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SUMMARY

(1) Biocrusts are key drivers of ecosystem functioning in drylands, yet our understanding of how 

climate change will affect the chemistry of biocrust-forming species and their impacts on carbon 

(C) and nitrogen (N) cycling is still very limited.

(2) Using a manipulative experiment conducted with common biocrust-forming lichens with 

distinct morphology and chemistry (Buellia zoharyi, Diploschistes diacapsis, Psora decipiens and 

Squamarina lentigera), we evaluated changes in lichen total and isotopic C and N and several soil 

C and N variables after 50 months of simulated warming and rainfall reduction. 

(3) Climate change treatments reduced δ13C and C:N ratio in B. zoharyi, and increased δ15N in S. 

lentigera. Lichens had species-specific effects on soil dissolved organic N (DON), , β-NH +
4

glucosidase and acid phosphatase activity regardless of climate change treatments, while these 

treatments changed how lichens affected several soil properties regardless of biocrust species. 

Changes in thallus δ13C, N and C:N drove species-specific effects on DON, , β-glucosidase NH +
4

and acid phosphatase activity.

(4) Our findings indicate that warmer and drier conditions will alter the chemistry of biocrust-

forming lichens, affecting soil nutrient cycling, and emphasize their key role as modulators of 

climate change impacts in dryland soils.

Keywords: biological soil crusts, climate change, drylands, lichens, morphology, functional traits, 

soil fertility
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INTRODUCTION

Biological processes are the main determinants of carbon (C) and nitrogen (N) fixation and the 

subsequent transformation and release of C and N products in the soil (Chapin et al., 2011), which 

in turn are affected by climate and associated ecosystem-climate feedbacks (Gruber & Galloway, 

2008; Heimann & Reichstein, 2008). However, our understanding of how climate change will alter 

current patterns of C and N cycling in drylands, which occupy ~41% of the terrestrial surface and 

host ~40% of the global population (Cherlet et al., 2018), is still limited (Maestre et al., 2016). 

Drylands store about 32% and 40% of global soil organic C and total N, respectively (Plaza et al., 

2018), and play a fundamental role in the global terrestrial C sink and its interannual variability 

(Poulter et al., 2014; Ahlström et al., 2015). Understanding how climate change will impact C and 

N cycling in drylands is thus fundamental to better forecast its impacts on global biogeochemical 

cycles and on the capacity of drylands to provide fundamental ecosystem services, such as soil 

fertility and forage production, for the more than two billion people inhabiting them (Cherlet et al., 

2018).

Biocrusts, complex communities composed of lichens, mosses and other soil 

microorganisms (e.g., cyanobacteria, fungi and algae) living in the soil surface, are a major feature 

of drylands worldwide (Weber et al., 2016). By fixing atmospheric N, regulating N mineralization 

and influencing soil respiration and net CO2 uptake, among other processes (Belnap, 2002; 

Maestre et al., 2013; Delgado-Baquerizo et al., 2014), biocrusts are major drivers of C and N 

cycling and storage in these ecosystems (Elbert et al., 2012). The activity and nutrient status of 

biocrust constituents such as lichens and mosses is highly dependent on environmental conditions 

due to their poikilohydric nature and their lack of true roots (Nash, 2008; Goffinet & Shaw, 2009). 

As such, they are in constant equilibrium with the environment due to their limited capacity to 

regulate their water status, temperature, and nutrient uptake, which makes them highly sensitive to 

variations in abiotic conditions (Weber et al., 2016). It is thus not surprising to find that forecasted 

changes in precipitation and temperature have large impacts on biocrust communities and 

associated ecosystem processes (Reed et al., 2012; Maestre et al., 2013; Ferrenberg et al., 2015). 

For example, increased temperature and altered precipitation have been found to drastically reduce 

biocrust cover and diversity (Maestre et al., 2013; Ferrenberg et al., 2015), which in turn can 

result in shifts in microbial community composition, C and N cycling (Ladrón de Guevara et al., 

2014; Delgado-Baquerizo et al., 2014; Darrouzet-Nardi et al., 2015). Similarly, climate change A
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can affect the role that biocrusts play in modulating key variables such as soil moisture (Lafuente 

et al., 2018), likely exacerbating the direct impact of climate change on soil microbial 

communities. 

Previous research indicates that the physiological performance and growth of biocrust 

constituents will be negatively affected by ongoing climate change in drylands (Escolar et al., 

2012; Maphangwa et al., 2012; Reed et al., 2012; Ferrenberg et al., 2015). However, this research 

has mainly considered biocrust communities as a whole, i.e. without exploring specific responses 

of coexisting species within the same phylum/class (but see Maphangwa et al., 2012; Ladrón de 

Guevara et al., 2018). Specifically, it has been barely studied how climate change will affect the 

tissue composition of biocrust constituents and associated soil properties in drylands, despite the 

potential consequences for ecosystem processes such as nutrient cycling. Moreover, the rare 

exceptions are mostly dedicated to the desert moss Syntrichia caninervis (e.g., Stark et al., 2007; 

Reed et al., 2012; Young & Reed, 2017), while studies focusing on biocrust-forming lichens, one 

of the most conspicuous and abundant biocrust constituents in global drylands (Weber et al., 

2016), are still lacking. The effects of biocrust-forming lichens on soil nutrients and microbial 

communities are species-specific and dependent on the chemical and morphological traits of 

lichen thallus (Miralles et al., 2012; Concostrina-Zubiri et al., 2013; Maier et al., 2014; Delgado-

Baquerizo et al., 2015). The nutrient status (i.e., total C and N) of both biocrust-forming lichens 

and mosses is expected to be reduced with increased temperature and altered rainfall regimes due 

to reduced physiological performance (Reed et al., 2012), as has been shown along climatic 

gradients in the field (Concostrina-Zubiri et al., 2018). Thus, lichens are expected to play an 

important role in modulating climate change effects on soil diversity and functioning (Maestre et 

al., 2015; Liu et al., 2016; Dacal et al., 2020). Understanding how climate change will 

differentially impact dominant biocrust-forming lichen species is critical to better forecast how 

climate change will impact ecosystem functioning in drylands. 

