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Abstract Abstract 
Classical anomaly detection is principally concerned with point-based anomalies, those anomalies that 
occur at a single point in time. Yet, many real-world anomalies are range-based, meaning they occur over 
a period of time. Motivated by this observation, we present a new mathematical model to evaluate the 
accuracy of time series classification algorithms. Our model expands the well-known Precision and Recall 
metrics to measure ranges, while simultaneously enabling customization support for domain-specific 
preferences. 
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Abstract

Classical anomaly detection is principally concerned with point-based anomalies,
those anomalies that occur at a single point in time. Yet, many real-world anomalies
are range-based, meaning they occur over a period of time. Motivated by this
observation, we present a new mathematical model to evaluate the accuracy of time
series classification algorithms. Our model expands the well-known Precision and
Recall metrics to measure ranges, while simultaneously enabling customization
support for domain-specific preferences.

1 Introduction
Anomaly detection (AD) is the process of identifying non-conforming items, events, or behaviors
[1, 9]. The proper identification of anomalies can be critical for many domains. Examples include
early diagnosis of medical diseases [22], threat detection for cyber-attacks [3, 18, 36], or safety
analysis for self-driving cars [38]. Many real-world anomalies can be detected in time series data.
Therefore, systems that detect anomalies should reason about them as they occur over a period of
time. We call such events range-based anomalies. Range-based anomalies constitute a subset of both
contextual and collective anomalies [9]. More precisely, a range-based anomaly is one that occurs
over a consecutive sequence of time points, where no non-anomalous data points exist between the
beginning and the end of the anomaly. The standard metrics for evaluating time series classification
algorithms today, Precision and Recall, have been around since the 1950s. Originally formulated
to evaluate document retrieval algorithms by counting the number of documents that were correctly
returned against those that were not [6], Precision and Recall can be formally defined as follows [1]
(where TP ,FP ,FN are the number of true positives, false positives, false negatives, respectively):

Precision = TP ÷ (TP + FP ) (1)
Recall = TP ÷ (TP + FN) (2)

Informally, Precision is the fraction of all detected anomalies that are real anomalies, whereas, Recall
is the fraction of all real anomalies that are successfully detected. In this sense, Precision and Recall
are complementary, and this characterization proves useful when they are combined (e.g., using
Fβ-Score, where β represents the relative importance of Recall to Precision) [6]. Such combinations
help gauge the quality of anomaly predictions. While useful for point-based anomalies, classical
Precision and Recall suffer from the inability to represent domain-specific time series anomalies.
This has a negative side-effect on the advancement of AD systems. In particular, many time series AD
systems’ accuracy is being misrepresented, because point-based Precision and Recall are being used
to measure their effectiveness for range-based anomalies. Moreover, the need to accurately identify
time series anomalies is growing in importance due to the explosion of streaming and real-time
systems [2, 5, 16, 19, 27, 28, 30, 31, 37, 40].

To address this need, we redefine Precision and Recall to encompass range-based anomalies. Unlike
prior work [2, 25], our new mathematical definitions extend their classical counterparts, enabling
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(a) Precision = 0.6, Recall = 0.5 (b) Precision = ?, Recall = ?

Figure 1: Point-based vs. range-based anomalies.

our model to subsume the classical one. Further, our formulation is more broadly generalizable by
providing specialization functions that can control a domain’s bias along a multi-dimensional axis to
properly accommodate the needs of that specific domain. Thus, the key contribution of this paper is a
new, customizable mathematical model, which can be used to evaluate and compare results of AD
algorithms. Although outside the scope of this paper, our model can also be used as the objective
function for machine learning (ML) training, which may have a profound impact on AD training
strategies, giving rise to fundamentally new ML techniques in the future.

In the remaining sections, we first detail the problem and provide an overview of prior work. In
Section 4, we formally present our new model. Section 5 provides a detailed experimental study of
our new model compared to the classical model and a recent scoring model provided by Numenta [25].
Finally, we conclude with a brief discussion of future directions.

