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Abstract—Currently, Coronavirus disease (COVID-19),
one of the most infectious diseases in the 21st cen-
tury, is diagnosed using RT-PCR testing, CT scans and/or
Chest X-Ray (CXR) images. CT (Computed Tomography)
scanners and RT-PCR testing are not available in most
medical centers and hence in many cases CXR images
become the most time/cost effective tool for assisting clin-
icians in making decisions. Deep learning neural networks
have a great potential for building COVID-19 triage systems
and detecting COVID-19 patients, especially patients with
low severity. Unfortunately, current databases do not allow
building such systems as they are highly heterogeneous
and biased towards severe cases. This article is three-
fold: (i) we demystify the high sensitivities achieved by
most recent COVID-19 classification models, (ii) under a
close collaboration with Hospital Universitario Clínico San
Cecilio, Granada, Spain, we built COVIDGR-1.0, a homo-
geneous and balanced database that includes all levels
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of severity, from normal with Positive RT-PCR, Mild, Mod-
erate to Severe. COVIDGR-1.0 contains 426 positive and
426 negative PA (PosteroAnterior) CXR views and (iii) we
propose COVID Smart Data based Network (COVID-SDNet)
methodology for improving the generalization capacity of
COVID-classification models. Our approach reaches good
and stable results with an accuracy of 97.72% ± 0.95%,
86.90% ± 3.20%, 61.80% ± 5.49% in severe, moderate and
mild COVID-19 severity levels. Our approach could help in
the early detection of COVID-19. COVIDGR-1.0 along with
the severity level labels are available to the scientific com-
munity through this link https://dasci.es/es/transferencia/
open-data/covidgr/.

Index Terms—COVID-19, convolutional neural networks,
smart data.

I. INTRODUCTION

IN THE last months, the world has been witnessing how
COVID-19 pandemic is increasingly infecting a large mass

of people very fast everywhere in the world. The trends are
not clear yet but some research confirm that this problem may
persist until 2024 [1]. Besides, prevalence studies conducted in
several countries reveal that a tiny proportion of the population
have developed antibodies after exposure to the virus, e.g., 5%
in Spain.1 This means that frequently a large number of patients
will need to be assessed in small time intervals by few number
of clinicians and with very few resources.

In general, COVID-19 diagnosis is carried out using at least
one of these three tests.

� Computed Tomography (CT) scans-based assessment: it
consists in analyzing 3D radiographic images from dif-
ferent angles. The needed equipment for this assessment
is not available in most hospitals and it takes more than
15 minutes per patient in addition to the time required for
CT decontamination.2

� Reverse Transcription Polymerase Chain Reaction (RT-
PCR) test: it detects the viral RNA from sputum or

1[Online]. Available: https://english.elpais.com/society/2020-05-14/
antibody-study-shows-just-5-of-spaniards-have-contracted-the-coronavirus.
html

2[Online]. Available: //www.acr.org/Advocacy-and-Economics/ACR-
Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-
Suspected-COVID19-Infection
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Fig. 1. The stratification of radiological severity of COVID-19. Examples of how RALE index is calculated.

nasopharyngeal swab [2]. It requires specific material and
equipment, which are not easily accessible and it takes at
least 12 hours, which is not desirable as positive COVID-
19 patients should be identified and tracked as soon as pos-
sible. Some studies found that RT-PCR results from several
tests at different points from the same patients were vari-
able during the course of the illness producing a high false-
negative rate [3]. The authors suggested that RT-PCR test
should be combined with other clinical tests such as CT.

� Chest X-Ray (CXR): The required equipment for this
assessment are less cumbersome and can be lightweight
and transportable. In general, this type of resources is more
available than the required for RT-PCR and CT-scan tests.
In addition, CXR test takes about 15 seconds per patient
[2], which makes CXR one of the most time/cost effective
assessment tools.

Few recent studies provide estimates on expert radiologists
sensitivity in the diagnosis of COVID-19 based on CT scans,
RT-PCR and CXR. A study on a set of 51 patients with chest

CT and RT-PCR essay performed within 3 days, reported a
sensitivity in CT of 98% compared with RT-PCR sensitivity
of 71% [4]. A different study on 64 patients (26 men, mean age
56 ± 19 years) reported a sensitivity of 69% for CXR compared
with 91% for initial RT-PCR [2]. According to an analysis of 636
ambulatory patients [5], most patients presenting to urgent care
centers with confirmed coronavirus disease 2019 have normal or
mildly abnormal findings on CXR. Only 58.3% of these patients
are correctly diagnosed by the expert eye.

