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Abstract: This study aimed to examine whether the addition of glutathione ethyl ester (GSH-OEt)
to the in vitro maturation (IVM) medium would improve the resilience of bovine oocytes to
withstand vitrification. The effects of GSH-OEt on spindle morphology, levels of reactive oxygen
species (ROS), mitochondrial activity and distribution, and embryo developmental potential were
assessed together with the expression of genes with a role in apoptosis (BAX, BCL2), oxidative-stress
pathways (GPX1, SOD1), water channels (AQP3), implantation (IFN-τ) and gap junctions (CX43)
in oocytes and their derived blastocysts. Vitrification gave rise to abnormal spindle microtubule
configurations and elevated ROS levels. Supplementation of IVM medium with GSH-OEt before
vitrification preserved mitochondrial distribution pattern and diminished both cytoplasmic and
mitochondrial ROS contents and percentages of embryos developing beyond the 8-cell stage were
similar to those recorded in fresh non-vitrified oocytes. Although not significantly different from
control vitrified oocytes, vitrified oocytes after GSH-OEt treatment gave rise to similar day 8-blastocyst
and hatching rates to fresh non-vitrified oocytes. No effects of GSH-OEt supplementation were noted
on the targeted gene expression of oocytes and derived blastocysts, with the exception of GPX1, AQP3
and CX43 in derived blastocysts. The addition of GSH-OEt to the IVM medium before vitrification
may be beneficial for embryo development presumably as the consequence of additional anti-oxidant
protection during IVM.

Keywords: cow; reactive oxygen species; cryopreservation; cryotop; spindle configuration; mitochondria;
embryo development; gene expression

1. Introduction

The successful cryopreservation of mammalian oocytes is useful for assisted reproductive
technologies including animal breeding programs and somatic cell nuclear transfer as this method
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of storage resolves the temporal and spatial limitations of oocyte supplies (for a review, see [1,2]).
Vitrification has proved more efficient and reliable than slow freezing for the cryopreservation of
oocytes of many species including cow [3–5], mouse [6], and human [7,8], among others. However,
despite the increasing interest in this approach and its applications, yields of transferable blastocysts
after the in vitro fertilization of vitrified bovine oocytes remain low [1,9].

The impaired embryo developmental potential of vitrified oocytes has been attributed to
abnormal meiotic spindle assembly, destabilization of the microfilament and microtubular elements
of the cytoskeleton, plasma membrane rupture, premature cortical granule exocytosis, and zona
pellucida hardening, among other factors (reviewed by [1]). Moreover, vitrification severely affects
the morphofunctional integrity of the oocyte’s mitochondria and endogenous antioxidant systems,
with the consequence of increased levels of reactive oxygen species (ROS) [10,11]. The regulation of
intracellular redox potential is a crucial determinant of oocyte competence [12]. If the increased levels of
ROS cannot be eliminated, ROS can cause meiotic spindle disassembly and chromosome misalignment,
mitochondrial damage and ATP depletion [13,14]. Further, ROS can compromise the developmental
capacity of embryos and promote apoptosis in oocytes and early embryos [14,15] by activating the
caspase cascade that executes the apoptotic program [16,17].

Glutathione (GSH), a tripeptide thiol (γ-glutamylcysteinylglycine), is the major non-enzymatic
line of defense against oxidative stress owing to the reducing power of its sulfhydryl group [18].
In effect, intracellular GSH synthesis is a critical part of oocyte cytoplasm maturation and relies on
the γ-glutamyl cycle during oocyte maturation. In hamster oocytes, GSH concentrations rise during
germinal vesicle breakdown, peak at metaphase II and rapidly decline in zygotes and embryos at the early
developmental stage [19]. Appropriate GSH reservoirs attained during in vitro maturation (IVM) are
essential for the formation, maintenance and protection of the meiotic spindle against oxidative stress, the
formation of the male pronucleus after fertilization [20] and further embryo development [21]. Oocytes
and early embryos have a limited capacity to synthesize GSH until they develop to the blastocyst stage.
Besides, extracellular GSH cannot penetrate the cell membrane or enter the oocytes/embryos before this
blastocyst stage. Cumulus cells surrounding oocytes play a crucial role in intracellular GSH synthesis
by absorbing thiols such as β-mercaptoethanol and cysteine through gap junctions, which are then
synthesized to GSH through the γ-glutamyl cycle [22]. In fact, the addition of such thiol compounds to
the IVM medium can increase intracellular GSH levels and improve the developmental potential of these
oocytes in several domestic species including pigs [23] and cattle [24]. However, when cumulus cells are
removed during vitrification, this limits the capacity of the oocytes to synthesize GSH, leading to a low
fertilization rate and reduced developmental potential [25]. Thus, although vitrified bovine oocytes can
be stimulated by IVM treatment with β-mercaptoethanol/cysteine to produce high intracellular GSH
levels, this high GSH content was not found to improve a high incidence of multiple aster formation
and the poor potential of fertilized oocytes to develop to the blastocyst stage [26]. This could indicate
that the addition of these small thiols to the IVM medium prior to cryopreservation failed to produce
sufficient amounts of GSH to overcome the negative impacts of vitrification on oocyte metabolism.

Curnow et al. [27,28] showed that 5 mM of glutathione ethyl ester (GSH-OEt), a novel oocyte-
permeable, cumulus cell-independent GSH donor, is able to enhance oocyte GSH levels during
maturation, improving rates of maturation, normal spindle alignment and fertilization in in vitro
matured bovine and primate oocytes. GSH-OEt is a small fat-soluble molecule, which penetrates cell
membranes efficiently and is hydrolyzed to GSH by intracellular esterases. It does not, therefore, rely on
the γ-glutamyl cycle or require energy-dependent transport across cell membranes [29]. When added to
the IVM medium, GSH-OEt has been observed to improve mitochondrial functionality and regulation
of redox homeostasis in vitrified/warmed IVM murine oocytes and has been also related to a more
rapid recovery of spindle birefringence and improved further embryo development [30].

The present study was thus designed to examine the efficacy of 5 mM GSH-OEt added to the in vitro
maturation medium prior to vitrification/warming in terms of its capacity to reduce oxidative stress
and enhance the developmental competence of vitrified bovine oocytes after their in vitro fertilization.
In MII oocytes and blastocysts derived from oocytes supplemented with GSH-OEt, we also assessed the



Int. J. Mol. Sci. 2020, 21, 7547 3 of 22

relative mRNA abundances of genes involved in apoptosis, oxidative-stress pathways, water channels,
implantation and gap junctions.

2. Results

2.1. Meiotic Spindle Status of Vitrified/Warmed Bovine Oocytes after Maturation in IVM Medium
Supplemented with GSH-OEt

Table 1 compares the effects of adding or not 5 mM GSH-OEt to the IVM medium prior to
vitrification on oocyte spindle and chromosome organization. No significant differences in percentages of
metaphase II or normal spindle configuration were observed between treatments. Thus, rates of oocytes
showing an abnormal microtubule configuration were similar in fresh control oocytes and VIT GSH-OEt,
although no differences were observed among VIT GSH-OEt, VIT control and GSH-OEt groups.
However, vitrified control oocytes showed significantly higher percentages of abnormal microtubule
configurations when compared to fresh control oocytes. Detailed images of these normal and abnormal
patterns are provided in Figure 1.

