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ABSTRACT
The laminar sphere unstable bifurcations are sought at a Mach number of M∞ = 1.2. Global stability performed on steady axisymmetric
base flows determines the regular bifurcation critical Reynolds number at Rereg

cr = 650, identifying a steady planar-symmetric mode to cause
the loss of the wake axisymmetry. When global stability is performed on steady planar-symmetric base flows, a Hopf bifurcation is found
at ReHopf

cr = 875 and an oscillatory planar-symmetric mode is temporally amplified. Despite some differences due to highly compressible
effects, the supersonic unstable bifurcations present remarkably similar characteristics to their incompressible counterparts, indicating a
robust laminar wake behavior over a large range of flow speeds. A new bifurcation for steady planar-symmetric base flow solutions is found
above Re > 1000, caused by an anti-symmetric mode consisting of a 90○ rotation of the dominant mode. To investigate this reflectional
symmetry breaking bifurcation in the nonlinear framework, unsteady nonlinear calculations are carried out up to Re = 1300 and dynamic
mode decomposition (DMD) based on the combination of input data low-dimensionalization and compressive sensing is used. While the
DMD analysis confirms dominance and correspondence in terms of modal spatial distribution with respect to the global stability mode
responsible for the Hopf bifurcation, no reflectional symmetry breaking DMD modes were found, asserting that the reflectional symmetry
breaking instability is not observable in the nonlinear dynamics. The increased complexity of the wake dynamics at Re = 1300 can be instead
explained by nonlinear interactions that suggest the low-frequency unsteadiness to be linked to the destabilization of the hairpin vortex
shedding limit cycle.

NOMENCLATURE

CFL Courant–Friedrichs–Lewy number
CL lift coefficient
DMD dynamic mode decomposition
D∗s dimensional sphere diameter
E total energy
Lsep base flow separation length
M∞ inflow Mach number
PS planar-symmetric
PSD power spectral density
q conservative variables’ state vector
qb base flow conservative variables’ state vector
q′ perturbation conservative variables’ state vector
q̂ eigenfunction conservative variables’ state vector

Re Reynolds number
ReHopf

cr Hopf bifurcation critical Reynolds number
Rereg

cr regular bifurcation critical Reynolds number
St Strouhal number, non-dimensional frequency
t time
[u, v, w]T streamwise, transversal, and vertical velocities
[ux, ur , uθ]

T streamwise, radial, and azimuthal velocities
[x, y, z]T streamwise, transversal, and vertical coordinates
ΔT Krylov time step
Δt integration time step
λ complex eigenvalue
ρ density
σ growth rate
σNL growth rate obtained from nonlinear calculations
ω angular frequency
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I. INTRODUCTION
For many engineering applications, the appearance of large-

scale unsteadiness represents a design operability limiting factor.
The increase of drag and flow-induced vibrations consequent to the
unsteadiness onset are not only detrimental for the overall perfor-
mances but can eventually lead to structural failure due to fatigue.
Fundamental studies on three-dimensional (3D) unsteady dynam-
ics associated with axisymmetric bodies, like a sphere, have shown
been to be physically relevant to understand more complex con-
figurations, such as launcher after-bodies or re-entry capsules. The
incompressible behavior of the space-time dynamics of a flow past a
sphere has been well documented in the past both experimentally1–5

and numerically.6–14 While the interest of the scientific commu-
nity for the incompressible regime is still very high and numerous
studies have been recently done,15–20 very limited information exists
regarding the effects of compressibility, especially at supersonic
speeds.

The scientific community currently seems to agree on the sta-
bilizing effect of the Mach number (M∞ = U∗∞/c∗∞ with U∗∞ and
c∗∞ being the dimensional free-stream velocity and speed of sound,
respectively) both at subsonic and supersonic speeds for sphere
wakes21–25 and other flow configurations as thin wakes26 and bound-
ary layers on rotating disks.27 The first (pitchfork or regular) and
secondary (supercritical Hopf) unstable bifurcations for an incom-
pressible flow past a sphere are responsible for the loss of spatial
axisymmetry and for causing the flow to become unsteady, respec-
tively. Although they are seen to persist in the compressible regime,
the corresponding critical Reynolds numbers move toward higher
values for increasing Mach number, indicating its stabilizing effect
on the wake dynamics. However, no unstable bifurcations at super-
sonic speeds were found in the Reynolds number (Re = U∗∞D∗s /ν∗∞
with ν∗∞ being the dimensional free-stream kinematic viscosity and
D∗s being the dimensional sphere diameter) range considered (Re
< 600), and the flow system was shown to be globally stable and,
more precisely, temporally steady and spatially axisymmetric. Evi-
dence of the existence of unstable bifurcations in the supersonic
regime was recently given in a set of direct numerical simulations
at higher Reynolds numbers by Nagata et al.,23 who found the flow
to first lose its spatial axisymmetry and then become unsteady via
the shedding of hairpin vortices downstream of the sphere, like for
its subsonic counterpart. The experiments of Nagata et al.28 at free-
flight conditions examined schlieren visualizations of a sphere at
0.9 < M∞ < 1.6 and 3900 < Re < 380 000 and also showed that an
unsteadiness existed at Re = 8100 and M∞ = 1.4. However, neither
the mechanisms driving the onset of instabilities nor a characteriza-
tion of the unsteady behavior was given in detail. An interesting and
less investigated flow regime that presents wake dynamic instabilities
is the transonic one. Riahi et al.25 performed calculations of incom-
pressible and compressible spheres with an improved new immersed
boundary method and accurately captured different flow configu-
rations. Among these, an unsteady (alternating hairpin) wake was
found at M∞ = 0.95 and Re = 600, for which a shock wave forms
on the sphere wake. Other relevant studies showing the effect of
cooled/heated29 or rotating30 laminar sphere are worth mentioning
for the Mach number range investigated (0.3 <M∞ < 2.0).

Despite some evidence in the literature, a precise identifica-
tion and characterization of the regular and Hopf bifurcations of a
supersonic sphere wake are still lacking. The present work aims at

extending the analysis done in the work of Sansica et al.,24 for which
no evidence of the unstable bifurcations was found at M∞ = 1.2 and
Reynolds numbers up to Re = 380. The current objective is there-
fore to perform fully 3D global stability analysis on a sphere wake
at the same Mach number but in a higher Reynolds number range
between Re = 500 and 1300, with the intent to stretch the bound-
aries of the state-of-the-art knowledge toward an unknown and less
documented region of the M–Re plane.

The paper is organized as follows: the problem formulation,
comprehensive of the description of the governing equations and
stability problem, is presented in Sec. II; code features and numerical
simulation setup details are reported in Sec. III; the results obtained
on base flow solutions and by global stability analysis around regular
and Hopf bifurcations are described in Sec. IV; Sec. IV also includes
global stability and dynamic mode decomposition (DMD)31 anal-
yses up to Re = 1300, for which a new bifurcation is found; some
conclusions and future work opportunities are discussed in Sec. V.

II. PROBLEM FORMULATION
A. Governing equations

The compressible 3D Navier–Stokes (N–S) equations for a
perfect gas can be written in the non-dimensional form as

∂q
∂t
=N(q), (1)

where q = [ρ, ρu, ρE]T is the state vector in the conservative form
(with ρ, u, and E being the fluid density, the velocity vector, and
the total energy, respectively) and t is the time. The differential
nonlinear N–S operator N can be explicitly expanded as

N(q) = −∇
⎛

⎜

⎝

ρu
ρu⊗ u + pI − τ
ρEu + pu − τu + q

⎞

⎟

⎠

(2)

with
p = (γ − 1)ρE −

1
2
u ⋅ u,

τ = μ[(∇⊗ u +∇⊗ uT
) −

2
3
(∇ ⋅ u)I],

qh = −
μCp

Pr
∇T,

(3)

where p is the pressure, τ is the viscous stress tensor, Cp is the heat
capacity at constant pressure, μ is the dynamic viscosity, Pr is the
Prandtl number, T is the temperature, and qh is the heat flux. The
Prandtl number is assumed to be constant and, being the fluid con-
sidered air, equal to Pr = 0.72. The dynamic viscosity is assumed to
follow Sutherland’s law as

μ = T3/2 1 + Ts

T + Ts
, (4)

where Ts = 110.4 K/T∗i,∞ with T∗i,∞ being the dimensional free-
stream stagnation temperature (the superscript ∗ indicates dimen-
sional quantities). The array of the streamwise, vertical, and trans-
verse directions is indicated by x = [x, y, z]T .