In a recent study [2], authors proposed simplifying the quan-
tification of the level of severity by adapting a previously defined
Radiographic Assessment of Lung Edema (RALE) score [6] to
COVID-19. This new score is calculated by assigning a value
between 0-4 to each lung depending on the extent of visual
features such as, consolidation and ground glass opacities, in the
four parts of each lung as depicted in Fig. 1. Based on this score,
experts can identify the level of severity of the infection among
four severity stages, Normal 0, Mild 1-2, Moderate 3-5 and
Severe 6-8. In practice, a patient classified by expert radiologist
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as Normal can have positive RT-PCR. We refer to these cases as
Normal-PCR+. Expert annotation adopted in this work is based
in this score.

Automated image analysis via Deep learning (DL) models
have a great potential to optimize the role of CXR images
for a fast diagnosis of COVID-19. A robust and accurate DL
model could serve as a triage method and as a support for
medical decision making. An increasing number of recent works
claim achieving impressive sensitivities > 95%, far higher than
expert radiologists. These high sensitivities are due to the bias
in the most used COVID-19 dataset, COVID-19 Image Data
Collection [7]. This dataset includes a very small number of
COVID-19 positive cases, coming from highly heterogeneous
sources (at least 15 countries) and most cases are severe patients,
an issue that drastically reduces its clinical value. To populate
Non-COVID and Healthy classes, AI researchers are using
CXR images from diverse pulmonary disease repositories. The
obtained models will have no clinical value as well since they
will be unable to detect patients with low and moderate severity,
which are the target of a clinical triage system. In view of this
situation, there is still a huge need for higher quality datasets built
under the same clinical protocol and under a close collaboration
with expert radiologists.

Multiple studies have proven that higher quality data ensures
higher quality models. The concept of Smart Data refers to
the process of converting raw data into higher quality data
with higher concentration of useful information [8]. Smart data
includes all pre-processing methods that improve value and
veracity of data. Examples of these methods include noise
elimination, data-augmentation [9] and data transformation [10]
among other techniques.

In this work, we designed a high clinical quality dataset,
named COVIDGR-1.0 that includes four levels of severity,
Normal-PCR+, Mild, Moderate and Severe. We identified these
four severity levels from a recent COVID-19 radiological study
[2]. We also propose COVID Smart Data based Network
(COVID-SDNet) methodology. It combines segmentation, data-
augmentation and data transformations together with an appro-
priate Convolutional Neural Network (CNN) for inference.

The contributions of this paper can be summarized as follows:
� We analyze reliability, potential and limitations of the most

used COVID-19 CXR datasets and models.
� From a data perspective, we provide the first public dataset,

called COVIDGR-1.0, that quantifies COVID-19 in terms
of severity levels, normal, mild, moderate and severe,
with the aim of building triage systems with high clinical
value.

� From a pre-processing perspective, we combined several
methods. To eliminate irrelevant information from the
input CXR images, we used a new pre-processing method
called segmentation-based cropping. To increase discrim-
ination capacity of the classification model, we used a
class-inherent transformation method inspired by GANs.

� From a post-processing perspective, we proposed a new
inference process that fuses the predictions of the four
transformed classes obtained by the class-inherent trans-
formation method to calculate the final prediction.

� From a global perspective, we designed a novel method-
ology, named COVID-SDNet, with a high generaliza-
tion capacity for COVID-19 classification based on CXR
images. COVID-SDNet combines segmentation, data-
transformation, data-augmentation, and a suitable CNN
model together with an inference approach to get the final
prediction.

Experiments demonstrate that our approach reaches good and
stable results especially in moderate and severe levels, with
97.72% ± 0.95% and 86.90% ± 3.20% respectively. Lower ac-
curacies were obtained in mild and normal-PCR+ severity levels
with 61.80% ± 5.49% and 28.42% ± 2.58%, respectively.