Table 1. Spindle configurations observed in MII bovine oocytes in vitro matured in in vitro maturation
(IVM) medium with or without glutathione ethyl ester (GSH-OEt) before their vitrification.

N MII (%) Normal
Microtubule

Configuration (%) *
Chromosome

Distribution (%) *

Abnormal Absent Abnormal Absent

Control 127 79.4 ± 9.2 74.1 ± 4.4 16.2 ± 5.6 a 9.7 ± 1.1 25.9 ± 8.3 0

GSH-OEt 113 76.5 ± 6.5 65.6 ± 5.7 26.2 ± 9.0 ab 8.1 ± 4.3 33.2 ± 10.6 1.1 ± 1.1

VIT Control 71 60.0 ± 5.6 54.8 ± 7.8 32.7 ± 10.8 b 12.4 ± 1.4 45.2 ± 14.5 0

VIT GSH-OEt 53 57.4 ± 10.7 58.5 ± 8.8 31.1 ± 9.3 ab 10.4 ± 5.8 41.5 ± 14 0
a,b Different letters indicate significant differences (p < 0.05). * Percentage referred to the total number of oocytes at
MII. Data shown as mean ± SEM. Treatment groups: Control, oocytes in vitro matured in IVM medium; GSH-OEt,
oocytes in vitro matured in IVM medium supplemented with 5 mM GSH-OEt; VIT Control, oocytes in vitro matured
in IVM medium and then vitrified on Cryotops followed by warming; VIT GSH-OEt, oocytes in vitro matured in
IVM medium supplemented with 5 mM of GSH-OEt and then vitrified on Cryotops followed by warming.
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Figure 1. Representative confocal laser-scanning photomicrographs of spindle and chromosome 
configurations of IVM bovine oocytes after vitrification with or without GSH-OEt pretreatment. (A) 
Normal barrel-shaped MII spindle with microtubules forming a clear meiotic spindle with 
chromosomes aligned at its equator. (B,C) Abnormal spindle morphology showing partly 
disorganised chromosomes. (D) Abnormal spindle structure associated with a disrupted 
microtubule arrangement and chromosomes appearing condensed. (E) Disrupted microtubule 
shape. Note the decondensation of microtubules and the less condensed appearance of 
chromosomes. (F) Single block of condensed chromatin in the absence of microtubules. Scale bar = 10 
µm. Green, tubulin (Alexa Fluor™ 488); blue, chromosomes (DAPI). The white arrowhead indicates 
polar body and white asterisk indicates cumulus cell nuclei. 

Figure 1. Cont.
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shape. Note the decondensation of microtubules and the less condensed appearance of 
chromosomes. (F) Single block of condensed chromatin in the absence of microtubules. Scale bar = 10 
µm. Green, tubulin (Alexa Fluor™ 488); blue, chromosomes (DAPI). The white arrowhead indicates 
polar body and white asterisk indicates cumulus cell nuclei. 

Figure 1. Representative confocal laser-scanning photomicrographs of spindle and chromosome
configurations of IVM bovine oocytes after vitrification with or without GSH-OEt pretreatment.
(A) Normal barrel-shaped MII spindle with microtubules forming a clear meiotic spindle with chromosomes
aligned at its equator. (B,C) Abnormal spindle morphology showing partly disorganised chromosomes.
(D) Abnormal spindle structure associated with a disrupted microtubule arrangement and chromosomes
appearing condensed. (E) Disrupted microtubule shape. Note the decondensation of microtubules and
the less condensed appearance of chromosomes. (F) Single block of condensed chromatin in the absence
of microtubules. Scale bar = 10 µm. Green, tubulin (Alexa Fluor™ 488); blue, chromosomes (DAPI).
The white arrowhead indicates polar body and white asterisk indicates cumulus cell nuclei.

2.2. ROS Production Detected in Vitrified/Warmed Bovine Oocytes after Their Maturation in IVM with or
without GSH-OEt

Relative ROS levels measured in MII oocytes matured with or without GSH-OEt supplementation
prior to vitrification/warming are shown in Figure 2. Vitrification led to significantly higher levels of
ROS (n = 38; 14.64 ± 1.07) (p < 0.05) when compared to the other treatments. However, oocytes vitrified
after maturation in IVM medium supplemented with 5 mM GSH-OEt (VIT GSH-OEt group n = 40;
11.68 ± 0.55) showed similar ROS levels to control non-vitrified oocytes matured in the absence of
GSH-OEt (Control group n = 65; 10.30 ± 0.18).
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mitochondrial distribution in MII oocytes by labelling them with a cell-permeable MitoTracker® Red 
CM-H2XRos. Detailed images of fluorescence labelling are shown in Figure 3A. As shown in Figure 
3B, vitrification significantly increased mitochondrial oxidative activity in the MII oocytes after IVM 
(n = 48, 3.12 ± 0.24) when compared to other treatments. While significantly lower mitochondrial 
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Figure 2. Effect of adding 5 mM GSH-OEt to the IVM medium before vitrification on relative reactive
oxygen species (ROS) fluorescence intensity in bovine oocytes. a,b,c Different superscript letters within
columns indicate significant differences (p < 0.05). Data are shown as mean ± SEM. Treatment groups:
Control, oocytes in vitro matured in IVM medium; GSH-OEt, oocytes in vitro matured in IVM medium
supplemented with 5 mM GSH-OEt; VIT Control, oocytes in vitro matured in IVM medium and then
vitrified on Cryotops followed by warming; VIT GSH-OEt, oocytes in vitro matured in IVM medium
supplemented with 5 mM of GSH-OEt and then vitrified on Cryotops followed by warming.

2.3. Mitochondrial Activity and Distribution in Vitrified/Warmed Bovine Oocytes after Their Maturation in
IVM Medium Supplemented with GSH-OEt

We examined the effects of GHS-OEt supplementation prior to vitrification/warming on
mitochondrial distribution in MII oocytes by labelling them with a cell-permeable MitoTracker®

Red CM-H2XRos. Detailed images of fluorescence labelling are shown in Figure 3A. As shown in
Figure 3B, vitrification significantly increased mitochondrial oxidative activity in the MII oocytes after
IVM (n = 48, 3.12 ± 0.24) when compared to other treatments. While significantly lower mitochondrial
oxidative activity was observed in fresh control oocytes (n = 44, 1.00 ± 0.05), similar mitochondrial
oxidative activity was observed between non-vitrified GSH-OEt (n = 45, 1.79 ± 0.10) and vitrified
GSH-OEt oocytes (n = 44, 1.99 ± 0.11).

