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Abstract: Against the background of a restricted three-body problem consisting of a supergiant
eclipsing binary system, the two primaries are composed of a pair of bright oblate stars whose mass
changes with time. The zero-velocity surface and curve of the problem are numerically studied
to describe the third body’s motion area, and the corresponding five libration points are obtained.
Moreover, the effect of small perturbations, Coriolis and centrifugal forces, radiative pressure, and the
oblateness and mass parameters of the two primaries on the third body’s dynamic behavior is
discussed through the bifurcation diagram. Furthermore, the second- and third-order approximate
analytical periodic solutions around the collinear solution point L3 in two-dimensional plane and
three-dimensional spaces are presented by using the Lindstedt-Poincaré perturbation method.
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1. Introduction

It is well known that Newton’s famous proposition “Principle” took a decisive step in our
understanding of the universe. The origin of the universe is inseparable from the three-body dynamics,
which has always existed since the universe’s birth. It can be said that there are no three-body dynamics;
it is impossible to create a universe [1]. The three-body interactions in the early universe help people
understand the black hole MACHO (abbreviation of MAssive Compact Halo Object) binary formation
and the detectability of gravitational waves in black hole MACHO binaries coalesce [2,3]. In the
theoretical framework of scalar-tensor gravitation, Zhou et al. [4] found that there is a collinear solution
to the three-body problem in the presence of a scalar field, and studied the effect of the scalar field on
this solution and the positions of Lagrange points through numerical examples. For the three-body
problem in the spherical universe, their perturbation theory analysis showed that the rate of precession
of two small and nearly circular solutions of identical particles is proportional to the square root of their
initial distance and inversely proportional to the square of the radius of the universe [5]. In addition,
the three-body problem is also widely used in the evolution of binary systems [6] and the dynamic
analysis of binary asteroids [7,8], as well as other fields in the universe such as dark matter, galaxies,
GW170817 (GW is short for gravitational wave), and Mukhanov-Sasaki Hamiltonian dynamics, and so
forth (see References [9–13] for more information).

The mathematician Poincaré believed periodic solutions to be the unique avenue for solving the
three-body problem. He stated that “what makes these solutions so precious to us, is that they are,
so to say, the only opening through which we can try to enter a place.” There is too much literature
in this area, mainly involving three aspects—qualitative analysis, approximate quantitative solution,
and computer-aided numerical simulation (see References [14–32], and the references therein).
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When considering multiple perturbation factors, Singh et al. did a great deal of work on the
libration points and their stability of various restricted three-body models (see References [33–41]).
These factors mainly include the oblateness of the primaries [35–38,40,41], the oblateness of the third
body [37], and the small perturbation in centrifugal force and Coriolis force [35–41], the radiation
pressure of the primaries [33–41], the changing mass of the primaries over time based on the
Meshcherskii law [34–36], the changing mass of the third body governed by Jeans law [42],
the triaxiality of the primaries [39]. Basic references on oblateness, Coriolis and centrifugal forces,
and radiation pressure can be found in References [43–47].

In addition, some other researchers also discussed the periodic solutions and libration points of the
restricted three-body problem (R3BP) under specific perturbations. For example, Abdullah et al. [48]
investigated the locations and stability of libration points in the circular R3BP with Coriolis and
centrifugal forces under the assumption that the two primaries and the infinitesimal body with variable
masses. Under the assumption that the more massive primary has triaxiality, Abouelmagd et al. [49]
obtained the approximate periodic solution near the collinear libration point of R3BP to the
second-order. Since the star’s isotropic radiation or absorption is one of the factors that cause the mass
of the celestial bodies to change with time, Bekov [50] considered the R3BP of variable masses, in which
the motion of the two primaries was determined by the Gylden-Meshcherskii problem and found the
collinear solutions, as well as the spatial solution and its domains of existence. When the more extensive
primary is an oblate sphere, Zotos [51] numerically studied the dynamic behavior of the circular R3BP
under the initial conditions of the solution are bounded, escaping and collisional, and found that the
oblateness factor has a significant influence on the characteristics of the solutions. Based on the model
of the binary system proposed in Reference [39], Gao and Wang [6] continued to study the analytical
approximate periodic solutions around the collinear libration points. They examined the influence of
the small perturbation in Coriolis and centrifugal forces, the triaxiality, and radiation pressure of the
primaries on the third body’s dynamic behavior through the bifurcation diagram.