This article is organized as follows: A review of the most used
datasets and COVID-19 classification approaches is provided in
Section II. Section III describes how COVIDGR-1.0 is built and
organized. Our approach is presented in Section IV. Experi-
ments, comparisons and results are provided in Section V. The
inspection of the model’s decision using heatmaps is provided
in Section VI and the conclusions are pointed out in Section VII.

II. RELATED WORKS

The last months have known an increasing number of works
exploring the potential of deep learning models for automating
COVID-19 diagnosis based on CXR images. The results are
promising but still too much work needs to be done at the level
of data and models design. Given the potential bias in this type
of problems, several studies include explication methods to their
models. This section analyzes the advantages and limitations of
current datasets an models for building automatic COVID-19
diagnosis systems with and without decision explication.

A. Datasets

There does not exist yet a high quality collection of CXR
images for building COVID-19 diagnosis systems of high clin-
ical value. Currently, the main source for COVID-19 class is
COVID-19 Image Data Collection [7]. It contains 76 positive and
26 negative PA views. These images were obtained from highly
heterogeneous equipment from all around the world. Another
example of COVID-19 dataset is Figure-1-COVID-19 Chest
X-ray Dataset Initiative [11]. To build Non-COVID classes, most
studies are using CXR from one or multiple public pulmonary
disease data-sets. Examples of these repositories are:

� RSNA Pneumonia CXR challenge dataset on Kaggle [12].
� ChestX-ray8 dataset [13].
� MIMIC-CXR dataset [14].
� PadChest dataset [15].

For instance, COVIDx 1.0 [16] was built by combining three
public datasets: (i) COVID-19 Image Data Collection [7], (ii)
Figure-1-COVID-19 Chest X-ray Dataset Initiative [11] and (iii)
RSNA Pneumonia Detection Challenge dataset [12]. COVIDx
2.0 was built by re-organizing COVIDx 1.0 into three classes,
Normal (healthy), Pneumonia and COVID-19, using 201 CXR
images for COVID class, including PA(PosteroAnterior) and
AP(AnteroPosterior) views (see Table I). Notice that for a correct
learning front view (PA) and back view (AP) cannot be mixed
in the same class.
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TABLE I
A BRIEF DESCRIPTION OF COVIDX DATASET [7] (ONLY PA VIEWS ARE

COUNTED)

Although the value of these datasets is unquestionable as they
are being useful for carrying out first studies and reformulations,
they do not guarantee useful triage systems for the next reasons.
It is not clear what annotation protocol has been followed
for constructing the positive class in COVID-19 Image Data
Collection. The included data is highly heterogeneous and hence
DL-models can rely on other aspects than COVID visual features
to differentiate between the involved classes. This dataset does
not provide a representative spectrum of COVID-19 severity
levels, most positive cases are of severe patients [17]. In addition,
an interesting critical analysis of these datasets has shown that
CNN models obtain similar results with and without eliminating
most of the lungs in the input X-Ray images [18], which confirms
again that there is a huge need of COVID-19 datasets with high
clinical value.

Our claim is that the design of a high quality dataset must
be done under a close collaboration between expert radiologists
and AI experts. The annotations must follow the same protocol
and representative numbers of all levels of severity, especially
Mild and Moderate levels, must be included.

B. DL Classification Models

Existing related works are not directly comparable as they
consider different combinations of public data-sets and different
experimental setup. A brief summary of these works is provided
in Table II.

The most related studies to ours as they proposed different
models to the typical ones are [16] and [19]. In [16], the authors
designed a deep network, called COVIDNet. They affirmed
that COVIDNet reaches an overall accuracy of 92.6%, with
97.0% sensitivity in Normal class, 90.0% in Non-COVID-19
and 87.1% in COVID-19. The authors of a smaller network,
called COVID-CAPS [19], also claim that their model achieved
an accuracy of 98.7%, sensitivity of 90%, and specificity of
95.8%. These results look too impressive when compared to
expert radiologist sensitivity, 69%. This can be explained by the
fact that the used dataset is biased to severe COVID cases [17].
In addition, the performed experiments in both cited works are
not statistically reliable as they were evaluated on one single
partition. The stability of these models, in terms of standard
deviation, has not been reported.

