operator and the corresponding

matrix operations. Under a GMM framework, estimation time and complexity are

significantly reduced. For the fractional response model, computational complexity
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is no longer a problem. However, specification and interpretation issues come to

light. In addition, the literature on this subject is scarce. Lin and Lee (2010) con-

sider a linear approach to model spatially lagged fractional responses. While being

a simple and popular starting point, it has well known pitfalls. Xu and Lee (2015a)

consider a nonlinear framework to model spatially lagged fractional responses with

nonadditive errors. They apply a nonlinear transformation to the responses, such

that the transformed model becomes linear. As a result, their approach is not ap-

propriate for the case where the responses are defined at the boundaries, zero and

one. In Chapter 3 of this thesis, a nonlinear spatial lag model is proposed. No

transformations are used and observations at the boundaries are allowed. Moreover,

an approximation for the proposed nonlinear spatial lag model is also developed. In

this way, the model can be written as an approximate reduced form, with a tractable

analytic expression. This facilitates the interpretation of the reduced form parame-

ters and the analytic determination of (approximated) policy effects. In Chapter 4

of this thesis, the specifications presented in Chapter 3 are extended to the spatial

panel framework.

Estimation of the proposed approaches is based on the iterative GMM pro-

cedure of Klier and McMillen (2008). The spatial heteroskedasticity and spatial

autocorrelation (spatial HAC) robust estimator of Kelejian and Prucha (2007) is

considered, to produce valid inference for the asymptotic covariance estimator of

the GMM estimator for the unknown parameter vector.

Extensive Monte Carlo simulation studies are conducted in Chapter 2 and Chap-

ter 3. The performance of the iterative GMM procedure is assessed in detail. Em-

pirical applications are presented in Chapter 2 and Chapter 4. The adequacy of the

methods and specifications developed in this thesis is illustrated using real spatial

data.

The remainder of this thesis is organized as follows. In Chapter 2, which has the

title The inversion of the spatial lag operator in binary choice models: fast computa-

tion and a closed formula approximation, a new method to approximate the inverse

of the spatial lag operator, used in the estimation of spatial lag models for binary

outcomes is presented. Related matrix operations are approximated as well. Closed
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formulas for the elements of the approximated matrices are deduced. A GMM es-

timator is also presented. This estimator is a variant of Klier and McMillen (2008)

iterative GMM estimator. The approximated matrices are used in the gradients

of the new iterative GMM procedure. Monte Carlo experiments suggest that the

proposed approximation is accurate and allows to significantly reduce the compu-

tational complexity, and consequently the computational time, associated with the

estimation of spatial binary choice models, especially for the case where the spatial

weighting matrix is large and dense. Also, the simulation experiments suggest that

the proposed iterative GMM estimator performs well in terms of bias and root mean

square error and exhibits a minimum trade-off between computational time and

unbiasedness within a class of spatial GMM estimators. Finally, the new iterative

GMM estimator is applied to the analysis of competitiveness in the U.S. Metropoli-

tan Statistical Areas. A new definition for binary competitiveness is introduced.

The estimation of spatial and environmental effects are addressed as central issues.

In Chapter 3, which has the title Fractional responses with spatial dependence,

two specifications to estimate models for spatially lagged fractional responses with

additive errors are introduced. No transformations are applied to the responses and

the suggested specifications can handle observations at the boundaries, zero or one.

Derivation and computation of the partial effects are addressed as central issues.

The first specification, the Fractional Response Spatial Lag Model (FRSLM), ex-

tends the seminal approach of Papke and Wooldridge (1996) to spatial frameworks.

A spatial lag of the dependent variable is introduced in the specification. The re-

sulting nonlinear simultaneous model has no analytically tractable expression for

the reduced form. Policy effects become difficult to interpret. The second specifica-

tion, the approximate Fractional Response Spatial Lag Model (aFRSLM), allows to

write the FRSLM as an analytically tractable approximate reduced form. The true

partial effects are approximated by sums of nonlinear functions of the exogenous

explanatory variables and their spatially lagged values. An extensive Monte Carlo

simulation study is presented. The finite and large sample properties of the GMM

estimator for the two proposed specifications and the corresponding partial effects

are investigated. Experiments show that both the FRSLM and aFRSLM perform

5



Introduction 6

well in terms of bias and root mean square error for a variety of sampling designs.

The aFRSLM also proves to be accurate in terms of the estimation of the partial

effects.

In Chapter 4, which has the title Unobserved heterogeneity in spatial panel

data models for fractional responses: an application to the proportion of high-tech

patents in the U.S. Metropolitan Statistical Areas, the knowledge spillovers in the

U.S. Metropolitan Statistical Areas, are studied. The proportion of U.S. origin high-

tech patents, between 2010 and 2015, is used as a proxy to measure the innovation

output. Its spatial lag is used to capture the degree of regional concentration. The

R&D expenditures at Colleges and Universities by source of funds and Human Capi-

tal proxies (wages and employment, by educational attainment) are used as measures

for the inputs of the innovative process. The approach presented in Chapter 3 is

extended to the panel data setting. Unobserved effects are allowed to be correlated

with the explanatory variables. They are modeled according to the spatial approach

of Debarsy (2012), a generalization of the classic Chamberlain-Mundlak approach.

The partial effects are derived. Average direct effects and average indirect effects

are of particular interest. Estimates are compared with those from panel data es-

timators for linear spatial lag models. The adequacy of the proposed spatial panel

specifications is demonstrated. Results show that human capital plays a major role

in regional innovative processes. However, the degree of high-tech patents concen-

tration among the U.S. Metropolitan Statistical Areas is significantly low.

Chapter 5 presents the concluding remarks and discusses further research on

the subjects addressed in this thesis.
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Chapter 2

The inversion of the spatial lag operator

in binary choice models: fast computation

and a closed formula approximation

This chapter has been published in co-authorship with Isabel Proença

Silveira Santos, L. and I. Proença (2019): “The inversion of the spatial lag

operator in binary choice models: Fast computation and a closed formula

approximation”, Regional Science and Urban Economics, 76, 74–102.

2.1. Introduction

Modeling binary choice outcomes with spatial dependence has become increas-

ingly popular in recent years. Many applications can be found in the literature, that

cover, for example, the choice on the participation in environmental policies (Beron

et al., 2003; Murdoch et al., 2003), the adoption of new technologies in agriculture

(Case, 1992; Holloway et al., 2002; Wollni and Andersson, 2014), the implementa-

tion of state income taxes (Beron and Vijverberg, 2004; Fiva and Rattsø, 2007), the

location choice (Klier and McMillen, 2008; Miyamoto et al., 2004), the decision to

(re)open a business (Holloway and Lapar, 2007; LeSage et al., 2011) or the existence

of high crime rates in a given neighborhood (McMillen, 1992). However, the intro-

duction of spatial dependence in models with dichotomous dependent variables raises

several complications. Considering a latent variable approach to derive a model for

7
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binary choice outcomes, Anselin (2007) shows that spatial dependence implies the

presence of spatial heteroskedasticity and spatial autocorrelation, which leads to

specification issues and to analytically intractable expressions for the quantities of

interest. As a result, estimation becomes complex and computationally demanding.

To address the issues related to the estimation of spatial binary choice mod-

els, several approaches have been proposed. These approaches can be categorized

into three major groups, according to the estimation method that they address:

Maximum Likelihood (ML) methods, Bayesian methods and Generalized Method

of Moments (GMM) estimators. Examples of ML based approaches are the EM

algorithm (McMillen, 1992), the RIS simulator (Beron and Vijverberg, 2004), par-

tial ML estimation based on pairwise correlations (Bhat, 2011; Wang et al., 2013),

the GHK simulator (Pace and LeSage, 2016) and the Mendel-Elston approximation

(Martinetti and Geniaux, 2017). The Gibbs sampler (LeSage, 2000) and Markov

Chains Monte Carlo (Smith and LeSage, 2004) are examples of Bayesian based ap-

proaches. Finally, the estimator of Pinkse and Slade (1998) and the estimator of

Klier and McMillen (2008) consider the GMM framework. Nevertheless, most of

these approaches become computationally burdensome in large samples.

The computational issues associated with Maximum Likelihood methods and

Bayesian methods are related to the computation or simulation of high-dimensional

integrals. This is a consequence of requiring the specification of the joint distribution

(or, at least, some structure of the distribution) of the spatial data. Even if the high-

dimensional integrals are approximated by one-dimensional integrals (Martinetti and

Geniaux, 2017) or obtained by simulation algorithms (Beron and Vijverberg, 2004;

Pace and LeSage, 2016), estimation can still become computationally infeasible,

especially if the spatial units are influenced by many neighbors and N (the sample

size) is large.

Another possibility is to consider a GMM estimation approach. Under the

GMM framework, the distributional assumptions can be relaxed in such a way that

no high-dimensional integration is involved. In fact, GMM only requires that a set of

moment conditions is correctly specified. But, even so, estimation becomes compu-

tationally impracticable in large samples, due to N -dimensional matrix operations

8
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that have to be computed on each iteration. Nevertheless, these computational

issues can be tackled through matrix approximation methods. The Taylor series

approximation, the Chebyshev approximation (Pace and LeSage, 2004), the eigen-

decomposition of a matrix, the Cholesky decomposition (Pace and Barry, 1997a,b),

the LU decomposition or the conjugate gradient method (Smirnov, 2005, 2010) are

examples of approximation methods that are commonly used in spatial frameworks.

However, some of these approximation methods can be computationally demand-

ing, especially when N is large, and their accuracy depends on the nature of the

approximated matrices.

The purpose of this work is twofold. Firstly, it suggests a new approximation

method to deal with the computational issues related to the N -dimensional matrix

operations required in the GMM estimation of spatially lagged models for binary

choice outcomes. The new approximation method focuses on the approximation of

the spatial lag operator inverse, since every matrix operation required in the GMM

estimation procedure involves the computation of this inverse. The setup for the pro-

posed approximation method relies on non-restrictive assumptions about the spatial

weighting matrix and allows to accommodate scenarios where the spatial weighting

matrix can be symmetric and non-symmetric. Considering the series expansion of

the inverse and the limiting properties of the eigenstructure of normalized spatial

weighting matrices, it is shown that the spatial lag operator inverse can be approxi-

mated by a sum of known matrices and a simple matrix-vector product. As a result,

other related N -dimensional matrix operations can be straightforwardly approxi-

mated, as well. Also, closed formulas for the elements of the approximated matrices

are available and are deduced. They are especially useful to determine the partial

effects.

Secondly, it proposes a computationally simple iterative GMM estimator. This

estimator is based on the iterative GMM procedure of Klier and McMillen (2008)

together with the approximated matrices deduced in the first part of this paper.

This approach has two important advantages. One, the moment conditions of the

suggested iterative GMM estimator correspond to orthogonality conditions that use

9
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only the information in marginal distributions. In this way, no higher order integra-

tion is required. Two, the approximated matrices are used in the gradients of the

iterative procedure. This allows to significantly reduce the computational complex-

ity and computational time of the suggested GMM estimator, when compared to the

traditional GMM estimator. In addition, the spatial heteroskedasticity and spatial

autocorrelation robust estimator of Kelejian and Prucha (2007) is used to overcome

potential biases in the estimated asymptotic covariance matrix of the GMM esti-

mator for the unknown parameter vector. Note that, the computational simplicity

associated with the GMM estimation comes at a cost of larger bias, in comparison

to full information methods, where the joint distribution of the spatial data is used

in the estimation.

It will be shown through a detailed simulation study that the proposed approx-

imation method fairly approximates the matrices of interest, especially when N is

large and the spatial weighting matrix is dense. In addition, the proposed itera-

tive GMM estimator proves to be accurate, especially at low and moderate levels of

spatial dependence. At high levels of spatial dependence, the spatial lag parameter

tends to be overestimated, which is also a feature shared by other spatial GMM

procedures. Moreover, using the approximated matrices in the GMM estimation,

not only allows to reduce the associated computational complexity and the overall

computational time, especially when N is large and the spatial weighting matrix is

dense, but also it allows to increase the precision of the proposed iterative GMM

estimator in comparison to other spatial GMM estimators.

The new estimation procedure is used to assess how environmental indicators

contribute to influence regional competitiveness in the U.S. Metropolitan Statisti-

cal Areas, from 2001 to 2016. A new Binary Competitiveness Indicator (BCI) is

introduced. The new competitiveness indicator is based on three dimensions: labor

efficiency, capital efficiency and economic growth of the corresponding area. Results

show a moderately high degree of spatial dependence between the U.S. Metropolitan

Statistical Areas and evidence of an “U” shaped effect of the environmental indi-

cators on regional competitiveness. Also, the suggested estimator exhibited a good

performance, in terms of computational time and goodness-of-fit.

10
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The remainder of this paper is organized as follows. Section 2.2 reviews the liter-

ature on the specification and estimation of spatial lag models for binary dependent

variables. Section 2.3 reviews the literature on methods to approximate the inverse of

the spatial lag operator and related matrix functions. Section 2.4 introduces the new

method to approximate the inverse of the spatial lag operator. Section 2.5 derives

the new iterative GMM estimation procedure. Section 2.6 conducts a set of Monte

Carlo experiments to assess: firstly, the accuracy and the computational time of the

proposed approximation method, compared with the other existing approximation

methods; secondly, the statistical properties and the computational performance of

the new iterative GMM estimator, compared with the traditional GMM estimator

for spatial binary choice models and the GMM estimator of the linearized spatial

lag model for binary dependent variables. Section 2.7 presents an empirical applica-

tion on the environmental impacts over a spatially lagged Binary Competitiveness

Indicator (BCI), in the U.S. Metropolitan Statistical Areas. Finally, section 2.8 con-

cludes. The results of the Monte Carlo experiments are summarized in Appendix

A2 and the estimation results of the empirical application are shown in Appendix

B2.

2.2. Spatially lagged latent dependent variable model for

binary outcomes

A spatial binary choice model can be derived based on the following spatially

lagged latent variable specification:

Y ∗i = α
∑
i 6=j

wijY
∗
j + Xiβ + ξi, i = 1, 2, . . . , N (1)

where Y ∗i is a general dependent variable (possibly not observable) for the unit i

and N denotes the total number of spatial units. The coefficients wij are known

non-negative scalars that refer to the spatial weight of unit j on unit i, with j 6= i

and j = 1, 2, . . . , N . By convention, wii = 0, for all i. The scalar parameter α is the

spatial lag parameter. The 1×K vector Xi includes the observations for a set of K

11
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exogenous explanatory variables and a constant, for the unit i. The K × 1 vector

β is the corresponding vector of regression parameters. The disturbance term, ξi,

is a random error for the unit i, with zero mean and is independent of Xi, for all

i = 1, 2, . . . , N and k = 1, 2, . . . , K.

Stacking over the cross-sectional units, the spatial lag model can be written as

a reduced form for the dependent variable:

Y∗ = αWY∗ + Xβ + ξ = (I− αW)−1 Xβ + ε (2)

where Y∗ = [Y ∗1 , Y
∗
2 , . . . , Y

∗
N ]ᵀ and X = [Xᵀ

1,X
ᵀ
2, . . . ,X

ᵀ
N ]ᵀ. The error is now

ε = (I− αW)−1 ξ, where (I− αW)−1 is the spatial lag operator inverse and ξ =

[ξ1, ξ2, . . . , ξN ]ᵀ. The N ×N identity matrix is denoted by I and the N ×N spatial

weighting matrix is denoted by W, with generic element wij.

If Y ∗i is observable, the conditional expectation is given by E (Y ∗i |X,W) =

X#

i β, where X#

i is the ith row of the matrix product (I− αW)−1 X, and equation

(2) defines a linear spatial lag model. Here, however, Y ∗i is not observable. The

observed dependent variable is Yi, a binary dependent variable, which is a function

of particular characteristics of Y ∗i and defined as Yi = 1 if Y ∗i ≥ 0 and Yi = 0 if

Y ∗i < 0. The conditional expectation of a spatial lag model when Y ∗i is not observable

and Yi is a binary dependent variable follows as:

E (Yi |X,W) = P (Yi = 1 |X,W) = P (Y ∗i > 0 |X,W)

= P
(
X#

i β + εi > 0
∣∣X,W)

= P
(
εi > −X#

i β
∣∣X,W)

= 1− P
(
εi ≤ −X#

i β
∣∣X,W)

= G

(
X#

i β

σi

)
, i = 1, 2, . . . , N

(3)

where G (η) is a function that takes on values in the interval 0 < G (η) < 1, for all

η ∈ R, and it is twice continuously differentiable, for all η ∈ R, as well. Usually

G (η) is called the link function and η is called the index. It is further assumed

that G (η) is known1 and given by the cumulative distribution function (CDF) of

ξi conditional on (X,W). The parameter σi is the square root of the conditional

1Generally the link function, G (η), is unknown and can be estimated using nonparametric and
semiparametric methods. See Härdle et al. (2004) and Horowitz (2009) for details.
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variance of εi, for each i, obtained from the diagonal elements of the conditional

covariance matrix of ε:

Var (ε |X,W) = Var (ξi |X,W) [(I− αW)ᵀ (I− αW)]
−1

= Σ (4)

where Var (ξi |X,W) is constant and fixed, to ensure identification. The scalar σi

is strictly positive and finite, for all i, assuming that the rows and columns of the

matrix (I− αW)−1 are uniformly bounded in absolute value.

In most applications using binary response models, the conditional distribu-

tion of ξi is assumed to be a standard Normal distribution or a standard Logistic

distribution. This implies that Var (ξi |X,W) = 1 and Var (ξi |X,W) = π2/3,

respectively, for all i. Under these two specifications, the probability distribution

functions (PDFs) of the link functions are symmetric about zero, but this is generally

not the case for other possible links2.

Note that the specification in (3) is similar to the specification of McMillen

(1992) and LeSage (2000). Under this approach, only the information in the marginal

distributions of εi conditional on (X,W) is used. The implications of this approach,

regarding estimation, are discussed in section 2.6.

Considering a generic link function, the spatial lag model for binary dependent

variables follows as:

Yi = G

(
X#

i β

σi

)
+ ui, i = 1, 2, . . . , N (5)

where ui has zero mean and is independent of X#

i (thus, it is independent of Xi),

for all i = 1, 2, . . . , N and k = 1, 2, . . . , K. Note that ui differs from εi because

ui = Yi−E (Yi |X,W) and εi = Y ∗i −E (Y ∗i |X,W). Hence, ui is a discrete random

variable assuming only two values, 1−G (·) and −G (·).

To estimate the model (5), a GMM approach is considered, based on the works

of Pinkse and Slade (1998) and Klier and McMillen (2008). It is assumed that the

2See, for example, the complementary log-log link or the Weibull link.
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unknown parameters β and α satisfy the following moment condition:

E (Zᵀu∗) = 0 (6)

where Z is the N × (K + p) matrix of instruments, with p the number of additional

instruments that are usually given by the product between the powers of W and the

matrix of explanatory variables. The N×1 vector u∗ correspond to the “generalized

errors” (Gourieroux et al., 1987):

u∗,i =

[
Yi −G

(
X#

i β

σi

)]
g

(
X#

i β

σi

)
G

(
X#

i β

σi

)[
1−G

(
X#

i β

σi

)] , i = 1, 2, . . . , N (7)

where the function g (·) is the first derivative of G (·) w.r.t. the index. The GMM

estimates of the parameter vector, Θ = (β, α)ᵀ, are obtained by minimizing the

objective function:

Q (β, α) = uᵀ
∗ZΞZᵀu∗ (8)

where Ξ is a (K + p) × (K + p) symmetric positive definite matrix. Klier and

McMillen (2008) sets Ξ = (ZᵀZ)−1 and the GMM estimator reduces to nonlinear

two stages least squares (N2SLS). However, because the minimization problem in (8)

does not have a closed formula, an iterative procedure is used to obtain a solution

for the unknown parameters. The following steps are considered:

1. Assume initial values for the parameter vector Θ = (β, α)ᵀ, Θ(0), and compute

the gradients evaluated at the initial values, Γ
(0)
i = (∂u∗,i/∂Θ)|Θ=Θ(0) , i =

1, 2, . . . , N .

2. Regress Γ(0) on Z, in a similar fashion to (linear) 2SLS. Obtain Γ̂
(0)

.

3. Construct new estimates as Θ(1) = Θ(0) +
[(

Γ̂
(0)
)ᵀ (

Γ̂
(0)
)]−1 (

Γ̂
(0)
)ᵀ

u
(0)
∗ ,

where u
(0)
∗ are the generalized residuals evaluated at the estimates of step 0.

4. Repeat steps 1. to 3., using the estimates from the last iteration, until the

algorithm converges.

14
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The spatial heteroskedasticity and spatial autocorrelation robust covariance es-

timator of the (iterative) GMM estimator follows as in Kelejian and Prucha (2007):

̂
Avar

(
Θ̂
)

=

(
N∑
i=1

Γ̂
ᵀ

i Γ̂i

)−1{ N∑
i=1

û2i Γ̂
ᵀ

i Γ̂i

+
n−1∑
j=1

[
K

(
j

d∗

) n−j∑
i=1

ûiûi+j

(
Γ̂

ᵀ

i Γ̂i+j + Γ̂
ᵀ

i+jΓ̂i

)]}( N∑
i=1

Γ̂
ᵀ

i Γ̂i

)−1 (9)

where K (j/d∗) is a Kernel function with K : R → [−1, 1], K (0) = 1, K (j/d∗) =

K (−j/d∗) andK (j/d∗) = 0, for |j/d∗| > 1, that satisfies |K (j/d∗)− 1| ≤ cK |j/d∗|ρK ,

for |j/d∗| ≤ 1, for some ρK ≥ 1 and a finite positive cK . The scalar d∗ is a distance

threshold.

The individual gradients for each parameter are:

(Γβ)i =
∂u∗,i
∂βᵀ = −u∗,i

g
′
(

X#

i β

σi

)
g

(
X#

i β

σi

) − u∗,i
 X#

i

σi
, i = 1, 2, . . . , N (10)

and

(Γα)i =
∂u∗,i
∂α

= −u∗,i

g
′
(

X#

i β

σi

)
g

(
X#

i β

σi

) − u∗,i
[ 1

σi

(
Hiβ −

X#

i β

2σ2
i

Υii

)]
, i = 1, 2, . . . , N

(11)

where g′ (·) is the first derivative of the function g (·) w.r.t. the index, Hi is the ith

row of the matrix product (I− αW)−1 W (I− αW)−1 X and Υii is the ith element

of the diagonal of the matrix:

Υ = (I− αW)−1
{

W (I− αW)−1 +
[
W (I− αW)−1

]ᵀ} [
(I− αW)−1

]ᵀ
= (I− αW)−1 W (I− αW)−1

[
(I− αW)−1

]ᵀ
+

+
{

(I− αW)−1 W (I− αW)−1
[
(I− αW)−1

]ᵀ}ᵀ

(12)
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with the diagonal of Υ equal to

diag (Υ) = 2× diag
(

(I− αW)−1 W (I− αW)−1
[
(I− αW)−1

]ᵀ)
(13)

Having closed formulas for the gradients help to accelerate the numerical opti-

mization process. However, because they depend on the spatial lag operator inverse,

which has to be computed on each iteration, the estimation procedure becomes com-

putationally burdensome, especially for large samples and/or dense spatial weighting

matrices. To solve this issue, Klier and McMillen (2008) suggest a first order Taylor

series approximation of model (5) around α = 0. In this way, the previous iterative

GMM procedure is simplified, because no large matrices need to be inverted. The

major drawback of this approach is related to the poor accuracy of the estimates for

the spatial lag parameter when α > 0.5.

Another possibility is to address the previously mentioned computational issues

through the approximation of the spatial lag operator inverse. Under this approach,

the nonlinearity of model (5) is preserved and the estimates for the spatial lag

parameter yield reasonable results for all admissible values of α. The methods that

are commonly used in the literature are presented in the section below.

2.3. Approximation methods for the spatial lag operator in-

verse

To deal with the computational issues related to the inversion of the spatial

lag operator, several methods have been proposed in the literature. These methods

approach the matrix inversion explicitly or implicitly. For the explicit methods, the

N × N spatial lag operator inverse is explicitly obtained; examples are the Taylor

series approximation, the Chebyshev approximation (Pace and LeSage, 2004) and

the eigendecomposition of the spatial weighting matrix. For the implicit methods,

a system that involves the spatial lag operator (usually a matrix-vector product) is

solved and a N × 1 vector is obtained rather than a N × N matrix; examples are

the Cholesky decomposition (Pace and Barry, 1997a,b), the LU decomposition and

the conjugate gradient (Smirnov, 2005, 2010). Before presenting the details of the

16
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previous methods, a set of assumptions are stated. Note that these assumptions are

already commonly used in the literature of spatial binary choice models (see e.g.,

Baltagi et al., 2016; Billé, 2013).

2.3.1. Assumptions

Focusing on the properties of an initial spatial weighting matrix, W0, it is

assumed that:

Assumption 2.1. The matrix W0 is non-stochastic and diagonalizable.

Assumption 2.2. All of the diagonal elements of W0 are equal to zero.

Assumption 2.3. The matrix (I− αW0) is non-singular for all α ∈
(
−1/|λ|0,max, 1/|λ|0,max

)
,

where |λ|0,max is the largest absolute eigenvalue of W0. Additionally, |λ|0,max is as-

sumed to be bounded away from zero by some fixed constant c|λ|0,max
.

Assumption 2.4. Both row and column sums of W0 and (I− αW0)
−1 are uniformly

bounded in absolute value by some constant cW0 , with 0 < cW0 <∞.

Assumption 2.5. The matrix W is row-normalized and equal to D−1R W0, where DR

is a N ×N diagonal matrix whose diagonal elements are the row sums of W0.

Remark 2.1. Under Assumption 2.5 the following properties are verified:

(a) W is non-symmetric;

(b) The eigenvalues of W are, in absolute value, less than or equal to one;

(c) The largest absolute eigenvalue of W, |λ|max, is equal to one;

(d) The eigenvector of W associated with the largest absolute eigenvalue is the

vector of ones, ι;

(e) The matrix (I− αW) is non-singular for all α ∈ (−1, 1) – (see also Kelejian

and Robinson, 1995).

Alternatively, W0 can be normalized through the transformation Wsim =

D
−1/2
R W0D

−1/2
R (Ord, 1975), where Wsim is a N×N matrix that is similar to W. In

fact, Wsim can be written as D
1/2
R WD

−1/2
R . By definition, the eigenvalues of Wsim

17
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and W are equal, which imply that their eigenvectors are directly related. Also,

in general, Wsim is non-symmetric. However, if W0 is symmetric, then Wsim is

symmetric as well3. A later discussion on the eigendecomposition of W will recover

this result.

2.3.2. Explicit methods

Consider the Taylor series expansion of the inverse:

(I− αW)−1 = I + αW + α2W2 + α3W3 + . . . =
∞∑
h=0

αhWh (14)

which converges absolutely for all α ∈ (−1, 1). Following LeSage and Pace (2009),

the series (14) is partitioned into a finite lower-order and an infinite higher-order

series:

(I− αW)−1 =

q∑
h=0

αhWh +
∞∑

h=q+1

αhWh (15)

As suggested by several authors (Arbia, 2014; Elhorst, 2014; LeSage and Pace, 2009,

to name a few), for the case where α quickly converges to zero, (I− αW)−1 can be

accurately approximated through the finite lower-order series:

(I− αW)−1 ≈
q∑

h=0

αhWh (16)

where q is small. The expression (16) corresponds to the Taylor series approximation

of the spatial lag operator inverse.

The Chebyshev approximation (Pace and LeSage, 2004) for the spatial lag op-

erator inverse is:

(I− αW)−1 ≈

[
q∑

h=0

cl (α)Th (W)

]
− 1

2
c0 (α) I (17)

3If W0 is symmetric, then W0 = Wᵀ
0 . Replacing W0 by D

−1/2
R W0D

−1/2
R yields Wsim =

Wᵀ
sim.
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where

cl (α) =
2

q + 1

q+1∑
m=1

f (xm) cos

(
π l
(
m− 1

2

)
q + 1

)
(18)

xm = cos

(
π
(
m− 1

2

)
q + 1

)
(19)

f (x) = (1− αx)−1 (20)

and Tk+1 (W) = 2WTk (W)− Tk−1 (W), for k ≥ 1, with T0 (W) = I and T1 (W) =

W. The scalars cl (α), with l = 0, 1, 2, . . . , q are the Chebyshev coefficients and

depend on the spatial lag parameter. The functions Tk (W), with k = 0, 1, 2, . . . , q

are the Chebyshev polynomials and depend only on the spatial weighting matrix.

Finally, consider the eigendecomposition of the spatial lag operator inverse:

(I− αW)−1 = I + αW + α2W2 + α3W3 + . . .

= I + αVΛV−1 + α2
(
VΛV−1

)2
+ α3

(
VΛV−1

)3
+ . . .

= I + αVΛV−1 + α2VΛ2V−1 + α3VΛ3V−1 + . . .

= V
(
I + αΛ + α2Λ2 + α3Λ3 + . . .

)
V−1

= V (I− αΛ)−1 V−1

(21)

where the N × N diagonal matrix Λ contains the corresponding eigenvalues of W

and the N ×N matrix V contains, on each column, the ith eigenvector associated

with the ith eigenvalue of W. Contrary to the previous approximation methods, the

expression in (21) is exact. Also, the inverse of the eigenvector matrix is only required

to be computed once. Nevertheless, for the case where Wsim is symmetric, the

eigenvectors in (21) can be expressed as orthogonal eigenvectors. In fact, replacing

Wsim in (21) yields:

(I− αW)−1 = D
−1/2
R (I− αWsim)−1 D

1/2
R

= D
−1/2
R Vsim (I− αΛ)−1 Vᵀ

simD
1/2
R

(22)

where the only matrix that is required to be computed is the N ×N matrix Vsim,

that correspond to the orthogonal eigenvectors of Wsim.
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It is important to note that these methods can also be applied to approximate

other matrix operations. In particular, they are useful to derive approximate or

exact expressions for the matrix (I− αW)−1 W (I− αW)−1, the diagonal elements

of Υ and the diagonal elements of Σ, that are required in the computation of the

gradients (10) and (11), on each iteration.

Focusing on the term (I− αW)−1 W (I− αW)−1, the series expansion is given

by:

(I− αW)−1 W (I− αW)−1 = W + 2αW2 + 3α2W3 + . . .

=
∞∑
h=0

(h+ 1)αhWh+1
(23)

and the lower-order Taylor series approximation is:

(I− αW)−1 W (I− αW)−1 ≈
q∑

h=0

(h+ 1)αhWh+1 (24)

Therefore, the diagonal of Υ is approximately equal to:

diag (Υ) ≈ 2× diag

 N∑
j=1

([
q∑

h=0

(h+ 1)αhWh+1

]
◦

[
q∑

h=0

αhWh

])
ij

 (25)

where “◦” is the Hadamard product operator. The previous expression implies

that the diagonal elements of Υ are approximately given by the row sums of the

Hadamard product between the approximation of the matrix (I− αW)−1 W (I− αW)−1

and the approximation of the matrix (I− αW)−1 – the spatial lag operator inverse.

Analogously, the Chebyshev approximation of (I− αW)−1 W (I− αW)−1 is

given by (17), where the Chebyshev coefficients are replaced by the function f (x) =

x/ (1− αx)2, and the eigendecomposition of (I− αW)−1 W (I− αW)−1 is:

(I− αW)−1 W (I− αW)−1 = VΛ (I− αΛ)−2 V−1 (26)

For the case where Wsim is symmetric, (26) can be written as:

(I− αW)−1 W (I− αW)−1 = D
−1/2
R VsimΛ (I− αΛ)−2 Vᵀ

simD
1/2
R (27)

20



The inversion of the spatial lag operator in binary choice models: fast computation
and a closed formula approximation 21

Again, note that (26) and (27) are exact expressions.

With regard to the diagonal elements of Σ, they can be obtained as the row

sums of the Hadamard square of the approximated or exact expression for the spatial

lag operator inverse.

Nevertheless, these approaches can still be extremely demanding if the sample

size is large and/or the spatial weighting matrix is dense. This is because, for both

Taylor series and Chebyshev approximation, there are as many matrix operations

as the number of lower-order powers of W, and, for the eigendecomposition, the full

eigensystem is required. Also, the approximate functional form for the elements of

the approximated matrices is complicated, especially for the elements of the spatial

lag operator inverse.

2.3.3. Implicit methods

The implicit methods used to compute the inverse of the spatial lag operator

are based in the solution of the following equation:

(I− αW) ε = ξ (28)

for ε, where ε and ξ are N × 1 vectors.

Consider the LU decomposition, which generalizes the Cholesky decomposi-

tion to non-symmetric matrices. Following LeSage and Pace (2009), suppose that

(I− αW) = LU. The solution for the system LUε = ξ is identical to the solution

for Lν = ξ, where ν = Uε.

The conjugate gradient method (Smirnov, 2005, 2010) is a numerical method

that minimizes the quadratic form:

f (ε) =
1

2
εᵀ (I− αW) ε− εᵀξ (29)

based on orthogonal descent directions.

In contrast to the explicit methods, the implicit methods have the advantage

that the N × N inverse is not explicitly computed. However, for the LU decom-

position the spatial lag operator has to be decomposed into a lower triangular and
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upper triangular matrix, which can be computationally demanding if the sample size

is large and/or the spatial weighting matrix is dense. As for the conjugate gradient

method, it may not converge for certain designs of W because it is not accurate for

matrices that are not symmetric and positive definite. Also, no functional form for

the elements of the spatial lag operator inverse is available.

2.4. The new explicit approximation method based on known

matrices

In this section a new explicit method to obtain the inverse of the spatial lag

operator is proposed. Consider the series expansion of the inverse in (14). The idea

is to approximate the powers h ≥ 2 of W by a “long run” matrix, W∞, which is

obtained from the limiting properties of the eigenstructure of W and it is equal to

a simple matrix-vector product. In this way, no additional matrix operations are

required and a closed formula for the elements of the spatial lag operator inverse

are available and deduced. The details of this new procedure are presented and

discussed below.

Consider that the assumptions of Section 2.3.1 hold. In addition, consider the

following assumption on the eigenstructure of W:

Assumption 2.6. The algebraic multiplicity of |λ|max, amult (|λ|max), is equal to one.

For a block diagonal W, the largest absolute eigenvalue of each block has algebraic

multiplicity equal to one.

Note that, in general, the cases where the algebraic multiplicity of |λ|max is

greater than one are those where there are only one or two neighbors for every

spatial unit. In practice, this assumption is not too restrictive, because, in most of

the applications, there are more than two neighbors for every spatial unit or there

are few spatial units with less than two neighbors. Nevertheless, this assumption

can be relaxed, but at a cost of computational accuracy, as it will be shown in a

Monte Carlo simulation study.
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Now, under Assumption 2.1 to Assumption 2.6, the approximation of the spatial

lag operator inverse is given by:

(I− αW)−1 = I + αW + α2W2 + α3W3 + . . .+ αqWq + . . .

≈ I + αW + α2W∞ + α3W∞ + . . .+ αqW∞ + . . .

= I + αW +
α2

1− α
W∞

(30)

which converges absolutely for all α in the parameter space (see Assumption 2.5 and

Kelejian and Robinson, 1995). The N × N matrix W∞ is the “long run” matrix

and equal to limh→∞Wh. Since the eigendecomposition of W is available, W∞ can

also be written as:

W∞ = lim
h→∞

Wh = V
(

lim
h→∞

Λh
)

V−1 = V
[

lim
h→∞

diag
(
1h, λh2 , λ

h
3 . . . , λ

h
N

)]
V−1

= V


1 0 . . . 0

0 0 . . . 0
...

. . .
...

...

0 0 . . . 0

V−1 = col (V)1 row
(
V−1

)
1

(31)

because the eigenvalues λ2, λ3 . . . , λN are, in absolute value, less than one. Also,

λ1 = |λ|max = 1 (see Assumption 2.5 and Assumption 2.6). The N × 1 vector

col (V)1 is the first column of V and the 1×N vector row (V−1)1 is the first row of

V−1. It is important to note that obtaining these vectors entail drastically different

implications. On one hand, the expression for col (V)1 is exact and equal to N × 1

vector of ones, ι (see Assumption 2.5). On the other hand, to obtain row (V−1)1 the

entire linear system has to be solved, which becomes computationally infeasible in

large samples.

Here, the issue related to the computation of row (V−1)1 is addressed through

the orthogonalization of the eigenvectors of W, analogous to the approach presented

in Section 2.3.2 for the eigendecomposition problem. The similar matrix, Wsim, is

used, because the eigenvectors are related to those of W. However, as previously

mentioned, Wsim is not necessarily symmetric, as it depends on the properties of

the initial spatial weighting matrix, W0. Therefore, for the case where Wsim is
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symmetric, row (V−1)1 can be straightforwardly written as a function of an orthog-

onal eigenvector. For the case where Wsim is not symmetric, a “symmetrization”

procedure is suggested, such that row (V−1)1 can be approximated by a function of

an orthogonal eigenvector.