The time and length scales are made dimensionless using
U∗∞/D∗s and D∗s , respectively, where U∗∞ is the free-stream velocity
and D∗s is the sphere diameter. The dimensionless frequency or
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Strouhal number (non-dimensionalized by the sphere diameter and
free-stream velocity) is defined as St = ω/2π. Similarly to the studies
of Nagata et al.,22,23 Sansica et al.,24 and Riahi et al.,25 for the high-
Mach and low-Reynolds number regimes considered, the dimen-
sional sphere diameters are in the range D∗s = 30 μm − 80 μm.
A practical application regards gas–particle multi-phase flows in a
solid rocket motor at take off,32 where the alumina particles of size
30 μm–200 μm released in the exhaust supersonic jet could be mod-
eled as tiny spheres. However, the main objective here is to provide a
better understanding of the wake dynamics of axisymmetric bodies
at supersonic speeds to help unraveling the physics of more com-
plex configurations, such as launcher after-bodies21,33 or re-entry
capsules,34 for which some similarities exist.

B. Stability problem
The stability problem is based upon the use of the linearized

N–S equations. The first step to obtain this linearized set of equa-
tions is to assume that the nonlinear system in Eq. (1) admits an
equilibrium solution, qb, defined by N(qb) = 0 and referred to as
the fixed point or base flow. The standard small perturbation tech-
nique is used to decompose the instantaneous flow into base flow
and small disturbances q(x, t) = qb(x) + εq′(x, t), with ε ≪ 1. By
assuming that the perturbations are infinitesimal, all nonlinear fluc-
tuating terms are ignored and the linearized N–S equations can be
written as

∂q′

∂t
=L (q′), (5)

where q′ = [ρ′, ρ′ub + ρbu′, ρ′Eb + ρbE′]T is the state vector of con-
servative perturbation variables and L = ∂N /∂q ∣qb

is the Jaco-
bian operator obtained by linearizing the N–S operator N around
the base flow qb. By choosing the normal mode or wave solution
q′(x, t) = q̂(x) exp(λt)+ c.c (with c.c. indicating the complex conju-
gate) and being L the discrete form of L, the eigenproblem Lq̂ = λq̂
is obtained. The complex eigenvalue can be split into its real and
imaginary parts λ = σ + iω, where σ is the temporal growth rate andω
is the angular frequency. While the angular frequency characterizes
the oscillatory behavior, the temporal growth rate indicates whether
the equilibrium state bifurcates to another solution. This bifurcation
is expressed in a linear framework by the existence of eigenmodes
with a corresponding positive growth rate. It is important to stress
that no explicit forcing is imposed and the current approach can only
detect instabilities that are self-sustained in the numerical domain
under exam. Convective instabilities that might grow and/or decay
within the domain considered will be “lost” among the modes in the
continuous stable branch.

III. NUMERICAL METHOD
An in-house solver is used to compute the compressible N–S

equations, both nonlinear and linearized formulations, on multi-
block structured grids with a finite-volume approach. To compute
the convective fluxes, the Roe scheme35 is extended to the third order
in combination with a MUSCL approach and all flux limiters are
set to be inactive. A second order centered scheme is used to differ-
entiate the viscous terms. A dual time stepping method is used to
advance the N–S solution in time by an implicit pseudo-unsteady
approach.36

The steady base flow calculations are computed by setting the
Courant–Friedrichs–Lewy (CFL) number equal to 10, allowing the
filtering of possible unsteadiness and obtaining converged steady
fixed points until the residuals of the state variables in the L2-norm
are at least 10−8. The boundary conditions used are as follows: no-
slip velocity, adiabatic temperature, and pressure extrapolation on
the walls; a uniform velocity is imposed at the numerical domain
inflow; characteristic boundary conditions are set at the domain lat-
eral boundaries and outflow to minimize wave reflections. A series
of validation test cases for both incompressible and compressible
(up to supersonic) flow regimes are performed to verify the cor-
rect functioning of the nonlinear solver and are presented in the
Appendix.

Some preliminary tests (not shown here) on nonlinear unsteady
calculations have been carried out to select the time integration
parameters. For both nonlinear and linear unsteady calculations, the
values that minimize computational costs and assure a solution inde-
pendent of the time integration parameters are as follows: the CFL
number for the pseudo-unsteady sub-iterations is set to 10, the max-
imum number of sub-iterations is 35, and the integration time step
size is Δt = 9.31 × 10−3. The boundary conditions selected for the
(nonlinear) steady base flow solutions are also used for the unsteady
calculations in both nonlinear and linearized forms.

However, it is important to emphasize that, although the same
discretization schemes and boundary conditions are used for both
nonlinear and linear calculations, some adaptation to comply with
the linearization procedure had to be taken into account. Concern-
ing the spatial discretization, the Roe scheme is based on the Jaco-
bian matrix of the new flux function associated with the linearized
equations.37 The boundary conditions are also linearized and mod-
ified: zero-velocity perturbations are enforced on the sphere wall
and domain inlet, and the characteristic boundary conditions are
evaluated on the base flow solution.

A matrix-free method38,39 is used to solve the eigenproblem
Lq̂ = λq̂. It is possible to introduce the exponential propagator
M = exp(LΔT) that linearly advances the perturbation solution in
time as q′(tn+1) = Mq′(tn) with tn+1 = tn + ΔT. An Arnoldi algo-
rithm40–42 is coupled to the linear solver24,43–45 to extract the leading
eigenmodes of M. The time step between two consecutive linear
snapshots is ΔT = 400 × Δt and ΔT = 200 × Δt for the study of
the regular and Hopf bifurcations, respectively. The Krylov subspace
dimension is set between 60 and 100 to assure the convergence of the
least temporally damped/most temporally amplified eigenmode(s)
to be lower than at least 10−6.

A. Simulation setup
The numerical domain is composed of six blocks and its topol-

ogy is displayed in Figs. 1(a) and 1(b). The grid resolution is
(nx, ny, nz) = (281, 141, 141) for each block, considering a fine
clustering of grid points in the vicinity of the sphere walls and in
the wake region. To avoid spurious reflections, the grid is stretched
near all lateral boundaries and outflow. Inflow, outflow, and lateral
boundaries are set to be Lin = 20 D∗s , Lout = 60 D∗s , and Llat = 30 D∗s ,
respectively. The center of the sphere is located at (x, y, z) = (0, 0, 0)
and its non-dimensional diameter is unitary. The location of bound-
ary conditions and the main characteristic scales are presented in
Figs. 1(c) and 1(d). The Reynolds number based on free-stream
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FIG. 1. Assembled (a) and exploded (b) six-block grid topology. Location of boundary conditions (c) and domain characteristic length scales (d) with respect to the sphere
diameter.

quantities and sphere diameter spans from Re = 500 to 1300, having
evidence of the existence of both regular and Hopf bifurcations in
this range.23 The flow conditions are summarized in Table I. Grid
resolution and domain size sensitivity studies for both base flow
solutions and global stability results are presented in the Appendix,
ensuring the suitability of the present numerical setup.

IV. RESULTS
As a first exploratory campaign, fully 3D unsteady nonlinear

simulations have been carried out for Re = 600, 850, and 1000. A
probe located just downstream of the sphere at (x, y, z) = (1.0, 0.0,
0.0) is used to record the streamwise velocity time histories for the
three cases. Similarly to the work of Nagata et al.,23 while the cases
at Re = 600 and 850 are steady, an unsteady periodic behavior at
St = 0.134 appears for the Re = 1000 case (further details about the
unsteady spatio-temporal dynamics are given in Sec. IV C).

The sphere wakes of these three cases fundamentally differ not
only temporally but also spatially: while the wake is axisymmetric for
Re = 600, the planar-symmetry characterizes the wakes at Re = 850
and 1000. The zero-streamwise velocity iso-line (black solid line) is
plotted over the contours of the density gradient for the two perpen-
dicular x–z (first row) and x–y (second row) planes for the solutions
at Re = 600 [(a)–(d)], Re = 850 [(b)–(e)], and Re = 1000 [(c)–(f)]
in Fig. 2. The projection of the 3D streamlines onto both planes
is also represented (white solid lines). The unsteady solution at
Re = 1000 has been time-averaged over five periods (eight samples
per period) of the periodic behavior recorded by the streamwise
velocity probe. As the selection of the plane where the axisymmetry
is lost is equiprobable, for better clarity, the anti-symmetry plane of
any solution presented throughout the whole paper has been rotated
to match the x–y plane. The bow shock that forms in front of the
sphere is rather Reynolds-insensitive and it is steady also for the
Re = 1000 case. The separated region downstream of the body

TABLE I. Inflow parameters.

