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1 Introduction 

The growing population over the world has forced settlement 

into geologically sensitive areas resulting in negative impact 

on the environment and substantially increasing the 

vulnerability of the inhabitants to the risk of natural disasters. 

This expansion of settlement has also increased human 

activities in terms of agricultural practices and infrastructure 

development, leading to massive deforestation and land use 

changes, thereby increasing the potential of occurrences of 

landslides.   

Dai, Lee and Ngai, (2002) established that cutting slopes for 

infrastructure development is a triggering factor for most 

landslides. On the other hand, the occurrences of landslides 

have been a major problem for infrastructure development 

around the world especially in mountainous countries where 

landslide has hindered development of highways, railway 

lines, valleys, reservoirs, inhabited areas and agricultural 

lands. A landslide event could lead to blocking of traffic, 

destruction of fertile land, collapse of buildings, and loss of 

lives. Therefore, it is imperative that measures be taken to 

reduce the instances of landslides. One of the strategy to 

reduce the impact of landslide through preventions and 

mitigations, that has been adopted in many parts of the world 

is Landslide hazard, landslide risk and Landslide 

susceptibility mapping (Pardeshi, Autade & Pardeshi, 2013).  

A landslide is the movement of rock, earth, or debris down 

a slope of land. It is a geological phenomenon of ground 

movement depending on the type of movement (fall, topple, 

spread, flow, slide and slope deformation), type of material 

involved (rock, earth, debris), and speed of the movement 

(Hungr, Leroueil & Picarelli, 2014; Varnes, 1978). Although 

the action of gravity is the primary driving force for a 

landslide, there are other factors triggering landslide such as 

earthquake, rainfall or human interaction (Guzzetti, 2003). 

Numerous studies have been conducted on Landslide 

Susceptibility Mapping (LSM) to determine the influence of 

the causal factors on the occurrence of the event. The 

application of GIS with Multi-criteria decision analysis 

(MCDA) method based on analytical hierarchy process 

(Yalcin, 2008; Althuwaynee et al., 2014), fuzzy logic 

(Feizizadeh et al., 2014; Vakhshoori & Zare, 2016) and 

weighted linear combination (Ahmed, 2015) were shown to be 

useful in predicting the landslide susceptibility. Usefulness of 

Artificial Neural Network (ANN) method (Zeng-Wang, 2001; 

Kanungo et al., 2006) were also evaluated relative to other 

methods. Logistic regression method  to determine the weight 

of the causal factor is widely adopted by most researchers 

(Devkota et al., 2013; Das et al., 2012; Sangchini, Nowjavan 

& Arami, 2015; Yesilnacar & Topal, 2005; Rasyid, Bhandary 

& Yatabe, 2016; Althuwaynee et al., 2014). Information value 

model (Chalkias, Ferentinou & Polykretis, 2014; Sarkar & 

Kanungo, 2006) and weight of evidence method (Pradhan, 
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Abstract 
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Biswajeet; Oh, Hyun-Joo ; Buchroithner, 2010; Quinn et al., 

2010) were also used with significant outcomes.  

The aim of the current study is to develop a landslide 

distribution map and derive relative weight of different classes 

of landslide causative factors using statistical information 

value model. A landslide susceptibility map will be created in 

the ArcGIS environment.  

 

1.1 Study area 

Bhutan is located within seismic zone 5, the most severe 

seismic zone as classified by Bureau of Indian Standards and 

shares similar tectonic settings as Northern India and Nepal 

with major tectonostratigraphic units and structures including 

Siwalik Group, the Main Boundary Thrust (MBT), the Lesser 

Himalayan Sequence (LHS), the Main Central Thrust (MCT), 

the Higher Himalayan Crystalline Complex (HHC), and the 

South Tibetan Detachment (STD) (Kuenza, Dorji & Wangda, 

1994; Petterson et al., 2011). Landslide of varying degrees 

occurs frequently in southern Bhutan which is predominantly 

due to steep slopes, sparse vegetation and phyllite lithology 

(Cheki & Shibayama, 2008; Pasang & Kubíček, 2017; Thapa, 

Phuntsho & Chozom, 2015; Pasang, Sangey; Kubíček, 2017). 