In this paper, the effects of small perturbations, Coriolis and centrifugal forces, radiation pressure,
and the oblateness and variable mass of the primaries on the third body’s dynamic behavior will be
discussed numerically through bifurcation diagram in the context of an R3BP consisting of a supergiant
eclipsing binary system. Here we take into account the oblateness, Coriolis and centrifugal forces
together because the oblateness of the primaries will cause both Coriolis force and centrifugal force
to increase (see References [52,53]). By Lindstedt-Poincaré perturbation method, the approximate
analytical solutions of the perturbed third body in two and three dimensions near the collinear libration
points will be obtained. This paper is organized as follows—the motion equations in an autonomous
system will be given in Section 2. The geometry structure of the zero velocity surfaces and curves will
be illustrated in Section 3. Moreover, the bifurcation diagrams of the different perturbation parameters
will be shown in Section 4. Furthermore, the periodic planar and spatial solutions near the collinear
libration points will be obtained by means of Lindstedt-Poincaré in Section 5. In the last Section 6,
conclusions will be stated.

2. Equations of Motion

In a barycentric coordinate Oxyz, consider that two oblate variable-mass radiating primaries
move at an angular velocity ω in a circular orbit around their center of mass. The plane of motion
of the primaries (located on the x-axis) coincides with the x-y plane. The third body of infinitesimal
mass that moves under the gravity of the primaries but does not affect their motion, then the dynamic
governing equations (see Reference [35] or Reference [36] for more details) can be written as follows
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(1)

where r2
i = (x− xi)

2 + y2 + z2 (i = 1, 2) denotes the distance between the ith primary and the third
body, and the two primaries are placed on (x1, 0, 0) and (x2, 0, 0), respectively. For the distance r
between the primaries, x1 = −µ2(t)r/µ(t), x2 = µ1(t)r/µ(t), µ(t) = µ1(t) + µ2(t), µi(t) = f mi(t),
mi(t) represents the mass of the ith primary, f is the gravitational constant. In addition, the parameters
qi and Ai(t) stand for the radiation factor and the varying oblateness of the ith primary, respectively.
The Coriolis force α and centrifugal force β satisfy α = 1 + ε, β = 1 + ε′, here |ε| and |ε′| are the
corresponding small perturbations with values far less than 1. Furthermore, it can be followed from
the reference [36] that the angular velocity holds the following expression

ω2 =
3µ(t)

2κr3(t)

[
2
3
+

A1(t) + A2(t)
r2(t)

]
, (2)

where κ is an arbitrary dimensionless constant of a particular integral rµ(t) = κC2 in
Gyldén-Meshcherskii problem (see References [54–56] for more information), it represents an arbitrary
sum of the masses of the primaries, C is a constant of the area integral. Note that if the masses of
the primaries are constant and the sum κ = 1, then µ(t) = 1 by unitizing the gravitational constant.
In addition, if the distance r between the primaries is 1, and without considering the oblateness of the
second primary, that is, A2(t) = 0. Then Equation (2) is simplified to ω2 = 1 + 3A1(t)/2, which is the
same as the mean motion expression in Reference [47].

We now transform Equations (1) into the autonomous system (u, v, w, τ) by the Meshcherskii’s
transformation (see Reference [35] or Reference [57])

x = u(τ)R(t), y = v(τ)R(t), z = w(τ)R(t), dt/dτ = R2(t), ri = diR(t), (3)

where di is the distance between the third body and the ith primary, R(t) =
√

φt2 + 2ϕt + γ, φ, ϕ and
γ are constants, the unified Meshcherskii law

µ(t) = µ0/R(t), µ1(t) = µ10/R(t), µ2(t) = µ20/R(t), (4)

where µ0, µ10, µ20 are constants, and the particular solutions of Gyldén-Meshcherskii problem,

x1 = u1R(t), x2 = u2R(t), C = d2
12ω0, r = d12R(t), ω = ω0/R2(t), (5)

where d12 is the distance between the two primaries at initial time. Applying transformation Ai(t) =

αiR2(t), here αi =
(

d2
Ei
− d2

Pi

)/(
5d2

12
)
(i = 1, 2) refers to the oblateness of the ith primary at initial

time, dEi and dPi are the equatorial radii and the polar radii of the ith primary, respectively. Similarly,
following Singh and Leke [35], unify the mass and distance at the initial time and introduce the mass
parameter µm which satisfies µ10/µ0 = 1− µm, µ20/µ0 = µm, µm ∈ (0, 1/2] stands for the ratio of the
smaller mass to the total mass of the two primaries, then µ0 = κ, d12 = 1. Therefore, we obtain

ω2 =
3µ0

2κd3
12R4(t)

[
2
3
+

α1R2(t) + α2R2(t)
d2

12R2(t)

]
=

1
R4(t)

[
1 +

3
2
(α1 + α2)

]
. (6)
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It follows from Equation (5) that ω2
0 = 1 + 3(α1 + α2)/2, αi � 1 (i = 1, 2). Then Equations (1) are

reduced to the following form

ü− 2αω0v̇ =
∂Ω
∂u

,

v̈ + 2αω0u̇ =
∂Ω
∂v

,

ẅ =
∂Ω
∂w

,

(7)

with the potential function

Ω =
ω2

0 (β + κ − 1)
2

(
u2 + v2

)
+

ω2
0 (κ − 1)w2

2
+ κ

[
q1 (1− µm)

d1
+

q2µm

d2
+

q1α1 (1− µm)

2d3
1

+
q2α2µm

2d3
2

]
, (8)

where d1 =
√
(u + µm)

2 + v2 + w2 and d2 =
√
(u + µm − 1)2 + v2 + w2 are the distances from the

third body to the two primaries, respectively.

