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ControlFlag: A Self-supervised Idiosyncratic Pattern
Detection System for Software Control Structures

Niranjan Hasabnis Justin Gottschlich
Intel Labs Intel Labs

Abstract

Software debugging has been shown to utilize upwards of 50% of developers’
time. Machine programming, the field concerned with the automation of soft-
ware (and hardware) development, has recently made progress in both research
and production-quality automated debugging systems. In this paper, we present
ControlFlag, a system that detects possible idiosyncratic violations in software
control structures. ControlFlag also suggests possible corrections in the event a
true error is detected. A novelty of ControlFlag is that it is entirely self-supervised;
that is, it requires no labels to learn about the potential idiosyncratic programming
pattern violations. In addition to presenting ControlFlag’s design, we also provide
an abbreviated experimental evaluation.

1 Introduction

Machine programming (MP) is concerned with the automation of software (and hardware) de-
velopment [11]. Recently, there has been a flurry of research in MP due to advances in
machine learning, formal methods, data availability, and computing efficiency, amongst other
things [3, 7, 8, 12, 14, 16, 20, 21]. In general, MP systems aim to improve programmer pro-
ductivity as well as the quality of the software they produce. Some examples of recent MP tools
are code recommendation systems [12], automatic bug detection systems [7], automatic generation
of performance regression tests [1], and automatic completion of program constructs in integrated
development environments (IDEs) [9, 17].

In this work, we present ControlFlag, a novel self-supervised framework that automatically identifies
potential errors in code. In addition to identifying such potential errors, ControlFlag produces
suggestions as corrections for the potential errors it finds. ControlFlag focuses on one specific class
of bugs: those associated with control structures. Control structures are programming language
structures that can alter a program’s execution behavior, which are oftentimes the result of a logical
condition being satisfied or not. Some examples of control structures in high-level languages such as
C and C++ are: (i) selection statement: if, else if, else and switch, (ii) repetition statements:
for loops, while loops, do while loops, (iii) jump statements: goto, throw statements. In this
abbreviated presentation of ControlFlag, we focus principally on if statements to keep the problem
scope tractable. Consider, for example, the following valid C++ code:

if (x = 7) y = x;

In the above code, it is likely that the programmer’s intention is to set y equal to x if x is equal to 7.
Unfortunately, due to the omission of the second = in the if conditional expression, the condition is
transformed into an assignment that sets x to the value of 7, which subsequently returns true when
evaluated and then sets y equal to x. The corrected code, would read as:

if (x == 7) y = x;
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Moreover, it is important to note that in this particular case, we can only speculate that the code does
not properly capture the programmer’s intention. It is possible that the programmer’s intention was in
fact to set x = 7 and then set y = x and to achieve this in an obfuscated fashion. Consequently, the
correction provided by ControlFlag is also probabilistic. In fact, it is from the analysis of various
repositories of code that ControlFlag makes a determination about whether a particular control
structure is a potential error based on the commonality of its idiosyncratic pattern throughout the
analyzed code repositories.

Identifying such a typographical coding errors is challenging for at least two reasons. First, the
assignment of variables within conditionals is legal syntax in C/C++ (e.g., if (x = 7)). As such,
this type of error might not be flagged by a compiler because the code’s syntax is, in fact, legal.
Second, compilers and static analyzers can use data-flow analysis to identify such errors1, but
data-flow analyses have their own limitations (e.g., locally scoped versus globally scoped analyses,
etc.). Nonetheless, compilers such as GCC and LLVM already use a rules-based approach to warn
programmers in a variety of potentially erroneous cases. For instance, GCC-10.2.0’s -Wall option
warns programmers of the above code as:

test.cpp:3:9: warning: suggest parentheses around assignment used as truth value
[-Wparentheses]

if (x = 7) y = x;
~~^~~

However, rules-based approaches to identifying such errors tend to have at least two associated
limitations. First, they can be labor-intensive. New rules generally need to be added to the systems
(such as compilers or static analyzers) to flag new types of potential errors [7]. Second, they may
require a compilable program. Compiler-based warnings tend to require code that is compilable to
flag such issues. Moreover, it seems unlikely that such compiler-based approaches may be practical
as a recommendation system that dynamically identifies potential issues in a live programming
environment, where code in such environments is often not compilable.

