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ABSTRACT

Code similarity systems are integral to a range of applications from code recom-
mendation to automated software defect correction. We argue that code similarity
is now a first-order problem that must be solved. To begin to address this, we
present Machine Inferred Code Similarity (MISIM), a novel end-to-end code sim-
ilarity system that consists of two core components. First, MISIM uses a novel
context-aware semantic structure, which is designed to aid in lifting semantic
meaning from code syntax. Second, MISIM provides a neural-based code simi-
larity scoring algorithm, which can be implemented with various neural network
architectures with learned parameters. We compare MISIM to three state-of-the-art
code similarity systems: (i) code2vec, (ii) Neural Code Comprehension, and (iii)
Aroma. In our experimental evaluation across 328,155 programs (over 18 million
lines of code), MISIM has 1.5× to 43.4× better accuracy than all three systems.

1 INTRODUCTION
The field of machine programming (MP) is concerned with the automation of software develop-
ment (Gottschlich et al., 2018). In recent years, there has been an emergence of many MP systems,
due, in part, to advances in machine learning, formal methods, data availability, and computing
efficiency (Allamanis et al., 2018a; Alon et al., 2018; 2019b;a; Ben-Nun et al., 2018; Cosentino
et al., 2017; Luan et al., 2019; Odena & Sutton, 2020; Tufano et al., 2018; Zhang et al., 2019). An
open challenge in MP is the construction of accurate code similarity systems. Code similarity is
the problem of determining if two or more code snippets have some degree of semantic similarity
(or equivalence) even in the presence of syntactic divergence. At the highest level, code similarity
systems aim to determine if two or more code snippets are solving a similar problem, even if the
implementations they use differ (e.g., various algorithms of sort() (Cormen et al., 2009)).

Historically, code similarity systems have been considered an auxiliary feature that aim to improve
programmer productivity with tools such as code recommendation, automated bug detection, and
language-to-language transformation for small kernels (e.g., stencils), to name a few (Allamanis
et al., 2018b; Ahmad et al., 2019; Bader et al., 2019; Barman et al., 2016; Bhatia et al., 2018;
Dinella et al., 2020; Kamil et al., 2016; Luan et al., 2019; Pradel & Sen, 2018). We argue that code
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similarity is now a first-order problem that must be solved. In particular, without largely accurate
code similarity systems to automate significant parts of our software development, we believe the
explosion of heterogeneous software and hardware will soon become an untenable problem that
software developers will not be able to navigate (Ahmad et al., 2019; Batra et al., 2018; Bogdan et al.,
2019; Chen et al., 2020; Deng et al., 2020; Hannigan et al., 2019) . Yet, as others have noted before
us, even some of the most fundamental questions in code similarity have no clear answers, such as
the proper structural representation of code for a particular similarity problem (Alam et al., 2019;
Allamanis et al., 2018b; Becker & Gottschlich, 2017; Ben-Nun et al., 2018; Dinella et al., 2020; Iyer
et al., 2020; Luan et al., 2019). In this paper, we aim to address some of these questions.

While prior work has explored some structural representations of code in the space of code similarity,
these explorations are far from complete. The classical abstract syntax tree (AST) is used in the
code2vec system (Alon et al., 2019b), a novel structure called the contextual flow graph (XFG) is
used by Neural Code Comprehension (NCC) (Ben-Nun et al., 2018), and a new structure called the
simplified parse tree (SPT) is used by Aroma (Luan et al., 2019). While each of these representations
have benefits in certain contexts, we have found that they possess one or more limitations when used
in the broader context of code similarity that may limit their practical application. For example,
the AST – while principally valuable for compilers – is syntax driven, which can often mislead
code similarity systems into learning too much syntax and not enough semantics (i.e., the meaning
behind the syntax). The XFG is obtained from an intermediate representation (IR), which requires
code compilation; this limits its use to only compilable code. Although the SPT is structurally
driven (not syntax driven), it does not always resolve syntactic ambiguities, which may result in
semantic obfuscation that prevent it from observing semantic variation caused by contextual syntactic
differences. In Section 4, we evaluate how these limitations impact code similarity accuracy.