Free-stream Mach number M∞ = 1.2
Free-stream stagnation temperature T∗i,∞ = 287 K
Free-stream stagnation pressure p∗i,∞ = 1.013 × 105 Pa
Reynolds number Re ∈ [500; 1300]

switches from an axisymmetry structure at Re = 600 to a planar-
symmetric one at Re = 850 and 1000. In a time-averaged sense, the
separated region for Re = 1000 is significantly reduced in length with
respect to the steady Re = 850 case. The streamlines upstream of the
bow shock are all parallel to the flow direction and spiral axisym-
metrically downstream of the sphere for Re = 600. For the Re = 850
and 1000 cases, the streamlines are instead spiraling asymmetrically
in the x–y plane and cause the sphere wake to bend upwards. The
sphere wake flow at M∞ = 1.2 for these three representative cases,
therefore, changes both its temporal and spatial characteristics in
this Reynolds number range: the wake is first steady and axisym-
metric at Re = 600, then steady and planar-symmetric at Re = 850,
and finally unsteady and planar-symmetric at Re = 1000. Similarly to
what happens at incompressible6,8,10,11,13,14 and compressible high-
subsonic21,22,24 speeds, the sphere wake first loses its axisymmetry
and then its steady state, indicating the existence of a regular and a
Hopf bifurcation, respectively.

To determine and characterize these two bifurcations from a
global stability point of view, an appropriate choice of the base flow
solutions needs to be done. Considering the type of bifurcations
that the fully 3D unsteady nonlinear calculations indicate, it is pos-
sible to conclude that for increasing Reynolds numbers, (a) steady
axisymmetric base flow solutions become unstable with respect to
the regular bifurcation and (b) steady planar-symmetric base flow
solutions become unstable with respect to the Hopf bifurcation. In
Sec. IV A, different approaches are used to obtain the base flow solu-
tions depending on the nature of the bifurcation to be investigated
and their main features are described.

A. Baseflow solutions
Based on the flow features identified by the fully 3D unsteady

nonlinear calculations, the two following different strategies for the
calculation of the base flow solutions used in the global stability
analyses are adopted:

(1) Base flow solutions for the regular bifurcation—steady forced
symmetry: The objective is to identify the bifurcation that
causes the loss of the wake axisymmetry. In this sense,
axisymmetric (and steady) solutions represent the sta-
ble/unstable base flows below/above the regular bifurcation
critical Reynolds number (Rereg

cr ). Thus, a new set of steady
axisymmetric base flow solutions is obtained by artificially

https://scitation.org/journal/phf


FIG. 2. Three-dimensional streamlines projected onto x–z [(a)–(c)] and x–y [(d)–(f)] planes superimposed to the density gradient contours for the Re = 600 [(a) and (d)], Re
= 850 [(b) and (e)], and Re = 1000 [(c) and (f)] cases. The separated region is indicated by the solid black line.

forcing the flow symmetry taking into consideration only a
quarter of sphere in the Reynolds number range Re = 500–
750. The numerical domain is therefore longitudinally sliced
via two perpendicular cuts passing through the sphere cen-
ter and applying symmetry boundary conditions to the newly
formed lateral boundaries. Although this set of base flow
solutions has been obtained on a quarter of domain, it is
important to stress that the stability calculations presented in
Sec. IV B are fully 3D. Thus, once the steady solution in the
quarter of domain has sufficiently converged, a 3D axisym-
metric solution must be constructed by revolution.

(2) Base flow solutions for the Hopf bifurcation—steady fully 3D:
The objective is to identify the bifurcation that causes the
onset of the unsteadiness in the planar-symmetric solutions.
In this regard, steady (and planar-symmetric) solutions rep-
resent stable/unstable base flows below/above the Hopf bifur-
cation critical Reynolds number (ReHopf

cr ). For this reason, the
implicit pseudo-unsteady approach36 at CFL = 10 is used to
artificially filter any possible unsteadiness and obtain the fully
3D steady base flow solutions in the Reynolds number range
Re = 600–1000. Since the steady calculations are fully 3D
and no axisymmetry is artificially imposed, these base flow
solutions can be either steady axisymmetric or steady planar-
symmetric. While only the steady planar-symmetric solutions
are used for the characterization of the Hopf bifurcation, this
set of calculations can also serve to nonlinearly identify the
regular bifurcation critical Reynolds number and verify the
corresponding linear calculations. The wake axi-symmetry is,
in fact, broken between Re = 645 and 650, as it will be con-
firmed by the global linear stability results presented in Sec.
IV B.

Figure 3 and Table II summarize the Reynolds number evo-
lution of the base flow separated region lengths for the two calcu-
lation strategies described above. The separation lengths for some

selected Reynolds numbers obtained with unsteady fully 3D calcu-
lations are also reported. When the wake is planar-symmetric, the
separated region length is calculated by operating an average in the
azimuthal direction. If an unsteadiness onsets, the separation length
is also time-averaged over five periods (eight samples per period) of
the periodic behavior recorded by a streamwise velocity probe in the
wake region.

Below Re = 650, the fully 3D approach predicts an axisymmetric
solution, suggesting that the regular bifurcation threshold is around
this Reynolds number value. Similarly to the incompressible coun-
terpart (as shown in the inset of Fig. 3, where the incompressible
results from Sansica et al.24 are added), the separation length cal-
culated with the fully 3D approach above the regular bifurcation is

FIG. 3. Reynolds number evolution of the separation region length for the steady
forced symmetry (solid line with full circle symbols), steady fully 3D (dashed line
with empty circle symbols), and unsteady fully 3D (dashed-dotted line with empty
diamond symbols) approaches. All separation lengths are obtained by averag-
ing in the azimuthal direction. The separation lengths for the unsteady fully 3D
calculations are also time-averaged. The inset plot shows the results for the incom-
pressible sphere wake flow, taken from the work of Sansica et al.24 The same line
styles are used to indicate the different wake configurations of the incompressible
solutions.
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TABLE II. Separation region lengths and symmetry characteristics for the steady
forced symmetry, steady fully 3D, and unsteady fully 3D calculations. AS and PS
stand for axisymmetric and planar-symmetric solutions, respectively.

Steady Steady Unsteady

Forced symmetry Fully 3D Fully 3D

Re Lsep Lsep Lsep

500 2.620 (AS) × ×

550 2.730 (AS) × ×

600 2.830 (AS) 2.830 (AS) 2.830 - (AS)
620 2.865 (AS) 2.865 (AS) ×

640 2.896 (AS) 2.896 (AS) ×

645 2.904 (AS) 2.904 (AS) ×

650 2.910 (AS) 2.900 (PS) ×

675 2.948 (AS) 2.812 (PS) ×

700 2.983 (AS) 2.774 (PS) ×

750 3.045 (AS) 2.743 (PS) ×

800 × 2.752 (PS) 2.752 (PS)
850 × 2.779 (PS) 2.779 (PS)
875 × 2.797 (PS) 2.797 (PS)
900 × 2.815 (PS) 2.553 (PS)
950 × 2.858 (PS) 2.330 (PS)
1000 × 2.901 (PS) 2.220 (PS)

shorter (in an azimuthally averaged sense) than the forced axisym-
metric solution at the same Reynolds number. Another similarity
with the incompressible sphere wake is the fact that the separated
region length initially decreases just above the regular bifurcation
to then monotonically increase after reaching a minimum. Below
Re = 875, the unsteady fully 3D calculations predict steady solutions
and indicate that the Hopf bifurcation must be around this Reynolds
number value. In agreement with the incompressible counterpart,
the span and time-averaged separated region above Re = 875 are
significantly shorter than the corresponding steady solutions.
Although the incompressible and supersonic results are qualitatively
showing the same trends, some quantitative differences exist. While
the non-dimensional separation length (or equivalently the size of
the separation with respect to the sphere diameter) is much larger in
the supersonic regime, the rate of growth of the unstable base flow
separation lengths with the Reynolds number around the bifurcation
is higher for the incompressible case. Another important quantita-
tive discrepancy regards the Reynolds number difference between

the two bifurcations, which is about four times larger for the super-
sonic case. These differences again confirm the stabilizing effect of
the Mach number on the onset of instabilities.