3. Zero Velocity Surfaces and Curves

The level surface of Equation (7) is an energy surface. The projection of this surface onto position
space is named Hill’s region, and its boundary is the zero-velocity surface, on which the velocity of the
third body is zero, so the third body can only move inside the zero-velocity surface. The intersection of
this surface with the x-y plane is known as the zero-velocity curve. Note that Equation (7) admits a
first integral

2Ω−
(

u̇2 + v̇2 + ẇ2
)
= C, (9)

where C is the Jacobi constant and u̇2 + v̇2 + ẇ2 denotes the velocity of the relative motion.
The geometric structure of 2Ω = C in the two-dimensional plane and three-dimensional space is
shown as a series of curves and surfaces for the different Jacobi constants C.

The zero-velocity surface (or curve) with perturbations helps us to analyze the third body’s
dynamic behavior under the influence of a specific perturbation factor, which is different from that of
classical R3BP. For example, when q1 = q2 = 1, α1 = α2 = 0 and α = β = 1, the zero-velocity surface
is different from the classic R3BP due to the presence of κ. For the parameter values presented in
Table 1, Figure 1 shows the four zero-velocity surfaces when κ takes 0.5, 1, 2 and 4, respectively. It is
easy to find that the structure of the zero-velocity surface of Equation (9) is more open as the value of κ

becomes smaller and smaller. Because the geometry of the zero-velocity surface (or curve) will vary
with the value of the Jacobi constant C and κ, we can numerically analyze the zero-velocity surface
(or curve) and then find the libration points of Equation (7). Without loss of generality, now we only
study the surfaces and curves for the case κ = 1.

For 2.82017 ≤ C ≤ 4.16993, the forbidden region of the third body changes with the Jacobi
constant C as shown in Figures 2 and 3. With the decrease of C, five regular libration points L1,
L2, · · · , L5 are discovered gradually and the forbidden region of motion of the third body is shrinking.
More precisely, the third body can only fly in the two ellipsoidal areas around the two primaries
when C = 4.16993, and the two ellipsoidal motion areas are connected together through the “tangent
point” (marked as librarian point L1), and the third body can pass from one primary to the other
through L1 when C < 4.16993, but it cannot fly out of these two ellipsoidal areas. When C = 3.59308,
the peanut-shaped flight area is connected to the outer space through a new “tangent point” L2,
and when the value of C continues to decrease, the third body can only enter the outer space in this
direction. When C drops to 3.57940, we will discover another new “tangent point” in the opposite
direction, which is the libration point L3. At this time the third body can also fly from this direction
to outer space when the value of C continues to decrease. For the Jacobi constant C = 2.82017,



Universe 2020, 6, 110 5 of 25

the symmetrical libration points L4 and L5 appear at the same time. Now the third object can escape
into outer space in any direction around the two primaries. Therefore, as a summary of Figures 2
and 3, the corresponding five planar librations points can be identified as follows L1(0.018995, 0),
L2(1.1989, 0), L3(−1.19261, 0), L4(0.01424987, 0.851953), L5(0.01424987,−0.851953). Besides, there are
several methods for determining the libration points. For example, the total number of collinear
libration points for this problem can also be determined based on the theory of topological degree [58].

Figure 1. Zero velocity surfaces for κ = 0.5, 1, 2 and 4, respectively.

(a) (b)

(c) (d)

Figure 2. Zero-velocity surfaces of the third body for κ = 1: (a) C = 4.16993, (b) C = 3.59308,
(c) C = 3.57940, (d) C = 2.82017.
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Table 1. Physical parameters in Equation (7).

Parameters µm q1 q2 α1 α2 α β

Values 0.48785 0.9988 0.9985 0.024 0.02 1.001 1.002

-2 0 2

-2

0

2

(a)

-2 0 2

-2

0

2

(b)

-2 0 2

-2

0

2

(c)

-2 0 2

-2

0

2

(d)

Figure 3. Zero-velocity curves of the third body: (a) C = 4.16993, (b) C = 3.59308, (c) C = 3.57940,
(d) C = 2.82017.