Learning from these observations, we attempt to address some of the open questions around code
similarity with our novel end-to-end code similarity system called Machine Inferred Code Similarity
(MISIM). In this paper, we principally focus on two main novelties of MISIM and how they may
improve code similarity analysis: (i) its structural representation of code, called the context-aware
semantic structure (CASS), and (ii) its neural-based learned code similarity scoring algorithm. These
components can be used individually or together as we have chosen to do.

This paper makes the following technical contributions:

• We present Machine Inferred Code Similarity (MISIM), a novel end-to-end code similarity system.
• We present MISIM’s context-aware semantic structure (CASS), a novel structural representation

of code specifically designed to (i) lift semantic meaning from code syntax and (ii) provide an
extensible representation that can be augmented as needed (e.g., as new programming languages
(PLs) emerge, existing PL contextual syntax ambiguities are discovered, etc.).

• We present MISIM’s open-ended deep neural network (DNN) backend that learns the similarity
scoring algorithm for a given code corpus and show its efficacy across three DNN topologies: (i)
bag-of-features, (ii) a recurrent neural network (RNN), and (iii) a graph neural network (GNN). 1

• We compare MISIM to three state-of-the-art code similarity systems: (i) code2vec, (ii) Neural Code
Comprehension, and (iii) Aroma. Our experimental evaluation, across 328,155 C/C++ programs
comprising of over 18 million lines of code, illustrates that MISIM is more accurate than all three
systems, across all experiments, ranging from 1.5× to 43.4×.

2 MISIM SYSTEM

In Figure 1, we provide an overview of MISIM’s system diagram. A core component of MISIM
is the novel context-aware semantic structure (CASS), which aims to capture semantically salient
properties of the input code. Moreover, CASS is designed to be context-aware. That is, it can
capture information that describes the context of the code (e.g., parenthetical operator disambiguation
between a function call, mathematical operator precedence, Boolean logic ordering, etc.) that may
otherwise be ambiguous without such context-sensitivity. Once these CASSes are constructed,
they are vectorized and used as input to a neural network, which produces a feature vector for a

1We acknowledge that this is a non-exhaustive list of all possible neural network architectures that can be
used with MISIM. We explore these three for two reasons: (i) to demonstrate the diversity of DNNs that can be
used with MISIM and (ii) to illustrate how different DNNs have a measurable impact on MISIM’s accuracy.
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Figure 1: Overview of the MISIM System.

corresponding CASS. Once a feature vector is generated, a code similarity measurement (e.g., cosine
similarity (Baeza-Yates & Ribeiro-Neto, 1999)) calculates the similarity score.

2.1 CONTEXT-AWARE SEMANTIC STRUCTURE (CASS)

We have designed CASS with the following guiding principles: (i) it should not require compilation,
(ii) it should be a flexible representation that captures code semantics, and (iii) it should be capable
of resolving code ambiguities in both its context sensitivity to the code and its environment. The
first principle (i) originates from the observation that unlike programs in higher-level scripting
programming languages (e.g., Python (Van Rossum & Drake, 2009), JavaScript (Flanagan, 2006)),
C/C++ programs found “in the wild” may not be well-formed (e.g., due to specialized compiler
dependencies) or exhaustively include all of their dependencies (e.g., due to assumptions about library
availability) and therefore may not compile. Moreover, for code recommendation systems that are
expected to function in a live setting, requiring compilation may severely constrain their practical
application. We address this by introducing a structure such that it does not require compilation
(Section 2.1.1). The second (ii) and third (iii) principles originate from the observation that different
scenarios may require attention to different semantics (e.g., embedded memory-bound systems may
prefer to use algorithms that do not use recursion due to a potential call stack overflow) and that
programming languages (PLs) evolve and new PLs continue to emerge. We attempt to address these
issues with CASS’s configuration categories (Section 2.1.2).

