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ABSTRACT

Natural fiber–reinforced polymer (NFRP) composites are increasingly considered in the indus-

try for creating environmentally benign product alternatives. The complex structure of the fi-

bers and their random distribution within the matrix basis impede the machinability of NFRP

composites as well as the resulting product quality. This article investigates a smart process

monitoring approach that employs acoustic emission (AE)—elastic waves sourced from vari-

ous plastic deformation and fracture mechanisms—to characterize the variations in the NFRP

machining process. The state-of-the-art analytic tools are incapable of handling the transient

dynamic patterns with long-term correlations and bursts in AE and how process conditions and

the underlying material removal mechanisms affect these patterns. To address this gap, we

investigated two types of the bidirectional gated recurrent deep learning neural network

(BD-GRNN) models, viz., bidirectional long short-term memory and bidirectional gated recur-

rent unit to predict the process conditions based on dynamic AE patterns. The models are

tested on the AE signals gathered from orthogonal cutting experiments on NFRP samples

performed at six different cutting speeds and three fiber orientations. The results from the

experimental study suggest that BD-GRNNs can correctly predict (around 87 % accuracy)

the cutting conditions based on the extracted temporal-spectral features of AE signals.
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Introduction

Because of recent moves toward sustainable manufacturing, natural fiber–reinforced polymer (NFRP) composites

are becoming increasingly attractive for various industrial applications, such as for panels, window frames, and

decking for industries such as automotive, construction, and aerospace companies.1 NFRPs offer an attractive

balance between cost, carbon footprint, and performance. The applications of NFRP have widely expanded

through the last few years, and the NFRP industry sector has reached $2.1 billion (USD) in the 2010s with

a 10% growing rate worldwide.2

Most of the emerging industrial applications necessitate machining of these NFRP composite panels to dimen-

sional tolerances of ±1 mm and surface roughness within 1 μm. Currently, machining process is crucial for realizing

NFRPs’ functionality as the machined surface quality is highly related to the bearing of mechanical property of the

NFRP products. However, NFRPs possess complex material characteristics, such as viscoelastic behaviors and ther-

mal effect.3 In particular, their complexmultiscale structure poses significant challenges formachining. Because of the

natural fibers’ cellulose structure and their orientations in the composites, these randomly distributed elementary/

bundle fibers within the matrix basis introduce distinct material removal mechanisms, create surface conformity

issues, and consequently influence the overall machinability of such a material for industrial applications.

Current investigations into characterizations of the NFRP machining processes heavily rely on offline

approaches (e.g., mechanical property testing and imaging instruments4,5). Though these methods are powerful

in measuring the finished surface morphology and characterizing various modes of material removal, they cannot

capture the effects of the heterogeneity and the fibers’ distribution over the multiple scales of the matrix on

material removal mechanisms. In addition, such offline tools are impractical for in-process monitoring of

the NFRP machining processes. Therefore, a real-time sensing approach is desirable to characterize machining

processes, evaluate machined surface quality, and provide timely intervention for in-process quality assurance.6

Among various sensor candidates, the acoustic emission (AE) sensor shows potential for in-process monitoring of

the cutting processes at the precision level (depth of cut within 10s of micrometers). The AE waves gathered

during the machining process are sourced from the (elasto)plastic deformation, fracture, and friction at interfaces

between the cutting tool, workpiece, and chips from machining processes.7–9 In addition, AE waveforms are also

related to the crack formation and chip breakage, entanglement, or both during the material removal process.

However, such elastic transient waves during machining processes may be highly affected by the environmental

noises, and consequently, they have a low signal-to-noise ratio. The challenge remains as to how to analyze such

nonstationary signals with strong transient behaviors.

Most representative time portraits of the AE’s transient patterns are listed in figure 1—figure 1A depicts

a burst-patterned AE waveform, which oftentimes contains higher frequency responses with sharp rising and

decaying times, and figure 1B shows a near-stationary (also referred to as “continuous”) AE signal with low

energy and long decaying time.10 During an NFRP cutting process, fast-streamed AE data may exhibit both types

of behavior: continuous waveforms combined with (irregular) intermittent bursts. Each of the waveform patterns

may be due to the energy released from a distinct material removal mechanism. Therefore, the prominent moves

toward analyzing the AE waveforms may be related to how to connect the short time-dependent waveform pat-

terns (intermittent bursts and resultant time-varying frequency responses) with different cutting conditions that

result in changes of the fundamental cutting mechanisms.

From the perspective of the dynamic system, this transient behavior is referred to as dynamic intermittency.11

The transitions between intermittent bursts and laminar phases from such a system create nonstationarity with

time-variant dependency. Thus far, analyzing the intermittent AE signals is still challenging. Chang and