2 Problem motivation and design goals
Classical precision and recall are defined for sets of independent points (Figure 1a), which is sufficient
for point-based anomalies. Time series AD algorithms, on the other hand, work with sequences
of time intervals (Figure 1b) [11, 17, 18, 21, 23, 30]. Therefore, important time series specific
characteristics cannot be captured by the classical model. Many of these distinctions are due to
partial overlaps. In the point-based case, a predicted anomaly point is either a member of the set
of real anomalies (a TP) or not (an FP). In the range-based case, a predicted anomaly range might
partially overlap with a real one. In this case, a single prediction range is partially a TP and partially
an FP at the same time. The size of this partial overlap needs to be quantified, but there may be
additional criteria. For example, one may want to consider the position of the overlap. After all, a
range consists of an ordered collection of points and the order might be meaningful for the application.
For instance, detecting the earlier portion of an anomaly (i.e., its “front-end”) might be more critical
for a real-time application to reduce the time to react to it [24] (see Section 4.3 for more examples).
Furthermore, overlaps are no longer “1-to-1” as in the classical model; one or more predicted anomaly
ranges may (partially) overlap with one or more real ones. Figure 1b illustrates one such situation
(P2 vs. R2, R3). The specific domain might care if each independent anomaly range is detected as a
single unit or not. Thus, we may also want to capture cardinality when measuring overlap.

If all anomalies were point-based, or if there were no partial-overlap situations, then the classical
model would suffice. However, for general range-based anomalies, the classical model falls short.
Motivated by these observations, we propose a new model with the following design goals:

• Expressive: captures criteria unique to range-based anomalies, e.g., overlap position and cardinality.
• Flexible: supports adjustable weights across multiple criteria for domain-specific needs.
• Extensible: supports inclusion of additional domain-specific criteria that cannot be known a priori.

Our model builds on the classical precision/recall model as a solid foundation, and extends it to be
used more effectively for range-based AD (and time series classification, in general).

3 Related work
There is a growing body of research emphasizing the importance of time series classification [10, 19,
27], including anomaly detection. Many new ML techniques have been proposed to handle time series
anomalies for a wide range of application domains, from space shuttles to web services [16, 30, 31, 41].
MacroBase [7] and SPIRIT [33] dynamically detect changes in time series when analyzing fast,
streaming data. Lipton et al. investigated the viability of existing ML-based AD techniques on
medical time series [29], while Patcha and Park have drawn out weaknesses for AD systems to
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Table 1: Notation

Notation Description
R, Ri set of real anomaly ranges, the ith real anomaly range
P , Pj set of predicted anomaly ranges, the jth predicted anomaly range

N , Nr , Np number of all points, number of real anomaly ranges, number of predicted anomaly ranges
α relative weight of existence reward

γ(), ω(), δ() overlap cardinality function, overlap size function, positional bias function

properly handle cyber-attacks in a time series setting, amongst others [34]. Despite these efforts,
techniques designed to judge the efficacy of time series AD systems remain largely underdeveloped.

Evaluation measures have been investigated in other related areas [8, 13], e.g., sensor-based activity
recognition [12], time series change point detection [4]. Most notably, Ward et al. provide a fine-
grained analysis of errors by dividing activity events into segments to account for situations such as
event fragmentation/merging and timing offsets [39]. Because these approaches do not take positional
bias into account and do not provide a tunable model like ours, we see them as complementary.

Similar to our work, Lavin and Ahmad have also noted the lack of proper time series measurement
techniques for AD in their Numenta Anomaly Benchmark (NAB) work [25]. Yet, unlike ours, the
NAB scoring model remains point-based in nature and has a fixed bias (early detection), which makes
it less generalizable than our model. We rediscuss NAB in greater detail in Section 5.3.

4 Precision and recall for ranges
In this section, we propose a new way to compute precision and recall for ranges. We first formulate
recall, and then follow a similar methodology to formulate precision. Finally, we provide examples
and guidelines to illustrate the practical use of our model. Table 1 summarizes our notation.

4.1 Range-based recall
The basic purpose of recall is to reward a prediction system when real anomalies are successfully
identified (TPs), and to penalize it when they are not (FNs). Given a set of real anomaly ranges
R = {R1, .., RNr

} and a set of predicted anomaly ranges P = {P1, .., PNp
}, our RecallT (R,P)

formulation iterates over the set of all real anomaly ranges (R), computing a recall score for each real
anomaly range (Ri ∈ R) and adding them up into a total recall score. This total score is then divided
by the total number of real anomalies (Nr) to obtain an average recall score for the whole time series.