In this preliminary paper, ControlFlag takes a statistical approach to identify typographical errors in
program code by recasting it as an anomaly detection problem. We hypothesize that using certain
patterns (such as assignment) inside an if statement in C/C++ language is relatively rare. We test
this hypothesis by mining idiosyncratic patterns found in the control structures of C/C++ programs
found in open-source GitHub repositories. The mined patterns form a dictionary that is then used to
check a user’s typed pattern and suggest automatic corrections in case of divergence. An advantage
of such an approach is that it does not require labeled training data — ControlFlag uses the mined
patterns from semi-trusted GitHub repositories in a self-supervised fashion, eliminating the need to
know all the possible typographical errors.

Although we used typographical error detection as a motivating example above, ControlFlag’s
approach of learning idiosyncratic patterns and checking for divergence with respect to them has
several applications. Learning typing rules that associate operators with types for a programming
language is another application. These rules can be used to flag anomalies related to the usages
of types. Take, for instance, if (keepon > true) anomaly that ControlFlag flagged in CURL
open-source project. The anomaly was flagged based on a learned rule that captured the observation
that, typically, > operator in C (or any other language for that matter) is used with numeric types and
not boolean. We raised this anomaly to CURL developers and received an acknowledgment along
with a fix (more details in Section 3). ControlFlag could also learn that checking for a pointer being
NULL before a dereference is a typical programming pattern and can flag missing NULL pointer
checks.

This preliminary paper makes the following technical contributions:

• We present ControlFlag, which, to our knowledge, is the first-of-its-kind approach that is
entirely self-supervised in its ability to learn idiosyncratic pattern violations for a given code
repository, which may (or may not) indicate erroneous code.

1If we compile above code with -O2, a compiler can eliminate if statement and replace it by x = 7; y =
7;. A compiler can flag the removal of if to the user.
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• Although we only demonstrate ControlFlag for C/C++, we have designed to be programming
language agnostic such that it should be capable of adapting itself to learn the idiosyncratic
signatures of any type or form of control structure in any given programming language.

• We present initial results of ControlFlag’s ability to identify idiosyncratic pattern violations
in if statements of C/C++ programs. These results span ≈ 6, 000 GitHub repositories
and are checked against nominal patterns from popular open-source packages of OpenSSL
and CURL. The anomaly flagged in CURL led to a source code change, which we believe
improves the robustness of the code. Overall, our findings revealed interesting results, which
suggest possible improvements and future work for ControlFlag.

2 ControlFlag Design

Figure 1 shows the overview of ControlFlag, which consists of two main phases: (i) pattern mining and
(ii) scanning. ControlFlag’s pattern mining phase consists of learning the common (and uncommon)
idiosyncratic coding patterns found in the user-specified GitHub repositories, which, when complete,
generates a precedence dictionary that contains acceptable and unacceptable idiosyncratic patterns.
ControlFlag’s scanning phase consists of analyzing a given source code repository against the learned
idiosyncratic patterns dictionary. When anomalous patterns are identified, ControlFlag notifies the
user and provides them with possible alternatives.
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Figure 1: Overview of ControlFlag System.

2.1 Pattern Mining

The pattern mining phase is further divided into the following sub-phases: (i) source repository
selection, (ii) code parsing, and (iii) decision tree construction.

Source repository selection. In our experiments, we used the number of stars of a GitHub repository
as a measure of its quality. Without any easy and quantifiable measure of the quality of the programs
in those repositories other than GitHub stars, we believe that such a selection gives us semi-trust in
the data. We, however, believe that this is an open problem as quality is a subjective term.

Parsing control structures. After a source repository is selected, ControlFlag generates a list
of programs in the high-level programming language of interest. Every program from this list
is then parsed. The resulting parse trees – currently in the form of abstract syntax trees (ASTs)
– are then converted into a higher-level abstracted tree to prune unnecessary details from ASTs.
While ControlFlag parses these programs, it does not discard programs containing parse errors. For
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ControlFlag’s purpose, all that is needed are control structures do not have parse errors; parse errors
elsewhere in the code may not impact ControlFlag’s functionality. We believe this characteristic of
ControlFlag is important, given that we have found that the majority of the C/C++ programs found
in open-source are not compilable. Additionally, such an approach would enable ControlFlag to
eventually be used in a live programming environment or an integrated development environment
(IDE).