When mitochondrial distribution was assessed (Figure 4A), a significantly higher percentage of
MII oocytes showing a mitochondrial aggregate pattern was observed in the vitrified group (n = 48,
57.40% ± 7.81) when compared to other treatments (Control: n = 44; 20.80% ± 11.02; GSG-OEt: n = 45;
28.80% ± 5.69 and VIT GSH-OEt: n = 44; 34.00% ± 1.84. Figure 4B shows the details of mitochondrial
distribution patterns.
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fluorescence intensity of mitochondrial oxidative activity in oocytes. Treatment groups: Control, 
oocytes in vitro matured in IVM medium; GSH-OEt, oocytes in vitro matured in IVM medium 
supplemented with 5 mM GSH-OEt; VIT Control, oocytes in vitro matured in IVM medium and then 
vitrified on Cryotops followed by warming; VIT GSH-OEt, oocytes in vitro matured in IVM medium 
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Figure 3. Effect of the addition of 5 mM GSH-OEt to the IVM medium before vitrification on mitochondrial
oxidative activity in bovine oocytes. Data are shown as mean + SEM. a,b,c Different superscripts within
columns indicate significant differences (p < 0.05). Representative images of MII oocytes stained with
MitoTracker® Red CM-H2XRos (red) and Hoechst nuclear staining (blue): (A) (i) Control, (ii) GSH-OEt, (iii)
VIT Control, (iv) VIT GSH-OEt. Scale bar = 30 µm. (B) Relative fluorescence intensity of mitochondrial
oxidative activity in oocytes. Treatment groups: Control, oocytes in vitro matured in IVM medium;
GSH-OEt, oocytes in vitro matured in IVM medium supplemented with 5 mM GSH-OEt; VIT Control,
oocytes in vitro matured in IVM medium and then vitrified on Cryotops followed by warming; VIT
GSH-OEt, oocytes in vitro matured in IVM medium supplemented with 5 mM of GSH-OEt and then
vitrified on Cryotops followed by warming.
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GSH-OEt before vitrification/warming are provided in Figure 5. No differences were observed in 
relative abundances of transcripts of genes related to oxidative-stress (GPX1, SOD1), water channels 
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Figure 4. Effect of the addition of 5 mM GSH-OEt to the IVM medium before vitrification on mitochondrial
distribution in bovine oocytes. Data are shown as mean + SEM. a,b Different superscripts within columns
indicate significant differences (p < 0.05). (A) Distribution of MII oocytes according to mitochondrial
distribution pattern: (i) non-aggregated mitochondrial distribution; (ii) aggregated mitochondrial
distribution. (B) Representative images of mitochondrial distribution with MitoTracker® Red CM-H2XRos
(red) and Hoechst nuclear staining (blue). Mitochondrial distribution was categorized according to the
presence or absence of two or more aggregates in the oocyte cytoplasm into (i) non-aggregated or (ii)
aggregated. Scale bar = 30 µm. Treatment groups: Control, oocytes in vitro matured in IVM medium;
GSH-OEt, oocytes in vitro matured in IVM medium supplemented with 5 mM GSH-OEt; VIT Control,
oocytes in vitro matured in IVM medium and then vitrified on Cryotops followed by warming; VIT
GSH-OEt, oocytes in vitro matured in IVM medium supplemented with 5 mM of GSH-OEt and then
vitrified on Cryotops followed by warming.

2.4. Gene Expression in Vitrified/Warmed Bovine Oocytes after Their Maturation in IVM Medium
Supplemented with GSH-OEt

Data on the relative abundances of mRNA transcripts in MII oocytes in vitro matured with
GSH-OEt before vitrification/warming are provided in Figure 5. No differences were observed in relative
abundances of transcripts of genes related to oxidative-stress (GPX1, SOD1), water channels (AQP3) and
apoptosis (BAX, BCL2) as well as in the BAX:BCL2 ratio in MII oocytes, regardless of treatment.
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Figure 5. Box-and-whisker plot showing relative gene expression levels of (A) BAX, (B) BCL2, (C) BAX:BCL2, (D) GPX1, (E) SOD1 and (F) AQP3 in MII bovine oocytes
in vitro matured in IVM medium with or without GSH-OEt before their vitrification. Box compartments represent 25th and 75th percentiles and whiskers represent
maximum and minimum values. The line across the boxes represents the median. BAX, BCL2 associated X, apoptosis regulator; BCL2, BCL2 apoptosis regulator;
GPX1, glutathione peroxidase 1; SOD1, superoxide dismutase 1; AQP3, aquaporin 3. Control, oocytes in vitro matured in IVM medium; GSH-OEt, oocytes in vitro
matured in IVM medium supplemented with 5 mM GSH-OEt; VIT Control, oocytes in vitro matured in IVM medium and then vitrified on Cryotops followed
by warming; VIT GSH-OEt, oocytes in vitro matured in IVM medium supplemented with 5 mM of GSH-OEt and then vitrified on Cryotops followed by warming.



Int. J. Mol. Sci. 2020, 21, 7547 9 of 22

2.5. Developmental Competence and Gene Expression Determined in Embryos Derived from Vitrified/Warmed
Bovine Oocytes In Vitro Matured in IVM Medium with or without GSH-OEt

The effects observed of GSH-OEt supplementation during in vitro maturation before vitrification/

warming on embryo development are detailed in Table 2. Matured non-vitrified oocytes gave rise to a
significantly higher cleavage rate than vitrified oocytes, regardless of GSH-OEt treatment. In vitro
maturation with GSH-OEt led to significantly higher D7 blastocyst rates than those recorded in both
groups of vitrified oocytes but similar to values observed for non-vitrified non-GSH-OEt treated oocytes.
Embryo development up to the 16-cell or blastocyst stage was lower for oocytes vitrified without prior
GSH-OEt treatment compared to non-vitrified oocytes. However, oocytes vitrified after IVM with
GSH-OEt yielded similar 16-cell stage and D8 blastocyst rates than non-vitrified oocytes. Likewise,
while similar hatching D8-blastocyst rates were observed in the oocytes not vitrified and those vitrified
after GSH-OEt treatment, D8 blastocysts derived from non-GSH-OEt-treated vitrified oocytes showed
a significantly lower hatching capacity than oocytes in the non-vitrified groups.

Table 2. Developmental competence of embryos derived from bovine oocytes vitrified/warmed after
their maturation in IVM medium supplemented with GSH-OEt.

n Cleavage Rate
48 hpi

16-Cell Embryo
96 hpi

Blastocyst Yields D8 Blastocysts

D7 Blastocyst D8 Blastocyst nD8 Non-Expanded Expanded Hatched

Control 381 73.09 ± 3.84 a 53.74 ± 8.80 a 14.74 ± 1.71 ab 23.12 ± 5.17 a 85 48.04 ± 14.66 24.85 ± 2.76 27.11 ± 14.70 a

GSH-OEt 307 74.76 ± 3.26 a 45.62 ± 2.95 a 20.18 ± 6.45 a 28.59 ± 8.06 a 84 35.86 ± 9.95 41.48 ± 5.48 22.66 ± 5.40 a

VIT Control 136 42.84 ± 6.88 b 25.48 ± 4.10 b 4.09 ± 1.30 b 5.26 ± 0.58 b 7 44.44 ± 29.40 55.56 ± 29.40 0 b

VIT GSH-OEt 134 45.50 ± 10.16 b 37.54 ± 2.44 ab 6.62 ± 0.81 b 13.78 ± 3.20 ab 20 50.43 ± 12.75 40.04 ± 6.71 9.52 ± 9.52 ab

a,b Different letters indicate significant differences (p < 0.05). * Day 7 and Day 8 blastocyst yields were calculated
as proportions of the total number of oocytes inseminated at 24 hpi (n). Data are shown as mean ± SEM. Control,
oocytes in vitro matured in IVM medium; GSH-OEt, oocytes in vitro matured in IVM medium supplemented with 5
mM GSH-OEt; VIT Control, oocytes in vitro matured in IVM medium and then vitrified on Cryotops followed by
warming; VIT GSH-OEt, oocytes in vitro matured in IVM medium supplemented with 5 mM of GSH-OEt and then
vitrified on Cryotops followed by warming.