B. Regular bifurcation
The fully 3D axisymmetric base flows, artificially obtained

by the revolution of the steady solutions calculated on a quarter
of sphere, are used to investigate the regular bifurcation for the
Reynolds numbers Re = 600, 620, 640, 645, 648, 649, 650, 675, and
700. Global stability analysis is performed on these base flows, and
the growth rate Reynolds number evolution of the least temporally
damped/most temporally amplified non-oscillatory mode is plotted
in Fig. 4(a). The shaded area for negative values of σ indicates tem-
porally damped modes. The regular bifurcation threshold can be
identified for a critical Reynolds number of Rereg

cr = 650. As con-
firmed by the fully 3D base flow calculations presented in Sec. IV A
and in agreement with the work of Nagata et al.,23 this critical
Reynolds number value defines the transition from a steady axisym-
metric solution to a steady planar-symmetric one. Interestingly, the
slope of the growth rate Reynolds evolution around the incompress-
ible regular bifurcation is lower than the supersonic one (see Ref. 24).
The full eigenspectrum for the Re = 700 case is presented in Fig. 4(b),
where it is possible to see that only the non-oscillatory eigenvalue at
(σ, St) = (0.024, 0.0) is temporally amplified. Although not shown
here, the modes on the continuous branch are spatially localized
in the far wake. Generally, while modes below St = 0.05 preserve
axisymmetry, those at higher frequencies have an m = 1 azimuthal
character and resemble the mode shape responsible for the Hopf
bifurcation (shown later in Sec. IV C).

The corresponding eigenmode is represented in Fig. 5 by plot-
ting the real part of the streamwise, vertical, and transverse eigen-
velocities. To better appreciate the azimuthal character of the mode,
the streamwise, vertical, and transversal eigenvelocities (û, v̂, and ŵ,
respectively) have been transformed from the Cartesian to cylindri-
cal coordinates to obtain the streamwise, radial, and azimuthal (ûx,
ûr , and ûθ, respectively) ones. All eigenvelocities in the present paper
have been normalized with the maximum of the real part of the
streamwise eigenvelocity. The mode is characterized by an azimuthal
distribution corresponding to an m = 1 mode, and the perturba-
tions in the streamwise eigenvelocity extend far downstream of the
sphere body. Two “petal-like” structures appear due to the expan-
sions generated on the sphere downstream of the bow shock. It must
be emphasized that, except for the petal-like structures appearing on
the sphere caused by high compressibility effects, the resemblance of
the eigenmode with its incompressible counterpart is evident.

FIG. 4. Regular bifurcation global stabil-
ity analysis: (a) Reynolds number evolu-
tion of the growth rate of the least tempo-
rally damped/most temporally amplified
non-oscillatory global mode; (b) eigen-
spectrum in the St–σ plane for the Re
= 700 case. The stable part of the plots
has been shaded in light gray.
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FIG. 5. Global mode at (σ, St) = (0.024, 0.0) for the Re = 700 case: 2D iso-lines in the x–z and x–y planes (first and second rows, respectively), 3D iso-surfaces (third
row), and 2D projections of the iso-lines in the y–z planes at x = 1, 4, 8, 12, 16, 20 (fourth row) of the real part of the streamwise (first column), radial (second column), and
azimuthal (third column) eigenvelocities for the levels ûx = ±0.05, ûr = ±0.05, and ûθ = ±0.05, respectively. The white and black iso-lines and iso-surfaces indicate the
positive and negative perturbation eigenvelocities, respectively. The base flow density gradient contours (levels between 0.0 and 2.0) are added to the planar visualizations,
with the zero-streamwise velocity iso-line indicated by the dashed black line.

C. Hopf bifurcation

Before describing the global stability results for the Hopf bifur-
cation, nonlinear unsteady fully 3D simulations are performed at
Re = 800, 850, 875, 900, 950, and 1000 to give a qualitative vali-
dation against that of Nagata et al.23 and provide a verification of
the corresponding linear calculations. The nonlinear unsteady fully
3D calculations are restarted from the corresponding steady planar-
symmetric fully 3D solution and let evolve in time. No forcing has
been explicitly added to the simulation, and the unsteadiness slowly
builds up from numerical noise. Similarly to the work of Nagata
et al.,23 an unsteadiness only appears above Re = 875. The time

evolution of the streamwise velocity recorded by a probe in the
sphere wake at (x, y, z) = (1.0, 0.0, 0.0) is reported in Fig. 6(a) for the
Re = 1000 case, showing a long linear transient between the (initial)
steady solution and the nonlinearly saturated state. The linear tran-
sient and part of the nonlinearly saturated state have been removed
up to t ≈ 1400 (indicated by the dashed vertical gray line), and the
corresponding power spectral density (PSD), calculated over about
85 periods of the dominant hairpin shedding frequency, is shown in
Fig. 6(b), indicating a limit cycle of self-sustained periodic oscilla-
tions at a Strouhal number of St = 0.134. The velocity time history
during the linear transient phase preceding the limit cycle evolves
with a specific “nonlinear” growth rate, σNL. Despite the fact of being

FIG. 6. Unsteady nonlinear calculation at Re = 1000: (a) time evolution of the streamwise velocity in the sphere wake at (x, y, z) = (1.0, 0.0, 0.0) and (b) corresponding power
spectral density. A zoom on the linear transient of the natural logarithm of the absolute value of the base flow subtracted streamwise velocity time evolution (c) shows the
nonlinear growth rate σNL.
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FIG. 7. Unsteady nonlinear calculation
at Re = 1000: planar [(a) and (b)] and
3D (c) views of the iso-surfaces of the
Q-criterion at a level of Q = 0.5. The
instantaneous density gradient contours
are also added (levels between 0.0 and
2.0).

calculated during the linear transient phase, the term “nonlinear”
refers here to the type of calculation to avoid confusion with the “lin-
ear” growth rate calculated by global stability analysis. Figure 6(c)
shows a zoom of the linear transient phase in the natural logarith-
mic scale for the absolute value of the base flow subtracted stream-
wise velocity time evolution. The calculated nonlinear growth rate is
σNL ≈ 0.054. The spatial flow configuration is visualized by the pla-
nar and 3D views of the Q-criterion iso-surfaces in Fig. 7, where the
instantaneous density gradient contours are also added to the planar
views. The Q-criterion iso-surfaces are colored by the streamwise
velocity (the light to dark colors correspond to the levels from −0.35
to 1.15). Despite the existence of an axisymmetric bow shock in front
of the sphere, these visualizations show that the unsteady dynam-
ics in the sphere wake is characterized by planar-symmetric hairpin
vortex shedding. A first important remark must be made on the fact
that a very similar behavior characterizes the unsteady incompress-
ible sphere wake above the Hopf bifurcation threshold, both in terms
of non-dimensional frequency value and spatial structures.

To describe the Hopf bifurcation and precisely identify the
threshold value, global stability analysis is performed for Re = 850,
870, 873, 874, 875, 876, 880, 900, 950, and 1000 on the fully 3D steady
planar-symmetric base flows presented in Sec. IV A. The growth rate
Reynolds number evolution of the least temporally damped/most
temporally amplified oscillatory mode is plotted in Fig. 8(a), where
the shaded area for negative values of σ indicates stable base flow
cases. The Hopf bifurcation threshold is identified for a critical
Reynolds number of ReHopf

cr = 875, defining the transition from
steady to unsteady wake dynamics. The full eigenspectrum for the
Re = 1000 case is presented in Fig. 8(b), showing that the oscillatory
eigenvalue at (σ, St) = (0.054, 0.124) is temporally amplified. First

of all, it is useful to remark that the growth rate predicted by lin-
ear stability analysis and the one calculated in the transient phase of
the nonlinear unsteady calculations at Re = 1000 (σNL ≈ 0.054, see
Sec. IV C) are the same, verifying the correct functioning of the lin-
ear solver with respect to its nonlinear counterpart. As already seen
for other flow configurations or regimes,14,24,46 the linear stability
analysis predicted frequency is instead slightly underestimated with
respect to the nonlinear one. The real part of the eigenvelocities cor-
responding to the (σ, St) = (0.054, 0.124) mode is visualized in Fig. 9.
Similarly to the regular bifurcation, the temporally amplified mode
above the Hopf bifurcation in the supersonic regime spatially resem-
bles its incompressible counterpart. The velocity perturbations are
packed into planar-symmetric structures whose wavelength is about
3 × Ds and extend in the wake far downstream of the sphere. The
planar-symmetry of this mode is not broken, i.e., it has the same
spatial symmetry of the base flow. A quantitative difference between
this supersonic Mach number and the incompressible counterpart is
that the slope of the growth rate Reynolds evolution around the crit-
ical instability onset value is lower (see Ref. 24), meaning that for the
supersonic case, the planar-symmetric steady state is preserved over
a larger range of Reynolds numbers. The appearance of the Hopf
bifurcation with respect to the regular one is, in fact, retarded. This
retardation can be confirmed by comparing the difference between
the Hopf and regular critical Reynolds numbers, being about 60 in
the incompressible regime and 225 at M∞ = 1.2.