RecallT (R,P ) =

∑Nr
i=1RecallT (Ri, P )

Nr
(3)

When computing the recall score RecallT (Ri ,P) for a single anomaly range Ri, we consider:

• Existence: Catching the existence of an anomaly (even by predicting only a single point in Ri), by
itself, might be valuable for the application.

• Size: The larger the size of the correctly predicted portion of Ri, the higher the recall score.
• Position: In some cases, not only size, but also the relative position of the correctly predicted

portion of Ri might matter to the application.
• Cardinality: Detecting Ri with a single prediction range Pj ∈ P may be more valuable than doing

so with multiple different ranges in P in a fragmented manner.

We capture all of these considerations as a sum of two main reward terms weighted by α and (1−α),
respectively, where 0 ≤ α ≤ 1. α represents the relative importance of rewarding existence, whereas
(1− α) represents the relative importance of rewarding size, position, and cardinality, all of which
stem from the actual overlap between Ri and the set of all predicted anomaly ranges (Pj ∈ P ).

RecallT (Ri, P ) = α× ExistenceReward(Ri, P ) + (1− α)×OverlapReward(Ri, P ) (4)

If anomaly range Ri is identified (i.e., |Ri ∩ Pj | ≥ 1 across all Pj ∈ P ), then a reward is earned.

ExistenceReward(Ri, P ) =

{
1, if

∑Np

j=1 |Ri ∩ Pj | ≥ 1

0, otherwise
(5)

Additionally, a cumulative overlap reward that depends on three functions, 0 ≤ γ() ≤ 1, 0 ≤ ω() ≤ 1,
and δ() ≥ 1, is earned. These capture the cardinality (γ()), size (ω()), and position (δ()) aspects of
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function ω(AnomalyRange, OverlapSet, δ)
MyValue← 0
MaxValue← 0
AnomalyLength← length(AnomalyRange)
for i← 1, AnomalyLength do

Bias← δ(i, AnomalyLength)
MaxValue← MaxValue+ Bias
if AnomalyRange[i] in OverlapSet then

MyValue← MyValue+ Bias
return MyValue/MaxValue

(a) Overlap size

function δ(i, AnomalyLength) . Flat bias
return 1

function δ(i, AnomalyLength) . Front-end bias
return AnomalyLength - i + 1

function δ(i, AnomalyLength) . Back-end bias
return i

function δ(i, AnomalyLength) . Middle bias
if i ≤ AnomalyLength/2 then

return i
else

return AnomalyLength - i + 1

(b) Positional bias

Figure 2: Example definitions for ω() and δ() functions.

the overlap. More specifically, the cardinality term serves as a scaling factor for the rewards earned
from overlap size and position.

OverlapReward(Ri, P ) = CardinalityFactor(Ri, P )×
Np∑
j=1

ω(Ri, Ri ∩ Pj , δ) (6)

When Ri overlaps with only one predicted anomaly range, the cardinality factor reward is the largest
(i.e., 1). Otherwise, it receives 0 ≤ γ() ≤ 1 defined by the application.

CardinalityFactor(Ri, P ) =

{
1 , if Ri overlaps with at most one Pj ∈ P
γ(Ri, P ), otherwise

(7)

Note that both the weight (α) and the functions (γ(), ω(), and δ()) are tunable according to the needs
of the application. We illustrate how they can be customized with examples in Section 4.3.

4.2 Range-based precision
As seen in Equations 1 and 2, the key difference between precision and recall is that precision
penalizes FPs instead of FNs. Given a set of real anomaly ranges R = {R1, .., RNr

} and a set of
predicted anomaly ranges P = {P1, .., PNp

}, our PrecisionT (R,P) formula iterates over the set of
all predicted anomaly ranges (P ), computing a precision score for each predicted anomaly range
(Pi ∈ P ) and adding them up into a total precision score. This total score is then divided by the total
number of predicted anomalies (Np) to obtain an average precision score for the whole time series.

PrecisionT (R,P ) =

∑Np

i=1 PrecisionT (R,Pi)

Np
(8)

When computing PrecisionT (R,Pi) for a single predicted anomaly range Pi, there is no need for an
existence reward, since precision by definition emphasizes prediction quality, and existence by itself
is too low a bar for judging the quality of a prediction (i.e., α = 0). On the other hand, the overlap
reward is still needed to capture the cardinality, size, and position aspects of a prediction.