Levels of abstractions. We used TreeSitter APIs [18] to parse the control structures in the source
programs and used its AST representation2 as the lowest-level tree representation (referred to as an L1
abstraction level). But during the experimentation, we found that AST representation would capture
exact structural form of the expressions inside the control structures. For instance, for expression
from C/C++ language such as a.b.c & (1 « e)), the AST would look like:

(binary_expr ("&")
(field_expr (field_expr ((identifier)(field_identifier)))(field_identifier))
(parenthesized_expr (binary_expr ("<<")(number)(identifier))))

We observed that capturing such a precise structural form would later reduce the chances of matching
a target pattern during the scanning phase. The higher-level abstraction (referred to as an L23

abstraction level), developed on top of an AST, drops the precision in the structural form by keeping
the ASTs to a finite and small height by introducing a new tree node type (named non_terminal) to
represent a pruned tree. The higher-level tree for the aforementioned AST would then take the form:

(binary_expr ("&") (non_terminal_expr)(non_terminal_expr))

Note that the higher-level tree above drops both the children of & and marks them as non_terminal.
This would intuitively increase the number of false negatives. Nonetheless, it allows ControlFlag
to check for idiosyncratic violations in & during the scanning phase rather than declaring the whole
pattern as absent from the dictionary.

Decision tree construction. During parsing, a pattern at both the L1 and L2 abstraction levels can
be dumped out in textual format using a pre-order tree traversal. In fact, we represent the mined
patterns internally by building a prefix tree4 (or trie [4]) over the text strings for the trees of the mined
patterns. Every path in the prefix tree that ends with a terminal node, corresponding to a valid pattern,
also stores the number of occurrences of that pattern. We build different prefix trees for text strings
that are at different levels of abstractions. By doing this, we can convert idiosyncratic patterns into
different abstraction levels and check them against their respective prefix trees.

2.2 Scanning for Unusual Patterns

When a user specifies a target repository to scan for unusual patterns, ControlFlag first obtains a list
of idiosyncratic patterns that occur in the specified control structures, which it had learned from the
prior mining phase. For every pattern in the list, it builds a respective parse tree at an L1 abstraction
level and checks it against the prefix tree at L1 level. If the pattern is present in the tree, then it is
considered a non-violation and the search terminates. If the pattern is missing, then ControlFlag
checks it against the prefix tree at L2 level. ControlFlag triggers an automatic correction phase
irrespective of whether a pattern is found or not found (at L1 and L2 levels). In the former case,
although the pattern was found, it could be rare; in the latter case, it is known to be rare, because it is
absent. ControlFlag’s automatic correction phase then either flags the pattern as anomalous or not
based on a heuristically calculated threshold. If the pattern is flagged as anomalous, ControlFlag also
suggests possible corrections based on tree similarity criteria.

Automatic correction. Automatic correction of strings [4] is a well-studied problem in computer
science. In our first embodiment of ControlFlag, we use edit distance between strings (using dynamic
programming algorithm) to suggest possible corrections of the target string. For future embodiments,
we plan to explore other forms of similarity and dissimilarity analysis.

2To keep the description brief, we do not specify its grammar here.
3We use L1 and L2 terminology from the concept of caches in computer architecture. An item missing at L1

has a high chance of being at L2.
4Given the preliminary nature of this study, we found that prefix tree structure performed reasonably well

(time complexity of search and space usage) in our experiments. And we did not invest in optimizing it to reduce
the space usage, but such an optimization using deterministic finite automaton (DFA) is possible.
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We experimented with three approaches to suggest corrections of a possibly erroneous target pattern:
a naive approach, a Norvig et al. auto-correction approach [13], and Symmetric Delete [10]5. For our
purposes, the Norvig et al.’s approach and symmetric delete did not perform well and encountered
temporal and spatial complexity that was super-linear compared to the naive approach. As the
temporal and spatial complexity of the naive approach is reasonable compared to other approaches,
we used it for our evaluation. We have, nonetheless, optimized it in the following obvious ways: (i)
caching the results of automatic correction process, (ii) compacting the string representation of the
parse trees by using short IDs for unique tree nodes, and (iii) employing parallelism while traversing
the prefix trees.

