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Abstract: Could past land uses, and the land cover changes carried out, affect the current landscape
capacity to maintain biodiversity? If so, knowledge of historical landscapes and their socio-ecological
transitions would be useful for sustainable land use planning. We constructed a GIS dataset in
10 × 10 km UTM cells of the province of Barcelona (Catalonia, Spain) for 1956 and 2009 with the
changing levels of farming disturbance exerted through the human appropriation of photosynthetic
net primary production (HANPP), and a set of landscape ecology metrics to assess the impacts of
the corresponding land-use changes. Then, we correlated them with the spatial distribution of total
species richness (including vascular plants, amphibians, reptiles, birds and mammals). The results
allow us to characterize the main trends in changing landscape patterns and processes, and explore
whether a land-use legacy of many complex agroforest mosaics maintained by the intermediate
farming disturbance managed in 1956 could still exist, despite the decrease or disappearance of
those mosaics before 2009 due to the combined impacts of agroindustrial intensification (meaning
higher HANPP levels), forest transition (meaning lower HANPP levels) and urban sprawl. Statistical
analysis reveals a positive impact of the number of larger, less disturbed forest patches, where many
protected natural sites have been created in 1956–2009. However, it also confirms that this result
has not only been driven by conservation policies and that the distribution of species richness is
currently correlated with the maintenance of intermediate levels of HANPP. This suggests that both
land-sharing and land-sparing approaches to biodiversity conservation may have played a synergistic
role owing to the legacy of complex land cover mosaics of former agricultural landscapes that are
now under a serious threat.

Keywords: land use and cover change (LUCC); landscape heterogeneity; intermediate disturbance
ecology; biodiversity; land sparing and land sharing conservation policies

1. Introduction

Europe has experienced a long-lasting and widespread forest transition on the steep terrain [1–5],
whereas urban-industrial facilities and linear infrastructures are taking ever more land on the plains.
In 2012 woodland was the largest land use, covering 34% of total continental area, followed by arable
land and permanent crops (25%), and pastures and mosaics (17%), while artificially sealed built-up
areas and infrastructures occupy around 4% [6]. From 1990, the total forest area has remained relatively
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stable in Europe, but forests continue to expand in some regions, such as the Mediterranean [7].
There are authors who praise this forest transition for some of its environmental benefits, such as
carbon sequestration and lower human pressure over large mountain areas where species richness can
refuge [8–10], while others have raised concerns about other negative impacts on biodiversity [11–15].

These contrasting views on forest transition are tightly linked to the ongoing debate between the
“land sparing” and “land sharing” approaches to biological conservation [16]. The land-sparing view
argues that intensifying agroindustrial production in some areas may allow setting others aside to
nature conservation [17,18]. However, land-sharing proponents point out that having a set of isolated
natural reserves is not enough for biodiversity conservation, whereas spreading a wildlife-friendly
farming in a complex land-matrix can maintain a greater farm-associated species richness at the
landscape level that compensates for the decline of species richness at the plot level exerted by
farming disturbance [19–21]. Furthermore, the land cover diversity of complex agroecological land
matrices can also provide a much-needed ecological connectivity to prevent the isolation of protected
sites, thus helping to increase biodiversity at the regional extent. According to the intermediate
disturbance hypothesis, landscape heterogeneity can contribute to a dynamic biodiversity peak at
intermediate levels of ecological disturbance, through the interaction among land cover diversity,
ecosystem complexity, and dispersal abilities of the colonizing species that escape form the most
disturbed patches and are sheltered in less disturbed ones [16,21–25].

Indeed, studies conducted in the Barcelona area have shown that the two approaches can jointly
explain current species richness distribution [26,27]. Accordingly, both land-sparing and land-sharing
policies can be combined in a sound conservation strategy aimed at enhancing all ecosystem services [28].
Larger patch units kept more undisturbed can provide refuge for populations of wild species that
activate their dispersal abilities in areas more disturbed by farming, whereas agroforest landscape
mosaics can provide ecological connectivity among refuge areas. Furthermore, from a metapopulation
perspective having larger landscape patches kept less disturbed would not only act as sanctuaries, but
also as source populations that can recolonise other fragmented and disturbed units, establishing a
dynamic network of habitats that help maintain the populations of many species [29–31].