In the region of temporally damped eigenmodes (σ < 0) pre-
sented in Fig. 8(b), one mode at (σ, St) = (−0.021, 0.142) seems
to be moving away from the continuous branch and get closer to
the temporally amplified region (σ > 0). It, therefore, seems natu-
ral to wonder what happens to this mode for a further increase of

FIG. 8. Hopf bifurcation global stability
analysis: (a) Reynolds number evolution
of the growth rate of the least tempo-
rally damped/most temporally amplified
unsteady global mode; (b) eigenspec-
trum in the St–σ plane for the Re = 1000
case. The stable part of the plots has
been shaded in light gray.
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FIG. 9. Global mode at (σ, St) = (0.054, 0.124) for the Re = 1000 case: 2D iso-lines in the x–z and x–y planes (first and second rows, respectively), 3D iso-surfaces (third
row), and 2D projections of the iso-lines in the y–z planes at x = 1, 4, 8, 12, 16, 20 (fourth row) of the real part of the streamwise (first column), radial (second column), and
azimuthal (third column) eigenvelocities for the levels ûx = ±0.20, ûr = ±0.20, and ûθ = ±0.20, respectively. The white and black iso-lines and iso-surfaces indicate the
positive and negative perturbation eigenvelocities, respectively. The base flow density gradient contours (levels between 0.0 and 2.0) are added to the planar visualizations
with the zero-streamwise velocity iso-line indicated by the dashed black line.

the Reynolds number. The evolution and the characteristics of this
mode are discussed in Sec. IV D.

D. Reflectional symmetry breaking bifurcation
The analysis of the Hopf bifurcation suggests the possibility to

have multiple temporally amplified modes for increasing Reynolds
number. While it is important to say that the bifurcation follow-
ing the Hopf one should be analyzed by performing the stability of
the limit cycle with a Floquet analysis (i.e., on the unsteady peri-
odic base flow), the objective of the present section is to spatially and
temporally characterize the second bifurcation of the steady planar-
symmetric base flow solutions. The observability of this instability in
the nonlinear dynamics will be addressed in Sec. IV E. For this rea-
son, and with the same principle adopted to obtain the base flow

solutions between Re = 600 and 1000 to study the Hopf bifurca-
tion, steady fully 3D calculations are performed for only three other
Reynolds numbers, Re = 1100, 1200, and 1300. The corresponding
base flow solutions still present the same planar-symmetry found
up to Re = 1000, and the azimuthally averaged base flow separation
lengths are Lsep = 2.992, 3.083, and 3.171 for Re = 1100, 1200, and
1300, respectively.

These steady planar-symmetric base flow solutions are used to
perform global stability analysis. The mode mentioned in Sec. IV C,
which at Re = 1000 was moving away from the continuous branch,
becomes temporally amplified between Re = 1000 and 1100, indicat-
ing the existence of a new bifurcation. In addition, a handful of other
modes move away from the continuous branch and tend toward
positive values of the growth rate. As well as the mode responsible for
the Hopf bifurcation (named M1) and the second mode just found
to become temporally amplified at Re = 1100 (named M2), the other

FIG. 10. (a) Eigenspectrum in the St–
σ plane for the Re = 1300 case. (b)
Reynolds number evolution of the growth
rate of the modes leaving the continuous
branch and indicated as M1–M6. The
stable part of the plots has been shaded
in light gray.
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FIG. 11. Global stability modes at (first row—M1) (σ, St) = (0.137, 0.128), (second row—M2) (σ, St) = (0.062, 0.137), and (third row—M4) (σ, St) = (−0.016, 0.035) for the Re
= 1300 case: 3D iso-surfaces of the real part of the streamwise (first column), radial (second column), and azimuthal (third column) eigenvelocities for the levels ûx = ±0.20,
ûr = ±0.20, and ûθ = ±0.20, respectively. The white and black iso-lines and iso-surfaces indicate the positive and negative perturbation eigenvelocities, respectively.

modes moving away from the continuous branch are named M3,
M4, M5, and M6 based on their vicinity to the temporally ampli-
fied region of the spectrum and indicated in Fig. 10(a), where the
eigenspectrum for the Re = 1300 case is shown. The Reynolds num-
ber evolution of modes M1–M6 is tracked by using dark gray full
circle symbols and arrows in Fig. 10(a) but also explicitly plot-
ted in Fig. 10(b). Modes M3–M6 approach more or less rapidly
σ = 0, but all remain stable for this Reynolds range, at least up to
the highest Reynolds number investigated. While the identification
of further bifurcations due to these modes is not intended, it is rel-
evant to look at the corresponding eigenfunctions. Since mode M3
is just a longer wavelength version of M2 and modes M5 and M6
are practically identical to M1 and M2, respectively, only the M1,

M2, and M4 modes are plotted in Figs. 11 and 12. While mode M1
virtually presents no differences with respect to the mode respon-
sible for the Hopf bifurcation reported in Fig. 9 except for being
localized slightly closer to the sphere, it is interesting to see that the
newly temporally amplified mode M2 corresponds to a 90○ rota-
tion of mode M1 with respect to the x-axis. Following the defini-
tion proposed by Fabre, Auguste, and Magnaudet,11 who refer to
the dominant mode that retains the base flow symmetry as “reflec-
tional symmetry preserving” and to the sub-dominant rotated mode
as “reflectional symmetry breaking,” the newly found bifurcation is
named “reflectional symmetry breaking” bifurcation. Although at
supersonic speeds, this reflectional symmetry breaking bifurcation
confirms the intuition of Fabre, Auguste, and Magnaudet11 and what

FIG. 12. Global stability modes at (first column—M1) (σ, St) = (0.137, 0.128), (second column—M2) (σ, St) = (0.062, 0.137), and (third column—M4) (σ, St) = (−0.016, 0.035)
for the Re = 1300 case: 2D iso-lines projected onto (first row) the x–y planes and (second row) several y–z planes at x = 1, 4, 8, 12, 16, 20 of the real part of the streamwise
eigenvelocities for the levels ûx = ±0.20. The white and black iso-lines indicate the positive and negative perturbation eigenvelocities, respectively. The base flow density
gradient contours (levels between 0.0 and 2.0) are added to the planar visualizations with the zero-streamwise velocity iso-line indicated by the dashed black line.
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FIG. 13. Reynolds number evolution of the separation region length for the steady
fully 3D (dashed line with empty circle symbols) and unsteady fully 3D (dashed-
dotted line with empty diamond symbols). All separation lengths are obtained by
averaging in the azimuthal direction. The separation lengths for the unsteady fully
3D calculations are also time-averaged.

found by Sansica et al.24 for incompressible cases, for which an anti-
symmetric sub-dominant mode becomes temporally amplified if the
Reynolds number is sufficiently large. Although M4 is just a longer
wavelength version of M1, it was preferred to plot this mode rather
than the less temporally damped M3 for comparisons that will be
done in Sec. IV E. It should be noted that none of these modes breaks
the planar-symmetry of the base flow. Finally, the reader should also
keep in mind that M3 and M6 are also rotated of 90○, in the same
way as for mode M2.