Bukkapatnam12 and Bukkapatnam and Chang13 investigated the AE sensor signal’s connection to microdynamics

formachiningmetallicmaterials. Results suggest that the energy of AE signals sourced from the plastic deformation



is related to the shear strain and shear strain rate. The stress releases that are due to the grain dislocation during the

material removal processes may result in such time-varying intermittency patterns in AE waveforms.14 Intuitively

speaking, how to treat transient intermittent AE events is akin to how a human brain recognizes/processes the in-

formation in speeches or music clips. Currently, deep learning approaches and hidden Markov models15 have been

selected aspowerful tools forprocessing acoustic signals. Suchapproaches applywindowswith fixed sizes to investigate

contextual information from neighboring windows/frames to process the time-varying signals and improve training

accuracy. However, the optimal length for preserving the contextual information in AE signals may be varied case by

case because of its time-varying nature, suggesting that conventional deep learning algorithms or hidden Markov

models may not be sufficient to explore the time-variant nature of the AE signal. Researchers have also presented

recurrent neural networks (RNNs) for investigating the time-varying nature of streaming/sequential data, such as

acoustic recognition problems.16 Kamarthi, Kumara, and Cohen,17 and Pittner Kamarthi, and Gao,18 and Pittner

and Kamarthi19 presented a wavelet-based neural network that extracts the spectral features in a multisensor setup

for detecting cutting tool wears. Comparatively, RNNs containing cyclic connections are regarded as more powerful

tools to model the nonstationary transient data, especially time-varying acoustic signals.20,21 The RNN encodes the

sequential data in the internal states and allows an estimation of the following steps based on all previous information

up to the current time point. Hence, RNNs have demonstrated the success in sequence labeling and prediction tasks in

nonstationary real-world processes, such as handwriting recognition and language modeling.22 However, conven-

tional RNNs may be difficult to train and can merely model short time-dependent effects (the intermittent bursts

FIG. 1 (A) A representative AE waveform showing two distinct characteristics: (B) AE bursts and (C) stationary

emission.10



in AE signals are both long and short time dependent). Toward overcoming this drawback, an RNN framework23 that

uses fractal properties of the attractor of the underlying dynamic systemalongwith othermachining parameters as the

training inputswas developed topredict flankwear inmachining. Furthermore, a recurrent predictor neural network24

was applied to capture the evolution of complex nonlinear and nonstationary processes (e.g., real-time sensor signals)

and detect the incipient surface deterioration in ultraprecision machining (UPM) processes. Cheng et al.25 applied a

Gaussian process with extracted statistical features as well as features extracted based on nonlinear recurrent analysis

for real-time prediction of the achieved surface characteristics during UPM. Kannatey-Asibu and Dornfeld26,27 pre-

sented statistical analytic approaches to analyzeAEsignals formonitoring the cutting tool conditionand related theAE

features to themetal-cutting process parameters. A nonparametric approach fromour earlier effort28was presented to

model the transient behaviors of nonstationary sensor signals during machining processes.

In this article, we present a sensor-based monitoring approach for smart sensing and AE characterizations for

machining NFRPs. To address this gap, we investigate the gated recurrent neural network (GRNN) models to relate

the AE waveform features to different process conditions and the underlying material removal mechanisms of

machining NFRPs. During the orthogonal cutting experiments, AE signals were gathered from the testbed equipped

with a multisensor data acquisition system. To connect the AE signal patterns to the machining mechanisms of

NFRP cutting, we employ GRNNmodels for characterizing the temporal-spectral features of AE signals. The rest of

this article is organized as follows: the framework of the presented approach is introduced in “Overview of Recurrent

Deep Learning Approaches.” The experiment details about the orthogonal cutting experimental setup, implemen-

tation of GRNN models, and results for AE characterizations are presented in “Temporal-Spectral Features-based

GRNN for AE Characterizations.” Concluding remarks are provided in “Summary and Concluding Remarks.”

Overview of Recurrent Deep Learning Approaches

We present the framework of GRNN for characterizations of AE signals gathered from orthogonal cutting experi-

ments. Figure 2 summarizes the schematic diagram for implementing GRNNs. During the orthogonal cutting

experiment, sensor signals were recorded with various cutting conditions (varying cutting speeds (ν) and fiber

orientation angles (FOA)). The temporal-spectral features were extracted using a sliding-windowed time-

frequency analysis over specified microseconds-long time windows. To handle the time-varying frequency

response of the AE signal and relate it to different machining conditions during NFRP cutting, the temporal-

spectral features are directly treated as the input series in the GRNN for characterizing the cutting processes.

Therefore, ad-hoc feature selection and extraction are avoided. The GRNNs were then developed for training

and prediction/estimations on characterizing the time-spectral features of AE waveforms.

GENERAL STRUCTURE OF LONG SHORT-TERM MEMORY AND GATED RECURRENT UNIT

The general RNN can be presented as follows:

ht =HðWxhxt +Whhht−1 + bhÞ (1)

FIG. 2 Schematic diagram of the presented research approach.



yt =Whyht + by (2)

where xt , yt , and ht are the input, output, and hidden state, respectively. The matrix Ws are weight matrices

(e.g., Wxh is the weight matrix for the layer connecting the inputs and the hidden nodes, Whh is the weight

matrix between hidden layers, and Why is the weight matrix between the hidden layer and output layer).

H is the hidden layer function, and the b’s are the bias vectors (bh is the hidden bias vector and by is the output

bias vector). To extend the formula to the GRNN, two models, namely long short-term memory (LSTM) cell and

gated recurrent unit (GRU), are introduced. The LSTM uses the input, forget, and output gates, and the GRU

model uses the reset and update gated units. Both LSTM and GRU apply these gated units to track time-

dependent recurrence relations while mitigating the issues of vanishing or exploding gradient problems or both.29

In this article, we developed both LSTM and GRU-based approaches for constructing the GRNN to capture the

transient nature of AE, and based on the comparisons between two presented GRNN approaches using numerical

and experimental case studies, we further applied the optimal model for characterizations of AE signals during the

machining processes on the NFRPs. The details of these two models are described in the following subsections.