However, either opposing or combining them, these broad approaches to nature conservation
require more researches on how biodiversity is maintained, improved, or lost through land use
changes [32–38]. Industrialization of agriculture through the “green revolution” has been a major
driver of biodiversity loss worldwide [39]. This has been particularly true for farm-associated
biodiversity [40], as shown by the collapse of common farmland birds populations experienced all
over Europe since the 1960s, which contrasts with the recovery of formerly endangered species
of rare specialist birds as a result of the successful nature protection policies developed [41–43].
In Catalonia, a decline of bird populations that live in agroforest mosaics has also been reported
(http://www.ornitologia.org/ca/), as well as butterflies and Mediterranean orchids that inhabit the open
spaces of those landscape mosaics [44,45].

All these examples highlight that agriculture, and the cultural landscapes it produces, can either
decrease or increase species richness depending on the way it is practiced [46]. Overcoming the global
food-biodiversity dilemma requires advanced knowledge on how species richness is maintained or
lost in different land-use patterns, according to the level and the spatiotemporal pattern of ecological
disturbances caused by farming [34,47,48]. If we want to ensure ecosystem services in the future, better
operative criteria and indicators are needed on when, where, and why the energy throughput driven
by farming increases or decreases the mosaic pattern of cultural landscapes in a way that affects its
capacity to maintain biodiversity [49]. To address this big societal challenge requires more landscape
history research in different bioregions and territories [26,45,50,51].

This calls for multidisciplinary studies of human-nature interaction and coproduction in
agroecosystems [46] through socioecological integrated models, like the energy-landscape integrated
analysis (ELIA) and the intermediate disturbance-complexity model (IDC) [52–54]. Similar to the IDC
model, this work relies on the human appropriation of net primary production (HANPP) and a set of
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landscape ecology metrics as indicators to study to what extent the loss of habitat differentiation in
increasingly homogenous landscapes, because of the abandonment of traditional agroforest mosaics,
has had negative impacts for biodiversity conservation even considering the positive impacts of
creating larger forest units not affected by farming.

To that aim, we assess the land-use changes in the Barcelona province in 1956–2009 from a
landscape ecology perspective and test their impact on the current species richness distribution. One
underlying hypothesis is the existence of a historical land-use legacy [55–57]: Could the mosaic pattern
of the former agricultural landscapes that existed in 1956 (i.e., before industrial farming was spread in
cultivated flatter areas and forest encroachment took place following cropland abandonment in steeper
areas) still explain current locations of species richness in the Barcelona province? What role has the
traditional land-sparing conservation policies played in that outcome? This kind of land-use historical
legacies of past landscape configurations which are still contributing to biodiversity conservation
at present has been demonstrated in other researches that open an interesting field of study [55–57].
Section 2 describes the methodology, Section 3 presents the main results, Section 4 discusses them and
Section 5 presents the main conclusions of this preliminary study, its limitations and pending tasks,
pointing out some hypothesis to follow up.

2. Case Study and Methods

The dependent variable to be explained is the spatial distribution of the total biodiversity recorded
in the Biodiversity Data Bank of Catalonia (BDBC; http://biodiver.bio.ub.es/biocat) in the 48 cells of 10
× 10 km of the Catalan province of Barcelona in Spain (Figures 1 and 2). Following the intermediate
disturbance-complexity (IDC) modelling [26,50,58] to study the interaction between certain levels
of farming appropriation of the biomass produced by the photosynthesis in the study area, and
the complexity of land-cover patterns of cultural landscapes to assess their capacity to maintain
species richness [58], we consider the following explanatory variables: 1) The different amount
of farming disturbance exerted on the territory through the human appropriation of net primary
production (HANPP); and 2) landscape ecology metrics that assess the capacity of the land cover
patterns and ecological processes to provide differentiated habitats for biodiversity maintenance:
Shannon-Wiener index, polygon density, edge density, largest patch index, effective mesh size, and
ecological connectivity index.