 

 

Figure 1: Study Area: Phuentsholing  

 
 

 

The study area (Figure 1) includes Phuentsholing, the main 

commercial centre of Bhutan connecting western Bhutan to its 

major economic partner, India and the Pasakha industrial 

estate. The total area of 139.5 square kilometers comprises of 

15.6 square kilometers urban Phuentsholing (Population: 

23,925) and Highway Road length of 192 km. The area is 

subjected to frequent occurrences of landslides of varying 

magnitudes at a number of locations (Figure 2). 

 

 

2 Materials and Methods 

Interpreting the likelihood of future landslide occurrences 

requires an understanding of conditions and processes 

controlling past landslides in the area of interest. Landslide 

distribution or inventory mapping is the basic information 

required in determining the size and features of a landslide 

(Guzzetti, 2003; Skidmore, 2002). To create thematic layers 

of landslide distribution and casual factors including slope 

angle, aspect, elevation, proximity from road, drainage and 

fault, lithology, land use and normalised difference vegetation 

index (NDVI), we used ArcGIS environment along with SPSS 

for data management and validation, and MS Excel for 

Information value analysis. 

 

 

Figure 2: Landslides in Phuentsholing (A) and road section in 

Pasakha (B). 

 
 

 
 

 

2.1 Landslide distribution map 

Landslide inventory mapping is carried out by conventional 

ground survey, Remote Sensing (Kanungo et al., 2006) and 

GIS depending on the scope, the extent of the study area, the 

scales of base maps and aerial photographs, and the resources 

available to carry out the work. Using multiple sets of aerial 

photos at different times, multi-temporal maps can be 

prepared.  

A thematic layer for the distribution of landslide was 

prepared to derive the correlation of landslide occurrence to 

the casual factors. Due to unavailability of landslide inventory 

in Bhutan, a technical report by National Soil Services Centre 

(NSSC) & PPD (MoAF/RGoB, 2011), was used as the 

primary guidance for field visits and digitization using 

satellite imagery from google earth. A total of 161 landslides 

with an area of 2.92 square kilometres with the largest 

landslide measuring 304,625 square meters (Figure 3 and 

Table 1) were digitized. The layers of landslide distribution 

and the casual factors were rasterised for further analysis. For 

(A) 

(B) 
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the purpose of validation of the LSM, 20 % of the landslide 

distribution pixel were extracted and the remaining pixel were 

prepared for statistical analysis. 

 

Figure 3: Landslides distribution in study area. 

 
 

Table 1: Number of cells for sample layers 

  
Training sample 

(80%) 

Validation sample 

(20%) 

 

No. of 

cells 

Percent 

% 

No. of 

cells 

Percent 

% 

No 

Landslide 
485258 97.9 122085 97.9 

Landslide 10419 2.1 2594 2.1 

Total 495677 100.0 124679 100.0 

 

 

2.2 Landslide casual factors 

In the present study, the factors causing landslide were 

considered from various literature and data available for the 

study area. Individual thematic maps for the casual factors 

were developed and divided into classes (Table 2) to 

determine the influence of each factor on the occurrence of a 

landslide. 

The geomorphic causal factors such as slope angle, aspect 

and elevation were produced from ASTER DEM of 30 m 

resolution. The slope angle in degrees was divided into six 

classes of equal interval of 10 degrees. Aspect was 

categorised into eight classes of compass and one class for flat 

area. An elevation map with 11 classes of 200 m interval was 

produced. The lithological and fault details were digitized 

from 1:50,000 geological map of Bhutan from Journal of 

Maps 2011(Long et al., 2011). Land cover maps from the 

archives of MoWHS, which was developed by National Soil 

Services Centre (NSSC) & PPD (MoAF/RGoB, 2011) were 

used to derive seven simplified broad land use categories to 

meet the aim of the study. NDVI was developed using 

Landsat 8 images to consider the influence of vegetation in 

landslide occurrence. Drainage map and road map were 

downloaded from the website of the Bhutan Geospatial portal. 