LSTM Cell

As mentioned, LSTM considers the dependencies on previous states at different timescales by applying input,

forget, and output gates. This feature may help capture the intermittent transient data with time-variant long-

short time dependencies. One can formulate the structure of the LSTM cell as follows:

it = σðWxixt +Whiht−1 +Wcict−1 + biÞ (3)

f t = σðWxf xt +Whf ht−1 +Wcf ct−1 + bf Þ (4)

ct = f tct−1 + it tanhðWxcxt +Whcht−1 + bcÞ (5)

ot = σðWxoxt +Whoht−1 +Wcoct + boÞ (6)

ht = ot tanhðctÞ (7)

where σ is the activation function (which is often selected as the logistic sigmoid function) and i, f , o, and c are,

respectively, the input gate, forget gate, output gate, and cell activation vectors (with the same size as the hidden

vector h). The matrix Ws are the weight parameters for different memory cells: Wxi is the weight matrix for the

input gate,Whi is the matrix connecting hidden layer and the input gate, andWci connects the cell activation and

the input gate. Wxf , Whf , and Wcf are the matrices connecting the inputs, hidden layers, and activation vector

to the forget gate, and similarly, Wxo , Who , and Wco are the matrices connecting the inputs, hidden layers, and

activation vector to the output gate. The b’s are the bias vectors (e.g., bi is the input gate bias vector and bf is the

forget gate bias vector).

GRU

Compared with the LSTM cell, the general GRU unit does not possess a separated memory (ct) or the output gate.

Instead, it applies recurrent reset and update units for capturing the time-dependent features at different time

scales.29 A general GRU can be formulated as follows:

zt = σðWxzxt +Whzht−1 + bzÞ (8)

rt = σðWxrxt +Whrht−1 + brÞ (9)

h̃t = tanhðWxh̃xt +Wrh̃ðrt ∘ ht−1Þ + bh̃ Þ (10)

ht = ð1 − ztÞht−1 + zth̃t (11)



where zt and rt are, respectively, the update gate and reset gate vectors; the activation ht at time t is a linear

interpolation between the previous activation ht−1 and the candidate activation eht ; the b’s are the bias

vectors for different cells (bz , bz , and bh̃ are the bias terms for the update gate, the reset gate, and the candidate

activation, h̃, respectively);Ws are the weight matrices (e.g.,Wxz is the matrix between the inputs x and the update

gate z); and the activation function σ is chosen with the sigmoid kernel. The operator ∘ denotes a Hadamard

product.

Bidirectional LSTM and GRU

As one drawback of the RNNs, they only consider the previous information for inferencing the system outputs;

the bidirectional (BD)-GRNN is applied to characterize the AE signal with the transient nature by considering the

forward and backward states for inferencing the transient burst and jumps between sojourns/stationary segments.

In general, the BD-GRNN contains two sets of layers (one for forward information and the other for the backward

direction as shown fig. 3). One can extend the formulas to a BD-GRNN as follows:

h
→

t =HðW
xh
→xt +W

h
→
h
→h
→

t−1 + b
h
→Þ (12)

h
↼

t =HðW
xh
↼xt +W

h
↼
h
↼h
↼

t−1 + b
h
↼Þ (13)

yt =W
h
→
y
h
→

t +W
h
↼
y
h
↼

t + by (14)

The BD-GRNN contains the forward hidden sequence h
→
, the backward hidden sequence h

↼
, and the output

sequence y. The matrixWs are different weights for the associated layers (e.g.,W
xh
↼ connects the inputs x and the

backward hidden layer h
↼
). b

h
→, b

h
↼, and by are the bias vectors for the forward hidden layer, backward hidden layer,

and output layer, respectively.

As suggested by the schematic diagrams of LSTM and GRU in figures 4 and 5, it may be noted that, com-

pared with the conventional RNN, the gate units in LSTM and GRU (e.g., the memory cell of the LSTM and the

update/reset gate of the GRU) keep the present states and add the new content on top, which in turn constructs

the recurrent relations (similar to the iterative map for modeling the nonstationary dynamic systems). Such a

scheme provides a prominent feature toward capturing the transient behaviors of the input data.

FIG. 3

Schematic diagram of a

BD-GRNN neural

network where each box

represents a gated unit.



CAPTURING TRANSIENT BEHAVIORS USING LSTM AND GRU

To demonstrate the capability of the presented approach for characterizations of transient processes, an illus-

trative example based on the chord progression of the major pentatonic scale is presented. As noted earlier, such a

chord progression follows intermittent dynamics28 and is therefore well suited to illustrate the performance

of our approach. Figure 6 shows a representative snippet of the symbolic sequence of chord progressions.

FIG. 6

Plot of the symbolic

sequence showing the

tokenized chord

progressions. Each

chord is encoded with a

unique number, i.e.,

{1: B, 2: E, 3: Bb, 4: F, 5: A,

6: D, 7: G, 8: C}.

FIG. 5

Schematic diagram

showing the structure of

a GRU unit.