All these GIS data were accounted for each of the 48 UTM 10-km cells within the borders of
the Barcelona province (Figures 1 and 2). The landscape structure of these cells was taken from the
2009 Land Cover Map of Catalonia (Spain), reclassified into a set of principal land cover categories to
compare with the 1956 land cover map digitised and photointerpreted from the aerial photograph
made by the US Army (www.creaf.uab.es/mcsc/). We also used the land cover map of 1993 digitised
from the satellite image, although the lower quality of land cover photointerpretation prevents us from
using it in most statistical analysis.

Then we examined whether the farming-driven land use and cover change (LUCC) experienced
in the province of Barcelona from 1956 to 2009 can explain the current distribution of species richness
of vascular plants, amphibians, reptiles, birds, and mammals registered by the BDBC. We mapped
through GIS the total species richness accounted in the 48 cells of 10 × 10 km (Figure 1), to perform
statistical analyses on the relationships between the variations of HANPP and landscape ecology
metrics in 1956–2009 with the locations of total species richness currently observed in each cell [59].
Finally, in order to assess the role played by nature conservation policies and their interaction with the
ongoing land use changes, a specific correlation analysis was made for the same study area.

http://biodiver.bio.ub.es/biocat
www.creaf.uab.es/mcsc/
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2.1. HANPP as a Measure of Farming Ecology Disturbance

The ecological disturbance exerted by farming is accounted by means of the human appropriation
of net primary production (HANPP), calculated according to the standard method set forth by Haberl
et al. [60]:

HANPP =
HANPPharv + HANPPLUC

NPP0

where HANPPharv is the photosynthetic net primary production (NPP) appropriated through harvest,
HANPPluc is the change in the NPP due to farming-induced land use changes, and NPP0 is the
potential NPP. HANPPluc is defined as the difference between the NPP of the potential (NPP0) and
actual (NPPact) vegetation cover (this is, the whole net biomass produced within a year):

HANPPluc = NPP0 −NPPact

Thus, HANPP was calculated for each land-cover category and UTM cell of 10 × 10 km as the
weighted sum of fixed coefficients multiplied by the proportion of the land area occupied by each
land cover type. To estimate these HANPP values it is necessary to assess the different levels of NPP
annually produced in each land type in the study area, and the amounts of biomass harvested by
farming. NPP0 values have been taken from Haberl et al. [60]. Harvest ratios appropriated from
each land type were assessed according to the agricultural statistical sources available for Barcelona
province in each time point, transformed into carbon using the conversion factors, the residue/product
losses, and the unharvested biomass ratios given by Guzmán et al. [61].

2.2. Landscape Ecology Metrics to Assess Land Cover Diversity and Fragmentation

Several metrics were used to differentiate the (positive) effect of land cover diversity from the
(negative) effect of land cover fragmentation on biodiversity [62–64]. Landscape heterogeneity was
assessed through the Shannon–Wiener index (H’) used as a measure of land cover equi-diversity in
each UTM cell:

H′ = −
∑

(pi·ln pi)

where pi is the proportion of the land unit occupied by each type of vegetal cover.
The largest patch index (LPI) measures the area of the largest polygon in each cell. The polygon

density (PD) indicates the number of polygons in each cell. Edge density (ED) is the sum of the polygon
perimeters in each cell. Effective mesh size (MESH) is the sum of the areas of the polygons squared,
divided by the size of the study area, as a measure of the inverse of fragmentation.

MESH =

∑
A2

i∑
Ai

where Ai is the area of each polygon (measured in square km).

2.3. Landscape Ecology Metrics to Assess Ecological Connectivity

After having assessed the landscape structure (patterns) with the above set of metrics, we
calculated another index to account for the landscape ecological functionality (processes). The ecological
connectivity index (ECI) assesses the functionality of the land matrix according to its capacity to
maintain the horizontal flow of energy, matter, and information that sustain biodiversity through the
ecosystems’ landscape patterns and trophic chains [65]. The ECI used is based on a simplification
of the original methodology proposed by Marull and Mallarach [63] following Lindenmayer and
Fischer [66]. It relies on defining a set of ecological functional areas (EFA) considered as focal habitat
patches to be connected, and a GIS computational model of cost-distance of displacement that includes
the effect of modelled anthropogenic barriers (urban areas and infrastructures) considering the type
of barrier, the range of distances, and the kind of land-use involved. Then the model applies the



