
Article
Identification and Analyse
s of Extra-Cranial and
Cranial Rhabdoid Tumor Molecular Subgroups
Reveal Tumors with Cytotoxic T Cell Infiltration
Graphical Abstract
Extra-renal MRT-like

Consensus DNA methylation subgroups

301 rhabdoid tumor cases

Group 1 Group 3 Group 4 Group 5 Group 2
ATRT-MYC-like RTK-like ATRT-SHH-like ATRT-TYR-like

Predominant 
SMARCB1 somatic 

alteration type
broad homozygous 

deletion

non-sense SNV, 
focal homozygous 

deletion

focal homozygous 
deletion non-sense SNV focal homozygous 

deletion

Gene expression 
pathway enrichment

mesenchymal de-
velopment, ERK/ 
MAPK signaling

cell migration, 
adhesion, ECM

inflammatory 
response, immune 

activation
neural development

Prominent enhancer 
target genes

HOXC
HOTAIR

DNA methylation 
pathway enrichment

IL-1 proinflammatory 
signaling, retinoic 

acid signaling

DNA excision repair, 
BMP signaling, kid-
ney-related pathway

focal adhesion, 
FGFR signaling, 
NF-κB signaling

Relative global 
DNA methylation level

Cytotoxic T cell 
infiltration level

Immune checkpoint 
expression

hypo hyper

highest lowest
Highlights
d MYC subgroup of cranial RTs (ATRT-MYC) is molecularly

similar to extra-cranial RTs

d Five DNA methylation subgroups are identified in RTs across

multiple organ sites

d Groups 1, 3, and 4 exhibit cytotoxic T cell infiltration and PD1

and PD-L1 expression
Chun et al., 2019, Cell Reports 29, 2338–2354
November 19, 2019 ª 2019 The Author(s).
https://doi.org/10.1016/j.celrep.2019.10.013
Authors

Hye-Jung E. Chun, Pascal D. Johann,

Katy Milne, ..., Stefan M. Pfister,

Marco A. Marra, Marcel Kool

Correspondence
mmarra@bcgsc.ca (M.A.M.),
m.kool@kitz-heidelberg.de (M.K.)

In Brief

Chun et al. report similarities between the

MYC subgroup of cranial and extra-

cranial rhabdoid tumors (RTs) at genetic,

gene-expression, and epigenetic levels.

They identify five DNA methylation

subgroups of RTs across multiple organ

sites, and some subgroups exhibit

increased levels of immune cell infiltration

and immune checkpoint expression.

mailto:mmarra@bcgsc.ca
mailto:m.kool@kitz-heidelberg.de
https://doi.org/10.1016/j.celrep.2019.10.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.10.013&domain=pdf


Cell Reports

Article
Identification and Analyses of Extra-Cranial
and Cranial Rhabdoid Tumor Molecular Subgroups
Reveal Tumors with Cytotoxic T Cell Infiltration
Hye-Jung E. Chun,1,19 Pascal D. Johann,2,3,4,19 Katy Milne,5 Marc Zapatka,6 Annette Buellesbach,2,3,4 Naveed Ishaque,7,8

Murat Iskar,6 Serap Erkek,2 Lisa Wei,1 Basile Tessier-Cloutier,9 Jake Lever,1 Emma Titmuss,1 James T. Topham,1

Reanne Bowlby,1 Eric Chuah,1 Karen L. Mungall,1 Yussanne Ma,1 Andrew J. Mungall,1 Richard A. Moore,1

Michael D. Taylor,10 Daniela S. Gerhard,11 Steven J.M. Jones,1,12 Andrey Korshunov,2 Manfred Gessler,13

Kornelius Kerl,14 Martin Hasselblatt,15 Michael C. Fr€uhwald,16 Elizabeth J. Perlman,17 Brad H. Nelson,5,12,18

Stefan M. Pfister,2,3,4 Marco A. Marra,1,12,20,* and Marcel Kool2,3,20,21,*
1Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V7Z 1L3, Canada
2Hopp Children’s Cancer Center, Heidelberg 69120, Germany
3Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Core Center
Heidelberg, Heidelberg 69120, Germany
4Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg 69120, Germany
5Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
6Department of Molecular Genetics, DKFZ, Heidelberg 69120, Germany
7Center for Digital Health, Berlin Institute of Health and Charité–Universitätsmedizin Berlin, Berlin 10117, Germany
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SUMMARY

Extra-cranial malignant rhabdoid tumors (MRTs)
and cranial atypical teratoid RTs (ATRTs) are hetero-
geneous pediatric cancers driven primarily by
SMARCB1 loss. To understand the genome-widemo-
lecular relationships between MRTs and ATRTs, we
analyze multi-omics data from 140 MRTs and 161
ATRTs. We detect similarities between the MYC sub-
group of ATRTs (ATRT-MYC) and extra-cranial MRTs,
including global DNA hypomethylation and overex-
pression ofHOX genes and genes involved in mesen-
chymal development, distinguishing them from other
ATRT subgroups that express neural-like features.
We identify five DNA methylation subgroups associ-
ated with anatomical sites and SMARCB1 mutation
patterns. Groups 1, 3, and 4 exhibit cytotoxic T cell
infiltration and expression of immune checkpoint reg-
2338 Cell Reports 29, 2338–2354, November 19, 2019 ª 2019 The A
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ulators, consistent with a potential role for immuno-
therapy in rhabdoid tumor patients.

INTRODUCTION

Rhabdoid tumors (RTs) are aggressive pediatric cancers that pri-

marily affect infants, accounting for approximately 15% of all in-

fant cancer incidence in the United States and United Kingdom

(Packer et al., 2002; Brennan et al., 2013). RTs can arise

throughout the body and are broadly classified based on the

anatomical site of occurrence, i.e., atypical teratoid RTs

(ATRTs) from the central nervous system (CNS) and malignant

RTs (MRTs), such as RTs of the kidney (RTKs), from non-CNS tis-

sues. Regardless of anatomical sites, RTs share pathognomonic

loss of SMARCB1 (or SMARCA4 in rare cases; Versteege et al.,

1998; Hasselblatt et al., 2014), which encodes a core subunit of

the SWI/SNF chromatin-remodeling complex that plays critical

roles in epigenetic and transcriptional regulation. Apart from

SMARCB1 mutations, RTs otherwise exhibit few mutations,
uthor(s).
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Unsupervised Clustering of DNA Methyl-

ation Profiles from 140 MRTs (92 Renal, 48 Extra-

Renal) and 161 ATRTs Indicate Similarity between

ATRT-MYC and MRT

(A) t-SNE analysis was performed using the top 2,000most

variably methylated CpG sites and to reveal three clusters

that consisted primarily of ATRT-MYC (n = 44 cases) and

MRT (n = 140 cases), ATRT-SHH (n = 64 cases), or ATRT-

TYR (n = 53 cases).

(B) Unsupervised hierarchical clustering was performed

using the top 1% most variably methylated CpG sites (n =

3,958) and yielded a clustering result consistent with (A).

See also Figure S1 and Table S1.
and in general have diploid genomes (Lee et al., 2012; Chun

et al., 2016; Johann et al., 2016).

Despite being driven by SMARCB1 loss, RTs exhibit heteroge-

neity, with molecular subgroups identified in each of MRTs and

ATRTs (Chun et al., 2016; Johann et al., 2016; Torchia et al.,

2016; Nemes and Fr€uhwald, 2018). In ATRTs, the SHH, TYR,

and MYC DNA methylation subgroups have been described

(Johann et al., 2016; corresponding to Groups 1, 2A, and 2B,

respectively, in Torchia et al., 2016). In MRTs, two gene expres-

sion subgroups were described (Group 1 and Group 2), which

exhibited ATRT-like and RTK-like gene expression profiles,

respectively (Chun et al., 2016). From these studies, some genes

and pathways have emerged as commonly dysregulated across

subgroups, such as the expression of HOX genes and other ho-

meobox-containing genes in the ATRT-MYC subgroup and

some MRTs and genes involved in neural or neural crest devel-

opment in other MRTs. The existence of these shared features

stimulated our hypothesis that MRT and ATRT subgroups might
Cell R
share additional similarities stemming from

SMARCB1/SMARCA4 loss, the identification of

which might improve our understanding of RT

biology and ultimately reveal much needed in-

sights into RT therapeutic vulnerabilities.

To explore this hypothesis, we performed

integrative analyses of genome, transcriptome,

and epigenome profiles of 301 RTs frommultiple

anatomic sites to reveal consensus molecular

subgroups of RTs and identify shared molecular

features.

RESULTS

To facilitate comparisons across RTs, we com-

bined our previously published ATRT and MRT

datasets from 40 MRTs and 150 ATRTs (Chun

et al., 2016; Johann et al., 2016) and generated

additional data from 11 ATRTs and 100 MRTs.

The expanded datasets consist of whole-

genome sequencing (WGS), transcriptome

sequencing (RNA-seq), whole-genome bisulfite

sequencing (WGBS), and DNA methylation array

data as well as H3K27me3 and H3K27ac chro-

matin immunoprecipitation sequencing (ChIP-

seq) data (Table S1). In total, we analyzed data
from 301 RT cases, including 161 ATRTs and 140MRTs, of which

92 cases were from kidneys (RTKs) and 44 were from non-kidney

tissues (4 cases were from unknown tissue types; Table S1).

ATRT-MYC and MRT Share Similar DNA Methylation
Profiles Distinct from ATRT-SHH and -TYR
DNA methylation profiling has been used to identify molecular

subgroups in many cancer types (Sturm et al., 2012; Cancer

Genome Atlas Research Network, 2014b; Capper et al., 2018;

Paulus, 2018). To identify and confirm molecular subgroups in

RTs, we analyzed DNAmethylation array data from 301RT cases

by using unsupervised clustering and dimension reduction algo-

rithms (STAR Methods). Results from multiple algorithms sub-

stantiated the previous observation that ATRTs formed three

distinct clusters (Johann et al., 2016) and revealed a distinct

cluster of ATRT-MYC and MRT cases separate from ATRT-

SHH and -TYR subgroups (Figures 1A and 1B). To evaluate the

robustness of this clustering solution in the context of diverse
eports 29, 2338–2354, November 19, 2019 2339
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cancer types, we compared DNA methylation profiles of RTs to

33 adult and 4 pediatric cancer types and 23 normal tissue types

fromTCGA and TARGET (n = 10,232 cases) by using an unsuper-

vised clustering approach. MRT and ATRT-MYC again clustered

together (Figure S1). Notably, RTs clustered with cancers of neu-

ral crest origin (neuroblastomas, uveal melanomas, pheochro-

mocytomas, and paragangliomas), brain cancers (glioblastomas

and low-grade gliomas) and normal brain tissues, consistent

with our previous observation based on microRNA (miRNA) pro-

files (Chun et al., 2016).