Ranking the results of automatic correction. The outcome of the automatic correction process is a
list of possible corrections at various edit distances and their occurrences in the dictionary for a given
target string. When ControlFlag presents the results of the automatic correction to the user, it first
sorts them in the increasing order of edit distance and secondly by the number of occurrences that can
correct the string given some k number of edits. This simple heuristic is based on the intuition that the
probability of a typographical violation of one character has a greater probability than a typographical
violation in more than one character. ControlFlag uses the sorted results of the automatic correction
process to determine a threshold level to define what is and is not anomalous.

Anomaly threshold. ControlFlag uses two criteria for the purpose of declaring a certain pattern as
anomaly. First, a target pattern that is missing from the dictionary is declared anomalous because it is
missing. Second, if a target pattern is not missing from the dictionary, but its automatic correction
results satisfy the following formula is declared anomalous.

n0 × 100∑max_cost
i=0 max(ni)

< α ∀(p, n) ∈ C

C is the set of automatic correction results, in which every result contains a corrected pattern p and
its occurrences n. α is a user-defined anomalous threshold, and max is a function that calculates the
maximum of a list of occurrences.

Intuitively, we calculate the percentage contribution of the number of occurrences of a possible
incorrect target pattern (n0) against the maximum number of occurrences at every edit distance. In
other words, if the possible corrections of a target string at smaller edit distances (such as 1) occur
more frequently than the target string, then it is likely that the target string is an idiosyncratic violation.
α is the anomaly threshold that is user controllable, and, by default, it is set to 5%. Reducing the
anomaly threshold reduces the number of flagged anomalies.

3 Experimental evaluation

In this section, we present preliminary results of ControlFlag in flagging idiosyncratic pattern
violations in if statements of C/C++ programs.

3.1 Setup

Software and hardware setup. All the experiments in this section were performed on an Intel
56-core Xeon Platinum 8280 CPU with hyper-threading enabled and ≈ 200GB of memory. The
operating system and compiler used was CentOS-7.6.1810 with GCC-10.2.

Source repository selection. For the pattern mining phase, we chose the top 6000 open-source
GitHub repositories that used C/C++ as their primary programming language and had received at
least 100 stars. As we mentioned previously, we use GitHub stars as a mechanism to infer quality of
software ControlFlag is trained on.

Target repository selection. In our experiments, we used OpenSSL-1.1.1h and CURL-7.73 reposi-
tories to scan for patterns violations. There was no particular reason to choose these packages besides
the fact that both of them are popular open-source software packages and use C as their primary
language.

5As the details of these approaches are not necessary to understand the core concepts of the main paper, we
place a more detailed analysis of these techniques in Appendix B.
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3.2 Results

Mining patterns from source repositories. The 6000 repositories that we used for the pattern
mining phase consisted of a total of 2.57M C/C++ programs. These programs had ≈ 38M total
patterns, ≈ 831K unique patterns at the L1 abstraction level, and precisely 468 unique patterns at the
L2 abstraction level. Figure 2 shows the cumulative percentage plot of the number of occurrences of
unique patterns at both the abstraction levels. As expected, ≈ 90% of the unique patterns at the L1
level have low frequency (close to 10). At L2 abstraction level, however, because of the grouping
of multiple patterns at L1 level, ≈ 90% of the patterns have higher frequency. We provide a more
detailed analysis of pattern frequency in Appendix A.
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Figure 2: Cumulative percentage plot of the num-
ber of occurrences of unique patterns at different
abstraction levels.

Mining patterns from 6000 source repositories
with 56 worker threads took around two hours,
and building prefix trees at the L1 and L2 ab-
straction levels from those patterns took close
to three minutes. We also dumped the patterns
at the L1 and L2 levels in a textual format into
a file, which was 11GB in size. The memory
consumption of ControlFlag after building the
prefix trees was ≈ 8GB, which has a reduced
spatial footprint due to compression performed
by prefix tree.

Scanning target repositories. We scanned
1212 C/C++ programs from OpenSSL and 736
C/C++ programs from CURL to flag potential
idiosyncratic violations in if statements. With
56 scanner threads, ControlFlag took ≈ 3 hours
to scan OpenSSL and 30 minutes to scan CURL.
Figure 3 shows the results. In total, ControlFlag scanned 30,862 patterns in OpenSSL and 13,294
patterns in CURL. 6

Figure 3a shows the effect of having two abstraction levels on the number of patterns that are found
in the prefix trees. In summary, all the patterns are found at the L2 level, while a few are missing at
the L1 level. Figure 3b shows the number of patterns flagged as anomalies at the anomaly thresholds
of 1% and 5%. As expected, the number of anomalies flagged at 5% are higher than that at 1%. This
raises an obvious and deeply studied question: what should the anomalous threshold be set to? We
could set the threshold to a value smaller than 1%, especially, since Figure 2 shows that many patterns
have low frequencies at the L1 level. Yet, because the absolute number of anomalies flagged at the L1
level (after removing duplicates) are reasonable for a manual inspection, we chose not to experiment
with reducing the anomaly threshold further (at least for this early work).