PrecisionT (R,Pi) = CardinalityFactor(Pi, R)×
Nr∑
j=1

ω(Pi, Pi ∩Rj , δ) (9)

Like in our recall formulation, the γ(), ω(), and δ() functions are tunable according to application
semantics. Despite not explicitly shown in our notation, these functions can be defined differently for
RecallT and PrecisionT (see Sections 4.3 and 5 for examples).

4.3 Customization guidelines and examples
Figure 2a provides an example for the ω() function for size, which can be used with a δ() function
for positional bias. In general, for both RecallT and PrecisionT , we expect ω() to be always defined
like in our example, due to its additive nature and direct proportionality with the size of the overlap.

δ(), on the other hand, can be defined in multiple different ways, as illustrated with four examples
in Figure 2b. If all index positions of an anomaly range are equally important for the application,
then the flat bias function should be used. In this case, simply, the larger the size of the overlap,
the higher the overlap reward will be. If earlier (later) index positions carry more weight than later
(earlier) ones, then the front-end (back-end) bias function should be used instead. Finally, the middle
bias function is for prioritizing mid-portions of anomaly ranges. In general, we expect δ() to be a
function in which the value of an index position i monotonically increases/decreases based on its
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distance from a well-defined reference point of the anomaly range. From a semantic point of view,
δ() signifies the urgency of when an anomaly is detected and reacted to. For example, front-end
bias is preferable in scenarios where early response is critical, such as cancer detection or real-time
systems. Back-end bias is useful in scenarios where responses are irreversible (e.g., firing of a missile,
output of a program). In such scenarios, it is generally more desirable to delay raising detection of an
anomaly until there is absolute certainty of its presence. Middle bias can be useful when there is a
clear trade-off between the effect of early and late detection, i.e., an anomaly should not be reacted
to too early or too late. Hard braking in autonomous vehicles is an example: braking too early may
unnecessarily startle passengers, while braking too late may cause a collision. We expect that for
RecallT , δ() will typically be set to one of the four functions in Figure 2b depending on the domain;
whereas a flat bias function will suffice for PrecisionT in most domains, since an FP is typically
considered uniformly bad wherever it appears in a prediction range.

We expect the γ() function to be defined similarly for both RecallT and PrecisionT . Intuitively, in
both cases, the cardinality factor should be inversely proportional to the number of distinct ranges
that a given anomaly range overlaps. Thus, we expect γ() to be generally structured as a reciprocal
rational function 1/f(x), where f(x) ≥ 1 is a single-variable polynomial and x represents the
number of distinct overlap ranges. A typical example for γ() is 1/x.

Before we conclude this section, it is important to note that our precision and recall formulas subsume
their classical counterparts, i.e., RecallT ≡ Recall and PrecisionT ≡ Precision , when:

(i) all Ri ∈ R and Pj ∈ P are represented as unit-size ranges (e.g., range [1, 3] as [1, 1], [2, 2], [3, 3]),
(ii) α = 0, γ() = 1, ω() is as in Figure 2a, and δ() returns flat positional bias as in Figure 2b.

5 Experimental study
In this section, we present an experimental study of our range-based model applied to results of
state-of-the-art AD algorithms over a collection of diverse time series datasets. We aim to demonstrate
two key features of our model: (i) its expressive power for range-based anomalies compared to the
classical model, (ii) its flexibility in supporting diverse scenarios in comparison to the Numenta
scoring model [25]. Furthermore, we provide a cost analysis for computing our new metrics, which
is important for their practical application.