ATRT-MYC and MRT Cases Can Be Further Separated
into Three DNA Methylation Subgroups That Correlate
with Anatomical Sites and SMARCB1 Mutation Patterns
A non-negative matrix factorization (NMF) analysis (Gaujoux and

Seoighe, 2010) of DNA methylation array data revealed further

separation of the ATRT-MYC and MRT group into three sub-

groups (Groups 1, 3, and 4), which were consistently identified

using hierarchical clustering and t-Distributed Stochastic

Neighbor Embedding (t-SNE) methods (Figures 2A, S2A, and

S2D). Although NMF results indicated that Group 1 cases could

be further separated into two subgroups (Figures 2B, S2B,

and S2C), we did not find molecular or clinical correlates that

would support the existence of biologically relevant subgroups

within Group 1. We, thus, fixed our analyses on five DNAmethyl-

ation subgroups, which consisted of the previously defined

ATRT-SHH and -TYR (Johann et al., 2016) and three previously

undefined subgroups containing MRT and ATRT-MYC cases

(Figure 2A).

The ‘‘ATRT-MYC-like’’ Group 1 (n = 67) consisted of 32 ATRT

and 35 MRT cases (19 RTKs, 12 extra-renal MRTs, and 4 cases

from unknown tissue types). Nearly all (31/32) ATRTs in this

group were classified as ATRT-MYC. The ‘‘RTK-like’’ Group 3

(n = 59) consisted of 2 ATRT and 57 MRT cases, of which 53

MRT cases were RTKs. The ‘‘extra-renal MRT-like’’ Group 4

(n = 59) was dominated by extra-renal MRTs, containing 11

ATRT cases (6 ATRT-MYC, 4 ATRT-SHH, and 1 ATRT-TYR)

and 48 MRT cases, of which 28 cases were from extra-renal tis-

sues. The ‘‘ATRT-TYR-like’’ Group 2 (n = 58) mostly consisted of

ATRT-TYR cases (n = 51, the remaining cases were ATRT-MYC

[n = 5] and -SHH [n = 2]). The ‘‘ATRT-SHH-like’’ Group 5 (n = 58)

consisted of ATRT-SHH cases (n = 57; one remaining case was

ATRT-TYR).
Figure 2. Five DNA Methylation Subgroups of RTs from Cranial and E
Subgroups, Anatomical Sites, and SMARCB1 Deletion Patterns

(A) Unsupervised NMF analysis was performed using the top 10,000most variably

expression subgroups of MRTs, and previously characterized ATRT subgroups

methylation age (Horvath, 2013) are shown in bar plots (bottom). ATRT-SHH an

subgroups (Wilcoxon p values = 1.62e-05 and 6.30e-10 for ATRT-SHH and Gr

associated with the subgroups (Kruskal-Wallis p value = 0.25 and Fisher’s exact

(B) Cophenetic coefficients (top) and silhouette widths (bottom) for NMF cluster so

widths were from the NMF solutions with 5 and 6 clusters.

(C) Heatmap indicates chromosomal copy gain (indicated by red) or loss (blue), e

the five DNA methylation subgroups (n = 301 cases).

(D) Boxplot shows the mean expression levels of 74 genes (top) co-deleted with S

3, n = 11 for Group 4, n = 11 for ATRT-SHH, n = 8 for ATRT-TYR) and expression

p value < 0.05) between Group 1 and other RT subgroups.

See also Figures S2 and S3 and Table S2.
We next explored the relationship between these DNAmethyl-

ation subgroups and the previously described MRT gene

expression subgroups (Chun et al., 2016) and observed a signif-

icant association between ‘‘RTK-like’’ DNA methylation Group 3

and the RTK-like gene-expression subgroup 2 (16 out of 18

cases [89%]; Fisher’s exact p value = 0.0070; Figure S2A). In

our NMF analysis that used an expanded RNA-seq dataset,

including an additional 25 MRT cases (Figures S2E and S2F),

we again observed a significant association between DNA

methylationGroup 3 and a gene expression subgroup that exclu-

sively consisted of RTKs (24 out of 25 cases [96%]; Fisher’s

exact p value = 1.07e-05; Figure S2E).

To investigate genetic alterations that might correlate with

the DNA methylation subgroups, we analyzed somatic alter-

ations using WGS data from tumor and matched normal pairs

(56 MRT and 18 ATRT cases; Figure S3A). Of 26 cases with

SMARCB1 deletions larger than 10 kilobases, a significant

overrepresentation (14 out of 26 cases; Fisher’s exact

p value = 2.12e-08; Figure S3C) was in Group 1. Group 3

and ATRT-SHH almost exclusively contained cases with

somatic nonsense mutations or focal deletions of SMARCB1

(10 out of 12 cases and 11 out of 13 cases, respectively; Fig-

ures S3B and S3C). To extend our SMARCB1 copy number

analyses to cases lacking WGS data, we analyzed DNA

methylation data from 301 RT cases to infer copy number al-

terations by using the sum of methylated and unmethylated

signals (Sturm et al., 2012). This analysis consistently revealed

the association between larger deletions at the SMARCB1

locus and Group 1 cases (Figure 2C). As expected, genes

co-deleted with SMARCB1 (74 genes) were significantly un-

der-expressed in Group 1 compared to other subgroups that

did not harbor deletions (Wilcoxon p value = 2.59e-07; Fig-

ure 2D; Table S2). Such genes included CABIN1 (a regulator

of p53 and T cell receptor (TCR) signaling), SUSD2 (a tumor

suppressor gene involved in G1 cell cycle arrest), SPECC1L

(a regulator of craniofacial morphogenesis and cranial neural

crest cell delamination; Wilson et al., 2016), and MIF (encodes

a macrophage migration inhibitory factor, involved in cell-

mediated immunity and inflammation; Lue et al., 2002). The

association between broad SMARCB1 deletions and DNA

methylation Group 1 is compatible with the notion that dysre-

gulation of multiple genes in addition to SMARCB1 may

contribute to molecular subgroups.
xtra-Cranial Sites Correlate with Previously Known ATRT and MRT

methylated CpG sites and revealed five subgroups (top). Clinical features, gene

are shown in colored tracks (middle). Chronological age and predicted DNA

d Group 1 exhibited increased DNA methylation age compared to the other

oup 1, respectively). Neither chronological age nor gender were significantly

p values = 0.16 - 0.86, respectively).

lutions from k = 2 to k = 15. The highest cophenetic coefficients and silhouette

stimated using DNA methylation data, centered at the SMARCB1 locus across

MARCB1 across the five subgroups (n = 19 cases for Group 1, n = 41 for Group

levels ofMIF (bottom). The asterisk indicates a significant difference (Wilcoxon
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ATRT-MYC and MRT Exhibit Global Hypomethylation
and Distinct DNA Methylation Valleys Compared to
ATRT-SHH and -TYR
To compare global DNA methylation levels in MRTs and ATRTs,

we analyzed WGBS data from 69 MRT and 17 ATRT cases and

DNAmethylation array data from 140MRT and 161 ATRT cases.

MRT and ATRT-MYC cases exhibited global DNA methylation

levels that were significantly lower than ATRT-SHH and -TYR

(Wilcoxon p value = 2.2e-07; Figure 3A) but comparable to

normal brain tissues (from 8 adult and 2 fetal brain samples;

Wilcoxon p value = 0.145; Figure S4A). However, MRTs exhibited

significantly lower methylation levels in introns and non-genic

regions compared to normal brain samples, indicating that

these regions are abnormally hypomethylated in MRTs (Wil-

coxon p values = 0.011 and 8.26e-05, respectively; Figures

S4B and S4C).

Our previous study (Johann et al., 2016) showed that global

hypomethylation in ATRT-MYC compared to other ATRT sub-

groups was linked to the prevalence of partially methylated do-

mains (PMDs). We found that PMDs were also more abundant

inMRTs compared to ATRT-SHH and -TYR, covering substantial

portions of the genome (Wilcoxon p value = 0.00014; Figures 3B

and S4F). In particular, MRTs in Groups 1 and 3 exhibited global

hypomethylation associated with higher PMD fractions com-

pared to ATRT-SHH and -TYR (Wilcoxon p value = 1.65-e07),

whereas MRTs in Group 4 exhibited PMD fractions that were

comparable to ATRT-SHH and -TYR (Figures S4D and S4E).

This result indicated that although global hypomethylation is an

epigenetic feature that is characteristic of most MRTs, Group 4

appears to have a distinct DNA methylation landscape.

To characterize candidate biological processes dysregulated

by differential methylation across the subgroups, we identified

differentially methylated regions (DMRs; average length = 1kb)

and performed gene set enrichment analyses by using overex-

pressed genes in DMRs. Group 1 DMRs exhibited an unex-

pected enrichment for genes in immune-related pathways

specifically related to interleukin 1-associated pro-inflammatory

activities (e.g., IRAK, Toll-like receptors [TLRs], TRAF6, and JNK)

that are critical for initiating innate immune responses against

foreign pathogens and IRF7-associated pathways known to be

activated upon viral infection (Figure 3C). We also observed a

significant enrichment of upregulated genes (e.g., NCOR2, a

transcriptional repressor implicated in hematological malig-

nancies [Lin et al., 1998]) in Group-1-specific DMRs involved in

retinoic acid signaling, a pathway that has not been previously

associated with MRTs or ATRTs (Figure 3F; Table S3). Genes

associated with Group-3-specific DMRs were enriched for

DNA excision repair, BMP signaling, and pathways implicated
Figure 3. ATRT-MYC and MRT Exhibit Similar DNA Methylation Profile

(A) Boxplot shows the distribution of mean genome-wide DNAmethylation levels b

significant hypomethylation compared to ATRT-SHH (n = 7 cases) and -TYR (n =

(B) Boxplot displays the distribution of fractions of the genome covered by PMD

compared to ATRT-SHH and -TYR (*Wilcoxon p value < 0.05).

(C–E) Gene set enrichment of DMRs that are specific for Groups 1 (C), 3 (D), and

(F) Heatmap (left) shows average CpG methylation levels at the NCOR2 locus in

shows significantly increased NCOR2 expression levels in Group 1 compared to

See also Figure S4 and Table S3.
in renal cell carcinoma development, consistent with RTK-like

characteristics observed in Group 3 (Figure 3D). For Group-4-

specific DMRs, the most significantly enriched pathways

included focal adhesion, FGFR signaling, and nuclear factor kB

(NF-kB) signaling, a key regulatory pathway for immune and in-

flammatory processes (Figure 3E; DiDonato et al., 2012).