FIG. 4

Schematic diagram

showing the structure of

an LSTM cell.36



Here, the vertical axis represents different chords, and the horizontal axis is the time index referring to the num-

ber of the music note. Each chord is tokenized with a unique number, viz., number 1 mapping to the note B,

2 mapping to the note E, 3 to Bb, 4 to F, 5 to A, 6 to D, 7 to G, and 8 to C. There are four types of chords considered

here: C-G, D-A, E-B, and F-Bb. Each segment (referred to as a pentatonic note progression) lasts for 3 bars under

the 4/4 time signature (i.e., 12 data points). After this duration, the note is transitioned as determined by a Markov

transition matrix given by the following:

A =

2
664
0.051 0.128 0.179 0.641
0.459 0.030 0.060 0.451
0.385 0.051 0.051 0.513
0.135 0.270 0.541 0.054

3
775

Here, each row corresponds to the original pentatonic chord progression (e.g., first element for the penta-

tonic chord of C-G, the second for D-A, the third to E-B, and the fourth to F-Bb), and each column contains the

destination pentatonic chords.

The implemented model has two layers of the gated units for both forward and backward directions with

a detailed structure as plotted in figure 7B. Each layer is set with neuron nodes as 100, the batch size is set as 40,

and the training epoch is selected around 30 to ensure that the loss function value during training converges to its

minimal. The prediction performance on the trained BD-LSTM as well as BD-GRU is tested on simulated chord

progressions.

The results of BD-LSTM for one-step and five-step look-ahead predictions (i.e., forecasts) are correspond-

ingly shown in figure 8A and 8C. In comparison, figure 8B and 8D includes the prediction results from BD-GRU

for one and five-step forecasting. The observations (symbolic sequence) are plotted using solid lines, while the

lines with triangles represent the estimated sequences. Remarkably, as illustrated in the magnified block (dashed

outline) in figure 8, the BD-GRNNmodel is able to capture the transitions between scales as it accurately predicts

the jumps among multiple sojourns (in-between segments of the chord progressions). It is evident that both one-

step and five-step predictions for both BD-LSTM and BD-GRU models possess high accuracies demonstrated by

nearly 100 % for the R2 values as shown in Table 1.

From the numerical case study, one can conclude that the developed BD-GRNNs can properly capture the

complicated recurrence relations between states. The transient AE signals may exhibit similar recurrent patterns,

which combine irregular bursts and stationary segments caused by the material fracture and intermittent dis-

locations during machining. Hence, the presented approaches have prominent application merits toward

FIG. 7 (A) A schematic diagram for the structure of input variables, (B) the hierarchical structure of the bidirectional

neural network, and (C) the losses with training and cross validation.



capturing the intermittent AE waveform signals for monitoring machining process: as the model trains the gates

to construct the recurrence relations using the sequential data, it captures the transient behaviors of the AE signals

under different machining conditions. To test the presented approach toward smart sensing for AE character-

izations, an experimental case study on machining NFRP processes was further investigated. Details on the

experiment setup as well as the case study results are presented in the following sections.

FIG. 8 Result comparisons of one and five-step ahead predictions, where (A) and (C) are generated from BD-LSTM and

(B) and (D) list the results from the BD-GRUmodel. Here, the predicted sequences are plotted as dashed lines with

triangle markers, the ground truth is shown using the solid lines, and the inset (dashed rectangle) magnifies a short,

10 data point snippet of the prediction result. Both one-step ((A) BD-LSTM vs. (B) BD-GRU) and five-step ((C) BD-

LSTM vs. (D) BD-GRU) predictions suggest that two developed models can finely capture the jumps between

stationary segments of the chord progression transitions.

TABLE 1
Accuracy for symbolic sequence prediction

R2 One Step Five Steps

BD-LSTM 0.99 0.99

BD-GRU 0.99 0.99



Temporal-Spectral Features-based GRNN for AE
Characterizations

EXPERIMENTAL SETUP

Multiple sets of experiments were conducted on an orthogonal cutting testbed, as shown in the schematic

diagram in figure 9. The orthogonal cutting setup consists of two linear sliders and a workpiece clamping

vice. The cutting tool setup, consisting of a polycrystalline diamond cutting tool insert (Sandvik Coromant

model TCMW16T304FLP-CD10) and a tungsten carbide substrate, was attached to one linear actuator

(L70, Moog Animatics, Milpitas, CA). A high-torque servomotor drives the linear actuator to ensure a

consistent cutting feed rate. During the orthogonal cutting experiments, two accelerometers (Kistler Type

8728A500) were allocated on the tool holder (as Accelerometer 1) and the workpiece clamping vice

(Accelerometer 2) separately for gathering the vibration signals, while an AE sensor (Physical Acoustics

S9225) was mounted next to the Accelerometer 1 on the cutting tool holder for collecting AE signal during

the orthogonal cutting processes. The data acquisition system (National Instruments CompactDAQ with

DAQ Module NI-9223) is applied to rapidly stream the sensor data at 1 MHz sampling rate for each channel.