5.1 Setup
System: All experiments were run on a Windows 10 machine with an Intel R© Core

TM
i5-6300HQ

processor running at 2.30 GHz with 4 cores and 8 GB of RAM.
Datasets: We used a mixture of real and synthetic datasets. The real datasets are taken from the
NAB Data Corpus [32], whereas the synthetic datasets are generated by the Paranom tool [15].
All data is time-ordered, univariate, numeric time series, for which anomalous points/ranges (i.e.,
“the ground truth”) are already known. NYC-Taxi: A real dataset collected by the NYC Taxi and
Limousine Commission. The data represents the number of passengers over time, recorded as 30-
minute aggregates. There are five anomalies: the NYC Marathon, Thanksgiving, Christmas, New
Year’s day, and a snow storm. Twitter-AAPL: A real dataset with a time series of the number of tweets
that mention Apple’s ticker symbol (AAPL), recorded as 5-minute aggregates. Machine-Temp: A
real dataset of readings from a temperature sensor attached to a large industrial machine, with three
anomalies: a planned shutdown, an unidentified error, and a catastrophic failure. ECG: A dataset from
Paranom based on a real Electrocardiogram (ECG) dataset [20, 30]; augmented to include additional
synthetic anomalies over the original single pre-ventricular contraction anomaly. Space-Shuttle: A
dataset based on sensor measurements from valves on a NASA space shuttle; also generated by
Paranom based on a real dataset from the literature with multiple additional synthetic anomalies
[20, 30]. Sine: A dataset from Paranom that includes a sine wave oscillating between 0.2 and 0.5 with
a complete period over 360 timestamps. It contains many stochastic anomalous events ranging from
50− 100 time intervals. Time-Guided: A Paranom dataset with monotonically increasing univariate
values, in which multiple range-based stochastic anomalies appear with inverted negative values.
Anomaly Detectors: For our first set of experiments, we trained a TensorFlow-implemented version
of LSTM-AD, a long short-term memory model for AD [30], for all datasets. For training and testing,
we carefully partition each dataset to ensure anomaly ranges are intact in spite of the segmentation.
We interpret adjacent anomalous points as part of a single anomaly range. Thus, the LSTM-AD
testing phase output is a sequence of predicted anomaly ranges for each dataset. Secondly, to illustrate
how our model can be used in evaluating and comparing predictions from multiple detectors, we
repeat this procedure with two additional detectors: Greenhouse [26] and Luminol [28].
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(a) Recall (b) Precision (c) F1-Score

Figure 3: Our model vs. the classical point-based model.

Compared Scoring Models: We evaluated the prediction accuracy of each output from the anomaly
detectors using three models: classical point-based precision/recall, the Numenta scoring model [25]
(described in detail below), and our range-based precision/recall model. Unless otherwise stated, we
use the following default parameter settings for computing our RecallT and PrecisionT equations:
α = 0, γ() = 1, ω() is as in Figure 2a, and δ() returns flat bias as in Figure 2b.

5.2 Comparison to the classical point-based model
First, we compare our range-based model with the classical point-based model. The goal of this
experiment is twofold: (i) verify that our model subsumes the classical one, (ii) show that our model
can capture additional variations for anomaly ranges that the classical one cannot.

We present our results in Figure 3 with three bar charts, which show Recall, Precision, and F1-Score
values for our LSTM-AD testing over the seven datasets, respectively. Recall values are computed
using Equation 2 for Recall (bar labeled Recall_Classical) and Equation 3 for RecallT (bars
labeled Recall_T_*). Similarly, Precision values are computed using Equation 1 for Precision (bar
labeled Precision_Classical) and Equation 8 for PrecisionT (bars labeled Precision_T_*).
Finally, F1 -Score values are computed using the following well-known equation, which essentially
represents the harmonic mean of Precision and Recall [6]:

F1-Score = 2× Precision×Recall
Precision+Recall

(10)

We first observe that, in all graphs, the first two bars are equal for all datasets. This demonstrates that
our model, when properly configured as described at the end of Section 4.3, subsumes the classical
one. Next, we analyze the impact of positional bias (δ()) on each metric. Note that γ() = 1/x in
what follows.

Recall: In Figure 3a, we provide RecallT measurements for four positional biases: flat, front, back,
and middle (see Figure 2b). Recall is perfect (= 1.0) in all runs for the Machine-Temp dataset. When
we analyze the real and predicted anomaly ranges for this dataset, we see two real anomaly ranges that
LSTM-AD predicts as a single anomaly range. Both real anomalies are fully predicted (i.e., no false
negatives and x = 1 for both ranges). Therefore, recall has the largest possible value independent
from what δ() is, and is the expected behavior for this scenario.