ATRT-MYC and MRT Share Distinct Enhancer
Landscapes Compared to Other ATRT Subgroups
We next investigated the extent of similarities between enhancer

states in ATRTs and MRTs and analyzed H3K27ac ChIP-seq

data from 34 MRT and 14 ATRT cases, of which 24 MRT cases

were specifically profiled for this study. To robustly identify cases

with similar H3K27ac profiles, we performed multiple iterations

of unsupervised hierarchical clustering of enhancer elements

defined by H3K27ac signal densities (STARMethods). Across it-

erations, we consistently observed clustering of ATRT-MYCwith

MRT cases (Figure 4A), supporting the notion that ATRT-MYC

and MRT share similar enhancer profiles. We also observed

increased H3K27ac levels in subgroup-specific DMRs (Fig-

ure 4B), further supporting upregulation of genes in these regions

(e.g., NCOR2).

We identified 26 dense clusters of high H3K27ac signals indic-

ative of super-enhancers that were common between ATRT-

MYC and MRT. The most prominent super-enhancer was found

at theHOXC locus (Figure 4C; Table S4), with genes at this locus

exhibiting significant overexpression compared to ATRT-SHH

and -TYR (Wilcoxon p values < 2.4e-15 for HOXC genes and

DESeq adjusted p value = 3.43e-05 for HOTAIR; Figure 4D).

There were 61 regular enhancer elements that were common

between ATRT-MYC and MRT (Table S4) in the proximity

of genes involved in epigenome modification and develop-

ment, including CREBBP (encodes a histone acetyltransferase

involved in embryonic development and growth control),

PRDM6 (histone methyltransferase and transcriptional repressor

involved in smooth muscle differentiation), and TINAGL1 (en-

codes an antigen associated with tubulointerstitial nephritis;

also involved in proliferation and migration of cranial neural crest

cells [Neiswender et al., 2017]).

We next studied enhancer-mediated transcriptional dysregu-

lation by identifying transcription factors (TFs) that would likely

bind to enhancer regions. We analyzed enrichment of TF binding

sites (TFBSs) within enhancer regions that were unique to MRT,

ATRT-MYC, -SHH, or -TYR, by calculating enrichment scores

based on observed and expected numbers of TF motifs found

in enhancer regions (STAR Methods). Unsupervised hierarchical

clustering of TF motif enrichment scores showed clustering of

ATRT-MYC and MRT, implying that common factors could act
s Distinct from ATRT-SHH and -TYR

ased onWGBS data. MRT (n = 69 cases) and ATRT-MYC (n = 3 cases) showed

7 cases; *Wilcoxon p value < 0.05).

s in MRT and ATRT-MYC, which exhibited significantly more abundant PMDs

4 (E). The x axes indicate the statistical significance of the enrichment test.

Group-1-specific DMRs (red = 100%; blue = 0% methylation). Boxplot (right)

other RT subgroups (*Wilcoxon p value < 0.05).
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on such enhancers (Figure 4E). TFs known to bind to such sites

included those regulating mesoderm and neural crest develop-

ment, (e.g., HES7 and REST, TFs that suppress neuronal

transcription programs [Bessho et al., 2001; Bruce et al.,

2004]). Also enriched within ATRT-MYC and MRT was a TFBS

for XBP-1, a TLR-activated TF required for production of pro-

inflammatory cytokines (Martinon et al., 2010), corroborating

our DMR analysis result (above) that indicated epigenetic dysre-

gulation of genes involved in interleukin 1-mediated signaling. In

ATRT-MYC, we observed TFBS for TFs involved in apoptosis

and immune regulation, such as GMEMB1/2, RAD21, IRF5/8/9,

and STAT1. IRF5/8/9 are involved in the induction of type I inter-

ferons (IFNs), inflammatory cytokines and MHC class I genes

and, hence, promote immune responses involving, e.g., CD8+

cytotoxic T cells and natural killer (NK) cells. Likewise, STAT1

regulates the expression of multiple IFN target genes (Ivashkiv

and Donlin, 2014). Our analyses thus indicated the unexpected

possibility of immune modulation through epigenetic dysregula-

tion in RTs.

Immune-Related Genes, HOX Genes, and Mesoderm
Developmental Regulators Are Overexpressed in ATRT-
MYC and MRT Compared to ATRT-SHH and -TYR
Our DNA methylation and enhancer data indicated shared

epigenetic dysregulation of TFs in ATRT-MYC and MRT,

potentially acting on similar gene expression programs. To

identify such similarities, we performed differential gene

expression analyses and identified 584 overexpressed genes

and 2,500 under-expressed genes in ATRT-MYC and MRT

relative to ATRT-SHH and -TYR (DESeq adjusted p values <

0.05; STAR Methods; Figure 5A). The most significantly overex-

pressed genes in ATRT-MYC and MRT included tissue-type-

specific genes (e.g., GCG and KERA) and developmental

regulators of mesoderm and mesoderm-derived tissue types

(e.g., TCF21, encoding a mesoderm-specific TF, and DMP1

and MEOX2, involved in bone and vascular smooth muscle

development, respectively). Notably, 26 members of all HOX

gene families were likewise significantly overexpressed in

ATRT-MYC and MRT. These results support the notion of dys-

regulated developmental programs, particularly those involved

in mesodermal development, in ATRT-MYC and MRT. In

contrast, ATRT-SHH and -TYR exhibited relative overexpres-

sion of genes involved in neural development (e.g., SOX1,

GPR98/ADGRV1, and OTX2), suggesting more neural charac-

teristics in these subgroups.
Figure 4. ATRT-MYC and MRT Exhibit Distinct Enhancer Profiles
(A) Unsupervised clustering of H3K27ac ChIP-seq read densities resulted in a clus

purple bars, respectively.

(B) Line plots show the average H3K27ac signal densities of the five RT subgroup

and Group-4-specific DMRs (n = 280), respectively. Subgroup-specific DMRs sh

(C) Mean H3K27ac density at the HOXC locus, which was specific to MRT (n = 3

and -TYR (n = 5 cases).

(D) Boxplots show HOXC (top) and HOTAIR (bottom) gene expression levels, whic

compared to ATRT-SHH (n = 11 cases) and -TYR cases (n = 8; * adjusted p valu

(E) Unsupervised hierarchical clustering using enrichment scores of TFBS a

enhancers), -SHH (n = 511 enhancers), and -TYR (n = 1,385 enhancers). Heatma

next to gene names indicate known biological processes associated with TFs.

See also Table S4.
Next, we used multiple pathway databases to identify func-

tional categories enriched for differentially expressed genes

(STARMethods; Table S5). Themost significantly enriched path-

ways, including overexpressed genes in ATRT-MYC and MRT,

were developmental pathways for mesenchymal cell types and

mesoderm-derived organs (Figure 5B), as well as immune-

related pathways, including regulation of immune system pro-

cesses and innate immune responses (adjusted p values =

1.40e-04 and 0.050, respectively; Table S5). In contrast, ATRT-

SHH and -TYR exhibited significantly enriched pathways that

predominantly involved neural development (Figure 5B), with

ATRT-SHH further exhibiting a more neural-like gene expression

program compared to ATRT-TYR (Figure S5A). Notably, we

did not observe enrichment of immune-related functions in

ATRT-SHH and -TYR. Increased expression of immune-related

genes in ATRT-MYC and MRT was consistent with the enrich-

ment of immune-related TFBSs (above), suggesting that ATRT-

MYC and MRT might share an immune-related phenotype.

To further corroborate pathway enrichment results, we identi-

fied TF-regulatory networks consisting of TFs, putative direct

target genes with corresponding TF motifs, and shared patterns

of gene expression with TFs (STAR Methods; Aibar et al., 2017),

integrating these by using unsupervised clustering. ATRT-MYC

and MRT cases clustered together, sharing 13 common tran-

scriptional networks distinct from ATRT-SHH and -TYR (Fig-

ure S5C). Of these, 11 involved HOX genes, of which five

identified MYC as one of the putative direct HOX target genes,

supporting the notion that the prominent molecular characteris-

tics of HOX gene overexpression and dysregulation of MYC,

another key characteristic of ATRT-MYC and MRT, might be

linked (Figure S5C; Table S5). Another notable TF gene was

HES7, a transcriptional repressor significantly overexpressed

in ATRT-MYC and MRT (adjusted p value = 0.0036; Figure S5B),

with binding sites that were enriched in ATRT-MYC and MRT

enhancer regions (Figure 4E). Downstream target genes of

HES7, such as LEF1 (implicated in co-activation of MITF and

development of neural-crest-derived melanocytes; Levy et al.,

2006), DUSP4 (regulator of MAPK signaling), and CTNNB1 (key

component in the canonical WNT signaling pathway), exhibited

significantly reduced expression in ATRT-MYC and MRT.

Decreased levels of gene expression were correlated with lower

H3K27ac and higher H3K27me3 levels in ATRT-MYC and MRT

compared to ATRT-SHH and TYR (Figure 5C), indicating overall

epigenetic dysregulation of the HES7 transcriptional network.

AES, which encodes a transcriptional co-repressor of HES7
ter of ATRT-MYC cases (n = 4) and MRT cases (n = 34) indicated by green and

s at Group-1- (including ATRT-MYC; n = 460 DMRs), Group-3- (n = 426 DMRs),

owed the highest H3K27ac signal density levels in the respective subgroups.

4 cases) and ATRT-MYC (n = 4 cases) and absent in ATRT-SHH (n = 5 cases)

h were significantly higher in MRT cases (n = 65) and ATRT-MYC (n = 6 cases)

es < 0.05).

t enhancers specific to MRT (n = 312 enhancers), ATRT-MYC (n = 443

p colors represent the log2 enrichment scores of TFs in the enhancers. Colors
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involved in neural, head mesenchyme, and ectoderm develop-

ment, was, like HES7, upregulated in ATRT-MYC and MRT,

further indicating distinct dysregulation of the HES7-driven tran-

scriptional program in ATRT-MYC and MRT. TFs enriched for

ATRT-SHH (e.g., NEUROD1, NHLH1, and EN2) and ATRT-TYR

(OTX2 and ZIC4) included neural developmental regulators,

consistent with the notion that ATRT-SHH and -TYR are more

neural-like.

To determine distinct gene-expression characteristics for

Groups 1, 3, and 4, we identified functional categories enriched

for subgroup-specific differentially expressed genes and con-

structed Gene Ontology enrichment map networks. Networks

of the most significantly enriched pathways for Group 1 involved

early developmental processes as well as ERK/MAPK signaling

(Figure 5D; Table S5). Group 3 networks also involved early

developmental processes in addition to cell migration, adhesion,

and extra-cellular matrix organization (Figure 5E). Group 4 net-

works exclusively consisted of immune-related categories (Fig-

ure 5F). To explore the association between RT subgroups and

early developmental processes, we correlated transcriptome

profiles of the subgroups to various progenitor cell types (Kun-

daje et al., 2015; Chun et al., 2016; Prescott et al., 2015). Among

the subgroups, Group 1 showed the highest correlation to

CD56+ mesodermal progenitor cells and Group 3 to embryonic

stem cell lines (Figure S5D). ATRT-SHH showed the highest cor-

relation to cranial neural crest cells, neuronal progenitors, and

brain tissues, consistent with our observations of ATRT-SHH ex-

hibiting the most neuronal-like characteristics among the

subgroups.