In the next subsections, the exact and approximated expressions for row (V−1)1

are derived, according to the symmetric and non-symmetric scenarios of W0. Also, it

will be shown that, the expressions for row (V−1)1 are based on known quantities. In

this way, the approximated expressions for the elements of the spatial lag operation

inverse will be derived, as well.

2.4.1. Case 1: symmetric W0

Consider that W0 is symmetric. Therefore, Wsim is also symmetric. Because

Wsim can be written as a function of W, consider the eigendecomposition for both

matrices:

Wsim = D
1/2
R WD

−1/2
R ⇔ VsimΛVᵀ

sim = D
1/2
R VΛV−1D

−1/2
R (32)

where Λ is equal in both sides of the equation due to matrix similarity. The equation

above implies that the eigenvectors of Wsim and the eigenvectors of W are related

in the following way:

Vsim = D
1/2
R V and Vᵀ

sim = V−1D
−1/2
R , but also Vᵀ

sim = VᵀD
1/2
R (33)

Consider the hth power of (32):

VsimΛhVᵀ
sim = D

1/2
R VΛhV−1D

−1/2
R ⇔

⇔ D
−1/2
R VsimΛhVᵀ

simD
1/2
R = VΛhV−1

(34)

Using the eigenvector relationship in (33) yields:

D
−1/2
R

(
D

1/2
R V

)
Λh
(
VᵀD

1/2
R

)
D

1/2
R = VΛhV−1 (35)
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Now, as h→∞:

W∞ =
1∥∥∥D1/2

R col (V)1

∥∥∥
2

∥∥∥col (V)ᵀ1 D
1/2
R

∥∥∥
2

×D
−1/2
R

(
D

1/2
R col (V)1 col (V)ᵀ1 D

1/2
R

)
D

1/2
R

=
1[√(

d
1/2
R,1

)2
+
(
d
1/2
R,2

)2
+ . . .+

(
d
1/2
R,N

)2]2 × ιιᵀDR (36)

=

(
N∑
i=1

dR,i

)−1
× JDR

where dR,i is the sum of the ith row of W0 and J is the N ×N matrix of ones. The

“long run” matrix, W∞, is rescaled by the sum of all rows of W0 because the first

eigenvector of W is now orthogonal. There are two major advantages related to this

expression. First, the matrix W∞ is given by a simple matrix-vector product, since

DR is a diagonal matrix. Second, each element of the matrix W∞ have an exact

closed formula:

w∞ij =

(
N∑
i=1

dR,i

)−1
× dR,j (37)

which implies that the rows of W∞ are all equal and given by the sum of the ith

row of W0, that is row (W∞)i = (dR,1, dR,2, . . . , dR,N), for all i.

Plugging (36) into (30), the approximation of the spatial lag operator inverse

is given by:

(I− αW)−1 ≈ I + αW +
α2

1− α

(
N∑
i=1

dR,i

)−1
JDR (38)

which still converges absolutely for all α in the parameter space, because the ex-

pression for W∞ is exact. Also, an approximate closed formula is available for the

elements of (I− αW)−1:

(
(I− αW)−1

)
ij
≈ 1i=j + α× wij +

α2

1− α
×

(
N∑
i=1

dR,i

)−1
× dR,j (39)

where 1i=j is the indicator function that is equal to one if i = j and equal to zero

if i 6= j, for all i, j = 1, 2, . . . , N . The accuracy of this approximation depends on
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how fast the powers of the eigenvalues λ2, λ3, . . . , λN converge to zero, for a given

value of α. In fact, this is a special case of the approximation method proposed by

Griffith (2000), for linear models.

The expressions for the approximation of the spatial lag operator inverse, in

(38) and (39), allow for an interesting interpretation of the product (I− αW)−1 X

which is approximately equal to X + αWX + α2/ (1− α)−1
(∑N

i=1 dR,i

)−1
JDRX.

This means that the previous matrix product can be decomposed into the original

matrix X, a spatial lag of the matrix X and the “long run” spatial lag of the matrix

X, that incorporates the bilateral effects (the combination of the neighboring effects

on a given unit and the effects of a given unit on its neighbors).

Note that the previous results are valid when W is column-normalized or when

W is doubly stochastic (simultaneously row- and column-normalized). For the first

case, the approximation method is applied to Wᵀ, because it is row stochastic. For

the second case, considering that W0 is symmetric, the doubly stochastic W is also

symmetric, which implies that its eigenvectors are already orthogonal and the “long

run” matrix simplifies to W∞ = (1/n) J. 4

2.4.2. Case 2: non-symmetric W0

Consider that W0 is non-symmetric. In this case, the previous result for W∞

is not valid. To see this write Wsim as a function of W and consider the eigende-

composition for both matrices:

Wsim = D
1/2
R WD

−1/2
R ⇔ VsimΛV−1sim = D

1/2
R VΛV−1D

−1/2
R (40)

with V−1sim 6= Vᵀ
sim because the eigenvectors of Wsim are no longer orthogonal.

Therefore, to approximate the spatial lag operator inverse without additional com-

putational burden, it is crucial to obtain an expression for V−1sim based on a symmetric

matrix.

Let W∗
0 be the “symmetrized” variant of W0, such that if unit j is a neighbor

of unit i, then unit i is also a neighbor of unit j with equal weight, for all i, j =

4Note that if (38) is multiplied by a matrix or vector with zero mean, the proposed approxi-
mation gives the same result as the linear transformation I + αW.
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1, 2, . . . , N and i 6= j. This follows as:

W∗
0 = W0 −

1

2

{
W0 −Wᵀ

0 −
[
(W0 −Wᵀ

0)◦2
]◦ 1

2

}
= W0 + A (41)

where A is the N × N “symmetrization” matrix. The operators “◦2” and “◦1
2
”

are element-wise operations and correspond to the Hadamard square and to the

Hadamard square root, respectively. Also, as in the previous case, a row-normalized

matrix and a similar matrix can be defined, based on W∗
0. The row normalized

matrix is equal to W∗ = D−1R∗W
∗
0, where DR∗ is a N × N diagonal matrix whose

diagonal elements are the row sums of W∗
0, and the similar matrix is W∗

sim =

D
−1/2
R∗ W∗

0D
−1/2
R∗ . Note that, here, the previous assumptions (see Section 2.3.1) are

also valid for W∗
0, W∗ and W∗

sim.

For A close to the null matrix, 0, the matrix W0 is well approximated by W∗
0.

Then the eigenvectors of Wsim can be approximated by the orthogonal eigenvec-

tors of W∗
sim. To see this, write W∗

sim as a function of Wsim and consider the

eigendecomposition for both matrices:

D
−1/2
R∗ W∗

0D
−1/2
R∗ ≈ D

−1/2
R∗ W0D

−1/2
R∗ ⇔

⇔W∗
sim ≈ D

−1/2
R∗ D

1/2
R D

−1/2
R W0D

−1/2
R D

1/2
R D

−1/2
R∗ ⇔

⇔W∗
sim ≈ D

−1/2
R∗ D

1/2
R WsimD

1/2
R D

−1/2
R∗ ⇔

⇔ V∗simΛ∗ (V∗sim)ᵀ ≈ D
−1/2
R∗ D

1/2
R VsimΛV−1simD

1/2
R D

−1/2
R∗

(42)

where the N × N diagonal matrix Λ∗ contains the corresponding eigenvalues of

W∗
sim and the N × N matrix V∗sim contains, on each column, the ith eigenvector

associated with the ith eigenvalue of W∗
sim. Note that Λ∗ and Λ are not equal, but

because W∗
sim and Wsim are similar to the corresponding row-normalized matrices,

limh→∞ (Λ∗)h = limh→∞Λh. Also, the equation above implies that the eigenvectors

of W∗
sim and the eigenvectors of Wsim are approximately related as:

V∗sim ≈ D
−1/2
R∗ D

1/2
R Vsim and (V∗sim)ᵀ ≈ V−1simD

1/2
R D

−1/2
R∗ ,

but also (V∗sim)ᵀ ≈ Vᵀ
simD

1/2
R D

−1/2
R∗

(43)
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where V−1sim can be straightforwardly approximated by (V∗sim)ᵀ D
1/2
R∗ D

−1/2
R . Analo-

gously to the results in (32) and (33), the eigenvectors of W∗
sim are related to the

eigenvectors of W∗ as V∗sim = D
1/2
R∗ V∗. This implies that:

V−1sim ≈ (V∗)ᵀ D
1/2
R∗ D

1/2
R∗ D

−1/2
R (44)

Consider the hth power of (40):

VsimΛhV−1sim = D
1/2
R VΛhV−1D

−1/2
R ⇔

⇔ D
−1/2
R VsimΛhV−1simD

1/2
R = VΛhV−1

(45)

Using the eigenvector relationships in (33) and (43) yields:

D
−1/2
R

(
D

1/2
R V

)
Λh
{[

(V∗)ᵀ D
1/2
R∗

]
D

1/2
R∗ D

−1/2
R

}
D

1/2
R = VΛhV−1 (46)

Note that Vsim = D
1/2
R V because no approximation is required, then the result in

(33) holds. Now, as h→∞:

W∞ ≈ 1∥∥∥D1/2
R col (V)1

∥∥∥
2

∥∥∥col (V∗)ᵀ1 D
1/2
R∗

∥∥∥
2

×D
−1/2
R

(
D

1/2
R col (V)1 col (V∗)ᵀ1 D

1/2
R∗

)
D

1/2
R∗

=

(
N∑
i=1

dR,i

)−1/2( N∑
i=1

d∗R,i

)−1/2
× JDR∗ (47)

where d∗R,i is the sum of the ith row of W∗
0 and col (V∗)1 = ι because W∗ is

row-normalized. As before, the “long run” matrix, W∞, is rescaled due to the

orthogonalization of the first eigenvector of W. In this case, the geometric mean

between the sum of all rows of W0 and W∗
0 is used. The remaining results are

straightforward.

2.5. GMM estimation with approximated gradients

The estimation of model (5) is addressed through a variant of the iterative

GMM estimator of Klier and McMillen (2008). The iterative procedure deduced in
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Section 2.2 is used and the N -dimensional matrix operations from the individual

gradients (10) and (11) are approximated, considering the new method presented in

Section 2.4. Under this approach, it is no longer required to compute the inverse of

the spatial lag operator and related matrix operations on each iteration. Also, it is

possible to deduce approximate closed formulas for the elements of the approximated

matrices. In this way, the overall computational complexity and the computational

time of the estimation is significantly reduced.

As in Section 2.3.2, consider the matrix (I− αW)−1 W (I− αW)−1. Also,

consider the matrices Υ and Σ, to derive the approximation for their diagonal

elements.

Focusing on (I− αW)−1 W (I− αW)−1, consider the corresponding series ex-

pansion and replace the powers h ≥ 2 of W by W∞. This yields:

(I− αW)−1 W (I− αW)−1 = W + 2αW2 + 3α2W3 + . . .+ (q + 1)αqWq+1 + . . .

≈W + 2αW∞ + 3α2W∞ + . . .+ (q + 1)αqW∞ + . . .

= W +

(
1

(1− α)2
− 1

)
W∞ (48)

In this way, the diagonal of Υ is approximately equal to:

diag (Υ) ≈ 2×diag

(
N∑
j=1

([
W +

(
1

(1− α)2
− 1

)
W∞

]

◦
[
I + αW +

α2

1− α
W∞

])
ij

) (49)

After some algebra (49) simplifies to:

Υii ≈
(2− α) 2α

(1− α)2
w∞ii + 2α

N∑
j=1

w2
ij

+
(3− 2α) 2α2

(1− α)2

N∑
j=1

wijw
∞
1j +

(2− α) 2α3

(1− α)3

N∑
j=1

(
w∞ij
)2
, i = 1, 2, . . . , N

(50)

Note that, because the row vectors of W∞ are all equal, the Hadamard product

between W and W∞ is simplified to the element-wise product between a matrix
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and a row vector.

Lastly, the diagonal elements of Σ are equal to the row sums of the Hadamard

square of the spatial lag operator inverse:

diag (Σ) ≈ 2× Var (ξi |X,W)× diag

 N∑
j=1

([
I + αW +

α2

1− α
W∞

]◦2)
ij

 (51)

or simply:

σ2
i ≈ σ2

ξ

[
2 +

4α2

1− α
(w∞ii )2 + 2α2

N∑
j=1

w2
ij

+
4α3

1− α

N∑
j=1

wijw
∞
1j +

2α4

(1− α)2

N∑
j=1

(
w∞ij
)2]

, i = 1, 2, . . . , N

(52)

and σ2
ξ = Var (ξi |X,W), for all i = 1, 2, . . . , N , as well. In this way, the approximate

expression for the non-constant variances and related quantities are obtained with

minimal computational requirements. Also, these quantities can now be used and

interpreted in a meaningful way.

2.6. Monte Carlo simulations

In this section, a set of Monte Carlo experiments are presented. The explicit

approximation method based on known matrices (AMBKM) is compared with the

methods presented in Section 2.3 (the Taylor series approximation, the Chebyshev

approximation, the eigendecomposition of the spatial weighting matrix, the LU de-

composition and the conjugate gradient method) in terms of the accuracy to approx-

imate the inverse of the spatial lag operator, (I− αW)−1, the diagonal elements of

the matrix Υ and the matrix-vector product (I− αW)−1 X. Also, the proposed it-

erative GMM estimator with approximated gradients (iGMMa) is compared to the

estimators of Klier and McMillen (2008) – the iterative GMM estimator (iGMM)

and the GMM estimator of the linearized spatial lag model for binary choice out-

comes (LGMM) –, in terms of bias, root mean squared errors and computational
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time. A variety of simulation designs are considered, with particular interest on the

adequacy of the proposed procedures to large samples frameworks.

2.6.1. Simulation design

The binary dependent variable is constructed following the setting of Klier and

McMillen (2008). Consider the simplified version of the model (5) with a single

explanatory variable. The explanatory variable, X, is randomly drawn, for each

unit, from a U (−1, 1) distribution. Under a Probit specification, the probability of

success is given by:

Pi = Φ

(
β0x

#

i1

σi
+
β1x

#

i2

σi

)
, i = 1, 2, . . . , N (53)

where Φ (·) is the standard Normal CDF, x#

i1 is the ith row of the matrix prod-

uct (I− αW)−1 ι and x#

i2 is the ith row of the matrix product (I− αW)−1 X. The

scalars σi are the square root of the diagonal elements of the matrix [(I− αW)ᵀ (I− αW)]
−1

.

The observed dependent variable, Yi, is defined as Yi = 1 if ei ≤ Pi and Yi = 0 oth-

erwise, where ei is randomly drawn, for each unit, from a U (0, 1) distribution.

The working spatial weighting matrix, W, is constructed according to a two

stage setting. In the first stage, the N spatial units are randomly drawn points in

the unit square. In the second stage, based on a distance criteria (radial distance

or nearest neighbor), an initial spatial weighting matrix, W0, is constructed and

row normalized afterwards. For the case where W0 is based on the radial distance

criterion, the maximum distance to the closest neighbor is computed and a multi-

plicative factor, δR, is used to determine the maximum distance such that the unit j

is considered to be a neighbor of unit i, for all i, j = 1, 2, . . . , N . For the case where

W0 is based on the nearest neighbor criterion, the number of nearest neighbors is

given by δNN × N , where δNN is the matrix density (the complement of sparsity),

the proportion of non-zero elements in W. In this way, the large sample properties

of the proposed procedures can be addressed according to the spatial statistics defi-

nitions of increasing-domain asymptotics and infill asymptotics (Cressie, 2015). The

former corresponds to a sampling scenario where new spatial units are added to the
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edges of the lattice and the number of neighbors, for each spatial unit, remains fixed,

as N →∞. The latter corresponds to a scenario where new observations are added

between the existing ones and a bounded area becomes dense (Anselin, 2007). Also,

it is important to note that, under the radial distance criterion, W0 is symmetric,

while under the nearest neighbor criterion, W0 is non-symmetric. Therefore, simu-

lations are performed to assess the adequacy of the AMBKM when the assumption

of symmetry is not valid.

The Monte Carlo experiments are conducted for each design of W and for

each GMM estimator, as well. The number of spatial units, N , vary over the set

{100, 1000, 2000} and the spatial lag parameter takes on values α ∈ {0, 0.2, 0.5, 0.8}.

For the case where W is based on the radial distance criterion, δR vary over the

restricted set {1, 2, 4}. For the case where W is based on the nearest neighbor

criterion, δNN vary over the restricted set {0.01, 0.1, 0.2}. In this way, the number

of neighbors is approximately equal for the two criteria. The regression parameters

are held fixed at β0 = 0 and β1 = 1 and the matrix of instruments used in all

estimation procedures is Z = [X WX W2X W3X]. For each experiment, 1000

replications are used. The experiments were performed in a Linux based server,

with 64 GB of RAM and composed by 24 AMD Opteron CPUs, ranging from 0.8

GHz to 2.1 GHz.

For each set of experiments per approximation method, the accuracy of the

approximated spatial lag operator inverse is summarized in terms of the average

relative norm difference w.r.t. the identity matrix:

1

1000

1000∑
r=1

∥∥∥(I− αW) (I− αW)−1approx − I
∥∥∥
2

‖I‖2
(54)

while the accuracy of the approximated diagonal elements of the matrix Υ is sum-

marized in terms of the average relative norm difference w.r.t. the true values:

1

1000

1000∑
r=1

∥∥∥diag (Υ)approx − diag (Υ)
∥∥∥
2

‖diag (Υ)‖2
(55)

The accuracy of the approximation of the matrix-vector product (I− αW)−1 X is
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summarized by the average correlation coefficient between the approximated and

the true values of the resulting vector.

For each set of experiments per GMM estimator, the estimates of the regression

parameters, β̂0, β̂1 and α̂ are reported, as well as three computational indicators:

time per loop (in seconds), number of iterations and total time (in seconds). The

parameter estimates are summarized by both the mean and the root mean squared

error (RMSE), while the computational indicators are summarized only by the mean.

Also, for the case where W is based on the radial distance criterion, the number of

neighbors is reported and summarized by the mean, while for the case where W is

based on the nearest neighbor criterion, the percentage of asymmetric neighbors is

reported and summarized by the mean. The calculations were performed using R

and the package McSpatial from McMillen (2013).

2.6.2. Results

The results of the Monte Carlo experiments are presented in Appendix A. The

simulation results on the accuracy of the approximation methods are detailed in Ap-

pendix A.1 and the simulation results on the statistical and computational properties

of the GMM estimators are detailed in Appendix A.2. Also, the simulation results

are organized according to the criteria chosen to construct the spatial weighting

matrix, W, and according to the true values of α.

The accuracy of the approximations considerably relies on the true values of α.

For α = 0, the approximations are trivial. However, as α becomes close to unity,

their accuracy worsens. In particular, the accuracy of AMBKM rapidly deteriorates

for α ≥ 0.5. This highlights the fact that the weight of the infinite higher-order

term that is neglected (or approximated), in the series expansion of the inverse –

see (15) and (17) –, becomes larger as α → 1. In this way, the higher-order term

is more informative to the approximations at moderate and high levels of spatial

dependence.

In addition, there is a slight improvement in the accuracy of the approxima-

tions as W becomes dense (δR and δNN are increasing), for a fixed N . This happens
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because the magnitude of each element of the spatial lag operator inverse and re-

lated matrices, including the matrix Υ, is smaller for a denser W. Also, since∥∥αhWh
∥∥ ≤ |α|h‖W‖h = |α|h, the elements of the hth term of the series expansion

of the inverse are bounded by |α|h, for any W satisfying Assumption 2.5. Therefore,

as W becomes dense, elements with progressively smaller magnitudes are added to

the series expansion of the inverse. Hence, for the case where W is sparse (δR = 1

and δNN = 0.01), the average relative norm differences are w.r.t. large values, while

for the case where W is dense (δR = 4 and δNN = 0.2), the average relative norm

differences are w.r.t. small values.

It should be noted that, for the reasons discussed above when W is sparse, using

the approximated matrices in the gradients of the GMM estimation procedure, may

reduce the accuracy of the estimates of α, since the term involving Υii, in the gradient

of α (see equation 11), dominates the expression.

With regard to the approximation of the matrix-vector product (I− αW)−1 X,

the simulations show that the average correlation coefficient between the approx-

imated and the true matrix-vector product is, in general, approximately equal to

1. However, when α = 0.8, the average correlation coefficient deteriorates as W

becomes sparse (δR and δNN are decreasing). This is particularly obvious for the

Taylor series approximation and the AMBKM, where the minimum average corre-

lation coefficient is equal to 0.987 and 0.887, respectively, corresponding to the case

where N = 100. For the case where N ≥ 1000, the minimum average correlation

coefficient becomes equal to 0.990 and 0.937, respectively. These results empha-

size, once again, the issues related to the accuracy of the approximations under the

scenarios where W is sparse and the degree of spatial dependence is high.

In terms of computational time, for N = 100, all the approximation methods

are fairly quick. However, as N → ∞, the computational time associated with

the eigendecomposition, the LU decomposition and the conjugate gradient method

clearly increases, in comparison to the remaining methods, since they involve matrix

operations that become computationally burdensome for large N . Considering the

eigendecomposition, the full eigensystem and an N -dimensional matrix product have

to be computed. For the LU decomposition, (I− αW) has to be factored. For the
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conjugate gradient method, an N -dimensional matrix-vector has be computed on

each iteration. Similarly, the computational demand associated with the Taylor

series approximation and the Chebyshev approximation tends to increase, as W

becomes dense. This is because the first four powers of W need to be computed.

To the contrary, the computational time of the AMBKM is much less sensitive to

the size and density of W, since it involves a simple summation of known matrices.

Despite the simulation results showing that, under very specific scenarios, the

AMBKM produces larger average relative norm differences and less correlated ap-

proximations w.r.t. the true operation, these effects are mitigated when regarding

estimation (see, in particular, Table A2.2.6 to Table A2.2.8). Furthermore, the AM-

BKM is the approximation method that requires minimal computational time (less

than a second) to recover the quantities of interest and allows to approximate the

partial effects. For these reasons, the AMBKM is particularly useful when itera-

tive procedures have to be used to estimate spatial binary choice models with large

samples and dense spatial weighting matrices.

Now, focusing on the performance of the GMM estimators, the results are, in

general, consistent with the previous findings in the literature (see Billé, 2013; Cal-

abrese and Elkink, 2014; Klier and McMillen, 2008). The estimates of the regression

parameters, β̂0 and β̂1, are extremely accurate, except for α = 0.8. In that case, they

exhibit a small bias (a downward bias for the iGMMa and the LGMM estimators

and an upward bias for the iGMM estimator) that tends to vanish as N → ∞ and

W becomes dense.

The estimates of the spatial lag parameter, α̂, are far more open to discussion,

since its accuracy is simultaneously affected by the true value of the parameter, the

sample size and the density of W.

For α ≤ 0.5 and a fixed N , as W becomes dense, the iGMM estimator exhibits

a significant growing downward bias, whereas the LGMM and iGMMa estimators

are much less biased. The only exceptions are for α = 0.5 and α = 0, where the

LGMM and iGMMa estimators exhibit a growing upwards bias, respectively. The

decreased accuracy of the LGMM estimator, at moderate and high levels of spatial

dependence, is expected, considering the existing simulation studies. The spurious
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spatial dependence estimated by the iGMMa estimator, for the case where α = 0,

and the biases displayed by the iGMM estimator evidence that, in general, the

spatial GMM estimators can be severely distorted under infill asymptotics (fixed

N , denser W). This is especially obvious when N = 100. See Lahiri (1996) for a

discussion on this matter.

For α ≤ 0.5 and a fixed density of W, as N →∞, the iGMM estimator exhibits

a downward bias that tends to decline more rapidly when W is sparse. The LGMM

and the iGMMa estimators typically exhibit an upwards bias. For 0 ≤ α ≤ 0.2, this

bias tends to vanish more rapidly when W is sparse, while for α = 0.5, it tends to

vanish more rapidly when W is dense. Note that, here, both infill and increasing

domain asymptotics appear to operate. This implies that the rate of convergence

for the various parameters can be different and possibly slower than
√
N , as argued

by Lee (2004).

The case of α = 0.8 is of particular relevance, since all the spatial GMM esti-

mators exhibit a significant upward bias. Recall that, under the GMM framework,

consistency relies on the validity of moment conditions, that use only the informa-

tion in marginal distributions. However, other estimation methods that consider

the joint dependence structure of the spatial data in the estimation, typically per-

form better at high levels of spatial dependence. In fact, this corroborates with the

simulation results of Billé (2013) and Calabrese and Elkink (2014).

Nevertheless, there are two important results regarding the accuracy of the

iGMMa estimator that should be emphasized. First, for N ≥ 1000 and as W

becomes dense, α is better estimated when using the iGMMa estimator, especially

for the case where W is based on the nearest neighbor criterion5. This suggests that,

for the iGMMa estimator, the number of neighbors for each spatial unit can diverge

to infinity at a faster rate than that of the iGMM estimator, without compromising

consistency (see Lee, 2004). Second, for α ≥ 0.5, the iGMMa estimator is typically

less biased than the other spatial GMM estimators. The only exception is for α = 0.8

and N = 2000, where α is better estimated when using the iGMM estimator, but

5Under the nearest neighbor criterion and using the AMBKM, W is based on a symmetrized
version of an initial spatial weighting matrix, which implies that the number of neighbors for each
spatial unit necessarily increases.
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β0 and β1 are better estimated when using the iGMMa estimator, especially if W is

not sparse (δR > 1 or δNN > 0.01).

With regard to the RMSEs of the estimated parameters, the simulation results

show that the RMSEs of β̂0 and β̂1 are substantially smaller than the RMSEs of α̂.

For a fixed N , as W becomes dense, all the RMSEs increase. In particular,

when N = 100, the RMSEs of α̂ largely increase. These facts evidence, once again,

how the estimates can be severely distorted under infill asymptotics.

For a fixed density of W, as N →∞, the RMSEs of β̂0 and β̂1 decrease, whereas

the RMSEs of α̂ exhibit a fairly different behavior considering the criteria chosen for

W. For the case where W is based on the nearest neighbor criterion, the RMSEs

of α̂ increase. For the case where W is based on the radial distance criterion, the

RMSEs of α̂ decrease.

Additionally note that the RMSEs of the iGMMa estimator are typically smaller

than the RMSEs of the remaining spatial GMM estimators. In particular, the RM-

SEs of α̂ in the iGMMa estimator are substantially smaller than in both the iGMM

and LGMM estimators, even for the case where α = 0.8.

In terms of the computational ability associated with the spatial GMM estima-

tors, measured by the average computational time required to produce estimates for

the parameters of interest, it strongly relies on the sample size and on the density of

W. As N → ∞ and W becomes dense, the average computational time increases.

In particular, for α = 0.8, the average computational time is even larger, since the

spatial GMM estimators require, on average, 1 to 2 additional iterations to converge.

This is because the inverse of the spatial lag operator is approaching singularity and

the computation of the gradients becomes troublesome.

When N = 2000 and W is dense, the average computational time of the iGMMa

estimator is about 3 to 6 times less than that of the iGMM estimator, depending

whether W is based on the radial distance criterion or on the nearest neighbor

criterion, respectively. Also, the iGMMa estimator is typically less biased than the

iGMM estimator, especially for α ≤ 0.5.

The average computational time of the LGMM estimator is clearly impossible

to overcome. However, the iGMMa estimator proves its ability to estimate β0, β1
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and α with more accuracy, more precision and in a reasonable amount of time, even

when the true value of α is close to unity.

2.7. Empirical application

In this section, an empirical application on the competitiveness in the U.S.

Metropolitan Statistical Areas (U.S. MSAs) is presented. The adequacy of the pre-

vious GMM estimators to real data is assessed and compared.

The strategies to promote and/or to improve competitiveness at the regional

and country level are currently centering the attention of policy makers. However,

the definition of competitiveness is far from being consensual. In the words of Porter

(1990), competitiveness is more than bilateral comparisons, it is related to the ability

of the industries to innovate. Fagerberg (1988) defines competitiveness as the growth

in relative unit labor costs (the cost of labour per units of output) and, eight years

later, considers that competitiveness can be addressed by the growth of GDP per

capita or the change in research and development as a percentage of GDP (Fagerberg,

1996). More recently, in a report from the World Economic Forum, Schwab and

Sala-i-Martin (2010) defined 12 pillars for competitiveness, based on institutional

background, physical infrastructures, macroeconomic environment, efficiency and

innovation. Then, in a broad sense, competitiveness is considered a measure for

economic performance. Moreover, while promoting competitiveness, the possible

environmental impacts cannot be disregarded.

The relationship between environmental degradation and economic growth has

been extensively studied in the literature and hypothesized as an “U”-shaped rela-

tionship, the so-called Environmental Kuznets Curve (EKC) hypothesis (Grossman

and Krueger, 1991; Panayotou, 1993; Shafik and Bandyopadhyay, 1992). However,

the EKC hypothesis is not free of criticism, mainly due to the shape of the rela-

tionship and the lack of empirical evidence. Also, as Porter et al. (2015) points

out, the promotion of efficient energy infrastructures and a low-carbon transition

may help to improve competitiveness. In fact, this consists in an inversion of the

EKC hypothesis, yet to be tested empirically. Most of the applied works focus on
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the analysis of competitiveness and environmental quality as separate subjects and

only a few consider the analysis under a spatial framework – Rice et al. (2006) and

Dudensing and Barkley (2010) on the spatial spillovers of regional competitiveness

and Millimet et al. (2003) and Rupasingha et al. (2004) on the shape of the EKC

and on the spatial spillovers associated with the emission of air pollutants. Further-

more, none of the previous works estimate a spatial model with binary dependent

variables.

Here, the analysis of the environmental effects over the competitiveness in the

U.S. MSAs is addressed. A combined dataset of socioeconomic data and environ-

mental data from the U.S. Bureau of Economic Analysis (BEA) and the U.S. En-

vironmental Protection Agency (EPA), respectively, is used. This dataset contains

information about the GDP, labor costs, price indexes, dividends, total employment

and population, as well as, information about the annualized Air Quality Index

(AQI) and for five main air pollutants – ground-level ozone (O3), particle pollu-

tants (PM2.5 and PM10), carbon monoxide (CO), sulfur dioxide (SO2) and nitrogen

dioxide (NO2). The U.S. MSAs that are included in this analysis correspond to the

continental MSAs that continuously report information for the previous variables,

between 2001 and 2016 (N = 4, 848).

As previously mentioned, there are numerous ways to define competitiveness.

Because it is difficult to provide a clear interpretation or to have precise units of

measurement, competitiveness can be considered a latent variable. Therefore, the

many existing proxies to measure competitiveness can be used to define a new indi-

cator. In this way, a Binary Competitiveness Indicator (BCI) is proposed. A given

Metropolitan Statistical Area (MSA) is defined as competitive if, simultaneously,

(1) its employment-to-population ratio is greater than the employment-to-popula-

tion ratio in the combined area of the excluded MSAs and the non-MSAs; (2) its

GDP per capita is greater than the GDP per capita in the combined area of the

excluded MSAs and the non-MSAs; (3) its Unit Labor Costs (the cost of labor per

unit of output) are less than the Unit Labor Costs in the combined area of the

excluded MSAs and the non-MSAs or the Unit Capital Costs (the cost of capital

per unit of output) are less than the Unit Labor Costs in the combined area of the
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excluded MSAs and the non-MSAs, depending on whether the labor intensity ratio

(the cost of labor to the cost of capital) is greater than or less than 1, respectively.

In Table B2.1 the descriptive statistics for the variables included in this study

are presented. Considering the BCI, about 15% of the U.S. MSAs are labeled as

competitive. The variables AQImin and AQImax are, respectively, the minimum

and maximum annual values for the AQI, and, as expected, AQImin exhibits a low

variability pattern, contrarily to AQImax, that is influenced by the existence of se-

vere outliers. The variables % days O3, % days PM2.5, % days PM10, % days CO,

% days SO2 and % days NO2 correspond to the percentage of days that the observed

value of the AQI was determined by the concentration levels of each pollutant. On

average, O3 and PM2.5, by a large amount, the most important contributors for the

observed values of the AQI, in this sample. The variables % days Above Moderate

and % days Exceptional Events correspond, respectively, to the percentage of days

that the observed value of the AQI was above 0.51 and to the percentage of days

that the observed value of the AQI was affected by “exceptional events” (wildfires

or other natural disasters).

A spatial lag Probit is applied to the pooled sample of the U.S. MSAs to study

the effects of the environmental quality indicators over the spatially lagged BCI.

The spatial weighting matrix, W, is block-diagonal and based on the radial distance

criterion with a distance threshold equal to 1, according to the pattern of proxim-

ity displayed in Figure B2.1. Under this specification for W, the spurious spatial

interactions are controlled, because only the closest U.S. MSAs are considered to

be neighbors. Two models are estimated: the unrestricted model and the restricted

model. The first model considers a general specification, based on the available in-

formation on the pollutants and air quality and assuming that there is a quadratic

relationship between the AQI and the BCI. The second model is a restricted version

of the first model, focusing on statistically significant effects.

In Table B2.2 the estimation results for the previous models are presented, con-

sidering the three GMM estimators (iGMMa, iGMM and LGMM). The instruments

Z = [X WX W2X W3X] were used in all estimation procedures. Also, time ef-

fects were added and the Mundlak (1978) approach was used to filter the eventual
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dependence between the unobserved regional effects and the explanatory variables.

The estimation routines6 are based on the R package McSpatial of McMillen (2013).

In general, the estimates for the unrestricted model are quite poor in terms of

statistical significance, except for the linear and quadratic effects of AQImin and for

the estimate for the spatial lag parameter. In fact, the estimated signs for the coeffi-

cients of AQImin are of particular interest, due to the statistical evidence towards the

existence of an “U”-shaped effect. Also, the estimates for the spatial lag parameter

reveal that there may be a high degree of spatial dependence in the sample. How-

ever, because the Wald test rejects the null of overall significance, the robustness

of the previous results to the exclusion of several statistically insignificant variables

should be checked. In fact, the test for exclusion restrictions allowed to considerably

simplify the initial specification to a more parsimonious one. In the new specifica-

tion, only the linear and quadratic AQImin, % days O3 and % days PM2.5 remained.

Interestingly, these variables are also used in the applied literature (Millimet et al.,

2003; Rupasingha et al., 2004).

The estimates for the restricted model are now individually and jointly statis-

tically significant (except for the variable % days PM2.5, in the iGMM estimation).

Most importantly, the magnitude of the estimates do not change much, in com-

parison to the unrestricted model. Therefore, based on the previously noted “U”-

shaped effect of AQImin, there is evidence towards the idea that the implementation

of environmental-friendly policies may initially involve substantial conversion costs,

penalizing regional competitiveness, but, at some point, those costs can be trans-

formed into development opportunities based on new services or products, with

large benefits to the economy as a whole. This follows along the lines of Porter

et al. (2015) and it is referred as a “win-win path”. Nevertheless, some ambiguity

may arise concerning the positive estimated signs for the variables % days O3 and

% days PM2.5. However, note that, for the case where environmental-friendly poli-

cies are implemented and the air quality is actually improved, the observed values

for the AQI can still be determined by the concentration levels of the previous pol-

lutants. Recall that O3 and PM2.5 largely contribute to the observed values of the

6Available upon request.
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AQI. Lastly, having estimates for the spatial lag parameter above 0.7 is evidence

towards the importance of the spillover effects over regional competitiveness. This

emphasizes the idea that regional policies do benefit the neighboring areas, regarding

their economic efficiency.

From the estimation of the previous models, both the iGMMa and iGMM es-

timators exhibit a quite similar performance, based on Hansen tests and on three

measures of goodness-of-fit: the McFadden R2, the squared correlation coefficient

between the observed and the predicted values – ρ2(Y, Ŷ ) – and the percentage of

the correctly predicted observations – %(Ŷ = Y ). The adequacy of the moment con-

ditions is not rejected and the predictive power is quite noticeable. This contrasts

with the performance of the LGMM estimator, where the Hansen tests reject the

null of correct moment conditions and the McFadden R2 is persistently negative,

displaying a very poor fit to the data. In terms of computational time, the iGMMa

estimator clearly outruns the iGMM estimator. In this way, the iGMMa estimator

proves to be a feasible and an adequate alternative to estimate spatial binary choice

models using real data.