Sustainability 2020, 12, 2238 5 of 15

CostDistance function using two databases: a “source” surface for each type of EFA and an “impedance”
surface resulting from applying the effects of barriers to the potential affinity matrix. The result is
a cost-distance adapted to each type of EFA. By calculating the value of the sums of cost-distances
adapted, this computational model of ecological connectivity brings about a normalized range that
varies from zero to ten:

ECI = 10 - 9 [ln (1 + xi)/ln (1 + xt)3]

where xi is the value of the sum of the cost-distance by pixel and xt the maximum theoretical cost
distance. This ECI helps to emphasize the role played by all sorts of landscape units (forest, pasture,
and cropland) to keep up ecological connectivity [67].

All the above indicators and indices were accounted to test the variation in the impacts of farming
disturbance and landscape ecology patterns and processes in 1956 and 2009 on the spatial distribution
of the total species richness observed in 2009, in order to check whether their current locations maintain
the land-use legacy of former farming disturbance through the agroforest landscape mosaics.

2.4. Statistical Analysis of the Relationship between Farming Disturbance and Landscape Ecology Metrics in
1956 and 2009 with Total Species Richness in 2009

We first identified the highest differences among the values of each variable in the two time points
by performing two-tailed tests using the Bonferroni p-values adjustment for all pairwise comparisons,
with equal variances with a significance level of 0.05. Then we performed a negative binomial
regression analysis [59], as our data are over-dispersed count variables with a Poisson distribution.
The negative binomial regression analysis was carried out for the total species richness measured in
2009 as dependent variable, considering as explanatory variables the variation in HANPP and the
values of land-cover metrics (H’, LPI, ED, EMS, PD, and ECI) in 1956 and 2009. By regressing the
differences on the values for HANPP and land-cover metrics between 1956 and 2009 we can grasp how
certain dynamics on landscape patterns and processes carried out in each cell of the grid affected the
current spatial distribution of total species richness.

Despite data in 1993 are useful to show the main trends on the overall land uses, and to analyse
some landscape processes and changes in HANPP values, the procedure used to build the map did not
allow for comparing landscape ecology metrics with the detail reached in the maps for 1956 and 2009.
Therefore, we limited to 1956 and 2009 the landscape ecology assessment of most of these historical
land-use changes, and the statistical analysis of these indicators with biodiversity data.

Finally, based on the data of protected areas through conservation, and their spatial overlapping
with the other variables assessed in the 10 × 10 km2 cells, we analysed the Pearson correlation of these
natural sites with the significant variables of the previous statistical analysis.

3. Results

The spatial distribution in the 48 cells of 10 × 10 km of the Barcelona province of the total species
richness registered by the BDBC is shown in Figure 1.
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Table 1. Land use and cover change (LUCC) in the Barcelona province (1956, 1993, and 2009). 

Land covers 
1956 1993 2009 

ha % ha % 1956 = 100 Ha % 1956 = 100 
Forest 195,526.4 40.7 223,060.6 46.5 114.1 233,357.3 48.6 119.3 

Scrubland and pastures 88,710.9 18.5 69,751.0 14.5 78.6 68,691.5 14.3 77.4 
River corridor and wetlands 1,759.7 0.4 1,755.3 0.4 99.7 2,097.0 0.4 119.2 

Cropland 173,140.0 36.1 135,288.2 28.2 78.1 104,359.8 21.7 60.3 
Unproductive 8,246.7 1.7 10,688.9 2.2 129.6 10,106.3 2.1 122.5 

Road and rail networks 2,246.6 0.5 3,509.4 0.7 156.2 7,487.2 1.6 333.3 
Urban area 10,369.7 2.2 35,946.7 7.5 346.7 53,900.8 11.2 519.8 

Total 480,000.0 100.00 480,000.2 100.0   480,000.0 100.0   
Source: Our own accounted with GIS from the digital land cover maps explained in the text. 

Figure 1. Distribution of total species richness currently accounted by the Biodiversity Data Bank of
Catalonia in 48 UTM cells of 10 × 10 km in the Barcelona province. Source: Our own, elaborated with
the Biodiversity Data Bank of Catalonia (http://biodiver.bio.ub.es/biocat). The border of the group of
cells considered for the statistical analysis is marked with bold blue lines in the grid of the map.