To the best of our knowledge, no previous study has experimentally evaluated how climate 

change drivers like warming and reduced precipitation impact both the chemistry of lichen thalli 

and soil nutrient cycling. We aimed to do so by conducting a microcosm experiment where we 

evaluated the impacts of a ~2ºC warming and 35% rainfall reduction on monocultures of four 

dominant biocrust-forming lichens with diverse morphology and chemical traits (Buellia zoharyi, 

Diploschistes diacapsis, Psora decipiens and Squamarina lentigera). In particular, we evaluated 

changes in biocrust thallus composition (i.e., total and isotopic C and N composition, and C:N A
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ratio) and on multiple soil variables related to soil functioning (soil total and isotopic C and N, 

dissolved organic nitrogen, ammonium, nitrate, β-glucosidase and acid phosphatase activity, pH) 

after 50 months of warming and rainfall reduction. We tested the following hypotheses: i) 

warming and rainfall reduction will induce species-specific changes in biocrust C and N 

composition due to species-specific differences in functional traits. These include, for instance, 

differences in morphology, which regulate biocrust water relations (Larson, 1981; Mallen-Cooper 

& Eldridge, 2016; Concostrina-Zubiri et al., 2017) and thus, their photosynthetic capacity (Lange 

et al., 1988, 1994); ii) warming and rainfall reduction will affect soil properties (Ladrón de 

Guevara et al., 2014; Delgado-Baquerizo et al., 2014; Darrouzet-Nardi et al., 2015), albeit the 

magnitude of their effects will be species-specific; and iii) changes in the C and N composition of 

lichen thalli drive their impacts (Delgado-Baquerizo et al., 2015), and modulate those of simulated 

climate change on soil properties (Ladrón de Guevara et al., 2014; Delgado-Baquerizo et al., 

2014; Darrouzet-Nardi et al., 2015). By simultaneously assessing the effects of climate change 

drivers and biocrust-forming lichen species on soil functioning, we will be able to better 

understand the role of biocrusts in mediating climate change impacts on the functioning of 

drylands soils.

MATERIALS AND METHODS

Species used and biocrust C and N variables studied

We selected four lichen species that coexist and dominate biocrust communities in drylands 

worldwide (Galun & Garty, 2001; Maestre et al., 2011; Weber et al., 2016). They are also easy to 

manipulate (e.g., to be collected and used as transplants) and have been successfully used in 

manipulative experiments before (Maestre et al., 2012a; Castillo-Monroy et al., 2014). These 

species show marked differences in thallus morphology, colour and chemistry (Fig. S1), and exert 

species-specific effects on soil chemistry and microbial communities (Concostrina-Zubiri et al., 

2013; Delgado-Baquerizo et al., 2015). Their performance and abundance in the field are also 

affected by simulated warming (Escolar et al., 2012; Ladrón de Guevara et al., 2018).

To evaluate changes in biocrust C and N composition, and their effects on associated soil 

properties, we focused on total C and N content and ratio (C:N) and C and N isotope ratios (δ13C 

and δ15N), which are considered good indicators of changes in climate and soil physico-chemical 

properties (e.g., Concostrina-Zubiri et al., 2018). Lichen δ13C reflects the discrimination against 
13C in favour of 12C during CO2 diffusion into the lichen and the CO2 source (Lakatos et al., A
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2007). Similarly, lichen δ15N is very sensitive to N availability and sources (e.g., Pinho et al., 

2017). In addition, total C and N and C:N are expected to influence soil nutrient cycling via 

nutrient leaking and decomposition (Cornelissen et al., 2007).

Experimental design

We carried out a microcosm experiment in the Climate Change Outdoor Laboratory (CCOL), 

located at the facilities of Rey Juan Carlos University (URJC, Móstoles, Spain: 40°20’37’’N, 

3°52’00’’W, 650 m a.s.l.; Fig. S2a), between March 2013 and May 2017. The climate is semi-arid, 

with mean annual temperature and precipitation of 16.6°C and 362 mm, respectively. Soil and 

biocrust-forming lichen species for the experiment were collected from gypsum outcrops present 

in the surroundings of the Aranjuez Experimental Station, located in the centre of the Iberian 

Peninsula (40°020N–3°320W; 590 m a.s.l.) and over 50 km south of the CCLOL. All specimens 

were collected in plant interspaces and lacked visible damage.

Microcosms consisted of plastic pots (depth 8 cm, diameter 20 cm) filled with 4.5 cm of 

homogenized nutrient-poor field soil, and 3 cm of stones for drainage at the base (Fig. S1). Intact 

lichen pieces were collected from the field, separated into species, and cut into homogeneous 1.21 

cm2 square fragments (Fig. S1). These fragments were placed on the soil surface to achieve a 

~60% coverage of each microcosm unit (excluding a buffer zone; Fig. S1), which is within the 

range found in the field (39-98%; Maestre et al., 2005). As the spatial pattern of lichen thalli can 

affect their impact on soil properties in this type of experiments (Maestre et al., 2012a), the same 

spatial pattern was used in all microcosms (Fig. S1). The microcosms were set up in March 2013. 

To help the establishment of the lichen fragments, water was sprayed into each microcosm during 

the first 4 weeks, once per week, before the start of the experiment.

The experiment consisted of two treatments: climate change (three levels: control, 2.3ºC 

annual temperature increase and the combination of 35% rainfall reduction and temperature 

increase), and lichen species (B. zoharyi, D. diacapsis, P. decipiens, S. lentigera). Five replicates 

of each lichen species and four of bare soil (i.e. without lichens) were established for each level of 

the climate change treatment. One D. diacapsis and two S. lentigera samples in the control and 

warming treatments, respectively, were discarded from analyses due to sample contamination, 

resulting in a total of 69 microcosms. 

The warming treatment aimed to simulate climatic predictions for central Spain for the 

second half of the 21st century (2046-2065), i.e., an increase in annual temperature ranging A
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between 2.1ºC – 3.2ºC (De Castro et al., 2005; IPCC, 2013). This temperature increase was 

achieved by using open-top chambers (OTCs; Fig. S2) built with six methacrylate plates open on 

the top to allow rainfall and elevated 5 cm from the soil surface to achieve adequate airflow and 

avoid excessive overheating (Figure S2). The OTCs used promoted a 2.3ºC warming on average 

throughout the study period (see Fig. S3). 