Gene Expression Data Indicate Increased T Cell
Presence in ATRT-MYC and Extra-Cranial MRT
Subgroups
Following our analyses that indicated epigenetic modulation

of genes involved in immune-related functions, we used

CIBERSORT (Newman et al., 2015) to deconvolute immune cell

gene expression signatures and, thus, estimate the extent of im-

mune cell presence. To quantify overall T cell presence in each

sample, we calculated a T cell score (a sum of effector T cell pro-

portions; Figure 6A) and observed that inferred proportions of

CD8+ cytotoxic T cells were among the highest in the 22 immune

cell types profiled, along with tumor-associated M2 macro-

phages (Figures 6C and S6A; Sica et al., 2006), suggesting the

involvement of both pro- and anti-tumoral immune functions in

the tumor microenvironment. We observed a significant over-
Figure 5. Dysregulation of Mesenchymal Development Genes Is Asso

Genes Is Associated with ATRT-SHH and -TYR
(A) Volcano plot shows the statistical significance of differential expression (DE

expression in ATRT-MYC (n = 6 cases) andMRT (n = 65 cases) compared to ATRT

DE genes, HOX genes, and genes involved in neural or mesenchymal developm

(B) Bar plots show themost significantly enriched pathways and adjusted enrichm

2,500 relatively under-expressed genes (bottom) in MRTs and ATRT-MYC comp

(C) Gene expression levels and H3K27ac and H3K27me3 densities (i.e., averag

boxplots.

(D–F) Enrichment map networks of Gene Ontology (GO) terms significantly enrich

size is proportional to the number of genes in the category and a node color indi

fraction of shared genes between GO terms.

See also Figure S5 and Table S5.
representation of Groups 1 and 4 (Fisher’s exact p values =

0.018 and 5.13e-03, respectively), and a significant under-repre-

sentation of Group 3 and ATRT-SHH (Fisher’s exact p values =

2.13e-04 and 0.031, respectively) in cases with CD8+ T cell pro-

portions within the top 25th percentile (Figure 6B). We also noted

that among such cases were two ATRT-TYR cases with abun-

dant TBXT expression (196.4 and 35.3 Reads Per Kilobase per

Million mapped reads (RPKM), median of the cohort = 0.0021

RPKM; Figure 6D), which encodes an embryonic TF (T-bra-

chyury) that has been linked to immune responses in chordoma

patients (Palena et al., 2007).

To gain insight on biological processes that might contribute

to increased immune activities predicted in RT subgroups, we

analyzed genes involved in T cell-mediated immune responses.

We found that nearly all HLA genes encoding MHC class I and II

(18 out of 19 genes) were significantly overexpressed in cases

with CD8+ T cell proportions greater than the median (adjusted

p values < 0.05; Figure 6E). Consistent with this observation,

NLRC5 and CIITA, which encode the master TFs that regulate

MHC class I and II genes, were also significantly overexpressed

in these cases (adjusted p values = 0.0001 and 0.0018, respec-

tively). The increased expression of HLA genes also correlated

with increased TCR diversity in these cases, represented by

Shannon Wiener index scores (Welch’s t test p value = 0.012;

Figure S6B; Bolotin et al., 2015; Shugay et al., 2015). The cases

with increased CD8+ T cell proportions further exhibited signifi-

cantly higher expression levels of key genes involved in antigen

degradation, processing, and transportation (Figure 6E). Such

genes included PSMB8/9/10 (which encode components of

the immunoproteasome), TAP1 (encodes a component of the

transporter-associated with antigen processing complex), and

B2M (encodes MHC class I heavy chain). Genes involved in

T cell activation, homing, and infiltration were significantly over-

expressed in these cases (Figure 6F), such as TNF and IFNG

(involved in T cell activation); CXCL9 and CXCL10 (encode che-

mokines that attract and support the influx of CD8+ T cells); and

PRF1, GZMA, and GZMB (encode perforins and granzymes that

are secreted by activated cytotoxic T cells). We also observed

significant overexpression of CLEC9A/DNGR-1 (adjusted p

value = 0.0062), which is expressed in the CD8a+ antigen-pre-

senting dendritic cells that are associated with T cell-infiltrated

tumor microenvironments (Gajewski et al., 2013). Overall, these

results suggested that RTs exhibiting high CD8+ T cell propor-

tions might have inflamed tumor microenvironments with func-

tionally active CD8+ cytotoxic T cells. Seeking to understand
ciated with ATRT-MYC and MRT, whereas Dysregulation of Neural

; adjusted p values < 0.05) on the y axis, and the fold change (FC) of gene

-SHH (n = 11 cases) and -TYR (n = 8 cases) on the x axis. The top 20 significant

ent are labeled in colors as shown.

ent p values based on analyses of 584 relatively overexpressed genes (top) and

ared to ATRT-SHH and -TYR.

e read coverage) at the promoters of HES7 and its interactors are shown in

ed for Group-1- (D), Group-3- (E), and Group-4-specific (F) DE genes. A node

cates an adjusted enrichment p value. The edge thickness is proportional to a
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Figure 6. Gene Expression Analysis Indicates Increased T Cell Presence in RT Subgroups
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figures in Figure 6). A subgroup of each sample is indicated in (B).

(C) Heatmap shows absolute proportions of 22 immune cell types predicted using CIBERSORT.

(legend continued on next page)
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how RTs might survive in such inflamed microenvironments, we

analyzed genes involved in T cell inhibitory functions and

observed overexpression of an important T cell inhibitory cyto-

kine gene, IL10, and several key immune checkpoint genes

(e.g., PDCD1/PD1, CD274/PD-L1, and HAVCR2/TIM3) in the

cases with CD8+ T cell proportions greater than the median

(adjusted p values < 0.05; Figure 6G). We also observed a signif-

icant enrichment for overexpressed genes in these cases in the

Ras/ERK/MAP kinase pathway (BH adjusted p value = 1.6e-

04), known to maintain clonal anergy, an immune tolerance

mechanism by which lymphocytes become functionally inacti-

vated following an antigen encounter (Schwartz, 2003). Taken

together, these observations are compatible with the notion

that RTs may evade the immune system by either increasing

the expression of immunosuppressive programs or reducing

the expression of MHC complex components.

To understand whether the level of immune cell presence is

unique to RTs compared to other pediatric cancers that occur

in similar anatomical sites, we compared T cell scores in RTs

to those in medulloblastomas (105 cases) and Wilms tumors

(130 cases; Gadd et al., 2017). We observed significantly higher

proportions of T cell scores in Groups 1 and 4 and ATRT-TYR

compared to medulloblastomas and Wilms tumors (Wilcoxon

p values < 0.05; Figure 7A), suggesting that a subset of RTs

might be more immuno-stimulated compared to other pediatric

cancers of the brain and the kidney.

Immunohistochemistry Confirms Increased Cytotoxic
T Cell Infiltration and Immune Checkpoint Expression in
MRT and ATRT-MYC
To validate our analyses and orthogonally assess the extent

of immune cell infiltration in tumor tissues, we performed

multiplex immunohistochemistry (IHC) profiling of 185 tumor

samples from 62 patients (35 MRT cases and 27 ATRT

cases) by using antibodies to identify CD8+ cytotoxic T cells

(CD3+CD8+), CD4+ helper T cells (CD3+CD8�), and macro-

phages/microglia (CD68+). Expression of the immune check-

point proteins, PD1 and PD-L1, was also assessed. We were

able to evaluate MRT samples selected from among cases we

profiled using RNA-seq or DNA methylation array data, but the

ATRT samples were from a separate cohort due to a lack of avail-

ability of profiled cases. To properly assess the extent of immune

cell infiltration in tumor tissues, we examined three types of

regions in tumor microenvironments (total number of regions

profiled = 2,979; Table S6), i.e., tumor-rich regions away from ne-

crosis (TT; n = 1,803), peri-vascular regions surrounding vascular

structures (PV; n = 591), and peri-stromal regions at the interface

with benign and/or normal tissues (PS; n = 585).

Our IHC data showed higher levels of tumor-infiltrating CD3+

lymphocytes in MRT and ATRT-MYC compared to ATRT-SHH

and -TYR in all regions of the tumor microenvironment (Wilcoxon

p value < 2.2e-16; Figure S7A). CD3+ lymphocyte infiltration
(D) Bar plot shows expression levels of the TBXT gene, which encodes T-brachy

(E–G) Heatmaps indicate expression levels of genes involved in antigen presentati

signaling (G). All genes were significantly overexpressed in cases with CD8+ T c

CTLA4 [adjusted p value = 0.10]).

See also Figure S6.
levels were consistent with our predicted effector T cell scores

(Pearson rho = 0.540, linear regression p value = 0.0025; Fig-

ure 7B). CD8+ cytotoxic infiltration levels were also consistent

with our predicted CD8+ proportions (Pearson rho = 0.569, linear

regression p value = 0.0019; Figure 7C). Also consistent with our

prediction, the majority (88.6%) of tumor-infiltrating CD3+ lym-

phocytes in MRT and ATRT-MYC were CD8+ cytotoxic T cells

(Figures 7D and 7E; Data S1). In contrast, ATRT-SHH exhibited

the lowest CD3+ lymphocyte and CD8+ cytotoxic T cell infiltra-

tion, whereas ATRT-TYR showed only a trend toward increased

levels of CD4+ helper T cells (Figure S7C). IHC also revealed

overall increased expression of PD-L1 in MRTs compared to

ATRTs (Wilcoxon p value < 2.2e-16; Figure 7F). A significant in-

crease in PD-L1-expressing CD68+ myeloid cells was also

observed in MRTs compared to ATRTs (Wilcoxon p value <

2.2e-16; Figures 7G and S7B; Data S1). MRTs in Group 4

exhibited the highest mean density of PD1-expressing lympho-

cytes among RT subgroups (Wilcoxon p value = 0.0002; Fig-

ure S7D). Notably, ATRT-SHH exhibited the highest median

density of PD-L1-negative CD68+ myeloid cells among the five

subgroups (Kruskal-Wallis p value = 9.60e-12, Dunn’s adjusted

p values against ATRT-SHH < 9.46e-03; Figure 7H).