Table 1 presents the data obtained on the land-use and cover changes experienced in the Barcelona
province by accounting with GIS the digital maps of 1956, 1993, and 2009. These maps are shown on
the left side of Figure 2.

Table 1. Land use and cover change (LUCC) in the Barcelona province (1956, 1993, and 2009).

Land Covers
1956 1993 2009

ha % ha % 1956 = 100 Ha % 1956 = 100
Forest 195,526.4 40.7 223,060.6 46.5 114.1 233,357.3 48.6 119.3

Scrubland and pastures 88,710.9 18.5 69,751.0 14.5 78.6 68,691.5 14.3 77.4
River corridor and wetlands 1,759.7 0.4 1,755.3 0.4 99.7 2,097.0 0.4 119.2

Cropland 173,140.0 36.1 135,288.2 28.2 78.1 104,359.8 21.7 60.3
Unproductive 8,246.7 1.7 10,688.9 2.2 129.6 10,106.3 2.1 122.5

Road and rail networks 2,246.6 0.5 3,509.4 0.7 156.2 7,487.2 1.6 333.3
Urban area 10,369.7 2.2 35,946.7 7.5 346.7 53,900.8 11.2 519.8

Total 480,000.0 100.00 480,000.2 100.0 480,000.0 100.0

Source: Our own accounted with GIS from the digital land cover maps explained in the text.

http://biodiver.bio.ub.es/biocat
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Institut d’Estudis Regionals i Metropolitans de Barcelona (IERMB). The border of the group of cells
considered for the statistical analysis is marked with bold lines in the grid of each map.
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The average values of the HANPP indicators and landscape ecology metrics in the whole study
area were accounted with GIS in the digital land cover maps seen on the left side of Figure 1, in most
cases only for 1956 and 2009 (Table 2). This data includes the pairwise statistical results obtained by
comparing each variable in 1956, 1993, and 2009 through two-tailed tests, in order to assess which
values had the highest differences in these years.

Table 2. Comparative analysis of the landscape ecology metrics applied in the Barcelona province in all
the 10 × 10 km2 sample cells in 1956, 1993, and 2009.

Landscape Ecology Metric and HANPP Values 1956 (A) 1993 (B) 2009 (C)

Polygon Density—PD (number of polygons) 3,081.19
- - 3,786.98

A

Edge Density—ED (km) 31.51
- - 31.58

-

Largest Patch Index—LPI (ha) 1,964.82
- - 2,096.68

-

Effective Mesh Size—EMS (km2)
256.49

C - 121.51
-

Shannon-Wiener Index (H’) 0.589
C - 0.504

-

Ecological Connectivity Index—ECI 6.81
BC

5.65
-

5.23
-

Net Primary Production actual—NPPact (TM C year−1 ha−1)
69.08

-
92.69

A
86.04

A

Net Primary Production harvested—NPPharv (TM C year−1 ha−1)
24.97

-
35.82
AC

25.73
-

Human Appropriation of NPP—HANPP (%) 60.87
BC

48.78
-

50.42
-

Note: Results of two-tailed tests with equal variances with a significance level of 0.05. For each significant pair, the
key under the category (A, B, C) indicates when a value of the variables considered is, for the specific period shown
in a column, statistically different from the other two dates shown in the other columns. These results appear below
the category, and they have been adjusted for all pairwise comparisons using the Bonferroni test. For 1993 only
HANPP values and indicators of landscape processes at the cell level were considered. Source: Our own, calculated
from the data and methods explained in the text.

Negative binomial regression analysis [60] of the capacity to explain the distribution in the 48
UTM cells of 10 × 10 km of the total species richness observed in the province of Barcelona in 2009
was done, considering as independent variables the historical variation from 1956 to 2009 in the levels
of farming disturbance exerted through HANPP, and the land cover patterns and processes assessed
through all the landscape ecology metrics accounted. The incidence rate ratio (IRR) value informs on
how a change in the independent variables (landscape patterns and processes) affects the dependent
variable (total biodiversity). Values over 1 show positive relation while values under 1 shows negative
relation (Table 3).