The workpiece samples and mounted on clamp-on vice used the unidirectional flax fiber–reinforced

polypropylene composites (manufactured by the material supplier Composites Evolution (UK)). Each NFRP

workpiece (with dimensions as 20 by 15 by 4 mm3) has fiber volume fraction around 40 % and polyester

weft fiber, which helps maintain the unidirectionality of the natural fiber, around 5 %. The orthogonal

cutting experiments were conducted with the depth of cut ∼10 μm at different cutting conditions with varying

cutting speeds (ν = 2, 4, 6, 8, 10, 12 m/min) and different FOAs (FOA = 0°, 45°, and 90°) toward the cutting

direction.

TEMPORAL-SPECTRAL FEATURE EXTRACTION

A set of the representative sensor signals synchronously collected from the two accelerometers (separately

mounted on the tool holder and the workpiece holder) and the AE sensor (on the tool holder) is shown in

figure 9B. It may be noted that Accelerometer 2 (attached to the workpiece holder) can properly separate

the dynamics of the cutting and noncutting stages because of its sudden increase in amplitude when the cutting

initiates. This allows us to isolate the signals of the cutting and noncutting stages.

FIG. 9 Schematic diagram showing the experimental setup: (A) the orthogonal cutting process with mounted AE

and vibration sensors, and (B) the collected signals from the AE sensor and two vibration sensors during

an orthogonal cutting experiment (FOA = 0° and v = 4 m=min ).



The AE signal captures the transients, i.e., time-varying frequency patterns associated with the material

deformations, fractures, or both that occur at irregular intervals during machining.30 To further process the

AE signals, the temporal-spectral features are then extracted. Such time-frequency features could be visually

represented using a spectrogram, as shown in figure 10B, where the x axis represents the time index, the y axis

is the frequency range, and a colormap is applied to represent the strength of the frequency component. Such a

spectrogram records the frequency components of the signal and their variations over time. The following

procedures summarize the generation of the temporal-spectral features:

1. A sliding window with window width L = 125 is applied to collect a set of AE signals at the time
index t, i.e., {xt−L+1, xt−L+2, : : : , xt}.

2. Then, the fast Fourier transformation (FFT) is applied to compute the frequency component:

XðtÞ
k =

Xt

n=t−L+1
xne−

i2πkn
L k = 0, 1, : : : , L − 1 (15)

where fxng (for n = t − L + 1, t − L + 2, : : : , t) is the time series of the AE signal within the sliding window L, and

the FFT generates the frequency components XðtÞ = ½XðtÞ
1 ,XðtÞ

2 , : : : ,XðtÞ
L �⊤. By sequentially generating the fre-

quency component vectors XðtÞ (for t = L, L + 1, L + 2, : : : ,T , where T is the time stamp at the end of the data

recording), the matrix of the spectrogram could be represented asMTF = ½XðLÞ,XðL+ϑÞ,XðL+2ϑÞ, : : : ,XðTÞ�, where ϑ
denotes the step of the sliding window.

Figure 11A–C shows the spectrograms of the AE and two vibration signals, capturing the temporal-spectral

features of the tool-approaching and cutting phases. The spectrograms as shown in figure 11 were generated by

the FFT with a sliding window of 0.125 ms and a 50 % time step (i.e., ϑ = 0.5 L). This translates to a temporal

resolution of 0.125 ms (x axis), and we select 200 Hz as the spectral resolution (y axis). The edge effect that is

due to the sliding window may be ignored, as the window size (0.125 ms duration) is smaller than the durations

FIG. 10 (A) The time portraits show the synchronized AE signal along with vibration signals from the tool holder

(Accelerometer 1) and the workpiece holder (Accelerometer 2) during an orthogonal cutting process

experiment; (B) and (C) show the temporal-spectral feature extraction. Machining condition: FOA = 0° and

v = 4 m=min .



of the overall recordings (which normally last for seconds) by 4∼5 orders of magnitude. The dimension of

the temporal-spectral features is then illustrated in figure 10. Each element in the spectrogram matrix

represents the energy, ranging from −70 dB to 0 dB. The sensitivity of the AE sensor can be validated

by the high-frequency response of the AE signal (fig. 11A) compared with the vibration signals shown in

figure 11B and 11C.

Note that the multisensor setup segments the cutting and noncutting phases for the time-frequency features.

Let τ1 and τ2 be the start and end time stamps of the segment for the cutting phase (e.g., the start and end

points of the rectangular frame shown in fig. 11A). The response vector Y, during the cutting phase, contains

the control parameters for the designed experiments, i.e., Y ðtÞ = ½FOAðtÞ, vðtÞ�⊤ for t = τ1 + L, τ1 + L + ϑ, τ1 + L+

2ϑ : : : , minðT , τ2Þ, where FOA ∈ f0°, 45°, 90°g and cutting speed v ∈ f2, 4, 6, 8, 10, 12g (m=min ). Given the time

duration T0 (in seconds) of the recording, let T = T0 × Fs, where Fs is the sampling rate (Fs = 1 MHz for all

experiment recordings). Then, the extracted features X as well as the process responses Y for a single recording Ω
could be represented in the following format:

Ω = ½XðtÞ⊤,Y ðtÞ⊤�⊤ =
�
XðLÞ XðL+ϑÞ XðL+2ϑÞ : : : XðTÞ

Y ðLÞ Y ðL+2ϑÞ Y ðL+2ϑÞ : : : Y ðTÞ

�
(16)

The GRNN model is applied to capture the empirical relationships of the AE spectral features fXðtÞg with

fyðtÞg, where yðtÞ is a subset of the response fY ðtÞg (e.g., yðtÞ = FOAðtÞ for the classification of fiber orientations).