The rainfall reduction treatment consisted of passive rainfall shelters based upon the design 

of Yahdjian & Sala (Yahdjian & Sala, 2002) that reduced the total amount, but not the intensity, of 

rainfall reaching the soil surface. Each rainfall shelter has a roof composed of six methacrylate 

grooves (Fig. S2) covering, approximately, 35% of the surface. Rainfall reduction values obtained 

(35.4% ± 2.2 on average; means ± SE; n = 25 rain events; Valencia et al., 2018) are consistent 

with predictions from climatic models in central Spain, which forecast reductions between 10% 

and 33% in the total amount of rainfall received during spring and fall for the second half of the 

21st century (De Castro et al., 2005). 

Harvest and analyses

All microcosms were harvested in May 2017. Biocrusts were carefully removed with a knife and 

attached soil particles were discarded before storage at -20ºC until further analysis. At each 

microcosm, the first 2 cm of the soil were collected and passed through a 2 mm sieve, then air-

dried at room temperature for one month. Dry soil samples were kept in sealed plastic bags and 

stored in the dark until further analysis to avoid gas exchange and sample contamination. Air-

drying and storage in the dark is considered an effective method to preserve soil bio-physico-

chemical properties in similar soils (Delgado-Baquerizo et al., 2015) and in dryland soils 

worldwide (Maestre et al., 2012b). Lichen thalli were thoroughly cleaned with a brush to remove 

soil particles, and then oven-dried (48 h at 60ºC). After this, they were ground in a homogenizer 

(Precellys® 24, Bertin Technologies, Montigny-le-Bretonneux, France) and analysed for total and 

isotopic N and C on a Sercon Hydra 20-22 (Sercon, Crewe, UK) stable isotope ratio mass 

spectrometer, coupled to a EuroEA3000 (EuroVector, Pavia, Italy) elemental analyser. Isotope 

ratios are given in the notation δ, calculated as δ = (Rsample/Rstandard – 1) × 1000 (‰). International 

standards IAEA CH6 (sucrose) and IAEA CH7 (polyethylene) and IAEA N1 (ammonium 

sulphate) were used to calibrate C and N isotope ratios. We report δ13C values standardized 

against Vienna Pee Dee Belemnite and δ15N relative to δ15N of atmospheric air. A
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In each air-dried soil sample, we measured the following variables: total and isotopic C 

(13C) and N (15N), organic C (SOC), dissolved organic N (DON), ammonium ( and nitrate NH +
4 ) 

) availability. These variables have been extensively used as proxies of ecosystem (NO ―
3

functioning in many ecosystems (e.g., Austin & Vitousek; Maestre et al., 2012; Singh et al., 

2018). To help us elucidating how climate change drivers and biocrusts affect C and N cycles 

indirectly, e.g., via changes in microbial communities and soil chemistry, we also measured two 

soil enzymatic activities (β-glucosidase and acid phosphatase) and soil pH. The activity of these 

enzymes is a good indicator of metabolic and stress status for microbial communities in drylands 

(e.g., Sardans et al., 2008; Delgado-Baquerizo et al., 2014). Also, it is known that soil pH 

regulates microbial growth and extracellular enzyme activities (Sinsabaugh et al., 2008), and thus 

soil nutrient cycling. These soil variables were analysed as described in Maestre et al. (Maestre et 

al., 2012b). Total C and N concentration and isotopic composition were measured in aliquots of 2 

g of soil that were processed and analysed following the same methodology as for lichen thalli. 

Total N concentration in our soils (<0.05% on average) was insufficient to measure N isotopic 

composition. All lichen and total and isotopic soil C and N analyses were conducted at the Stable 

Isotopes and Instrumental Analysis Facility – Universidade de Lisboa (Lisbon, Portugal). 

Data analyses

To evaluate the effects of climate change drivers on the total C and N, δ13C, δ15N and C:N ratio of 

lichen thalli (hypothesis i), we conducted a semiparametric permutational multivariate analysis of 

variance (PERMANOVA, Anderson, 2001). Climate change treatments were considered as a fixed 

factor for these analyses, which were conducted for each species separately since they were 

expected to show contrasting differences in lichen C and N composition (Delgado-Baquerizo et 

al., 2015). When the main factor (i.e., treatment) had a significant effect on the response variable, 

we conducted a pairwise comparison between treatments. 

To assess whether climate change drivers and biocrust species induced shifts in soil 

fertility and functioning (hypothesis ii), we calculated the Relative Interaction Intensity (RII) 

index (Armas et al., 2004) separately for each lichen species and treatment. RII was calculated as 

(Sbc - Sbs)/(Sbc + Sbs); where Sbc and Sbs are the values of a given soil variable under each species 

and treatment in lichen microcosms (n=3-5) and in bare soil microcosms (as the average of the 

four bare soil replicates for each treatment, n=4), respectively. The RII values range from -1 to +1; 

a value of zero indicates no effects of a given biocrust species on the variable of interest, while RII A
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values above and below zero indicate positive and negative effects on such variable, respectively, 

compared to bare soil. To test whether RII values were significantly different from zero, we 

computed bootstrapped 95% confidence intervals using the boot R package (Canty & Ripley, 

2019). Since RII values did not follow a normal distribution, we evaluated the effects of biocrust 

species and climate change drivers on RII values for each soil variable using a two-way 

PERMANOVA. In these models, treatment and species were fixed factors. When main factors 

(i.e., treatment and species) had a significant effect on response variables, we conducted a pairwise 

comparison between treatments and/or species. 