In order to better understand how the debate between the two main conservation policies fit our
previous results, we performed a correlation analysis between the total surface areas under nature
protected figures and the statistically significant variables obtained in the negative binomial regression
analysis (∆HANPP, ∆H’, and ∆LPI) in their variation from 1956 to 2009 (Table 4).
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Table 3. Negative binomial regression analysis for the total biodiversity (2009), considering the variation
(∆) in human appropriation of net primary production (HANPP) and land-cover metrics listed in
Table 2 (H’, LPI, ED, EMS, PD, and ECI) in all the10 × 10 km sample cells of the Barcelona province
in 1956–2009.

Total Biodiversity IRR Std. Err. Z P > |z|

∆ HANPP 1.132 0.064 2.20 0.028 (**)
∆ H’ 0.802 0.047 −3.73 0.000 (*)
∆ LPI 1.127 0.055 2.45 0.014 (**)
∆ PD 1.197 0.130 1.65 0.099
∆ ED 0.996 0.151 −0.03 0.977

∆ EMS 1.058 0.038 1.60 0.111
∆ ECI 0.990 0.045 −0.22 0.827
cons. 813.297 27.236 200.10 0.000

Note: IRR (incidence rate ratio) is the estimated rate ratio for a one unit increase in a standardized test score, given
that the other variables are held constant. * = level of significance at 10%, ** = level of significance at 5%, *** = level
of significance at 1%; likelihood-ratio test of alpha = 0; chibar2 (01) = 3902.05; Prob ≥ chibar2 = 0.000. Source: Our
own, calculated from the data and methods explained in the text.

Table 4. Pearson correlation between total surface area under nature conservation (m2), and the
variation (∆) in human appropriation of net primary production (HANPP) and land-cover metrics (H’,
LPI), in all the 10 × 10 km sample cells of the Barcelona province in 1956–2009.

Surface Area under
Conservation Figures

Pearson
Correlation P > |z|

∆ HANPP −0.029 0.845
∆ H’ −0.195 0.184
∆ LPI 0.370 0.010

Source: Our own, calculated from the data and methods explained in the text.

4. Discussion

4.1. Land Use and Cover Change (LUCC) from 1956 to 2009

From 1956 to 2009 the province of Barcelona underwent the three main land use and cover
changes (LUCC) experienced all over Europe [1–6]: simplification of agricultural landscapes, forest
encroachment, and urban sprawl (Table 1 and Figure 2). Cropland abandonment in 40% of the
cultivated area in 1956 (68,780 ha lost up to 2009), together with 23% reduction of pastureland and
scrub (20,019 ha lost), has resulted in 19% of forestland growth (37,831 ha more) and 387% increase in
the land taken by urban development and infrastructures (48,772 ha more). In addition to the 40%
reduction, cropland area also changed its composition by losing many complex landscape mosaics
because of the disintegration among cropping, livestock rearing, and forestry [12–14,54]. This feature
is better assessed through the landscape ecology metrics (Table 2) discussed in the next Sections 4.2
and 4.3.

Urban sprawl has been mainly concentrated in the flatter areas of the Barcelona Metropolitan
Region (BMR) near the coast, at the expense of cultivated areas in some of the most fertile soils,
while cropland and pastureland abandonment led to forest encroachment mainly in steeper lands of
mountain areas further from the coast, as shown on the left side of Figure 2. On the right side, the
ecological connectivity maps resulting from these land cover changes show a general reduction of
ECI values particularly (but not only) in the BMR. Rural areas in the Northern part of the Barcelona
province have also experienced a decrease in ECI values, showing that even moderate expansions
of built-up areas and infrastructures may have relevant negative impacts on the landscape ecology
connectivity through their barrier effect [11,32,67].
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4.2. Trends in the Net Primary Production and its Human Appropriation from 1956 to 2009

The average results in the 48 UTM cells of all the variables accounted in the Barcelona province
are the result of a series of LUCC changes that in many cases have experienced opposite trends (Table 1
and Figure 2). However, despite these contrasting changes the overall outcome is meaningful. HANPP
values decreased from 61% of photosynthetic biomass production (NPP) in 1956 to 49–50% in 1993–2009,
meaning that cropland and grazing abandonment of steep areas has predominated over the land-use
intensification carried out in flat lands by industrial farming and livestock fattening in feedlots. There
has also been a rise in the NPP from 69 to 93 TM C/ha/year from 1856 to 1993, followed by a small
decrease up to 86 TM C/ha/year in 2009, which largely explains the overall HANPP reduction despite
the greater amount of harvest intensity in the land that remained cultivated.