Anomalies flagged in the scans. Now we discuss some of the anomalous pattern violations Con-
trolFlag found in OpenSSL and CURL. Detailed report of these anomalies along with their automatic
correction results are discussed in Appendix A. Note that we have not yet confirmed if these anomalies
are bugs — we can only confirm if that is the case by applying the changes suggested in the automatic
corrections and running the automated tests or contacting developers.

Anomaly 1. CURL’s lib/http_proxy.c uses s->keepon > TRUE expression at line number 359.
This was flagged as anomalous because there were only 4 source patterns that contained a boolean
value TRUE in >. ControlFlag’s top suggested correction s->keepon > number at edit distance
of 2 had 127K occurrences. We found that s->keepon is of type int in CURL, while TRUE is
defined as true, which is defined as integer 1 in C language. So this expression is a comparison
between a signed 32-bit integer and an integer value of a boolean, which is why GCC did not flag
it. We believe that > true expression, however, is ambiguous for two reasons: boolean values are
typically used with logical or bitwise operators, and in C language, any non-zero value is considered
as true. We conveyed this ambiguity to CURL developers [6] and proposed s->keepon > 1 as a
better expression. They acknowledgement the ambiguity and resolved it [5] by using enum type to

6Duplicates were not removed. We suspect the total number of patterns would decrease if duplicates were
removed.
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Figure 3: Results of scanning OpenSSL and CURL for possible typographical errors

model different values of keepon as states. We find it motivating to see that an anomaly flagged by
ControlFlag improved the robustness of CURL by eliminating a potential ambiguity.

Anomaly 2. OpenSSL’s test/testutil/tests.c uses expression (s1 == NULL) ∧ (s2 ==
NULL) at line number 268. The expression was flagged as anomalous because it had only 8 occur-
rences. While the top two suggested corrections (s1 == NULL) | (s2 == NULL) at edit distance
1 and (s1 == NULL) || (s2 == NULL) at edit distance 2 had 32 and 6808 occurrences in the
dictionary, respectively.

Anomaly 3. OpenSSL’s test/evp_test.c uses expression (-2 == rv) at line number 1898. It
was flagged as anomalous because it had 16529 occurrences, while its possible correction variable
== rv at edit distance 1 had 1.1M occurrences. We believe that the base expression has lower
occurrences because fewer programmers use that style of writing an equality check. We, however,
believe that number == variable is a better style than variable == number, as it avoids possible
typographic errors because compiler’s lvalue check will prevent assignment to a constant.

Anomaly 4. OpenSSL’s crypto/x509/t_req.c uses expression (BIO_puts(bp, ":") <= 0)
at line 141. This expression was flagged as anomalous as it had 475 occurrences. What we find
interesting about this expression is that it compares the result of a function call with 0 and negative
values, which is OpenSSL’s approach for evaluating error codes. ControlFlag’s top two suggested
corrections were (BIO_puts(bp, ":") == 0) and (BIO_puts(bp, ":") < 0), which, based
on the data we analyzed, seemed to indicate more appropriate patterns — 0 being a successful
return code (as in standard libc) and comparison with the negative values for erroneous return codes.
OpenSSL’s expression somehow combines both the typical patterns together, resulting in a highly
abnormal combination.

4 Related work

Automated program repair and automated bug detection and correction are growing and active areas
of research in MP [1, 2, 7, 15, 19, 20]. Most of these techniques rely on a learning based approach
to detect and fix bugs. Hoppity [7], in particular, is a recent work that uses deep learning model to
detect and correct a variety of bugs in JavaScript code. They define their bug detection problem as
an anomaly detection problem: if a code fragment deviates from the fragments seen during model
training, then that code fragment is considered buggy. AutoPerf [1] takes a similar approach using
autoencoders to detect anomalous behaviors in program performance that exceed some learned
threshold.