To create the GRNN models,31 data augmentation is needed to ensure that all the input sequences for both

training and testing data have the same lengths. One straightforward method is to repeat the temporal-spectral

feature data fXðtÞg and responses fyðtÞg in the testing data set until the length of fXðtÞg in the testing set is equal to
fXðtÞg in the training set. In total, 38 experiments (90° with 1 single repetition for each cutting speed) were

conducted with different fiber orientations and cutting speeds.

To ensure the training and testing datasets for each set of parameters have the same data length (as required

by the GRNN models), we apply the data augmentation32 to keep the duration as 250 ms for each cutting experi-

ment. Because of the variations in the cutting speeds, the durations of the cut and the associated lengths of the

signal recordings vary from ∼30 to ∼260 ms. Hence, for the conditions with higher cutting speeds (shorter time

durations), the signals are sequentially padded (as illustrated in fig. 12A) to maintain the data length as 250 ms.

FIG. 11 Representative time-frequency domain spectrograms gathered during an orthogonal cutting experiment

(v= 8 m=min , FOA as 45°): (A) AE sensor, (B) Accelerometer 1 (ACC-1), and (C) Accelerometer 2 (ACC-2). Here,

the rectangular frames at the right side of every plot indicate the temporal-spectral information during

the cutting phase.



Recordings with lower speeds (longer durations), on the other hand, are truncated (see fig. 12C) to keep the

recording length as 250 ms. For those conditions with one repetition, samples have been randomly permutated

(as shown in fig. 12B) followed by sequential padding to avoid the exact same data/signals utilized in both training

and testing datasets, hence reducing the chance of overfitting.

BD-LSTM AND BD-GRU FOR MONITORING CUTTING CONDITION VARIATIONS

WITH RESPECT TO FIBER ORIENTATIONS

Given the extracted time-frequency features fXðtÞg and the response fyðtÞg = fFOAðtÞg, the BD-LSTM and GRU

models are applied for classifying the cutting conditions. The details of the structure of the BD-LSTM and

BD-GRU are described as follows.

The input for the extracted temporal-spectral features is with the dimension as T × 2,499, where T is the

length/duration of the temporal-spectral data with 2,499 rows of the frequency component ranging from 0 to

500 kHz (with 200 Hz resolution). Here, the number of hidden nodes is selected as 40 to predict the outputs

(different fiber orientations). The batch size is selected as 36. The results from an 18-fold cross validation

(which ensures that the test data contain every condition from 6 cutting speeds × 3 FOAs) in terms of the

confusion matrix are listed in Table 2. In total, the classification accuracy is around 88 % for different fiber

orientation conditions using BD-GRU.

TABLE 2
Confusion matrices for various fiber orientations (BD-GRU vs. BD-LSTM)

BD-GRU

Predicted

BD-LSTM

Predicted

0° 45° 90° 0° 45° 90°

Actual 0° 0.9997 0.0000 0.0003 Actual 0° 0.8247 0.1139 0.0615

45° 0.0481 0.9519 0.0000 45° 0.0156 0.8179 0.1665

90° 0.0045 0.0000 0.9955 90° 0.0144 0.0024 0.9832

FIG. 12

A schematic diagram

showing the data

augmentation schemes

for AE signals: (A)

sequential padding, (B)

random permutation

followed by sequential

padding, and (C)

sequence truncation.



Both BD-LSTM and BD-GRU were then applied to test the prediction accuracy on the sequence of

each recording. In total, 36 experiment recordings (with various cutting speeds and fiber orientations) were

selected in training sets, and 18 recordings were included in each testing set. The classification results are listed

in Table 3.

We then compare the results with an earlier investigation on analyzing AE characteristics using

random forest (RF) model33 listed in Table 4. Though the result from the RF model suggests a statistically

significant difference between the study cases with FOA = 0° and all others, it could only recognize the difference

for FOA = 45° and 90° with around 60 % accuracy. Comparatively, both BD-LSTM and BD-GRU out-

perform the RF model with consistent accuracy over 87 % toward characterizations of AE signals related to

different cutting conditions (FOAs), while BD-GRU consistently achieves higher accuracy for both training

and testing.

AE CHARACTERIZATIONS UNDER DIFFERENT CUTTING CONDITIONS

The presented approach was then applied to classify cutting conditions considering both FOAs and cutting speeds

for machining NFRP, i.e., fyg = fðv, FOAÞjv ∈ f2, 4, 6, 8, 10, 12g, FOA ∈ f0°, 45°, 90°gg. As for implementation

details, we select the GRU to construct the BD-GRNN model since it achieves higher classification accuracy

(compared with LSTM) toward characterizations of AE temporal-frequency features under different cutting con-

ditions (for the previous case study). The number of nodes Nh is selected as follows:

Nh =
#total samples

η · ð#output neurons + #input neuronsÞ (17)

where the scaling factor η is set as 2.34 The parameters were selected based on numerical case studies toward

multiple settings of the neural network for achieving the highest accuracy. With the actual length given as

140,000 data points, we set the input neurons as 2,499 (frequency bins with 200 Hz resolution for the spectral

features at each time step) and the output size as 18 (for 3 FOAs × 6 cutting speeds). Hence, by selecting a

proper scaling number η = 2 in equation (17), the number of nodes Nh =
#total samples