For all other datasets except Time-Guided, RecallT is smaller than Recall . This is generally expected,
as real anomaly ranges are rarely captured (i) entirely by LSTM-AD (i.e., overlap reward is partially
earned) and (ii) by exactly one predicted anomaly range (i.e., cardinality factor downscales the overlap
reward). Analyzing the real and predicted anomalies for Time-Guided reveals that LSTM-AD predicts
8/12 ranges fully and 4/12 ranges half-way (i.e., no range is completely missed and x = 1 for all 12
ranges). Furthermore, differences among RecallT biases are mainly due to the four half-predicts. All
half-predicts lie at back-ends, which explains why Recall_T_Back is larger than other biases. This
illustrates positional bias sensitivity of RecallT , which cannot be captured by the classical Recall .

We make similar observations for ECG and Sine. That is, different positional bias leads to visibly
different RecallT values. These demonstrate the sensitivity of RecallT to the positions of correctly
predicted portions of anomalies. For Space-Shuttle, NYC-Taxi, and Twitter-AAPL, the differences are
not as pronounced. Data indicates that these datasets contains few real anomaly ranges (5, 3, and
2, respectively), but LSTM-AD predicts a significantly larger number of small anomaly ranges. As
such, overlaps are small and highly fragmented, likely making δ() less dominant than ω() and γ().

Precision: In Figure 3b, we present PrecisionT only with flat positional bias, as we expect this to
be the typical use case (see Section 4.3). In general, we observe that Precision and PrecisionT
follow a similar pattern. Also, PrecisionT is typically smaller than Precision in all but two datasets
(Time-Guided and NYC-Taxi). For Time-Guided, precision values turn out to be almost identical,
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(a) Numenta Standard (b) Numenta Reward-Low-FP (c) Numenta Reward-Low-FN

Figure 4: Our model vs. the Numenta model.

because both real and predicted anomaly ranges are too narrow, diminishing the differences between
points and ranges. When reviewing the result for NYC-Taxi, we found many narrow-range predictions
against 3 wide-range real anomalies, with a majority of the predictions being false positives. Because
the narrow predictions earn similar overlap rewards as unit-size/point predictions, yet the number
of predicted anomaly ranges (Np) is relatively smaller than the total number of points in those Np
ranges, the value of PrecisionT comes out slightly larger than Precision for this dataset. Overall,
this scenario demonstrates that PrecisionT is more range-aware than Precision and can, therefore,
judge exactness of range-based predictions more accurately.

F1-Score: In Figure 3c, we present F1-Scores. The general behavior is as in the classical model,
because F1 is the harmonic mean of respective recall and precision values in both models. A
noteworthy observation is that the F1-Scores display similar sensitivity to positional bias variations
as in recall graph of Figure 3a. This demonstrates that our range-based model’s expressiveness for
recall and precision carries into combined metrics like F1-Score.

5.3 Comparison to the Numenta Anomaly Benchmark (NAB) scoring model
In this section, we report results from our LSTM-AD experiments with the Numenta Anomaly
Benchmark (NAB) scoring model [25]. Our goals are: (i) to determine if our model can mimic the
NAB model and (ii) to examine some of the flexibilities our model has beyond the NAB model.

Background on NAB’s Scoring Model: While focusing entirely on real-time streaming applications,
the NAB authors claim that: (i) only early anomaly detection matters (i.e., what we call front-end
bias) and (ii) only the first detection point of an anomaly range matters (i.e., an emphasis on precision
over recall and a bias toward single-point TP prediction systems). They then propose a scoring
model, based on anomaly windows, application profiles, and a sigmoidal scoring function, which is
specifically designed to reward detections earlier in a window. NAB’s scoring model also includes
weights that can be adjusted according to three predefined application profiles: Standard, Reward-
Low-FP, and Reward-Low-FN. While this approach may be suitable for restricted domains, it does
not generalize to all range-based anomalies. For example, in the identification of medical anomalies
(e.g., cancer detection), it is critical to identify when an illness is regressing due to the use of life-
threatening medical treatments [14]. Under NAB’s single-point reward system, there is no clear
distinction for such state changes. Furthermore, as discussed in a follow-up analysis by Singh and
Olinsky [35], the NAB scoring system has a number of limitations that make it challenging to use in
real-world applications, even within its restricted domain (e.g., determining anomaly window size
a priori, ambiguities in scoring function, magic numbers, non-normalized scoring due to no lower
bound). Given these irregularities, it is difficult, and perhaps ill-advised, to make a direct and unbiased
comparison to the NAB scoring model. Instead, we focus on comparing relative approximations of
our Fβ-Scores compared to NAB scores, rather than their absolute values.