4. Bifurcation Analysis

We note that the three-body problem has a high degree of complexity due to its dynamic equations’
extremely strong nonlinearity. Any subtle changes in different parameters may substantially change the
third body’s dynamic behavior. Thus, we will analyze the effect of different perturbation parameters
on the third body’s dynamic behavior through the bifurcation diagram. After a large number of
numerical simulations, we select u0 = (−0.08, 0.001, 0.2, 0.002,−1.6, 0.001) as the initial value of the
iteration. Combining the conditions in section 2, we restrict the Coriolis force α and centrifugal force
β to [1, 1.1] in the α-β-u frame, Figure 4a,b show the influence of the perturbation of α and β on the
variables u-v, respectively, and reflect the corresponding chaotic characteristics. However, the joint
perturbation of α and β shows that the amplitude of the third body in u direction no longer changes
when 1.055 < α < 1.1 (see Figure 4c).
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(a)

(b)

(c)

Figure 4. (a–c) Bifurcation diagrams of Coriolis force α and centrifugal force β in the frames αuv, βuv
and αβu, respectively, when κ = 1, µm = 0.48785, q1 = 0.9988, q2 = 0.9985, α1 = 0.024, α2 = 0.02.
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Consider the perturbation range of the oblateness coefficients of the two primaries is [0, 0.1].
As shown in Figure 5a,b, as the oblateness coefficient α1 of the first primary increases, the effect of this
perturbation factor on the third body’s amplitude in u direction gradually increases, but the effect on
the amplitude in v direction gradually decreases. When the oblateness coefficient α2 of the second
primary changes, the third body exhibits apparent chaotic behavior. However, the third body keeps
moving periodically in u direction under the joint action of α1 and α2 (see Figure 5c). This indicates
that the oblateness coefficients play a certain degree of “correction” to the two primaries’ dynamic
behavior so that they can maintain regular motion as much as possible.

For the parameter κ, which represents the arbitrary sum of the primaries’ masses, we only show
the bifurcation diagrams whose value is between 0 and 1. Figure 6a–c clearly show that no matter how
the value of κ changes, it has a considerable influence on the third body’s dynamic behavior. The third
body reflects the intricate, chaotic properties in the frames κ-u-v, κ-u-w, and κ-v-w. It is consistent with
our common sense because the masses of the primaries are closely related to their gravitation, and this
plays a significant role in determining the behavior of the third body in the sphere of gravity.

Next, we show the bifurcation diagrams of the mass parameter µm in the interval (0, 0.5] in
Figure 7. It is easy to find that when µm’s value is small, the mass of one primary is enormous
compared to the other. It has a significant impact on the third body’s amplitude in the three directions
of u, v, and w. When µm = 0.07, the third body’s amplitude in u direction seems to be stable from its
projection (see Figure 7a,b), but it is still apparent in the three-dimensional space. However, when the
value of µm gradually increases, that is, the difference between the masses of the two primaries is
getting smaller and smaller, its influence on the third body’s amplitude in the v direction is gradually
more considerable than that in u and w directions (see Figure 7b,c).

Similarly, we examine the effect of the radiation factors q1 and q2 on the third body’s dynamic
behavior at the interval [0, 1]. Figure 8a,b demonstrate the influence of the radiation factors of the
first and second primaries, respectively, and Figure 8c reflects the impact of the two radiation factors
acting simultaneously. As shown in Figure 8a,b, the radiation factor q1 or q2 has almost the same
influence on the third body’s movement in u and v directions. However, the influence of q1 on the third
body’s amplitude is greater than that of q2, especially when q1 < 0.57 or 0.67 < q1 < 0.85. In contrast,
the impact of q2 is much more moderate. Figure 8c shows that when q1 ≤ 0.0202, regardless of how
q2 changes, the amplitude of the third body changes little in the u direction. In other words, the two
radiations from the two primaries in the current state have almost little effect on the dynamic behavior
of the third body in the u direction, which may be due to the weak radiation of the first primary.
However, when q1 ∈ [0.0202, 0.3434], the third body’s amplitude has a significant change, even if
q2 is very small. When the value of q1 is greater than 0.3434, the third body exhibits approximately
symmetrical motion in a larger area under the joint action of q1 and q2.
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Figure 5. (a–c) Bifurcation diagrams of oblateness coefficient of the ith (i = 1, 2) primary in the
frames α1uv, α2uv and α1α2u, respectively, when κ = 1, µm = 0.48785, q1 = 0.9988, q2 = 0.9985,
α = 1.001, β = 1.002.
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Figure 6. (a–c) Bifurcation diagrams of the arbitrary sum κ of the masses of the primaries in the
frames κuv, κuw and κvw, respectively, when µm = 0.48785, q1 = 0.9988, q2 = 0.9985, α1 =