2.8. Conclusions

In this paper a new approximation method based on known matrices (AMBKM)

is proposed. It addresses the computational issues related to the GMM estimation of

spatially lagged models for binary dependent variables. Focusing on the inversion of

the spatial lag operator, a simple and intuitive approximation is deduced and applied

to approximate other related N -dimensional matrix operations. It is demonstrated

that, these matrices are approximated by known matrices and simple matrix-vector

operations. Furthermore, it is demonstrated that closed formulas for the elements

of the approximated matrices can be easily deduced.

The proposed AMBKM is based on a set of non-restrictive assumptions that

allow to accommodate several frameworks for the spatial weighting matrix. This
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method is computationally feasible in large samples, because the resulting approx-

imations are based on known matrices, up to an estimated parameter. This is im-

portant to note, since it avoids the N -dimensional matrix operations required in the

alternative approximation methods, which turns them computationally infeasible in

large samples. Moreover, it allows to obtain a closed formula to approximate the

partial effects, that can be decomposed into three separate effects (regardless a scale

factor): the pure direct effects (from I), the first order neighboring effects (from

W) and the “global” effects (from W∞), which combines the “long run” direct and

indirect effects.

This paper also proposes a new GMM estimator based on a modification of the

iterative GMM estimator of Klier and McMillen (2008). Aiming at the reduction of

the overall computational complexity and the computational time, the approximated

matrices are used in the gradients of the new estimation procedure.

Simulations show that the proposed approximation method yields reasonably

accurate approximations for the spatial lag operator inverse and related matrices,

especially when the spatial weighting matrix is large and dense. Also, the com-

putational time required to obtain these approximations is minimal, regardless the

computational complexity of the true operation and the dimension of the spatial

weighting matrix.

In addition, the Monte Carlo experiments show that the proposed estimator –

the iterative GMM with approximated gradients (iGMMa) –, performs reasonably

well in terms of the estimation of the parameters, except for the case where α is close

to unity. Nevertheless, for α ≤ 0.5, the existing biases are attenuated as the spatial

weighting matrix becomes large and dense. Also, the iGMMa estimator proved to

be surprisingly accurate, for the case where the spatial weighting matrix was based

on the nearest neighbor criterion, with a moderate to large number of neighbors.

Furthermore, the iGMMa estimator outperformed the benchmark iterative GMM

(iGMM) estimator in terms of computational time, accuracy and precision, and

outperformed the GMM estimator of the linearized spatial lag model for binary

choice outcomes (LGMM) in terms of accuracy and precision. In fact, the iGMMa

estimator stood as most precise estimator, even for the case where α is close to unity.
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The usefulness of the proposed iGMMa estimator is illustrated in an empirical

application that measures the impact of environmental indicators over the compet-

itiveness of the U.S. Metropolitan Statistical Areas. A new Binary Competitive-

ness Indicator (BCI) is introduced and a spatial lag Probit is estimated, addressing

the level of spatial dependence in regional competitiveness. The iGMMa estimator

proved to perform as well as the benchmark iGMM estimator, in terms of predictive

power, and outperformed the LGMM estimator. Moreover, in this example, where

a large data set is used and several explanatory variables are included in the esti-

mation, the iGMMa estimator proved to be computationally superior to the other

spatial GMM estimators.

The performance and attractiveness of the proposed iGMMa estimator in es-

timating models with spatially lagged binary dependent variables lead to obvious

extensions, especially the estimation of models with spatially lagged errors and with

higher order spatial lag models. The estimation of spatial models for other discrete

and censored dependent variables can be addressed by GMM, using the approxi-

mated matrices, as well.

All the algorithms used in this paper, the proposed approximation method and

the estimation procedures, can be easily implemented using the R package McSpatial

from McMillen (2013).
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APPENDIXES

A2. Simulation results

A2.1. Approximation methods for the spatial lag operator inverse

Table A2.1.1.1: Simulation results for the approximated spatial lag operator inverse and related
matrix functions, considering the new approximation method based on known matrices (AMBKM),
fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4),
the Eigendecomposition (Eigen), the LU decomposition (LU) and the Conjugate Gradient method

(CGrad), with α = 0 and W based on the radial distance criterion.

δR 1 2 4
N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X
100 True [0.059 ] [0.003 ] [0.001 ] [0.013 ] [0.002 ] ≈[0.000 ] [0.016 ] [0.004 ] ≈[0.000 ]

AMBKM ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.063 ] [0.056 ] ≈[0.000 ] [0.036 ] [0.008 ] ≈[0.000 ] [0.038 ] [0.008 ] ≈[0.000 ]

Taylor4 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.072 ] [0.088 ] ≈[0.000 ] [0.029 ] [0.033 ] ≈[0.000 ] [0.040 ] [0.044 ] ≈[0.000 ]

Cheb4 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.106 ] [0.085 ] ≈[0.000 ] [0.053 ] [0.060 ] ≈[0.000 ] [0.068 ] [0.075 ] ≈[0.000 ]

Eigen 0.000 – 1.000 0.000 – 1.000 0.000 – 1.000
[0.010 ] [0.005 ] ≈[0.000 ] [0.009 ] [0.003 ] ≈[0.000 ] [0.011 ] [0.003 ] ≈[0.000 ]

LU 1.000 1.000 1.000
[0.008 ] [0.006 ] [0.004 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.073 ] [0.009 ] [0.010 ]

1000 True [0.023 ] [0.004 ] [0.001 ] [0.077 ] [0.008 ] [0.001 ] [0.848 ] [0.022 ] [0.001 ]

AMBKM ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.309 ] [0.151 ] [0.001 ] [0.216 ] [0.156 ] [0.001 ] [0.412 ] [0.165 ] [0.002 ]

Taylor4 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.068 ] [0.133 ] [0.001 ] [0.309 ] [0.537 ] [0.003 ] [1.738 ] [2.889 ] [0.007 ]

Cheb4 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.184 ] [0.152 ] [0.001 ] [0.402 ] [0.553 ] [0.003 ] [2.033 ] [2.291 ] [0.007 ]

Eigen 0.000 – 1.000 0.000 – 1.000 0.000 – 1.000
[2.189 ] [1.102 ] [0.005 ] [2.241 ] [1.100 ] [0.005 ] [2.164 ] [1.099 ] [0.005 ]

LU 1.000 1.000 1.000
[0.264 ] [0.261 ] [0.329 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.428 ] [0.428 ] [0.429 ]

NOTE: The matrix S = I − αW. The values for the column S−1 are the average norm differences w.r.t.
the identity matrix. The values for the column diag (Υ) are the average absolute deviations w.r.t. the true
values. The values for the column S−1X are the average correlation coefficient between the approximated
and the true operation. Numbers in brackets are average computational times. Computational times in
seconds. Averages based on 1000 replications.
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Table A2.1.1.2: Simulation results for the approximated spatial lag operator inverse and related
matrix functions, considering the new approximation method based on known matrices (AMBKM),
fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4),
the Eigendecomposition (Eigen), the LU decomposition (LU) and the Conjugate Gradient method

(CGrad), with α = 0 and W based on the radial distance criterion (cont.)

δR 1 2 4
N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X
2000 True [0.043 ] [0.007 ] [0.001 ] [0.306 ] [0.017 ] [0.001 ] [3.894 ] [0.052 ] [0.001 ]

AMBKM ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.675 ] [0.606 ] [0.001 ] [0.796 ] [0.620 ] [0.001 ] [0.943 ] [0.615 ] [0.003 ]

Taylor4 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.126 ] [0.270 ] [0.002 ] [0.765 ] [1.828 ] [0.007 ] [4.505 ] [8.716 ] [0.020 ]

Cheb4 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.225 ] [0.285 ] [0.002 ] [1.163 ] [1.504 ] [0.008 ] [5.646 ] [6.497 ] [0.020 ]

Eigen 0.000 – 1.000 0.000 – 1.000 0.000 – 1.000
[15.669 ] [8.442 ] [0.018 ] [15.534 ] [8.442 ] [0.018 ] [15.797 ] [8.430 ] [0.018 ]

LU 1.000 1.000 1.000
[1.712 ] [1.721 ] [1.713 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[3.048 ] [3.048 ] [3.048 ]

NOTE: The matrix S = I − αW. The values for the column S−1 are the average norm differences w.r.t.
the identity matrix. The values for the column diag (Υ) are the average absolute deviations w.r.t. the true
values. The values for the column S−1X are the average correlation coefficient between the approximated
and the true operation. Numbers in brackets are average computational times. Computational times in
seconds. Averages based on 1000 replications.
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Table A2.1.2: Simulation results for the approximated spatial lag operator inverse and related
matrix functions, considering the new approximation method based on known matrices (AMBKM),
fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4),
the Eigendecomposition (Eigen), the LU decomposition (LU) and the Conjugate Gradient method

(CGrad), with α = 0.2 and W based on the radial distance criterion.

δR 1 2 4
N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X
100 True [0.014 ] [0.013 ] [0.001 ] [0.018 ] [0.019 ] [0.001 ] [0.078 ] [0.020 ] [0.001 ]

AMBKM 0.042 0.665 ≈1.000 0.028 0.501 ≈1.000 0.010 0.236 ≈1.000
[0.026 ] [0.010 ] [0.001 ] [0.027 ] [0.009 ] ≈[0.000 ] [0.031 ] [0.008 ] ≈[0.000 ]

Taylor4 ≈0.000 0.002 ≈1.000 ≈0.000 0.002 ≈1.000 ≈0.000 0.003 ≈1.000
[0.021 ] [0.020 ] ≈[0.000 ] [0.032 ] [0.033 ] ≈[0.000 ] [0.039 ] [0.046 ] ≈[0.000 ]

Cheb4 ≈0.000 0.001 ≈1.000 ≈0.000 0.003 ≈1.000 ≈0.000 0.002 ≈1.000
[0.045 ] [0.047 ] ≈[0.000 ] [0.115 ] [0.064 ] ≈[0.000 ] [0.133 ] [0.076 ] ≈[0.000 ]

Eigen 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000
[0.011 ] [0.003 ] ≈[0.000 ] [0.010 ] [0.003 ] ≈[0.000 ] [0.010 ] [0.004 ] ≈[0.000 ]

LU 1.000 1.000 1.000
[0.004 ] [0.004 ] [0.005 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.009 ] [0.009 ] [0.010 ]

1000 True [0.267 ] [14.103 ] [0.008 ] [1.003 ] [14.350 ] [0.008 ] [3.221 ] [14.903 ] [0.008 ]

AMBKM 0.041 0.706 ≈1.000 0.039 0.703 ≈1.000 0.036 0.647 ≈1.000
[0.153 ] [0.129 ] [0.003 ] [0.179 ] [0.129 ] [0.003 ] [0.242 ] [0.133 ] [0.003 ]

Taylor4 ≈0.000 0.002 ≈1.000 ≈0.000 0.002 ≈1.000 ≈0.000 0.002 ≈1.000
[0.052 ] [0.093 ] [0.001 ] [0.425 ] [0.779 ] [0.004 ] [1.541 ] [2.663 ] [0.007 ]

Cheb4 ≈0.000 0.002 ≈1.000 ≈0.000 0.003 ≈1.000 ≈0.000 0.003 ≈1.000
[0.152 ] [0.118 ] [0.001 ] [0.671 ] [0.686 ] [0.004 ] [1.957 ] [2.125 ] [0.007 ]

Eigen 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000
[2.226 ] [1.098 ] [0.005 ] [2.226 ] [1.152 ] [0.005 ] [2.150 ] [1.097 ] [0.005 ]

LU 1.000 1.000 1.000
[0.257 ] [0.257 ] [0.373 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.443 ] [0.445 ] [0.440 ]

2000 True [1.390 ] [ 114.155 ] [0.031 ] [4.264 ] [ 115.969 ] [0.031 ] [21.177 ] [ 118.638 ] [0.031 ]

AMBKM 0.041 0.712 ≈1.000 0.040 0.724 ≈1.000 0.038 0.685 ≈1.000
[0.547 ] [0.528 ] [0.012 ] [0.601 ] [0.584 ] [0.013 ] [0.785 ] [0.532 ] [0.013 ]

Taylor4 ≈0.000 0.002 ≈1.000 ≈0.000 0.002 ≈1.000 ≈0.000 0.002 ≈1.000
[0.133 ] [0.291 ] [0.002 ] [0.602 ] [1.404 ] [0.006 ] [4.295 ] [8.630 ] [0.020 ]

Cheb4 ≈0.000 0.002 ≈1.000 ≈0.000 0.003 ≈1.000 ≈0.000 0.003 ≈1.000
[0.288 ] [0.299 ] [0.002 ] [0.938 ] [1.218 ] [0.006 ] [5.628 ] [6.445 ] [0.020 ]

Eigen 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000
[17.567 ] [8.442 ] [0.018 ] [15.495 ] [8.437 ] [0.018 ] [15.782 ] [8.440 ] [0.018 ]

LU 1.000 1.000 1.000
[1.704 ] [1.730 ] [1.710 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[3.116 ] [3.117 ] [3.100 ]

NOTE: The matrix S = I − αW. The values for the column S−1 are the average norm differences w.r.t.
the identity matrix. The values for the column diag (Υ) are the average absolute deviations w.r.t. the true
values. The values for the column S−1X are the average correlation coefficient between the approximated
and the true operation. Numbers in brackets are average computational times. Computational times in
seconds. Averages based on 1000 replications.
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Table A2.1.3: Simulation results for the approximated spatial lag operator inverse and related
matrix functions, considering the new approximation method based on known matrices (AMBKM),
fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4),
the Eigendecomposition (Eigen), the LU decomposition (LU) and the Conjugate Gradient method

(CGrad), with α = 0.5 and W based on the radial distance criterion.

δR 1 2 4
N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X
100 True [0.014 ] [0.014 ] [0.001 ] [0.017 ] [0.017 ] [0.001 ] [0.020 ] [0.020 ] [0.001 ]

AMBKM 0.258 0.786 0.995 0.208 0.630 0.999 0.108 0.260 ≈1.000
[0.026 ] [0.009 ] ≈[0.000 ] [0.027 ] [0.008 ] ≈[0.000 ] [0.086 ] [0.008 ] ≈[0.000 ]

Taylor4 0.038 0.110 ≈1.000 0.033 0.089 ≈1.000 0.032 0.118 ≈1.000
[0.023 ] [0.023 ] ≈[0.000 ] [0.028 ] [0.034 ] ≈[0.000 ] [0.037 ] [0.041 ] ≈[0.000 ]

Cheb4 0.006 0.018 ≈1.000 0.004 0.032 ≈1.000 0.003 0.014 ≈1.000
[0.046 ] [0.049 ] ≈[0.000 ] [0.054 ] [0.059 ] ≈[0.000 ] [0.066 ] [0.072 ] ≈[0.000 ]

Eigen 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000
[0.010 ] [0.003 ] ≈[0.000 ] [0.011 ] [0.060 ] ≈[0.000 ] [0.009 ] [0.003 ] ≈[0.000 ]

LU 1.000 1.000 1.000
[0.004 ] [0.005 ] [0.004 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.009 ] [0.009 ] [0.009 ]

1000 True [0.283 ] [14.053 ] [0.008 ] [0.897 ] [14.280 ] [0.008 ] [3.143 ] [14.939 ] [0.008 ]

AMBKM 0.257 0.847 0.996 0.247 0.818 0.999 0.228 0.720 ≈1.000
[0.154 ] [0.130 ] [0.003 ] [0.234 ] [0.128 ] [0.003 ] [0.239 ] [0.134 ] [0.003 ]

Taylor4 0.032 0.095 ≈1.000 0.032 0.083 ≈1.000 0.032 0.087 ≈1.000
[0.056 ] [0.103 ] [0.001 ] [0.285 ] [0.606 ] [0.003 ] [1.330 ] [2.575 ] [0.007 ]

Cheb4 0.006 0.023 ≈1.000 0.004 0.035 ≈1.000 0.003 0.037 ≈1.000
[0.107 ] [0.128 ] [0.001 ] [0.449 ] [0.552 ] [0.003 ] [1.790 ] [2.135 ] [0.007 ]

Eigen 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000
[2.184 ] [1.098 ] [0.005 ] [2.178 ] [1.097 ] [0.005 ] [2.151 ] [1.096 ] [0.005 ]

LU 1.000 1.000 1.000
[0.257 ] [0.260 ] [0.259 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.461 ] [0.451 ] [0.453 ]

2000 True [1.302 ] [ 114.794 ] [0.031 ] [3.984 ] [ 116.021 ] [0.031 ] [12.962 ] [ 117.668 ] [0.031 ]

AMBKM 0.259 0.853 0.996 0.250 0.842 0.999 0.242 0.795 ≈1.000
[0.559 ] [0.581 ] [0.013 ] [0.593 ] [0.583 ] [0.013 ] [0.726 ] [0.533 ] [0.013 ]

Taylor4 0.033 0.092 ≈1.000 0.032 0.081 ≈1.000 0.032 0.083 ≈1.000
[0.115 ] [0.307 ] [0.002 ] [0.601 ] [1.413 ] [0.006 ] [2.938 ] [6.074 ] [0.016 ]

Cheb4 0.007 0.024 ≈1.000 0.004 0.037 ≈1.000 0.003 0.038 ≈1.000
[0.204 ] [0.259 ] [0.002 ] [0.929 ] [1.217 ] [0.006 ] [3.965 ] [4.699 ] [0.016 ]

Eigen 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000
[17.265 ] [8.441 ] [0.018 ] [15.486 ] [8.438 ] [0.018 ] [15.746 ] [8.436 ] [0.018 ]

LU 1.000 1.000 1.000
[1.709 ] [1.719 ] [1.722 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[3.191 ] [3.153 ] [3.154 ]

NOTE: The matrix S = I − αW. The values for the column S−1 are the average norm differences w.r.t.
the identity matrix. The values for the column diag (Υ) are the average absolute deviations w.r.t. the true
values. The values for the column S−1X are the average correlation coefficient between the approximated
and the true operation. Numbers in brackets are average computational times. Computational times in
seconds. Averages based on 1000 replications.
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Table A2.1.4: Simulation results for the approximated spatial lag operator inverse and related
matrix functions, considering the new approximation method based on known matrices (AMBKM),
fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4),
the Eigendecomposition (Eigen), the LU decomposition (LU) and the Conjugate Gradient method

(CGrad), with α = 0.8 and W based on the radial distance criterion.

δR 1 2 4
N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X
100 True [0.014 ] [0.014 ] ≈[0.000 ] [0.016 ] [0.017 ] [0.001 ] [0.020 ] [0.020 ] [0.001 ]

AMBKM 0.663 0.861 0.933 0.550 0.469 0.977 0.206 0.041 0.999
[0.026 ] [0.008 ] ≈[0.000 ] [0.027 ] [0.009 ] ≈[0.000 ] [0.030 ] [0.008 ] ≈[0.000 ]

Taylor4 0.354 0.696 0.990 0.340 0.636 0.997 0.340 0.747 ≈1.000
[0.021 ] [0.020 ] ≈[0.000 ] [0.027 ] [0.030 ] ≈[0.000 ] [0.039 ] [0.044 ] ≈[0.000 ]

Cheb4 0.128 0.139 0.999 0.094 0.091 0.999 0.069 0.205 ≈1.000
[0.045 ] [0.047 ] ≈[0.000 ] [0.054 ] [0.113 ] ≈[0.000 ] [0.067 ] [0.128 ] ≈[0.000 ]

Eigen 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000
[0.068 ] [0.003 ] ≈[0.000 ] [0.009 ] [0.005 ] ≈[0.000 ] [0.064 ] [0.003 ] ≈[0.000 ]

LU 1.000 1.000 1.000
[0.004 ] [0.004 ] [0.005 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.010 ] [0.009 ] [0.009 ]

1000 True [0.290 ] [14.017 ] [0.008 ] [0.790 ] [14.391 ] [0.008 ] [2.992 ] [14.871 ] [0.008 ]

AMBKM 0.659 0.952 0.937 0.636 0.873 0.970 0.579 0.639 0.992
[0.152 ] [0.131 ] [0.003 ] [0.168 ] [0.129 ] [0.003 ] [0.233 ] [0.128 ] [0.003 ]

Taylor4 0.340 0.645 0.990 0.334 0.602 0.996 0.335 0.613 0.999
[0.059 ] [0.110 ] [0.001 ] [0.225 ] [0.488 ] [0.003 ] [1.335 ] [2.489 ] [0.007 ]

Cheb4 0.144 0.121 0.999 0.086 0.118 ≈1.000 0.081 0.109 ≈1.000
[0.110 ] [0.136 ] [0.001 ] [0.366 ] [0.510 ] [0.003 ] [1.844 ] [1.997 ] [0.007 ]

Eigen 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000
[2.180 ] [1.097 ] [0.005 ] [2.178 ] [1.099 ] [0.005 ] [2.146 ] [1.151 ] [0.005 ]

LU 1.000 1.000 1.000
[0.258 ] [0.255 ] [0.260 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.497 ] [0.480 ] [0.472 ]

2000 True [1.188 ] [ 115.265 ] [0.031 ] [4.058 ] [ 115.905 ] [0.030 ] [23.791 ] [ 118.997 ] [0.031 ]

AMBKM 0.661 0.962 0.938 0.641 0.912 0.972 0.605 0.739 0.991
[0.544 ] [0.529 ] [0.012 ] [0.654 ] [0.524 ] [0.013 ] [0.900 ] [0.533 ] [0.013 ]

Taylor4 0.343 0.633 0.990 0.333 0.593 0.996 0.334 0.602 0.999
[0.108 ] [0.226 ] [0.002 ] [0.584 ] [1.356 ] [0.006 ] [4.739 ] [9.435 ] [0.020 ]

Cheb4 0.142 0.113 0.999 0.084 0.126 ≈1.000 0.077 0.112 ≈1.000
[0.191 ] [0.242 ] [0.002 ] [0.908 ] [1.177 ] [0.006 ] [5.975 ] [6.938 ] [0.020 ]

Eigen 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000
[18.701 ] [8.439 ] [0.018 ] [15.560 ] [8.438 ] [0.018 ] [15.782 ] [8.438 ] [0.018 ]

LU 1.000 1.000 1.000
[1.713 ] [1.711 ] [1.725 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[3.334 ] [3.267 ] [3.228 ]

NOTE: The matrix S = I − αW. The values for the column S−1 are the average norm differences w.r.t.
the identity matrix. The values for the column diag (Υ) are the average absolute deviations w.r.t. the true
values. The values for the column S−1X are the average correlation coefficient between the approximated
and the true operation. Numbers in brackets are average computational times. Computational times in
seconds. Averages based on 1000 replications.
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Table A2.1.5: Simulation results for the approximated spatial lag operator inverse and related
matrix functions, considering the new approximation method based on known matrices (AMBKM),
fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4),
the Eigendecomposition (Eigen), the LU decomposition (LU) and the Conjugate Gradient method

(CGrad), with α = 0 and W based on the nearest neighbors criterion.

δNN 0.01 0.1 0.2
N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X
100 True [0.060 ] [0.071 ] [0.001 ] [0.012 ] [0.002 ] ≈[0.000 ] [0.013 ] [0.002 ] ≈[0.000 ]

AMBKM ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.062 ] [0.056 ] ≈[0.000 ] [0.034 ] [0.011 ] ≈[0.000 ] [0.034 ] [0.010 ] ≈[0.000 ]

Taylor4 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.071 ] [0.026 ] ≈[0.000 ] [0.025 ] [0.027 ] ≈[0.000 ] [0.090 ] [0.033 ] ≈[0.000 ]

Cheb4 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.101 ] [0.081 ] ≈[0.000 ] [0.048 ] [0.052 ] ≈[0.000 ] [0.111 ] [0.118 ] ≈[0.000 ]

Eigen 1.000 – 0.971 0.743 – 0.987 0.725 – 0.991
[0.014 ] [0.002 ] ≈[0.000 ] [0.099 ] [0.004 ] ≈[0.000 ] [0.043 ] [0.005 ] ≈[0.000 ]

LU 1.000 1.000 1.000
[0.009 ] [0.004 ] [0.006 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.074 ] [0.067 ] [0.010 ]

1000 True [0.025 ] [0.004 ] [0.001 ] [0.413 ] [0.018 ] [0.001 ] [1.935 ] [0.033 ] [0.001 ]

AMBKM ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.261 ] [0.154 ] [0.001 ] [0.286 ] [0.216 ] [0.001 ] [0.381 ] [0.160 ] [0.002 ]

Taylor4 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.068 ] [0.133 ] [0.001 ] [1.142 ] [2.176 ] [0.006 ] [2.958 ] [4.869 ] [0.008 ]

Cheb4 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.128 ] [0.154 ] [0.001 ] [1.562 ] [1.872 ] [0.006 ] [3.554 ] [3.817 ] [0.008 ]

Eigen 2.175 – 0.995 1.163 – 0.998 1.206 – 0.999
[22.666 ] [2.106 ] [0.012 ] [22.468 ] [2.104 ] [0.012 ] [22.258 ] [2.167 ] [0.012 ]

LU 1.000 1.000 1.000
[0.258 ] [0.258 ] [0.313 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.425 ] [0.426 ] [0.426 ]

2000 True [0.125 ] [0.010 ] [0.001 ] [11.273 ] [0.076 ] [0.001 ] [17.259 ] [0.151 ] [0.001 ]

AMBKM ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.743 ] [0.599 ] [0.001 ] [1.142 ] [0.622 ] [0.004 ] [1.537 ] [0.648 ] [0.007 ]

Taylor4 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.334 ] [0.653 ] [0.004 ] [7.081 ] [13.673 ] [0.025 ] [21.942 ] [36.299 ] [0.031 ]

Cheb4 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000 ≈0.000 – ≈1.000
[0.470 ] [0.610 ] [0.004 ] [9.009 ] [9.972 ] [0.025 ] [23.981 ] [25.574 ] [0.031 ]

Eigen 2.793 – 0.995 1.275 – ≈1.000 1.306 – 0.999
[ 165.543 ] [16.423 ] [0.045 ] [ 164.393 ] [16.438 ] [0.046 ] [ 164.121 ] [16.440 ] [0.046 ]

LU 1.000 1.000 1.000
[1.700 ] [1.726 ] [1.732 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[3.038 ] [3.042 ] [3.051 ]

NOTE: The matrix S = I − αW. The values for the column S−1 are the average norm differences w.r.t.
the identity matrix. The values for the column diag (Υ) are the average absolute deviations w.r.t. the true
values. The values for the column S−1X are the average correlation coefficient between the approximated
and the true operation. Numbers in brackets are average computational times. Computational times in
seconds. Averages based on 1000 replications.
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Table A2.1.6: Simulation results for the approximated spatial lag operator inverse and related
matrix functions, considering the new approximation method based on known matrices (AMBKM),
fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4),
the Eigendecomposition (Eigen), the LU decomposition (LU) and the Conjugate Gradient method

(CGrad), with α = 0.2 and W based on the nearest neighbors criterion.

δNN 0.01 0.1 0.2
N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X
100 True [0.012 ] [0.002 ] ≈[0.000 ] [0.015 ] [0.017 ] [0.001 ] [0.017 ] [0.017 ] [0.001 ]

AMBKM 0.070 0.674 ≈1.000 0.041 0.612 ≈1.000 0.035 0.513 ≈1.000
[0.028 ] [0.009 ] [0.001 ] [0.026 ] [0.008 ] ≈[0.000 ] [0.028 ] [0.009 ] ≈[0.000 ]

Taylor4 0.001 0.004 ≈1.000 ≈0.000 0.002 ≈1.000 ≈0.000 0.002 ≈1.000
[0.019 ] [0.016 ] ≈[0.000 ] [0.024 ] [0.025 ] ≈[0.000 ] [0.027 ] [0.088 ] ≈[0.000 ]

Cheb4 ≈0.000 0.001 ≈1.000 ≈0.000 0.002 ≈1.000 ≈0.000 0.003 ≈1.000
[0.041 ] [0.101 ] ≈[0.000 ] [0.049 ] [0.052 ] ≈[0.000 ] [0.055 ] [0.059 ] ≈[0.000 ]

Eigen 1.031 0.147 0.961 0.454 0.045 0.995 0.949 0.094 0.991
[0.011 ] [0.002 ] ≈[0.000 ] [0.104 ] [0.005 ] ≈[0.000 ] [0.042 ] [0.004 ] ≈[0.000 ]

LU 1.000 1.000 1.000
[0.004 ] [0.006 ] [0.004 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.009 ] [0.009 ] [0.009 ]

1000 True [0.385 ] [14.318 ] [0.008 ] [2.376 ] [14.864 ] [0.008 ] [5.806 ] [15.566 ] [0.008 ]

AMBKM 0.044 0.714 ≈1.000 0.038 0.633 ≈1.000 0.032 0.527 ≈1.000
[0.149 ] [0.124 ] [0.004 ] [0.225 ] [0.125 ] [0.004 ] [0.321 ] [0.128 ] [0.003 ]

Taylor4 ≈0.000 0.002 ≈1.000 ≈0.000 0.002 ≈1.000 ≈0.000 0.002 ≈1.000
[0.066 ] [0.130 ] [0.001 ] [1.133 ] [2.098 ] [0.006 ] [3.005 ] [4.911 ] [0.008 ]

Cheb4 ≈0.000 0.003 ≈1.000 ≈0.000 0.004 ≈1.000 ≈0.000 0.003 ≈1.000
[0.124 ] [0.152 ] [0.001 ] [1.438 ] [1.680 ] [0.006 ] [3.540 ] [3.850 ] [0.008 ]

Eigen 2.111 0.074 0.993 1.389 0.036 0.997 1.169 0.029 0.999
[22.391 ] [2.103 ] [0.012 ] [22.338 ] [2.158 ] [0.012 ] [22.256 ] [2.161 ] [0.012 ]

LU 1.000 1.000 1.000
[0.256 ] [0.255 ] [0.258 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.442 ] [0.438 ] [0.435 ]

2000 True [2.986 ] [ 116.255 ] [0.031 ] [39.494 ] [ 121.062 ] [0.031 ] [50.895 ] [ 127.362 ] [0.031 ]

AMBKM 0.042 0.721 ≈1.000 0.037 0.634 ≈1.000 0.032 0.526 ≈1.000
[0.567 ] [0.512 ] [0.013 ] [0.905 ] [0.528 ] [0.012 ] [1.322 ] [0.581 ] [0.012 ]

Taylor4 ≈0.000 0.002 ≈1.000 ≈0.000 0.002 ≈1.000 ≈0.000 0.002 ≈1.000
[0.332 ] [0.651 ] [0.004 ] [7.047 ] [13.587 ] [0.025 ] [21.848 ] [36.129 ] [0.031 ]

Cheb4 ≈0.000 0.003 ≈1.000 ≈0.000 0.004 ≈1.000 ≈0.000 0.004 ≈1.000
[0.465 ] [0.604 ] [0.004 ] [8.925 ] [9.940 ] [0.025 ] [24.132 ] [25.575 ] [0.031 ]

Eigen 2.597 0.046 0.996 1.318 0.020 0.999 1.316 0.021 0.999
[ 165.286 ] [16.469 ] [0.045 ] [ 164.427 ] [16.479 ] [0.046 ] [ 164.123 ] [16.473 ] [0.046 ]

LU 1.000 1.000 1.000
[1.695 ] [1.781 ] [1.708 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[3.118 ] [3.151 ] [3.096 ]

NOTE: The matrix S = I − αW. The values for the column S−1 are the average norm differences w.r.t.
the identity matrix. The values for the column diag (Υ) are the average absolute deviations w.r.t. the true
values. The values for the column S−1X are the average correlation coefficient between the approximated
and the true operation. Numbers in brackets are average computational times. Computational times in
seconds. Averages based on 1000 replications.
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Table A2.1.7: Simulation results for the approximated spatial lag operator inverse and related
matrix functions, considering the new approximation method based on known matrices (AMBKM),
fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4),
the Eigendecomposition (Eigen), the LU decomposition (LU) and the Conjugate Gradient method

(CGrad), with α = 0.5 and W based on the nearest neighbors criterion.

δNN 0.01 0.1 0.2
N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X
100 True [0.012 ] [0.002 ] ≈[0.000 ] [0.015 ] [0.017 ] [0.001 ] [0.016 ] [0.017 ] [0.001 ]

AMBKM 0.498 0.831 0.981 0.252 0.690 0.997 0.212 0.525 0.999
[0.025 ] [0.010 ] ≈[0.000 ] [0.026 ] [0.009 ] ≈[0.000 ] [0.028 ] [0.008 ] ≈[0.000 ]

Taylor4 0.059 0.154 ≈1.000 0.035 0.101 ≈1.000 0.034 0.101 ≈1.000
[0.019 ] [0.016 ] ≈[0.000 ] [0.022 ] [0.025 ] ≈[0.000 ] [0.027 ] [0.031 ] ≈[0.000 ]

Cheb4 0.021 0.022 ≈1.000 0.005 0.026 ≈1.000 0.004 0.030 ≈1.000
[0.041 ] [0.043 ] ≈[0.000 ] [0.047 ] [0.053 ] ≈[0.000 ] [0.054 ] [0.062 ] ≈[0.000 ]

Eigen 1.360 0.144 0.969 0.712 0.015 0.996 0.837 0.014 0.992
[0.014 ] [0.058 ] ≈[0.000 ] [0.098 ] [0.004 ] ≈[0.000 ] [0.043 ] [0.004 ] ≈[0.000 ]

LU 1.000 1.000 1.000
[0.005 ] [0.005 ] [0.004 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.019 ] [0.009 ] [0.009 ]

1000 True [0.374 ] [14.235 ] [0.008 ] [2.472 ] [14.851 ] [0.008 ] [5.844 ] [15.611 ] [0.008 ]

AMBKM 0.273 0.851 0.996 0.236 0.704 ≈1.000 0.201 0.541 ≈1.000
[0.150 ] [0.127 ] [0.004 ] [0.228 ] [0.184 ] [0.003 ] [0.321 ] [0.181 ] [0.004 ]

Taylor4 0.036 0.097 ≈1.000 0.033 0.090 ≈1.000 0.034 0.097 ≈1.000
[0.067 ] [0.130 ] [0.001 ] [1.076 ] [2.146 ] [0.006 ] [3.000 ] [4.861 ] [0.008 ]

Cheb4 0.005 0.028 ≈1.000 0.004 0.038 ≈1.000 0.004 0.036 ≈1.000
[0.178 ] [0.152 ] [0.001 ] [1.492 ] [1.682 ] [0.006 ] [3.542 ] [3.860 ] [0.008 ]

Eigen 1.977 0.013 0.991 1.115 0.005 0.999 0.885 0.006 0.999
[22.299 ] [2.101 ] [0.012 ] [22.355 ] [2.104 ] [0.012 ] [22.282 ] [2.156 ] [0.012 ]

LU 1.000 1.000 1.000
[0.253 ] [0.255 ] [0.253 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.461 ] [0.447 ] [0.447 ]

2000 True [3.133 ] [ 116.241 ] [0.032 ] [39.723 ] [ 121.320 ] [0.031 ] [50.680 ] [ 127.814 ] [0.031 ]

AMBKM 0.262 0.851 0.998 0.235 0.704 ≈1.000 0.202 0.541 ≈1.000
[0.627 ] [0.521 ] [0.012 ] [0.905 ] [0.520 ] [0.012 ] [1.308 ] [0.532 ] [0.012 ]

Taylor4 0.034 0.088 ≈1.000 0.033 0.089 ≈1.000 0.034 0.096 ≈1.000
[0.278 ] [0.659 ] [0.004 ] [7.169 ] [13.616 ] [0.025 ] [21.948 ] [36.176 ] [0.031 ]

Cheb4 0.005 0.035 ≈1.000 0.004 0.039 ≈1.000 0.004 0.037 ≈1.000
[0.522 ] [0.605 ] [0.004 ] [8.836 ] [9.995 ] [0.025 ] [23.965 ] [25.363 ] [0.031 ]

Eigen 2.631 0.011 0.994 1.269 0.003 0.999 1.002 0.003 0.999
[ 165.227 ] [16.518 ] [0.045 ] [ 164.365 ] [16.474 ] [0.045 ] [ 164.075 ] [16.475 ] [0.046 ]

LU 1.000 1.000 1.000
[1.699 ] [1.760 ] [1.722 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[3.168 ] [3.265 ] [3.136 ]

NOTE: The matrix S = I − αW. The values for the column S−1 are the average norm differences w.r.t.
the identity matrix. The values for the column diag (Υ) are the average absolute deviations w.r.t. the true
values. The values for the column S−1X are the average correlation coefficient between the approximated
and the true operation. Numbers in brackets are average computational times. Computational times in
seconds. Averages based on 1000 replications.
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Table A2.1.8: Simulation results for the approximated spatial lag operator inverse and related
matrix functions, considering the new approximation method based on known matrices (AMBKM),
fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4),
the Eigendecomposition (Eigen), the LU decomposition (LU) and the Conjugate Gradient method

(CGrad), with α = 0.8 and W based on the nearest neighbors criterion.