2.1.1 CASS’S TREES AND GLOBAL ATTRIBUTES TABLE

In this section, we provide an informal definition of CASS (a formal definition can be found in
Appendix A). The CASS consists of one or more CASS trees and an optional global attributes table
(GAT). A CASS tree is a tree, in which the root node represents the entire span of the code snippet.
During the construction of a CASS tree, the program tokens are mapped to its corresponding node
label using the grammar of the high-level programming language. A CASS’s GAT contains exactly
one entry per unique function definition in the code snippet. A GAT entry currently includes only
the input and output cardinality values for each corresponding function, but can be extended as new
global attributes are needed. A simple example of this is illustrated in Figure 2, where a code snippet
and its corresponding CASS tree and GAT are shown.

2.1.2 CASS CONFIGURATION CATEGORIES

In general, CASS configurations can be broadly classified into two categories: language-specific and
language-agnostic. Options for each of the configuration categories are described in Table 1.
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int sum(int start, int end)
{

int sum = 0;

for (int i=start; i<=end;
++i)
sum += i;

return sum;
} #VAR

#compound_statement#{$}

int$; for($$;$)$
return$;

$=$

#VAR

#LIT

int$;
$<=$

++$ $;
$=$

#VAR

#VAR
#VAR

$+=$

#VAR #VAR

#VAR

#VAR

Function: sum()

Input 
cardinality

2

Output 
cardinality

1

Figure 2: A Sum Function and One Variant of Its Context-Aware Semantic Structure.
Table 1: CASS Configuration Options.

Category Type Option

Language-specific A. Node Prefix Label
0. No change (Aroma’s original configuration)
1. Add a prefix to each internal node label
2. Add a prefix to parenthesis node label (C/C++ Specific)

Language-agnostic

B. Compound Statements
0. No change (Aroma’s original configuration)
1. Remove all features relevant to compound statements
2. Replace with ‘{#}’

C. Global Variables

0. No change (Aroma’s original configuration)
1. Remove all features relevant to global variables
2. Replace with ‘#GVAR’
3. Replace with ‘#VAR’ (the label for local variables)

D. Global Functions
0. No change (Aroma’s original configuration)
1. Remove all features relevant to global functions
2. Remove function identifier and replace with ‘#EXFUNC’

E. Function I/O Cardinality 0. No change
1. Include the input and output cardinality per function

Language-specific configurations (LSCs). Language-specific configurations are meant to capture
semantic meaning by resolving a syntactic ambiguity present in the concrete syntax tree. It also
introduces specificity related to the high-level programming language. For example, the parentheses
operator is overloaded in many programming languages to enforce an order of evaluation of operands
in an expression as well as to enclose a list of function arguments, amongst other things. CASS
disambiguates these by explicitly embedding the semantic contextual information in the CASS tree
nodes using the node prefix label (defined in Appendix A).

(A) Node Prefix Label. The configuration options for node prefix labels2 correspond to various levels
of semantic to syntactic information. In Table 1, option 0 corresponds to the extreme case of a
concrete syntax embedding, option 1 corresponds to eliminating irrelevant syntax, and option 2 is
principally equivalent to option 1, except it applies only to parentheticals, which we have identified –
through empirical evaluation – to often have notably divergent semantic meaning based on context.

Language-agnostic configurations (LACs). LACs can improve code similarity analysis by unbind-
ing overly-specific semantics that may be present in the original concrete syntax tree structure.

(B) Compound Statements. The compound statements configuration option enables the user to control
how much non-terminal node information is incorporated into the CASS. Option 0 is equivalent to
Aroma’s SPT, option 1 omits separate features for compound statements altogether, and option 2 does
not discriminate between compound statements of different lengths and specifies a special label to
denote the presence of a compound statement.

(C) Global Variables. The global variables configuration specifies the degree of global variable-
specific information contained in a CASS. The configuration options for global variables provide
the user with the ability to control the level of abstraction – essentially binding or unbinding global
variable names as needed. If all code similarity analysis will be performed against the same software
program, retaining global variable names may help elicit deeper semantic meaning. If not, unbinding
global variable names may improve semantic meaning.