C. DL Classification Models With Explanation
Approaches

Several interesting explanations were proposed to help in-
spect the predictions of DL-models [21], [22] although all their
classification models were trained and validated on variations
of COVIDx. The authors in [21] first use an ensemble of two

CNN networks to predict the class of the input image, as Normal,
Pneumonia or COVID. Then highlight class-discriminating re-
gions in the input CXR image using gradient-guided class activa-
tion maps (Grad-CAM++) and layer-wise relevance propagation
(LRP). In [22], the authors proposed explaining the decision of
the classification model to radiologists using different saliency
map types together with uncertainty estimations (i.e., how cer-
tain is the model in the prediction).

III. COVIDGR-1.0: DATA ACQUISITION,
ANNOTATION AND ORGANIZATION

Instead of starting with an extremely large and noisy dataset,
one can build a small and smart dataset then augment it in a way
it increases the performance of the model. This approach has
proven effective in multiple studies. This is particularly true in
the medical field, where access to data is heavily protected due
to privacy concerns and costly expert annotation.

Under a close collaboration with four highly trained radiolo-
gists from Hospital Universitario Clínico San Cecilio, Granada,
Spain, we first established a protocol on how CXR images are
selected and annotated to be included in the dataset. A CXR
image is annotated as COVID-19 positive if both RT-PCR test
and expert radiologist confirm that decision within less than 24
hours. CXR with positive PCR that were annotated by expert
radiologists as Normal are labeled as Normal-PCR+. The in-
volved radiologists annotated the level of severity of positive
cases based on RALE score as: Normal-PCR+, Mild, Moderate
and Severe.

COVIDGR-1.0 is organized into two classes, positive and
negative. It contains 852 images distributed into 426 positive and
426 negative cases, more details are provided in Table III. All
the images were obtained from the same equipment and under
the same X-ray regime. Only PosteriorAnterior (PA) view is
considered. COVIDGR-1.0 along with the severity level labels
are available to the scientific community through this link:
https://dasci.es/es/transferencia/open-data/covidgr/.

IV. COVID-SDNET METHODOLOGY

In this section, we describe COVID-SDNet methodology in
detail, covering pre-processing to produce smart data, including
segmentation and data transformation for increasing discrimi-
nation between positive and negative classes, combined with a
deep CNN for classification.

One of the pieces of COVID-SDNet is the CNN-based clas-
sifier. We have selected Resnet-50 initialized with ImageNet
weights for a transfer learning approach. To adapt this CNN to
our problem, we have removed the last layer of the net and added
a 512 neurons layer with ReLU activation and a two or four
neurons layer (according to the considered number of classes)
with softmax activation.

LetX be the set ofn images andK the total number of classes.
Each image xi ∈ X has a true label yi with i = 1, 2, . . . , n.
The softmax function computes the probability that an image
belongs to class k with k = 1, . . . ,K. Let w = (w1, . . . , wK)
be the output of the last fully connected layer before the soft-
max activation is applied. Then, this function is defined as:
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TABLE II
SUMMARY OF RELATED WORKS THAT ANALYZE VARIATIONS OF COVIDX WITH CNN

TABLE III
A BRIEF SUMMARY OF COVIDGR-1.0 DATASET. ALL SAMPLES IN COVIDGR 1.0 ARE SEGMENTED CXR IMAGES CONSIDERING ONLY PA VIEW

softmax : RK → [0, 1]K ,

softmax(w)j =
exp(wj)∑K
k=1 exp(wk)

.

Let ŷi be the class prediction of the network for the image xi,
then ŷi = argmax(softmax(w)), where w is the output vector
of the last layer before softmax is applied for the input xi.

All the layers of the network were fine-tuned. We used a batch
size of 16 and SGD as optimizer.

The main stages of COVID-SDNet are three, two associated
to pre-processing for producing quality data (smart data stages)
and the learning and inference process. A flowchart of COVID-
SDNet is depicted in Fig. 2.

1) Segmentation-Based Cropping: Unnecessary Information
Elimination: Different CXR equipment brands include different
extra information about the patient in the sides and contour of
CXR images. The position and size of the patient may also imply
the inclusion of more parts of the body, e.g., arms, neck, stomach.
As this information may alter the learning of the classification
model, first, we segment the lungs using the U-Net segmentation
model provided in [24], pre-trained on Tuberculosis Chest X-ray
Image datasets [25] and RSNA Pneumonia CXR challenge
dataset [12]. Then, we calculate the smallest rectangle that
delimits the left and right segmented-lungs. Finally, to avoid
eliminating useful information, we add 2.5% of pixels to the left,
right, up and down sides of the rectangle. The resulting rectangle
is cropped. An illustration with example of this pre-processing
is shown in Fig. 3.