η·ð#output neurons+#input neuronsÞ=
140,000
2×2,517 ≈ 28, and we select the number as 30 in the model. In addition, we also investigate the performance

TABLE 4
Cross validation results for various FOAs using the RF

Confusion Matrix

Predicted

0° 45° 90°

Actual 0° 0.8531 0.1259 0.0210

45° 0.1354 0.7446 0.1200

90° 0.2047 0.1913 0.6040

TABLE 3
Testing results for various fiber orientations (BD-GRU vs. BD-LSTM)

BD-GRU

Predicted

BD-LSTM

Predicted

0° 45° 90° 0° 45° 90°

Actual 0° 1.0000 0.0000 0.0000 Actual 0° 0.8333 0.1667 0.0000

45° 0.3333 0.6667 0.0000 45° 0.0000 0.8333 0.1667

90° 0.0000 0.0000 1.0000 90° 0.0000 0.0000 1.0000



of different activation functions, such as tanh function and ReLU function, on the achieved accuracy. The tanh

function has consistent high performance in all cases compared with other functions tested. Based on the

guidelines from the literature,35 we selected the batch size as 36, which is the minimal fraction value of

the training data size.

Classification results in terms of recall/true positive rate (TPR) values for both cutting speeds and fiber

orientations (18 conditions in total) are shown in Table 5. Each row represents an FOA, and columns are

the collection of different cutting speeds. It may be noted that for the higher speed conditions (v = 10 and

12 m=min ), most cases achieve high TPR (nearly 100 %) for connecting the AE temporal-frequency features

to the cutting conditions. However, the classification errors increase when discerning conditions with minor

changes in cutting speeds under the same FOAs. Details about TPR/recall values given these 18 conditions

are listed in Appendix Table A.2, where the first column lists the FOAs, second column enumerates different

cutting speeds (m/min), the diagonal elements are the TPRs, and all the nondiagonal ones represent the false

negative rates.

Next, we investigate the classification errors under each condition. Figure 13 visualizes the detailed clas-

sification results (precisions and false positive rate) using pie charts for all 18 conditions. The x axis represents the

fiber orientations, and the y axis lists the cutting speeds. The sectors in the pie chart present the portions for true

positives as well as false positives under every cutting condition. Each condition ðv, FOAÞ is listed in the legend in

figure 13. Taking the machining condition FOA = 0° and v = 12 m=min as one example (represented using the

black color in its pie chart (the first row and the sixth column), the sector under the conditions FOA = 0° and

v = 12 m=min depicts the precision (ratio of the true positives over sum of true and false positives) and other

sectors show the portions of false positives (percent of misclassified data from other conditions). Note that even

though such a condition achieves a high accuracy (over 90 % of the TPR), it still has the misclassified portion(s)

FIG. 13 Pie charts showing the precisions of the presented BD-GRNN for AE characterizations under 18 conditions

(FOA ∈ f0°,45°, 90°g and v ∈ f2,4, 6, 8, 10, 12g (m/min)).

TABLE 5
Cross validation results (recall/TPR)

Recall Cutting Speed, m/min

FOA 2 4 6 8 10 12

0 0.9912 0.9621 0.8801 0.6169 0.9231 0.9975

45 0.8893 0.8001 0.6611 0.8598 0.7470 0.9902

90 0.7795 0.7064 0.9951 0.9956 0.9804 0.9581



sourced from the condition FOA = 0° and v = 10 m=min (colored in blue). Similarly, as for the condition of

FOA = 0° and v = 2 m=min (the first pie chart in the first row), its false negatives are mostly classified as the

conditions with the same orientation (FOA = 0°) but the different cutting speed as ν= 4 m/min (the condition

colored in turquoise).

Results from this collection of pie charts may suggest that most false negatives are misclassified in adjacent

groups with different cutting speeds but the same FOA. The same cutting mechanism may result in similar tem-

poral-frequency patterns in the AE signals. However, the minor variations (e.g., from 2 to 4 m/min) in cutting

speeds may not be significant for changing the AE characteristics. More evidence could also be found in the con-

ditions where FOA = 90°. As for the cases under FOA = 90°, the relatively low values of both recall and precision

(∼77%) could be found in the groups inwhich cutting speeds v = 2 and 4 m=min , indicating a large portion (∼20%
for each condition) was misclassified between these two conditions with a slight change in cutting speeds.

The reason why AE signatures are more distinguishable under different FOAs is because different FOAs

lead to distinct combinations of cutting mechanisms35: under all FOA = 0° conditions, the cutting mechanisms

are predominantly the PP matrix removal, with some fibers sliding/shearing along interfacial areas during the

material removal; as for the 45° orientation position, the cutting mechanism consists of compression-induced

interfacial shearing along the fiber orientation direction, which causes fiber-matrix debonding; for FOA= 90°, the

fractures that contribute predominantly to fiber pull-out emerge intermittently. Different failure modes during

material removal may attribute to different frequency responses of the AE sensor signals. However, classification

results also suggest that minor changes in the cutting speed are still less influential on the variations of the result-

ant temporal-spectral AE features compared with the fiber orientations (FOAs).