Given the very low mutation load (and thus paucity of related

neoantigens) in RTs, we sought to identify genes that may play

a role in increased immunogenicity in RT subgroups. Consid-

ering other studies that linked epigenetic de-repression of

endogenous retroviral elements (EREs) to anti-tumor immune re-

sponses (Chiappinelli et al., 2015; Roulois et al., 2015), we

analyzed H3K27ac and DNA methylation levels of CpGs within

ERE regions (LINE, SINE, LTR, and ERV from RepeatMasker;

n = 3,877,818). Although we noted a significant increase in

H3K27ac signals in Groups 1, 3, and 4 compared to ATRT-

SHH and -TYR (Welch’s t test p value = 3.17e-05; Figure S6G),

we did not observe evidence for ERE de-repression in RTs based

on ERE methylation or expression levels (Welch’s t test p values

> 0.05; Figures S6C–S6H). On the other hand, we identified nine

known tumor antigen genes (ABCC3, CDR2, CEACAM21, CEA-

CAM4, DSE, EPS8, ISG15,MUC1, and TBXT) whose expression

levels correlated with T cell scores (linear regression p values <

0.05). Of these, IGS15 and TBXT were overexpressed in RTs

compared to normal cell types (Figure S7E), suggesting that

aberrantly expressed developmental genes such as these may

be antigens in RTs.

DISCUSSION

Our integrative meta-analyses of multi-omic datasets revealed

shared molecular characteristics between cranial ATRT-MYC

and extra-cranial MRT at both global and local levels and

enabled identification of five DNA methylation subgroups of

RTs across multiple anatomical sites. Our epigenome and

gene-expression analyses indicated the role of multiple early
ury.

on and processing (E), T cell activation and homing (F), and immunosuppressive

ell proportions greater than the median (adjusted p values < 0.05, except for
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developmental states contributing to disease heterogeneity,

based on mesoderm-like characteristics in subgroups consist-

ing of MRT and ATRT-MYC, and neural-like characteristics in

ATRT-SHH and -TYR. Although such characteristics may point

to potential cells of origin, the observation of broad deletions

of the SMARCB1 locus in Group 1 cases also presents a possi-

bility of specific genetic alterations contributing to disease het-

erogeneity, although detailed functional characterizations would

be required to confirm this hypothesis.

Unexpectedly, several lines of evidence described in our

study supported immune modulation in RTs. ATRT-MYC and

MRT showed an enrichment of TFBS in the enhancers of genes

involved in type I IFN-induced responses (IRF5/8/9 and STAT1)

and antigen presentation (RFX1/5 and XBP-1). Pathway enrich-

ment analyses using subgroup-specific differentially methyl-

ated or expressed genes (e.g., UBD and AIM2) also suggested

the involvement of type I IFN-mediated signaling (Thibodeau

et al., 2012), NF-kB activation (Gong et al., 2010; Hornung

et al., 2009), and cytosolic DNA sensing processes that

mediate viral defense as well as thematuration of dendritic cells

and their ability to mediate antigen presentation (Vanpouille-

Box et al., 2018). Our gene expression analyses further sup-

ported the notion that a subset of RTs could exhibit increased

antigen presentation contributing to creating inflammatory tu-

mor microenvironments infiltrated with functionally active cyto-

toxic T cells. Although our analysis did not support the notion of

epigenetically de-repressed EREs as a potential source of anti-

gens, we did observe increased tumor antigen expression from

developmentally silenced genes whose expressions are nor-

mally restricted to early embryonic stages or to specific tissue

types. In addition, our data were compatible with the notion

that somatic deletions affecting immune modulating genes

may contribute to increased cytotoxic T cell infiltration. For

example, significant under-expression of MIF due to homozy-

gous co-deletion with SMARCB1 in Group1 cases may

contribute to increased immunogenicity observed in this sub-

group, as suggested by a previous study that demonstrated

increased levels of CD8-induced tumor cytotoxicity in MIF dou-

ble knockout mice compared to wild-type mice (Choi et al.,

2012).
Figure 7. Comparison of T Cell Presence in RTs to Other Cancer Type

(A) Boxplot shows T cell scores across the five RT subgroups (19 cases from Grou

TYR), pediatric medulloblastomas (n = 105 cases), andWilms tumors (n = 130; *W

from 185 tumor tissue slides from 35 extra-cranial MRT cases (9 fromGroup 1, 20

from ATRT-SHH, and 7 from ATRT-TYR). CD68+ myeloid cells were profiled fro

regions. CD3+ lymphoid cells were profiled from 888 TT, 287 PV, and 288 PS re

(B andC)Scatter plots showcomparisons betweenT cell scores andmedianCD3+

CD8+Tcell proportionsandmedianCD3+CD8+cytotoxicTcell densitiesdetermine

positive linear correlations (Pearson rho = 0.540 and 0.569, linear regression p valu

(D) Boxplots show distributions of CD8+ cytotoxic T cell densities in tumor-enrich

MRT cases in Groups 1, 3, and 4 and ATRT-MYC cases showed significantly high

(Wilcoxon p values = 2.2e-16, 6.94e-15, and 3.84e-12, respectively).

(E) Examples of cases with high (top) and low (bottom) T cell infiltration reveale

magnification. Scale bars: 100 mm.

(F and G) Boxplots show distributions of overall PD-L1+ cell (F; y axis, log10 scale

asterisk indicates statistical significance p value < 0.05.

(H) Boxplot shows distributions of PD-L1-negative CD68+ immune cell densitie

(*Dunn’s adjusted p value < 0.05).

See also Figure S7 and Table S6.
Increased infiltration of CD8+ cytotoxic T cells in MRT and

ATRT-MYC tumors was directly validated using IHC. Such infil-

tration has been positively associated with survival and re-

sponses to immune checkpoint inhibition (ICI) in other cancer

types (Tumeh et al., 2014; Barnes and Amir, 2017). MRTs further

exhibited increased infiltration of PD-L1+CD68+ myeloid cells,

which also have been associated with favorable responses to

ICI (Herbst et al., 2014; Mariathasan et al., 2018). In contrast,

ATRT-SHH exhibited the highest level of PD-L1-negative

CD68+ myeloid cells, the presence of which has been associ-

ated with poor prognosis of ICI (Herbst et al., 2014), consistent

with the observation of the lowest CD8+ T cell infiltration level

observed in the ATRT-SHH subgroup.

Although ICI has emerged as a promising cancer therapy, it

frequently has been described to be most effective against

cancers with high mutational burdens that are thought to result

in neoantigens that provide a substrate for T cell recognition

(Schumacher and Schreiber, 2015; Hellmann et al., 2018).

However, several recent studies indicated that mutations in

the SWI/SNF complex can also increase the immunogenicity

of tumors (Pan et al., 2018; Miao et al., 2018). Our observations

of increased cytotoxic T cell infiltration, T cell anergy, and

immunosuppressive signaling in immune-responsive MRTs

and ATRT-MYC support the notion that T cells may be func-

tionally inhibited by the effects of immune checkpoint signaling

and are consistent with accumulating evidence that SWI/SNF

mutations can contribute to tumor immunogenicity in ways

that may enhance their vulnerability to ICI. Our analyses pro-

voke hypotheses related to the extent of immune cell infiltra-

tion, apparent pro- and anti-tumoral immune responses in the

tumor microenvironment, and the potential of immune check-

point inhibitors applied in RT patients. Additional studies will

be necessary to deduce mechanisms, but our results so far

have shown epigenetic dysregulation in embryonic-develop-

ment- and immune-related gene expression programs in RT

subgroups, perhaps suggesting that tumors with extensive

developmental gene dysregulation, which otherwise lack muta-

tions such as RTs, may be poised for immune stimulation.

These findings may thus lay the groundwork for further work

to delineate whether the immune cell-inflamed phenotypes
s and Validation of Increased T Cell Infiltration using IHC

p 1, 41 from Group 3, 11 from Group 4, 11 from ATRT-SHH, and 8 from ATRT-

ilcoxon p values < 0.05). IHC profiling was performed on 2,979 regions selected

fromGroup 3, and 6 fromGroup 4) and 27 ATRT cases (10 from ATRT-MYC, 10

m 915 tumor-enriched (TT), 304 peri-vascular (PV), and 297 peri-stromal (PS)

gions.

leukocytedensitiesdetermined for each sample using IHC (B), aswell asbetween

d for eachsampleusing IHC (C; x andyaxes in log10scale).Dashed lines indicate

es = 0.0025 and 0.0019 for CD3+ and CD3+CD8+ cells, respectively).

ed (TT), peri-stromal (PS), and peri-vascular (PV) regions (y axis, log10 scale).

er CD8+ T cell densities compared to ATRT-SHH and -TYR in all regional types

d by multiplex IHC staining (CD3+ green; CD8+ brown). Images are at 303

) and PD-L1-positive CD68+ immune cell densities (G; y axis, log10 scale). The

s, which are significantly higher in ATRT-SHH compared to other subgroups
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and molecular similarities between MRT and ATRT-MYC can

be usefully deployed in the clinic.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-CD8, clone C8/144B Esbe/Cell Marque, Rocklin, CA Cat#108M-94; RRID: AB_1158205

Rabbit anti-CD3, clone SP7 Abcam (Supplier Spring Bioscience) Cat#ab16669; RRID: AB_443425

Mouse anti-PD-L1, clone SP142 Abcam (Supplier Spring Bioscience) Cat#ab228462

Mouse anti-CD68, clone KP-1 Biocare Medical (Distributed by

Intermedico), Pacheco, CA

Cat#CM033

Rabbit anti-PD1, clone EPR4877(2) Abcam Cat#ab137132

Biological Samples

Primary tumor samples Multiple tissue source sites, processed

through the Biospecimen and Library

Construction Core Resource

See STAR Methods and Table S1.