2) Class-Inherent Transformations Network: To increase the
discrimination capacity of the classification model, we used,
FuCiTNet [10], a Class-inherent transformations (CiT) Network
inspired by GANs (Generative Adversarial Networks). This
transformation method is actually an array of two generators
GP and GN, where P refers to the positive class and N refers to
the negative class. GP learns the inherent-class transformations

of the positive class P andGN learns the inherent-class transfor-
mations of the negative class N. In other words, GP learns the
transformations that bring an input image from its ownk domain,
with k ∈ {P,N}, to the P class domain. Similarly, GN learns
the transformations that bring the input image from its k space,
with k ∈ {P,N}, to the N class space. The classification loss is
introduced in the generators to drive the learning of each specific
k-class transformations. That is, each generator is optimized
based on the following loss function:

Lgenk
= lMSE + 0.006 · lPerceptual + λ · lCE(y == k) (1)

Where lMSE is a pixel-wise Mean Square Error, lPerceptual is
a perception Mean Square Error and lCE is the classifier loss.
The weighted factor λ indicates how much the generator must
change its outcome to suit the classifier. More details about these
transformation networks can be found in [10].

The architecture of the generators consists of 5 identical resid-
ual blocks. Each block has two convolutional layers with 3× 3
kernels and 64 feature maps followed by batch-normalization
layers and Parametric ReLU as activation function. The last
residual block is followed by a final convolutional layer which
reduces the output image channels to 3 to match the input’s
dimensions. The classifier is a ResNet-18 which consists of an
initial convolutional layer with 7× 7 kernels and 64 feature
maps followed by a 3× 3 max pool layer. Then, 4 blocks of
two convolutional layers with 3× 3 kernels with 64, 128, 256
and 512 feature maps respectively followed by a 7× 7 average
pooling and one fully connected layer which outputs a vector of
N elements. ReLU is used as activation function.

Once the generators learn the corresponding transformations,
the dataset is processed using GP and GN. Two pair of im-
ages (x+

i ,x
−
i ) will be obtained from each input image xi, i =

1, . . . , n, where x+
i and x−

i are respectively the positively and
negatively transformed images of xi. Note that, once the entire
dataset is processed, we have four classes (P+,P−,N+,N−)
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Fig. 2. Flowchart of the proposed COVID-SDNet methodology.

instead the original P and N classes. Let yi be the class of xi,
yi ∈ {P,N}. If yi = P, GP and GN will produce the positive
transformation x+

i with y+i = P+ and the negative transforma-
tion x−

i with y−i = P−, respectively. If yi = N, GP and GN

will produce the positive transformation x+
i with y+i = N+ and

the negative transformation x−
i with y−i = N−, respectively.

Fig. 4 illustrates with example the transformations applied by
GN andGP. Notice that these transformations are not meant to be
interpretable by the human eye but rather help the classification
model better distinguish between the different classes.

3) Learning and Inference Based on the Fusion of CNN
Twins: The CNN classification model described above in
this section (Resnet-50) is trained to predict the new four
classes: P+,P−,N+,N−. The output of the network (af-
ter softmax is applied) for each transformed image associ-
ated to the original one is a vector θ = (θP+, θP−, θN+, θN−),
where θj is the probability of the transformed image to
belong to class j ∈ {P+,P−,N+,N−}. Herein, we pro-
pose an inference process to fuse the output of the two
transformed images x+

i and x−
i to predict the label of the

original image xi. In this way, for each pair (x+
i ,x

−
i ),

the prediction of the original image ŷi will be either P

or N. Let ŷ+i = argmax θ = argmax (θP+, θP−, θN+, θN−)
and ŷ−i = argmaxψ = argmax (ψP+, ψP−, ψN+, ψN−) be the
ResNet-50 predictions for x+i and x−i respectively. Then:

1) If ŷ+i = N+ and ŷ−i = N−, then ŷi = N.