Despite those groups with comparatively higher false positives (conditions misclassified in adjacent cutting

speeds), the presented BD-GRU could achieve an overall ∼87 % accuracy, while the previously investigated RF

could not correctly classify the AE characteristics with respect to the FOAs.

Summary and Concluding Remarks

This article presented a framework using a recurrent deep learning approach for real-time monitoring and char-

acterization of sensor signals under transient phase. The temporal-spectral features of AE signals during the

NFRP machining processes were selected to test the performance of the presented BD-GRNNs. Admittedly,

the feature extraction and selection for the temporal-spectral components remain a major challenge, and inves-

tigations into an advanced machine learning approach may be needed to efficiently select energy components

within specific frequency band(s). However, the developed GRNNs allow a selection of useful information from

the time-frequency features (by training the weights of each neuron) and use gated units to capture the underlying

process dynamics on the time-varying spectral information. Thus, ad-hoc feature selection and extraction

are avoided. The contributions of this article are listed as follows:

• An illustrative case study is presented to show the performance of the BD-RNN for capturing the transient
nature of signals. The results of one (multi)-step forecasting indicate that the GRNN can capture transients
(intermittent jumps) between stationary segments and could be used for characterizations for the transient
processes.

• The GRNNs (both LSTM and GRU models) are presented for characterizing the AE signals with different
transient phase patterns (laminar phases and variations on the modulated time series coefficients). The
presented approach achieves around 87 % accuracy, which outperforms other advanced machine learning
approaches, such as RF classification, for sequential data classification for characterization of AE signals
under different machining conditions. Thus, GRNNs allow real-time process characterizations for machin-
ing NFRPs with changes in machining parameters as well as microstructure variations.

For future work, other factors, such as fiber (bundle) distributions and chip formations, need to be con-

sidered to characterize AE signals during the machining processes.



ACKNOWLEDGMENTS

Authors would like to thank the National Science Foundation [Civil, Mechanical and Manufacturing Innovation

(CMMI #1432914) and Autonomous Experimentation Platform for Accelerating Manufacturing of Advanced

Materials (S&AS: INT #1849085)] for supporting the research.

Appendix

TABLE A.1
The 38 experiments of AE recordings with different fiber orientations and tool
speeds

Sample No. Velocity, m/min Orientation, °

Experiment,

Repetition No.

1 2 0 Exp-2

2 Exp-3

3 45 Exp-1

4 Exp-3

5 Exp-4

6 90 Exp-1

7 4 0 Exp-1

8 Exp-2

9 Exp-3

10 45 Exp-1

11 90 Exp-1

12 6 0 Exp-1

13 Exp-2

14 45 Exp-1

15 Exp-2

16 Exp-3

17 90 Exp-1

18 8 0 Exp-1

19 Exp-2

20 Exp-3

21 45 Exp-1

22 Exp-2

23 Exp-3

24 90 Exp-1

25 10 0 Exp-1

26 Exp-2

27 Exp-3

28 45 Exp-1

29 Exp-2

30 Exp-3

31 90 Exp-1

32 12 0 Exp-1

33 Exp-2

34 Exp-3

35 45 Exp-1

36 Exp-2

37 Exp-3

38 90 Exp-1



TABLE A.2
Confusion matrix for 18 conditions with varying cutting speeds (2, 4, 6, 8, 10, 12 m/min) and FOA (0°, 45°, 90°)

FOA 0 45 90 0 45 90 0 45 90 0 45 90 0 45 90 0 45 90

FOA Cutting Speed 10 10 10 12 12 12 2 2 2 4 4 4 6 6 6 8 8 8

0 10 0.923 0 0 0.05 0 0 0 0 0 0.009 0 0 0.005 0 0 0.011 0 0

45 10 0.084 0.746 0 0.002 0 0 0 0.001 0 0 0 0 0.111 0 0 0.044 0.007 0

90 10 0 0 0.98 0 0 0 0 0 0 0 0 0 0.014 0 0 0.002 0 0.001

0 12 0 0.001 0 0.997 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45 12 0 0.006 0 0.002 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0

90 12 0 0 0.041 0 0 0.958 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0.991 0.002 0 0.005 0 0 0 0 0 0 0 0

45 2 0 0.002 0 0 0 0 0 0.889 0 0.036 0.023 0 0.048 0 0 0 0 0

90 2 0 0 0 0 0 0 0 0 0.779 0 0 0.209 0 0 0.01 0 0 0

0 4 0 0 0 0 0 0 0.031 0.002 0 0.962 0.001 0 0 0 0 0 0 0

45 4 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0.199 0 0 0 0

90 4 0 0 0 0 0 0 0 0 0.252 0 0 0.706 0 0 0.04 0 0 0

0 6 0 0 0 0.002 0 0 0 0.003 0 0 0 0 0.88 0.016 0 0.096 0 0

45 6 0 0.001 0 0 0 0 0 0.01 0 0 0.007 0 0.145 0.661 0 0.001 0.173 0

90 6 0 0 0 0 0 0 0 0 0.004 0 0 0 0 0 0.995 0 0 0

0 8 0.175 0 0 0.006 0 0 0 0 0 0 0 0 0.195 0 0 0.616 0.005 0

45 8 0 0.042 0 0.001 0 0 0 0.003 0 0 0 0 0.06 0.013 0 0.018 0.859 0

90 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.004 0 0 0.995
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