(D) Global Functions. The global functions configuration serves the dual purpose of (i) controlling
the amount of function-specific information to featurize and (ii) to explicitly disambiguate between
the usage of global functions and global variables (a feature that is absent in Aroma’s SPT design).

(E) Function I/O Cardinality. The function I/O cardinality configuration aims to abstract the
semantics of certain groups of functions through input and output cardinality (i.e., embedded semantic

2Analytically deriving the optimal selection of node prefix labels across all C/C++ code may be untenable.
To accommodate this, we currently provide two levels of granularity for C/C++ node prefix labels in CASS.
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information that can be implicitly derived by analyzing the number of input and output parameters of
a function).

We have found that the specific context in which code similarity is performed seems to provide some
indication of the optimal specificity of the CASS configuration. In other words, one specific CASS
configuration is unlikely to work in all scenarios. To address this, CASS provides a number of options
to control the language-specific and/or language-agnostic configurations to enable tailored CASS
representations for particular application contexts. We discuss this in greater detail in Appendix A.1.

2.2 NEURAL SCORING ALGORITHM

MISIM’s neural scoring algorithm aims to compute the similarity score of two input programs. The
algorithm consists of two phases. The first phase involves a neural network model that maps a
featurized CASS to a real-valued code vector. The second phase generates a similarity score between
a pair of code vectors using a similarity metric.3 For the remainder of this section, we describe the
details of the scoring model, its training strategy, and other neural network model choices.

2.2.1 MODEL

We investigated three neural network approaches for MISIM’s scoring algorithm: (i) a graph neural
network (GNN) (Zhou et al., 2018), (ii) a recurrent neural network (RNN), and (iii) a bag of manual
features (BoF) neural network. We name these models MISIM-GNN, MISIM-RNN, and MISIM-BoF
respectively. MISIM-GNN performs the best overall for our experiments, therefore, we describe it in
detail in this section. Appendix B has details of the MISIM-RNN and MISIM-BoF models.

MISIM-GNN. MISIM-GNN’s architecture is shown in Figure 3. For this approach, an input
program’s CASS representation is transformed into a graph. Then, each node in the graph is embedded
into a trainable vector, serving as the node’s initial state. Next, a GNN is used to update each node’s
state iteratively. Finally, a global readout function is applied to extract a vector representation of the
entire graph from the nodes’ final states. We describe each of these steps in more detail below.

… …

Embedding GNN

CASS nodes
and attributes

Embedding vectors

…

Node final states

Elementwise
mean

Elementwise
max

Fully 
connected

Concatenation of 
mean and max

Code vector

Layer type Input/output

Figure 3: MISIM-GNN Architecture.

Input Graph Construction. We represent each program as a single CASS instance. Each instance
can contain one or more CASS trees, where each tree corresponds to a unique function of the program.
The CASS instance is converted into a single graph representation to serve as the input to the model.
The graph is constructed by first transforming each CASS tree and its GAT entry into an individual
graph. These graphs are then merged into a single (disjoint) graph. For a CASS consisting of a CASS
tree T = (V,E) and a GAT entry a, we transform it into a directed graph G = (V ′, E′, R), where
V ′ is the set of graph nodes, R is the set of edge types, and E′ = {(v, u, r) | v, u ∈ V ′, r ∈ R} is
the set of graph edges. The graph is constructed as follows:

V ′ = V ∪ {a}, R = {p, c}, E′ = {(v, u, p) | (v, u) ∈ E} ∪ {(v, u, c) | (u, v) ∈ E}.

The two edge types, p and c, represent edges from CASS tree nodes to their child nodes and to their
parent nodes, respectively.