The average NPP increase was, in turn, a combined result of spontaneous afforestation following
rural abandonment and cropland intensification through synthetic fertilization, irrigation, and use of
high-yielding industrial seeds. While the biomass harvested in newly forested areas declined, it largely
increased in industrial cultivated areas, leading to a slight increase in the average NPP harvested from
25 TM C/ha/year in 1956 to 36 TM C/ha/year in 1993, followed by a subsequent decrease to 26 TM
C/ha/year in 2009. The land occupied by urban-industrial development at the expense of intensively
cultivated flat lands also contributed to the last decreases experienced both in the photosynthetic NPP
production and harvested biomass from 1993 to 2009.

4.3. The Loss of Landscape Complex Mosaics from 1956 to 2009

The Shannon-Wiener Indices (H’) of land cover equi-diversity in the 48 UTM cells show a net
decrease from 0.59 in 1956 to 0.50 in 2009, which means a reduction of landscape heterogeneity. How
this LUCC homogenization has been combined with landscape fragmentation is a more complicated
issue. Largest patch indices (LPI) have slightly grown from 1965 ha in 1956 to 2097 in 2009. This mainly
expresses the greater extent of larger forestland units created by forest regrowth, although the greater
extent of crop monocultures also contributed to this. In fact, when selecting only those cells already
dominated by forest in 1956, the average increase in LPI has been 245 ha, while the rest decreased by
72 hectares on average. These LPI indicators, combined with lower Shannon-Wiener Indices, point to a
decrease or disappearance of former agroforest landscape mosaics. The steady decrease in the mean
values of Effective Mesh Size (EMS) and the increase in Polygon Density (PD) throughout the period
corroborate the growing landscape fragmentation, which took place at the same time as a general trend
toward land cover homogenization.

The loss of agroforest land-use mosaics replaced by larger and more homogeneous land covers
has gone hand in hand with a greater landscape fragmentation mainly driven by urban sprawl and the
spread of linear infrastructures that exert a strong barrier effect. This LUCC combination has been
detrimental to ecological connectivity. The normalized ECI values, which range from zero to ten,
decreased 23% from 6.8 in 1956 to 5.7 in 1993 and 5.2 in 2009 on average.

All in all, HANPP values and landscape metrics taken together confirm that the combination of
land-use intensification and fragmentation of some flat areas with land-use abandonment in the rest of
the territory has led to a loss of complex agroecological land cover mosaics and the creation of larger
forestland patches in stepper lands in a similar way as experienced in the rest of the Mediterranean,
and all over Europe as well [32,33,36].

4.4. Statistical Impact on Total Species Richness in 2009 of Landscape Homogenization and the Increase of
Larger Forest Units from 1956 to 2009

The negative binomial regression analysis provides the more relevant answer to the research
question raised in this article—i.e., whether there has been a land-use legacy either of former agroforest
mosaics currently disappearing (to test for the land-sharing approach), and of the increasing presence of
larger forestland units (to test for the land-sparing approach) on the current species richness distribution
in the Barcelona province. The explanatory variables for total biodiversity are the change in HANPP
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values (farming disturbance) and in the landscape ecology metrics (Table 3). The results give clues in
two directions.

HANPP results show that the increase of farming disturbance has had a positive effect on the
distribution of total species richness in 2009. The average change of HANPP in the whole study area
from 1956 to 2009 is −10.6%, and the lowest biodiversity observed in 2009 is statistically associated
with those areas of lower values of HANPP, where afforestation has been the usual LUCC. This implies
a land-sharing approach as an explanation.

At the same time, however, the increase of LPI values in 1956–2009 is also significantly correlated
with the spatial distribution of total biodiversity observed in 2009 (Table 3), while there is a negative
significant correlation with the changes in spatial land cover equi-diversity H’. These results mean
that there is a problem of landscape fragmentation and confirm the positive contribution provided by
larger forest areas to help maintain high species richness. All this implies the land-sparing approach to
nature conservation as an explanation.