2) If ŷ+i = P+ and ŷ−i = P−, then ŷi = P.
3) If none of the above applies, then

ŷi =

⎧⎨
⎩

N if max(θNj , ψNj) > max(θPj , ψPj),
j ∈ {+,−}

Potherwise .

Experimentally, we used a batch size of 16 and SGD as
optimizer.

V. EXPERIMENTS AND RESULTS

In this section we (1) provide all the information about
the used experimental setup, (2) evaluate two state-of-the-art
COVID classification models and FuCiTNet alone [10] on our
dataset then, analyze (3) the impact of data pre-processing and
(4) Normal-PCR+ severity level on our approach.

A. Experimental Setup

Due to the high variations between different executions, we
performed 5 different 5 fold cross validations in all the ex-
periments. Each experiment uses 80% of COVIDGR-1.0 for
training and the remaining 20% for testing. To choose when
to stop the training process, we used a random 10% of each
training set for validation. In each experiment, a proper set of
data-augmentation techniques is carefully selected. All results,
in terms of sensitivity, specificity, precision, F1 and accuracy, are
presented using the average values and the standard deviation of
the 25 executions. The used metrics are calculated as follows:

recall(positive class) = sensitivity =
TP

actual positives

recall(negative class) = specificity =
TN

actual negatives

precision(positive class) =
TP

predicted positives

precision(negative class) =
TN

predicted negatives

accuracy =
TP+TN

total predictions
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Fig. 3. The segmentation-based cropping pre-processing applied to the input X-ray image.

Fig. 4. Class-inherent transformations applied to a negative sample. a) Original negative sample; b) Negative transformation; c) Positive
transformation.

F1 = 2 · precision · recall
precision + recall

TP and TN refers respectively to the number of true positives
and true negatives.

B. Analysis of COVIDNet and COVID-CAPS

We compare our approach with the two most related ap-
proaches to ours, COVIDNet [16] and COVID-CAPS [19].

� COVIDNet: Currently, the authors of this network provide
three versions, namely A, B and C, available at [26]. A has
the largest number of trainable parameters, followed by B
and C. We performed two evaluations of each network
in such a way that the results will be comparable to
ours.
� First, we tested COVIDNet-A, COVIDNet-B and

COVIDNet-C, pre-trained on COVIDx, directly on our
dataset by considering only two classes: Normal (neg-
ative), and COVID-19 (positive). The whole dataset

(426 positive images and 426 negative images) is eval-
uated. We report in Table IV recall and precision results
for Normal and COVID-19 classes.

� Second, we retrained COVIDNet on our dataset. It is
important to note that as only a checkpoint of each
model is available, we could not remove the last layer
of these networks, which has three neurons. We used
5 different 5 fold cross validations. In order to be
able to retrain COVIDNet models, we had to add a
third Pneumonia class into our dataset. We randomly
selected 426 images from the Pneumonia class in
COVIDx dataset. We used the same hyper-parameters
as the ones indicated in their training script, that is, 10
epochs, a batch size of 8 and a learning rate of 0.0002.
We changed covid_weight to 1 and covid_percent to
0.33 since we had the same number of images in all
the classes. Similarly, we report in Table IV recall and
precision of our two classes, Normal and COVID-19,
and omit recall and precision of Pneumonia class. The
accuracy reported in the same table only takes into
account the images from our two classes. As with our
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TABLE IV
COVIDNET AND COVID-CAPS RESULTS ON OUR DATASET

TABLE V
RESULTS OF COVID-19 PREDICTION USING RETRAINED COVIDNET-CXR A, RETRAINED COVID-CAPS, RESNET-50 WITH AND WITHOUT SEGMENTATION,

FUCITNET AND COVID-SDNET. ALL FOUR LEVELS OF SEVERITY IN THE POSITIVE CLASS ARE TAKEN INTO ACCOUNT

models, we report here the mean and standard deviation
of all metrics.