To evaluate if changes in lichen C and N composition drive biocrust species and climate 

change impacts on soil properties (hypothesis iii), we conducted a non-metric multidimensional 

scaling (NMDS) ordination with soil data (from lichen microcosms) and tested for individual 

correlations with lichen C and N variables using the envfit function from the vegan R package 

(Oksanen et al., 2019). The best solution for the soil data ordination (i.e., lowest final stress) was 

found for a 3-dimensional NMDS evaluated with a permutation test (999 permutations). All soil 

variables were relativized (by maximum) before NMDS analysis due to differences in 

measurement units. To evaluate if the effects of lichen C and N variables on soil properties were 

driven by biocrust species or climate change drivers, we conducted a two-way PERMANOVA on 

soil data with species and treatment as fixed factors. When the main factor (i.e., species or 

treatment) had a significant effect on soil properties, we conducted a pairwise comparison between 

levels of each factor. As an aid for the interpretation of our results, we visually examined the 

relationships between significant biocrust C and N variables and individual soil variables for each 

level of significant main factors after PERMANOVA.

PERMANOVA and NMDS analyses were conducted using Euclidean distance on 

unrestricted permutation of raw data (999 permutations) with the vegan R package (functions 

adonis and metaMDS) (Oksanen et al., 2019). We chose PERMANOVA and NMDS due to small 

sample size and data heterogeneity. All analyses were performed with R version 3.6.1 (R Core 

Team, 2019). Data are available from Figshare (Concostrina-Zubiri et al., 2020). 

RESULTS

The combination of warming and rainfall reduction decreased δ13C and C:N ratio in B. zoharyi 

(Fig. 1b,e, Table S1). Both warming and the combination of warming and rainfall reduction A
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increased δ15N in S. lentigera (Fig. 1d, Table S1). Our climate change treatments did not modify 

thallus total C and N concentration in any species (Fig. 1a,c, Table S1).

Climate change treatments and biocrust species had significant effects on the RII of several 

soil variables; however, we only found significant climate change treatment x species interactions 

for the acid phosphatase activity (Fig. 2, Table S2). Lichens increased total C in the warming 

treatment (compared to bare soil), but reduced it in the control and the warming x reduced 

precipitation treatments (Fig. 2a, Table S2). Lichens also increased SOC in the control and 

warming treatments, but this effect was negative in the warming x rainfall reduction treatment 

(Fig. 2b, Table S2). Additionally, lichens reduced soil δ13C in the warming treatment regardless of 

species identity (Fig. 2c, Table S2). Lichens also decreased total N and  in the warming and NH +
4

the warming x rainfall reduction treatments (Fig. 2d,f, Table S2), and reduced  in the NO ―
3

warming treatment (Fig. 2g, Table S2). In contrast, lichens increased DON in the control 

treatment, an effect that was the opposite in the warming treatment (Fig. 2e, Table S2). Psora 

decipiens and B. zoharyi increased and reduced, respectively, soil DON (compared to bare soil; 

Fig. 3e, Table S2). Buellia zoharyi, D. diacapsis and S. lentigera reduced soil  (Fig. 3f, Table NH +
4

S2). All species had a positive effect on β-glucosidase activity, being higher for P. decipiens lower 

for B. zoharyi and D. diacapsis (Fig. 3h, Table S2). Similarly, P. decipiens significantly increased 

phosphatase activity (Fig. 3i, Table S2). PERMANOVA analysis did not detect any statistically 

significant effect of climate change treatments or biocrust species on soil pH (Table S2).

The NMDS ordination (final stress = 0.12) showed that soil properties varied with lichen 

δ13C (R2=0.42), N (R2=0.14) and C:N (R2=0.22, Fig. 4, Table S3). Higher lichen N was related to 

changes in soil properties driven by increased DON, , acid phosphatase and β-glucosidase NH +
4

activity, while the opposite pattern was found for lichen δ13C and C:N (Fig. 4, Table S3). Also, 

PERMANOVA analyses showed that biocrust species affected soil properties (Table S4). The 

subsequent pairwise tests indicated differences between P. decipiens and the other studied species 

(P < 0.01 in all cases). Such differences were observed in the ordination; i.e., soil microcosms of 

P. decipiens separated from those of other species (Fig. 4). PERMANOVA analyses did not detect 

any effect of climate change treatments or the combination of species and climate change 

treatments on soil properties (Fig. 4, Table S4) or between species other than P. decipiens (P > 

0.05 in all cases).

DISCUSSIONA
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Most previous studies about climate change impacts on biocrusts and associated soil properties 

have generally considered these communities as a whole (e.g., Reed et al., 2012; Maestre et al., 

2013). However, we found that lichen identity was a major driver of the nature and extent of these 

impacts. Our results, obtained with a manipulative experimental approach, also show that 

important changes can occur in biocrust-forming lichen thallus composition under simulated 

climate change and that the specific lichen species largely impact soil nutrient cycling and 

microbial activity. In addition, we found that the composition of lichen thalli and several soil 

variables were coupled regardless of climate change treatments, although the nature of these 

relationships was, again, highly species-specific. These findings highlight the need of evaluating 

the responses and effects of biocrust constituents at the species level to better understand the 

potential implications of climate change for soil nutrient cycling in biocrust-dominated drylands. 

Responses of biocrust C and N composition to simulated climate change are species-specific

We found empirical evidence that the C and N composition of lichen thalli responds to simulated 

climate change, and that the nature of this response differed among species. For example, δ13C in 

B. zoharyi decreased under warming and reduced precipitation, while δ13C in other species showed 

no differences with climate change treatments. These results suggest that B. zoharyi is particularly 

sensitive to climate change drivers, or that it had an early response compared to the others. Lichen 

δ13C values result from multiple processes related to C source, assimilation and use (Lakatos et al., 