Graph Neural Network. MISIM embeds each node v ∈ V ′ in the input graph G into a vector by
assigning a trainable vector to each unique node label (with the optional prefix) and GAT attribute.
The node embeddings are then used as node initial states (h(0)

v ) by a relational graph convolutional

3For this work, we have chosen cosine similarity as the similarity metric used within MISIM.
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network (R-GCN (Schlichtkrull et al., 2018)) specified as the following:

h(l)
v = ReLU

 1∑
r∈R |N r

v |
∑
r∈R

∑
u∈N r

v

W(l)
r h(l−1)

u +W
(l)
0 h(l−1)

v

 v ∈ V ′, l ∈ [1, L],

where L is the number of GNN layers, N r
v = {u | (u, v, r) ∈ E′} is the set of neighbors of v that

connect to v through an edge of type r ∈ R, and W
(l)
r , W(l)

0 are weight matrices to be learned.

Code Vector Generation. To obtain a vector representing the entire input graph, we apply both an
average pooling and a max pooling on the graph nodes’ final states (h(L)

v ). The resulting two vectors
are concatenated and fed into a fully-connected layer, yielding the code vector for the input program.

2.2.2 TRAINING

We train the neural network model following the setting of metric learning (Schroff et al., 2015;
Hermans et al., 2017; Musgrave et al., 2020; Sun et al., 2020), which tries to map input data to a
vector space where, under a distance (or similarity) metric, similar data points are close together (or
have large similarity scores) and dissimilar data points are far apart (or have small similarity scores).
The metric we use is the cosine similarity in the code vector space. As shown in the lower half of
Figure 1, we use pair-wise labels to train the model. Each pair of input programs are mapped to two
code vectors by the model, from which a similarity score is computed and optimized using a metric
learning loss function.

3 RELATED WORK

Although research in code similarity is still in early stages, there is a growing body of exploratory
work (Alon et al., 2019b; Ben-Nun et al., 2018; Kim et al., 2018; Liu et al., 2018; Luan et al., 2019).
In this section, we briefly discuss three state-of-the-art code similarity systems: code2vec, Neural
Code Comprehension (NCC), and the Aroma system.

code2vec. A core goal of code2vec is to learn a code embedding for representing snippets of code. A
code embedding is trained through the task of semantic labeling of code snippets (i.e., predicting
the function name for a function body). As input, code2vec uses abstract syntax tree (AST) paths
to represent a code snippet. The AST is a tree structure that represents the syntactic information of
the source code (Baxter et al., 1998). code2vec incorporates an attention-based neural network to
automatically identify AST paths that are more relevant to deriving code semantics. In contrast, the
MISIM system uses the CASS structure that provides abstractions over code syntax, and a neural
backend that can be instantiated by various learning algorithms.

Neural Code Comprehension (NCC). NCC attempts to learn code semantics based on an intermediate
representation (IR) (Lattner & Adve, 2004) of the code. NCC processes source code at the IR level
in an attempt to extract additional semantic meaning. It transforms IR into a contextual flow graph
(XFG) that incorporates both data- and control-flow of the code, and uses XFG to train a neural
network for learning a code embedding. One of the constraints of NCC is that its IR requires code
compilation. MISIM does not use an IR and thus does not have a compilation requirement, which
may be helpful in some settings (e.g., live programming environments).

Aroma. Aroma is a code recommendation system that takes a partially-written code snippet and
recommends extensions for the snippet. The intuition behind Aroma is that programmers often write
code that may have already been written. Aroma leverages a code base of functions and recommends
extensions in a live setting. Aroma introduces the simplified parse tree (SPT) - a tree structure to
represent a code snippet. Unlike an AST, an SPT is not language-specific and enables code similarity
comparison across various programming languages. To compute the similarity score of two code
snippets, Aroma extracts binary feature vectors from SPTs and calculate their dot product.