δNN 0.01 0.1 0.2
N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X
100 True [0.012 ] [0.002 ] ≈[0.000 ] [0.015 ] [0.017 ] [0.001 ] [0.016 ] [0.017 ] [0.001 ]

AMBKM 2.551 0.955 0.887 0.873 0.661 0.936 0.748 0.376 0.984
[0.027 ] [0.008 ] ≈[0.000 ] [0.026 ] [0.008 ] ≈[0.000 ] [0.027 ] [0.008 ] ≈[0.000 ]

Taylor4 0.665 0.781 0.987 0.373 0.677 0.989 0.358 0.675 0.999
[0.019 ] [0.016 ] ≈[0.000 ] [0.022 ] [0.026 ] ≈[0.000 ] [0.027 ] [0.033 ] ≈[0.000 ]

Cheb4 0.863 0.241 0.999 0.119 0.074 0.999 0.088 0.069 ≈1.000
[0.042 ] [0.043 ] ≈[0.000 ] [0.050 ] [0.052 ] ≈[0.000 ] [0.054 ] [0.060 ] ≈[0.000 ]

Eigen 3.641 0.136 0.970 0.865 0.004 0.995 0.822 0.004 0.992
[0.012 ] [0.002 ] ≈[0.000 ] [0.043 ] [0.004 ] ≈[0.000 ] [0.043 ] [0.004 ] ≈[0.000 ]

LU 1.000 1.000 1.000
[0.005 ] [0.005 ] [0.005 ]

CGrad 0.603 ≈1.000 ≈1.000
[0.016 ] [0.010 ] [0.010 ]

1000 True [0.375 ] [14.218 ] [0.008 ] [2.381 ] [14.871 ] [0.008 ] [5.800 ] [15.617 ] [0.008 ]

AMBKM 0.735 0.943 0.939 0.612 0.628 0.994 0.680 0.344 0.998
[0.263 ] [0.125 ] [0.004 ] [0.284 ] [0.128 ] [0.004 ] [0.323 ] [0.129 ] [0.004 ]

Taylor4 0.377 0.651 0.990 0.346 0.631 0.999 0.356 0.659 ≈1.000
[0.066 ] [0.128 ] [0.001 ] [1.188 ] [2.096 ] [0.006 ] [2.963 ] [4.872 ] [0.008 ]

Cheb4 0.129 0.094 0.999 0.088 0.082 ≈1.000 0.090 0.064 ≈1.000
[0.180 ] [0.150 ] [0.001 ] [1.437 ] [1.686 ] [0.006 ] [3.604 ] [3.818 ] [0.008 ]

Eigen 1.840 0.003 0.995 0.982 0.001 0.999 1.056 0.001 0.999
[22.331 ] [2.102 ] [0.012 ] [22.302 ] [2.102 ] [0.012 ] [22.282 ] [2.161 ] [0.012 ]

LU 1.000 1.000 1.000
[0.252 ] [0.256 ] [0.256 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[0.498 ] [0.475 ] [0.498 ]

2000 True [3.090 ] [ 116.212 ] [0.031 ] [39.872 ] [ 121.396 ] [0.031 ] [50.982 ] [ 127.827 ] [0.031 ]

AMBKM 0.671 0.937 0.957 0.605 0.621 0.997 0.682 0.343 0.999
[0.560 ] [0.580 ] [0.012 ] [0.976 ] [0.524 ] [0.012 ] [1.429 ] [0.594 ] [0.013 ]

Taylor4 0.350 0.616 0.993 0.345 0.627 ≈1.000 0.354 0.658 ≈1.000
[0.277 ] [0.652 ] [0.004 ] [7.097 ] [13.523 ] [0.025 ] [21.872 ] [36.160 ] [0.031 ]

Cheb4 0.099 0.110 0.999 0.088 0.084 ≈1.000 0.086 0.064 ≈1.000
[0.470 ] [0.610 ] [0.004 ] [8.781 ] [9.921 ] [0.025 ] [24.093 ] [25.557 ] [0.031 ]

Eigen 2.170 0.002 0.998 1.304 ≈0.000 0.999 1.128 ≈0.000 0.999
[ 165.791 ] [16.481 ] [0.046 ] [ 164.499 ] [16.476 ] [0.046 ] [ 164.210 ] [16.478 ] [0.046 ]

LU 1.000 1.000 1.000
[1.716 ] [1.721 ] [1.705 ]

CGrad ≈1.000 ≈1.000 ≈1.000
[3.299 ] [3.244 ] [3.261 ]

NOTE: The matrix S = I − αW. The values for the column S−1 are the average norm differences w.r.t.
the identity matrix. The values for the column diag (Υ) are the average absolute deviations w.r.t. the true
values. The values for the column S−1X are the average correlation coefficient between the approximated
and the true operation. Numbers in brackets are average computational times. Averages are based on 1000
replications.
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A2.2. GMM estimation

Table A2.2.1: Simulation results for the Spatial Probit model considering the iterative GMM estimator
with approximated gradients (iGMMa), the iterative GMM estimator (iGMM) and the GMM estimator

for the linearized model (LGMM), with α = 0 and W based on the radial distance criterion.

δR 1 2 4
N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM
100 α̂ 0.074 −0.033 −0.006 0.295 −0.498 −0.020 0.672 −0.894 −0.098

(0.377 ) (0.429 ) (0.576 ) (0.720 ) (1.295 ) (1.319 ) (2.168 ) (3.360 ) (5.309 )

β̂0 0.005 0.001 0.001 0.010 0.023 0.012 −0.015 0.072 −0.039
(0.141 ) (0.172 ) (0.159 ) (0.149 ) (0.352 ) (0.241 ) (0.274 ) (0.754 ) (0.944 )

β̂1 1.084 1.097 1.024 1.094 1.145 1.019 1.092 1.143 1.020
(0.263 ) (0.268 ) (0.256 ) (0.272 ) (0.367 ) (0.250 ) (0.247 ) (0.316 ) (0.267 )

Time:
Loop 0.062 0.034 0.066 0.035 0.069 0.042
# Iterations 4 4 5 5 5 5
Total 0.305 0.201 0.068 0.371 0.233 0.064 0.418 0.288 0.076

# Neighbors 6 6 6 21 21 21 60 60 60

1000 α̂ 0.005 −0.014 0.001 0.056 −0.057 −0.005 0.188 −0.336 −0.055
(0.201 ) (0.202 ) (0.203 ) (0.351 ) (0.435 ) (0.418 ) (0.572 ) (1.154 ) (0.906 )

β̂0 0.001 0.001 0.001 0.003 0.001 0.001 0.000 0.000 0.001
(0.044 ) (0.046 ) (0.045 ) (0.044 ) (0.049 ) (0.047 ) (0.041 ) (0.073 ) (0.057 )

β̂1 1.002 1.005 1.002 1.003 1.006 0.999 1.012 1.030 1.005
(0.074 ) (0.075 ) (0.074 ) (0.078 ) (0.078 ) (0.078 ) (0.081 ) (0.142 ) (0.076 )

Time:
Loop 1.867 0.504 2.115 1.091 1.953 3.989
# Iterations 3 4 4 4 5 5
Total 6.819 2.517 0.824 9.517 5.697 0.881 10.572 21.991 1.447

# Neighbors 9 9 9 33 33 33 118 118 118

2000 α̂ 0.000 −0.010 0.000 0.017 −0.044 −0.007 0.129 −0.129 −0.015
(0.148 ) (0.147 ) (0.148 ) (0.285 ) (0.326 ) (0.306 ) (0.462 ) (0.698 ) (0.601 )

β̂0 0.000 0.000 0.000 −0.002 −0.001 −0.001 0.000 −0.002 0.000
(0.030 ) (0.030 ) (0.030 ) (0.031 ) (0.034 ) (0.033 ) (0.030 ) (0.040 ) (0.035 )

β̂1 1.003 1.005 1.003 1.003 1.005 1.002 1.001 1.007 0.999
(0.054 ) (0.054 ) (0.054 ) (0.053 ) (0.054 ) (0.054 ) (0.056 ) (0.083 ) (0.055 )

Time:
Loop 6.935 2.651 7.304 7.372 6.839 20.889
# Iterations 3 3 4 4 4 5
Total 23.064 11.109 2.464 30.193 33.943 2.489 34.917 107.516 4.050

# Neighbors 9 9 9 37 37 37 134 134 134

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root
mean square errors (RMSEs). Computational times in seconds. True values of the regressions parameters fixed
at β0 = 0 and β1 = 1.
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Table A2.2.2: Simulation results for the Spatial Probit model considering the iterative GMM estimator
with approximated gradients (iGMMa), the iterative GMM estimator (iGMM) and the GMM estimator

for the linearized model (LGMM), with α = 0.2 and W based on the radial distance criterion.

δR 1 2 4
N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM
100 α̂ 0.189 0.132 0.228 0.279 −0.147 0.221 0.827 −0.099 0.143

(0.388 ) (0.389 ) (0.589 ) (0.655 ) (1.184 ) (1.370 ) (1.866 ) (3.875 ) (5.414 )

β̂0 0.006 0.009 0.004 −0.007 −0.004 −0.004 0.011 −0.064 0.020
(0.132 ) (0.142 ) (0.148 ) (0.141 ) (0.246 ) (0.224 ) (0.254 ) (0.689 ) (0.778 )

β̂1 1.083 1.109 1.022 1.105 1.104 1.017 1.135 1.144 1.020
(0.275 ) (0.278 ) (0.254 ) (0.272 ) (0.349 ) (0.259 ) (0.301 ) (0.343 ) (0.263 )

Time:
Loop 0.063 0.033 0.065 0.036 0.070 0.041
# Iterations 4 5 5 5 5 6
Total 0.319 0.198 0.063 0.361 0.230 0.067 0.439 0.283 0.077

# Neighbors 6 6 6 20 20 20 58 58 58

1000 α̂ 0.225 0.186 0.223 0.238 0.130 0.237 0.284 −0.028 0.218
(0.205 ) (0.165 ) (0.202 ) (0.380 ) (0.355 ) (0.428 ) (0.518 ) (1.070 ) (0.889 )

β̂0 −0.001 −0.001 −0.001 0.000 0.001 0.000 −0.003 −0.006 −0.004
(0.033 ) (0.035 ) (0.033 ) (0.036 ) (0.039 ) (0.037 ) (0.036 ) (0.072 ) (0.053 )

β̂1 1.001 1.007 0.999 1.011 1.010 1.004 1.011 1.033 1.001
(0.077 ) (0.077 ) (0.077 ) (0.084 ) (0.080 ) (0.080 ) (0.083 ) (0.139 ) (0.078 )

Time:
Loop 1.489 0.441 1.596 0.933 1.670 3.549
# Iterations 3 4 4 5 5 5
Total 5.708 2.185 0.629 7.547 4.965 0.684 9.273 19.786 1.311

# Neighbors 9 9 9 33 33 33 119 119 119

2000 α̂ 0.222 0.189 0.220 0.234 0.166 0.232 0.270 0.064 0.243
(0.156 ) (0.125 ) (0.153 ) (0.292 ) (0.251 ) (0.300 ) (0.463 ) (0.610 ) (0.628 )

β̂0 0.000 0.000 0.000 −0.001 −0.001 −0.001 0.000 −0.001 0.000
(0.023 ) (0.024 ) (0.023 ) (0.026 ) (0.027 ) (0.026 ) (0.027 ) (0.037 ) (0.031 )

β̂1 0.997 1.002 0.996 1.001 1.003 1.001 1.001 1.021 0.998
(0.054 ) (0.054 ) (0.054 ) (0.056 ) (0.056 ) (0.055 ) (0.053 ) (0.156 ) (0.054 )

Time:
Loop 6.381 2.596 5.949 6.381 6.356 21.036
# Iterations 3 4 4 4 5 5
Total 22.786 11.184 2.015 25.671 29.407 2.021 33.666 108.958 3.964

# Neighbors 9 9 9 37 37 37 133 133 133

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root
mean square errors (RMSEs). Computational times in seconds. True values of the regressions parameters fixed
at β0 = 0 and β1 = 1.
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Table A2.2.3: Simulation results for the Spatial Probit model considering the iterative GMM estimator
with approximated gradients (iGMMa), the iterative GMM estimator (iGMM) and the GMM estimator

for the linearized model (LGMM), with α = 0.5 and W based on the radial distance criterion.

δR 1 2 4
N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM
100 α̂ 0.409 0.328 0.684 0.496 −0.110 0.627 0.837 −0.620 0.739

(0.451 ) (0.389 ) (0.686 ) (0.733 ) (1.330 ) (1.528 ) (1.773 ) (4.238 ) (4.292 )

β̂0 −0.002 0.002 0.001 0.007 −0.010 0.005 −0.030 −0.031 −0.049
(0.110 ) (0.118 ) (0.119 ) (0.160 ) (0.509 ) (0.282 ) (0.300 ) (1.054 ) (0.738 )

β̂1 1.051 1.082 0.947 1.121 1.109 1.003 1.066 1.139 1.007
(0.265 ) (0.268 ) (0.250 ) (0.318 ) (0.326 ) (0.259 ) (0.268 ) (0.371 ) (0.264 )

Time:
Loop 0.063 0.033 0.066 0.035 0.069 0.042
# Iterations 5 5 5 5 5 6
Total 0.335 0.203 0.064 0.379 0.223 0.067 0.436 0.300 0.078

# Neighbors 6 6 6 20 20 20 59 59 59

1000 α̂ 0.669 0.477 0.678 0.615 0.376 0.718 0.474 0.274 0.696
(0.267 ) (0.106 ) (0.279 ) (0.414 ) (0.247 ) (0.483 ) (0.554 ) (1.010 ) (0.944 )

β̂0 0.000 0.000 0.000 0.002 0.002 0.002 0.001 0.001 −0.001
(0.019 ) (0.025 ) (0.019 ) (0.027 ) (0.029 ) (0.027 ) (0.041 ) (0.078 ) (0.054 )

β̂1 0.985 1.004 0.961 1.009 1.002 0.990 1.020 1.075 1.003
(0.093 ) (0.076 ) (0.084 ) (0.105 ) (0.076 ) (0.076 ) (0.105 ) (0.296 ) (0.078 )

Time:
Loop 1.557 0.457 1.635 0.959 1.645 3.483
# Iterations 5 5 5 5 5 5
Total 8.076 2.621 0.561 8.765 5.337 0.674 9.473 19.264 1.302

# Neighbors 9 9 9 34 34 34 120 120 120

2000 α̂ 0.705 0.492 0.688 0.698 0.443 0.738 0.553 0.422 0.721
(0.256 ) (0.070 ) (0.245 ) (0.357 ) (0.141 ) (0.386 ) (0.494 ) (0.544 ) (0.670 )

β̂0 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 −0.001
(0.012 ) (0.016 ) (0.012 ) (0.015 ) (0.018 ) (0.015 ) (0.024 ) (0.030 ) (0.026 )

β̂1 0.979 1.004 0.966 1.008 1.005 0.993 1.007 1.050 0.997
(0.065 ) (0.056 ) (0.064 ) (0.062 ) (0.052 ) (0.053 ) (0.058 ) (0.209 ) (0.056 )

Time:
Loop 8.178 3.004 7.848 7.641 6.861 21.501
# Iterations 5 5 5 5 5 5
Total 42.737 16.435 2.237 42.574 41.329 2.379 39.126 116.620 4.037

# Neighbors 10 10 10 36 36 36 136 136 136

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root
mean square errors (RMSEs). Computational times in seconds. True values of the regressions parameters fixed
at β0 = 0 and β1 = 1.
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Table A2.2.4: Simulation results for the Spatial Probit model considering the iterative GMM estimator
with approximated gradients (iGMMa), the iterative GMM estimator (iGMM) and the GMM estimator

for the linearized model (LGMM), with α = 0.8 and W based on the radial distance criterion.

δR 1 2 4
N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM
100 α̂ 0.797 0.575 1.582 0.852 0.397 1.732 1.392 0.004 1.160

(0.589 ) (0.509 ) (1.418 ) (0.985 ) (1.460 ) (2.137 ) (2.318 ) (4.172 ) (5.572 )

β̂0 −0.002 −0.010 −0.007 0.016 0.024 0.010 −0.032 −0.124 0.113
(0.123 ) (0.140 ) (0.305 ) (0.285 ) (0.484 ) (0.604 ) (0.696 ) (1.847 ) (2.455 )

β̂1 0.933 0.995 0.748 0.969 1.000 0.873 1.013 1.040 0.912
(0.274 ) (0.338 ) (0.349 ) (0.277 ) (0.272 ) (0.284 ) (0.260 ) (0.284 ) (0.275 )

Time:
Loop 0.066 0.032 0.067 0.036 0.071 0.042
# Iterations 5 5 5 5 6 6
Total 0.389 0.211 0.062 0.410 0.242 0.068 0.467 0.291 0.076

# Neighbors 6 6 6 21 21 21 60 60 60

1000 α̂ 1.403 0.690 1.584 1.418 1.009 1.853 1.173 1.330 1.824
(0.641 ) (0.117 ) (0.836 ) (0.796 ) (0.711 ) (1.157 ) (0.991 ) (1.257 ) (1.398 )

β̂0 0.002 −0.004 0.001 −0.007 −0.001 −0.003 0.010 −0.018 −0.005
(0.044 ) (0.014 ) (0.063 ) (0.060 ) (0.096 ) (0.100 ) (0.113 ) (0.163 ) (0.131 )

β̂1 0.880 0.956 0.799 0.941 1.114 0.916 0.988 1.110 0.973
(0.171 ) (0.080 ) (0.215 ) (0.109 ) (0.350 ) (0.114 ) (0.076 ) (0.258 ) (0.081 )

Time:
Loop 1.673 0.449 1.581 1.046 1.653 3.683
# Iterations 6 6 6 6 5 6
Total 11.297 3.034 0.521 10.185 6.592 0.569 10.449 22.218 1.276

# Neighbors 8 8 8 39 39 39 125 125 125

2000 α̂ 1.255 0.650 1.616 1.522 0.825 1.880 1.795 1.491 1.876
(0.455 ) (0.150 ) (0.844 ) (0.798 ) (0.363 ) (1.141 ) (1.159 ) (1.087 ) (1.283 )

β̂0 −0.007 −0.019 0.002 −0.003 0.009 −0.001 0.001 0.007 0.001
(0.007 ) (0.019 ) (0.044 ) (0.060 ) (0.040 ) (0.071 ) (0.079 ) (0.115 ) (0.086 )

β̂1 0.890 0.986 0.813 0.953 1.129 0.926 0.983 1.264 0.975
(0.110 ) (0.014 ) (0.196 ) (0.091 ) (0.272 ) (0.091 ) (0.060 ) (0.420 ) (0.060 )

Time:
Loop 6.707 2.594 5.965 7.410 5.962 22.797
# Iterations 7 5 6 6 5 6
Total 48.554 14.623 1.728 37.195 47.109 1.916 35.994 135.114 3.671

# Neighbors 8 8 8 44 44 44 143 143 143

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root
mean square errors (RMSEs). Computational times in seconds. True values of the regressions parameters fixed
at β0 = 0 and β1 = 1.
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Table A2.2.5: Simulation results for the Spatial Probit model considering the iterative GMM estimator
with approximated gradients (iGMMa), the iterative GMM estimator (iGMM) and the GMM estimator

for the linearized model (LGMM), with α = 0 and W based on the nearest neighbors criterion.

δNN 0.01 0.1 0.2
N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM
100 α̂ −0.005 −0.001 0.004 0.198 −0.215 0.017 0.249 −0.499 −0.024

(0.225 ) (0.215 ) (0.250 ) (0.570 ) (0.847 ) (0.953 ) (0.776 ) (1.401 ) (1.445 )

β̂0 0.003 0.005 0.002 −0.004 0.019 −0.001 0.004 0.004 0.003
(0.142 ) (0.152 ) (0.141 ) (0.132 ) (0.246 ) (0.183 ) (0.146 ) (0.377 ) (0.266 )

β̂1 1.050 1.083 1.024 1.106 1.097 1.018 1.133 1.140 1.033
(0.256 ) (0.267 ) (0.257 ) (0.295 ) (0.279 ) (0.257 ) (0.289 ) (0.305 ) (0.260 )

Time:
Loop 0.061 0.032 0.063 0.035 0.066 0.037
# Iterations 4 4 5 5 5 5
Total 0.288 0.181 0.061 0.353 0.224 0.066 0.376 0.242 0.064

% Asymmetry 0.274 0.274 0.274 0.151 0.151 0.151 0.146 0.146 0.146

1000 α̂ 0.012 −0.015 0.004 0.184 −0.260 0.028 0.264 −0.654 −0.025
(0.227 ) (0.229 ) (0.230 ) (0.561 ) (1.102 ) (0.812 ) (0.645 ) (1.959 ) (1.345 )

β̂0 0.001 0.002 0.002 0.000 0.002 0.003 0.001 0.005 0.001
(0.044 ) (0.045 ) (0.044 ) (0.040 ) (0.076 ) (0.053 ) (0.041 ) (0.127 ) (0.074 )

β̂1 1.003 1.006 1.002 1.016 1.028 1.003 1.015 1.031 1.006
(0.077 ) (0.077 ) (0.078 ) (0.082 ) (0.174 ) (0.077 ) (0.087 ) (0.138 ) (0.078 )

Time:
Loop 1.382 0.495 1.568 2.324 1.575 5.631
# Iterations 3 4 5 5 5 5
Total 5.420 2.430 0.549 8.526 12.931 0.969 9.796 31.838 1.970

% Asymmetry 0.130 0.130 0.130 0.106 0.106 0.106 0.125 0.125 0.125

2000 α̂ 0.006 −0.021 0.000 0.176 −0.309 −0.030 0.303 −0.426 0.032
(0.232 ) (0.242 ) (0.232 ) (0.583 ) (1.104 ) (0.838 ) (0.708 ) (1.903 ) (1.258 )

β̂0 −0.001 −0.001 −0.001 −0.001 0.003 0.000 0.000 −0.001 0.002
(0.029 ) (0.031 ) (0.030 ) (0.030 ) (0.052 ) (0.040 ) (0.028 ) (0.070 ) (0.049 )

β̂1 1.000 1.001 0.999 1.005 1.019 1.000 1.007 1.020 1.001
(0.053 ) (0.053 ) (0.053 ) (0.055 ) (0.119 ) (0.054 ) (0.056 ) (0.113 ) (0.055 )

Time:
Loop 6.846 4.995 6.435 38.929 6.486 49.120
# Iterations 3 4 5 5 5 5
Total 26.624 21.849 2.248 36.496 205.426 5.626 47.796 279.975 14.784

% Asymmetry 0.102 0.102 0.102 0.101 0.101 0.101 0.123 0.123 0.123

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root
mean square errors (RMSEs). Computational times in seconds. True values of the regressions parameters fixed
at β0 = 0 and β1 = 1.
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Table A2.2.6: Simulation results for the Spatial Probit model considering the iterative GMM estimator
with approximated gradients (iGMMa), the iterative GMM estimator (iGMM) and the GMM estimator

for the linearized model (LGMM), with α = 0.2 and W based on the nearest neighbors criterion.

δNN 0.01 0.1 0.2
N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM
100 α̂ 0.164 0.163 0.214 0.325 −0.121 0.250 0.293 −0.380 0.203

(0.214 ) (0.218 ) (0.268 ) (0.556 ) (0.828 ) (0.900 ) (0.702 ) (1.394 ) (1.440 )

β̂0 0.002 0.001 0.001 −0.006 −0.002 0.006 −0.009 0.002 0.014
(0.119 ) (0.131 ) (0.115 ) (0.137 ) (0.273 ) (0.184 ) (0.142 ) (0.305 ) (0.231 )

β̂1 1.026 1.071 0.990 1.100 1.103 1.010 1.098 1.148 1.013
(0.251 ) (0.271 ) (0.254 ) (0.291 ) (0.270 ) (0.258 ) (0.274 ) (0.392 ) (0.258 )

Time:
Loop 0.062 0.033 0.064 0.035 0.064 0.037
# Iterations 4 4 5 5 5 5
Total 0.303 0.189 0.061 0.346 0.221 0.064 0.365 0.242 0.067

% Asymmetry 0.273 0.273 0.273 0.152 0.152 0.152 0.147 0.147 0.147

1000 α̂ 0.237 0.185 0.236 0.257 −0.087 0.226 0.366 −0.344 0.196
(0.241 ) (0.188 ) (0.239 ) (0.518 ) (0.933 ) (0.814 ) (0.614 ) (1.827 ) (1.333 )

β̂0 0.000 0.000 0.000 0.003 0.000 0.001 0.000 0.004 −0.002
(0.033 ) (0.035 ) (0.033 ) (0.038 ) (0.065 ) (0.050 ) (0.040 ) (0.105 ) (0.074 )

β̂1 1.002 1.006 0.999 1.010 1.036 1.001 1.016 1.033 1.006
(0.082 ) (0.080 ) (0.080 ) (0.076 ) (0.164 ) (0.075 ) (0.085 ) (0.135 ) (0.079 )

Time:
Loop 1.300 0.488 1.474 2.163 1.546 5.685
# Iterations 4 4 5 5 5 5
Total 5.288 2.398 0.502 7.908 11.903 0.943 9.723 32.795 1.964

% Asymmetry 0.130 0.130 0.130 0.106 0.106 0.106 0.125 0.125 0.125

2000 α̂ 0.227 0.174 0.224 0.300 −0.081 0.221 0.386 −0.340 0.190
(0.238 ) (0.194 ) (0.237 ) (0.538 ) (0.992 ) (0.831 ) (0.647 ) (1.730 ) (1.249 )

β̂0 −0.001 −0.001 −0.001 0.000 0.000 0.001 −0.001 0.001 −0.002
(0.023 ) (0.024 ) (0.023 ) (0.026 ) (0.045 ) (0.035 ) (0.029 ) (0.072 ) (0.047 )

β̂1 1.000 1.003 0.999 1.009 1.029 1.003 1.007 1.022 1.000
(0.053 ) (0.053 ) (0.053 ) (0.067 ) (0.125 ) (0.052 ) (0.061 ) (0.098 ) (0.056 )

Time:
Loop 5.646 4.368 6.266 38.941 6.251 48.360
# Iterations 4 4 5 5 5 5
Total 22.771 19.424 1.836 36.008 203.903 5.603 46.456 271.254 14.558

% Asymmetry 0.103 0.103 0.103 0.101 0.101 0.101 0.123 0.123 0.123

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root
mean square errors (RMSEs). Computational times in seconds. True values of the regressions parameters fixed
at β0 = 0 and β1 = 1.
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Table A2.2.7: Simulation results for the Spatial Probit model considering the iterative GMM estimator
with approximated gradients (iGMMa), the iterative GMM estimator (iGMM) and the GMM estimator

for the linearized model (LGMM), with α = 0.5 and W based on the nearest neighbors criterion.

δNN 0.01 0.1 0.2
N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM
100 α̂ 0.375 0.393 0.581 0.528 0.132 0.795 0.537 −0.091 0.739

(0.260 ) (0.238 ) (0.397 ) (0.595 ) (0.852 ) (1.233 ) (0.660 ) (1.539 ) (1.476 )

β̂0 0.004 0.005 0.000 −0.009 0.032 0.007 −0.002 −0.015 −0.005
(0.090 ) (0.106 ) (0.083 ) (0.124 ) (0.264 ) (0.282 ) (0.124 ) (0.456 ) (0.295 )

β̂1 1.006 1.092 0.870 1.099 1.114 0.990 1.109 1.162 1.002
(0.241 ) (0.301 ) (0.285 ) (0.305 ) (0.324 ) (0.253 ) (0.314 ) (0.407 ) (0.265 )

Time:
Loop 0.064 0.033 0.065 0.035 0.066 0.037
# Iterations 5 5 5 5 5 5
Total 0.354 0.206 0.062 0.375 0.227 0.063 0.385 0.246 0.066

% Asymmetry 0.274 0.274 0.274 0.151 0.151 0.151 0.147 0.147 0.147

1000 α̂ 0.683 0.459 0.706 0.509 0.316 0.721 0.463 0.073 0.744
(0.294 ) (0.111 ) (0.315 ) (0.569 ) (0.855 ) (0.853 ) (0.672 ) (1.682 ) (1.274 )

β̂0 0.000 0.000 0.000 0.000 0.004 0.001 −0.002 −0.004 −0.003
(0.020 ) (0.025 ) (0.020 ) (0.037 ) (0.066 ) (0.048 ) (0.041 ) (0.114 ) (0.072 )

β̂1 0.999 1.006 0.972 1.010 1.060 1.000 1.018 1.053 0.999
(0.093 ) (0.075 ) (0.080 ) (0.078 ) (0.199 ) (0.075 ) (0.099 ) (0.211 ) (0.082 )

Time:
Loop 1.469 0.521 1.499 2.183 1.562 5.623
# Iterations 5 5 5 5 5 5
Total 7.873 2.937 0.517 8.560 12.478 0.938 10.004 32.083 1.964

% Asymmetry 0.131 0.131 0.131 0.106 0.106 0.106 0.126 0.126 0.126

2000 α̂ 0.702 0.462 0.721 0.547 0.390 0.731 0.485 0.293 0.698
(0.301 ) (0.104 ) (0.321 ) (0.557 ) (0.814 ) (0.832 ) (0.692 ) (1.647 ) (1.338 )

β̂0 −0.001 −0.001 −0.001 0.002 0.002 0.002 0.001 0.005 0.003
(0.014 ) (0.018 ) (0.014 ) (0.025 ) (0.041 ) (0.032 ) (0.030 ) (0.065 ) (0.056 )

β̂1 0.998 1.003 0.984 1.009 1.058 1.000 1.011 1.033 0.999
(0.057 ) (0.056 ) (0.058 ) (0.055 ) (0.190 ) (0.053 ) (0.067 ) (0.176 ) (0.052 )

Time:
Loop 7.442 5.147 6.422 38.466 6.764 48.674
# Iterations 5 5 5 5 5 5
Total 40.022 27.738 1.980 38.652 208.172 5.454 48.511 274.855 14.525

% Asymmetry 0.102 0.102 0.102 0.101 0.101 0.101 0.123 0.123 0.123

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root
mean square errors (RMSEs). Computational times in seconds. True values of the regressions parameters fixed
at β0 = 0 and β1 = 1.
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Table A2.2.8: Simulation results for the Spatial Probit model considering the iterative GMM estimator
with approximated gradients (iGMMa), the iterative GMM estimator (iGMM) and the GMM estimator

for the linearized model (LGMM), with α = 0.8 and W based on the nearest neighbors criterion.

δNN 0.01 0.1 0.2
N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM
100 α̂ 0.377 0.637 1.609 0.839 0.411 1.928 0.767 0.166 1.897

(0.472 ) (0.249 ) (15.527 ) (0.699 ) (0.698 ) (1.920 ) (0.885 ) (1.562 ) (2.322 )

β̂0 0.012 0.003 0.171 0.004 −0.004 −0.008 0.023 0.070 0.031
(0.079 ) (0.092 ) (5.020 ) (0.174 ) (0.197 ) (0.442 ) (0.238 ) (0.633 ) (0.730 )

β̂1 0.805 0.984 0.577 0.954 0.998 0.798 1.002 1.048 0.860
(0.296 ) (0.359 ) (0.478 ) (0.255 ) (0.255 ) (0.310 ) (0.279 ) (0.341 ) (0.284 )

Time:
Loop 0.064 0.033 0.065 0.034 0.065 0.037
# Iterations 5 6 6 5 6 5
Total 0.356 0.234 0.065 0.409 0.221 0.063 0.422 0.252 0.066

% Asymmetry 0.272 0.272 0.272 0.152 0.152 0.152 0.145 0.145 0.145

1000 α̂ 1.523 0.627 1.773 1.049 1.329 1.942 0.877 1.190 1.720
(0.792 ) (0.176 ) (1.028 ) (0.824 ) (1.283 ) (1.461 ) (0.854 ) (1.752 ) (1.618 )

β̂0 0.016 0.000 −0.002 −0.005 0.005 0.003 −0.001 0.008 −0.001
(0.046 ) (0.019 ) (0.078 ) (0.053 ) (0.176 ) (0.139 ) (0.066 ) (0.192 ) (0.172 )

β̂1 0.881 0.979 0.817 0.997 1.150 0.968 0.994 1.074 0.980
(0.139 ) (0.090 ) (0.197 ) (0.107 ) (0.307 ) (0.085 ) (0.086 ) (0.270 ) (0.080 )

Time:
Loop 1.464 0.541 1.456 2.188 1.512 5.654
# Iterations 6 6 6 6 5 6
Total 9.445 3.432 0.421 8.984 13.301 0.860 10.190 33.624 1.894

% Asymmetry 0.128 0.128 0.128 0.105 0.105 0.105 0.125 0.125 0.125

2000 α̂ 1.786 0.621 1.850 1.759 1.477 1.900 1.462 1.130 1.701
(1.034 ) (0.179 ) (1.089 ) (1.236 ) (1.190 ) (1.391 ) (1.227 ) (1.747 ) (1.590 )

β̂0 −0.001 0.010 −0.001 −0.002 −0.001 −0.005 0.002 −0.018 −0.007
(0.031 ) (0.010 ) (0.065 ) (0.065 ) (0.133 ) (0.096 ) (0.065 ) (0.139 ) (0.119 )

β̂1 0.859 0.975 0.886 0.994 1.176 0.987 0.998 1.056 0.990
(0.150 ) (0.025 ) (0.125 ) (0.061 ) (0.348 ) (0.057 ) (0.059 ) (0.190 ) (0.054 )

Time:
Loop 6.170 4.801 5.842 39.105 5.834 47.706
# Iterations 6 6 5 6 5 6
Total 38.760 30.506 1.885 36.167 227.035 5.528 43.368 282.436 14.560

% Asymmetry 0.100 0.100 0.100 0.101 0.101 0.101 0.123 0.123 0.123

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root
mean square errors (RMSEs). Computational times in seconds. True values of the regressions parameters fixed
at β0 = 0 and β1 = 1.
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B2. Empirical application

Table B2.1: Descriptive statistics for the variables included in the empirical application on the com-
petitiveness in the U.S. Metropolitan Statistical Areas

Mean Std. Dev. Min Q1 Median Q3 Max N
BCI 0.147 0.354 0.000 0.000 0.000 0.000 1.000 4,848
AQImin 0.131 0.086 0.000 0.060 0.120 0.190 0.430 4,848
AQImax 1.514 0.931 0.380 1.120 1.430 1.710 22.120 4,848
% days O3 0.480 0.276 0.000 0.312 0.468 0.682 1.000 4,848
% days PM2.5 0.406 0.273 0.000 0.192 0.386 0.584 1.000 4,848
% days PM10 0.030 0.101 0.000 0.000 0.000 0.011 1.000 4,848
% days CO 0.008 0.048 0.000 0.000 0.000 0.000 0.738 4,848
% days SO2 0.052 0.126 0.000 0.000 0.000 0.019 0.962 4,848
% days NO2 0.024 0.056 0.000 0.000 0.000 0.019 0.499 4,848
% days Above Moderate 0.370 0.213 0.000 0.202 0.344 0.504 0.966 4,848
% days Exceptional Events 0.024 0.092 0.000 0.000 0.000 0.000 0.940 4,848

Figure B2.1: Centroids of the U.S. Metropolitan Statistical Areas included
in the empirical application
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Table B2.2: Spatial lag Probit estimation results for the empirical application on the com-
petitiveness in the U.S. Metropolitan Statistical Areas

Dependent variable: BCI

UNRESTRICTED MODEL RESTRICTED MODEL

(iGMMa) (iGMM) (LGMM) (iGMMa) (iGMM) (LGMM)

Intercept 0.046 0.178 −0.423 −0.059 0.194 −0.328
(0.806 ) (0.932 ) (1.136 ) (0.796 ) (0.900 ) (1.144 )

AQImin −2.370∗∗ −2.589∗∗ −3.022∗∗∗ −2.154∗∗ −2.339∗∗ −2.749∗∗∗
(1.039 ) (1.061 ) (0.990 ) (1.025 ) (1.047 ) (0.989 )

AQI2min 6.630∗∗ 8.078∗∗ 8.850∗∗∗ 6.213∗ 7.423∗∗ 8.419∗∗

(3.354 ) (3.319 ) (3.261 ) (3.336 ) (3.299 ) (3.280 )

AQImax −0.022 −0.033 0.024
(0.085 ) (0.090 ) (0.094 )

AQI2max 0.004 0.004 −0.003
(0.005 ) (0.006 ) (0.008 )

% days O3 0.776 0.780 0.674 0.703∗∗∗ 0.640∗∗ 0.643∗∗∗

(0.589 ) (0.622 ) (0.553 ) (0.247 ) (0.250 ) (0.236 )

% days PM2.5 0.396 0.366 0.349 0.445∗ 0.325 0.435∗∗

(0.586 ) (0.611 ) (0.573 ) (0.232 ) (0.231 ) (0.215 )

% days PM10 0.965 0.967 0.884
(0.717 ) (0.750 ) (0.632 )

% days SO2 −0.717 −0.524 −0.917
(0.676 ) (0.698 ) (0.662 )

% days NO2 0.400 0.395 0.626
(0.942 ) (0.964 ) (0.897 )

% days Above Moderate 0.334 0.231 0.421
(0.352 ) (0.375 ) (0.327 )

% days Exceptional Events 0.116 0.241 0.056
(0.359 ) (0.371 ) (0.373 )

Spatial Lag (α̂) 0.771∗∗∗ 0.686∗∗∗ 0.954∗∗ 0.768∗∗∗ 0.711∗∗∗ 1.051∗∗∗

(0.051 ) (0.056 ) (0.375 ) (0.052 ) (0.055 ) (0.388 )

Observations 4,848 4,848 4,848 4,848 4,848 4,848

# Neighbors (average) 16 16 16 16 16 16

# Iterations 11 14 – 15 18 –

Total Time (in seconds) 33.999 123.689 7.102 34.928 154.002 6.891

# Instruments 141 141 141 113 113 113

Wald test (overall sig.) 24.155 23.004 30.584 11.123 12.490 15.435
(p-value) (0.012 ) (0.018 ) (0.001 ) (0.025 ) (0.014 ) (0.004 )

Wald test (excl. restr.)1 – – – 12.783 9.999 15.781
(p-value) (–) (–) (–) (0.078 ) (0.189 ) (0.027 )

Hansen’s J test 85.178 49.565 1124.975 77.899 44.497 1530.180
(p-value) (0.911 ) ≈(1.000 ) ≈(0.000 ) (0.638 ) ≈(1.000 ) ≈(0.000 )

McFadden R2 0.038 0.061 −0.428 0.037 0.058 −0.662
ρ2(Ŷ , Y ) 0.056 0.061 0.033 0.055 0.059 0.003

%(Ŷ = Y ) 0.861 0.856 0.679 0.859 0.856 0.559

NOTE: Robust standard errors in parentheses, based on Kelejian and Prucha (2007). Time effects
and Mundlak variables were added. Significance at the 1%, 5% and 10% levels indicated by ∗∗∗,
∗∗ and ∗, respectively.