ControlFlag is different than these approaches in that it is not specific to detecting bugs. An
anomaly flagged by ControlFlag may or may not be a bug — this largely depends upon the accepted
idiosyncratic patterns within a given program’s source code. In this sense, ControlFlag can notify
programmers of anomalies, even before test cases or a program specifications are checked. To our
knowledge, ControlFlag may be the first of its kind to identify typographical anomalies, which may
be erroneous, based entirely on a self-supervised learning system.
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5 Conclusion

In this preliminary study, we presented ControlFlag, a system to automatically detect possible
typographical errors in the control structures of high-level programming languages. ControlFlag
also suggests possible corrections to such errors. The fundamental approach ControlFlag takes is to
recast typographical errors as anomalies, where a self-supervised system that is trained on a large
enough semi-trusted code, will automatically learn which idiosyncratic patterns are acceptable and
which are not. Our initial findings from scanning C/C++ programs from OpenSSL and CURL across
2.57 million programs reveal interesting anomalies (as well as some unusual programming styles).
Concretely, the anomaly flagged by ControlFlag in CURL was acknowledged by the developers
and was fixed promptly. We plan to use our initial findings as guidance for future refinement of the
system.
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AST Occurrences Example C
expressions

(identifier) 4.3M if (x)
(unary_expr (“!”) (identifier)) 2.09M if (!x)
(field_expr (identifier)(field_identifier)) 1.3M if (p->f)
(binary_expr (“==”) (identifier)(identifier)) 1.16M if (x == y)
(binary_expr (“<”) (identifier)(number)) 1.13M if (x < 0)
(binary_expr (“==”) (identifier)(number)) 1.09M if (x == 0)
(call_expr (identifier)(arg_list (identifier))) 1.05M if (foo(x))
(binary_expr (“==”) (identifier)(null)) 790K if (p == NULL)
(binary_expr (“==”) (field_expr (identifier)

(field_identifier))(identifier)) 732K if (p->f == y)
(binary_expr (“!=”) (identifier)(identifier)) 636K if (x != y)

Table 1: A table showing the most frequently occurring patterns at L1 abstraction level

AST Occurrences Example C
expressions

(binary_expr (“=”) (identifier)(number))) 487 if (x = 0)
(binary_expr (“=”) (identifier)(identifier))) 476 if (x = y)
(binary_expr (“=”) (identifier)(call_expr
(identifier)(arg_list)))) 356 if (x = foo(y))
(binary_expr (“%”) (identifier)(number))) 6468 if (x % 2)
(binary_expr (“|”) (identifier)(identifier))) 1137 if (x | y)
(binary_expr (“∧”) (identifier)(identifier))) 813 if (x ∧ y)
(binary_expr (“==”) (number)(number))) 236 if (0 == 0)

Table 2: A table showing some of the patterns with less than 1% occurrences at L1 abstraction level

A Appendix: Evaluation results

A.1 Analysis of source patterns

Table 1 shows top 10 frequently occurring patterns, the types of expressions in C language they
correspond to, and the number of occurrences at the L1 abstraction level. Most of these patterns are
expected; it is also good to see the NULL check in the list — in our opinion, it talks about good
programming practice. Table 2, on the other hand, shows patterns, such as if (x = 7), that have
less than 1% occurrences of 38M. It is interesting to see bitwise operators in C, such as | and ∧, in
the list. We believe that these operators are more common in low-level code that operates close to
hardware. This observation also suggests that the selection strategy for source repositories could be
different in which we consciously ensure a uniform mix of repositories that contain code belonging
to different technical domains or areas.

A.2 Flagged anomalies and theirs possible corrections

Below we show some of the interesting anomalies found while scanning OpenSSL and CURL
packages. The results also contain the suggested corrections and their occurrences.