Through RT-qPCR, we obtained an overview of the expression levels of seven genes in D8-blastocysts
derived from oocytes vitrified after GSH-OEt treatment (Figure 6). No significant differences in the relative
abundances of genes involved in apoptosis (BAX, BCL2), oxidative-stress (SOD1) and implantation
(IFN-τ) were observed in D8-blastocysts derived from fresh or vitrified/warmed oocytes, regardless
of GSH-OEt treatment (Figure 6A,B,E,G, respectively). Although the abundance of GPX1 transcripts
observed in blastocysts derived from vitrified oocytes previously matured with GSH-OEt did not differ
from levels observed in blastocysts derived from vitrified or fresh non-treated oocytes, blastocysts in
the VIT GSH-OEt group showed significantly higher levels of GPX1 transcripts compared to those
in the non-vitrified GSH-OEt group (Figure 6D). Blastocysts derived from vitrified/warmed oocytes
showed significantly (p < 0.05) higher relative AQP3-transcript abundances than blastocysts derived
from fresh oocytes, regardless of GSH-OEt supplementation during in vitro maturation (Figure 6F).
Expression levels of CX43 gene transcripts were significantly (p < 0.05) higher in D8 blastocysts arising
from vitrified/warmed oocytes matured with GSH-OEt when compared to blastocysts derived from
oocytes in the non-treated vitrified group or both non-vitrified groups (Figure 6H).
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Figure 6. Box-and-whisker plot showing relative gene expression levels of (A) BAX, (B) BCL2, (C) BAX:BCL2 ratio, (D) GPX1, (E) SOD1, (F) AQP3, (G) IFN-τand (H) CX43
in D8 bovine blastocysts derived from oocytes in vitro matured in IVM medium with or without GSH-OEt before their vitrification. Box compartments represent 25th and
75th percentiles and whiskers represent maximum and minimum values. The line across the boxes represents the median. a,b Different letters indicate statistically
significant differences (p < 0.05). BAX, BCL2 associated X, apoptosis regulator; BCL2, BCL2 apoptosis regulator; GPX1, glutathione peroxidase 1; SOD1, superoxide
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GSH-OEt, oocytes in vitro matured in IVM medium supplemented with 5 mM of GSH-OEt and then vitrified on Cryotops followed by warming.
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3. Discussion

The cryopreservation of bovine MII stage oocytes by vitrification induces heat stress and osmotic
stress-causing critical damage to cellular organelles [1,9]. GSH plays an important role in maintaining
a balanced intracellular redox state to protect cells against the harmful effects of oxidative stress [31].
In the present study, GSH-OEt was added as a supplement to the medium during the IVM of bovine
oocytes to examine its protective role against damage induced by the vitrification/warming protocol.

The process of spindle formation and chromosome segregation is particularly sensitive to both the
physical and chemical environment [32]. The correct configuration of these structures is essential in the
events following oocyte fertilization such as meiosis completion, second polar body formation, pronuclei
migration, and first mitotic spindle formation [33]. Disorganization of the meiotic spindles could result
in chromosome dispersion, failure of normal fertilization, and end of development [34]. Increased
ROS levels arising from vitrification can attack microtubules and interfere with spindle formation [13].
In compensation, increased levels of GSH support the correct assembly of microtubules by preventing
ROS from attacking tubulin assembly, and maintain normal spindle function during meiosis [35,36].
When we examined spindle and chromosome behavior by tubulin immunofluorescence in the present
study, we found no differences in percentages of normal-shaped spindles in vitrified and non-vitrified
oocytes, regardless of GSH-OEt treatment. Trapphoff et al. [30] observed that oocytes vitrified after
pre-incubation with GSH-OEt had normal spindles, and while abnormalities were not significantly different
from those detected in fresh controls, they were significantly lower compared to abnormalities observed
directly after warming in vitrified oocytes. However, irrespective of GSH-OEt supplementation, these
authors noted that spindle and chromosome configurations were re-established 2 h after vitrification [30].
This post-warming interval of 2 h at 37 ◦C was likely sufficient to restore spindle structure regardless
of treatment, and could mask the beneficial effects of GSH-OEt pretreatment on spindle morphology.
Contrarily, Li et al. [37] observed that GSH-OEt preincubation improved spindle morphology after
the vitrification of in vivo matured mouse oocytes. Our study revealed that vitrification significantly
increases the percentage of oocytes displaying abnormal microtubule configurations, as reported in
previous studies carried out by our group [38]. However, no differences in abnormal microtubule
configuration were observed in oocytes vitrified after IVM with GSH-OEt when compared to non-vitrified
oocytes. We surmise the spindle may be particularly protected by GSH-OEt, as high levels of this thiol
may prevent oxidation of cysteine sulphydryl-groups of the αß tubulin dimers in microtubules [35,36]
and avoid the oxidation of cellular structures within mitochondria, which are affected by vitrification.

Vitrification induces damage to the endogenous antioxidant systems of oocytes, with consequent
increases in ROS activity produced when metabolism resumes and cytoplasmic damage has been
repaired [39]. In effect, it has been established that ROS levels rise after oocyte vitrification [10,14,37,40].
When ROS levels were assessed in our study, pretreatment with GSH-OEt prior to vitrification reduced
ROS contents to similar levels to those of oocytes in the control non-vitrified group, while ROS levels
in vitrified non-treated oocytes were significantly higher. Similarly, GSH-OEt preincubation improved
mitochondrial distribution and reduced levels of intracytoplasmic ROS in vitrified mouse oocytes
leading to improved embryo development and underlying the beneficial effect of GSH-OEt incubation
prior to vitrification [37].

Mitochondria play a key role in adenosine triphosphate (ATP) generation for oocyte and embryonic
development [41]. It is well known that mitochondria distribution is a dynamic process, and it
is an important indicator of oocyte quality [42]. For example, a uniform, granulated distribution of
active mitochondria in the process of oocyte maturation and also in the early embryo-specific period is
essential for the normal embryo development [43,44]. Disruption of mitochondria has been observed in
vitrified-warmed porcine [45] and bovine [14] oocytes. In the present study, we observed that vitrified
oocytes displayed a higher percentage of oocytes showing a mitochondrial aggregate distribution.
Damage to the cytoskeleton during vitrification might affect the movement of mitochondria within
oocytes [46]. On the contrary, a significantly higher percentage of oocytes showing a homogeneous
distribution of mitochondrion was observed in oocytes vitrified after IVM with GSH-OEt. This result
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reports that in vitro maturation with GSH-OEt preserve the intracellular distribution of mitochondria
after vitrification. This might partially explain the observation that GSH-OEt protects against cytoskeletal
injury during vitrification.