1 Wald test for exclusion restrictions. Under the null hypothesis, the coefficients for the vari-
ables AQImax, AQI2max, % days PM10, % days SO2, % days NO2, % days Above Moderate and
% days Exceptional Events are jointly equal to zero.
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Chapter 3

Fractional responses with spatial depen-
dence

3.1. Introduction

Fractional responses refer to continuous variables on the interval [0, 1]. Depend-

ing on the nature of the data, the fractional responses can also be defined on [0, 1),

(0, 1] and (0, 1). These variables differ from the binary case, once they can assume

any value between 0 and 1.

Several examples can be found in the literature, where fractional responses are

used as the dependent variable. The participation rates in 401(k) pension plans

(Papke and Wooldridge, 1996), test pass rates (Papke and Wooldridge, 2008), the

bilateral intra-industry trade index (Proença and Faustino, 2015), the size-to-exports

ratio of a firm (Wagner, 2001), the exports-to-growth ratio of a firm (Fryges, 2009),

the degree of financial leverage of a firm (McDonald, 2009; Ramalho and Ramalho,

2017; Ramalho et al., 2014) and the proportion of losses covered by insurance compa-

nies (Sigrist and Stahel, 2011) are examples of dependent variables that are bounded

between zero and one. However, none of the existing articles consider a spatial ap-

proach to estimation. In fact, the Spatial Econometrics literature on fractional

responses is considerably scarce. To the best of the author’s knowledge, only Lin

and Lee (2010) and Xu and Lee (2015a) explicitly consider a spatial framework to

develop models for fractional responses.

Lin and Lee (2010) estimate a linear spatial lag model to address the spa-

tial, social and economic effects over teenage pregnancy rates in the U.S. Counties.

However, considering a linear approach to model fractional responses has two major
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drawbacks, similar to those of the linear probability model for dichotomous responses

(see also Papke and Wooldridge, 1996). One, the predicted values of the fractional

dependent variable do not necessarily lie in the closed interval [0, 1]. Two, the linear

model fails to account for diminishing effects of the exogenous explanatory variables

over the teenage pregnancy rates.

More recently, Xu and Lee (2015a) made an important theoretical contribu-

tion, addressing the specification and the estimation of spatially lagged models for

fractional responses in the open interval (0, 1). The authors consider a nonlin-

ear spatial lag model with nonadditive errors, Yi = F
(
α
∑

j 6=iwijYj + Xiβ + ei

)
,

where Yi ∈ (0, 1) and ei is an i.i.d. random error. The function F (·) is assumed to

be strictly increasing and continuous on R. Under these assumptions, the inverse,

F−1 (·), exists and the responses, Yi, can be transformed in such a way that the

transformed model can handle any real value. Hence, the model can be written

as F−1 (Yi) = α
∑

j 6=iwijYj + Xiβ + ei and the transformed fractional dependent

variable, F−1 (Yi), is now a linear function of the parameters. This procedure is

usually referred to as the inverse transformation approach. Estimation is based on

Maximum Likelihood or Two-Stage Least Squares methods. These estimators are

shown to be consistent and asymptotically normal.

Nevertheless, there are two important limitations related to Xu and Lee (2015a)

inverse transformation approach. First, the inverse transformation is not well de-

fined if Yi takes on the values 0, 1 or both with positive probability. The in-

verse function F−1 (Yi) → ±∞, as Yi → 0 or Yi → 1. Second, even if the in-

verse transformation is well defined – i.e., Yi ∈ (0, 1) –, it is not possible to re-

cover the conditional expectation of the retransformed fractional dependent vari-

able, E (Yi |X,W,Y−i), without further assumptions. This is because, in gen-

eral, E (Yi |X,W,Y−i) 6= F (E [Yi |X,W,Y−i]). The conditional expectation of

the retransformed fractional dependent variable is given by E (Yi |X,W,Y−i) =∫
A F

(
α
∑

j 6=iwijYj + Xiβ + e
)

d D (e |X,W,Y−i), whereA ⊆ RN and D (e |X,W,Y−i)

is the distribution function of e = F−1 (Y)−αWY−Xβ conditional on (X,W,Y−i),
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with Y−i the (N − 1) × 1 vector of responses excluding the ith response. To esti-

mate E (Y |X,W,Y−i), the conditional distribution D (e |X,W,Y−i) has to be es-

timated first, once the responses, Y, are correlated with the errors, e. Alternatively,

one may consider the smearing method of Duan (1983). This method has the advan-

tage of not requiring a fully parametric specification for the conditional distribution

D (e |X,W,Y−i), to estimate E (Yi |X,W,Y−i). The smearing estimate for the

conditional expectation is given by Ê (Yi |X,W,Y−i) = N−1
∑N

l=1 F
(
α̂
∑

j 6=iwijYj + Xiβ̂ + êl

)
,

where α̂ and β̂ can be obtained from the estimators proposed by Xu and Lee (2015a),

considering the regression with the transformed fractional dependent variable, and

êl are the corresponding residuals. However, Mullahy (1998), Manning and Mul-

lahy (2001) and Manning et al. (2005) show that, under a non-spatial nonlinear

framework and for the case where the error is heteroskedastic, the smearing esti-

mate suffers from severe bias. Using similar arguments, their findings also apply

to spatial nonlinear approaches. The estimates α̂ and β̂ are identified, but het-

eroskedasticity yields an attenuation bias. As a consequence, the smearing estimate

for Ê (Yi |X,W,Y−i) can be quite misleading, even if an estimate for the error vari-

ance is used. See also Papke and Wooldridge (1996, 2008) for further discussion on

fractional responses under non-spatial frameworks.

In this chapter, two new specifications to model fractional responses with spa-

tial dependence are proposed. Rather than applying ad hoc transformations or other

arbitrary adjustments to the fractional dependent variable, both specifications ex-

plicitly consider a functional form for the conditional expectation of interest. Thus,

responses defined in the closed interval [0, 1] are admitted. The suggested specifica-

tions rely on a set of non-restrictive assumptions, based on Xu and Lee (2015a).

The first specification, the Fractional Response Spatial Lag Model (FRSLM),

extends the work of Papke and Wooldridge (1996) to model fractional responses

with spatial data. Spatial dependence is introduced in the proposed specification

through a spatial lag of the fractional dependent variable, inside a nonlinear func-

tion. In fact, the FRSLM is analogous to the specification of Xu and Lee (2015a),

differing from the latter in two important ways. One, the FRSLM considers addi-

tive errors, whereas the specification of Xu and Lee (2015a) considers non-additive
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errors. Hence, under the setup of the FRSLM, the inverse transformation approach

is not useful, even if the responses are defined in the open interval (0, 1). Two, the

FRSLM allows to directly estimate E (Yi |X,W,Y−i) and the corresponding partial

effects, without requiring additional operations, such as multivariate integration or

smearing-type estimators. Estimation can be addressed by simple parametric pro-

cedures, such as Two-Stage Nonlinear Least Squares. Furthermore, the predicted

values lie inside the admissible interval.

The second specification, the approximate Fractional Response Spatial Lag

Model (aFRSLM), consists in a first order series approximation of the FRSLM

around the spatial lag parameter equal to zero. The usefulness of this approach

is threefold. First, it allows to write the FRSLM as an approximate reduced form,

with a tractable analytic expression, comparable to a partially linear model. Note

that, for general nonlinear simultaneous models, the expression for the reduced form

(if it exists) does not have a known functional form and can only be obtained through

computationally complex numerical methods. Second, it allows to straightforwardly

obtain an approximate estimate for E (Yi |X,W) and for the corresponding partial

effects. Just as in the FRSLM, no additional operations are required and the estima-

tion can be addressed by simple parametric methods. Third, the partial effects based

on the approximate reduced form can be expressed as a sum of nonlinear functions

of the exogenous explanatory variables and their spatial lags. This specification is of

particular interest, regarding policy analysis, especially if the sample of spatial units

is viewed as resulting from a steady-state relationship between the responses and

the exogenous explanatory variables (see also LeSage and Pace, 2010). In this way,

policy changes can be interpreted as movements to another steady-state solution. A

similar interpretation is not possible for the FRSLM, once the corresponding partial

effects depend on both exogenous explanatory variables and endogenous spatially

lagged responses. The aFRSLM, however, has one important limitation. Predic-

tions may fall outside the admissible interval. Nevertheless, simulations show that

the proportion of predicted responses Ŷi 6∈ [0, 1] is negligible.

Other approaches to model fractional responses are available. Examples are

the two-part models (see Cook et al., 2008; Ramalho et al., 2011; Ramalho and
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da Silva, 2009) and the two-limit Tobit models (see amongst others, Kieschnick

and McCullough, 2003; McDonald, 2009; Sigrist and Stahel, 2011; Wagner, 2001).

But they rely on certain characteristics of the fractional dependent variable, such

as piled-up observations at the corners 0 and/or 1. In practice, this may not be

necessarily the case for the majority of applications using fractional responses and

these approaches end up to be logically inconsistent. See also Wooldridge (2010) for

a discussion on this matter.

Estimation is addressed by the iterative Generalized Method of Moments (iGMM)

procedure of Klier and McMillen (2008), revisited in Chapter 2. The spatial het-

eroskedasticity and spatial autocorrelation (spatial HAC) robust estimator of Kele-

jian and Prucha (2007) is considered, to produce valid inference for the asymptotic

covariance estimator of the GMM estimator for the unknown parameter vector.

A detailed Monte Carlo simulation study will show that the iGMM estimator

is accurate and precise to estimate the unknown parameter vector, especially for

the FRSLM. In addition, for higher levels of spatial dependence and denser spatial

weighting matrix, the iGMM estimator for the aFRSLM proves to be more accurate

than the FRSLM to estimate the spatial lag parameter. Furthermore, the partial

effects obtained from the estimation of both the FRSLM and the aFRSLM tend

to be quite accurate and precise. The performance of a Two-Stage Least Squares

(2SLS) estimator, for the Linear Spatial Lag Model (LSLM), is also assessed and

compared with the iGMM estimator for the proposed specifications. Results show

that the 2SLS parameter estimates and the estimates for the partial effects can be

quite misleading, as expected.

The remainder of the chapter is organized as follows. Section 3.2 introduces

the two new specifications (FRSLM and aFRSLM) for spatially lagged fractional

responses and deduces their corresponding partial effects. Section 3.3 presents the

GMM estimation procedure and the gradients are deduced. Section 3.4 conducts an

extensive Monte Carlo simulation study. The structure of the simulated fractional

dependent variable is assessed. Next, the statistical properties of both the iGMM

estimator and 2SLS estimator are discussed for each of the two specifications and the

linear model, respectively. In addition, the statistical properties of the corresponding
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partial effects are discussed, as well, using the previous estimates. Finally, section 3.5

concludes. The Monte Carlo simulation results are summarized in Section A3.

3.2. Specifications and quantities of interest for spatially
lagged fractional responses

In this section, two specifications to model spatially lagged fractional responses

are presented and the underlying assumptions are stated. Also, the corresponding

partial effects are deduced. The first specification is the Fractional Response Spatial

Lag Model (FRSLM) and the second specification is the approximate Fractional

Response Spatial Lag Model (aFRSLM). These specifications can handle responses

that take on values in the closed interval [0, 1]. This is because no transformations

are applied to the fractional dependent variable. The FRSLM considers the atractive

functional forms developed by Papke and Wooldridge (1996) and introduces spatial

dependence into their suggested specifications through a spatial lag of the fractional

dependent variable. The FRSLM is also related to the specification of Xu and Lee

(2015a), differing in the way the errors enter the expression. The former considers

additive errors, whereas the latter considers non-additive errors. The aFRSLM

consists in a first order series approximation of the FRSLM around the spatial lag

parameter equal to zero. Under this specification, the FRSLM can be written as

an approximate reduced form, with a tractable analytic expression, that is generally

not possible for the majority of nonlinear simultaneous models. Additionally, the

partial effects can be approximated by sums of nonlinear functions of exogenous

explanatory variables and their spatial lags. In this way, measuring the effects of

policy changes becomes more intuitive, as the reduced form can be interpreted as

a steady-state relationship between the responses and the exogenous explanatory

variables.

3.2.1. The Fractional Response Spatial Lag Model (FRSLM)

The Fractional Response Spatial Lag Model (FRSLM) follows as:

Yi = G

(
α
∑
j 6=i

wijYj + Xiβ

)
+ ui, i, j = 1, 2, . . . , N (56)
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where Yi is a bounded dependent variable on the interval [0, 1], for the ith spatial

unit, with i = 1, 2, . . . , N and N denoting the total number of spatial units. The

function G (η) is a link function defined in the open interval (0, 1), for all η ∈ R, and

η is usually referred to as the index. The coefficients wij are non-negative scalars that

correspond to the spatial weights of unit j on unit i, with i 6= j and j = 1, 2, . . . , N .

Also, by convention, wii = 0, for all i. The scalar α is the spatial lag parameter.

he 1×K vector Xi includes the observations for a set of K exogenous explanatory

variables and a constant, for the unit i. The K × 1 vector β is the corresponding

vector of regression parameters. The disturbance term, ui, is a random error, for

the ith spatial unit, defined on the closed interval [−G (ηi) , 1−G (ηi)].

Stacking over the spatial units yields:

Y = G (αWY + Xβ) + u (57)

where Y = [Y1, Y2, . . . , YN ]ᵀ is an N × 1 vector of fractional responses. The N ×K

matrix of exogenous explanatory variables is X = [Xᵀ
1,X

ᵀ
2, . . . ,X

ᵀ
N ]ᵀ, with Xi =

[1, xi2, . . . , xiK ], for i = 1, 2, . . . , N , and the corresponding K × 1 parameter vector

is β = [β1, β2, . . . , βK ]ᵀ. The N × 1 vector of random errors is u = [u1, u2, . . . , uN ]ᵀ.

The matrix W is the N × N spatial weighting matrix, with generic element wij.

By definition, W is a non-stochastic non-negative matrix with zeros on its main

diagonal.

Before presenting additional details, it is useful to list a set of assumptions

that underlie the proposed model. These assumptions are commonly used in the

literature of nonlinear models with spatial dependence (see e.g. Conley, 1999; Jenish

and Prucha, 2009, 2012) and follow along the lines of Xu and Lee (2015a). They

focus on the geographical setting, the structure of the spatial weighting matrix, on

the properties of the link function and on the statistical properties of the error term.

Assumption 3.1. The spatial units are located in a region DN ⊂ D ⊂ Rd, where

limN→∞|DN | =∞ and Rd is the finite dimensional Euclidean space of dimension d.

The distance between every two spatial units is larger than or equal to a positive

constant, c∗.
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Assumption 3.2. The elements of WN are uniformly bounded and the sequence of

spatial weighting matrices {WN}N∈N is uniformly bounded in both row sums and

column sums.

Assumption 3.3. The link function, G (η), is strictly increasing and twice continu-

ously differentiable, for all η ∈ R.

Assumption 3.4. The first derivative of the link function, w.r.t. the index η, g (η) =

G′(η), is a bounded Lipschitz function.

Assumption 3.5. There is a constant ζ such that, ζ = supα∈A|α| × supη g (η) ×

supN‖WN‖∞ < 1, where A ⊂ R is the compact parameter space of α, ‖WN‖∞ =

max
i=1,2,...,N

∑n
j=1|wij| is the row sum norm.

Assumption 3.6. The random error, ui, has zero mean and is independent of xik, for

all i = 1, 2, . . . , N and k = 1, 2, . . . , K.

Assumption 3.1 establishes that one cannot have an infinite number of spatial

units in a bounded space. Therefore, increasing-domain asymptotics is implied, while

infill-type asymptotics are ruled out7. Assumption 3.2 involve standard boundedness

conditions for W. Assumption 3.3 ensures the existence and continuity of the first

and second derivative of the link function, g (η) and g′(η), respectively, for all η ∈ R.

Also, g (η) is strictly positive, for all η ∈ R. Assumption 3.4 implies that g′(η) is

bounded, for all η ∈ R, once g (η) is bounded and Lipschitz. Assumption 3.5 is

related to model stability. Provided that W is uniformly bounded in both row sums

and column sums and that g (η) is a bounded function, ζ is finite. For the case where

the working spatial weighting matrix is row standardized, ‖W‖∞ = 1, the constant,

ζ, verifies ζ = supα∈A|α|×supη g (η). Thus, the condition on ζ restricts the parameter

space of α, in the sense that it is satisfied as long as |α| < 1/ supη g (η). Moreover,

under Assumption 3.5, the contraction mapping theorem holds. Assumption 3.6

considers a convenient exogenous and homoskedastic setting for the error term.

In most applications with fractional dependent variables, the link function is

usually specified as a Probit function and G (η) = Φ (η), the standard Normal CDF,

7The statistical properties of a Method of Moments estimator, under both increasing-domain
asymptotics and infill asymptotics, will be addressed in a simulation study (see Section 3.4 for
details).
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or as a Logistic function and G (η) = Λ (η), the standard Logistic CDF. Both speci-

fications are suitable for the proposed framework, once they are defined in the open

interval (0, 1), and satisfy Assumption 3.3 and Assumption 3.4. Similarly, the spatial

weighting matrix can be defined according to a distance-based or a contiguity-based

criterion, once the conditions in Assumption 3.2 hold. This is because dependence

decreases as distance between two spatial units increases. Also, it cannot be the

case that a given spatial unit has infinitely many neighbors. Hence, these criteria

ensure that both row sums and column sums of W are uniformly bounded.

Given the specifications for G (η) and W, and considering that the working W

is row normalized, the stability condition, in Assumption 3.5, depends exclusively on

the boundedness condition for the first derivative of the link function, g (η). Thus,

under the Probit specification, supη φ (η) = 1/
√

2π, where φ (η) is the standard

Normal PDF, and, under the Logistic (or Logit) specification, supη λ (η) = 1/4,

where λ (η) is the standard Logistic PDF. In this way, the parameter space for α is

αProbit ∈
(
−
√

2π,
√

2π
)

and αLogit ∈ (−4, 4), respectively.

Note that other specifications for G (η) are available, that do not necessarily

involve distribution functions (or even known functions). Nevertheless, they must

verify the conditions in Assumption 3.3 and Assumption 3.4, to be applicable to the

proposed framework.

The assumptions on G (η) also have important implications with respect to

the identification and interpretation of the partial effects. A strictly increasing

and (twice) continuously differentiable link function ensures that the partial effects

exist and that their signs remain unchanged for any arbitrary change in η (see

also Wooldridge, 2010; Xu and Lee, 2015a). The general partial effect for the kth

explanatory variable over the ith spatial unit response is given by:

∂Yi
∂xik

= g

(
α
∑
j 6=i

wijYj + Xiβ

)
×

(
α
∑
j 6=i

wij
∂Yj
∂xik

+ βk

)
(58)

where g (·) is the first derivative of the function G (·), w.r.t. the index. Note that

the partial derivative ∂ui/∂xik = 0, for all k = 1, 2, . . . , K, due to Assumption 3.6.
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More compactly, in matrix notation:

∆k = αDg(η)W∆k + Dg(η)βk

⇔∆k =
[
I− αDg(η)W

]−1
Dg(η)βk, ∀k = 1, 2, . . . , K

(59)

where Dg(η) is an N ×N diagonal matrix, whose diagonal elements are g (ηi), with

ηi = α
∑

j 6=iwijYj + Xiβ. The N ×N matrix
[
I− αDg(η)W

]−1
is the FRSLM link

augmented spatial lag operator inverse, with I the N×N identity matrix. Note that,

under the condition in Assumption 3.5, ζ < 1, hence the matrix
[
I− αDg(η)W

]
is

nonsingular.

A particular feature of the partial effects, under spatial frameworks, is that a

unit change in a given explanatory variable produces different responses, for each

spatial unit. In other words, each element of the N × N matrix of partial effects,

for the kth explanatory variable, ∆k, differs in both rows and columns. Thus, ∆k

is not symmetric. Element-wise interpretation of the partial effects is possible, but

it is not common in most of the applications using spatial data. On this matter,

LeSage and Pace (2009) suggest to summarize the partial effects into five measures.

The first measure is the Average Direct Effect:

ADEk =
1

N

N∑
i=1

{[
I− αDg(η)W

]−1
Dg(η)

}
ii
βk

=
1

N
tr
([

I− αDg(η)W
]−1

Dg(η)

)
βk

(60)

the average of the diagonal elements of ∆k, where tr(·) is the trace of a matrix. The

second measure is the Average Total Effect To an observation:

ATETk,j =
1

N

N∑
i=1

{[
I− αDg(η)W

]−1
Dg(η)

}
ij
βk (61)

the average of the jth column of ∆k. The third measure is the Average Total Effect

From an observation:

ATEFk,i =
1

N

N∑
j=1

{[
I− αDg(η)W

]−1
Dg(η)

}
ij
βk (62)
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the average of the ith row of ∆k. The fourth measure is the Average Total Effect:

ATEk =
1

N

N∑
i=1

N∑
j=1

{[
I− αDg(η)W

]−1
Dg(η)

}
ij
βk (63)

the average of all elements of ∆k. Finally, the fifth measure is the Average Indirect

Effect:

AIEk = ATEk − ADEk (64)

the average of the off-diagonal elements of ∆k.

The previous measures for the partial effects can also be evaluated at specific

values of the explanatory variables, say means, medians, maximums, minimums

or at different quantiles. For example, when evaluating the partial effects at the

means, the ith explanatory variables, xi2, . . . , xiK , in (58) are replaced by their

corresponding sample averages, x̄2, . . . , x̄K .

For the case where policy analysis is concerned, the partial effects deduced in

(58) and (59) may be difficult to interpret. This is because, the effects over the

responses, due to a unit change in a given explanatory variable, depend on the all

values of the exogenous explanatory variables and on endogenous the spatially lagged

responses, as well. The notion of policy analysis implies that the endogenous vari-

ables can be expressed as a function of the exogenous explanatory variables, usually

referred to as the reduced form. In other words, as LeSage and Pace (2010) suggest,

it implies that the observed sample of spatial units can be viewed as resulting from

a steady-state relationship between the responses and the exogenous explanatory

variables. Thus, the effects of policy change can be interpreted as convergence to

another steady-state, that only depends (eventually in a nonlinear way) on the val-

ues of the exogenous explanatory variables. However, due to nonlinearity and the

simultaneous nature of the FRSLM in (56) and (57), a reduced form exists8, but it

8Blundell and Matzkin (2014) and Matzkin (2015) show that, under a nonparametric simul-
taneous nonadditive framework and considering a set of assumptions analogous to those of Xu
and Lee (2015a), a reduced form exists and it is observationally equivalent to the corresponding
structural form. In fact, here, the reduced form exists if the model is stable, which is equivalent
to say that Assumption 3.5 holds. Nevertheless, even when simple examples with nonlinear simul-
taneous models are considered, the reduced form expression and the reduced form parameters can
be analytically difficult to interpret.
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is not analytically tractable, contrary to the linear case.

Next, a new specification is presented, that allows to express the FRSLM in

(56) and (57) as an approximate reduced form. This specification addresses the

issue related to the tractability of the reduced form under the general nonlinear

simultaneous framework presented in this section and, consequently, it allows policy

makers to interpret the approximate partial effects as steady-state changes, that are

uniquely driven by the exogenous explanatory variables.

3.2.2. The approximate Fractional Response Spatial Lag Model (aFRSLM)

Consider the first-order series expansion of the FRSLM link function G (·)

around α = 0:

G

(
α
∑
i 6=j

wijYj + Xiβ

)
≈ G (Xiβ) + α g (Xiβ)

∑
i 6=j

wijYj (65)

then the approximate Fractional Response Spatial Lag Model (aFRSLM) follows as:

Yi ≈ G (Xiβ) + α g (Xiβ)
∑
i 6=j

wijYj + ui, i = 1, 2, . . . , N (66)

where the index of the link function is now Xiβ, for each i = 1, 2, . . . , N . Stacking

over the spatial units yields:

Y ≈ G (Xβ) + αDg(Xβ)WY + u⇔ Y ≈
[
I− αDg(Xβ)W

]−1
G (Xβ) + v (67)

where Dg(Xβ) is an N × N diagonal matrix, whose diagonal elements are g (Xiβ).

The new error term is given by v =
[
I− αDg(Xβ)W

]−1
u, where the N ×N matrix[

I− αDg(Xβ)W
]−1

is the aFRSLM link augmented spatial lag operator inverse.

Under this specification, the fractional responses, Y, depend on every element of the

spatial weighting matrix, W, on every element of the matrix of the K exogenous

explanatory variables, X, and on every element of the reduced form disturbances,

v. In addition, Assumption 3.1 to Assumption 3.6 are maintained.
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The link function, G (·), can be specified as a Probit function or a Logit function,

analogous to the FRSLM. In the same manner, the stability condition, ζ < 1, from

Assumption 3.5, remains valid.

However, it is important to note that, under the setting of the aFRSLM, the

predicted values, Ŷi, do not necessarily lie in the open interval (0, 1). This is because

the ith row of the matrix product
[
I− αDg(Xβ)W

]−1
G (Xβ) is bounded between

(1 + ζ)−1 and (1− ζ)−1, for all i = 1, 2, . . . , N (see Proposition 9.4.13. of Bernstein,

2009). For values of ζ > 0.5, it can be especially problematic, once first order

approximations generally start to diverge from the true values9.

As previously mentioned there are two major advantages related to the aFRSLM

specification. First, it allows to express the FRSLM as an approximate reduced form:

E (Y |X) ≈
[
I− αDg(Xβ)W

]−1
G (Xβ) (68)

where the right hand side of the equation is a tractable and estimable nonlinear

function of the parameters. Note that, the conditional expectation E (v |X) = 0

due to Assumption 3.6. In addition, the aFRSLM can be expressed as a sum of

nonlinear functions of the exogenous explanatory variables and their spatial lags.

To see this, consider the series expansion of the inverse:

[
I− αDg(Xβ)W

]−1
= I + αDg(Xβ)W + α2 D2

g(Xβ)W
2 + α3 D3

g(Xβ)W
3 + . . .

=
∞∑
h=0

αh Dh
g(Xβ)W

h
(69)

which converges absolutely for ζ < 1. Hence, the conditional expectation in (68)

can be written as:

E (Y |X,W) ≈ G (Xβ) + αDg(Xβ)WG (Xβ)

+ α2 D2
g(Xβ)W

2G (Xβ) + α3 D3
g(Xβ)W

3G (Xβ) + . . .
(70)

9See Klier and McMillen (2008) for further discussion on the properties of a GMM estimator for
a linearized version of a model for a spatially lagged binary dependent variable, based on a spatially
lagged latent variable framework. See also Chapter 2 for further discussion on the accuracy of an
approximation of the spatial lag operator inverse.

76



Fractional responses with spatial dependence 77

Second, using the conditional expectation in equation (68) allows to interpret the

partial effects as changes in the steady-state relationship between the responses and

the exogenous explanatory variables. The matrix of the approximated partial effects

is given by:

∆k ≈
[
I− αDg(Xβ)W

]−1
Dg(Xβ)βk

+ α
[
I− αDg(Xβ)W

]−1
Dg′(Xβ)W G∗(Xβ) βk

⇔∆k ≈
[
I− αDg(Xβ)W

]−1
×
[
Dg(Xβ) + αDg′(Xβ)W G∗(Xβ)

]
βk, ∀k = 1, 2, . . . , K

(71)

where G∗(Xβ) =
[
I− αDg(Xβ)W

]−1
G (Xβ) and Dg′(Xβ) is an N × N diagonal

matrix, whose diagonal elements are g′(Xiβ). The matrix
[
I− αDg(Xβ)W

]
is non-

singular, once the condition ζ < 1 holds.

The partial effects in (71) can be interpreted as effects of policy changes (see also

LeSage and Pace, 2010) and summarized according to the five measures proposed

by LeSage and Pace (2009), the ADE, ATET, ATEF, ATE and AIE, deduced in the

previous section.

3.3. GMM estimation

The estimation of the proposed models for spatially lagged fractional responses

considers the Generalized Method of Moments (GMM) approach presented on Chap-

ter 2, based on the works of Pinkse and Slade (1998) and Klier and McMillen (2008).

Under the setting of the GMM, it is assumed that the unknown parameter vector

Θ = (α,β) satisfy the following moment condition:

E (Zᵀu) = 0 (72)

where Z = [X,WX,W2X], as suggested by Kelejian and Prucha (1998). The

GMM estimates for the unknown parameter vector, Θ, are obtained by minimizing

the objective function:

Q (Θ) = uᵀZ (ZᵀZ)−1 Zᵀu (73)
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and the GMM estimator reduces to nonlinear two stages least squares (N2SLS). As

the minimization problem in (73) does not have a closed formula, the iterative proce-

dure of Klier and McMillen (2008) is used. In addition, the spatial heteroskedasticity

and spatial autocorrelation robust estimator of Kelejian and Prucha (2007) is con-

sidered, to overcome potential biases in the estimated asymptotic covariance matrix

estimator of the (iterative) GMM estimator. See Section 2.2 in Chapter 2 for details.

The individual gradients for the FRSLM are:

(Γβ)i =
∂ui
∂βᵀ = − g

(
α
∑
j 6=i

wijYj + Xiβ

)
Xi, i = 1, 2, . . . , N (74)

and

(Γα)i =
∂ui
∂α

= − g

(
α
∑
j 6=i

wijYj + Xiβ

)∑
j 6=i

wijYj, i = 1, 2, . . . , N (75)

where g (·) is the first derivative of the function G (·), w.r.t. the index.

The individual gradients for the aFRSLM are:

(Γβ)i =
∂ui
∂βᵀ =− g (Xiβ) Xi

− α g′ (Xiβ) Xi

(∑
i 6=j

wijYj

)
, i = 1, 2, . . . , N

(76)

and

(Γα)i =
∂ui
∂α

= − g (Xiβ)

(∑
i 6=j

wijYj

)
, i = 1, 2, . . . , N (77)

where g′ (·) is the first derivative of the function g (·), w.r.t. the index.

Next, the results for an extensive Monte Carlo simulation study are presented

and discussed. The iterative GMM (iGMM) estimator, presented in this section,

is used to estimate the FRSLM and the aFRSLM for a set of experiments. Its

statistical properties, are assessed in twofold. One, in terms of the accuracy and

precision to estimate the true values for the parameters of interest. Two, in terms of

the performance to estimate the direct effects and the indirect effects. In addition,

they are compared with the statistical properties of the Two-Stage Least Squares
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(2SLS) estimator, for the Linear Spatial Lag Model (LSLM).

3.4. Monte Carlo simulations

In this section, an extensive Monte Carlo simulation study is conducted. The

structure of the simulated fractional dependent variable is presented, for each set

of experiments. The statistical properties of the iterative GMM (iGMM) estimator

for the proposed approaches to model spatially lagged fractional responses – the

Fractional Response Spatial Lag Model (FRSLM) and the approximate Fractional

Response Spatial Lag Model (aFRSLM) – are addressed and compared in detail.

The statistical properties of the iGMM estimator are also compared with those

from the Two-Stage Least Squares (2SLS) estimator, for the Linear Spatial Lag

Model (LSLM). The adequacy of the linear approach to model fractional responses is

assessed and discussed. The estimates obtained from the iGMM and 2SLS estimation

of the corresponding models are also used to estimate two measures for the partial

effects: the Average Direct Effect (ADE) and the Average Indirect Effect (AIE).

Their statistical properties are addressed and compared in detail, as well. All the

estimates are summarized in terms of bias and root mean squared error, considering

a large variety of sampling designs.

3.4.1. Simulation design

The design for the simulation study is based on a simplified version of the

FRSLM in (56), with a single explanatory variable. The link function is assumed

to be the Probit function, Φ (·), and the design for the explanatory variable follows

along the lines of Xu and Lee (2015a), x ∼ 1.5 (I− 0.2W)−1N (0, I), to induce

spatial correlation. The generation of the fractional dependent variable considers

the following model:

Yi = BE−1 (νi;µYi , ψY ) , i = 1, 2, . . . , N (78)

where BE−1 (·) is the quantile function of the Beta distribution, with parameters

µYi and ψY . The parameter µYi is the simulated average of Yi, differing across i,
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and the parameter ψY is a fixed dispersion parameter, for all i.10 The scalar νi is a

randomly drawn quantile from a U (0, 1) distribution. The mean of Yi conditional

on the regressors is given by:

µYi = Φ

(
α
∑
j 6=i

wijYj + β0 + β1xi

)
, i = 1, 2, . . . , N (79)

and the variance of Yi conditional on the regressors is given by:

σ2
Yi

=
µYi (1− µYi)
ψY + 1

, i = 1, 2, . . . , N (80)

Due to the simultaneous nature of the FRSLM, the fractional dependent variable,

Yi, can only be obtained iteratively. Xu and Lee (2015a) show that an iterative

procedure converges, once the conditions of the contraction mapping theorem hold,

under the assumptions presented in Section 3.2.1. Here, the following iterative

procedure is considered:

1. For each i, given the probability νi, generate Y
(0)
i from BE−1

(
νi;µ

(0)
Yi
, ψY

)
,

with µ
(0)
Yi

= Φ (β0 + xiβ1).

2. Construct the next iteration, Y
(1)
i , from BE−1

(
νi;µ

(1)
Yi
, ψY

)
, with

µ
(1)
Yi

= Φ

(
α
∑
j 6=i

wijY
(0)
j + β0 + xiβ1

)

and using the same probability, νi.

3. Repeat step 2., using the values of Yi from the last iteration, until
∣∣∣Y (s)
i − Y

(s−1)
i

∣∣∣ <
10−8, for all i.

Note that, even though BE−1 (νi;µYi , ψY ) is defined on the open interval (0, 1), it is

possible that, numerically, for some i, Yi can take on the values zero and one, due

10See also Paolino (2001), Ferrari and Cribari-Neto (2004) and Ramalho et al. (2011) for appli-
cations with non-spatial data, using the mean-dispersion parameterization of the Beta distribution
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to rounding error of the machine. This is especially meaningful for the case where

ψY is close to zero11.

The spatial weighting matrix, W, is constructed according to the two stage set-

ting described in Section 2.6.1 of Chapter 2. Firstly, theN spatial units are randomly

drawn points in the unit square. Secondly, an initial spatial weighting matrix, W0,

is constructed based on a nearest neighbor criterion; the working spatial weighting

matrix, W, is the row standardized W0. The number of nearest neighbors is given

by δ × N , where δ is the matrix density (the complement of sparsity), the propor-

tion of non-zero elements in W. In this way, the large sample properties of both the

iGMM estimator for the proposed models and the 2SLS estimator for the LSLM can

be addressed according to the frameworks of increasing-domain asymptotics (fixed

δ, increasing N) and of infill asymptotics (increasing δ, fixed N).