Potential anomaly: ((s1 == NULL) ∧ (s2 == NULL))
Location: openssl-1.1.1h/test/testutil/tests.c:268
Possible corrections:
((s1 == NULL) ∧ (s2 == NULL)), edit distance 0, occurrences 8
((s1 == NULL) | (s2 == NULL)), edit distance 1, occurrences 32
((s1 == NULL) || (s2 == NULL)), edit distance 2, occurrences 6808
((s1 == NULL) && (s2 == NULL)), edit distance 2, occurrences 521
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Potential anomaly: ( -2 == rv )
Location: openssl-1.1.1h/test/evp_test.c:1898
Possible corrections:
( -2 == rv ), edit distance 0, occurrences 16529
( variable == rv ), edit distance 1, occurrences 1164852
( -2 != rv ), edit distance 1, occurrences 6483
( -2 <= rv ), edit distance 1, occurrences 2170
( -2 >= rv ), edit distance 1, occurrences 265

Potential anomaly: (BIO_puts(bp, ":") <= 0)
Location: openssl-1.1.1h/crypto/x509/t_req.c:141
Possible corrections:
(BIO_puts(bp, ":") <= 0), edit distance 0, occurrences 475
(BIO_puts(bp, ":") == 0), edit distance 1, occurrences 80350
(BIO_puts(bp, ":") != 0), edit distance 1, occurrences 4559
(BIO_puts(bp, ":") < 0), edit distance 1, occurrences 1431

Potential anomaly: (s->keepon > TRUE)
Location: curl/lib/http_proxy.c:359
Possible corrections:
(s->keepon > TRUE), edit distance 0, occurrences 4
(s->keepon > number), edit distance 2, occurrences 127540
(s->keepon > variable), edit distance 2, occurrences 56475

B Appendix: Approaches for automatic correction

In this section, we provide a brief and informal description of all three approaches that we evaluated
to automatically suggest possible corrections to an erroneous pattern. Since these approaches are not
the contribution of this paper, we do not provide a formal description.

For the sake of comparing these approaches, let us consider that the parameters for an automatic
correction algorithm consist of (1) target string of length N and its correction of length M , (2) a
dictionary consisting of D strings among which to search for possible corrections that are within the
edit distance of E, and (3) the target string and its corrections draw characters from a vocabulary set
of size V .

• A naive approach. A naive approach to look for corrections of a target string against a
dictionary would be to calculate the edit distance between the target string and every string
from the dictionary. In other words, this approach traverses the prefix tree completely.
The time complexity of this naive approach is linear to the size of the dictionary, and more
precisely, it is O(N ×M ×D), where M is the average size of the strings from D.

• Norvig et al. approach. An alternative approach suggested by Norvig et al. [13] eliminates
the need to go over all the strings from the dictionary to find possible corrections. Instead, it
relies on generating candidate correction strings within the given maximum edit distance
from the target string. The candidate correction strings are then checked against the dictio-
nary. If a candidate is found in the dictionary, then it is a possible correction of the target
string.
The time complexity of Norvig et al. algorithm, however, grows exponentially in the order
of the edit distance. Specifically, the number of candidate correction strings that are at edit
distance of 1 from the target string are O(V ×N ), considering typical typing corrections
such as insertion, deletion and replacement of a single character. In order to calculate the
candidate correction strings at edit distance of 2, all of the candidate strings at edit distance 1
go through typing corrections of a single character. In other words, the number of candidate
corrections at edit distance of 2 would be O(V × N2). This approach works in practice
when N is small (for English language, average value of N is 5) and hence E is at max N
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(typically, in practice, E is 2 or 3 for English language). In our experiments, we found that
with a vocabulary size of 50 and the target string of length 80, the algorithm generates 8000
candidates at edit distance 1 and 2M candidates at edit distance 2, out of which less than
5% would be valid candidates.

• Symmetric Delete approach. Symmetric Delete approach [10], introduced by Garbe et al.,
is another correction candidate generation approach that relies on using character deletes
only as edits for generating candidates from the target string. Specifically, it observes that
the approach by Norvig et al. produces an exponential number of candidates in the edit
distance because it considers insertions, deletions and replacements as edits. It avoids the
exponential number of candidates of a target string by only considering character deletions
as edit operations. Although the number of candidates generated from a target string of
length N are still upper-bounded by O(N !), they are independent of the vocabulary size V .
And this is why symmetric delete approach generates far less correction candidates than the
approach by Norvig et al.
The downside of the symmetric delete approach is that it has to generate similar correction
candidates for all the strings from the dictionary. The correction candidates generated using
the dictionary are then compared with the candidates generated using a target string to
suggest possible corrections to the target string. In other words, it trades the memory to
store the correction candidates generated from the dictionary to reduce the time to find
possible corrections. In fact, the correction candidates computed from the dictionary can be
pre-computed. The space required to store the pre-computed correction candidates, however,
is O(D ×M !), and it proved prohibitive in our case as we increased the number of source
repositories.
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