To obtain a behavior similar to NAB, we used the following settings for our model: α = 0,
γ() = 1, ω() is as in Figure 2a, δ() is front bias for RecallT and flat bias for PrecisionT . Be-
cause NAB’s scoring model makes point-based predictions, we represent Pi as points. For each
run, we compute Recall_T_Front and Precision_T_Flat and their Fβ-Score corresponding to
the NAB application profile under consideration (i.e., F1_T for Numenta_Standard, F0.5_T for
Numenta_Reward_Low_FP, and F2_T for Numenta_Reward_Low_FN).

Figure 4 contains three bar charts, one for each Numenta profile. The datasets on the x-axis are
presented in descending order of the Numenta accuracy scores to facilitate comparative analysis. For
ease of exposition, we scaled the negative Numenta scores by a factor of 100 and lower-bounded
the y-axis at -1. At a high level, although the accuracy values vary slightly across the charts, their
approximation follows a similar pattern. Therefore, we only discuss Figure 4a.
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(a) Sine dataset (b) ECG dataset (c) NYC-Taxi dataset

Figure 5: Evaluating multiple anomaly detectors.
In Figure 4a, both models generally decrease in value from left to right except for a few exceptions, the
Space-Shuttle dataset being the most striking. In analyzing the data for the Space-Shuttle, we noted a
small number of mid-range real anomalies and a larger number of mid-range predicted anomalies.
On the other hand, when we analyzed similar data for Sine, we found it had many narrow-range
real and predicted anomalies that appear close together. These findings reveal that Space-Shuttle
data had more FPs and TPs, which is reflected in its smaller PrecisionT score and larger RecallT
score (Figure 3). Because NAB favors precision over recall (i.e., NAB heavily penalizes FPs), this
discrepancy is further magnified. Overall, this shows that not only can our model mimic the NAB
scoring system, but it can also identify additional intricacies missed by NAB.

Table 2: Sensitivity to positional bias

Numenta_Standard F1_T_Front_Flat F1_T_Back_Flat
Front-Predicted 0.67 0.42 0.11
Back-Predicted 0.63 0.11 0.42

To further illustrate, we investigated how the two models behave under two contrasting positional
bias scenarios: (i) anomaly predictions overlapping with front-end portions of real anomaly ranges
(Front-Predicted) and (ii) anomaly predictions overlapping with back-end portions of real anomaly
ranges (Back-Predicted) as shown in Table 2. We artificially generated the desired ranges in a sym-
metric fashion to make them directly comparable. We then scored them using Numenta_Standard ,
F1_T_Front_Flat , and F1_T_Back_Flat . As shown in Table 2, NAB’s scoring function is not
sufficiently sensitive to distinguish between the two scenarios. This is not surprising, as NAB was
designed to reward early detections. However, our model distinguishes between the two scenarios
when its positional bias is set appropriately. This experiment demonstrates our model’s flexibility and
generality over the NAB scoring model.

5.4 Evaluating multiple anomaly detectors
We analyzed the three scoring models for their effectiveness in evaluating and comparing prediction
results from multiple anomaly detectors: LSTM-AD [30], Greenhouse [26], and Luminol (bitmap)
[28]. Please note that the primary goal of this experiment is to compare the scoring models’ behaviors
for a specific application scenario, not to evaluate the AD algorithms themselves. In this experiment,
we suppose an application that requires early detection of anomaly ranges in a non-fragmented
manner, with precision and recall being equally important. In our model, this corresponds to the
following settings: α = 0, γ() = 1/x for both PrecisionT and RecallT , δ() is front bias for RecallT ,
δ() is flat bias for PrecisionT , and β = 1 for Fβ-Score. In Numenta, the closest application profile
is Standard, whereas in the classical model, the only tunable parameter is β = 1 for Fβ-Score.