When the mitochondrial oxidative activity was assessed, similar fluorescence intensity was
observed after GSH-OEt treatment in both fresh and vitrified oocytes while non-treated vitrified
oocytes resulted in significantly higher activity. It has already been demonstrated that vitrification may
disrupt redox status, reduce GSH content and increase both cytoplasmic and mitochondrial ROS levels,
as a consequence of a higher energy requirement for the reorganization of organelles after oocyte
vitrification-warming [39,47]. So, our results may indicate that in vitro maturation with GSH-OEt may
have provided to the oocyte with the required levels of GSH to protect the vitrified oocytes from the
oxidative stress induced by the vitrification/warming process.

Although no beneficial effects were observed in terms of cleavage rates, oocyte IVM with GSH-OEt
prior to vitrification produced embryos that were able to overcome the 8-cell barrier and develop to the
D8 blastocyst stage in similar percentages as fresh non-vitrified oocytes. Mechanisms proposed for the
impacts of ROS on the developmental potential of vitrified oocytes have been mitochondrial damage,
ATP depletion, apoptosis, modified calcium levels during fertilization and developmental blocks [48,49].
In our study, IVM with GSH-OEt supplementation helped the embryos to develop beyond the
8-cell block. While only 25.48% of 42.84% of cleaved embryos derived from vitrified oocytes overcame
this block, 37.54% of 45.50% of cleaved embryos derived from oocytes in the VIT-GSH-OEt group reached
the 16-cell stage. This proportion observed in vitrified pretreated oocytes was similar to the rates recorded
in the groups of fresh non-vitrified oocytes. Similar results have been reported in mouse oocytes whereby
preincubation with GSH-OEt helped vitrified mouse oocytes overcome the 2-cell block [37]. Despite the
protective effect of GSH-OEt being appreciable before the 8-16 cell stage, the only mechanism explaining
how GSH-OEt abolished the development block is through the degradation of ROS. Oocytes IVM
with GSH-OEt prior to vitrification gave rise to similar D8 blastocyst rates and hatching abilities to
non-vitrified oocytes, although both percentages were not significantly different than those observed
for non-treated vitrified oocytes. Improved embryo development rates derived from vitrified oocytes
after IVM with GSH-OEt have been also reported in mice [30,37]. The blastocyst rates reported in this
study arising both from fresh or vitrified oocytes are lower compared to data from similar studies
carried out in cattle [27,50,51]. This is likely due to our use of oocytes from cows of 12 to 18 months
of age. As previously observed in our laboratory [52,53], juvenile oocytes are more sensitive to freezing
injury than adult oocytes due to a failure or inability of these oocytes to undergo correct nuclear and
cytoplasmic maturation [54].

ROS and mitochondria play an important role in apoptosis induction. Oxidation of mitochondrial
pores by ROS due to disruption of the mitochondrial membrane potential may trigger the intrinsic
apoptotic pathway [17]. BAX is a pro-apoptotic protein that leads to cell death, whereas BCL2 is
an anti-apoptotic protein that promotes cell survival. The BAX:BCL2 ratio determines whether a
cell survives or undergoes apoptosis [55]. Several studies have examined how cryopreservation
affects the expression of BAX and BCL2 in mammalian oocytes and embryos, but results have been
inconsistent. Our study revealed no differences in transcript abundances of these two genes in oocytes
and their derived embryos after vitrification, in agreement with reports in sheep [56] and mice [57].
However, vitrification has been found to up-regulate both BAX and BCL2 expression in bovine [58,59],
porcine [60,61] and murine [37] oocytes. In a recent study, Li et al. [37] observed that BCL2 expression
was lower in vitrified murine oocytes when compared to vitrified oocytes pretreated with GHS-OEt,
while the BAX expression level was higher in the vitrified group than in the GSH-OEt group.

To examine how supplementation of the IVM medium with 5 mM GSH-OEt affects redox status,
we analyzed two genes involved in ROS scavenging: GPX1 and SOD1. Superoxide dismutase (SOD) is
located in the cytoplasm and neutralizes superoxide anions (O2

-) by converting them to less reactive
H2O2 which can, in turn, be scavenged by glutathione peroxidase (GPX) and catalase (CAT) reactions
to form H2O and O2. The addition of GSH-OEt to the IVM medium did not affect relative expression
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levels of GPX1 and SOD1 in vitrified oocytes compared to non-vitrified oocytes. According to Yan
and Harding [62], the glutathione redox cycle is the protection mechanism against low grade oxidant
stress, while catalase offers more protection against severe oxidant stress. This could explain why
impacts on GPX1 or SOD1 gene expression were not apparent in our vitrified oocytes. Notwithstanding,
the results of studies analyzing GPX1 mRNA expression in fresh and vitrified/warmed oocytes have been
inconsistent. Thus, the vitrification of porcine oocytes led to a significant increase in GPX1-transcript
abundance [60], yet Sprícigo et al. [53] reported a significant decrease in GPX1 gene expression after
the vitrification/warming of bovine oocytes. As in our study, Pereira et al. [60] and Turathum et al. [61]
observed similar abundances of mRNA SOD1 transcripts in both fresh and vitrified oocytes. Although not
significant, we observed higher GPX1 expression in D8 blastocyst derived from vitrified GSH-OEt-treated
oocytes. Studies in cow oocytes have shown that relative GPX1-transcript abundance is higher in
excellent/good blastocysts compared to blastocysts classified as fair, which suggests that higher GPX1
gene expression is associated with greater embryo quality [63].

Aquaporin 3 (AQP3) is a transmembrane channel protein that allows the rapid and passive
movement of water as well as other tiny neutral solutes across the membrane to improve plasma
membrane permeability and blastocyst cavity formation [64]. Thus, an analysis of AQP3-transcript
levels in bovine blastocysts after oocyte vitrification could provide information about the permeability
of the plasma membrane and the capacity for blastocyst cavity formation. Blastocysts derived from
vitrified/warmed oocytes showed a significantly greater abundance of AQP3-transcripts than blastocysts
derived from fresh oocytes. However, blastocysts derived from oocytes supplemented with GSH-OEt
before vitrification showed a trend towards lower AQP3 expression compared to those derived from
non-treated vitrified oocytes. Reduced aquaporin expression has been related to increased resistance to
apoptosis [65]. Accordingly, GSH-OEt supplementation before oocyte vitrification could confer in vitro
produced embryos some protection against apoptosis via AQP3 down-regulation. As no differences in
BAX and BCL2 gene expression levels were observed between our GSH-OEt treated and non-treated
blastocysts derived from vitrified oocytes, further work is needed to confirm this hypothesis.

Levels of embryonic interferon-tau-c2 (IFN-τ) expression and secretion have been described as
indicators of the developmental competence and quality of in vitro produced bovine embryos [66,67].
When levels of mRNA expression IFN-τwere assessed, we observed no differences in D8 blastocysts
produced from fresh or vitrified/warmed in vitro matured bovine MII oocytes, regardless of prior
GSH-OEt treatment. However, connexin 43 (CX43) gene transcripts were significantly upregulated
in embryos derived from vitrified/warmed oocytes that had been in vitro matured in the presence of
GSH-OEt. CX43 expression has been related to compaction and cell-to-cell adhesion [68]. Moreover,
high CX43 expression has been related to better quality embryos and their greater cryotolerance [69].