0.024, α2 = 0.02, α = 1.001, β = 1.002.
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Figure 7. (a–c) Bifurcation diagrams of the mass parameter µm in the frames µmuv, µmuw and
µmvw, respectively, when κ = 1, q1 = 0.9988, q2 = 0.9985, α1 = 0.024, α2 = 0.02, α = 1.001,
β = 1.002.
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Figure 8. (a–c) Bifurcation diagrams of radiation factor of the ith (i = 1, 2) primary in the frames
q1uv, q2uv and q1q2u, respectively, when κ = 1, µm = 0.48785, α1 = 0.024, α2 = 0.02, α =

1.001, β = 1.002.
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5. Periodic Solutions near the Collinear Libration Points

5.1. Expansion of Two-Dimensional Dynamic Equations

The third body’s equations of motion in the u-v plane are

ü− 2αω0v̇ = Uu,

v̈ + 2αω0u̇ = Uv,
(10)

where the potential function

U =
ω2

0 (β + κ − 1)
2

(
u2 + v2

)
+ κ

[
q1 (1− µm)

da
+

q2µm

db
+

q1α1 (1− µm)

2d3
a

+
q2α2µm

2d3
b

]
, (11)

where da =
√
(u + µm)

2 + v2 and db =
√
(u + µm − 1)2 + v2 are the distances from the third body to

two primaries respectively. Then the right hand side of Equation (10) can be written as

Uu = ω2
0 (β + κ − 1) u− q1κ (1− µm) (u + µm)

d3
a

− q2κµm (u + µm − 1)
d3

b
− 3q1κα1 (1− µm) (u + µm)

2d5
a

− 3q2κα2µm (u + µm − 1)
2d5

b
,

Uv = ω2
0 (β + κ − 1) v− q1κ (1− µm) v

d3
a

− q2κµmv
d3

b
− 3q1κα1 (1− µm) v

2d5
a

− 3q2κα2µmv
2d5

b
.

(12)

Now we study the periodic solutions of the third body around the collinear libration points Li
(i = 1, 2, 3), and uLi is the specific coordinate corresponding to Li. By letting u = uLi + ξ and v = η,
then Equation (10) are reduced to the following form

ξ̈ − 2αω0η̇ = Uξ ,

η̈ + 2αω0ξ̇ = Uη .
(13)

Expanding the right hand side of Equation (13) to the second-order yields

ξ̈ − 2αω0η̇ = K1ξ + K2ξ2 + K3η2,

η̈ + 2αω0ξ̇ = P1η + P2ξη,
(14)

and to the third-order in the same way, then we obtain

ξ̈ − 2αω0η̇ = K1ξ + K2ξ2 + K3η2 + K4ξ3 + K5ξη2,

η̈ + 2αω0ξ̇ = P1η + P2ξη + P3η3 + P4ξ2η,
(15)

where corresponding coefficients can be found in Appendix A.

Two-Dimensional Periodic Solutions

Assuming that the periodic solutions for Equation (14) with respect to orbital parameter e (|e| � 1)
have the following form

ξ = ξ1e + ξ2e2,

η = η1e + η2e2.
(16)

Substituting Equation (16) into Equation (14) and comparing the terms with the same power of e,
we have
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ξ̈1 − 2αω0η̇1 − K1ξ1 = 0,

η̈1 + 2αω0ξ̇1 − P1η1 = 0,
(17)

and

ξ̈2 − 2αω0η̇2 − K3η2
1 − K1ξ2 − K2ξ2

1 = 0,

η̈2 + 2αω0ξ̇2 − P1η2 − P2ξ1η1 = 0.
(18)

By using the Lindstedt-Poincaré perturbation method (see Chapter 5 in [59] for more details),
the periodic solution of Equation (17) can be written as

ξ1 = a1 cos (vt) + b1 sin (vt) ,

η1 = a2 cos (vt) + b2 sin (vt) ,
(19)

with period T = 2π/v.
Substituting Equation (19) into Equation (17) and comparing the coefficients of sin (vt) and

cos (vt), then we get (
K1 + v2

)
a1 + 2αω0vb2 = 0,

2αω0va1 +
(

P1 + v2
)

b2 = 0,
(20)

and (
K1 + v2

)
b1 − 2αω0va2 = 0,

− 2αω0vb1 +
(

P1 + v2
)

a2 = 0.
(21)

According to the homogeneous linear Equations (20) and (21), in order to get a nonzero solution,
the corresponding determinant satisfies

v4 +
(

K1 + P1 − 4α2ω2
0

)
v2 + K1P1 = 0, (22)

then we set a1 = 1, b1 = 0, and substitute them into Equations (20) and (21) respectively, such that
a2 = 0 and b2 = −2αω0v

/(
P1 + v2), so the periodic solution of Equation (17) is

ξ1 = cos (vt) ,

η1 = b2 sin (vt) .
(23)