Critical Commercial Assays

Infinium MethylationEPIC BeadChip Illumina WG-317-1001

Deposited Data

Raw DNA methylation data (ATRT cases

from DKFZ)

This paper GEO Accession: GSE123601

Raw DNA methylation data (MRT cases

from TARGET)

This paper NCBI dbGaP Accession: phs000470

Raw sequencing data from TARGET

MRT cases

This paper NCBI dbGaP Accession: phs000470

Processed data from TARGET MRT cases This paper http://target.nci.nih.gov/ dataMatrix/

TARGETDataMatrix.html

Raw sequencing data previously generated

from MRT cases

Chun et al., 2016 NCBI dbGaP Accession: phs000470

Processed data previously generated from

MRT cases

Chun et al., 2016 http://target.nci.nih.gov/ dataMatrix/

TARGETDataMatrix.html

Raw sequencing data previously generated

from ATRT cases

Johann et al., 2016 EGA Study Accession: EGAS00001001297

Raw DNA methylation array data previously

generated from ATRT cases

Johann et al., 2016 GEO Accession: GSE70460

Raw gene-expression array data previously

generated from ATRT cases

Johann et al., 2016 GEO Accession: GSE70678

Software and Algorithms

BWA v0.5.7 Li and Durbin, 2010 http://bio-bwa.sourceforge.net/;

RRID:SCR_010910

Picard v1.71 https://broadinstitute.github.io/picard/ RRID:SCR_006525

SAMtools v0.1.17 Li et al., 2009 http://samtools.sourceforge.net/;

RRID:SCR_002105

Strelka v2.0.7 Saunders et al., 2012 ftp://strelka@ftp.illumina.com/; RRID:SCR_005109

MutationSeq Ding et al., 2012 http://www.shahlab.ca; RRID:SCR_006815

APOLLOH v012.2014a Ha et al., 2012 https://shahlab.ca/projects/apolloh/;

RRID:SCR_006648

ABySS v1.4.10 Robertson et al., 2010 http://www.bcgsc.ca/platform/bioinfo/software/;

RRID:SCR_010709

CNASeq v1.0.10 Jones et al., 2010 https://www.bcgsc.ca/one/login.cgi?came_

from=http%3A//www.bcgsc.ca/platform/

bioinfo/software/cnaseq

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

JAGuaR v2.2.2 Butterfield et al., 2014 http://www.bcgsc.ca/platform/bioinfo/software/

jaguar

DESeq R package v1.26.0 Anders and Huber, 2010 https://bioconductor.org/packages/release/bioc/

html/DESeq.html; RRID:SCR_000154

NMF R package v0.20.6 Gaujoux and Seoighe, 2010 https://cran.r-project.org/web/packages/NMF/

index.html

Minfi R package v1.20.2 Aryee et al., 2014 https://bioconductor.org/packages/release/bioc/

html/minfi.html; RRID:SCR_012830

GVIZ R package v1.26.4 Hahne and Ivanek, 2016 https://bioconductor.org/packages/release/bioc/

html/Gviz.html

Pheatmap R package v.1.0.10 https://cran.r-project.org/web/

packages/pheatmap/index.html

RRID:SCR_016418

Bsseq R package v1.18.0 Hansen et al., 2012 http://www.bioconductor.org/packages/2.13/

bioc/html/bsseq.html; RRID:SCR_001072

HOMER v4.10 Heinz et al., 2010 http://homer.ucsd.edu/homer/;

RRID:SCR_010881

inForm Cell Analysis PerkinElmer https://www.perkinelmer.com/product/

inform-cell-analysis-one-seat-cls135781

CIBERSORT v1.04 Newman et al., 2015 https://cibersort.stanford.edu/;

RRID:SCR_016955

MiXCR v2.1.9 Bolotin et al., 2015 https://mixcr.readthedocs.io/en/master/

MACS2 Zhang et al., 2008 https://github.com/taoliu/MACS;

RRID:SCR_013291

Bismark Krueger and Andrews, 2011 https://www.bioinformatics.babraham.ac.uk/

projects/bismark/; RRID:SCR_005604
LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for resources and reagents should be directed to

and will be fulfilled by the Lead Contact, Marcel Kool (m.kool@kitz-heidelberg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Data from 141 primary extra-cranial MRT and 161 primary cranial ATRT samples were analyzed for this paper. Data for 40 out of 141

MRT samples were generated as part of a previous report (Chun et al., 2016). In addition to these data, 29 MRT samples (26 from

kidneys, 3 from soft tissues) were provided by Dr. Elizabeth Perlman (Ann and Robert H. Lurie Children’s Hospital in Chicago,

USA) through the Children’s Oncology Group (COG). From COG, we received pre-therapy tumor and normal DNA from peripheral

blood or kidney from rhabdoid tumors (RTs), registered on the National Wilms Tumor Study Group 5 or on COG AREN03B2 banked

by the COG Biopathology Center with parental informed consent. Studies were performed with the approval of the University of

British Columbia - British Columbia Cancer Agency Research Ethics Board (REB number H09-02558). 9 MRT samples (3 from the

spine, 2 from kidneys, remainder from various non-renal tissues e.g., pelvis, face) were provided by Dr. Annie Huang (Hospital for

Sick Children in Toronto, Canada) through the Rare Brain Tumor Consortium (RBTC). An additional 63 MRT samples (31 from kid-

neys, 8 from the liver, remainder from various non-renal tissues e.g., retroperitoneum, Intra-abdomen, face) were provided via the

EURHAB study group, with informed consent obtained from all patients included in the study. Data for 150 out of 161 ATRT samples

were generated as part of a previous report (Johann et al., 2016). 11 additional ATRT-MYC samples were provided by Dr. Martin Has-

selblatt. To enable as comprehensive a study as possible for this rare tumor type, we aggregated all obtainable RT samples that

passed quality criteria from COG and EURHAB studies.

For samples provided through COG, Nationwide Children’s Hospital prepared cells and nucleic acids, and shipped thesematerials

to DKFZ for DNA methylation profiling and to Canada’s Michael Smith Genome Sciences Centre at BC Cancer (BCGSC) for whole-

genome-, whole-genome bisulfite-, RNA-, andChIP-seq. For samples provided throughDKFZ, cells and nucleic acids were prepared

at various sample providers’ institutions, and underwent DNAmethylation profiling at DKFZ. Complete sample information, including

age and sex of patient subjects, is provided in Table S1.
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Tumor content was estimated for 74 cases (56 MRT and 18 ATRT cases) using whole-genome-sequencing data generated from

tumor and matched normal pairs and APOLLOH software (Ha et al., 2012), as described previously (Chun et al., 2016). The median

tumor purity estimated by APOLLOH was 88.31% (min = 42.78%; max = 95.04%).

METHOD DETAILS

Procedures pertaining to previously published data have been described in Chun et al. (2016) and Johann et al. (2016).

DNA Methylation Array Data Generation and Processing
DNAmethylation array data from 150 primary ATRT samples were previously published (Johann et al., 2016). DNA methylation array

data from 9 MRT samples from RBTC were generated using Illumina’s Infinium HumanMethylation450 BeadChip (450K) platform.

Using Illumina’s Infinium MethylationEPIC (850K) platform, we generated DNA methylation data for 40 primary MRT samples that

previously had been analyzed using whole-genome bisulfite sequencing (Chun et al., 2016), and also for an additional 11 ATRT

and 91 MRT cases. All samples were checked for expected and unexpected genotype matches by pairwise correlation of the 65

genotyping probes on the Illumina Methylation 450K array. Raw 450K/850K data files were generated and processed as previously

described (Capper et al., 2018).

Whole-Genome Library Construction and Sequencing
Whole-genome sequencing (WGS) data from pairs of 40 primary MRT and 18 primary ATRT cases, and their corresponding matched

normal samples, were previously published (Chun et al., 2016; Johann et al., 2016).We generatedWGSdata for an additional 16 pairs

of MRT and matched normal samples. WGS library construction, sequencing, and read alignment were performed as previously

described in Chun et al. (2016). In brief, all primary tumor and matched normal samples underwent plate-based PCR-free WGS

on the Illumina HiSeq 2500 platform to achieve the desired sequence coverage (> 30X). Sequences were aligned to the human refer-

ence genome GRCh37-lite/hg19a using the Burrows-Wheeler Aligner (BWA; version 0.5.7; Li and Durbin, 2010). Merged BAM files

were marked for duplicates using Picard MarkDuplicates.jar (version 1.71).

Whole-Transcriptome Library Construction and Sequencing
Whole-transcriptome sequencing (RNA-seq) data from 40 primaryMRT and 25 primary ATRT cases were previously published (Chun

et al., 2016; Johann et al., 2016). We generated RNA-seq data for an additional 25 primary MRT cases. RNA-seq library construction

and sequencing were performed as previously described in Chun et al. (2016). In brief, paired-end polyA+ RNA sequencing was per-

formed preserving strand specificity on the Illumina HiSeq 2500 platform.

Whole-Genome Bisulfite-seq Library Construction and Sequencing
Whole-genome bisulfite sequencing (WGBS) data from 40 primaryMRT and 17 primary ATRT caseswere previously described (Chun

et al., 2016; Johann et al., 2016). We generated WGBS data for an additional 29 primary MRT cases. WGBS library construction and

sequencing were performed as previously described in Chun et al. (2016). In brief, fragmented bisulfite converted DNA was

sequenced using paired-end 100/125 nt V3/4 sequencing chemistry on the Illumina HiSeq 2500 platform.

Chromatin Immunoprecipitation (ChIP) Library Construction and Sequencing
H3K27ac and H3K27me3 ChIP-seq data from 10 primary MRT and 14 primary ATRT cases were previously published (Chun et al.,

2016; Johann et al., 2016). We generated H3K27ac and H3K27me3 ChIP-seq data for an additional 24 and 25 primary MRT cases,

respectively. ChIP-seq library construction and sequencing were performed as previously described in Chun et al. (2016). In brief,

samples were prepared from cross-linked tissues, fromwhich ChIPwas performed using the extracted chromatin. Fragmented chro-

matin DNA was sequenced using paired-end sequencing chemistry on the HiSeq 2000/2500 platforms.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mutation Analyses using Whole-Genome Sequencing Data
In addition to the previously described data, we analyzed whole-genome sequencing data from 18 pairs of ATRT and their matched

normal samples, and 16 pairs of MRT and their matched normal samples to identify somatic mutations i.e., copy number alterations

(CNA), single nucleotide variants (SNVs), short insertions and deletions (InDels), and structural variants such as inversions, duplica-

tions, and translocations that may lead to gene fusions. To allow data comparability, we used the same suite of software tools

described in Chun et al. (2016), including Strelka (version 2.0.7; Saunders et al., 2012), SAMtools mpileup (version 0.1.17; Li et al.,

2009), and MutationSeq (Ding et al., 2012) to detect somatic SNVs and InDels, APOLLOH (version 012.2014a; Ha et al., 2012) to

detect regions with loss of heterozygosity (LOH), CNASeq (version 1.0.10; Jones et al., 2010) to detect CNA, and Trans-ABySS

(version 1.4.10; Robertson et al., 2010) to detect structural variants such as chromosomal translocations and inversions.
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Copy Number Analysis using DNA Methylation Data
We used the conumee R package (http://bioconductor.org/packages/release/bioc/html/conumee.html) to estimate the chromo-

somal copy number state from 450K and EPIC/850K DNAmethylation array data as previously described in Johann et al. (2016). Re-

gions with values > 0.3 were considered to have chromosome amplifications, while regions with values < �0.3 were considered to

have chromosome deletions.

Analysis of RNA-Seq Data
RNA-seq read alignment and gene expression quantification for 65 MRT and 25 ATRT samples were performed using methods pre-

viously described in Chun et al. (2016). Briefly, reads were aligned to the human reference genome (version hg19/GRCh37-lite) and to

exon junction sequences using BWA. JAGuaR (version 2.2.2; Butterfield et al., 2014) was used to reposition sequences mapped to

exon junctions back onto the genome as gapped alignments. We calculated the sequenced base coverage across collapsed exon

models to quantify gene-level expression using the gene coverage analysis software developed at Canada’s Michael Smith Genome

Sciences Centre. All external RNA-seq data (i.e., neuron progenitor data from the Roadmap Epigenomics Consortium and cranial

neural crest data from Prescott et al., 2015) were processed using the same software pipeline and gene annotation versions as

the MRT RNA-seq data, as previously described (Chun et al., 2016).