In conclusion, the results of the present study indicate that GSH-OEt added to the IVM medium
improves the cryotolerance of mature bovine oocytes to vitrification by preserving mitochondrial
distribution pattern, diminishing both cytoplasmic and mitochondrial ROS levels and enhancing
embryo development. No effects of GSH-OEt supplementation prior to vitrification were observed on
the expression of targeted genes in oocytes and their derived blastocysts with the exception of GPX1,
AQP3 and CX43 in blastocysts. These data suggest that while GSH-OEt treatment is unable to fully
rescue the developmental capacity of vitrified warmed oocytes, this additional antioxidant does seem
to improve the resilience of bovine in vitro matured oocytes to the oxidative stress of vitrification.

4. Materials and Methods

4.1. Chemicals and Suppliers

Unless otherwise specified, all chemicals and reagents used in this study were purchased from
Sigma Chemical Co (St. Louis, MO, USA).
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4.2. Oocyte Collection and In Vitro Maturation

The in vitro maturation (IVM), in vitro fertilization (IVF) and in vitro culture (IVC) protocols
followed have been described elsewhere [70]. Briefly, ovaries from postpubertal heifers (12 to 18 months)
were obtained from a local slaughterhouse and shipped to the laboratory in saline solution (0.9% NaCl)
at 35–37 ◦C. Immature cumulus-oocyte complexes (COCs) were aspirated from 3–8 mm antral follicles
and washed in modified Dulbecco’s PBS (PBS supplemented with 36 µg/mL pyruvate, 50 µg/mL
gentamicin and 0.5 mg/mL bovine serum albumin, BSA). Only COCs with more than three compact
layers of cumulus cells and a homogeneous cytoplasm were selected for IVM. Groups of up to 50 COCs
were placed in 500 µL of maturation medium in four-well dishes and cultured for 24 h at 38.5◦C in
a 5% CO2 humidified air atmosphere. The maturation medium (IVM medium) consisted of tissue
culture medium (TCM-199) supplemented with 10% (v/v) fetal bovine serum (FBS), 10 ng/mL epidermal
growth factor and 50 µg/mL gentamicin.

4.3. Oocyte Vitrification and Warming

In vitro matured oocytes were vitrified/warmed as previously described by Morató et al. [38].

4.3.1. Vitrification Protocol

After 22 h of IVM, oocytes were partially denuded by gently pipetting in holding medium
(HM: Hepes-TCM-199 supplemented with 20% (v/v) FBS). Oocytes with only 2–4 layers of cumulus
and corona radiata cells were transferred to HM supplemented with 7.5% (v/v) ethylene glycol (EG)
and 7.5% (v/v) dimethyl sulfoxide (DMSO) for 10 min and then to HM supplemented with 15% (v/v)
DMSO, 15% (v/v) EG, and 0.5 M sucrose for 45 to 60 s. Up to five oocytes were loaded onto the Cryotop
and almost all the solution was removed to leave only a thin layer covering the oocytes. Oocytes were
immediately plunged into liquid nitrogen. The entire process from exposure to the vitrification solution
to plunging in liquid nitrogen was completed within 90 s.

4.3.2. Warming Protocol

Warming was performed by quickly immersing the tip of the Cryotop in the HM supplemented
with 1 M sucrose. After 1 min, oocytes were transferred into HM supplemented with 0.5 M sucrose for
3 min and then to HM for 5 min. Oocytes were then transferred back into the maturation medium and
allow to mature for 2 additional hours at 38.5 ◦C in humidified air containing 5% CO2. Vitrified/warmed
oocytes were assessed for viability according to their morphology under a stereomicroscope. Only
vitrified/warmed oocytes showing a normal morphology (symmetrical shape and no signs of lysis) were
subjected to in vitro fertilization.

4.4. In Vitro Fertilization and Embryo Culture

Commercially available frozen semen from an Asturian bull (ASEAVA, Llanera, Asturias, Spain)
of proven fertility was used in all experimental procedures. The content of a frozen/thawed straw
was layered on top of a Bovipure density gradient (1 mL 40% Bovipure on 1 mL 80% BoviPure;
Nidacon Laboratories AB, Göteborg, Sweden) and centrifuged for 10 min at 300× g. The underlying
sperm pellet was re-suspended in 3 mL of BoviWash (Nidacon International, Göteborg, Sweden) and
pelleted by centrifugation at 300× g for 5 min. Spermatozoa were counted in a Neubauer chamber
and diluted in an appropriate volume of fertilization medium (Tyrode’s medium supplemented with
25 mM bicarbonate, 22 mM Na-lactate, 1 mM Na-pyruvate, 6 mg/mL fatty acid-free BSA and 10 mg/mL
heparin–sodium salt, Calbiochem, Darmstadt, Germany). Up to 50 matured oocytes were transferred
to 250 µL of IVF medium and co-incubated with 250 µL of sperm suspension (final sperm concentration:
1 × 106 spermatozoa/mL) at 38.5◦C in a 5% CO2 humidified air atmosphere.

At the time point 18–20 h post-insemination (hpi), presumptive zygotes were denuded of
cumulus cells by gentle pipetting and transferred to 20 µL culture droplets (1 embryo/µL) under
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mineral oil. The culture medium was synthetic oviductal fluid (SOF) (Caisson Labs, Smithfield, VA,
USA) supplemented with 0.96 mg/mL BSA, 88.6 mg/mL Na-pyruvate, 2% non-essential amino acids,
1% essential amino acids, 0.5% gentamicin and 5% FBS. In vitro culture was conducted at 38.5 ◦C in a 5%
CO2, 5% O2 and 90% N2 humidified atmosphere. Cleavage rates were assessed at 48 h post-insemination
(hpi), 16-cell stage rates at 96 hpi and blastocyst yields on Days 7 (D7) and 8 (D8) post-insemination (pi).
According to IETS standards, D8 embryos were classified into three groups according to the degree of
blastocoel expansion: (a) non-expanded: early blastocysts (stage code 5) and blastocysts (stage code 6);
(b) expanded: expanded blastocysts (stage code 7); and (c) hatched: hatching (stage code 8) or hatched
blastocysts (stage code 9).