Although we analyzed all three A, B and C variations of
COVIDNet, for simplicity we only report the results of the
best one.
COVID-CAPS: This is a capsule network-based model
proposed in [19]. Its architecture is notably smaller than
COVIDNet, which implies a dramatically lower number
of trainable parameters. Since the authors also provide a
checkpoint with weights trained in the COVIDx dataset,
we were able to follow a similar procedure than with
COVIDNet:
� First, we tested the pretrained weights using COVIDx

on COVIDGR-1.0 dataset. COVID-CAPS is designed
to predict two classes, so we reused the same architec-
ture with the new dataset and compute the evaluation
metrics shown in Table IV.

� Second, COVID-CAPS architecture was retrained over
the COVIDGR-1.0 dataset. This process finetunes the
weights to improve class separation. The retraining
process is performed using the same setup and hyper-
parameters reported by the authors. Adam optimizer is
used across 100 epochs with a batch size of 16. Class
weights were omitted as with COVIDNet, since this
dataset contains balanced classes in training as well as
in test. Evaluation metrics are computed for five sets
of 5-fold cross-validation test subsets and summarized
in Table IV.

The results from Table IV show that COVIDNet and COVID-
CAPS trained on COVIDx overestimate COVID-19 class in our
dataset, i.e., most images are classified as positive, resulting in
very high sensitivities but at the cost of low positive predictive
value. However, when COVIDNet and COVID-CAPS are re-
trained on COVIDGR-1.0 they achieve slightly better overall
accuracy and a higher balance between sensitivity and speci-
ficity, although they seem to acquire a bias favoring the negative

class. In general, none of these models perform adequately for
the detection of the disease from CXR images in our dataset.

C. Results and Analysis of COVID Prediction

The results of the baseline COVID classification model con-
sidering all the levels of severity, with and without segmentation,
FuCiTNet [10], and COVID-SDNet are shown in Table V.

In general, COVID-SDNet achieves better and more stable
results than the rest of approaches. In particular, COVID-SDNet
achieved the highest balance between specificity and sensitivity
with 76.94± 2.82 F1 in the negative class and 75.71± 3.35
F1 in the positive class. Most importantly, COVID-SDNet
achieved the best sensitivity 72.59± 6.77 and accuracy with
76.18± 2.70. FuCiTNet provides in general good but lower
and less stable results than COVID-SDNet. When comparing
the results of the baseline classification model with and without
segmentation, we can observe that the use of segmentation im-
proves substantially the sensitivity, which is the most important
criteria for a triage system. This can be explained by the fact
that segmentation allows the model to focus on most important
parts of the CXR image.

C. Analysis Per Severity Level

To determine which levels are the hardest to distinguish by
the best approach, we have analyzed the accuracy per sever-
ity level (S), with accuracy(S) = Correctpredictions(S)

Total number(S) , where
S ∈ {Normal-PCR+, Mild, Moderate, Severe}. The results are
shown in Table VI.

As it can be seen from these results, COVID-SDNet correctly
distinguish Moderate and Severe levels with an accuracy of
86.90% and 97.72%, respectively. This is due to the fact that
Moderate and Severe CRX images contain more important
visual features than Mild and Normal-PCR+ which ease the
classification task. Normal-PCR+ and Mild cases are much more
difficult to identify as they contain few or none visual features.
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TABLE VI
RESULTS OF COVID-SDNET PER SEVERITY LEVEL

TABLE VII
RESULTS OF THE BASELINE CLASSIFICATION MODEL WITH SEGMENTATION, COVID-SDNET, RETRAINED COVIDNET-CXR-A AND RETRAINED

COVID-CAPS. ONLY THREE LEVELS OF SEVERITY ARE CONSIDERED, MILD, MODERATE AND SEVERE

TABLE VIII
RESULTS OF COVID-SDNET BY SEVERITY LEVEL WITHOUT CONSIDERING

NORMAL-PCR+

These results are coherent with the clinical studies provided in
[5] and [2] which report that expert sensitivity is very low in
Normal-PCR+ and Mild infection levels. Recall that the expert
eye does not see any visual signs in Normal-PCR+ although
the PCR is positive. Those cases are actually considered as
asymptomatic patients.

D. Analysis of the Impact of Normal-PCR+

To analyze the impact of Normal-PCR+ class on COVID-19
classification, we trained and evaluated the baseline model,
FuciTNet, COVID-SDNet classification stage, COVIDNet-
CXR-A and COVID-CAPS, on COVIDGR-1.0 by eliminating
Normal-PCR+. The results are summarized in Table VII.