The sample sizes N = 100, N = 500 and N = 1000 are considered. The matrix

density parameter, δ, varies over the set {0.01, 0.1, 0.2}. The regression parameters

are held fixed at β0 = −1 and β1 = 1. The spatial lag parameter, α, is designed

to vary over the set {0, 1, 1.5, 2}, once these values satisfy the condition ζ < 1

in Assumption 3.5, provided that supη φ (η) = 1/
√

2π and supn‖W‖∞ = 1. The

dispersion parameter, ψY , varies over the set {0.1, 1, 10}. The matrix of instruments

used in the estimation is given by Z = [X WX W2X]. For each experiment, 1000

replications are used. The experiments were performed in a Linux based server, with

64 GB of RAM and composed by 24 AMD Opteron CPUs, ranging from 0.8 GHz

to 2.1 GHz.

For each set of experiments, the sampling distribution of the vector of simulated

responses, Y, is reported. The parameter estimates, α̂, β̂0 and β̂1, are reported, as

well, for the FRSLM, the aFRSLM and the LSLM. They are summarized by the

mean and the root mean squared error (RMSE). The estimates for both the FRSLM

and aFRSLM are obtained from the iGMM estimator, presented in Section 3.3,

and the estimates for the LSLM are obtained from the 2SLS estimator. The 2SLS

parameter estimates are of particular interest, as the adequacy of considering a linear

11As ψY → 0, the conditional variance of Yi converges to µYi
(1− µYi

), which is equal to the
conditional variance of a dichotomous {0, 1} dependent variable.

81



Fractional responses with spatial dependence 82

approach to estimate models for fractional responses can be assessed. The estimates

for the Average Direct Effect (ADE) and the Average Indirect Effect (AIE) are also

reported for the FRSLM, the aFRSLM and the LSLM. They are summarized by

the mean absolute bias (MAB) and the root mean squared error (RMSE). The true

values for the ADE and the AIE are obtained from the matrix of partial effects of

the FRSLM – see equation (59) –, evaluated at the true values of the parameters

α, β0 and β1. The 2SLS estimates of the LSLM are multiplied by
√

2π, to ensure

comparability with the iGMM estimates of the FRSLM and the iGMM estimates

of the aFRSLM and their corresponding partial effects. All the calculations were

performed using R.

3.4.2. Results

The results of the Monte Carlo experiments are presented in Section A3. The

sampling distributions of the vector of simulated responses, Y, are shown in Sec-

tion A3.1. The simulation results on the statistical properties of the iterative GMM

(iGMM) estimator and the Two-Stage Least Squares (2SLS) estimator are detailed

in Section A3.2. The simulation results on the statistical properties of the Av-

erage Direct Effect (ADE) and of the Average Indirect Effect (AIE), are detailed

in Section A3.3. The simulation results are organized according to the values of

the dispersion parameter, ψY , and the true values of the spatial lag parameter, α.

Also, they are organized according to usefulness of the model specification: first, the

starting point, the Linear Spatial Lag Model (LSLM), second, the true model, the

Fractional Response Spatial Lag Model (FRSLM), third, the proposed alternative,

the approximate Fractional Response Spatial Lag Model (aFRSLM).

The pattern of the sampling distributions of the vector of simulated responses,

Y, tends to be an “U”-shaped curve. This is because the exogenous explanatory

variable is designed in such a way that persistence (in the form of spatial correlation)

is induced in the simulated responses. Hence, even for the case where the α = 0,

there is a source of spatial dependence in Y. Even so, the pattern of the sampling

distributions changes progressively to a reverse “J”-shaped (right-skewed) curve, as

ψY increases (σ2
Yi

decreases) and α → 0. In fact, as ψY increases, the density of
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observations at the corners zero and one decreases, with the decreasing rate being

particularly fast at the corner one, as α → 0. The constant term (held fixed at

β0 = −1) plays an important role on this phenomenon. Under the current simulation

design, the negative sign of β0 implies that the mean of Yi conditional on the regressor

xi – see equation (79) – tends to be skewed toward zero. This effect becomes larger,

as α→ 0, once the magnitude of β0 is greater than the magnitude of the term β1xi,

for almost all i.

With regard to the statistical properties of the estimators, results are consistent

with similar simulation studies (see Xu and Lee, 2015a, and Chapter 2). They can be

summarized in fourfold. One, the 2SLS estimator is substantially more biased than

the iGMM estimator (for both the FRSLM and the aFRSLM). Two, the iGMM

estimator for the FRSLM tends to be the least biased. Three, as ψY decreases

(σ2
Yi

increases), the estimates for the parameters of interest tend to be more biased.

Four, the true value of α does not seem to have a significant effect on the accuracy of

estimators. One important exception is the iGMM estimator for the aFRSLM, when

α ≥ 1.5. In this case, the estimates for β0 and β1 become more biased. However,

this effect is mitigated in the estimation of the ADE and the AIE.

For the case where N is fixed and δ is increasing (the spatial weighting matrix,

W, becomes dense), the estimates for α and β0 tend to display an increasing bias,

whereas the estimates for β1 tend to display a decreasing bias. Two other results

are of particular importance. First, for the case where α = 0 and as δ increases,

both the iGMM estimator and the 2SLS estimator tend to estimate spurious spatial

dependence, i.e., α̂ > 0. Such distortions were already mentioned in Chapter 2

and are discussed in detail by Lahiri (1996) and, more recently, by Lee (2004).

Second, as W becomes dense, the iGMM estimator generally performs better for

the approximated model than for the true model, when estimating α̂. The bias of

the aFRSLM estimates for α tends to decrease as δ goes from 0.01 to 0.1. Similarly,

the bias of the aFRSLM estimates for α̂ tends to decrease as δ goes from 0.1 to 0.2,

but only for the case where the true value of α = 2. These results are consistent

with the findings from Chapter 2.

For the case where δ is fixed and N is increasing, the bias of the estimates for
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the parameters of interest tends to decrease, especially when δ = 0.01. For the case

where δ ≥ 0.1, the bias of the estimates for β1 also tends to decrease, but the bias

of the estimates for α and β0 exhibit a contradicting behavior. In some cases, the

bias increases, while in other cases the bias decreases. This can be explained by the

effect of increasing-domain and infill asymptotics operating together. As a result,

the rate of convergence for the various parameters of interest can be different and

possibly slower than
√
N (see Lee, 2004, , also noted in Chapter 2).

In terms of the RMSEs of the estimated parameters, results show that the

iGMM estimator is more precise than the 2SLS estimator. There are, however, two

exceptions. One, the case where ψY = 1, δ ≥ 0.1 and the true value of α ≤ 1.5.

Two, the case where ψY = 10, δ ≥ 0.1 and the true value of α = 0. Here, the 2SLS

estimator is more precise than the iGMM estimator, when estimating α̂. Results also

show that the iGMM estimator for the FRSLM tends to produce smaller RMSEs

for both α̂ and β̂1, than the iGMM estimator for the aFRSLM. To the contrary, the

iGMM estimator for the FRSLM tends to produce higher RMSEs for β̂0, than the

iGMM estimator for the aFRSLM.

For the case where N is fixed and δ is increasing, the RMSEs largely increase,

especially for α̂. This draws further attention to the estimation issues under infill

asymptotics. For the case where δ is fixed and N is increasing, the RMSEs steadily

decrease and the decreasing rate lowers substantially as δ increases. Once again, this

is a consequence of the combined effect of increasing-domain and infill asymptotics.

Now, focusing on the statistical properties of the estimated partial effects, the

results can be summarized in fourfold. One, the iGMM estimator for the FRSLM

tends to provide the most accurate estimates for the ADE, while the iGMM esti-

mator for the aFRSLM tends to provide the most accurate estimates for the AIE.

Two, the 2SLS estimator provides the least accurate estimates for both the ADE

and AIE. Three, the iGMM estimator for the FRSLM displays a significant amount

of small sample bias for the ADE and the AIE, especially when δ = 0.01. Never-

theless, such bias tends to decrease significantly, as both N and δ increase. Four, the

dispersion parameter, ψY , and the true value of α do not seem to have a significant

effect on the accuracy of the iGMM estimates for both the ADE and the AIE.
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Conversely, the 2SLS estimates for the ADE and the AIE become severely biased,

as the true value of α increases.

For the case where N is fixed and δ is increasing, the estimates for the AIE

tend to display an increasing bias, whereas the estimates for the ADE exhibit an

heterogeneous pattern. Under the FRSLM, the iGMM estimates for the ADE do

not change much. However, under the aFRSLM, the bias tends to increase, as

δ is increasing. Surprisingly, the 2SLS estimates for the ADE tend to display a

decreasing bias. This occurs mainly due to the fact that the bias at δ = 0.01 is,

in some cases, extremely large. As a consequence, this result must be viewed with

caution, once the 2SLS estimates for the ADE (but also for the AIE) tend to be

fairly more biased than the iGMM estimates for both the FRSLM and aFRSLM.

For the case where δ is fixed and N is increasing, both the estimates for the

ADE and the AIE tend to display a decreasing bias. There are, however, two cases

where the bias for ÂIE significantly increases. First, for the iGMM estimator for

the FRSLM, when δ = 0.2 and as N goes from 500 to 1000. Second, for the 2SLS

estimator, when ψY ≥ 1 and the true value of α = 2.

In terms of the RMSEs of the estimated partial effects, they tend to be sub-

stantially large for the 2SLS estimator, while being small for the iGMM estimator.

In fact, the most precise estimates for the ADE are those obtained from the iGMM

estimation of the FRSLM and the most precise estimates for the AIE are those

obtained from the iGMM estimation of the aFRSLM. Results also show that the

inequality RMSE
(
ÂDE

)
< RMSE

(
ÂIE

)
holds for all estimators.

For the case where N is fixed and δ is increasing, the RMSEs for the AIE tend

to increase. This issue becomes more severe for the 2SLS estimator, as ψY increases,

whereas it becomes more severe for the iGMM estimator, as ψY decreases. With

regard to the RMSEs for the ADE, they tend to strictly decrease, for the 2SLS

estimator, but tend to decrease as δ goes from 0.01 to 0.1 and increase as δ goes

from 0.1 to 0.2, for the iGMM estimator.

For the case where δ is fixed and N is increasing, the RMSEs for the ADE

and the RMSEs for the AIE tend to decrease. Exceptions are the iGMM estimator

for the FRSLM (δ = 0.2 and as N goes from 500 to 1000) and the 2SLS estimator
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(ψY ≥ 1 and the true value of α = 2). Here, the RMSEs for the AIE tend to

increase (as well as the corresponding bias). An important remark is related to the

increasing precision of the iGMM estimator for the aFRSLM, when δ = 0.01. In

this case, the RMSEs for both the ADE and the AIE significantly decrease.

The iGMM estimator for the aFRSLM proves to be especially useful to estimate

the AIE, as it performs better than the iGMM estimator for the FRSLM, in terms

of accuracy and precision, for the majority of the simulations. The LSLM proves to

be quite misleading to estimate both the ADE and AIE, as expected.

3.5. Conclusions

In this chapter two new specifications to model fractional responses with spatial

dependence were proposed. No transformations are applied to the responses, hence

observations at the boundaries, zero and one, can be handled. The setup for the

proposed specifications rely on a set of assumptions that are commonly used in the

literature. Most of these assumptions were presented and discussed in detail by Xu

and Lee (2015a).

The first specification, the Fractional Response Spatial Lag Model (FRSLM),

extends the approach of Papke and Wooldridge (1996) to spatial frameworks and

generalizes the approach of Xu and Lee (2015a) to accommodate responses defined

in the closed interval [0, 1]. The FRSLM considers the attractive functional forms

developed by Papke and Wooldridge (1996), while introducing spatial dependence

into their specification through a spatial lag of the fractional dependent variable. In

this way, the corresponding conditional expectation is modeled directly through a

nonlinear function (with possibly known functional form) that includes a set of ex-

ogenous explanatory variables and a spatial lag of the fractional dependent variable.

Moreover, the errors enter the model expression in an additive way, as opposed to

Xu and Lee (2015a). The partial effects are deduced and summarized according to

the five measures suggested by LeSage and Pace (2009) – the Average Direct Effect

(ADE), the Average Total Effect To an observation (ATET), the Average Total Ef-

fect From an observation (ATEF), the Average Total Effect (ATE) and the Average
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Indirect Effect (AIE). However, their interpretation can be troublesome, especially

if policy analysis is concerned. This is because the effects of exogenous changes do

not uniquely depend on the values of the exogenous explanatory variables.

The second specification, the approximate Fractional Response Spatial Lag

Model (aFRSLM), consists in a first order series approximation of the nonlinear

function from the FRSLM, around the spatial lag parameter equal to zero. Under

this approach, the FRSLM can be written as an approximate reduced form, with

a tractable analytic formula, and the true partial effects can be approximated by

sums of nonlinear functions of the exogenous explanatory variables and their spa-

tially lagged values. This approach is particularly useful once the reduced form

expression for nonlinear simultaneous models, such as the FRSLM, has no known

or tractable analytic formula and can only be obtained through complex numerical

methods. In addition, it allows to use the approximate partial effects for policy

analysis and to interpret them as approximate measures for policy changes. The

policy makers do not require prior knowledge of the neighbors responses, to control

for exogenous unit-specific and/or neighbor-specific changes.

The iterative Generalized Method of Moments (iGMM) estimator of Klier and

McMillen (2008) is used to estimate both the FRSLM and the aFRSLM. In addition,

the Two-Stages Least Squares (2SLS) estimator is also considered to estimate the

Linear Spatial Lag Model (LSLM), a popular starting point for analyzing nonlinear

models. The statistical properties of both the iGMM estimator and the 2SLS esti-

mator are assessed through an extensive Monte Carlo simulation study, where the

distribution of the simulated data is typically an U-shaped curve. The simulation

results are consistent with the existing literature.

The adequacy of iGMM estimator for both the FRSLM and the aFRSLM is

shown, regarding the estimation of the unknown parameter vector and the corre-

sponding partial effects, namely the ADE and the AIE. Increasing the variability

of the responses tends to produce more biased estimates, but this effect appears to

be mitigated in the estimation of the ADE and the AIE. The iGMM estimates for

the FRSLM are, generally, the most accurate and precise, for both the unknown

parameter vector and the relevant partial effects. Even so, the iGMM estimator for
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the aFRSLM tends to perform better than the iGMM estimator for the FRSLM,

when estimating the spatial lag parameter for sampling designs with high levels of

spatial dependence and denser spatial weighting matrices, but it tends to be more

biased when estimating the regression parameters. Nevertheless, the iGMM estima-

tor for the aFRSLM proves to be superior to the iGMM estimator for the FRSLM,

when estimating the AIE. The limitations of the 2SLS estimator for the LSLM were

pointed out.

The proposed specifications admit several extensions. First, it would be inter-

esting to introduce endogeneity through the explanatory variables and/or the spatial

weighting matrix. This will raise additional complications on the functional form of

the link function, that has to be properly accommodated into the GMM estimation,

to ensure consistency. Second, it would be interesting to add higher-order spatial

lags to the FRSLM specification. This will affect the performance of the iGMM es-

timator for the aFRSLM and it may be useful to develop alternative ways to obtain

a tractable expression for the reduced form. Third, it would be interesting to gener-

alize the proposed specifications to spatial panel data frameworks. The possibility

of incorporating temporal and spatio-temporal effects is still widely unexplored. In

addition, there are very few works that address the performance the corresponding

spatial panel estimators, for different treatments of the unobserved heterogeneity.

Fourth, it would be interesting to generalize the proposed specifications to more flex-

ible semiparametric or nonparametric approaches, where the assumptions presented

in Section 3.2.1 may not hold.

All the algorithms and estimation procedures used in this chapter will be made

available in an R package.
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APPENDIXES

A3. Simulation results

A3.1. Histograms for the simulated dependent variable

Table A3.1.1: Data structure for the simulated dependent variable, with α = 0 and ψY = 0.1
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Table A3.1.2: Data structure for the simulated dependent variable, with α = 1 and ψY = 0.1
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Table A3.1.3: Data structure for the simulated dependent variable, with α = 1.5 and ψY = 0.1
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Table A3.1.4: Data structure for the simulated dependent variable, with α = 2 and ψY = 0.1
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Table A3.1.5: Data structure for the simulated dependent variable, with α = 0 and ψY = 1
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Table A3.1.6: Data structure for the simulated dependent variable, with α = 1 and ψY = 1
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Table A3.1.7: Data structure for the simulated dependent variable, with α = 1.5 and ψY = 1
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Table A3.1.8: Data structure for the simulated dependent variable, with α = 2 and ψY = 1
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Table A3.1.9: Data structure for the simulated dependent variable, with α = 0 and ψY = 10

δ = 0.01 δ = 0.1 δ = 0.2

N
=

10
0

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

δ = 0.01 δ = 0.1 δ = 0.2

N
=

50
0

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

δ = 0.01 δ = 0.1 δ = 0.2

N
=

10
00

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

97



Fractional responses with spatial dependence 98

Table A3.1.10: Data structure for the simulated dependent variable, with α = 1 and ψY = 10

δ = 0.01 δ = 0.1 δ = 0.2
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Table A3.1.11: Data structure for the simulated dependent variable, with α = 1.5 and ψY = 10

δ = 0.01 δ = 0.1 δ = 0.2
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Table A3.1.12: Data structure for the simulated dependent variable, with α = 2 and ψY = 10

δ = 0.01 δ = 0.1 δ = 0.2
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A3.2. GMM estimation
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Â
D

E
L
S
L
M

=
N
−
1
∑ N i=

1

{ ( I
−
√

2
π
α̂
2
S
L
S
W
) −1}

ii

√
2
π
β̂
1
,2
S
L
S

an
d

Â
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Â
D

E
L
S
L
M

=
N
−
1
∑ N i=

1

{ ( I
−
√

2
π
α̂
2
S
L
S
W
) −1}

ii

√
2
π
β̂
1
,2
S
L
S

an
d

Â
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Chapter 4

Unobserved heterogeneity in spatial panel
data models for fractional responses: an
application to the proportion of High-Tech
patents in the U.S. Metropolitan Statisti-
cal Areas

4.1. Introduction

The role of innovation in economic growth has been extensively studied since the

seminal work of Schumpeter (1942). The popular notion of “creative destruction”

establishes that knowledge, in terms of the development of new products, new pro-

duction methods, new markets, and so on, is fundamental to maintain the motion of

the “capital engine” and, consequently, economic development. The “entrepreneur”

(the schumpeterian agent of knowledge) is assumed to have sufficient (or even per-

fect) information, that is rapidly materialized into innovations. The benefit of the

innovation is, therefore, the profit obtained from the emerging monopoly, before the

knowledge is disseminated. As a result, the “entrepreneur” would tend to have an

incentive to innovate.

Three years later, Hayek (1945) rejects the conception of a single economic

agent with perfect information and with a continuous propensity to innovate. In

fact, knowledge is considered to be “imperfect”, as it is constantly being acquired by

economic agents. Instead, Hayek concentrates on the problem of the dissemination

of knowledge under two opposing market frameworks. On one hand, considering an

open market and free price fluctuations, economic agents endowed with knowledge

and information (though not perfect), will seek profit-maximizing opportunities.

125



Unobserved heterogeneity in spatial panel data models for fractional responses: an
application to the proportion of High-Tech patents in the U.S. MSAs 126

Hence, while incorporating the information on the stock of goods and the produc-

tion costs into their decisions, they are, simultaneously, competing to innovate, thus

promoting welfare. On the other hand, considering a monopolistic market, relying

on a single economic agent (the “planner”), that manages the total “stock” of knowl-

edge, results in an inefficient resource allocation. This is because the importance of

“local knowledge” – knowledge that depends on certain advantageous conditions in

space and time – tends to be ignored by aggregated measures. In this way, Hayek

became the first economist to stress out the importance of analyzing knowledge as

a space (and time) issue.

In the 1960s, Arrow (1962a,b) developed the theoretical and mathematical tools

that led to the foundation of the economics of knowledge and innovation. The first

paper addressed the hayekian problem of resource allocation to produce knowledge,

under a monopolistic market framework and under a perfectly competitive mar-

ket framework. Governmental funding for research and innovation is pointed out

as a way to promote optimal resource allocation. It should be noted that, under

this approach, the role of government is not equivalent to the that of the “plan-

ner” from Hayek. In fact, the “stock” of knowledge is allowed to be controlled by

some economic agents (e.g. researchers) and institutions (e.g. research organiza-

tions and Universities). The second paper considers a general equilibrium setting

and addresses the problem of knowledge and economic development, as resulting

from endogenous technological change. This approach is usually referred to as the

“learning-by-doing” model. Work experience (in the sense of learning) is considered

a key factor to the production of knowledge and innovation. But at the same time,

producing knowledge and innovation leads to a new phase of technical experience.

This simultaneous process ultimately increases labor productivity and welfare, by re-

ducing production costs and promoting efficiency, respectively. Moreover, in Arrow

(1962b), the role of institutions, education and research to promote and disseminate

learning, knowledge and innovation, is also emphasized.

But it was in the late 1970s that Griliches (1979) made an important contribu-

tion to the state of art of economics of knowledge and innovation, developing the,

so called, “knowledge production function”. Historically, the classic approaches to
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measure total output and total factor productivity considered a set of trivial inputs,

such as labor and capital. Nevertheless, during 1950s, several applied studies (see

Griliches, 1973, for an excellent survey) found that knowledge, in terms of public

and private expenditures in Research and Development (R&D), was highly corre-

lated with the growth of output and productivity. Recognizing the relevance of

such conclusions and the limitations of the classic approach to measure the output,

Griliches (1979) suggests to augment the classic Cobb-Douglas production function

by a proxy measure of knowledge. Accordingly, the current “stock” of knowledge

is defined by a function of all present and past expenditures in R&D and a set of

unobserved inputs, besides labor and capital. On this matter, Griliches (1979) also

points out three major issues, regarding the measurement of R&D using industry-

level data. First, the existence of a time gap between the initial investment and

the measured effects in productivity. Second, as innovations become obsolete, the

current “stock” of R&D should take into consideration both the current innovations

and the past innovations deducted by a depreciation factor. Third, the “stock” of

knowledge in a given industry cannot be derived by specific R&D expenditures, as

knowledge can be disseminated, borrowed or stolen from another industry or sector.

On one hand, the first and second issues can be easily accommodated in a model

specification through time lags of the R&D expenditures and the adjusted value of

R&D resources. On the other hand, the third issue motivated a growing interest

on the measurement and modeling of the spatial spillovers from knowledge and in-

novation. Examples are Acs and Audretsch (1988), Acs et al. (1994), Audretsch

and Feldman (1996) and Los and Verspagen (2000), considering U.S. sector-level

and industry-level data; Cassiman and Veugelers (2002), Monjon and Waelbroeck

(2003) and Becker and Dietz (2004), considering sector-level and industry-level data

from Belgium, France and Italy, respectively.

However, most of the empirical works using the R&D expenditures to explain

knowledge and innovation were highly critized. As Griliches (1973) stresses out, this

was due to the fact that the R&D expenditures did not provide any economic value

for the innovative outputs. In fact, they only provide an economic valuation for the

resources allocated to the development of innovative products or services.
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Alternatively, Griliches (1979) and Pakes and Griliches (1980) suggest to assess

the adequacy of patents as a proxy measure for knowledge and innovation. But

at the same time, these authors point out two important pitfalls related to this

measure. One, not all innovations are patented. In fact, considering the “R&D

100 Award” database from the Research and Development magazine, Fontana et al.

(2013) found that about 10% of the awarded innovations were not patented. Two,

different patents yield different externalities. Hence, patents cannot be directly

compared, in terms of their economic impact. Even so, Pakes and Griliches (1980)

discuss the adequacy of using patent counts to measure knowledge. Considering a

panel of U.S. industry-level data and using both patent counts and R&D expendi-

tures to measure knowledge increments in research-intensive industries, results show

that the patent counts explained most of the between variation of research-intensive

industries. Since then, many applied studies turned their attention to the measure-

ment and modeling the knowledge and innovation spillovers, using patent counts or

patent citations. Examples are Jaffe (1989a,b), Jaffe et al. (1998) and Sanyal (2003),

considering U.S. sector-level and industry-level data; Audretsch and Vivarelli (1996),

considering industry-level data from Italy; van Meijl (1997), Autant-Bernard (2001)

and Piergiovanni and Santarelli (2001), considering sector-level, regional-level and

industry-level data from France, respectively.

It is important to emphasize that most of the existing literature did not explic-

itly considered a spatial approach to address the specification and the estimation of

knowledge and innovation spillovers. Prior to the publication of Anselin’s seminal

book (Anselin, 1988), the theoretical framework for Spatial Econometrics was still

widely unexplored. After that, applied research in Spatial Econometrics became

widespread. Focusing on the analysis of knowledge and innovation, it is worth men-

tioning the first works that addressed modeling and estimation through a spatial

approach. Anselin et al. (1997) and Acs et al. (2002), considering U.S. Metropolitan

Statistical Areas innovation counts and patent data, respectively, and Fischer and

Varga (2003) considering Austrian districts patent data. A spatial error model was

estimated to assess the effects of industry R&D expenditures, university R&D ex-

penditures, professional employment (highly skilled research staff) and a geographic
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coincidence index (see Jaffe, 1989b), on patent counts. In Fischer and Varga (2003),

spatial lags of the explanatory variables were added instead of the geographic coin-

cidence index.

It is also important to emphasize that the majority of works considered a lin-

ear approach to estimate the log-transformed patent counts or the log-transformed

patent citations. On this matter, extensive literature in Econometrics (see Cameron

and Trivedi, 2013; Winkelmann, 2008) examine two possible scenarios for count

data models. For the case where the patent counts are strictly positive, the log-

transformation is well defined and the linear approach can be used. The estimated

parameters are elasticities. For the case where there are observations with zero

patent counts, the log-transformation is no longer valid. The linear approach can

only be used if ad hoc transformations are applied to adjust the zero counts. In con-

sequence, the estimated parameters can no longer be interpreted as elasticities. In

addition, retrieving the conditional expectation of the re-transformed count variable

can be difficult. For further discussion on the issues related to the re-transformation

of the dependent variable see Wooldridge (2010). Nevertheless, there are two no-

table examples in the literature that consider an appropriate approaches to estimate

models with zero patent counts. Cincera (1997) estimate a non-spatial conditional

panel Poisson model, to assess the effects of R&D investments and Jaffe’s geographic

coincidence index on patent counts, using data from european, japanese and ameri-

can firms. Wang et al. (1998) estimate a non-spatial mixed Poisson model, to assess

the effects of the R&D-to-sales ratio on patent counts, using data from pharma-

ceutical and biomedical companies in the United States. Still, to the best of the

author’s knowledge, there is no applied research that considers a spatial approach

to estimation and focuses on the problem of zero patent counts.

In recent years, most of the literature using spatial frameworks addresses knowl-

edge and innovation spillover effects through the spatial interaction model. This can

be interpreted as a refinement of the gravity model, to assess the regional and techno-

logical effects on the flows of knowledge and innovative activity in space. Examples

are LeSage et al. (2007), Fischer and Griffith (2008) and Fischer et al. (2009), esti-

mating a Poisson spatial interaction model, to assess the effects of geographic and
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technological proxy measures on the high-tech patent citations, using data from

central european high-tech industries. LeSage et al. (2007) considers a bayesian

approach to estimation, while Fischer and Griffith (2008) and Fischer et al. (2009)

estimate the model by maximum likelihood. Fischer et al. (2009) also consider a spa-

tially lagged error in the specification. However, these works focus on cited patents,

leaving out all the patents that were not cited and not accommodating potential

selection bias.

The purpose of this chapter is threefold. First, it assesses how R&D expen-

ditures and Human Capital proxies (such as wages and employment) influence the

knowledge spillovers in the U.S. Metropolitan Statistical Areas (U.S. MSAs), be-

tween 2010 and 2015. The proportion of U.S. origin high-tech patents is used as

a proxy measure for knowledge and innovative activity. This choice is obvious for

three main reasons. One, the majority of the high-tech innovations are effectively

patented, as Fischer et al. (2009) points out. This is because they tend to involve

huge amounts of R&D expenditures, but also because patenting generates economic

benefits such as monopolistic profits, controlled dissemination of critical knowledge

and widespread economic impact (externalities). Hence, considering the high-tech

patents as a proxy measure of knowledge and innovative activity appears to be more

adequate than to consider all patents indistinctly. Two, using the proportion of U.S.

origin high-tech patents instead of their counts allows to assess the relative impor-

tance of high skilled knowledge in the U.S. MSAs. Even if a particular federal or local

government policy has an effect on the aggregate or regional patent counts, it may

not have a significant effect on the “stock” of high-skilled knowledge and/or on the

relative importance of the U.S. origin high-tech patents in the U.S. MSAs. Three,

data from the U.S. Patent and Trademark Office (https://www.uspto.gov/web/

offices/ac/ido/oeip/taf/reports.htm) shows that more than 90% of the U.S.

origin high-tech patents are attributed to individuals, companies or institutions that

are localized in the U.S. MSAs. With regard to the explanatory variables, data on

the R&D expenditures at U.S. Colleges and Universities in the U.S. MSAs, by source

of funding (federal government, state and local government, business and institu-

tional), is collected from the Higher Education Research and Development Survey
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(https://www.nsf.gov/statistics/srvyherd). Data on median real wages and

the total number of employed in the U.S. MSAs, both by educational level – Ph.D.,

graduate (except Ph.D.) and non-graduate –, is collected from the American Com-

munity Survey (https://usa.ipums.org/usa/acs.shtml). The median real wages

by educational level can be interpreted as proxy measures for both the R&D expen-

ditures in industries and Human Capital (considering the income-based approach).

Second, it presents two new specifications to model the proportion of U.S. ori-

gin high-tech patents. A spatial lag model specification is considered, in order to

assess spatial spillovers of the explanatory variables. The proposed specifications

combine the approach of Papke and Wooldridge (2008) and the approach presented

in Chapter 3. The former develops attractive functional forms to model fractional

responses with panel data, whereas the latter develops attractive specifications to

model spatially lagged fractional responses with purely spatial data. The fractional

nature of the dependent variable is properly taken into account and observations at

the corners 0 and 1 are allowed. Hence, no ad hoc transformations are applied to

the data. The first specification is the Panel Fractional Response Spatial Lag Probit

Model (PFRSLPM). The PFRSLPM extends the approach of Papke and Wooldridge

(2008) to the spatial framework, introducing a spatial lag of the fractional depen-

dent variable inside a nonlinear function. Also, the PFRSLPM extends the FRSLM

specification developed in Chapter 3 to the panel data setting, introducing a time

invariant unobserved effect into the specification. The second specification is the

approximate Panel Fractional Response Spatial Lag Probit Model (aPFRSLPM)

consists in a first order series approximation of the PFRSLPM around the spatial

lag parameter equal to zero. The time invariant unobserved effect is allowed to be

correlated with the explanatory variables. Hence, the treatment of the unobserved

effect is addressed as a central issue. The spatial approach of Debarsy (2012) is con-

sidered to model the unobserved heterogeneity. This approach extends the classic

approaches of Mundlak (1978) and Chamberlain (1980) to the spatial framework.

Third, it addresses the issues of considering a spatially lagged linear approach

to model the proportion of U.S. origin high-tech patents. The estimates and the

partial effects obtained from the linear approach are discussed and compared with
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those obtained from the previous proposed specifications (the PFRSLPM and the

aPFRSLPM).

Estimation of the proposed specifications (the PFRSLPM and the aPFRSLPM)

is addressed by the iterative Generalized Method of Moments (iGMM) procedure

of Klier and McMillen (2008), recently revisited in Chapter 1. The spatial het-

eroskedasticity and spatial autocorrelation (spatial HAC) robust estimator of Kele-

jian and Prucha (2007) is considered, to produce valid inference for the asymptotic

covariance estimator of the GMM estimator for the unknown parameter vector.

Results show that the degree of spatial dependence of the proportion of U.S.

origin high-tech patents is quite low. This can be due to spatial aggregation, monop-

olistic behavior within the MSAs and/or the absence of dynamic space-time effects.

In addition, employment appears to play an important role in terms of the regional

innovative activity. Furthermore, the estimates obtained for the PFRSLPM and the

aPFRSLPM are quite similar. Using the Debarsy (2012) approach to model the

unobserved heterogeneity tends to produce better results, than those obtained for

the case where the unobserved heterogeneity is ignored or the spatial dimension is

neglected.

The remainder of the chapter is organized as follows. Section 4.2 introduces

the two new specifications (PFRSLPM and aPFRSLPM) for spatially lagged frac-

tional responses with panel data and deduces their corresponding partial effects.

Section 4.3 presents the GMM estimation procedure and a consistent asymptotic

covariance estimator. The gradients for the proposed models are deduced, as well.

Section 4.4 illustrates the proposed models through an empirical application on the

proportion of U.S. origin high-tech patents in the U.S. Metropolitan Statistical Ar-

eas. Section 4.5 concludes. The descriptive analysis for the variables included in the

empirical application are summarized in Section A4. The estimation outputs and

the estimated partial effects are presented in Section B4.
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4.2. Spatial Panel models for fractional responses with cor-
related Random Effects

In this section the spatial panel models for fractional responses are presented

and the set of underlying assumptions are stated and discussed. Plus, the corre-

sponding partial effects are deduced, as well. The first model is the Panel Fractional

Response Spatial Lag Probit Model (PFRSLPM) and the second model is the ap-

proximate Panel Fractional Response Spatial Lag Probit Model (aPFRSLPM). The

proposed models extend two works on this subject. One, the PFRSLPM extends

the panel data approach of Papke and Wooldridge (2008) to the spatial framework,

introducing spatial dependence through a spatial lag of the fractional dependent

variable. Two, both the PFRSLPM and aPFRSLPM extend the specifications de-

veloped in Chapter 3 to the panel data setting, through the introduction of a time

invariant unobserved effect into each specification. Complexity is added by allowing

the unobserved effect to be correlated with the explanatory variables. This issue is

addressed by the spatial approach of Debarsy (2012), consisting in a generalization

of the classic approaches of Mundlak (1978) and Chamberlain (1980) to model the

unobserved heterogeneity.

4.2.1. Panel Fractional Response Spatial Lag Probit Model

The Panel Fractional Response Spatial Lag Probit Model (PFRSLPM) with

unobserved effects follows as:

Yit = Φ

(
α
∑
j 6=i

wijYjt +
K∑
k=1

βkxit,k + ci

)
+ uit, i, j = 1, 2, . . . , N, t = 1, 2, . . . , T

(81)

where 0 ≤ Yit ≤ 1 is a fractional dependent variable for the ith spatial unit, at

time t, with i = 1, 2, . . . , N and t = 1, 2, . . . , T . The total number of spatial units

are denoted by N and the total number of temporal observations are denoted by

T . The coefficients wij do not change over time and are non-negative scalars that

correspond to the spatial weights of unit j on unit i, with i 6= j and j = 1, 2, . . . , N .

Also, by convention, wii = 0, for all i and t. The scalar α is the spatial lag pa-

rameter. The variables xit,1, xit,2, . . . , xit,K are a set of K time-varying explanatory
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variables (that may include time dummies), for the ith spatial unit, at time t. The

corresponding regression parameters are β1, β2, . . . , βK . The individual unobserved

effect or individual unobserved heterogeneity, ci, does not change over time and may

be correlated with some of the explanatory variables. The disturbance term, uit,

is a random error, for the ith spatial unit, at time t, defined on the closed interval

[−Φ (·) , 1− Φ (·)]. The function Φ (·) is the univariate Standard Normal cumulative

distribution function (CDF). For the purpose of this chapter, considering the Probit

specification is not restrictive, as all the details that will be presented can be easily

extended to a general link function. In addition, this specification produces com-

putationally simple estimators for a great variety of sampling scenarios. For this

reason, it is used in most of the theoretical approaches and empirical applications,

as described in the introduction.

Stacking over the spatial units yields:

Yt = Φ (αWYt + Xtβ + c) + ut (82)

where Yt = [Y1t, Y2t, . . . , YNt]
ᵀ is an N × 1 vector of fractional responses, for each t.