Other Types of Code Comprehension. There is also a growing body of work on code comprehension
that is not directly intended for code similarity, but may provide indirect value to the space of code
similarity. A large body of work has studied applying machine learning to learn from the AST for
completing various tasks on code (Alon et al., 2019a; Chen et al., 2018; Hu et al., 2018; Li et al.,
2018; Mou et al., 2016). Odena & Sutton (2020) represent a program as property signatures inferred
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from input-output pairs, which can be used to improve program synthesizers, amongst other things.
There has also been work exploring graph representations, such as the following. For bug detection
and code generation, Allamanis et al. (2018b); Brockschmidt et al. (2019) represent a program as a
graph with a backbone AST and additional edges representing lexical ordering and semantic relations
between the nodes. Dinella et al. (2020) also use a AST-backboned graph representation of programs
to learn bug fixing through graph transformation. Hellendoorn et al. (2020) introduce a simplified
graph containing only AST leaf nodes for program repair. Wei et al. (2020) extract type dependency
graphs from JavaScript programs for probabilistic type inference. In this paper, we present a new
code structural representation that can be consumed by different neural architectures to infer the
semantic similarity of code.

4 EXPERIMENTAL EVALUATION

Table 2: Dataset statistics.
Split GCJ POJ-104

#Problems #Programs #Problems #Programs

Training 237 223,171 64 28,137
Validation 29 36,409 16 7,193
Test 31 22,795 24 10,450

Total 297 282,375 104 45,780

In this section, we analyze the performance of MISIM com-
pared to code2vec, NCC, and Aroma on a dataset containing
more than 328,000 programs. Overall, we find that MISIM
has improved performance than these systems across three
metrics. Lastly, we compare the performance of two MISIM
variants, each trained with a different CASS configuration.

Datasets. Our experiments are conducted on two datasets: the GCJ dataset (Ullah et al., 2019) and the
POJ-104 dataset (Mou et al., 2016). The GCJ dataset consists of solutions to programming problems
in Google’s Code Jam coding competitions4. We use a subset of it that only contains solutions written
in C/C++, solving 297 problems. The POJ-104 dataset consists of student-written C/C++ programs
solving 104 problems. For both datasets, we label two programs as similar if they are solutions to the
same problem. After a filtering step, which removes unparsable/non-compilable programs, we split
each dataset by problem into three subsets for training, validation, and testing. Detailed statistics of
the dataset partitioning are shown in Table 2.

Training. Unless otherwise specified, we use the same training procedure in all experiments. The
models are built and trained using PyTorch (Paszke et al., 2019). To train the models, we use the
Circle loss (Sun et al., 2020), a state-of-the-art metric learning loss function that has been tested
effective in various similarity learning tasks. Following the P-K sampling strategy (Hermans et al.,
2017), we construct a batch of programs by first randomly sampling 16 different problems, and
then randomly sampling at most 5 different solutions for each problem. The loss function takes the
similarity scores of all intra-batch pairs and their pair-wise labels as input. Further details about the
training procedure and hyperparameters are discussed in Appendix C.1.

Evaluation Metrics. The accuracy metrics we use for evaluation are Mean Average Precision at R
(MAP@R) (Musgrave et al., 2020), Average Precision (AP) (Baeza-Yates & Ribeiro-Neto, 1999),
and Area Under Precision-Recall-Gain Curve (AUPRG) (Flach & Kull, 2015). Since these metrics
are already defined, we do not detail them here, but would refer readers to Appendix C.3.

Configuration Identifier. In the following sections, we refer to a configuration of CASS by its unique
identifier (ID). A configuration ID is formatted as A-B-C-D-E. Each of the five letters corresponds
to a configuration type in the second column of Table 1, and will be replaced by an option number
specified in the third column of the table. Configuration 0-0-0-0-0 corresponds to Aroma’s SPT.

Results. Figure 4 shows the accuracy of MISIM, code2vec, NCC, and Aroma5. The blue bars show
the results of the MISIM system variants trained using the baseline CASS configuration of 0-0-0-0-0.
The orange bars show the results of code2vec, NNC, and Aroma. We observe that MISIM-GNN
results in the best performance for MAP@R, yielding 1.5× to 43.4× improvements over the other
systems. In some cases, MISIM-BoF achieves the best AP and AUPRG scores. In summary, MISIM
system has better accuracy than the other systems we compared against across all three metrics.