2007). Moreover, due to their poikilohydric nature, these processes are known to be governed by 

ambient humidity and temperature in lichens (Nash, 2008), and thus by traits defining their water 

and temperature relations (e.g., morphology, hydrophobicity and anatomical structure; (Shirtcliffe 

et al., 2006; Mallen-Cooper & Eldridge, 2016; Concostrina-Zubiri et al., 2017). For example, 

when lichens are beyond their water saturation point, δ13C is expected to be higher (i.e., less 

negative) due to a decrease in the CO2 diffusion rate into the lichen thallus (Batts et al., 2004). In 

contrast, at low thallus water content carboxylation is limited and CO2 internal concentration is 

high, leading to higher C discrimination and more negative δ13C values (Lange et al., 1988). The 

particularly thin and discontinuous thallus of B. zoharyi (<0.4 mm; Trinkaus & Mayrhofer, 2000) 

might have allowed faster evaporation rates after liquid precipitation events and, simultaneously, 

to hydrate faster from other precipitation forms such as dew (Larson, 1981; Lange et al., 1994), 

leading to the lower δ13C under the combination of warming and rainfall reduction. Alternatively, 

these results could also be explained by an increased uptake of respired CO2 from the soil, which A
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is depleted in δ13C compared to atmospheric CO2 (i.e., δ13C in SOM is ~ -26 while in atmospheric 

CO2 is ~ -8; (Lakatos et al., 2007). Increased soil respiration has been reported before in biocrust-

dominated soils under simulated warming and rainfall reduction during the first years after the 

experimental setup (Maestre et al., 2013; Escolar et al., 2015; Dacal et al., 2020). However, it 

would then be expected that P. decipiens, characterized by discontinuous darker squamules (small, 

scale-like thallus units), should have also higher evaporation rates under these experimental 

conditions and, simultaneously, capture more water from non-liquid precipitation than more 

continuous species because of its higher surface area (Raggio et al., 2014). Although we did not 

find a significant decrease in δ13C of P. decipiens in response to climate change treatments, the 

overall δ13C values of this species (Fig. 1b) were remarkably lower than those of the other species. 

Importantly, the combination of warming and rainfall reduction also caused a decrease in 

the C:N ratio of B. zoharyi. This may be explained by the similar thallus C and the increase in 

thallus N observed under warming and rainfall reduction (Fig. 1e), likely due to higher N 

availability (as indicated by an increasing trend in DON; Fig. S4e). These results contrast with 

those reported for lichen N content along a climatic gradient in the Mediterranean, which showed 

an increase in this variable under more humid conditions (Concostrina-Zubiri et al., 2018). The 

increase in lichen δ15N values with precipitation was attributed to potentially higher N inputs in 

form of wet deposition (i.e.,  to ), which typically has higher δ15N values (Moore, NH +
4 NO ―

3

1974). Lower C:N ratios have been related to increased decomposition rates in terricolous lichens 

and mosses and to N release in mosses (Limpens & Berendse, 2003; Berdugo et al., 2020). In 

addition, higher thallus N content can increase lichen palatability for soil fauna (e.g., snails; 

Asplund & Wardle, 2013). Our results indicate that climate change drivers can also alter, 

indirectly, nutrient inputs to the soil and overall C and N turnover. More specifically, our results 

suggest that B. zoharyi microsites could increase their contribution to soil fertility (Delgado-

Baquerizo et al., 2015) in a more arid scenario (Fig. S4). Buellia zoharyi is a widespread species in 

the Mediterranean and Macaronesian regions (Chiva et al., 2019) and is particularly common in 

gypsum soils from central Spain (Concostrina-Zubiri et al., 2014; Ladrón de Guevara et al., 2018).

On the other hand, δ15N in S. lentigera showed a marked increase under warming and the 

combination of warming and rainfall reduction. The transformation of SOM to  or  to NH +
4 NH +

4

 can result in δ15N increases up to 5 and 40‰, respectively (Dawson et al., 2002), which NO ―
3

could be later reflected in plant δ15N via nutrient uptake. Although lichens lack active mechanisms 

for nutrient uptake, minerals, water and other compounds can enter the lichen body passively due A
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to physico-chemical processes such as ion exchange and the uptake and retention of exogenous 

compounds in the lichen intracellular space (Nash, 2008). Our results suggest that the increase in 

S. lentigera δ15N under warming and rainfall reduction indicated this species assimilated N from 

the topsoil (Dahlman et al., 2004; Pavlova et al., 2017). This is supported by the higher  NO ―
3

concentrations values found in bare soil microcosms under warming and the combination of 

warming and reduced precipitation and by the lower values for this variable observed under S. 

lentigera in these treatments, compared to the control (Fig. S4g). Higher N uptake under warmer 

conditions may be due to increased affinity to N sources, as observed in other microbial organisms 

(e.g., marine algae or bacteria; Reay et al., 1999). Further research aiming to elucidate the role of 

climate change drivers in lichen-soil N cycling should take into account other N forms such as 

NH3, NO and N2O derived from gaseous losses from the soil, which were not considered in this 

study and may represent important N sources to biocrust-forming lichens.

 

Simulated climate change and biocrust-forming lichens impact multiple facets of soil fertility 

and microbial activity

Our results supported our second hypothesis; i.e. climate change drivers and biocrust-forming 

lichens induce shifts in soil fertility and functioning. Existing evidence of how biocrusts affect soil 

fertility and functioning have mostly been gathered using observational approaches, i.e. comparing 

areas with naturally occurring biocrusts vs. areas without them (but see Sedia & Ehrenfeld, 2005; 

Maestre et al., 2012), which do not allow to estimate the impacts of biocrusts on soil fertility and 

functioning with certainty. The experimental nature of our study (i.e., all microcosms had the same 

initial soil and microcosms with and without lichens) allowed us to provide compelling evidence 

that biocrust-forming lichens modify the soil where they grow over time, and that differences in 

soil properties between species or treatments were due to the presence of lichens and to the effects 

of the climate change treatments evaluated. It is interesting to note that species-specific effects of 

lichens on several soil properties (i.e., DON,  and β-glucosidase activity) were not affected NH +
4

by climate change treatments and vice versa as most soil properties (i.e., total C and N, SOC, δ13C, 

DON,  and ) responded to climate change drivers regardless of lichen identity. These NH +
4 NO ―

3

results are in line with previous research showing that biocrusts as a whole (i.e., patches where 

multiple biocrust constituents and species co-exist) are important regulators of climate change 

impacts on soil C and N cycling (e.g., Delgado-Baquerizo et al., 2013a, 2014; Maestre et al., 

2013). A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Regardless of species identity, the presence of biocrusts had important effects (as measured 

with the RII) on several soil properties. Biocrust-forming lichens, in general, protect the soil from 

direct solar radiation and erosional forces, such as wind erosion and raindrop impact (Eldridge & 

Rosentreter, 1999), and increase soil stability (Jimenez Aguilar et al., 2009). Therefore, increased 

nutrient retention is expected under biocrusts compared to bare ground areas (Cantón et al., 2004; 

Concostrina-Zubiri et al., 2013, 2017). Nevertheless, changes in climate can decrease biocrust 

contribution to soil fertility, for example, due to reduced photosynthetic capacity (Maphangwa et 

al., 2012; Reed et al., 2012; Colesie et al., 2018) and shifts in C and N thallus composition, as 

seen along climatic gradients in the field (e.g., Concostrina-Zubiri et al., 2018). 