The N × K matrix of explanatory variables is Xt = [Xᵀ
1t,X

ᵀ
2t, . . . ,X

ᵀ
Nt]

ᵀ, for each

t, with Xit = [xit,1, xit,2, . . . , xit,K ]ᵀ, for i = 1, 2, . . . , N and t = 1, 2, . . . , T . The

corresponding K × 1 parameter vector is β = [β1, β2, . . . , βK ]ᵀ. The N × 1 vector of

the individual unobserved effects is c = [c1, c2, . . . , cN ]ᵀ, constant for all t, and the

N × 1 vector of random errors is ut = [u1t, u2t, . . . , uNt]
ᵀ, for each t. The matrix W

is the N ×N spatial weighting matrix, equal for all t and with generic element wij.

By definition, W is a non-stochastic non-negative matrix with zeros on its main

diagonal.

Without further assumptions, two important issues must be emphasized. First,

consider the expectation of Yi given (Xi1,Xi2, . . . ,XiT ,Y−i,t, ci):

E (Yit |Xi1,Xi2, . . . ,XiT ,Y−i,t, ci)

= Φ

(
α
∑
j 6=i

wijYjt +
K∑
k=1

βkxit,k + ci

)
+ E (uit |Xi1,Xi2, . . . ,XiT ,Y−i,t, ci)

(83)

where Y−i,t is the vector of responses excluding the ith response, at time t, with t =
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1, 2, . . . , T and i = 1, 2, . . . , N . Note that, the conditional expectations E (ci |Xi1,Xi2, . . . ,XiT ,Y−i,t) 6=

0 and E (uit |Xi1,Xi2, . . . ,XiT ,Y−i,t, ci) 6= 0, once Cov (WYt, c) 6= 0 and Cov (WYt,ut) 6=

0, respectively, for all t, due to the simultaneous nature of the model. Second, the

partial effects:

∂Yit
∂xit,k

= φ

(
α
∑
j 6=i

wijYjt +
K∑
k=1

βkxit,k + ci

)

×

(
α
∑
j 6=i

wij
∂Yjt
∂xit,k

+ βk +
∂ci
∂xit,k

)
+

∂uit
∂xit,k

(84)

are not identified, once they depend on the unobserved effect, ci. The partial effects

in (84) would only be identified if they are averaged-out across the distribution of

ci, assuming that ∂uit/∂xit,k = 0, for all i and t.

To address the issues above, it is assumed that Assumption 3.1 and Assump-

tion 3.2, from Chapter 3, hold. The set of additional assumptions follow along the

lines of Papke and Wooldridge (2008). They focus on the structure of the data, on

the treatment of the unobserved heterogeneity and on the statistical properties of

the error term.

Assumption 4.1. The number of spatial units is large relative to the number of time

periods, that is N/T →∞.

Assumption 4.2. The explanatory variables are strictly exogenous, conditional on the

unobserved effect, that is E (Yit |Xi1,Xi2, . . . ,XiT ,Y−i,t, ci) = E (Yit |Xit,Y−i,t, ci),

with t = 1, 2, . . . , T .

Assumption 4.3. The unobserved heterogeneity, ci is normally distributed, given

(Xi1,Xi2, . . . ,XiT ,Y−i,t), with linear expectation and constant variance, and it is

allowed to be correlated with some explanatory variables and with the spatially

lagged responses. The conditional distribution of ci is modeled based on the speci-

fication of Debarsy (2012):

ci | (Xi1,Xi2, ...,XiT ,Y−i,t) ∼ N

(
ϕ0 +

K1∑
k1=1

ϕk1,1x̄i,k1 +

K1∑
k1=1

ϕk1,2
∑
j 6=i

wijx̄j,k1 , σ
2
e

)
(85)
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where the variables x̄i,1, x̄i,2, . . . , x̄i,K1 are time averages of a subset K1 of the K

explanatory variables (not including the time dummies). The term
∑

j 6=iwijx̄j,k1 is

the spatial lag of the time averages x̄i,1, x̄i,2, . . . , x̄i,K1 . The scalar ϕ0 is a constant.

The regression parameters for the non-spatially lagged term are ϕ1,1, ϕ2,1, . . . , ϕK1,1

and the regression parameters for the spatially lagged term are ϕ1,2, ϕ2,2, . . . , ϕK1,2.

The scalar parameter σ2
e is the variance of the new time-invariant component, ei.

In addition, ei is independent from the set (Xi1,Xi2, . . . ,XiT ,Y−i,t), for all i and t,

and independent from the random error uit, for all i and t, as well.

Assumption 4.4. The random error, uit, has zero mean and is independent of xit,k

and ci, for all i = 1, 2, . . . , N , t = 1, 2, . . . , T and k = 1, 2, . . . , K.

Assumption 4.1 is usually considered under micro-panels frameworks (see also

Papke and Wooldridge, 2008). Assumption 4.2 is common in the literature on panel

data models with unobserved effects. This assumption is somewhat restrictive, in

the sense that it rules out the following three scenarios. One, the presence of time

lags (and consequently space-time lags) of the explanatory variables. Two, cor-

relation between one or more elements in Xit and past and future values of Yit.

Three, correlation between the explanatory variables and omitted time-varying vari-

ables. Assumption 4.3 provides an extension of the classic approaches of Chamber-

lain (1980) and Mundlak (1978) to model the unobserved heterogeneity in spatial

frameworks. This assumption may be restrictive in the sense that it imposes a para-

metric distribution for ci, but, at the same time, it allows a particular dependence

structure between ci and other two components. One, between ci and Xit, through

the time averages of the explanatory variables. Two, between ci and
∑

j 6=iwijYjt,

through the spatially lagged time averages of the explanatory variables. Hence, it

is assumed that the simultaneous correlation between ci and
∑

j 6=iwijYjt is modeled

by
∑K1

k1=1 ϕk1,2
∑

j 6=iwijx̄j,k1 .
12 Assumption 4.4 establishes a convenient exogenous

setting for the error term.

12From the simulations studies presented in this thesis, it is possible to conclude that, using
lower order approximations to address the simultaneous nature of models with spatially lagged
dependent variables, generally leads to promising results, in terms of accuracy and efficiency.

136



Unobserved heterogeneity in spatial panel data models for fractional responses: an
application to the proportion of High-Tech patents in the U.S. MSAs 137

Under the previous assumptions the conditional expectation in (83) can be

written as:

E (Yit |Xit,Y−i,t, ei)

= Φ

(
α
∑
j 6=i

wijYjt +
K∑
k=0

βkxit,k +

K1∑
k1=1

ϕk1,1x̄i,k1 +

K1∑
k1=1

ϕk1,2
∑
j 6=i

wijx̄j,k1 + ei

)

+ E (uit |Xit,Y−i,t, ei)

(86)

where the constant was included in the set of the explanatory variables, for simplicity.

Thus, using the law of iterated expectations,

E (Yit |Xit,Y−i,t) = E [E (Yit |Xit,Y−i,t, ei) |Xit,Y−i,t]

= E

[
Φ

(
α
∑
j 6=i

wijYjt +
K∑
k=0

βkxit,k

+

K1∑
k1=1

ϕk1,1x̄i,k1 +

K1∑
k1=1

ϕk1,2
∑
j 6=i

wijx̄j,k1 + ei

)∣∣∣∣∣Xit,Y−i,t

]

+ E [E (uit |Xit,Y−i,t, ei) |Xit,Y−i,t]

= Φ


α
∑
j 6=i

wijYjt +
K∑
k=0

βkxit,k +
K1∑
k1=1

ϕk1,1x̄i,k1 +
K1∑
k1=1

ϕk1,2
∑
j 6=i

wijx̄j,k1√
1 + σ2

e


+ E (uit |Xit,Y−i,t)

(87)

and the PFRSLPM becomes:

Yit = Φ


α
∑
j 6=i

wijYjt +
K∑
k=0

βkxit,k +
K1∑
k1=1

ϕk1,1x̄i,k1 +
K1∑
k1=1

ϕk1,2
∑
j 6=i

wijx̄j,k1√
1 + σ2

e

+ u∗it

(88)

with i, j = 1, 2, . . . , N, and t = 1, 2, . . . , T . The new error is now u∗it, a function

of the initial error uit, that results from the conditions imposed on the unobserved

heterogeneity. In addition, note that (88) can be viewed as the spatial extension

of the classic panel data models with correlated random effects. Stacking over the
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spatial units yields:

Yt = Φ

(
αWYt + Xtβ + X̄ϕ1 + WX̄ϕ2√

1 + σ2
e

)
+ u∗t (89)

hence all the parameters are attenuated towards zero, once σ2
e is strictly posi-

tive. The N × K1 matrix with the time averages of the explanatory variables is

X̄ =
[
X̄ᵀ

1, X̄
ᵀ
2, . . . , X̄

ᵀ
N

]ᵀ
, with X̄i = [x̄1, x̄2, . . . , x̄K ]ᵀ, for all i = 1, 2, . . . , N . The

corresponding parameter vectors are the K1 × 1 vector ϕ1 = [ϕ1,1, ϕ2,1, . . . , ϕK1,1]
ᵀ

and the K2 × 1 vector ϕ2 = [ϕ1,2, ϕ2,2, . . . , ϕK1,2]
ᵀ, for the time averages and the

spatially lagged time averages, respectively.

It is also useful to state the following assumption on the stability of the PFRSLPM:

Assumption 4.5. There is a constant ζ such that,

ζ = sup
α∈A

∣∣∣∣∣ α√
1 + σ2

e

∣∣∣∣∣× sup
η
φ (η)× sup

N
‖WN‖∞ < 1 (90)

where A ⊂ R is the compact parameter space of α, φ (η) is the Standard Normal

probability density function (PDF), with η ∈ R, and ‖WN‖∞ = max
i=1,2,...,N

∑N
j=1|wij|

is the row sum norm.

Assumption 4.5 is analogous to Assumption 3 in Xu and Lee (2015a) and to

Assumption 3.5 in Chapter 3. Under the previous assumptions and the specification

of the PFRSLPM, W is uniformly bounded and φ (η) is a bounded function, thus

ζ is finite. For the case where the working W is row standardized, ‖W‖∞ = 1,

and because the link function is the Standard Normal CDF, supη φ (η) = (2π)−1/2,

hence the constant ζ = supα∈A|α| × [(2π) (1 + σ2
e)]
−1/2

. This poses a restriction in

the parameter space of α, in the sense that, the condition ζ < 1 is only satisfied

for the values of α that verify the inequality |α| < [(2π) (1 + σ2
e)]

1/2
. Therefore, the

stability of the PFRSLPM does not depend exclusively on the parameter space of α,

contrary to the pure spatial case (see Xu and Lee, 2015a, and Chapter 3). In fact,

after simple algebra, it is obvious that the model is stable if and only if:

α2 − 2πσ2
e < 2π (91)
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where α and σ2
e can only take values that satisfy the inequality above. For the

case where σ2
e = 0 and no time-invariant component is present, stability is ensured

for the values of |α| < (2π)1/2 (see Xu and Lee, 2015a, and Chapter 3). For the

case where σ2
e > 0, the parameter space of α becomes wider. Note that, in terms

of interpretation and comparability, the degree of spatial dependence has to be

multiplied by [(2π) (1 + σ2
e)]

1/2
to be comparable with the usual −1 and 1 admissible

range for the spatial lag parameter, in spatial linear models.

Having defined the set of assumptions that allow to accommodate the cor-

relation between ci with the explanatory variables and with the spatially lagged

responses, the partial effects can now be properly identified. The general partial

effect for the kth explanatory variable over the ith spatial unit response, at time t,

is given by:

∂Yit
∂xit,k

= φ


α
∑
j 6=i

wijYjt +
K∑
k=0

βkxit,k +
K1∑
k1=1

ϕk1,1x̄i,k1 +
K1∑
k1=1

ϕk1,2
∑
j 6=i

wijx̄j,k1√
1 + σ2

e


×

(
α√

1 + σ2
e

∑
j 6=i

wij
∂Yjt
∂xit,k

+
βk√

1 + σ2
e

) (92)

Note that the partial derivative ∂u∗it/∂xit,k = 0, for all k = 1, 2, . . . , K, due to

Assumption 4.4. Stacking over the spatial units, yields:

∆k,t =

[
I− α√

1 + σ2
e

Dφ(ηt)W

]−1
Dφ(ηt)

βk√
1 + σ2

e

(93)

for all k = 1, 2, . . . , K and t = 1, 2, . . . , T . The matrix Dφ(ηt) is a N × N diagonal

matrix, for each t, whose diagonal elements are given by φ (ηit), with

ηit =

α
∑
j 6=i

wijYjt +
K∑
k=0

βkxit,k +
K1∑
k1=1

ϕk1,1x̄i,k1 +
K1∑
k1=1

ϕk1,2
∑
j 6=i

wijx̄j,k1√
1 + σ2

e

(94)

The N × N matrix
{

I−
[
α/ (1 + σ2

e)
1/2
]

Dφ(ηt)W
}−1

is the PFRSLPM link aug-

mented spatial lag operator inverse, with I the N × N identity matrix, for each
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t. Note that, under Assumption 4.5, the matrix
{

I−
[
α/ (1 + σ2

e)
1/2
]

Dφ(ηt)W
}

is

non-singular.

The time-varying matrix of partial effects, ∆k,t, provides an interesting way

to assess the effects of exogenous unitary changes over the responses, at different

moments in time. In addition, it provides information on the way these effects are

transmitted across different units in space and time. An exhaustive interpretation of

each partial effect in ∆k,t, for each t, can be done, but it is not common. Instead it is

more appealing to summarize the time-varying partial effects into the five measures

suggested by LeSage and Pace (2009). The first measure is the Average Direct

Effect:

ADEk,t =
1

N

N∑
i=1


[
I− α√

1 + σ2
e

Dφ(ηt)W

]−1
Dφ(ηt)


ii

βk√
1 + σ2

e

=
1

N
tr

[I− α√
1 + σ2

e

Dφ(ηt)W

]−1
Dφ(ηt)

 βk√
1 + σ2

e

(95)

given by the average of the diagonal elements of ∆k,t, for each t. The function tr(·)

is the trace of a matrix. The second measure is the Average Total Effect To an

observation:

ATETkj,t =
1

N

N∑
i=1


[
I− α√

1 + σ2
e

Dφ(ηt)W

]−1
Dφ(ηt)


ij

βk√
1 + σ2

e

(96)

given by the average of the jth column of ∆k,t, for each t. The third measure is the

Average Total Effect From an observation:

ATEFki,t =
1

N

N∑
j=1


[
I− α√

1 + σ2
e

Dφ(ηt)W

]−1
Dφ(ηt)


ij

βk√
1 + σ2

e

(97)
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given by the average of the ith row of ∆k,t, for each t. The fourth measure is the

Average Total Effect:

ATEk,t =
1

N

N∑
i=1

N∑
j=1


[
I− α√

1 + σ2
e

Dφ(ηt)W

]−1
Dφ(ηt)


ij

βk√
1 + σ2

e

(98)

given by the average of all elements of ∆k,t, for each t. Finally, the fifth measure is

the Average Indirect Effect:

AIEk,t = ATEk,t − ADEk,t (99)

given by the average of all the off-diagonal elements of ∆k,t, for each t. These mea-

sures can also be evaluated at specific values of the explanatory variables, say means,

medians, maximums, minimums or at different quantiles. Furthermore, global mea-

sures can be obtained by taking time averages of each of the five summary measures.

Nevertheless, there are two important limitations regarding the PFRSLPM with

correlated random effects. First, obtaining the reduced form under a nonlinear si-

multaneous specification, is computationally complex. Even if Assumption 4.5 holds,

complex numerical methods are required to implicitly compute the reduced form.

However, no analytic formula can be deduced. As a result, the interpretation of the

reduced form parameters becomes problematic. Second, due to the simultaneous

nature of the PFRSLPM, the effects of unitary changes in a given explanatory vari-

able over the responses, at any time t, depend on every element of Xt, including the

time averages and their spatial lags, and on the spatially lagged responses, as well.

This poses a severe restriction for policy analysis, in the sense that policy makers

cannot explicitly control the responses of each spatial unit. In practice, they can

only control the exogenous determinants of the responses. See also Chapter 3 for

further discussion.

In the next section, an alternative specification to model fractional responses

with spatial panels data is presented. The proposed specification extends the aFRSLM

specification, proposed in Chapter 3, to the panel data setting. Plus, it addresses

the previously mentioned issues on the PFRSLPM in a simple way.
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4.2.2. Approximate Panel Fractional Response Spatial Lag Probit Model

Consider that Assumption 4.1 to Assumption 4.5 are maintained. Consider

the first-order series expansion of the PFRSLPM nonlinear function in (88), around

α = 0:

Φ


α
∑
j 6=i

wijYjt +
K∑
k=0

βkxit,k +
K1∑
k1=1

ϕk1,1x̄i,k1 +
K1∑
k1=1

ϕk1,2
∑
j 6=i

wijx̄j,k1√
1 + σ2

e



≈ Φ


K∑
k=0

βkxit,k +
K1∑
k1=1

ϕk1,1x̄i,k1 +
K1∑
k1=1

ϕk1,2
∑
j 6=i

wijx̄j,k1√
1 + σ2

e



+
α√

1 + σ2
e

φ


K∑
k=0

βkxit,k +
K1∑
k1=1

ϕk1,1x̄i,k1 +
K1∑
k1=1

ϕk1,2
∑
j 6=i

wijx̄j,k1√
1 + σ2

e

∑
j 6=i

wijYjt

(100)

then the approximate Panel Fractional Response Spatial Lag Model (aPFRSLPM)

with correlated Random Effects follows as:

Yit ≈ Φ


K∑
k=0

βkxit,k +
K1∑
k1=1

ϕk1,1x̄i,k1 +
K1∑
k1=1

ϕk1,2
∑
j 6=i

wijx̄j,k1√
1 + σ2

e

+
α√

1 + σ2
e

× φ


K∑
k=0

βkxit,k +
K1∑
k1=1

ϕk1,1x̄i,k1 +
K1∑
k1=1

ϕk1,2
∑
j 6=i

wijx̄j,k1√
1 + σ2

e

∑
j 6=i

wijYjt + u∗it

(101)

with i, j = 1, 2, . . . , N, and t = 1, 2, . . . , T . Stacking over the spatial units yields:

Yt ≈ Φ

(
Xtβ + X̄ϕ1 + WX̄ϕ2√

1 + σ2
e

)
+

α√
1 + σ2

e

Dφ(ηa
t )

WY + u∗t

⇔Yt ≈

[
I− α√

1 + σ2
e

Dφ(ηa
t )

W

]−1
Φ

(
Xtβ + X̄ϕ1 + WX̄ϕ2√

1 + σ2
e

)
+ vt

(102)
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where Dφ(ηa
t )

is an N ×N diagonal matrix, for each t, whose diagonal elements are

φ (ηait), with ηait equal to:

ηait =

K∑
k=0

βkxit,k +
K1∑
k1=1

ϕk1,1x̄i,k1 +
K1∑
k1=1

ϕk1,2
∑
j 6=i

wijx̄j,k1√
1 + σ2

e

(103)

The new error term is given by vt =
{

I−
[
α/ (1 + σ2

e)
1/2
]

Dφ(ηa
t )

W
}−1

u∗t , for each

t. The N × N matrix
{

I−
[
α/ (1 + σ2

e)
1/2
]

Dφ(ηa
t )

W
}−1

is the aPFRSLPM link

augmented spatial lag operator inverse, for each t. As before, under Assumption 4.5,

the matrix
{

I−
[
α/ (1 + σ2

e)
1/2
]

Dφ(ηa
t )

W
}

is non-singular.

This specification has two important advantages, as noted in Chapter 3. First,

the PFRSLPM can be written as an approximate reduced form, with tractable an-

alytic expression. In this way, the spatial units can be interpreted as resulting from

an approximate steady-state equilibrium between the responses and the exogenous

explanatory variables13. Second, it allows policy makers to consider the resulting

approximate partial effects, as they rely exclusively on exogenous explanatory vari-

ables. In fact, the matrix of the approximated partial effects is given by:

∆k,t ≈

[
I− α√

1 + σ2
e

Dφ(ηa
t )

W

]−1

×

[
Dφ(ηa

t )
+

α√
1 + σ2

e

Dφ′(ηa
t )

W Φ∗(ηat )

]
βk√

1 + σ2
e

⇔∆k,t ≈

[
I− α√

1 + σ2
e

Dφ(ηa
t )

W

]−1

×

{
Dφ(ηa

t )
◦

[
I− α√

1 + σ2
e

Dηa
t
W Φ∗(ηat )

]}
βk√

1 + σ2
e

(104)

for all k = 1, 2, . . . , K and t = 1, 2, . . . , T . The function

Φ∗(ηat ) =

{
I− α√

1 + σ2
e

Dφ(ηa
t )

W

}−1
Φ (ηat ) (105)

13See also LeSage and Pace (2010) for a discussion on this matter, considering a Linear Spatial
Lag Model.
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and Dηa
t

is an N ×N diagonal matrix, for each t, whose diagonal elements are ηait.

The operator “◦” is the Hadamard product. Note that the first derivative of the

PDF of the Standard Normal distribution φ′(u) = −uφ(u) with u ∈ RN .

Analogous to the PFRSLPM specification, the matrix of partial effects, ∆k,t,

can be summarized according to the five measures proposed by LeSage and Pace

(2009), the ADE, ATET, ATEF, ATE and AIE. These measures were already de-

duced in the previous section.

4.3. GMM estimation

The estimation of the proposed panel models for spatially lagged fractional re-

sponses considers the Generalized Method of Moments (GMM) approach presented

on Chapter 2, based on the works of Pinkse and Slade (1998) and Klier and McMillen

(2008). Simulations presented in this thesis show the adequacy of the GMM esti-

mator, to a great variety of sampling scenarios, when estimating spatial nonlinear

models. In addition, the GMM approach, proves to be greatly useful, due to its

simplicity and its computational performance, especially when compared to other

commonly used approaches, such as Maximum Likelihood (ML) or Markov Chains

Monte Carlo (MCMC) methods (see Chapter 2).

Under the setting of the GMM, it is assumed that the unknown parameter

vector Θ = (α,β,ϕ1,ϕ2, σ
2
e) satisfy the following moment condition:

E


Zᵀu∗

X̄ᵀu∗(
WX̄

)ᵀ
u∗

 = 0⇔ E (Z+u∗) = 0 (106)

where Z = [X,WX,W2X], as suggested by Kelejian and Prucha (1998). The

GMM estimates for the unknown parameter vector, Θ, are obtained by minimizing

the objective function:

Q (Θ) = u∗ᵀZ+ (Zᵀ
+Z+)−1 Zᵀ

+u∗ (107)
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and the GMM estimator reduces to nonlinear two stages least squares (N2SLS). As

the minimization problem in (107) does not have a closed formula, the iterative pro-

cedure of Klier and McMillen (2008) is used. In addition, the spatial heteroskedas-

ticity and spatial autocorrelation robust estimator of Kelejian and Prucha (2007)

is considered, to overcome potential biases in the estimated asymptotic covariance

matrix estimator of the (iterative) GMM estimator. See Section 2.2 in Chapter 2

for details.

The individual gradients, at time t, for the PFRSLPM are:

(Γα)it =
∂u∗it
∂α

= −φ

α
∑
j 6=i

wijYjt + Xitβ + X̄iϕ1 +
∑
j 6=i

wijX̄jϕ2√
1 + σ2

e


∑
j 6=i

wijYjt√
1 + σ2

e

(108)

(Γβ)it =
∂u∗it
∂βᵀ = −φ

α
∑
j 6=i

wijYjt + Xitβ + X̄iϕ1 +
∑
j 6=i

wijX̄jϕ2√
1 + σ2

e

 Xit√
1 + σ2

e

(109)

(
Γϕ1

)
it

=
∂u∗it
∂ϕᵀ

1

= −φ

α
∑
j 6=i

wijYjt + Xitβ + X̄iϕ1 +
∑
j 6=i

wijX̄jϕ2√
1 + σ2

e

 X̄i√
1 + σ2

e

(110)

(
Γϕ2

)
it

=
∂u∗it
∂ϕᵀ

2

= −φ

α
∑
j 6=i

wijYjt + Xitβ + X̄iϕ1 +
∑
j 6=i

wijX̄jϕ2√
1 + σ2

e


∑
j 6=i

wijX̄j√
1 + σ2

e

(111)

(Γσe)it =
∂u∗it
∂σe

=φ

α
∑
j 6=i

wijYjt + Xitβ + X̄iϕ1 +
∑
j 6=i

wijX̄jϕ2√
1 + σ2

e


× σe

(1 + σ2
e)

α
∑
j 6=i

wijYjt + Xitβ + X̄iϕ1 +
∑
j 6=i

wijX̄jϕ2√
1 + σ2

e


(112)

with i, j = 1, 2, . . . , N , i 6= j and t = 1, 2, . . . , T . The individual gradients, at time

t, for the aPFRSLPM are:

(Γα)it =
∂u∗it
∂α

= −φ

Xitβ + X̄iϕ1 +
∑
j 6=i

wijX̄jϕ2√
1 + σ2

e


∑
j 6=i

wijYjt√
1 + σ2

e

(113)
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(Γβ)it =
∂u∗it
∂βᵀ = − φ

Xitβ + X̄iϕ1 +
∑
j 6=i

wijX̄jϕ2√
1 + σ2

e

 Xit√
1 + σ2

e

×

1−
α
∑

j 6=iwijYjt√
1 + σ2

e

×
Xitβ + X̄iϕ1 +

∑
j 6=i

wijX̄jϕ2√
1 + σ2

e


(114)

(
Γϕ1

)
it

=
∂u∗it
∂ϕᵀ

1

= − φ

Xitβ + X̄iϕ1 +
∑
j 6=i

wijX̄jϕ2√
1 + σ2

e

 X̄i√
1 + σ2

e

×

1−
α
∑

j 6=iwijYjt√
1 + σ2

e

×
Xitβ + X̄iϕ1 +

∑
j 6=i

wijX̄jϕ2√
1 + σ2

e


(115)

(
Γϕ2

)
it

=
∂u∗it
∂ϕᵀ

2

= − φ

Xitβ + X̄iϕ1 +
∑
j 6=i

wijX̄jϕ2√
1 + σ2

e


∑
j 6=i

wijX̄j√
1 + σ2

e

×

1−
α
∑

j 6=iwijYjt√
1 + σ2

e

×
Xitβ + X̄iϕ1 +

∑
j 6=i

wijX̄jϕ2√
1 + σ2

e


(116)

(Γσe)it =
∂u∗it
∂σe

=φ

Xitβ + X̄iϕ1 +
∑
j 6=i

wijX̄jϕ2√
1 + σ2

e


× σe

(1 + σ2
e)

α
∑

j 6=iwijYjt + Xitβ + X̄iϕ1 +
∑
j 6=i

wijX̄jϕ2√
1 + σ2

e

−

(
α
∑

j 6=iwijYjt

)(
Xitβ + X̄iϕ1 +

∑
j 6=i

wijX̄jϕ2

)2

(1 + σ2
e)3/2



(117)

with i, j = 1, 2, . . . , N , i 6= j and t = 1, 2, . . . , T . Note that, having an explicit

expression for the gradients significantly increases the performance of the iterative

algorithms and/or numerical minimization methods.

Next, the performance of the iterative GMM (iGMM) procedure, presented in

this section, is assessed through an insightful empirical application on the proportion

of high-tech patents in the U.S. Metropolitan Statistical Areas (MSAs). The models
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developed in Section 4.2 are estimated by iGMM and their results are compared

with those from the Two-Stages Least Squares (2SLS) estimator for the pooled

Linear Spatial Lag Model. The treatment of the unobserved heterogeneity and the

estimation of partial effects are addressed as central issues.

4.4. Empirical Application

In this section an empirical application is presented to illustrate the adequacy

of the previous iterative Generalized Method of Moments (iGMM) approach to es-

timate the proposed models for spatial panel fractional responses (the PFRSLPM

and the aPFRSLPM). In addition, it addresses and compares the performance of

the Two-Stages Least Squares (2SLS) estimator for the pooled Linear Spatial Lag

Model (LSLM) and for the Linear Spatial Lag Model with fixed effects (LSLM-FE),

as well.

The previous approaches are applied to study the proportion of U.S. origin high-

tech patents in 201 U.S. Metropolitan Statistical Areas (MSAs), between 2010 and

2015. The expenditures in research and development (R&D) by source of funding,

wages and number of employed individuals by educational level are of particular

interest, as well as the corresponding spillover effects across the neighboring MSAs.

Unobserved heterogeneity is added to the model specification. As a result, the

treatment of the unobserved effects will be addressed as a central issue, once they

are likely to be correlated with the included explanatory variables and the spatially

lagged proportion. Estimation and inference of the partial effects will focus on the

Average Direct Effects (ADEs) and Average Indirect Effects (AIEs).

4.4.1. Data

The dataset containing the relevant variables for this empirical application con-

sists in a combination of datasets from three different data sources. First, the data

on U.S. origin high-tech patents was collected from the U.S. Patent and Trade-

mark Office (https://www.uspto.gov/web/offices/ac/ido/oeip/taf/reports.

htm) and considers the Patent Technology Monitoring Team (PTMT) reports by
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U.S. Metropolitan Statistical Area (MSA), for each patent technology class and for

each year. The total number of U.S. origin patents and the total number of U.S.

origin high-tech patents are computed, for each year and for each MSA. The U.S.

origin high-tech patents include all the patent classes that are mentioned in the

“Selected Technology Reports” and are related to “Biotechnology”, “Telecommuni-

cations”, “Electrical Computers, Digital Processing Systems, Information Security,

Error/Fault Handling”, “Medical Devices” and “Semiconductor Devices and Man-

ufacturing”. The proportion of U.S. origin high-tech patents results from the ratio

between the total number of U.S. origin high-tech patents and the total number of

U.S. origin patents, for each MSA and for each year.

Second, the data on the R&D expenditures at U.S. Colleges and Universities

by source of funding – federal government, state and local government, business

and institutional – was collected from the Higher Education Research and Devel-

opment Survey (HERD) – National Science Foundation (https://www.nsf.gov/

statistics/srvyherd), for each institution and for each year. This dataset only

considers institutions that expended at least 150 thousand dollars in R&D, for a

given fiscal year. All the R&D expenditures are adjusted for inflation. The data

was aggregated to the MSA level, for each year, based on the information for the

ZIP codes of each institution. Changes in the ZIP codes, across different years, were

accommodated, as well.

Third, the data on the median real wages and the total number of employed

individuals, both by educational level – Ph.D., graduate (except Ph.D.) and non-

graduate –, was collected from the American Community Survey (ACS) – Inte-

grated Public Use Microdata Series, IPUMS-USA (https://usa.ipums.org/usa/

acs.shtml). According to Ruggles et al. (2019), the ACS replaces the decennial

census and provides an annual snapshot of the population and housing character-

istics in the U.S. In this empirical application, only the population characteristics

are of interest. The ACS consists in the application of a questionnaire, similar to

the “long form” census questionnaire, to a sample of individuals, rather than to

the whole population. Each individual in the sample is given a personal weight,

that indicates how many persons are represented by his/her characteristics. To
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obtain the information for the whole population, the data has to be aggregated

through the weighted sums of the individuals included in the sample. The same

applies if one is interested in obtaining information for the whole population of a

given region. However, one cannot directly aggregate the information to the MSA

level, once the geographic information included in the ACS refers to the Public Use

Microdata Areas (PUMAs), differing from the geographic definition of the MSAs.

Hence, the data was initially aggregated to the PUMA level and afterwards con-

verted to the MSA level, using an allocation factor from a crosswalk between the

geographic delineation of the PUMAs and the geographic delineation of the MSAs

(http://mcdc.missouri.edu/applications/geocorr2018.html). It is also im-

portant to note that the real wages by educational level, for each MSA and for each

year, are summarized by the median, once they are top-coded.

4.4.2. Descriptive analysis

In this section, a descriptive analysis of the sample of MSAs and the variables

included in this empirical application is presented. The relevant outputs are provided

in Section A4. In Figure A4.1 the polygons of the MSAs are outlined and the

centroids of the included MSAs are indicated by black dots. Figure A4.2 presents

the histogram of the dependent variable, the proportion of U.S. origin high-tech

patents in the included MSAs. Figure A4.3 displays the spatial distribution of the

proportion of U.S. origin high-tech patents in the included MSAs, for each year t,

with t = 2010, 2011, . . . , 2015. Figure A4.4 and Figure A4.5 outline the time series

of the U.S. origin aggregate patents (all patents and high-tech patents) and the time

series of the U.S. origin aggregate patents change in the U.S. MSAs, between the

years 2010 and 2015. Table A4.1 summarizes the panel descriptive statistics for

the proportion of U.S. origin high-tech patents and for the explanatory variables

considered in this empirical application.

The sample of 201 U.S. MSAs included in this analysis are typically concen-

trated in the eastern part of the U.S. The information loss is due to the combination

of the datasets mentioned in Section 4.4.1. In fact, the majority of MSAs that were

excluded did not report any information for the HERD dataset, during the years
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2010 to 2015. Nevertheless, the sample can be shown to be representative, once the

included MSAs comprise more than 75% of the total real GDP14. In addition, the

included MSAs comprise more than 88% of the total U.S. origin patents and more

than 90% of the total U.S. origin high-tech patents. Robustness checks show that

the general conclusions did not change much, even if the HERD dataset is not used

and all the 374 U.S. MSAs were included.

The sampling distribution of the proportion of U.S. origin high-tech patents in

the U.S. MSAs, from 2010 to 2015, resembles an inverted “U”-shaped distribution,

moderately skewed to the right. As results will show, this may indicate a small degree

of spatial dependence. One particular characteristic of the proportion of U.S. origin

high-tech patents is that there are observations at the corners, 0 and 1. Hence, there

is a relatively small group of MSAs that focus their patenting activity on high-tech

development. However, the value 0 must be interpreted with care. In fact, most

of these observations may refer to MSAs with no high-tech development activity.

This is because, the majority of the high-tech innovations tend to be patented,

as pointed out by Fischer et al. (2009). Even so, some of these observations may

correspond to a small group of MSAs that have a relevant high-tech development

activity, but their innovations have not been patented yet. In addition, note that

having observations at the corner 0 and 1 have important implications in terms of

estimation. Considering approaches that apply ad hoc transformations to adjust the

observations at 0 or 1, are not adequate and do not yield consistent estimates for

the parameters of interest (see also section 18.6 of Wooldridge, 2010).

The spatial distribution of the proportion of U.S. origin high-tech patents in the

U.S. MSAs is quite heterogeneous. Still, it tends to follow the aggregate pattern of

the proportion of U.S. origin high-tech patents (see Figure A4.4 and Figure A4.5).

Between 2010 and 2014, the proportion of U.S. origin high-tech patents appears to

increase, for the majority of the MSAs. Not surprisingly, this coincides with the

period of economic recovery in the U.S., after the turbulent 2000s, with successive

economic crisis (energy, housing and financial). However, from 2014 to 2015, the

14Information on the real GDP was collected from the Bureau of Economic Analysis (BEA) –
U.S. Department of Commerce (https://usa.ipums.org/usa/acs.shtml)
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proportion of high-tech patents appears to decrease for most of the MSAs. In a

2016 technical report, Antonipillai et al. (2016) show that the share of workers

with a bachelor degree or higher have declined for intellectual-property intensive

industries, between 2010 and 2015. As the estimation results will show, employment

has an important effect on the proportion of U.S. origin high-tech patents.

With regard to the panel descriptive statistics, it is possible to observe that there

is no variable that is time-invariant, due to the positive within variation. However,

all the R&D expenditures and employment variables have small within variation. In

consequence, several complications may arise for the Fixed Effects estimator. See

Hahn et al. (2011) for a discussion on this matter, under a non-spatial framework.

Other three results are expected. First, the R&D expenditures at U.S. Colleges

and Universities (adjusted for inflation) for the U.S. MSAs are, on average, mainly

funded by the Federal Government. Two, on average, the Ph.D. workers earn about

two times more than the graduate workers (except Ph.Ds) and about four times

more than the non-graduate workers. Three, on average, the majority of workers in

the MSAs are non-graduates. Though expected, this result proves that structural

labor market policies have to be undertaken, in order to increase the potential of

Human Capital in the U.S.

Next, the estimation results for the empirical application on the proportion

of U.S. origin high-tech patents in the U.S. MSAs, between 2010 and 2015, are

presented. The iterative GMM (iGMM) estimator is used to estimate the PFRSLPM

and the aPFRSLPM. In addition, the Two-Stage Least Squares (2SLS) estimator

is used to estimate the Pooled Linear Spatial Lag Model (Pooled LSLM) and the

Linear Spatial Lag model with Fixed Effects (LSLM-FE). Three scenarios to model

the unobserved heterogeneity are considered: no device, the Chamberlain-Mundlak

device and the Debarsy (2012) device (see also Assumption 4.3). The estimates are

compared and discussed in detail. The issues related to the estimation of spatially

lagged fractional responses using a linear approach are stressed out.
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4.4.3. Estimation results

In this section, the estimation results on empirical application are presented.