Figure 5 presents our results from running the detectors on three selected datasets: Sine (synthetic),
ECG (augmented), and NYC-Taxi (real). In Figure 5a for Sine, all scoring models are in full agreement
that Luminol is the most accurate and Greenhouse is the least. Detailed analysis of the data reveals
that Luminol scores by far the greatest in precision, whereas Greenhouse scores by far the smallest.
All scoring models recognize this obvious behavior equally well. In Figure 5b for ECG, all scoring
models generally agree that Greenhouse performs poorly. It turns out that FPs clearly dominate in
Greenhouse’s anomaly predictions. Classical and Numenta score LSTM-AD and Luminol similarly,
while our model strongly favors LSTM-AD over the others. Data indicates that this is because
LSTM-AD makes a relatively smaller number of predictions clustered around the real anomaly
ranges, boosting the number of TPs and making both precision and recall relatively greater. Luminol
differs from LSTM-AD mainly in that it makes many more predictions, causing more fragmentation
and severe score degradation due to γ() in our model. Finally, in Figure 5c for NYC-Taxi, all scoring
models largely disagree on the winner, except that LSTM-AD and Greenhouse perform somewhat
similarly according to all. Indeed, both of these detectors make many narrow predictions against
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(a) Naive (b) Optimized
Figure 6: Cost analysis.

3 relatively wide real anomaly ranges. Our model scores Greenhouse the best, mainly because its
front-biased RecallT comes out to be much greater than the others’. Unlike the two precision/recall
models, Numenta strongly favors Luminol, even though this detector misses one of the 3 real anomaly
ranges in its entirety. Overall, this experiment shows the effectiveness of our model in capturing
application requirements; in particular, when comparing results of multiple anomaly detectors, and
even in the presence of subtleties in data.

5.5 Cost analysis
In this section, we analyze the computational overhead of our RecallT and PrecisionT equations.
Naive: In our RecallT and PrecisionT equations, we keep track of two sets, R and P . A naive
algorithm, which compares eachRi ∈ Rwith all Pj ∈ P for RecallT (and vice versa for PrecisionT )
has a computational complexity of O(Nr ×Np).
Optimization1: We can reduce the comparisons by taking advantage of sequential relationships
among ranges. Assume that all ranges are represented as timestamp pairs, ordered by their first
timestamps. We iterate over R and P simultaneously, only comparing those pairs that are in close
proximity in terms of their timestamps. This optimized algorithm brings the computational complexity
to O(max{Nr ,Np}).
Optimization2: An additional optimization is possible in computing the positional bias functions
(e.g., flat). Instead of computing them for each point, we apply them in closed form, leading to a
single computation per range. We see room for further optimizations (e.g., using bit vectors and
bitwise operations), but exhaustive optimization is beyond the goals of our current analysis.

We implemented five alternative ways of computing recall and precision, and analyzed how the
computation time for each of them scales with increasing number of real and predicted anomaly
ranges. Two of these are naive algorithms for both classical and our recall/precision equations. The
rest are their optimized variants. Ranges used in this experiment are randomly generated from a time
series of 50K data points. Figure 6 shows our results. We plot naive and optimized approaches in
separate graphs, as their costs are orders of magnitude different. In Figure 6a, we see that computing
our range-based metrics naively is significantly more costly than doing so for the classical ones.
Fortunately, we can optimize our model’s computational cost. The optimized results in Figure 6b
provide a clear improvement in performance. Both the classical metrics and ours can be computed in
almost three orders of magnitude less time than their corresponding naive baselines when optimized.
There is still a factor of 2-3 difference, but our model’s values are notably closer at this scale to the
classical model. This analysis shows that our new range-based metrics can be computed efficiently,
and their overhead compared to the classical ones is acceptably low.

6 Conclusions and future directions
Precision and recall are commonly used to evaluate the accuracy of anomaly detection systems.
Yet, classical precision and recall were designed for point-based data, whereas for time series data,
anomalies are in the form of ranges. In response, we offer a new formal model that accounts for
range-specific issues, such as partial overlaps between real vs. predicted ranges as well as their
relative positions. Moreover, our approach allows users to supply customizable bias functions that
enable weighing multiple criteria differently. We ran experiments with diverse datasets and anomaly
detectors, comparing our model against two others, which illustrated that our new model is expressive,
flexible, and extensible. Our evaluation model comes with a number of tunable parameters. Given
an application, these parameters must properly set to suit the needs of that domain. Though our
model is extensible, we expect that the example settings and guidelines we provided in the paper
will be sufficient in most practical domains. In ongoing work, we have been actively collaborating
with domain experts to apply our model in real use cases, such as autonomous driving. Future work
includes designing new range-based ML techniques that are optimized for our new accuracy model.
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