4.5. Chromosome and Spindle Organization

After 24 h of IVM, oocytes were denuded of cumulus cells by gentle pipetting and fixed in 2%
(w/v) paraformaldehyde–PBS for 30 min. Oocytes were then permeabilized in Triton X-100 (2.5%
(v/v) in PBS) for 20 min, blocked in 3% BSA (w/v) in PBS for 30 min at 38.5 ◦C, and immunostained
for tubulin and chromatin detection as described previously by Arcarons et al. [71]. Briefly, fixed
oocytes were incubated with mouse anti-α-tubulin monoclonal antibody (Molecular Probes, Paisley, UK;
1:250 dilution) overnight at 4 ◦C, followed by incubation with the anti-mouse IgG antibody Alexa Fluor™

488 (Molecular Probes, Paisley, UK; 1:5000) at 38.5 ◦C for 1 h. Oocytes were washed three times in PBS
at 38.5 ◦C for 5 min after each incubation. Groups of 20 oocytes were mounted on poly L-lysine-treated
coverslips fitted with a self-adhesive reinforcement ring in a 3-µL drop of Vectashield containing
125 ng/mL 4′,6′-diamidino-2-phenylindole hydrochloride (DAPI) (Vysis Inc., Downers Grove, USA) and
flattened with a coverslip. Preparations were sealed with nail varnish and stored at 4 ◦C protected from
light until observation within the following 2 days. An epifluorescence microscope (Axioscop 40FL;
Carl Zeiss, Göttingen, Germany) was used to examine tubulin (Alexa Fluor™ 488; excitation 488 nm)
and chromatin (DAPI; excitation 405 nm). The criteria used to classify chromosome and microtubule
distributions have been described elsewhere [38]. In brief, a normal meiotic spindle was defined as
showing the classic symmetrical barrel shape, with chromosomes aligned regularly in a compact group
along the equatorial plane. In contrast, a spindle structure was recorded as abnormal when there was
microtubule decondensation or partial or total disorganization, or as absent when there was a complete
lack of microtubules. Chromosome organization was considered abnormal when chromosomes were
dispersed or had an aberrant, less condensed appearance or lacking when chromosomes were missing.

4.6. Reactive Oxygen Species

Intracellular ROS levels in oocytes were quantified after IVM by labeling with
2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) following the procedure described by
Castillo-Martín et al. [72] with some modifications. In short, COCs were denuded by gentle pipetting
and washed twice in PBS supplemented with 1 mg/mL of polyvinyl alcohol (PVA). Oocytes with
one visible polar body were then incubated in PBS-PVA supplemented with 5 µM H2DCFDA for
30 min at 38.5 ◦C in a humidified 5% CO2 air atmosphere. Oocytes were washed twice in PBS-PVA,
placed on a slide and covered with a coverslip. Fluorescence emitted by the oocytes was captured
under an inverted epifluorescence microscope (Zeiss Axio Vert.A1, Oberkochen, Germany) using
a filter for 460–500 nm for excitation and 520–560 nm for emission. Fluorescence intensities were
expressed in arbitrary fluorescence units (pixel) [73] using ImageJ software (Version 2.0.0-rc-69/1.52p;
National Institutes of Health, Bethesda, MD, USA). Fluorescence intensities in positive control oocytes
exposed to 2% hydrogen peroxide for 30 min at 38.5 ◦C in a humidified 5% CO2 air atmosphere were
set at 100%, and the relative peroxide levels of the samples calculated with respect to this value.

4.7. Mitochondrial Activity and Distribution

The mitochondrial membrane potential was assessed using the fluorescent probe MitoTracker®

Red CM-H2XRos (MTR-CMH2) (M7513, Molecular Probes, Invitrogen, Eugene, OR, USA) according to
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the manufacturer’s instructions. MitoTracker® Red CM-H2XRos, a reduced form of X-rosamine,
does not fluoresce until it enters an actively respiring cell, where it is oxidized predominantly by
ROS into the fluorescent form, and is retained in mitochondria upon depolarization [74]. MII-stage
oocytes were denuded from the adherence of cumulus cells and were incubated in PBS supplemented
with 500 nM dye for 30 min at 38.5 ◦C in a dark, humidified, 5% CO2 atmosphere. After incubation,
oocytes were washed twice in PBS, fixed in a 2% PFA solution in PBS for 20 min at 38.5 ◦C and rinsed
two times in PBS. Finally, nuclei were counterstained with 0.5 mg/mL of Hoechst 33342 (Molecular
Probes, Invitrogen, Eugene, OR, USA) at 38.5 ◦C for 10 min. Groups of 20 oocytes were mounted
as previously described above. Oocytes were observed in their equatorial plane using a confocal
microscope Leica TCS SP5 (Leica Microsystems GmbH, Mannheim, Germany) at 405 nm for Hoescht
33342 and 561 nm for MitoTracker® Red. ImageJ software (Version 2.0.0-rc-69/1.52p; National Institutes
of Health, Bethesda, MD, USA) was used to quantify the fluorescence intensity of MitoTracker® Red
CM-H2XRos. Fluorescence intensity of the oocytes was measured and normalized to the average in the
non-vitrified control group in each experiment. In addition, the oocytes were classified according to
the distribution of the mitochondria in the cytoplasm, as described previously by Moawad et al. [75]
into ‘aggregated’ or ‘non-aggregated’ according to the presence or absence of two or more aggregates
in the oocyte cytoplasm.

4.8. RNA Extraction, Reverse Transcription and Quantitative Real-Time PCR Analysis

The procedures used for RNA extraction and real-time reverse transcription-quantitative polymerase
chain reaction (RT-qPCR) have been described elsewhere [50]. For gene expression analysis, groups of
30 (MII) or 5 (D8 embryos) were plunged into liquid nitrogen and stored at −80 ◦C. Poly-(A)-RNA was
extracted using the Dynabeads mRNA Direct Extraction Kit (Invitrogen™, Oslo, Norway) according to the
manufacturer’s instructions with minor modifications. For poly-(A)-RNA extraction, pooled samples
were lysed in 50 µL lysis buffer at room temperature for 5 min by gentle pipetting, and the fluid
lysate was then hybridized with 10 mL prewashed beads, also at room temperature, for 5 min with
gentle shaking. After hybridization, poly-(A)-RNA–bead complexes were washed at room temperature
twice in 50µL Washing Buffer A and two further times in 50µL Washing Buffer B. Next, samples were eluted
in 16 µL elution buffer (Tris-HCl) and heated to 70 ◦C for 5 min. Immediately after extraction, 4 µL qScript
cDNAsupermix (Quanta Biosciences; Gaithersburg, MD, USA) was added and reverse transcription
(RT) was performed using oligo-dT primers, random primers, dNTPs and qScript reverse transcriptase.
The RT reaction was run for 5 min at 25 ◦C, followed by 1 h at 42 ◦C to allow the RT-qPCR of mRNA,
and 10 min at 70 ◦C to denature the reverse transcriptase enzyme. After RT, the resulting cDNA was
diluted in 25 µL Tris-HCl (elution solution).

The relative abundance of mRNA transcripts was quantified by qPCR using a 7500 Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA). The qPCR mix contained 10 µL Fast SYBR Green
Master Mix (Applied Biosystems, Foster City, CA, USA), 1.2 µL each primer (300 nM; Life Technologies,
Madrid, Spain) and 2 µL cDNA template. Nuclease-free water was added to make up a final volume
of 20 µL. The PCR amplification consisted of one cycle of denaturation at 95 ◦C for 10 min, followed by
45 cycles of amplification with a denaturation step at 95 ◦C for 15 s, annealing step for 1 min at
60 ◦C (the appropriate annealing temperature for the primers) and a final extension step at 72 ◦C for
40 s. Fluorescence data were acquired during the final extension step. The identity of the amplified
PCR products was verified by melting curve analysis and gel electrophoresis (on a 2% agarose gel
containing 0.1 µg/mL SafeView; Applied Biological Materials, Vancouver, Canada). The melting
protocol consisted of heating the samples from 50 to 95 ◦C and holding at each temperature for 5 s
while monitoring fluorescence. In each run, there were three technical replicates from each of the three
biological replicates per individual gene. Negative controls for the template and for the RT were also
included and amplified by PCR to ensure no cross-contamination.