Our results show that lichen effects on soil fertility were highly responsive to warming and 

the combination of warming and reduced precipitation. First, the effect of biocrust presence 

shifted from positive to negative for total C and SOC in the warming and reduced precipitation 

treatment (Fig. 2b, Table S2). It is known that lichens can contribute to SOC, for instance, via the 

release of organic acids produced by the fungal partner (Chen et al., 2000), once they have 

obtained C compounds from the algae via CO2 fixation. Thus, although chlorolichens can use 

water from non-liquid sources (e.g., dew) to be active (Lange et al., 1994; Raggio et al., 2014), a 

reduction in total precipitation may have resulted in an overall decreased metabolic activity, and 

thus, in lower production of lichen secondary compounds under drier and warmer conditions 

(BeGora & Fahselt, 2001; Bjerke et al., 2005). Decreases in lichen photosynthetic activity have 

been observed in field experiments using the same (Ladrón de Guevara et al., 2014) or similar 

(Colesie et al., 2018) experimental treatment used here. 

Biocrusts had a positive effect on DON in the control treatment, an effect not apparent 

under warmer and drier conditions (Fig. 2e, Table S2). In contrast, warming alone decreased DON 

and N availability (i.e.,  and ; Fig. 2e,f,g, Table S2). This is in agreement with previous NH +
4 NO ―

3

experimental work showing lower organic and inorganic N under increased temperature in 

biocrust-dominated environments (Delgado-Baquerizo et al., 2014). On the one hand, it is known 

that lichens can assimilate important amounts of organic (i.e., amino acids) and inorganic (i.e., 

 and ) N under laboratory conditions (Dahlman et al., 2004). Field experiments have NH +
4 NO ―

3

shown contrasting results, indicating that terricolous lichens cannot derive important amounts of 

these compounds directly from the soil (Ellis et al., 2004). However, these authors evaluated N 

uptake in fruticose lichens, which are loosely attached to the soil (Ellis et al., 2004). By contrast, 

most of the lichen species used in our study (i.e., B. zoharyi, P. decipiens and S. lentigera) grow A
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strongly attached to the soil surface, likely increasing N exchange between the lichens and the soil. 

On the other hand, a warmer environment can induce important changes in the abundance of soil 

fungi and bacteria (Castro et al., 2010; Maestre et al., 2015; Delgado-Baquerizo et al., 2020) and 

enhance heterotrophic activity in the soil (Davidson & Janssens, 2006), and thus, alter nutrient 

availability (e.g., decreased N mineralization, increased SOC leaching). 

All the lichen species included in our study produce secondary compounds with potential 

antimicrobial effects (Molnár & Farkas, 2010). Since the production of these compounds is 

determined by the physiological status of lichens (Stocker-Wörgötter, 2002), warmer conditions 

may have altered the amount of such substances reaching the soil. Lower concentrations of lichen 

secondary compounds with potential antimicrobial effects, such as usnic acid, have been reported 

for the terricolous lichen Cladonia arbuscula under experimental warming in the field (Nybakken 

et al., 2011). On the contrary, usnic acid concentration increased in C. stellaris with temperature 

when cultivated in growth chambers, indicating lichen hydration and UV radiation play an 

important role in the production of this secondary compound (Asplund et al., 2017). Although an 

earlier study found very low or no concentration of usnic acid in the soil as a result of leaching 

from the lichen (Stark et al., 2007), little is known about the release of secondary compounds from 

biocrust-forming lichens.

The effects of the lichens studied on soil properties were species-specific. For example, P. 

decipiens had a positive effect on DON, while B. zoharyi decreased its concentration and the other 

two studied species showed no effect on this variable (Fig, 3e, Table S2). Higher DON under P. 

decipiens may be related to its overall higher N concentration, compared to the other studied 

species (Fig. 1c; Delgado-Baquerizo et al., 2015), which may be directly released in the form of 

amino acids by the fungal partner (Pavlova et al., 2017). Although little is known about the 

contribution of biocrust lichens as soil nutrient sources in drylands via decomposition, it is also 

expected that these lichens will eventually be incorporated into the soil in the form of litter or after 

fragmentation and burial, enhancing soil fertility. Recently, a decomposition experiment using 

biocrust-forming lichens has found that lichen litter can decompose as fast as that from vascular 

plants and that it loses C and N with time (Berdugo et al., 2020). These findings suggest nutrients 

present in lichen tissue can be transferred to the soil as a result of decomposition processes. 

Similarly, all species decreased  concentration except P. decipiens (Fig, 3f, Table S2). A NH +
4

plausible explanation for these results is the rather different morphology and colour of P. 

decipiens, characterized by a discontinuous thallus consisting of small, dark orange squamules, A
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while the other studied species are squamulose-crustose lichens with a more continuous and light 

coloured thallus. As previously discussed, a homogeneous P. decipiens cover may generate a 

warmer microenvironment compared to the other species (Kershaw, 1975; George et al., 2003; 

Raggio et al., 2014), because of darker thallus colour. Also, this species may enhance soil 

moisture (Raggio et al., 2014). First, because in the absence of liquid water precipitation (i.e., the 

typical condition in our study site) air moisture gets directly to the soil through squamules 

interspaces, while the contrary is expected in the other species, with a more continuous and 

hydrophobic thallus (Shirtcliffe et al., 2006). Second, P. decipiens may absorb more water not 

only from liquid precipitation but also from dew and air humidity due to its higher area/volume 

ratio (Larson, 1981; Raggio et al., 2014). Increased soil moisture and temperature can, in turn, 

enhance N mineralization under biocrusts, even with reduced liquid precipitation (Delgado-