E. Observability of the reflectional symmetry breaking
bifurcation in the nonlinear wake dynamics

The reflectional symmetry breaking bifurcation described in
Sec. IV D was found for steady planar-symmetric base flow
solutions. However, the bifurcation successive to the Hopf one
should be instead sought by performing a limit cycle stability study

on the unsteady periodic base flow with a Floquet analysis (out of
scope for the present work). The observability of the reflectional
symmetry breaking bifurcation in the nonlinear wake dynamics is
therefore addressed by performing nonlinear unsteady calculations
at Re = 1100, 1200, and 1300. The nonlinear unsteady calcula-
tions have been restarted from the corresponding steady planar-
symmetric base flow solutions, in the same way done for the non-
linear analysis shown in Sec. IV C for Re = 1000. As the flow features
at Re = 1100 and 1200 are very similar to those at Re = 1300, the
analysis will mainly focus on the comparisons of the latter with the
Re = 1000 case.

At saturation, the nonlinear time-averaged solution is calcu-
lated by collecting eight samples per period of the frequency at
St = 0.148, over five periods of the lowest peak at St = 0.024. The
time and azimuthally averaged separation lengths (dashed-dotted
line with empty diamond symbols) are plotted in Fig. 13 with
the azimuthally averaged separation lengths of the corresponding
base flow solutions (dashed line with empty circle symbols). For
increasing Reynolds number, the nonlinear time-averaged separa-
tion length tends to reach a minimum, similarly to what found at
incompressible regimes.14,24,47

The time evolution of the streamwise velocity recorded in the
sphere wake at (x, y, z) = (1.0, 0.0, 0.0) is reported in Fig. 14(a)
for the Re = 1300 case. The initial linear transient is removed up
to t ≈ 350 [indicated by the vertical gray dashed line in Fig. 14(a)],
and the corresponding PSD distribution, calculated over about 70
periods of the dominant hairpin shedding frequency, is shown in
Fig. 14(b). It is possible to see that the spectrum is much richer
with respect to the one at Re = 1000 (Fig. 6) and many peaks
appear also at lower frequencies [St = O(10−2

)]. The mid frequency
energy peaks [St = O(10−1

)] are in the same Strouhal number
range of the linear dominant and reflectional symmetry breaking
instabilities and represent possible candidates to be their nonlinear
counterparts.

FIG. 14. Unsteady nonlinear calculation
at Re = 1300: (a) time evolution of the
streamwise velocity fluctuations in the
sphere wake at (x, y, z) = (1.0, 0.0, 0.0)
and (b) corresponding power spectral
density.

FIG. 15. Unsteady nonlinear calcula-
tion at Re = 1000 (first column) and
Re = 1300 (second column): planar
views of the iso-surfaces of the Q-
criterion at a level of Q = 0.5. The instan-
taneous density-gradient contours (lev-
els between 0.0 and 2.0) are added to
the planar visualizations.
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TABLE III. Nonlinear interaction analysis for the Re = 1300 case. The peaks are numbered and indicated in Fig. 14.

Peak no. 1 2 3 4 5 6 7 8 9 10 11 12 13

Strouhal 0.024 0.041 0.065 0.083 0.107 0.125 0.148 0.188 0.213 0.232 0.256 0.297 0.340
f 0 − 3f 1 f 1 f 0 − 2f 1 2f 1 f 0 − f 1 3f 1 f 0 f 0 + f 1 2f 0 + 2f 1 f 0 + 2f 1 2f 0 − f 1 2f 0 2f 0 + f 1

The instantaneous Q-criterion iso-surfaces for the Re = 1000
(first column) and Re = 1300 (second column) cases are plotted in
the planar views reported in Fig. 15 and colored by the streamwise
velocity (the light to dark colors correspond to the levels from −0.35
to 1.15). No large differences can be discerned, except for a slightly
shorter wavelength of the shed hairpin vortices for the Re = 1300
case, in agreement with a slightly higher shedding frequency
(St = 0.134 for the Re = 1000 case vs St = 0.148 for the Re = 1300
case). It is also important to say that for the Reynolds number range
considered, no wake modulation, oscillation, or helical motions were
found like at lower Mach numbers.23

One last comment regards the Reynolds evolution of the
problem nonlinearity. While from the spectrum in Fig. 6 for the
Re = 1000 case, it is easily recognizable the presence of the funda-
mental frequency at St = 0.134 and its first (St = 0.268) and second
(St = 0.402) harmonics, for the Re = 1300 case, the analysis is rela-
tively more complex. The latter is strongly nonlinear, and it is nec-
essary to distinguish the fundamental frequencies, here f 0 and f 1,
and what results from nonlinear interactions, i.e., the harmonics nf 0
and mf 1 and quadratic or triadic interactions: nf 0 ± mf 1 with n, m
being the real positive integers. By taking f 0 = 0.148 (peak “P7” in

Fig. 14) and f 1 = 0.041 (peak “P2”), we can, for example, obtain 2f 0
= 0.296 (peak “P12”), f 0 + f 1 = 0.189 (peak “P8”), f 0 − f 1 = 0.107
(peak “P5”), and so on. The nonlinear interactions for all peaks in
Fig. 14 for PSD values above 10−4 are summarized in Table III. By
subtracting the mean value and normalizing the oscillation ampli-
tude of the lift-coefficient time-histories, the phase plots [ĈL(t) vs
˙̂CL(t)] reported in Fig. 16 reinforce the perception of different non-
linear dynamics complexity at Re = 1000 and Re = 1300. The phase
space passes from a limit cycle forming a single loop (Re = 1000)
to a new limit cycle with three or four loops (Re = 1300). This
indicates that the low frequency peak found at St = 0.041 for the
Re = 1300 case may be linked to the destabilization of the limit cycle
at St = 0.148.

F. Dynamic mode decomposition analysis
Since the Floquet analysis is out of scope for the present

work, an alternative methodology to shed some light on the observ-
ability of the reflectional symmetry breaking bifurcation can be
given by a DMD analysis31 performed on the unsteady nonlinear
calculations.

FIG. 16. Mean value subtracted and
amplitude normalized lift-coefficient
phase plots for the Re = 1000 (first row)
and Re = 1300 (second row) cases. The
darker color of the trajectory indicates
the time advancement.

FIG. 17. DMD growth rates for the
Re = 1000 (a) and Re = 1300 (b) cases
represented by full black circles. The cor-
responding PSDs are also reported as
a solid gray line. The modes selected
using the compressive sensing tech-
nique are indicated by the dark dashed-
line circles.
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FIG. 18. DMD mode at St = 0.134 for the Re = 1000 case: 2D iso-lines in the x–z and y–z planes (first and second rows, respectively), 3D iso-surfaces (third row), and 2D
projections of the iso-lines in the x–y planes at x = 1, 4, 8, 12, 16, 20 (fourth row) of the real part of the streamwise (first column), radial (second column), and azimuthal
(third column) eigenvelocities for the levels ûx = ±0.20, ûr = ±0.20, and ûθ = ±0.20, respectively. The white and black iso-lines and iso-surfaces indicate the positive and
negative perturbation eigenvelocities, respectively. The time-averaged density gradient contours (levels between 0.0 and 2.0) are added to the planar visualizations with the
zero-streamwise velocity iso-line indicated by the dashed black line.

For the Re = 1000 and 1300 cases, 350 snapshots with a tem-
poral interval of 1.057 are collected at saturation. The snapshots
are 3D flow fields composed of density, velocities, and pressure for
each domain cell and therefore very large. The conventional DMD
approach31 is limited by the large memory required. For this rea-
son, low-dimensionalization is applied to the input dataset.48 Eighty
one proper orthogonal decomposition (POD) modes are obtained
by incremental POD49 and used for the dimensionality reduction.
Total-least-squares DMD50 was then applied to the low dimensional
datasets. The dominant DMD modes are identified by means of the
compressive sensing technique based on the greedy approach.51 Fur-
ther details of the modal analysis framework can be found in the
work of Ohmichi, Kobayashi, and Kanazaki,51 where the “FBasis”
modal analysis tool developed at the Japan Aerospace Exploration
Agency (JAXA) is described in detail.