Layers of both casual factors were created with six equidistant 

buffers of 100 m each.  

2.3 Information value method 

Information value model, a simple statistical method to map 

landslide susceptibility by determining the influence of each 

class of the casual factors on the occurrence of the landslide in 

an area was found appropriate in many studies (Chalkias, 

Ferentinou & Polykretis, 2014; Sarkar & Kanungo, 2006; 

Nepal, Rao & Ho, 2015). In this model the information value 

Ii for a class i in a thematic layer is: 

 

log i i
i

S N
I

S N
    (1) 

 

Where, Si = number of pixels of the class containing landslide; 

Ni = number of class pixels; S = number of pixels with 

landslide in layer; N = total number of pixels in the layer.  

After calculating the information values for each class of the 

causal factors, the raster maps were overlaid in GIS 

environment. The landslide susceptibility index was 

calculated as the sum of the information value that a pixel j 

has from each corresponding pixel of the casual factor. 

 

1

M

j ji i

i

LSI X I


     (2) 

 

Where, Xij=1 if class i exists in factor j and 0 if class i does 

not exist in factor j; M = number of classes considered. 

From landslide susceptibility indices, five severity level of 

landslide were categorised. 

 

 

2.4 Validation 

To check the accuracy of the LSM, the validation sample of 

20% landslide pixel is overlaid on the LSM. If the maximum 

pixel falls under the categories of high or very high level of 

severity, the LSM is considered to be valid.  

Area under curve (AUC) of the receiver operating 

characteristic (ROC) (Pradhan, Biswajeet; Oh, Hyun-Joo ; 

Buchroithner, 2010; Yilmaz, 2009) was also performed on 

both the training sample and the control sample to evaluate 

the success rate and prediction rate of the information value 

against the occurrence of landslide. 

 

 

3 Results and Discussions 

3.1 Information Values and Landslide densities  

The casual factor map was overlaid on the landslide 

distribution map to obtain the influence of each class on the 

occurrence of landslide with positive value as more influential 

and vice versa. The information values of each class under 

casual factors were determined by using Equation (1) and 

density of landslides by identifying affected area in each class 

(Table 2). 

The factor contributing most to landslide occurrences are 

the degraded area class under land use followed by dry bare 

soil class (NDVI) and scrub class (land use). Region of 

Phyllite-Limestone, elevation between 200-300 m, 200-300m 
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distance from road and southeast aspect were other significant 

contributors. 

 

Table 2: Classes of causal factors with Information values and 

landslide densities 

Causal Factors 

Information 

Value 

Landslide 

density 

Slope (degree) 

0-10 -0.682 0.052 

10-20 -0.026 0.212 

20-30 0.073 0.349 

30-40 0.099 0.293 

40-50 0.081 0.090 

>50 -0.567 0.004 

Aspect Class 

Flat -1.780 0.000 

North -1.029 0.035 

North East -1.061 0.024 

East -0.641 0.037 

South East 0.345 0.175 

South 0.256 0.210 

South West 0.240 0.222 

West 0.343 0.226 

North West -0.678 0.072 

Elevation (m) 

0 - 200 -0.259 0.038 

200 - 400 0.441 0.329 

400 - 600 0.214 0.284 

600 - 800 0.003 0.162 

800 - 1000 -0.462 0.073 

1000 - 1200 -0.708 0.047 

1300 - 1400 -0.087 0.065 

1400 - 1600 0.000 0.000 

1600 - 1800 0.000 0.000 

1800 - 2000 0.000 0.000 

>2000 0.000 0.000 

Distance from Road (m) 

0-100 -0.214 0.134 

100-200 0.161 0.131 

200-300 0.353 0.126 

300-400 0.267 0.100 

400-500 0.023 0.067 

>500 -0.107 0.442 

Distance from Drainage (m)  