Similarly, we write the periodic solution of Equation (18) as

ξ2 = a3 + a4 cos (vt) + a5 cos (2vt) + b3 sin (vt) + b4 sin (2vt) ,

η2 = a6 cos (vt) + a7 cos (2vt) + b5 sin (vt) + b6 sin (2vt) .
(24)

By using the same method as above, we obtain

ξ2 = a3 + a5 cos (2vt) ,

η2 = b6 sin (2vt) .
(25)

Accordingly, the periodic solution of the Equation (14) with respect to e writes

ξ = ξ0 + cos (vt) e + [a3 + a5 cos (2vt)] e2,

η = b2 sin (vt) e + b6 sin (2vt) e2,
(26)
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where (ξ0, 0) is the coordinate of the collinear libration point.
For Equation (15), suppose that the periodic solution in powers of parameter e takes the form

ξ = ξ1e + ξ2e2 + ξ3e3,

η = η1e + η2e2 + η3e3.
(27)

Substituting Equation (27) into Equation (15) and comparing the terms with the same power of e.
We obtain three sets of equations, of which the first two sets are identical to Equations (17) and (18)
respectively, and the third set of equations has the form

ξ̈3 − 2αω0η̇3 = K1ξ3 + 2K2ξ1ξ2 + 2K3η1η2 + K4ξ3
1 + K5ξ1η2

1 ,

η̈3 + 2αω0ξ̇3 = P1η3 + P2ξ1η2 + P2ξ2η1 + P3η3
1 + P4ξ2

1η1.
(28)

Let the periodic solution of Equations (28) be

ξ3 = a8 cos (vt) + a9 cos (2vt) + a10 cos (3vt) + b7 sin (vt) + b8 sin (2vt) + b9 sin (3vt) ,

η3 = a11 cos (vt) + a12 cos (2vt) + a13 cos (3vt) + b10 sin (vt) + b11 sin (2vt) + b12 sin (3vt) .
(29)

Substituting Equations (23), (25) and (29) into Equation (28), and comparing the coefficients of
sin (jvt) and cos (jvt) (j = 1, 2, 3) respectively, then we have

ξ3 = a10 cos (3vt) ,

η3 = b12 sin (3vt) ,
(30)

where the expressions of a10 and b12 can be found from Appendix B.
Therefore, the periodic solution of Equation (15) in powers of parameter e becomes

ξ = ξ0 + cos (vt) e + [a3 + a5 cos (2vt)] e2 + a10 cos (3vt) e3,

η = b2 sin (vt) e + b6 sin (2vt) e2 + b12 sin (3vt) e3,
(31)

where the expression of coefficients, please refer to Appendix B again.
Note that different values of κ not only determine the positions of the libration points, but also

affect the shape of the second- and third-order periodic solutions through Equation (22). This is
because the coefficients of Equation (22) are related to κ (see Appendix A for details). In order to
better illustrate the approximate periodic solution obtained above, we show the phase portraits of the
above approximate analytical periodic solutions near the libration point L3 under the four cases of
κ = 0.5, 1, 2, and 4 respectively (see Figure 9a,d). When the value of κ is small, it is easy to find that
the difference between the second- and the third-order approximate periodic solution is insignificant
(see Figure 9a,b). Especially for the periodic solutions in Figure 9a, the second- and third-order
approximate analytical periodic solutions on the two-dimensional plane around L3 agree very well,
and they are almost indistinguishable visually. In this state, the second-order approximate periodic
solution can be regarded as the alternative to the third-order case. If the values of other parameters
remain unchanged, we can easily find from Figure 9c,d that the difference between the second- and
third-order approximate periodic solutions become more and more significant as κ increases. Therefore,
we can conclude according to Figure 9 that the smaller the value of κ, the better the degree of agreement
between the second- and third-order approximate periodic solutions, and vice versa.
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Figure 9. The approximate periodic solutions in two-dimensional plane for (a) κ = 0.5, (b) κ = 1, (c) κ = 2,
and (d) κ = 4, respectively.

5.2. Expansion of Three-Dimensional Dynamic Equations

Applying the translations u = uLi + ξ, v = η and w = ζ to Equation (7), then we have

ξ̈ − 2αω0η̇ =
∂Ω
∂ξ

,

η̈ + 2αω0ξ̇ =
∂Ω
∂η

,

ζ̈ =
∂Ω
∂ζ

.