The DMD growth rates are reported in Fig. 17 for the
Re = 1000 (a) and Re = 1300 (b) cases. The PSD distributions pre-
sented in Figs. 6(b) and 14(b) have been added (solid dashed gray
line) to facilitate the correspondence of each peak with the DMD
modes. For the Re = 1000 case, the compressive sensing technique
identifies as dominant DMD modes those at frequencies (in order of
dominance) St = 0.134, 0.268, and 0.402. These modes correspond
to the three peaks found in the PSD distribution. The most domi-
nant mode is the one at St = 0.134, and the other two only represent
its first and second higher harmonics, which will therefore not be
discussed. The eigenvelocities corresponding to the dominant fun-
damental DMD mode are reported in Fig. 18. A strong link with

the nonlinear dynamics exists, and the footprint of the shed hair-
pins seems clearer in the DMD eigenfunctions, as visible from the
azimuthal eigenvelocity component. One of the main discrepancies
between the global stability and the DMD modes consists of the dif-
ferent development of the eigenwake in the streamwise direction.
As shown in Fig. 19, both eigenwakes have similar wavelengths and
bend upwards following the deflection of the separated region (indi-
cated by the dashed line). While the wake of the global stability mode
is confined in a narrow region behind the sphere, the DMD mode
diverges while moving downstream of the body. The distortion of
the basic flow by nonlinear effects and larger diffusion is at the ori-
gin of this spreading effect. The latter is taken into account in the

FIG. 19. Re = 1000 case: comparison between the streamwise eigenvelocities
of the global stability (top) and DMD (bottom) modes. The base flow (top) and
time-averaged (bottom) density gradient contours (levels between 0.0 and 2.0)
are added to the planar visualizations with the zero-streamwise velocity iso-lines
indicated by the dashed black line.
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FIG. 20. DMD modes for the Re = 1300 case at (first row) St = 0.148, (second row) St = 0.041, (third row) St = 0.190, and (fourth row) St = 0.107: 3D iso-surfaces of the
real part of the streamwise (first column), radial (second column), and azimuthal (third column) eigenvelocities for the levels ûx = ±0.20, ûr = ±0.20, and ûθ = ±0.20,
respectively. The white and black iso-surfaces indicate the positive and negative perturbation eigenvelocities, respectively.

FIG. 21. DMD modes for the Re = 1300
case at (a) St = 0.148, (b) St = 0.041,
(c) St = 0.190, and (d) St = 0.107:
2D iso-lines projected onto the y–z
plane at x = 4 of the real part of the
streamwise eigenvelocities for the levels
ûx = ±0.20. The white and black
iso-lines indicate the positive and nega-
tive perturbation eigenvelocities, respec-
tively. The time-averaged density gradi-
ent contours (levels between 0.0 and
2.0) are added in the background with
the zero-streamwise velocity iso-line
indicated by the dashed black line.
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time-averaged flow, around which the DMD modes are calculated.
Despite these differences, the similarities with the temporally ampli-
fied global mode presented in Fig. 9 are evident. Both the global and
the DMD modes are arranged spatially in packets of similar wave-
length shape, have the same azimuthal character, and extend very far
downstream of the body in the sphere wake region. To further high-
light the similarities between the dominant global stability and DMD
modes, two movies (“Re1000-GSA-Mode.mp4” and “Re1000-DMD-
Mode.mp4” for the global stability and DMD modes, respectively) of
the iso-surfaces of the eigenvelocities for the same levels presented in
Figs. 9 and 18 (top: ûx, middle: ûr , and bottom: ûθ) during six periods
of their corresponding frequency are provided as the supplementary
material.

The compressive sensing technique for the Re = 1300 case indi-
cates as most dominant modes those at (in order of dominance)
St = 0.148, 0.041, 0.296, 0.190, and 0.107. While the St = 0.296 mode
is just the first harmonic of St = 0.148, the eigenvelocities corre-
sponding to the remaining four DMD modes are reported in Figs. 20
and 21. The St = 0.148 mode [first row in Figs. 20 and 21(a)] is
the same found as dominant in the DMD analysis at Re = 1000
and represents the nonlinear counterpart of the dominant linear
global instability. The St = 0.041 [second row in Figs. 20 and 21(b)],
St = 0.190 [third row in Figs. 20 and 21(c)], and St = 0.107 [fourth
row in Figs. 20 and 21(d)] DMD modes present some similarities
with the dominant mode but at a higher level of spatial complexity
due to nonlinear interactions. All the dominant modes have retained
planar-symmetry, and no reflectional symmetry breaking ones are
present. To make sure the reflectional symmetry breaking mode
is not present among the sub-dominant modes, all DMD modes
were carefully checked, but no evidence was found. It can there-
fore be concluded that the global stability mode responsible for the
reflectional symmetry breaking bifurcation is not observable in the
nonlinear wake dynamics.

V. CONCLUSIONS
The increase of Mach number has a stabilizing effect on the

sphere wake dynamics.21–25 At supersonic speeds, no evidence of
the regular and Hopf bifurcations, respectively, responsible for the
loss of axisymmetry and the appearance of unsteadiness in incom-
pressible sphere wakes, was found in both nonlinear22,25 and linear24

frameworks. The Reynolds number must be significantly increased
in order for these unstable bifurcations to reappear.23

A global stability analysis is here carried out for sphere wakes
at M∞ = 1.2 in the Reynolds number range Re ∈ [500; 1300].
Steady axisymmetric and steady planar-symmetric base flow solu-
tions are selected to investigate the regular and Hopf bifurcations,
respectively. The steady axisymmetric base flows, obtained by forc-
ing the axisymmetry on a quarter of sphere, are found to become
unstable at a critical Reynolds number of Rereg

cr = 650, identifying a
steady planar-symmetric mode to be responsible for the occurrence
of a regular bifurcation. The steady planar-symmetric base flows,
instead, show the appearance of a Hopf bifurcation at ReHopf

cr = 875,
where an unsteady planar-symmetric eigenmode is the cause for
the periodic hairpin vortex shedding in the sphere wake. Some dif-
ferences intrinsic of the highly compressible flow conditions exist
with respect to the incompressible counterparts. The supersonic

base flows are characterized by the formation of a bow shock in
front of the sphere and the presence of expansions on the sphere
body. The critical Reynolds numbers at M∞ = 1.2 move toward
higher values, and the difference between the two critical thresholds
is more than four times bigger than in the incompressible regime.
However, remarkably similar features exist between incompressible
and compressible (up to supersonic) configurations. The same types
of unstable bifurcations persist, and the wake dynamics is anal-
ogous in both spatial and temporal senses. This work, therefore,
closely links the laminar sphere wake dynamics over a large range
of flow velocities, from incompressible to (at least low) supersonic
regimes.

At Re = 1000, the global stability analysis shows that a sub-
dominant mode is approaching the temporally amplified region of
the spectrum. For this reason, the global stability analysis performed
on steady axisymmetric base flows is extended up to Re = 1300.
The sub-dominant mode becomes temporally amplified between
Re = 1000 and Re = 1100 and its spatial distribution corresponds
to a 90○ rotation of the dominant mode, confirming some spec-
ulations done on the sphere wake instabilities in the incompress-
ible flow regime about the existence of a “reflectional symmetry
breaking” bifurcation.11,24 The latter was, however, found by global
stability analysis performed around steady planar-symmetric base
flow solutions, while to study the bifurcation successive to the Hopf
one, a periodic base flow solution should instead be used for a Flo-
quet analysis. Floquet analysis being out of scope for the present
work, the observability of this reflectional symmetry breaking bifur-
cation in the nonlinear wake dynamics is checked by carrying out
unsteady nonlinear calculations in the range Re = 1000–1300. The
wake spectral energy content interests a wide range of frequencies as
the Reynolds number increases, and several PSD peaks, representing
potential nonlinear counterparts of the linear instabilities, appear.
For both Re = 1000 and Re = 1300, DMD analysis indicates the
dominant mode to be related to the nonlinear hairpin vortex shed-
ding and its spatial distribution closely resembles the corresponding
global stability mode responsible for the Hopf bifurcation. At Re
= 1300, many sub-dominant modes are also detected, but evidence
of nonlinear reflectional symmetry breaking modes was not found.
The wake dynamics seems rather to be governed by nonlinear inter-
actions that suggest the low frequency unsteadiness to be related to
the destabilization of the hairpin vortex shedding limit cycle.