Therefore, we can conclude that both land-sharing and land-sparing LUCC changes from 1956 to
2009 have contributed to the spatial distribution of total species richness observed in 2009. This suggests
that they should be combined into future policies of nature conservation, a result similar to those
obtained by applying ELIA and IDC models to Catalonia and the province of Barcelona [26,27,44,45].

However, these are preliminary results that are limited by the lack of biodiversity data in 1956, and
by the coarse grid of 10 × 10 km cells we had to use because of the available data of species richness for
2009. The existence of metapopulation dynamics of many species could also affect the results obtained,
and would require performing in the future the same type of analysis at different scales using finer
data on specific species.

4.5. The Impact of Past Conservation Policies on Landscape Functioning

The nature conservation policies implemented through nature protected sites have only affected
significantly the increases on LPI values, while they have had no impact in changing HANPP and
land cover H’ values (Table 4). This is particularly important, because it shows that these traditional
land-sparing policies do not guarantee adequate conditions for biodiversity conservation in the whole
land matrix in the long term [58]. Land-sharing improvements are also needed, mainly through more
integrated and sustainable agriculture, livestock rearing, and forestry.

5. Conclusions

After constructing a GIS dataset to assess from a landscape ecology point of view the main LUCC
in 48 UTM cells of 10 × 10 km in the Barcelona province from 1956 to 2009, we obtained two relevant set
of statistical results by testing to what extent the spatial distribution of total species richness currently
observed correlates with the changes experienced from 1956 to 2009 in the levels of farming disturbance
(HANPP), land cover equi-diversity (H’), grain size (LPI), fragmentation (EMS), ecotony (PD, ED),
and ecological connectivity (ECI). On the one hand, these results have checked the positive role for
biodiversity maintenance played by traditional farming that combined intermediate levels of HANPP
with land cover diversity (H’) giving rise to heterogeneous landscapes where agroforest mosaics
predominated. However, this result contrasts with the significant positive contribution provided
by larger afforested areas following cropland abandonment in mountain areas, where many natural
protected sites were created during 1956–2009. These contrasting results call for the need to combine
land-sharing and land-sparing approaches to nature conservation, and to reinforce the former once the
latter seems to have reached a limit either in its functional role or its spatial extent.

On the other hand, the results suggest the existence of a historical land-use legacy of former
agricultural landscape mosaics that might still affect the spatial species richness distribution in 2009,
despite the worrying decreases these mosaics have experienced with the land-use changes from 1956
to 2009. Although preliminary, they seem to suggest that the location of species richness across the
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landscape preserves to some extent a memory of the former agroforestry mosaics that existed in 1956
and have been decreasing or even disappearing.

We acknowledge that this hypothesis requires more research based on better biodiversity data
analysed with a higher spatial resolution. But our preliminary results allow us to conclude that this
type of research deserves to be developed in future research. We have offered some evidence on
the main variables that can explain this legacy and need to be carefully analysed, as well as on the
existence of complementarity between land-sparing and land-sharing improvements in biodiversity
conservation. Metapopulation dynamics could also help explaining the synergistic result of combining
larger landscape patches that remain less disturbed, and capable of offering refuge areas, together with
more heterogeneous land use mosaics with higher levels of anthropogenic disturbances but able to
maintain high ecological connectivity.

The possibility that there exist historical land-use legacies in the coevolution between cultural
landscapes and species richness has become a very important issue for biodiversity conservation
policies. If so, promoting restoration of agroforest mosaics in more complex agroecological landscapes
would enhance farm-associated biodiversity by recovering those habitats previously fragmented or
lost with the negative impacts of industrial farming, withdrawal of extensive livestock rearing, and
abandonment of multifunctional use of forests. Therefore, wildlife-friendly farming could contribute
to biodiversity conservation by supplementing nature-protected areas mainly created in isolated forest
remnants. All this requires advances in the landscape agroecology research here explored, to study
at different scales, and with higher spatial resolution, the existing relationships between farming
management and farm-associated biodiversity considering different taxa and specific species.
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