Five candidate genes (BAX, BCL2, GPX1, SOD1 and AQP3) for MII oocytes and seven genes
(BAX, BCL2, GPX1, SOD1, AQP3, IFN-τ and CX43) for D8 blastocysts were used to perform quantitative
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PCR analysis in comparison with endogenous control genes (peptidylprolyl isomerase A, PPIA;
and H3 histone, family 3A, H3F3A). The comparative threshold cycle (∆∆Ct) method [76] was used
to quantify relative gene expression levels and quantification was normalized to the endogenous
control (housekeeping (HK) genes: PPIA and H3F3A). Fluorescence data were acquired after each
elongation step to determine the threshold cycle for each sample. The threshold cycle, which is set
on the log-linear phase, reflects the PCR cycle number at which the fluorescence generated within a
given reaction is just above background fluorescence. Within this region of the amplification curve,
a difference of one cycle is equivalent to doubling of the amplified PCR product. According to the
comparative Ct method, the ∆Ct value was determined by subtracting the mean between PPIA and H3F3A
Ct values for each sample from the Ct value of each target gene of the sample for each replicate separately.
Calculation of ∆∆Ct involved the subtraction of the ∆Ct value for the fresh oocyte control group from
all the other ∆Ct sample values. Fold differences in relative transcript abundances were calculated
for target genes assuming an amplification efficiency of 100% using the formula 2−∆∆Ct, or Livak and
Schmittgen method [77]. Primer sequences, amplicon size and GenBank accession numbers for each
gene are provided in Table 3. The efficiency of primer amplification was 100%. Non-template controls
were not amplified or returned a Ct value 10 points higher than the average Ct value for all genes.
The experiment was repeated independently three times.

Table 3. Primer sequences used for RT-qPCR relative gene expression analysis.

Symbol GenBank Accession
Number Primer Sequence (5′–3′) Fragment Size

(bp)

BAX NM_173894.1
F: ACCAAGAAGCTGAGCGAGTG

116R: CGGAAAAAGACCTCTCGGGG

BCL2 NM_001166486.1
F: GAGTTCGGAGGGGTCATGTG

211R: TGAGCAGTGCCTTCAGAGAC

GPX1 NM_174076.3
F: CTGAAGTACGTCCGACCAGG

153R: GTCGGTCATGAGAGCAGTGG

SOD1 NM_174615.2
F: ACACAAGGCTGTACCAGTGC

102R: CACATTGCCCAGGTCTCCAA

AQP3 NM_001079794.1
F: GTGGACCCCTACAACAACCC

222R: CAGGAGCGGAGAGACAATGG

IFN-τ AF238612
F: CTGAAGGTTCACCCAGACCC

197R: GAGTCTGTTCATTCGGGCCA

CX43 NM_174068.2
F: TGGAATGCAAGAGAGGTTGAAAGAGG

294R: AACACTCTCCAGAACACATGATCG

PPIA NM_178320.2
F: CATACAGGTCCTGGCATCTTGTCC

108R: CACGTGCTTGCCATCCAACC

H3F3A NM_001014389.2
F: CATGGCTCGTACAAAGCAGA

136R: ACCAGGCCTGTAACGATGAG

Abbreviations: BAX, BCL2 associated X, apoptosis regulator; BCL2, BCL2 apoptosis regulator; GPX1, glutathione
peroxidase 1; SOD1, superoxide dismutase 1; AQP3, aquaporin 3; IFN-τ, interferon-tau-c2; CX43, connexin 43. PPIA,
peptidylprolyl isomerase A, and H3F3A, H3 histone, family 3A (H3-3B), served as housekeeping genes.

4.9. Experimental Design

4.9.1. Meiotic Spindle Status, ROS Production, Mitochondrial Activity and Distribution and Gene
Expression Examined in Vitrified/Warmed Bovine Oocytes after Maturation in IVM Medium with or
without GSH-OEt

After collection, COCs were randomly assigned to two IVM groups: (1) Control: oocytes in vitro
matured in IVM medium and (2) GSH-OEt: oocytes in vitro matured in IVM medium supplemented
with 5 mM GSH-OEt. This GSH-OEt concentration was chosen based on the findings of a previous
study [27]. After 22 h of IVM, half of the oocytes in each IVM group were vitrified/warmed using the
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Cryotop method to give rise to the vitrification groups VIT Control and VIT GSH-OEt and allowed to
recover in their respective IVM media for two additional hours. After 24 h of IVM, a sample of oocytes
from each of the four treatment groups (Control, GSH-OEt, VIT Control and VIT GSH-OEt) was collected
to assess spindle and chromosome configurations (three replicates), ROS production (three replicates)
or mitochondrial oxidative activity and distribution (three replicates). For gene expression, a pool of
oocytes from each group was denuded of cumulus cells by gentle pipetting and 30 oocytes showing
extrusion of the first polar body were collected from each treatment group, snap-frozen in liquid
nitrogen and stored at −80◦C until RNA extraction and RT-qPCR analysis (four replicates).

4.9.2. Developmental Competence and Gene Expression Determined in Embryos Derived from
Vitrified/Warmed Bovine Oocytes In Vitro Matured in IVM Medium with or without GSH-OEt

After collection, COCs were randomly assigned to two IVM groups: (1) Control: oocytes in vitro
matured in IVM medium and (2) GSH-OEt: oocytes in vitro matured in IVM medium supplemented
with 5 mM GSH-OEt. After 22 h of IVM, half of the oocytes in each IVM group were vitrified/warmed
using the Cryotop (VIT Control and VIT GSH-OEt) and allowed to recover in their respective IVM media
for two additional hours. After 24 h of IVM, oocytes in each of the treatment groups (Control, GSH-OEt,
VIT Control and VIT GSH-OEt) were inseminated and in vitro cultured for 8 days. Cleavage rates,
16-cell stage embryos and blastocysts were assessed at 48 hpi, 96 hpi and D7 and D8 pi, respectively.
In each group, D8 embryos were classified as blastocysts (stage code 6), expanded (stage code 7),
or hatching/hatched (stage code 8 and 9), pooled in groups of 5, snap-frozen in liquid nitrogen and
stored at −80 ◦C until RNA extraction and RT-qPCR analysis (three replicates per group).

5. Statistical Analyses

Data were analyzed using statistical package R, Version R 3.4.4. The normality of data distribution
was checked using the Shapiro–Wilk test and homogeneity of variances through the Levene test.
When required, data were linearly transformed into

√
x, arcsin

√
x or log(x) prior to running statistical

tests. A linear mixed-effect followed by a pairwise comparison test (Tukey-adjustment) was used to
assess differences between groups in spindle configuration, ROS production, mitochondrial oxidative
activity and embryo development. The nonparametric Kruskal–Wallis test was used to examine
the percentage in mitochondrial distribution and relative transcript abundances differences among
the treatment groups. The data from the different groups were compared using the nonparametric
Mann–Whitney U test. Significance was set at p ≤0.05.
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