The absence of rotated DMD modes shows the need to perform
global stability Floquet analysis on periodic base flows to charac-
terize physical bifurcations successive to the Hopf one. Evidence
of wake modulations and wake helical motions superimposed to
the hairpin vortex shedding exists at lower speeds,23 suggesting the
possibility to determine subsequent bifurcations and offering future
investigation opportunities. It is in the authors’ opinions that due
to the stabilizing effect of the Mach number (as seen in Ref. 23),
the same mechanisms presented here might be preserved at higher
speeds, most likely just accompanied by a shift of the critical
Reynolds numbers toward higher values. Only for much higher
Mach numbers in the hypersonic range, for which the bow-shock
forming in front of the body will “wrap” closely around the sphere,
new physics might appear. Finally, another regime of interest could
be the transonic one, for which shocks will form on the sphere sur-
face or on the sphere wake and may be generating some buffet-like
phenomenon.
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SUPPLEMENTARY MATERIAL

See the supplementary material for the temporal anima-
tions of the global stability (“Re1000-GSA-Mode.mp4”) and DMD
(“Re1000-DMD-Mode.mp4”) modes at Re = 1000 during six periods
of their corresponding frequency. The iso-surfaces of the streamwise
(top plot), radial (middle plot), and azimuthal (bottom plot) eigen-
velocities for the levels ûx = ±0.20, ûr = ±0.20, and ûθ = ±0.20,
respectively. The white and black iso-surfaces indicate the positive
and negative perturbation eigenvelocities, respectively.

APPENDIX: SOLVER VALIDATION AND SENSITIVITY
STUDIES
1. Validation

The same numerical setup and grid described in Sec. III are
used for the validation of the nonlinear solver. The results obtained
with the present solver are compared over a range of different
speeds, from the incompressible regime to the supersonic one. For
the incompressible regime, the experimental results of Taneda52

and the numerical ones by Tomboulides, Orszag, and Karniadakis,7

Magnaudet, Rivero, and Fabre,53 and Johnson and Patel54 in the
Reynolds number range between Re = 25 and 200 are selected. To
approximate the incompressible flow conditions with the present
compressible solver, the Mach number has been set to M∞ = 0.1.
In agreement with the literature, for each Reynolds number consid-
ered (Re = 25, 50, 100, 150, and 200), the solutions consist of steady
and axisymmetric wakes. The length of the separated region for each
Reynolds number is plotted in Fig. 22, where the benchmark solu-
tions are also added. The agreement with the literature is remarkable
and the present results almost coincide with those of Tomboulides,
Orszag, and Karniadakis.7 To verify the effects of compressibility up
to supersonic speeds, the works of Johnson and Patel54 and Nagata
et al.22 (the values have been digitalized from the paper) are used,
and Table IV summarizes the validation test results by listing the
separation lengths for different Mach numbers at Re = 150. In agree-
ment with the benchmark solutions, the wakes are all steady and
axisymmetric. An excellent comparison is obtained against Johnson
and Patel54 at M∞ = 0.3, for which the relative percentage error is
below 2.5%. Considering that the work by Nagata et al.22 is the only
present in the literature for this range of Mach and Reynolds num-
bers, for the M∞ = 0.8 and 1.2 cases, the relative percentage error is

FIG. 22. Validation for incompressible sphere wake test cases.

TABLE IV. Validation for compressible (up to supersonic) sphere wake separation
lengths. The results are compared against those of Nagata et al.22 (NNT&F) and
Johnson and Patel54 (J and P).

Mach Reynolds Present NNT&F Δerr (%) J and P Δerr (%)

0.30 150 1.25 1.14 9.65 1.22 2.46
0.80 150 1.78 1.74 2.30 × ×

1.20 150 0.90 0.95 5.26 × ×

around 5% or below. A general satisfactory agreement is achieved,
and the correct functioning of the nonlinear solver is confirmed.

2. Grid resolution and domain sensitivity studies
The sensitivity of both base flow solutions and global stabil-

ity analysis to grid refinement and domain size is here presented.
The reader should note that the six-block elliptical domain topol-
ogy is maintained for all cases. The domain and grid resolution used
to produce the results presented in Sec. IV are indicated as G1-D1.
For the grid refinement study, the domain size is kept fixed and a
coarser grid with (nx, ny, nz) = (225, 113, 113) per block (named
G0-D1) and a finer grid with (nx, ny, nz) = (337, 169, 169) per
block (named G2-D1) are considered. For the domain size sensi-
tivity study, a smaller domain with (Lin, Lout , Llat) = (10, 30, 15)
(named G1-D0) and a larger domain with (Lin, Lout , Llat) = (40, 120,
60) (named G1-D2) are used. The grid distribution is kept fixed,
and elliptical layers of grid points are simply removed or added to
account for a smaller or larger domain. For this reason, the grid res-
olution per block only changes only in the radial direction and is
(nx, ny, nz) = (225, 141, 141) and (nx, ny, nz) = (316, 141, 141) for
the G1-D0 and G1-D2 cases, respectively. These details of the grid
resolution and domain size are summarized in Table V. To evaluate
the effect of grid refinement and domain size, the separation length
and the least temporally damped/most temporally amplified eigen-
value are chosen as sensitivity indicators for the base flow solution
and global stability analysis, respectively. Two Reynolds numbers are
selected for each bifurcation in order to consider a stable and an
unstable case: Re = 600 and Re = 650 for the regular and Re = 850 and
Re = 900 for the Hopf bifurcation. Table VI reports the values of the
sensitivity indicators for the examined cases along with the relative
percentage error with respect to the values of the G1-D1 case. For
all cases, the base flow separation length sensitivity is below 2.5%
and the numerical grid/domain G1D1 used as reference through-
out the paper can therefore be considered suitable for the base flow

TABLE V. Sensitivity studies on grid resolution and domain size. Details of the
numerical setup.

Case nx × ny × nz Lin × Lout × Llat

G1-D1 281 × 141 × 141 20 × 60 × 30
G0-D1 225 × 113 × 113 20 × 60 × 30
G2-D1 337 × 169 × 169 20 × 60 × 30
G1-D0 225 × 141 × 141 10 × 30 × 15
G2-D2 316 × 141 × 141 40 × 120 × 60
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TABLE VI. Sensitivity studies on grid resolution and domain size. Values of the sen-
sitivity indicators and relative percentage error. The growth rate and the Strouhal
number have been pre-multiplied by 100 and 10, respectively.

Re = 600

Case Lsep errLsep(%) σ(×100) errσ (%) St(×10) errSt (%)

G1-D1 2.830 × −2.851 × 0.000 ×

G0-D1 2.829 0.04 −3.028 6.2 0.000 0.0
G2-D1 2.877 1.66 −2.701 5.3 0.000 0.0
G1-D0 2.815 0.53 −2.936 3.0 0.000 0.0
G1-D2 2.832 0.07 −2.877 0.9 0.000 0.0

Re = 650

Case Lsep errLsep(%) σ(×100) errσ (%) St(×10) errSt (%)

G1-D1 2.910 × 0.0274 × 0.000 ×

G0-D1 2.912 0.07 −0.0123 144.9 0.000 0.0
G2-D1 2.965 1.89 0.0246 10.2 0.000 0.0
G1-D0 2.901 0.31 0.0246 10.2 0.000 0.0
G1-D2 2.912 0.17 0.0236 13.9 0.000 0.0

Re = 850

Case Lsep errLsep(%) σ(×100) errσ (%) St(×10) errSt (%)

G1-D1 2.779 × −1.346 × 1.242 ×

G0-D1 2.777 0.07 −1.540 14.4 1.244 0.2
G2-D1 2.847 2.45 −1.428 6.1 1.237 0.4
G1-D0 2.764 0.53 −1.291 4.1 1.242 0.0
G1-D2 2.783 0.14 −1.340 0.5 1.242 0.0

Re = 900

Case Lsep errLsep(%) σ(×100) errσ (%) St( × 10) errSt (%)

G1-D1 2.815 × 1.279 × 1.241 ×

G0-D1 2.814 0.04 1.078 15.7 1.243 0.2
G2-D1 2.872 2.02 1.204 5.9 1.235 0.5
G1-D0 2.803 0.42 1.317 3.0 1.241 0.0
G1-D2 2.817 0.07 1.286 0.6 1.241 0.0

calculations. In terms of global stability results, while the frequen-
cies are nearly insensitive to grid resolution or domain size (relative
percentage error below 0.5%), the growth rate values present larger
variations. Except for the Re = 650 case, whose growth rate is very
small being the first unstable case of the regular bifurcation and the
sensitivities on these small numbers are larger, the growth rate sensi-
tivity of the G1-D1 case with respect to finer grids or larger domains
is at worst ≈6%.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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