(32)

Expanding the right hand side of Equation (32) to the second- and to the third-order respectively,
then we obtain

ξ̈ − 2αω0η̇ = K1ξ + K2ξ2 + K3η2 + K6ζ2,

η̈ + 2αω0ξ̇ = P1η + P2ξη,

ζ̈ = Q1ζ + Q2ξζ,

(33)

and

ξ̈ − 2αω0η̇ = K1ξ + K2ξ2 + K3η2 + K6ζ2 + K7ξ3 + K8ξη2 + K9ξζ2,

η̈ + 2αω0ξ̇ = P1η + P2ξη + P5η3 + P6ξ2η + P7ηζ2,

ζ̈ = Q1ζ + Q2ξζ + Q3ζ3 + Q4ξ2ζ + Q5η2ζ,

(34)
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where the corresponding coefficients are displayed in the Appendix A.

Three-Dimensional Periodic Solutions

By means of successive approximations, we assume that the periodic solution of Equation (33)
admits the following form

ξ = ξ1e + ξ2e2,

η = η1e + η2e2,

ζ = ζ1e + ζ2e2.

(35)

Substituting Equation (35) into Equation (33) and comparing these terms with the same power e,
then we obtain

ξ̈1 − 2αω0η̇1 − K1ξ1 = 0,

η̈1 + 2αω0ξ̇1 − P1η1 = 0,

ζ̈1 −Q1ζ1 = 0,

(36)

and

ξ̈2 − 2αω0η̇2 − K1ξ2 − K2ξ2
1 − K3η2

1 − K6ζ2
1 = 0,

η̈2 + 2αω0ξ̇2 − P1η2 − P2ξ1η1 = 0,

ζ̈2 −Q1ζ2 −Q2ξ1ζ1 = 0.

(37)

For the third equation of Equation (36), the corresponding periodic solution takes the form

ζ1 = a cos (vt) + b sin (vt) , (38)

and substitute Equation (38) into the third equation of Equation (36) yields(
Q1 + v2

)
ζ1 = 0. (39)

Note that if there is a non-zero solution to Equation (39), then Q1 = −v2 < 0. So we choose a = 0
and b = 1, and one of the solutions is ζ1 = sin (vt).

Let the periodic solution of Equation (36) admits the following form

ξ1 = a14 cos (vt) + b13 sin (vt) ,

η1 = a15 cos (vt) + b14 sin (vt) .
(40)

Substituting Equation (40) into Equation (36) and comparing the coefficients of sin (vt) and
cos (vt), then we obtain (

K1 + v2
)

a14 + 2αω0vb14 = 0,

2αω0va14 +
(

P1 + v2
)

b14 = 0,
(41)

and (
K1 + v2

)
b13 − 2αω0va15 = 0,

− 2αω0vb13 +
(

P1 + v2
)

a15 = 0.
(42)
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Based on the results of Equations (20) and (21), then the periodic solution of Equation (36) writes

ξ1 = cos (vt) ,

η1 = b14 sin (vt) ,

ζ1 = sin (vt) .

(43)

Similarly, let the periodic solution of Equation (37) has the following form

ξ2 = a16 + a17 cos (vt) + a18 cos (2vt) + b15 sin (vt) + b16 sin (2vt) ,

η2 = a19 cos (vt) + a20 cos (2vt) + b17 sin (vt) + b18 sin (2vt) ,

ξ2 = a21 cos (vt) + a22 cos (2vt) + b19 sin (vt) + b20 sin (2vt) .

(44)

By using the same method as mentioned above, then we get

ξ2 = a16 + a18 cos (2vt) ,

η2 = b18 sin (2vt) ,

ζ2 = b20 sin (2vt) .

(45)

Therefore, the periodic solution of Equation (33) with respect to e becomes

ξ = ξ0 + cos (vt) e + [a16 + a18 cos (2vt)] e2,

η = b14 sin (vt) e + b18 sin (2vt) e2,

ζ = sin (vt) e + b20 sin (2vt) e2,

(46)

where the expressions of these coefficients can be obtained from Appendix B.
As for the third-order approximate periodic solution of Equation (34), suppose that the periodic

solution in the form of e can be written as

ξ = ξ1e + ξ2e2 + ξ3e3,

η = η1e + η2e2 + η3e3,

ζ = ζ1e + ζ2e2 + ζ3e3.

(47)

Substituting Equation (47) into Equation (34), and comparing the terms containing the same
power of e, then we obtain three set of equations, the equations corresponding to e and e2 are the same
as Equations (36) and (37), respectively, and the equations corresponding to e3 are as follows

ξ̈3 − 2αω0η̇3 = K1ξ3 + 2K2ξ1ξ2 + 2K3η1η2 + 2K6ζ1ζ2 + K7ξ3
1 + K8ξ1η2

1 + K9ξ1ζ2
1,

η̈3 + 2αω0ξ̇3 = P1η3 + P2ξ1η2 + P2ξ2η1 + P5η3
1 + P6ξ2

1η1 + P7η1ζ2
1,

ζ̈3 = Q1ζ3 + Q2ξ1ζ2 + Q2ξ2ζ1 + Q3ζ3
1 + Q4ξ2

1ζ1 + Q5η2
1ζ1.