The relevant outputs are provided in Section B4. Table B4.1 presents the Two-

Stages Least Squares (2SLS) estimation results for the Pooled Linear Spatial Lag

Model (Pooled LSLM)15. Table B4.2 presents the 2SLS estimation results for the

Linear Spatial Lag Model with Fixed Effects (LSLM-FE)16. Table B4.3 presents the

iterative Generalized Method of Moments (iGMM) estimation results for the Panel

Fractional Response Spatial Lag Probit Model (PFRSLPM). Table B4.4 presents

the iGMM estimation results for the approximate Panel Fractional Response Spa-

tial Lag Probit Model (aPFRSLPM). For the Pooled LSLM, the PFRSLPM and

the aPFRSLPM, the treatment of unobserved heterogeneity is approached in three

ways. First, with no specific treatment of the unobserved heterogeneity (no de-

vice). Second, using the Chamberlain-Mundlak device (CM device). Third, using

the Debarsy (2012) device (Debarsy device), as in Assumption 4.3. The PFRSLPM

with Debarsy device is the benchmark model. All the estimated models use a row-

standardized spatial weighting matrix, W, given by the squared inverse distance

between the MSAs, along the lines of Anselin et al. (1997), Acs et al. (2002) and

Fischer and Varga (2003). In addition, all the estimation procedures consider the

matrix of instruments Z = [X,WX,W2X]. The time averages of the explanatory

variables and their spatial lags were excluded as instruments to avoid perfect colin-

earity, resulting from small within variation. Table C4.1 presents the estimated time

averages for the Average Direct Effects (ADEs) and for the Average Indirect Effects

15The Pooled LSLM considers the following model:

Yit = α
∑
j 6=i

wijYjt +

K∑
k=1

βkxit,k + uit, i, j = 1, 2, . . . , N, t = 1, 2, . . . , T (118)

16The LSLM-FE considers the time-demeaned model:

Ỹit = α
∑
j 6=i

wij Ỹjt +

K∑
k=1

βkx̃it,k + ũit, i, j = 1, 2, . . . , N, t = 1, 2, . . . , T (119)

with Ỹit = Yit −
1

T

T∑
t=1

Yit, and x̃it,k = xit,k −
1

T

T∑
t=1

xit,k, for each k = 1, 2, . . . ,K, and ũit =

uit −
1

T

T∑
t=1

uit.
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(AIEs), based on the estimates obtained from the previous models (Pooled LSLM,

LSLM-FE, PFRSLPM and aPFRSLPM), with the treatment of the unobserved het-

erogeneity approached by the Debarsy (2012) device. The estimated ADEs and

AIEs are averaged across the temporal dimension, once they did not change much

across different years. The standard errors of the estimated ADEs and AIEs for the

PFRSLPM and the aPFRSLPM are obtained via simulation (see Bivand, 2019, for

details).

The estimation results, across different approaches to unobserved heterogene-

ity, can be summarized in fourfold. First, in general, the estimates for each of the

parameters of interest do not change sign. Exceptions are the variables Business

R & D, Median Real Wages Ph.Ds and Median Real Wages non-graduates. Sec-

ond, the estimated magnitudes significantly differ for the scaled and the unscaled

estimates17. Third, the individual statistical significance of the parameter estimates

tends to change more drastically for the Pooled LSLM. Here, most of the explanatory

variables are statistically insignificant, especially when the unobserved heterogeneity

is controlled for. To the contrary, under both the PFRSLPM and the aPFRSLPM,

only the real wage variables change significance across different approaches to un-

observed heterogeneity, becoming statistically insignificant when using the Debarsy

(2012) device. Fourth, the iGMM estimates for the PFRSLPM and the iGMM es-

timates for the aPFRSLPM have similar magnitudes. This is consistent with the

findings from the simulation study in Chapter 3. Furthermore, these estimates are

identical in terms of sign and statistical significance.

In terms of model adequacy, the Wald tests of joint significance tend to reject

the null and the Hansen tests for the validity of over-identifying moment conditions

tend to not reject the null. Exceptions are the LSLM with CM device, for the Wald

test (the null is not rejected), and the LSLM-FE, for the Hansen test (the null is

rejected). Even so, note that, for the case where the unobserved heterogeneity is

neglected (“no device”), the estimates are known to be biased and inconsistent.

17To ensure comparability with the iGMM estimates for both the PFRSLPM and the
aPFRSLPM, the estimates for the Pooled LSLM and the estimates for the LSLM-FE were multi-

plied by
[
(2π)

(
1 + σ̂2

e

)]1/2
, with σ̂2

e obtained from the estimation of the PFRSLPM with Debarsy
device (the benchmark model).
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Hence, statistical inference is incorrect. Similarly, considering the classic Chamber-

lain-Mundlak device, also leads to biased estimates and invalid inference. This is

because, neighboring factors – spatial lags of the time averaged explanatory vari-

ables – are not included as controls for unobserved heterogeneity. These factors are

particularly helpful to model the correlation between the unobserved heterogeneity

and the spatially lagged responses. As a result, the new time-invariant component,

ei, cannot be independent from the set (Xi1,Xi2, . . . ,XiT ,Y−i,t), for all i and t (see

Assumption 4.3). Therefore, the Debarsy (2012) approach to unobserved hetero-

geneity is preferred to the previous approaches, once it uses the time averages of the

explanatory variables and their corresponding spatial lags.

It is also important to note that using a linear approach to model fractional

responses comes at the cost of estimated effects and predictions falling outside the

admissible interval. In addition, diminishing effects of the explanatory variables over

the dependent variable are not accounted for. Consider, for example, the estimation

results for the Pooled LSLM with Debarsy (2012) device. The estimate for the

variable Employed Ph.Ds is negative and close to unity (in absolute value). This

means that a unit increase in the number of employed Ph.Ds in the ith MSA, at time

t, is predicted to always reduce the proportion of U.S. origin high-tech patents in the

ith MSA (and eventually other MSAs, as well), at time t, by approximately one18.

In this way, a continuous unit increase in the number of employed Ph.Ds in the ith

MSA, implies that the predicted proportion of U.S. origin high-tech patents in the ith

MSA (and eventually other MSAs, as well) would be less than zero. By construction,

this cannot be true. See also Papke and Wooldridge (1996) and Chapter 3 for a

discussion on this matter. Nevertheless, Papke and Wooldridge (2008) point out

that the linear (non-spatial) model with fixed effects can provide good estimates for

the average partial effects of the Fractional Probit model. The estimation results

for the LSLM-FE, however, do not support the previous statement. This may be

18Considering a Linear Spatial Lag Model, the partial effects matrix for the kth explanatory
variable, at time t, is given by:

∆k,t = (I− αW)
−1
βk, ∀k = 1, 2, . . . ,K and t = 1, 2, . . . , T (120)

.
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due to small within variation of the explanatory variables, but also because the

over-identifying moment conditions are not statistically correct.

With regard to the estimates for the spatial lag parameter, α̂, they range from

moderate to low, when normalized to the closed interval [−1, 1]. In addition, they

change much across different approaches to unobserved heterogeneity. The estimates

for α increase as the classic time averaged explanatory variables are included (Cham-

berlain-Mundlak device), while decreasing (and becoming statistically insignificant)

as the spatial lags of the time averaged explanatory variables are included (Debarsy

device). The magnitude of these changes are larger for the iGMM estimator. On

this matter, recall that the iGMM estimates for α are not normalized to the closed

interval [−1, 1]. Their normalization yield:

α̂√
(2π) (1 + σ̂2

e)
PFRSLPM aPFRSLPM

no device 0.046 0.043

CM device 0.166 0.197

Debarsy device 0.060 0.063

As both the PFRSLPM and the aPFRSLPM are more adequate than the linear

approaches to model fractional responses and since the Debarsy device accommo-

dates the correlation between the unobserved heterogeneity and the spatially lagged

responses in a simple way, one may conclude that the degree of spatial dependence

between different MSAs is, in fact, quite low.

In this context, estimating a small value for the spatial lag parameter can be a

result of three main factors. One, due to spatial aggregation. Using firm-level data,

results show that industries tend to form clusters. Examples are the semiconductor

laboratory cluster in Silicon Valley and the biotechnology clusters in Massachusetts,

New York, Pennsylvania and New Jersey (see Stuart and Sorenson, 2003). Two,

due to strong monopolistic behavior of high-tech industries or high-tech industry

clusters (see Gallini, 2002). Many examples can be found, where dominant firms or

clusters tend to engage in antitrust practices, to promote their market position over

their competitors (see, for example, the recent lawsuits on Intel, Google and Apple,

to mention a few). Three, due to space-time lagged effects. The rapid dissemination
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of knowledge is severely limited by the U.S. patent protection laws (see Scotchmer

and Green, 1990, for a discussion on this matter).

In terms of the estimated partial effects, having estimated a small degree of spa-

tial dependence, the spillovers for the whole spatial system tend to be substantially

small. The Average Direct Effects (ADEs) only reflect MSA specific changes in the

proportion of U.S. origin high-tech patents, resulting from changes in the values of

their corresponding explanatory variables. This is because the feedback effects from

the neighboring MSAs will be negligible. Hence, the Average Total Effects (ATEs)

for all the explanatory variables will be close to zero. Plus, the Average Total Effects

To an observation (ATETs), Average Total Effects From an observation (ATEFs)

and the Average Indirect Effects (AIEs) should be interpreted with care, as they

are contaminated by the Average Direct Effects (ADEs). Nonetheless, two interest-

ing results can highlighted. First, the Pooled LSLM estimator and the LSLM-FE

estimator can produce misleading estimates for the ADEs and AIEs (greater or ap-

proximately greater than one, in absolute value). Two, the iGMM estimates for

both the PFRSLPM and the aPFRSLPM are quite similar, as expected.

Focusing on the iGMM estimates for the PFRSLPM, one can observe that the

R&D expenditures at U.S. Colleges and Universities play an important role in the

proportion of U.S. origin high-tech patents among the included MSAs. Results show

that both Federal origin R&D and Institutional origin R&D have an ADE of 0.056

(0.054 for the aPFRSLPM), while State and Local origin R&D and Business origin

R&D have an ADE of −0.043 and −0.162 (−0.042 and −0.157 for the aPFRSLPM),

respectively. To the best of the author knowledge, there is no research that disentan-

gles the different effects of the R&D expenditures at U.S. Colleges and Universities

by source of funding. Most of the literature focus on the importance of federal fund-

ing (see, for example, Adams et al., 2003; Jaffe et al., 1998). Here, it seems to be

useful to stress out the dichotomy between interest in high-tech innovative activity

and investment capacity, for the four relevant sources. First, the federal government

has interest in high-tech innovative activity and has the capacity to invest. This is

because high-tech development increases the “stock” of knowledge and the propen-

sity to innovative, promoting economic growth and welfare. Second, educational
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institutions have the interest in high-tech innovative activity, but have limited in-

vestment capacity. Colleges and Universities are known to have the know-how and

skilled labor. However, own funds are generally insufficient to cover the expenses,

especially if they involve intermediate inputs to develop high-tech products. Third,

state and local government may have interest in high-tech innovative activity, but

also have limited budget. Fourth, businesses may have interest in high-tech innova-

tive activity and investment capacity, but only if the research tends to be profitable

for them (see Arora et al., 2017). Therefore, on one hand, one may expect that busi-

nesses and state and local R&D funding tends to be aimed at innovative activities

in Colleges and Universities that are not related to high-tech development, thus, re-

ducing the proportion of U.S. origin high-tech patents. On the other hand, one may

expect that federal government and own institutional funding tends to be aimed at

innovative activities that are related to high-tech development, thus, increasing the

proportion of U.S. origin high-tech patents.

Employment also plays a significant role in the proportion of U.S. origin high-

tech patents among the included MSAs. Results show that both the number of

employees with a Ph.D. and the number of non-graduate employees have an ADE of

−0.323 and −0.051 (−0.314 and −0.050 for the aPFRSLPM), respectively, while the

number of graduate employees have an ADE of 0.105 (0.104 for the aPFRSLPM).

The estimated signs for the ADEs of the number of non-graduate and graduate em-

ployees are expected. Non-graduate employees tend to be allocated to non-skilled

jobs, whereas graduate employees tend to be allocated to skilled jobs or to be part

of a research team. However, the sign for the estimated ADE of the number of

employees with a Ph.D. is counterintuitive. In fact, one would expect a positive sign

for the estimated ADE, once most of the applied works that assess the effects of

high skilled labor (not necessarily workers with a Ph.D. degree) find a positive effect

on the patent counts (see Acs et al., 2002; Acs and Audretsch, 1989; Anselin et al.,

1997, to name a few). A recent work from Roach and Sauermann (2010) on the em-

ployment preferences of 400 U.S. Ph.D. students in science and engineering, stressed

out two important results. One, there is a prevailing “taste for science” among the

Ph.D. students, while being weaker for those that prefer industrial employment over
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an academic career. Two, Ph.D. students that prefer industrial employment over

an academic career tend to attribute special importance to the access to resources.

Thus, regardless of the employment preferences, having a Ph.D. is intrinsically re-

lated with the interest to produce knowledge and to innovate. Nevertheless, it is

important to point out that the development of high-tech products or services is

time-consuming and research-intensive. Therefore, one should not expect a contem-

poraneous positive effect of increasing the number of employees with a Ph.D. on

the high-tech patent counts. Hence, the contemporaneous ADE for the number of

employees with a Ph.D. on the proportion of U.S. origin high-tech patents is likely

to be negative, at time t, becoming positive in the subsequent periods, as high-tech

patents are granted. A similar argument is valid for estimated ADE of the median

real wage for the Ph.Ds on the proportion of U.S. origin high-tech patents. Increas-

ing labor costs in high-tech intensive industries or universities does not necessarily

result in a contemporaneous positive effect on the high-tech patent counts. Hence,

the corresponding contemporaneous ADE is also likely to be negative, at time t,

becoming positive in subsequent periods.

4.5. Conclusions

In this chapter the two specifications developed in Chapter 3 to model frac-

tional responses with spatial dependence are extended to the panel data setting. In

the same manner, the approach Papke and Wooldridge (2008) to model fractional

responses with panel data is extended to the spatial framework. No transformations

are applied to the responses and observations at the boundaries, zero and one, are

admitted. The time-invariant individual effects are added and are allowed to be

correlated with the explanatory variables. The setup for the proposed specifications

rely on a set of assumptions that are commonly used in the literature. However,

some assumptions may be too restrictive.

The first specification, the Panel Fractional Response Spatial Lag Probit Model

(PFRSLPM), extends the approach of Papke and Wooldridge (2008) to the spatial

framework and extends FRSLM specification, proposed in Chapter 3, to the panel
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data setting. The PFRSLPM combines these approaches in a simple way, while

introducing spatial dependence into the specification through a spatial lag of the

fractional dependent variable and correlated unobserved heterogeneity. The second

specification, the approximate Panel Fractional Response Spatial Lag Probit Model

(aPFRSLPM) consists in a first order series approximation of the PFRSLPM around

the spatial lag parameter equal to zero. The treatment of the unobserved hetero-

geneity is addressed by the spatial approach of Debarsy (2012), generalizing the

classic approaches of Mundlak (1978) and Chamberlain (1980).

An empirical application on the proportion of U.S. origin high-tech patents in

the U.S. Metropolitan Statistical Areas (MSAs), between 2010 and 2015, is also

presented. The spatial spillovers of knowledge and innovation in the U.S. MSAs

are of particular interest, as well as the MSA specific and neighbor specific effects

of R&D expenditures by source of funding – federal government, state and local

government, business and institutional – and wages and employment by educational

level – Ph.D., graduate (except Ph.D.), non-graduate –.

The iterative Generalized Method of Moments (iGMM) estimator of Klier and

McMillen (2008) is used to estimate both the PFRSLPM and the aPFRSLPM. In

addition, the Two-Stages Least Squares estimator is also considered to estimate

the Pooled Linear Spatial Lag Model (Pooled LSLM) and the Linear Spatial Lag

Model with Fixed Effect (LSLM-FE). The estimates are compared, as well as the

corresponding average direct effects (ADEs) and average indirect effects (AIEs).

The drawbacks of considering a linear approach to model fractional responses are

stressed out.

Results show the usefulness of the proposed specifications under the spatial

panel setting. The iGMM estimates for both the FRSLPM and aPFRSLPM using

the Debarsy (2012) device are more reliable than the estimates for other approaches

that do not control for the correlation between the unobserved heterogeneity and

the spatially lagged responses. In addition, the iGMM estimates for the aPFRSLPM

are quite similar to those for the PFRSLPM. To the contrary, the estimates for the

Pooled LSLM and the LSLM-FE do not reflect the true nature of the responses.

The estimated degree of spatial dependence for the proportion of U.S. origin
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high-tech patents in the U.S. MSAs is significantly low. Factors such as spatial

aggregation, regional monopolistic behavior of clustered high-tech industries or the

absence of space-time effects, may help to explain this phenomenon. As a result, the

feedback effects of the neighboring MSAs are extremely low and the usual measures

for the partial effects are contaminated by the ADEs.

Federal government and institutional funding of the R&D expenditures at U.S.

Colleges and Universities appear to have a direct positive effect on the proportion

of U.S. origin high-tech patents in the U.S. MSAs. To the contrary, state and local

government and businesses funding have a direct negative effect. This may be due

to the lack of investment capacity or to the lack of interest from private companies

on non-profitable development of high-tech innovations.

The number of employees with a Ph.D. and the number of non-graduate employ-

ees appear to have a direct negative effect on the proportion of U.S. origin high-tech

patents in the U.S. MSAs. To the contrary, the number of graduate employees ap-

pear to have a direct positive effect. All the estimated signs are expected, with

exception to the estimated sign for the number of employees with a Ph.D. While

non-graduates tend to execute non-skilled jobs, graduates and doctorates tend to

execute skilled jobs or be part of a research team. Introducing dynamic effects may

resolve this issue.

It would be of interest to test these findings using more disaggregated data, at

the County-level or even at the firm and/or the University level. In addition, it would

be important to assess the properties of the iGMM estimator for the PFRSLPM and

the iGMM estimator for the aPFRSLPM, through an extensive simulation study.

The adequacy of Assumption 4.3 should be addressed as a central issue.
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APPENDIXES

A4. Descriptive Analysis

Figure A4.1: Centroids of the U.S. Metropolitan Statistical Areas included
in the empirical application

Figure A4.2: Empirical distribution of the proportion of High-Tech
Patents in the U.S. Metropolitan Statistical Areas, between the years 2010

and 2015
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Figure A4.3: Spatial distribution of the proportion of High-Tech Patents in the U.S. Metropolitan
Statistical Areas, for each year
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Figure A4.4: Time series of the aggregate patents (all patents and high-
tech patents) in the U.S. Metropolitan Statistical Areas, between the years

2010 and 2015

2010 2011 2012 2013 2014 2015

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Years

N
um

be
r 

of
 P

at
en

ts

2010 2011 2012 2013 2014 2015

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Years

N
um

be
r 

of
 P

at
en

ts
All Patents
High−Tech Patents

Figure A4.5: Time series of the aggregate change in patents (all patents
and high-tech patents) in the U.S. Metropolitan Statistical Areas, between

the years 2010 and 2015
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Table A4.1: Panel descriptive statistics for the variables included in the empirical application

Variable Mean Std. Dev. Min Max Obs.
% High-Tech Patents overall 0.312 0.172 0.000 1.000 NT = 1206

between 0.153 0.025 0.790 N = 201
within 0.081 -0.105 1.070 T = 6

Federal R & D (inflation adj.) overall 0.176 0.345 0.000003 2.588 NT = 1,206
(in millions of $) between 0.345 0.00003 2.494 N = 201

within 0.026 -0.135 0.386 T = 6

State and Local R & D (inflation adj.) overall 0.017 0.036 0.000 0.393 NT = 1,206
(in millions of $) between 0.035 0.0000005 0.338 N = 201

within 0.008 -0.057 0.166 T = 6

Business R & D (inflation adj.) overall 0.016 0.036 0.000 0.311 NT = 1,206
(in millions of $) between 0.034 0.000 0.267 N = 201

within 0.010 -0.059 0.158 T = 6

Institutional R & D (inflation adj.) overall 0.066 0.112 0.000 1.138 NT = 1,206
(in millions of $) between 0.109 0.000 0.917 N = 201

within 0.029 -0.204 0.356 T = 6

Median Real Wages Ph.Ds overall 6.315 2.384 0.000 18.120 NT = 1,206
(in millions of $) between 1.915 0.971 11.371 N = 201

within 1.425 -0.382 14.266 T = 6

Median Real Wages Graduates overall 3.543 1.513 0.000 8.084 NT = 1,206
(in millions of $) between 1.403 0.255 7.121 N = 201

within 0.574 -0.017 5.640 T = 6

Median Real Wages Non-graduates overall 1.740 0.865 0.000 4.056 NT = 1,206
(in millions of $) between 0.804 0.085 3.690 N = 201

within 0.324 -0.174 3.013 T = 6

Employed Ph.Ds overall 0.019 0.042 0.0004 0.459 NT = 1,206
(in millions of individuals) between 0.042 0.001 0.431 N = 201

within 0.003 -0.016 0.047 T = 6

Employed Graduates overall 0.155 0.321 0.006 3.603 NT = 1,206
(in millions of individuals) between 0.321 0.007 3.345 N = 201

within 0.020 -0.088 0.413 T = 6

Employed Non-graduates overall 0.310 0.526 0.022 5.254 NT = 1,206
(in millions of individuals) between 0.527 0.023 5.165 N = 201

within 0.016 0.201 0.442 T = 6
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B4. Estimation outputs

Table B4.1: Two-Stages Least Squares estimation results for the Pooled Linear
Spatial Lag Model (Pooled LSLM) with no treatment of the unobserved hetero-
geneity (no device), with the Chamberlain-Mundlak device (CM device) and with

the Debarsy (2012) device (Debarsy device)

Dependent variable: % High-Tech Patents

(no device) (CM device) (Debarsy device)

Intercept 0.162∗∗∗ 0.124∗∗∗ 0.205∗∗∗

[0.413] [0.313] [0.515]
(0.023 ) (0.027 ) (0.030 )

Federal R & D (inflation adj.) 0.024 0.084 0.090
[0.062] [0.212] [0.226]
(0.031 ) (0.207 ) (0.194 )

State & Local R & D (inflation adj.) −0.255 −0.192 −0.180
[−0.651] [−0.485] [−0.452]
(0.171 ) (0.662 ) (0.281 )

Business R & D (inflation adj.) 0.468∗∗ −0.472 −0.485
[1.194] [−1.196] [−1.220]
(0.221 ) (0.587 ) (0.318 )

Institutional R & D (inflation adj.) 0.067 0.029 0.047
[0.172] [0.072] [0.119]
(0.090 ) (0.234 ) (0.212 )

Median Real Wages Ph.Ds −0.001 −0.007∗ −0.007∗
[−0.002] [−0.017] [−0.017]
(0.003 ) (0.004 ) (0.004 )

Median Real Wages Graduates 0.034∗∗∗ 0.001 0.001
[0.086] [0.003] [0.003]
(0.008 ) (0.014 ) (0.014 )

Median Real Wages Non-graduates −0.052∗∗∗ 0.003 0.002
[−0.134] [0.008] [0.005]
(0.012 ) (0.025 ) (0.024 )

Employed Ph.Ds −1.513∗ −0.880∗ −0.981∗∗∗
[−3.858] [−2.228] [−2.466]
(0.876 ) (0.483 ) (0.013 )

Employed Graduates 0.494∗∗∗ 0.034 0.019
[1.259] [0.087] [0.049]
(0.160 ) (0.405 ) (0.182 )

Employed Non-graduates −0.157∗∗∗ −0.002 −0.004
[−0.399] [−0.006] [−0.011]
(0.046 ) (0.446 ) (0.182 )

α 0.373∗∗∗ 0.381∗ 0.201
[0.951] [0.965] [0.504]
(0.053 ) (0.209 ) (0.197 )

Observations 1,206 1,206 1,206

# Instruments 35 35 35

Wald test (overall sig.) 137.906 9.152 317.094×102
(p-value) ≈(0.000 ) (0.608 ) ≈(0.000 )

Hansen’s J test 4.452 4.573 1.951
(p-value) ≈(1.000 ) (0.971 ) (0.377 )

NOTE: Scaled estimates in brackets, to ensure comparability with the estimates from the
PFRSLPM and aPFRSLPM. The estimates are multiplied by

√
2π
√

1 + σ̂2
e, with σ̂2

e ob-
tained from the estimation of the PFRSLPM with Debarsy device. Standard errors in
parentheses. Time effects are modeled by a time trend. Significance at the 1%, 5% and 10%
levels indicated by ∗∗∗, ∗∗ and ∗, respectively.

165



Unobserved heterogeneity in spatial panel data models for fractional responses: an
application to the proportion of High-Tech patents in the U.S. MSAs 166

Table B4.2: Two-Stages Least Squares estimation results for the Linear Spa-
tial Lag Model with Fixed Effects (LSLM-FE)

Dependent variable: % High-Tech Patents

Federal R & D (inflation adj.) 0.097
[0.245]
(0.106 )

State & Local R & D (inflation adj.) −0.167
[−0.419]

(0.337 )

Business R & D (inflation adj.) −0.500∗

[−1.257]
(0.297 )

Institutional R & D (inflation adj.) 0.068
[0.172]
(0.119 )

Median Real Wages Ph.Ds −0.006∗∗∗

[−0.016]
(0.002 )

Median Real Wages Graduates 0.001
[0.004]
(0.007 )

Median Real Wages Non-graduates 0.001
[0.002]
(0.013 )

Employed Ph.Ds −1.094
[−2.751]

(1.485 )

Employed Graduates 0.003
[0.006]
(0.232 )

Employed Non-graduates −0.006
[−0.016]

(0.226 )

α −0.002
[−0.005]

(0.070 )

Observations 1,206

# Instruments 35

Wald test (overall sig.) 25.401
(p-value) ≈(0.008 )

Hansen’s J test 151.473
(p-value) ≈(0.000 )

NOTE: Scaled estimates in brackets, to ensure comparability with the esti-
mates from the PFRSLPM and aPFRSLPM. The estimates are multiplied by√

2π
√

1 + σ̂2e, with σ̂2e obtained from the estimation of the PFRSLPM with De-
barsy device. Standard errors in parentheses. Time effects are modeled by a
time trend. Significance at the 1%, 5% and 10% levels indicated by ∗∗∗, ∗∗ and ∗,
respectively.
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Table B4.3: Iterative Generalized Method of Moments estimation results for the
Panel Fractional Response Spatial Lag Probit Model (PFRSLPM) with no treat-
ment of the unobserved heterogeneity (no device), with the Chamberlain-Mundlak

device (CM device) and with the Debarsy (2012) device (Debarsy device)

Dependent variable: % High-Tech Patents

(no device) (CM device) (Debarsy device)

Intercept −0.649∗∗∗ −0.309∗∗ −0.496∗∗∗

(0.048 ) (0.130 ) (0.131 )

Federal R & D (inflation adj.) 0.158∗∗∗ 0.072∗∗∗ 0.165∗∗∗

(0.036 ) (0.024 ) (0.023 )

State & Local R & D (inflation adj.) −0.253∗∗∗ −0.084 −0.126∗∗∗

(0.001 ) (0.175 ) (0.034 )

Business R & D (inflation adj.) 0.481∗∗∗ −0.405∗∗∗ −0.479∗∗∗

(0.003 ) (0.079 ) (0.010 )

Institutional R & D (inflation adj.) 0.107∗∗∗ 0.328∗∗ 0.164∗∗

(0.007 ) (0.135 ) (0.065 )

Median Real Wages Ph.Ds −0.006 0.098∗∗∗ −0.053∗∗

(0.011 ) (0.028 ) (0.024 )

Median Real Wages Graduates 0.111∗∗∗ 0.049 0.071
(0.024 ) (0.084 ) (0.075 )

Median Real Wages Non-graduates −0.167∗∗∗ −0.183∗∗ 0.040
(0.033 ) (0.090 ) (0.053 )

Employed Ph.Ds −1.505∗∗∗ −0.816∗∗∗ −0.952∗∗∗

(0.001 ) (0.014 ) (0.014 )

Employed Graduates 0.543∗∗∗ 0.376∗∗∗ 0.311∗∗∗

(0.010 ) (0.074 ) (0.080 )

Employed Non-graduates −0.162∗∗∗ −0.201∗∗∗ −0.150∗∗∗

(0.023 ) (0.044 ) (0.043 )

α 0.117∗∗∗ 0.421∗∗∗ 0.151∗∗

(0.015 ) (0.078 ) (0.063 )

σ2
e 0.035 0.020 0.006

(–) (–) (–)

Observations 1,206 1,206 1,206

# Instruments 35 35 35

Wald test (overall sig.) 459.980×103 240.543×106 237.364×105

(p-value) ≈(0.000 ) ≈(0.000 ) ≈(0.000 )

Hansen’s J test 4.694 3.884 1.858
(p-value) ≈(1.000 ) (0.973 ) (0.173 )

NOTE: Robust standard errors in parentheses, based on Kelejian and Prucha (2007).
Time effects are modeled by a time trend. Significance at the 1%, 5% and 10% levels
indicated by ∗∗∗, ∗∗ and ∗, respectively.
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Table B4.4: Iterative Generalized Method of Moments estimation results for the
approximate Panel Fractional Response Spatial Lag Probit Model (aPFRSLPM)
with no treatment of the unobserved heterogeneity (no device), with the Cham-
berlain-Mundlak device (CM device) and with the Debarsy (2012) device (Debarsy

device)

Dependent variable: % High-Tech Patents

(no device) (CM device) (Debarsy device)

Intercept −0.650∗∗∗ −0.383∗∗∗ −0.509∗∗∗

(0.048 ) (0.133 ) (0.133 )

Federal R & D (inflation adj.) 0.160∗∗∗ 0.083∗∗∗ 0.164∗∗∗

(0.036 ) (0.023 ) (0.024 )

State & Local R & D (inflation adj.) −0.252∗∗∗ −0.128 −0.127∗∗∗

(0.001 ) (0.170 ) (0.034 )

Business R & D (inflation adj.) 0.481∗∗∗ −0.432∗∗∗ −0.477∗∗∗

(0.003 ) (0.078 ) (0.011 )

Institutional R & D (inflation adj.) 0.107∗∗∗ 0.324∗∗ 0.167∗∗∗

(0.007 ) (0.134 ) (0.065 )

Median Real Wages Ph.Ds −0.006 0.091∗∗∗ −0.055∗∗

(0.011 ) (0.027 ) (0.024 )

Median Real Wages Graduates 0.111∗∗∗ 0.042 0.069
(0.025 ) (0.082 ) (0.076 )

Median Real Wages Non-graduates −0.168∗∗∗ −0.192∗∗ 0.040
(0.034 ) (0.089 ) (0.053 )

Employed Ph.Ds −1.505∗∗∗ −0.822∗∗∗ −0.952∗∗∗

(0.001 ) (0.014 ) (0.014 )

Employed Graduates 0.542∗∗∗ 0.367∗∗∗ 0.315∗∗∗

(0.010 ) (0.072 ) (0.080 )

Employed Non-graduates −0.162∗∗∗ −0.192∗∗∗ −0.152∗∗∗

(0.023 ) (0.042 ) (0.043 )

α 0.111∗∗∗ 0.503∗∗∗ 0.160∗∗

(0.015 ) (0.071 ) (0.064 )

σ2
e 0.048 0.039 0.019

(–) (–) (–)

Observations 1,206 1,206 1,206

# Instruments 35 35 35

Wald test (overall sig.) 447.372×103 210.529×106 225.042×105

(p-value) ≈(0.000 ) ≈(0.000 ) ≈(0.000 )

Hansen’s J test 4.712 3.817 1.861
(p-value) ≈(1.000 ) (0.975 ) (0.172 )

NOTE: Robust standard errors in parentheses, based on Kelejian and Prucha (2007).
Time effects are modeled by a time trend. Significance at the 1%, 5% and 10% levels
indicated by ∗∗∗, ∗∗ and ∗, respectively.
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Chapter 5

Concluding remarks

This thesis contributes to the Spatial Econometrics literature by addressing

the issues related to the estimation and interpretation of spatial models with di-

chotomous and fractional dependent variables. Three essays were presented. The

first essay, The inversion of the spatial lag operator in binary choice models: fast

computation and a closed formula approximation, proposes a new method to ap-

proximate the inverse of the spatial lag operator, used in the estimation of spatially

lagged models for dichotomous outcomes. Considering the series expansion of the

inverse, a “long run” spatial weighting matrix is used to approximate the second

and higher order powers. The computational advantages of this approximation are

demonstrated. The “long run” spatial weighting matrix can be written by known

quantities, which can be obtained from the untransformed spatial weighting matrix.

In this way, the inverse of the spatial lag operator can be approximated by sums of

known quantities, requiring minimal computational burden. Estimation is addressed

by a well-known iterative Generalized Method of Moments (GMM) procedure. A

variant of this procedure is also presented. It considers the proposed approxima-

tion method to approximate the gradients of the original iterative GMM procedure.

In an extensive Monte Carlo simulation study, the performance of the proposed

approximation method is assessed and compared with that of other methods de-

veloped in the literature. Of interest is the computational time and accuracy to

compute the inverse of the spatial lag operator and related matrix operations. The

proposed approximation method is shown to be particularly useful, especially under

scenarios with large and dense spatial weighting matrices. The statistical proper-

ties of the iterative GMM estimator with approximated gradients are also assessed
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and compared with the original iterative GMM estimator and a GMM estimator

for a linearized spatially lagged model for dichotomous outcomes. The proposed

iterative GMM estimator with approximated gradients is shown to produce accu-

rate estimates, especially for the case where the degree of spatial dependence is low

or moderate. Also, it proves to be more precise than the original iterative GMM

estimator for the majority of sampling scenarios. The adequacy of the proposed

iterative GMM estimator is also assessed in an empirical application on the com-

petitiveness in the U.S. Metropolitan Statistical Areas (MSAs). Results found a

moderately high degree of spatial dependence in regional competitiveness and sig-

nificant effects of environmental variables on the probability of a given MSA to be

competitive.

The second essay, Fractional responses with spatial dependence, proposes two

specifications to model spatially dependent fractional responses. The first specifi-

cation, the Fractional Response Spatial Lag Model (FRSLM), extends the seminal

approach of Papke and Wooldridge (1996) to spatial frameworks and generalizes the

recent approach of Xu and Lee (2015a) to accommodate responses defined in the

closed interval [0, 1]. The second specification, the approximate Fractional Response

Spatial Lag Model (aFRSLM), consists in a first order series approximation of the

FRSLM, around the spatial lag parameter equal to zero. Also, it allows to write the

FRSLM as an approximate reduced form. The partial effects for both the FRSLM

and aFRSLM are deduced. The partial effects for the aFRSLM can be interpreted as

approximate measures for policy changes, once they are given by nonlinear functions

of the exogenous explanatory variables. Here, again, estimation is addressed by a

well-known iterative Generalized Method of Moments (GMM) procedure. An ex-

tensive Monte Carlo simulation study showed the adequacy of both specifications in

terms of accuracy and precision. The GMM estimates obtained for both the FRSLM

and aFRSLM tend to be quite similar. Interestingly, the GMM estimator for the

aFRSLM performed better for scenarios with a high degree of spatial dependence

and denser spatial weighting matrices. It also performed better in the estimation of

Average Indirect Effects (AIEs).
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The third essay, Unobserved heterogeneity in spatial panel data models for frac-

tional responses: an application to the proportion of high-tech patents in the U.S.

Metropolitan Statistical Areas, extends the second essay to the panel data setting.

Time invariant unobserved effects are added to the specifications and allowed to be

correlated with the explanatory variables. The spatial approach of Debarsy (2012)

to the unobserved heterogeneity is considered. The partial effects are deduced. The

adequacy of the proposed extensions are assessed in an empirical application on

the knowledge and innovation spillovers in the U.S. MSAs, between 2010 and 2015.

Results found a low degree of spatial dependence in the proportion of U.S. origin

high-tech patents and significant effects of both R&D expenditures at U.S. Colleges

and Universities and high skilled employment on the regional high-tech patenting

activity. The set of underlying assumptions may be too restrictive, but the proposed

extensions tend to perform better when considering the Debarsy (2012) device.

The simple and intuitive approaches developed in this thesis can be used to

address the specification and estimation of spatial models with ordered, multinomial,

limited or count dependent variables. In addition, they can also be used in other

frameworks, where the treatment of spatial dependence and spatial heterogeneity is

a central issue.

The findings and brief discussions on the empirical applications presented in

this thesis provide directions to future research in regional competitiveness and on

the subject of knowledge and innovation.
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