For gene expression analyses, we selected genes that were expressed above a noise threshold of 1 RPKM in all 90 samples.

27,790 out of 58,450 genes, annotated by EnsEMBL version 69, were removed using this filter. To identify differentially expressed

genes, we used the DESeq R package (version 1.14.0; R version 3.3.2; Anders and Huber, 2010) and an adjusted p value threshold

of 0.05. For subsequent analyses, we further filtered low abundance transcripts that were identified to be overexpressed in one group

compared to another group, but had a median expression level less than 1 RPKM. Pathway enrichment analysis was done using

DAVID (version 6.8) (Huang et al., 2009), g:Profiler (Reimand et al., 2007), Metascape (Tripathi et al., 2015), and Ingenuity Pathway

Analysisª tool, with an adjusted p value threshold of 0.05. We used EnrichmentMap plug-in (version 3.2.0) for Cytoscape (version

3.7.1) to visualize networks of significantly enriched Gene Ontology (GO) biological processes from g:Profiler queries. Node color

represents a BH-adjusted p value of enrichment tests. The size of a node is proportional to the number of genes in a biological pro-

cess. The thickness of an edge is proportional to a similarity coefficient based on the fraction of shared genes between biological

processes.

To cluster RT samples based on gene expression, we first removed genes expressed below 1 RPKM in R 75% of samples, and

then ranked the remaining genes based on the coefficient of variation. We performed unsupervised non-negative matrix factorization

(NMF) using the top 25%most variably expressed genes (n = 3,984), and considered a k value i.e., a clustering solution, at which the

highest cophenetic coefficient and silhouette width were observed. We used the NMF R package (version 0.20.2; Gaujoux and

Seoighe, 2010), with a default Brunet algorithm and 50 and 500 iterations for the rank survey and the clustering runs, respectively.

To deconvolute gene-expression signals originating from various immune cell types, we applied CIBERSORT analysis using the

CIBERSORT R script (version 1.04; Newman et al., 2015) to gene-level RPKMdata with 5,000 permutations using the absolute signa-

ture score mode. To detect T cell receptor (TCR) sequences, we used MiXCR (version 2.1.9; Bolotin et al., 2015) on FASTQ data

generated from paired-end RNA-seq of 25 ATRT and 65 MRT cases, and identified reads that aligned to reference germline V, D,

J, and C gene sequences from GenBank, which were then assembled for clonotype mapping i.e., construction of full-length

CDR3 regions of the TCR. We then analyzed TCR b clonotypes generated from MiXCR to calculate Shannon Wiener index scores,

which quantify the diversity of TCR repertoires in each sample using VDJTools (Shugay et al., 2015).

To compare gene expression levels in RTs against various normal tissue types, we used RPKM values from the Genotype-Tissue

Expression dataset (GTEx version 9; number of samples = 2,500; number of normal tissue types = 52), and from normal cerebellum

(n = 9) and normal kidney (n = 6) datasets.

Transcriptional network analysis consisted of three steps, as adapted from the SCENIC pipeline (Aibar et al., 2017): (1) Identify po-

tential targets of each transcription factor (TF); (2) perform TF motif enrichment analysis to identify the putative direct targets of each

TF to form a transcriptional network, and (3) score the activity of each network in each sample. Co-expression modules were con-

structed using the R package GENIE3 v0.99.7 (Huynh-Thu et al., 2010). The input used was a gene-expression matrix consisting of

genes with >1 RPKM in all samples (n = 90; 65MRT and 25 ATRT cases). TF-gene pairs with co-expression scores greater than 0.001

and having positive Spearman correlations were used to construct TF gene sets, each consisting of a TF and genes with co-expres-

sion patterns. TF motif enrichment analysis was then performed for each TF gene set using the R/Bioconductor package RcisTarget

(version 0.99.0), which contains motif rankings for �1800 TFs from iRegulon (Janky et al., 2014). From these, we inferred direct tar-

gets of a TF by filtering the genes that were significantly enriched for at least one of the TF’s binding motifs, and generated a TF

network consisting of a TF and its putative direct targets. The activity of each TF network was quantified using the R package AUCell

(version 0.99.5). An area under the recovery curve (AUC) analysis was performed for each TF network identified in a sample to quan-

tify the proportion of genes that are present within the highest-expressing genes in each sample. To identify active TF networks in

each sample, a binary score indicating network activity states (1 = on/active, 0 = off/inactive) was assigned to each sample using

a threshold determined based on the distribution of AUC values across all samples (Aibar et al., 2017).

To quantify endogenous retroviral element (ERE) transcript abundance levels, we used reads that mapped to loci containing short

or long interspersed nuclear elements (SINEs or LINEs, respectively) and long terminal repeat (LTR) retrotransposons including

endogenous retroviruses (ERV), annotated by UCSC RepeatMasker (hg19 version). A list of 5,467,457 repeat elements and their
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genomic coordinates was obtained from RepeatMasker (version hg19 - Feb 2009 - RepeatMasker open-4.0.5 - Repeat Library

20140131; Smit et al., 2013). The list was filtered to remove EREs with uncertain annotations (i.e., those annotated with ‘‘?’’) and

EREs on the Y and non-canonical chromosomes. We further selected EREs that did not overlap with gene promoters (includes

1500 bp upstream of a TSS) and gene bodies to obtain ERE transcript abundance levels that were not likely to be confounded by

‘‘host’’ gene transcription (n = 3,877,818). Raw transcript abundance levels were quantified for each ERE by counting the number

of reads that mapped unambiguously, with their mate reads mapping within 10kb from a read center. ERE transcript abundance

levels were normalized for a library depth, and represented in reads per million reads mapped (RPM).

DNA Methylation Array Analysis
We processed the raw IDAT files using the minfi R package (version 1.20.2; Aryee et al., 2014) and applied the single-sample Noob

(normal-exponential out-of-band) method to correct the background. To enable comparisons between 450K and the EPIC arrays,

only the probes represented on both arrays were used for the analysis. In addition, the following filtering criteria were applied:

Removal of probes targeting the X and Y chromosomes; removal of probes containing a single nucleotide polymorphism

(dbSNP132Common) within five base pairs of and including the targeted CpG-site (n = 24,536), and removal of probes not mapping

uniquely to the human reference genome (hg19), allowing for one mismatch (Zhou et al., 2017).

For t-SNE analysis, the R-package tSNE (version 0.1.3) was used. Unsupervised hierarchical clustering and Consensus Clustering

were carried out as described previously with varying numbers of CpG sites (Johann et al., 2016).

To assess the extent of molecular similarities and identify subgroups of RTs, we combined DNA methylation array data generated

from 161 ATRT and 140 MRT samples to perform unsupervised NMF analysis. We first filtered out CpG sites that were targeted by

probes annotated to be less robust (e.g., those with SNPs) according to the published annotation (Zhou et al., 2017). We also

removed CpG sites with 0% methylation across all 301 samples. We considered only CpG sites on autosomes, and selected

CpG sites that were positively methylated with beta-values >0.3 in at least 10% of samples, following the methods applied by

TCGA (Cancer Genome Atlas Research Network, 2014a; Brat et al., 2015). The remaining CpG sites were then ranked using standard

deviation, such that the most variably methylated CpG sites could be selected for downstream analyses. We performed unsuper-

vised NMF using the top 10,000 CpG sites with a default Brunet algorithm and 50 and 500 iterations for the rank survey and the clus-

tering runs, respectively.

To test for non-random distribution of covariates between subgroups of interest, we applied Fisher’s exact test (using the

fisher.test function in R) and performed Benjamini-Hochberg multiple hypotheses testing adjustments using the p.adjust function

in R to obtain adjusted p values.

We performed hierarchical clustering (Spearman correlation coefficient as the distance metric, complete linkage clustering) on

9,758 DNA methylation profiles representing 33 tumor types (n = 9,012), 23 normal tissue types (n = 746) from TCGA, and 464 DNA

methylation profiles representing four pediatric tumor types (n = 452) and 12 pediatric normal brain tissues from TARGET. We also

included DNA methylation profiles from 8 normal adult and 2 fetal brain samples from DKFZ. For each cancer and normal tissue

type, a median beta value for CpG probes was determined (probes were previously filtered using the method described above).

These median values, together with DNA methylation profiles from primary MRT and ATRT cases, were then used for the clus-

tering analysis. The TCGA cancer types included BRCA (n = 796; Breast invasive carcinoma); LGG (n = 534; Low-grade glioma),

HNSC (n = 530; Head and neck squamous cell carcinoma), THCA (n = 515; Thyroid carcinoma), PRAD (n = 503; Prostate adeno-

carcinoma), LUAD (n = 475; Lung adenocarcinoma), SKCM (n = 473; Skin cutaneous melanoma), UCEC (n = 439; Uterine corpus

endometrial carcinoma), BLCA (n = 419; Bladder urothelial carcinoma), STAD (n = 396; Stomach adenocarcinoma), LIHC (n = 380;

Liver hepatocellular carcinoma), LUSC (n = 370; Lung squamous cell carcinoma), KIRC (n = 325; Kidney renal clear cell carci-

noma), COAD (n = 316; Colon adenocarcinoma), CESC (n = 309; Cervical squamous cell carcinoma and endocervical adenocar-

cinoma), KIRP (n = 276; Kidney renal papillary cell carcinoma), SARC (n = 265; Sarcoma), ESCA (n = 186; Esophageal carcinoma),

PAAD (n = 185; Pancreatic adenocarcinoma), PCPG (n = 184; Pheochromocytoma and paraganglioma), TGCT (n = 156; Testicular

germ cell tumors), GBM (n = 153; Glioblastoma multiforme), LAML (n = 140; Acute myeloid leukemia), THYM (n = 124; Thymoma),

READ (n = 99; Rectum adenocarcinoma), MESO (n = 87; Mesothelioma), UVM (n = 80; Uveal melanoma), ACC (n = 80; Adreno-

cortical carcinoma), KICH (n = 66; Kidney chromophobe), UCS (n = 57; Uterine carcinosarcoma), DLBC (n = 48; Diffuse large B cell

lymphoma), CHOL (n = 36, Cholangiocarcinoma), and OV (n = 10; Ovarian serous cystadenocarcinoma). The TARGET cancer

types included CCSK (n = 11; Clear cell sarcoma of the kidneys), NBL (n = 224; Neuroblastoma), OS (n = 86; Osteosarcoma),

and WT (n = 131; Wilms tumor). The level 3 TCGA and TARGET data were generated using Illumina Human Methylation 450 plat-

form, and were obtained through the TCGA GDC Data Portal at https://portal.gdc.cancer.gov/ and the TARGET Data Portal at

ftp://caftpd.nci.nih.gov/pub/OCG-DCC/TARGET/.