(48)

Writing the periodic solution of Equations (48) as

ξ3 = a23 cos (vt) + a24 cos (2vt) + a25 cos (3vt) + b21 sin (vt) + b22 sin (2vt) + b23 sin (3vt) ,

η3 = a26 cos (vt) + a27 cos (2vt) + a28 cos (3vt) + b24 sin (vt) + b25 sin (2vt) + b26 sin (3vt) ,

ζ3 = a29 cos (vt) + a30 cos (2vt) + a31 cos (3vt) + b27 sin (vt) + b28 sin (2vt) + b29 sin (3vt) .

(49)

Substituting Equations (43), (45) and (49) into Equation (48), and comparing the coefficients of
sin (jvt) and cos (jvt) (j = 1, 2, 3), then we obtain
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ξ3 = a25 cos (3vt) ,

η3 = b26 sin (3vt) ,

ζ3 = b29 sin (3vt) .

(50)

Therefore, the third-order approximate analytical periodic solution of Equation (7) in
three-dimensional space can be written as

ξ = ξ0 + cos (vt) e + [a16 + a18 cos (2vt)] e2 + a25 cos (3vt) e3,

η = b14 sin (vt) e + b18 sin (2vt) e2 + b26 sin (3vt) e3,

ζ = sin (vt) e + b20 sin (2vt) e2 + b29 sin (3vt) e3.

(51)

Note that one can find the specific expressions of the above coefficients from Appendix B.
Based on the results of the above analysis, we show the three-dimensional periodic solution near

the collinear libration point L3 for four different κ values of 0.5, 1, 2, and 4 in Figure 10. When κ =

0.5 and κ = 1, the second- and third-order three-dimensional periodic solutions agree very well,
as shown in Figure 10a,b. When κ = 2, although Figure 10c shows that the second- and third-order
periodic solutions are somewhat different, the degree of agreement is also good. However, Figure 10d
(corresponding to κ = 4) indicates that the second- and third-order periodic solutions differ significantly.
Therefore, it is easy to find that the smaller the value of κ, the better the approximation effect.

(a) (b)

(c) (d)

Figure 10. The approximate periodic solutions in three-dimensional space for (a) κ = 0.5, (b) κ = 1,
(c) κ = 2, and (d) κ = 4, respectively.
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6. Conclusions

For a restricted three-body problem consisting of a supergiant eclipsing binary system,
we investigated the geometric structure of the corresponding zero-velocity surfaces and curves of the
coplanar libration points and discussed the third body’s dynamic behavior under the influence of eight
perturbation parameters through bifurcation diagrams. These perturbations include: Coriolis force
α, centrifugal force β, oblateness coefficients α1 and α2, random sums κ of the masses of the two
primaries, mass ratio parameter µm, and the primaries’ radiation factors q1 and q2. We found that any
perturbation of Coriolis force and centrifugal force has a greater impact on the third body’s dynamic
behavior, but their combined effect has a smaller effect on the third body. Similarly, the oblateness
coefficient α2 has a more significant influence on the third body’s dynamic behavior than that of
α1. However, the degree of their combined effect on the third body’s dynamic behavior is minimal.
Additionally, the parameter κ has a more extensive influence on the dynamic behavior of the third
body, any tiny changes can cause apparent chaos phenomena. Furthermore, the smaller the mass ratio
parameter, the more considerable the dynamic behavior of the third body, and vice versa. Besides,
the influence of the radiation factor q1 on the three-body dynamics is more significant than that of
q2. The combined effect of q1 and q2 has a notable effect on the dynamics of the third body when the
radiation factor q1 > 0.3434.

In addition, we also applied the Lindstedt-Poincaré perturbation method to present the second-
and third-order approximate analytical periodic solutions near the colinear libration points in the plane
and space respectively, and illustrated the corresponding phase portraits with respect to κ = 0.5, 1, 2,
and 4 around the libration point L3. We found that the smaller the value of κ, the better the coincidence
of the corresponding second-order and third-order periodic solutions. Besides, for the same κ value,
the coincidence between the three-dimensional periodic solutions of different orders is better than that
of the two-dimensional case.
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Appendix B

a3 = −
K2 + K3b2

2
2K1
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)

v2 + K1P1

[(
K1 + 9v2) (−1

2
P2b18 −

1
2

P2a18b14 +
1
4

P5b3
14

−1
4

P6b14 +
1
4

P7b14

)
− 6αω0v

(
−K2a18 + K3b14b18 + K6b20 −

1
4

K7 +
1
4

K8b2
14 +

1
4

K9

)]
,

b29 =
−1

2
Q2b20 −

1
2

Q2a18 +
1
4

Q3 −
1
4

Q4 +
1
4

Q5b2
14

8v2 .
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