0-100 0.122 0.589 

100-200 -0.039 0.297 

200-300 -0.300 0.089 

300-400 -0.480 0.023 

400-500 -2.504 0.001 

>500 0.000 0.000 

Distance from Fault (m) 

0-500 0.334 0.410 

500-1000 0.130 0.309 

1000-1500 -0.007 0.147 

1500-2000 -0.484 0.056 

2000-2500 -0.211 0.056 

2500-3000 -0.930 0.021 

>3000 -3.885 0.002 

Lithology 

Phyllite-Limestone 0.345 0.374 

Phyllite-

Dolostone/Marble -0.041 0.317 

Quartzite-Mica/Schist 0.341 0.235 

Schist/Phyllite-Quartzite -1.081 0.073 

Granite 0.000 0.000 

Biotite-Quartzite 0.000 0.000 

Land use 

Agriculture Land -0.566 0.059 

Built-up Area -0.762 0.013 

Degraded Areas 3.544 0.402 

Forests -0.712 0.350 

Shrubs 0.550 0.134 

Horticulture Land -0.901 0.008 

Water Bodies -0.317 0.034 

NDVI 

Water 0.121 0.006 

Dry Bare soil 0.571 0.300 

Vegetation 0.115 0.395 

Dense Vegetation -0.456 0.299 

 

 

3.2 Landslide susceptibility Index 

Equation (2) was used to determine the landslide 

susceptibility index by summing the information values of the 

classes under different causal factors corresponding to each 

pixel in the map. It was reclassified into scales of five 

severities of very low, low, moderate, high and very high 

using natural breaks (Jenks) method (Figure 4).  The number 
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of pixels and area falling under different scales of landslide 

susceptibility is indicated in Table 3. 

 

 

Figure 4: Landslide susceptibility map indicating various 

scales of severity 

 
 

 

Table 3: Number of pixels and percentage area of layer 

corresponding susceptibility indices.  

Susceptibility 

Index 
Training Sample Validation Sample 

 

No. of 

Pixels 
%Area 

No. of 

Pixels 
%Area 

Very Low 2965 7.5 8 0.3 

Low 6257 15.9 77 3.0 

Moderate 15072 38.3 499 19.2 

High 14535 36.9 1077 41.5 

Very High 515 1.3 933 36.0 

Total 39344 100 2594 100 

 

 

 

3.3 Validation 

The validation samples of landslide pixels were overlaid on 

the LSM to establish that 36 % of landslide pixels lies under 

very highly susceptible region followed by 41 % in high, 19.2 

% in moderate, 3 % in low and 0.3 % with very low 

susceptibility  (Table 3). 

To evaluate the performance of the model using AUC for  

success and prediction rates of both training and the validation 

samples, various values considered for the diagnostics were 

0.5 to 0.6 (fail), 0.60–0.70 (poor), 0.70–0.80 (fair), 0.80–0.90 

(good), and 0.90–1.00 (excellent) (Rasyid, Bhandary & 

Yatabe, 2016). The AUC of ROC were 83.4 % and 83.5 % for 

the success and prediction rates respectively (Figure 5).  

 

 

 

Figure 5: Area under curve (AUC) of the receiver operator 

characteristic (ROC) for the training sample (A) and 

validation sample (B). 

 

 

 
 

4 Conclusion 

A LSM of Phuentsholing area, indicating scales of severity of 

the occurrence of landslide was created. The model suggests 

that the occurrences of landslides are affected mainly by land 

use, vegetation cover and elevation. Since the results of the 

study also clearly indicate the severity of landslide occurrence 

and the influence of various classes of factors, socio-economic 

development plans can be made to avoid or minimize the cost 

resulting from future landslide. Since the AUC prediction rate 

is 83.5%, and 77.5% of the validation sample falls under very 

high and high landslide susceptibility area, it can be 

concluded that information value model is useful for a region 

similar to the study area.  
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