Overall, all the approaches systematically provide better re-
sults when eliminating Normal-PCR+ from the training and test
processes, including COVIDNet-CXR-A and COVID-CAPS.
In particular, COVID-SDNet still represents the best and most
stable approach.

E. Analysis Per Severity Level

A further analysis of the accuracy at the level of each severity
degree (see Table VIII) demonstrates that eliminating Normal-
PCR+ decreases the accuracy in Mild and Moderate severity
levels by 15.8% and 1.52% respectively.

These results show that although Normal-PCR+ is the hardest
level to predict, its presence improves the accuracy of lower
severity levels, especially Mild level.

VI. INSPECTION OF MODEL’S DECISION

Automatic DL diagnosis systems alone are not mature yet to
replace expert radiologists. To help clinician making decisions,
these tools must be interpretable so that clinicians can decide
whether to trust the model or not [27]. We inspect what led
our model make a decision by showing the regions of the input
image that triggered that decision along with its counterfactual
explanation by showing the parts that explain the opposite class.
We adapted Grad-CAM method [28] to explain the decision of
the negative and positive class.

Figs. 5, 6, and 7 show (a) the original CXR image, (b) visual
explanation by means of a heat-map that highlights the re-
gions/pixels which led the model to output the actual prediction
and (c) its counterfactual explanation using a heat-map that
highlights the regions/pixels which had the highest impact on
predicting the opposite class. Higher intensity in the heat-map
indicates higher importance of the corresponding pixel in the
decision. The larger higher intensity areas in the heat-map
determine the final class. However, Fig. 8(b) represents first the
counterfactual explanation and Fig. 8(c) represents the explana-
tion of the actual decision.

As expected, negative and positive interpretations are com-
plementary, i.e, areas which triggered the correct decision are
opposite, in most cases, to the areas that triggered the deci-
sion towards negative. In CXR images with different sever-
ity levels, the heat-maps correctly point out opaque regions
due to different levels of infiltrates, consolidations and also to
osteoarthritis.

In particular, in Fig. 5(b), the red areas in the right lung points
out a region with infiltrates and also osteoarthritis in the spine
region. Fig. 6(b) correctly shows moderate infiltrates in the right
lower and lower-middle lung fields in addition to a dilation of
ascending aorta and aortic arch (red color in the center). Fig. 5(c)
shows normal upper-middle fields of both lungs (less important
on the left due to aortic dilation). Fig. 7(b) indicates an important
bilateral pulmonary involvement with consolidations.
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Fig. 5. Heatmap showing the parts of the input image that triggered the positive prediction (b) and counterfactual explanation (c).

Fig. 6. Heatmap showing the parts of the input image that triggered the positive prediction (b) and counterfactual explanation (c).

Fig. 7. Heatmap showing the parts of the input image that triggered the positive prediction (b) and counterfactual explanation (c).

Fig. 8. Heatmap that explains the parts of the input image that triggered the counterfactual explanation (b) and the negative actual prediction (c).
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As it can be observed in Fig. 8(c), the explanation of the
negative class correctly highlights a symmetric bilateral pattern
that occupies a larger lung volume especially in regions with
high density. In fact, a very similar pattern is shown in the
counterfactual explanation of the positive class in Fig. 5(c), 6(c)
and 7(c).

VII. CONCLUSION

This article introduced a dataset, named COVIDGR-1.0,
with high clinical value. COVIDGR-1.0 includes the four main
COVID severity levels identified by a recent radiological study
[2]. We proposed a methodology, called COVID-SDNet, that
combines segmentation, data-augmentation and data transfor-
mation. The obtained results show the high generalization capac-
ity of COVID-SDNet, specially on severe and moderate levels
as they include important visual features. The existence of few
or none visual features in Mild and Normal-PCR+ reduces the
opportunities for improvement.

As main conclusions, we must highlight that COVID-SDNet
can be used in a triage system to detect especially moderate and
severe patients. Finally, we must also mention that more robust
and accurate triage system can be built by fusing our approach
with other approaches such as the one proposed in [29].

As future work, we are working on enriching COVIDGR-1.0
with more CXR images coming from different hospitals. We are
planning to explore the use of additional clinical information
along with CXR images to improve the prediction performance.
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