Baquerizo et al., 2013b). This is mainly explained by the more favourable conditions for microbial 

communities to be active, which is somehow supported by the highest enzymatic activities found 

for P. decipiens (Fig. 3h,i). Indeed, although all of the studied species produce chemical 

compounds with potential antifungal, antibacterial or antimicrobial effects (Kosanić & Rankovic, 

2015; but see Stark et al., 2007), those produced by P. decipiens (i.e., anthraquinones) can only be 

found in the fruiting bodies, which are generally scattered over the lichen thallus and, thus, rarely 

in direct contact with the soil (and not always present). Conversely, the chemical compounds 

produced by B. zoharyi, D. diacapsis and S. lentigera may reach the soil in higher concentrations 

or be particularly effective on the microbial communities present in our soils. Indeed, microbial 

communities under P. decipiens have been reported to be different from other biocrust-forming 

lichens(Maier et al., 2014). Although lichen compounds show little to moderate water solubility 

(Iskandar & Syers, 1971; Zagoskina et al., 2013), contrasting results have been reported for their 

capacity to leak from the lichen into the soil (e.g., Dawson et al., 1984; Stark et al., 2007). These 

studies have focused on a few fruticose species and cold climates. Thus, future research should 

test whether chemical compounds from biocrust-forming lichens can reach the soil surface at 

greater amounts in drylands (e.g., high temperature and soil pH). The typically high thallus N 

content in P. decipiens (Delgado-Baquerizo et al., 2015) may have also contributed to a lower 

dependence of soil N (i.e., lower N uptake) in this species. Finally, the lower  values found NH +
4

beneath B. zoharyi, D. diacapsis and S. lentigera, compared to the bare soil (Fig. S4, Table S5), 

suggests that these species may also be capable of deriving nitrogen from the substrate below and 

at a higher rate than P. decipiens, which showed generally higher δ15N values (Fig. 1d). The low N A
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content of our soils impeded us to obtain soil δ15N values to be compared with δ15N values in the 

lichens. However, it would be interesting to previously apply isotopically marked N (Ellis et al., 

2004) to the soil in future experiments to better understand the role of biocrust-forming lichens in 

N cycling in drylands.

We did not evaluate the effects of rainfall exclusion alone due to logistic limitations. 

However, we wouldn’t expect the rainfall exclusion treatment to affect soil functioning and 

fertility under the studied species, as previous research has shown that changes in C and N cycling 

under simulated climate change are mainly governed by warming, rather than by reduced 

precipitation, in biocrusts dominated by them (e.g., Maestre et al., 2013; Delgado-Baquerizo et al., 

2014; Escolar et al., 2015). Nevertheless, it would be interesting to study the impacts of climate 

change drivers such as altered rainfall frequency and intensity, which can exert large impacts on 

the physiological activity of multiple biocrust-forming lichen and moss species (Reed et al., 2012; 

Liu et al., 2016; Baldauf et al., 2018).

Biocrust thallus composition and soil properties are coupled regardless of climate change 

drivers

We found support for our third hypothesis, i.e., changes in thalli C and N composition drive the 

impacts of lichen species and climate change treatments on soil properties. Previous studies have 

found strong relationships between biocrust lichen nutrient content (e.g., C, N, P) and isotopic 

ratios and changes in climate and soil properties in the field (Delgado-Baquerizo et al., 2015; 

Concostrina-Zubiri et al., 2018). Here we show that these relationships are the result of species 

effects on soil properties through time (i.e., all soils had similar soil properties at the beginning of 

the experiment). We also found that these effects are maintained across climate change treatments. 

For example, increases in lichen N were correlated to increases in DON,  and soil β-NH +
4

glucosidase and acid phosphatase activity (Fig. 4), suggesting that lichen N is incorporated into the 

soil via litter decomposition or through N leaching (Barger et al., 2016), enhancing soil microbial 

activity. Interestingly, these results were mainly driven by the higher thallus N in P. decipiens, 

compared to the other species (Fig. 5b,e,h,k). Moreover, the opposite pattern was found for lichen 

C:N, with decreasing soil N and microbial activity rates from P .decipiens to S. lentigera (Fig. 

5c,f,i,l). These results agree with previous work showing that lichen tissue with higher nutrient 

content and lower secondary compounds promotes lichen decomposition and N release to the soil 

(Asplund & Wardle, 2013; Berdugo et al., 2020).A
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CONCLUDING REMARKS

We found that changes in thallus chemistry drove observed species-specific effects of lichens on 

soil functioning, and modulated soil C and N cycling to simulated climate change. These findings 

constitute, to the best of our knowledge, the first experimental evidence that the chemistry of 

biocrust-forming lichen thallus is sensitive to warming and rainfall reduction. Our results also 

suggest that some species are good indicators of changes in the organic matter pool and microbial 

activity in the soil (e.g., C and N composition in P. decipiens). In addition, some lichen species 

promote N availability but derive small amounts (i.e., P. decipiens), leaving important stocks of 

organic N in the soil, while others may simultaneously inhibit microbial activity and uptake higher 

quantities of inorganic N, acting as a sink for soil N (e.g., S. lentigera). Overall, our results 

indicate that biocrust thallus traits can be considered reliable indicators of changes occurring in the 

biocrust-soil interphase (Cornelissen et al., 2007; Mallen-Cooper & Eldridge, 2016; Deane-Coe & 

Stanton, 2017). They advance our understanding of nutrient cycling in drylands, where biocrusts 

dominate plant interspaces and show species-specific vulnerability to climate change drivers 

(Ladrón de Guevara et al., 2018). Future research should specifically consider species-specific 

effects on soil properties of biocrust-forming lichens, as this will allow us to hone forecasts of 

climate change impacts on dryland ecosystems.
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Fig. 1 Changes in lichen carbon (C) and nitrogen (N) composition of the studied species under 

simulated climate change. (a) Total C content; (b) C isotope ratio (δ13C); (c) total N content; (d) N 

isotope ratio (δ15N); (e) C:N ratio. Boxes show the median, 25th and 75th percentiles; vertical 

lines show the minimum and maximum values that fall within 1.5 times the height of the box. 