For hierarchical clustering, we used the hclust R package (R version 3.3.2) and clustered samples using the top 10,000 most var-

iably methylated CpGs, using complete linkage and the Spearman correlation coefficients as the distance metrics. We also per-

formed hierarchical clustering using the top 1%most variably methylated CpGs (n = 3,958) using complete linkage and the Pearson

correlation coefficient as the distance metrics. We used the heatmap.2 function within the gplots R package (version 2.16.0) for visu-

alization of clustering results.
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Analysis of ChIP-Seq Data
Alignment of sequencing data was performed as described in Johann et al. (2016). In brief, BWA was used to align sequence reads.

Duplicate reads were marked using Picard MarkTools. For enhancer and peak-centered analyses of H3K27ac and H3K27me3 data,

we used MACS2 (Zhang et al., 2008) with default settings to call peaks. Peak calling was performed for each sample in the sample

cohort, and peaks that were present in two or more samples were retained for analyses. Resulting peaks were merged and used for

further analyses.

The signals at peakswere calculated as previously described (Hisano et al., 2013), using the ‘‘countsForRegions’’ function followed

by scaling the counts to library size. We applied the same method to calculate H3K27ac signal at promoters, which are defined as

regions ± 500 bp around the transcription start site (TSS). Peaks (enhancers) with the most variable signal across all MRT samples

were chosen. For unsupervised hierarchical clustering, the top 1,500 most variable peaks over all samples were used.

For TF enrichment analyses, enhancers specific to MRTs were defined based on statistical testing of MRT enhancers versus all

enhancers specific to the three ATRT subgroups characterized in our previous report (Johann et al., 2016). Briefly, we applied

ANOVA with an FDR cut-off of 0.05 and required at least log2 fold change of 1.5 between MRT and ATRT enhancer signals. Nucle-

osome free regions (NFRs) of these specific enhancers were identified using the HOMER software (http://homer.ucsd.edu/homer/;

version 4.10; Heinz et al., 2010). For TF enrichment, the ENCODE motifs were downloaded from http://compbio.mit.edu/

encode-motifs/. Each motif was overlapped with the NFRs from MRT-specific enhancers. Chi-square tests were applied to identify

significantly enriched TF motifs (FDR < 0.01). Enrichment values for ATRT subgroup-specific enhancers were taken from previous

analyses (Johann et al., 2016).

Identification of Super-Enhancers and Target Genes of Super-Enhancers
Super-enhancers were identified using the HOMER software (http://homer.salk.edu/homer/ngs/index.html) and the findPeaks com-

mand with ‘‘-style super’’ option. ATRT super-enhancers had been identified previously in Johann et al. (2016). For MRT-specific su-

per-enhancers, H3K27ac data were combined for all MRT samples and compared to ATRT subgroups. To identify super-enhancers

that were common between MRT and ATRT-MYC, we compared the coordinates of super-enhancers and selected those that over-

lapped by at least 25% between MRT and ATRT-MYC-specific enhancers (as defined in Johann et al., 2016), but not between MRT

and other ATRT subgroup-specific enhancers.

Analysis of WGBS Data
WGBS data from ATRT and MRT cases were previously published (Chun et al., 2016; Johann et al., 2016). Alignment of the data was

performed as previously described (Hovestadt et al., 2014) using Bismark (Krueger and Andrews, 2011). Identification of partially

methylated domains (PMDs) in MRT was performed using the same method as described in Johann et al. (2016). In brief, average

methylation levels within windows of 10 kbwere calculated in steps of 1 bp. Overlapping 10 kbwindows with an averagemethylation

level < 0.6 were merged, and resulting regions larger than 100 kb were termed PMDs.

To identify differentially methylated regions (DMRs), we used the bsseq R package (version 1.18.0; Hansen et al., 2012) to create

the data frames for methylated reads and to calculate the whole coverage per sample based on aligned reads. A CpG site with a

minimum coverage of 5 reads was selected for downstream analyses. For each sample, a bsseq object was generated, and then

analyzed to identify DMRs specific for each of the five subgroups, using the callDMR function in the DSS R package (version

2.12.0; parameters used: minlen = 50, minCG = 5). To identify a gene that overlapped with DMRs, the longest transcript of a pro-

tein-coding gene was considered. For visualization of WGBS data, the GVIZ R package was used (version 1.26.4; Hahne and Ivanek,

2016).

Immunohistochemistry (IHC)
Two multi-color immunohistochemical panels were stained on whole tissue slides using two staining schemes. All reagents were

sourced from Biocare Medical (Pacheco, CA) unless noted otherwise. Slides were incubated overnight at 37�C, then deparaffinized

manually using xylene and graded alcohols. The slides were then subjected to antigen retrieval using a Biocare decloaking chamber

plusTM at 110�C for 15 minutes in Diva decloaking solution. Slides were then loaded onto a Biocare Intellipath FLX� autostainer. The

first two steps of the staining schemes required blocking of endogenous peroxidase activity using peroxidased-1 dispensed using

the Intellipath FLX for 5 minutes followed by blocking of non-specific binding using a blocking reagent, background sniper, for 10 mi-

nutes. All antibodies were diluted in Biocare Da Vinci Green diluent.

For multiplex IHC targeting CD3 and CD8, we used the following staining scheme: Primary antibodies of CD8 (clone C8/144b from

Cell Marque) and CD3 (clone SP7 from Spring Bioscience) were combined into a cocktail diluted in Da Vinci Green diluent at 1/250

and 1/500 dilutions, respectively, which wasmanually added to the slides for 30minutes. Thesewere then followed byMach2 Double

Stain #2 polymer dispensed using the Intellipath FLX� for 30 minutes to put CD8 on IP DAB chromogen and CD3 on IP Warp Red

chromogen. Following the chromogen step, slides were counterstained with CAT Hematoxylin at a 1/5 dilution and then washed and

air-dried prior to coverslipping with Ecomount. The staining scheme for the multiplex IHC targeting PD1, PD-L1, and CD68 was done

as follows: In the first round of staining, primary antibodies of PD-L1 (clone SP142 from Abcam) and CD68 (clone KP-1 from Biocare

Medical) were combined into a cocktail diluted 1/100 in Da Vinci Green diluent, and applied to the slides for 30 minutes, followed by

Mach2 Double Stain #1 polymer for 30 minutes to put CD68 on IP Ferengi Blue chromogen and PD-L1 on IP DAB chromogen. The
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slides then underwent a denaturation step with SDS-glycine pH2.0 at 50�C for 45 minutes (Pirici et al., 2009). In the second round of

staining, we manually applied primary PD1 antibody (clone EPR4877(2) from Abcam) diluted 1/250 in Da Vinci diluent for 30 minutes,

followed by Mach2 Rabbit-AP polymer for 30 minutes to put PD1 on IP Warp Red chromogen. Slides were then counterstained with

CAT Hematoxylin at a 1/5 dilution and then washed and air-dried, followed by coverslipping with Ecomount.

IHC Analysis
IHC-stained slides were scanned at 10X to create whole slide scans using the Vectra 3 multispectral imaging system (Perkin Elmer,

Waltham, MA). The files generated were then passed to a pathologist (B.T-C.) for selection of 15 tumor-rich (TT), 5 peri-vascular (PV),

and 5 peri-stromal (PS) regions based on whole slide scans of H&E stained slides using the Pannoramic Midi system (3D Histech).

Slides were then re-scanned using the Vectra 3 multispectral imaging system, generating multispectral images at 20X magnification

based on the digitally annotated fields of view. Multispectral imaging enabled spectral separation between different chromogens for

better visualization of images and spectral superimposition of different chromogens to identify co-expression of proteins. Multispec-

tral images were analyzed using the inForm Image Analysis software (Perkin Elmer) to automatically identify cell phenotypes and

perform cell counts. Five phenotyping algorithms were created using a training set of images (10 per algorithm) selected to recognize

diverse cell phenotypes. The resulting cell counts were compared and visually validated in all cases by a researcher (H.-J.E.C).

Normalized immune cell densities for each image were calculated by dividing validated cell counts by the scanned area (mm2; calcu-

lated bymultiplying a number of pixels of the scanned image by 2.5 X 10�7), and were then compared across all samples. Normalized

cell counts were plotted using R, and statistical significance of cell count differences was calculated using either of the Wilcoxon

Mann-Whitney U or Kruskal-Wallis tests.

To enhance visibility and discrimination between IHC colors, IHC images shown in Figure 7E were adjusted to reduce the blue

hematoxylin signals by 50% and were re-colored with the following pseudocolors: CD8+ signals in brown and CD3+ in green. To

better visualize PD-L1+ CD68+ and PD-L1- CD68+ cells, IHC images were modified as false immunofluorescence images as shown

in Figure S7B, with following pseudocolors applied: CD68+ in green, PD-L1+ in red, PD1+ in cyan, and PD-L1+CD68+ in yellow. All

data analyses were performed on raw images using inForm.

Text-Mining Analysis for Identifying Putative Tumor-Associated Antigens
In order to build a list of putative tumor antigens, we used a text-mining method (Lever and Jones, 2017) to extract mentions of tumor

antigens found in published abstracts and full-text papers. From PubMed abstracts and all downloadable PubMed Central articles,

we extracted sentences that mention the phrase ‘‘tumor antigen’’ (variable spellings considered) and contain a gene name from the

NCBI gene list with additional synonyms.We then used an active learning approach to annotate the sentences as towhether the gene

name was a potential tumor antigen. This used the Kindred relation extraction Python package (Lever and Jones, 2017) to train a

logistic regression classifier based on dependency parse-based features. Relations that the classifier found ambiguous, which

were those classified differently using a bootstrapping method, were presented to an in silico annotator. This annotation provided

a training set to train a final relational classifier that was applied to all relevant sentences and used to build a list of putative tumor

antigens that was then reviewed manually. All code is accessible at https://github.com/jakelever/tumorantigens.

DATA AND CODE AVAILABILITY

Raw DNA methylation array data generated from ATRT samples from DKFZ have been deposited in the Gene Expression Omnibus

(GEO). The accession number for the ATRT DNA methylation array data reported in this paper is GEO: GSE123601. The accession

number for raw DNAmethylation array data and sequence data generated fromMRT samples from TARGET reported in this paper is

NCBI dbGaP: phs000470, with additional data available at http://target.nci.nih.gov/dataMatrix/TARGET_DataMatrix.html. Details for

other data and software availability are in the Key Resources Table. Requests for additional data and code should be directed to the

Lead Contact.
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