Different letters above bars indicate differences between treatments for each species (P < 0.05, 

after PERMANOVA analysis). BuZo, Buellia zoharyi; DiDi, Diploschistes diacapsis; PsoDe, 

Psora decipiens; SquLe, Squamarina lentigera;  W, warming and W+RR, warming and rainfall 

reduction.

Fig. 2 Effects of climate change treatments on soil properties, as measured with the Relative 

Interaction Intensity (RII) index. Panels show RII indices for soil (a) total carbon (C) content; (b) 

organic matter content; (c) C isotope ratio (δ13C); (d) total nitrogen (N) concentration; (e) 

dissolved organic N (DON); (f) ammonium concentration ( ; (g) nitrate concentration NH +
4 ) (NO ―

3

); (h) β-glucosidase activity; (i) acid phosphatase activity; and (j) pH. RII indices and 

corresponding CIs above zero indicate a significant (P < 0.05) and positive effect of lichens (all 

species combined) on a given soil property, relative to bare soil, while RII indices and 

corresponding CIs below zero indicate the opposite. Data are mean ± 95% bootstrap CIs. Different 

letters above/below bars indicate differences in the RII index between treatments (P < 0.05, after 

PERMANOVA analysis). β-glu., β-glucosidase activity; A. pho., acid phosphatase activity; W, 

warming and W+RR, warming and rainfall reduction. 

Fig. 3 Effects of lichen species on soil properties, as measured with the Relative Interaction 

Intensity (RII) index. Panels show RII indices for soil (a) total carbon (C) content; (b) organic 

matter content; (c) C isotope ratio (δ13C); (d) total nitrogen (N) concentration; (e) dissolved 

organic N (DON); (f) ammonium concentration ( ; (g) nitrate concentration ); (h) β-NH +
4 ) (NO ―

3

glucosidase activity; (i) acid phosphatase activity; and (j) pH RII indices and corresponding CIs 

above zero indicate a significant (P < 0.05) and positive effect of a given lichen species (all 

treatments combined) on a given soil property, relative to bare soil, while RII indices and 

corresponding CIs below zero indicate the opposite. Data are mean ± 95% bootstrap CIs. Different 

letters above/below bars indicate differences in the RII index between species (P < 0.05, after 

PERMANOVA analysis). β-glu., β-glucosidase activity; A. pho., acid phosphatase activity. BuZo, 

Buellia zoharyi; DiDi, Diploschistes diacapsis; PsoDe, Psora decipiens (PsoDe) and SquLe, 

Squamarina lentigera. A
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 Fig. 4 Non-metric multidimensional scaling (NMDS) ordination plot of soil properties. NMDS 

plot is based on the two axes of a three-dimensional ordination of soil properties to which 

significant lichen carbon (C) and nitrogen (N) composition variables (P < 0.05), represented as 

vectors, showed the highest correlations to ordination (Supporting Information Table S4). Note 

that lichen δ13C values changed from negative to positive after relativization. β-glu., β-glucosidase 

activity; A. pho., acid phosphatase activity. Each point represents a microcosm.

Fig. 5 Relationships between lichen carbon (C) and nitrogen (N) composition variables 

significantly correlated (P < 0.05) to changes in the combination of soil properties (NMDS 

ordination; see Fig. 4) and individual soil properties for each species. Panels show lichen C 

isotope ratio (δ13C) (a,d,g,j), total N content (b,e,h,k) and C:N ratio (c,f,i,l) versus soil dissolved 

organic N concentration (DON) (a-c), ammonium concentration (  (d-f), β-glucosidase (g-i) NH +
4 )

and acid phosphatase activity (j-l). Data are mean ± 95% bootstrap CIs. Only individual soil 

variables acting as major drivers of differences in the combination of soil properties (NMDS 

ordination; see Fig. 4) are shown. Relationships between significant biocrust C and N composition 

variables (δ13C, N, C:N) and all individual soil properties are available in Supporting Information 

Figs S5–S7. β-glu., β-glucosidase activity; A. pho., acid phosphatase activity.
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Supporting Information

Additional supporting information may be found in the online version of this article.

 

Fig. S1 Lichen species used and experimental work.

Fig. S2 View of the experimental site (a) and details of simulated climate change treatments: 

warming, consisting of OTC (b), and the combination of warming and reduced precipitation, 

consisting of OTC + rainfall shelter (c). 

Fig. S3 Differences in air temperature between climate change treatments (warming and warming 

+ rainfall reduction) and control plots.

Fig. S4 Changes in each soil property for the studied species under simulated climate change. 

Fig. S5. Relationships between lichen C and N composition variables (δ13C, N, C:N)  significantly 

correlated (P < 0.05) to changes in the combination of soil properties (NMDS ordination; see Fig. 

4) and C-related individual soil properties for each species. 

Fig. S6. Relationships between lichen C and N composition variables (δ13C, N, C:N)  significantly 

correlated (P < 0.05) to changes in the combination of soil properties (NMDS ordination; see Fig. 

4) and N-related individual soil properties for each species. 

Fig. S7. Relationships between lichen C and N composition variables (δ13C, N, C:N)  significantly 

correlated (P < 0.05) to changes in the combination of soil properties (NMDS ordination; see Fig. 

4) and β-glucosidase activity (β-glu.,), acid phosphatase activity (A. pho.), and pH for each 

species.

Table S1 Results of the one-way PERMANOVA analysis for lichen C and N composition 

variables based on species data.

Table S2 Results of the two-way (species and climate change treatments) PERMANOVA analysis 

for RII values for each soil variable.

Table S3 Correlation coefficients between lichen C and N composition variables and changes in 

the combination of soil properties (NMDS ordination; see Fig. 4).

Table S4 Results of the two-way (species and climate change treatments) PERMANOVA analysis 

for soil data.

Table S5 Results of the two-way (species and climate change treatments) PERMANOVA analysis 

for each soil variable.A
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