Results Analysis. We provide a brief intuition for these results. The code2vec system uses paths
in an abstract syntax tree (AST), a purely syntactical code representation, as the input to its neural
network. We speculate that such representation may (i) keep excessive fine-grained syntactical details

4https://codingcompetitions.withgoogle.com/codejam
5The table illustrating the same results, but shown numerically, can be found in Appendix C.4.

7

https://codingcompetitions.withgoogle.com/codejam


cod
e2v

ec
NCC

NCC-w
/o-

inst2
vec

Arom
a-D

ot

Arom
a-C

os

MISI
M-G

NN

MISI
M-RNN

MISI
M-BoF

0

20

40

60

80

M
A

P@
R 

(%
)

(a) MAP@R on GCJ.

cod
e2v

ec
NCC

NCC-w
/o-

inst2
vec

Arom
a-D

ot

Arom
a-C

os

MISI
M-G

NN

MISI
M-RNN

MISI
M-BoF

0

25

50

75

100

A
P 

(%
)

(b) AP on GCJ.

cod
e2v

ec
NCC

NCC-w
/o-

inst2
vec

Arom
a-D

ot

Arom
a-C

os

MISI
M-G

NN

MISI
M-RNN

MISI
M-BoF

0

25

50

75

100

A
UP

RG
 (%

)

(c) AUPRG on GCJ.

cod
e2v

ec
NCC

NCC-w
/o-

inst2
vec

Arom
a-D

ot

Arom
a-C

os

MISI
M-G

NN

MISI
M-RNN

MISI
M-BoF

0

20

40

60

80

M
A

P@
R 

(%
)

(d) MAP@R on POJ-104.
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Figure 4: Summarized accuracy results on the test sets for code2vec, NCC, and Aroma and MISIM.
Bar heights are the averages of the measurements over 3 runs, and error bars are bounded by the
minimum and the maximum of measured values.

while (ii) omitting structural (i.e., semantic) information. This may explain why code2vec has the
lowest accuracy in our experiments. The Aroma system employs manual features derived from the
simplified parse tree and computes the number of overlapping features from two programs as their
similarity score. The selection of manual features appears to be heuristic-based and might potentially
result in a loss in semantic information. NCC tries to learn code semantics from LLVM IR, a low
level code representation designed for compilers. The lowering process from source code to LLVM
IR may discard some semantic-relevant information such as identifier names and syntactic patterns,
which is usually not utilized by compilers, but might be useful for inferring code semantics. The
absence of such information from NCC’s input may limit its code similarity accuracy.

Table 3: Test Accuracy of MISIM-GNN Trained on Different Subsets of the Training Set. The results
are shown as the average and min/max values relative to the average over 3 runs.

Sub-Training Set Configuration MAP@R (%) AP (%) AUPRG (%)

TA
C1 69.78 (-0.42/+0.21) 76.39 (-1.68/+1.51) 99.78 (-0.03/+0.03)
C2 71.99 (-0.26/+0.45) 79.89 (-1.20/+0.71) 99.83 (-0.02/+0.01)

TB
C1 63.45 (-1.58/+1.92) 68.58 (-2.51/+2.85) 99.63 (-0.06/+0.06)
C2 67.40 (-1.85/+1.23) 69.86 (-3.34/+1.79) 99.65 (-0.10/+0.05)

TC
C1 63.53 (-1.08/+1.53) 72.47 (-0.95/+1.24) 99.70 (-0.04/+0.03)
C2 61.23 (-2.04/+1.57) 69.83 (-1.03/+1.60) 99.65 (-0.03/+0.03)

TD
C1 61.78 (-0.46/+0.47) 66.86 (-2.31/+2.81) 99.56 (-0.06/+0.07)
C2 60.86 (-1.59/+0.90) 63.86 (-3.06/+3.43) 99.46 (-0.14/+0.11)

4.1 SPECIALIZED EXPERIMENTAL RESULT: CASS CONFIGURATIONS

In this subsection, we provide early anecdotal evidence indicating that no CASS configuration is
invariably the best for all code snippets. In other words, the configurations may need to be chosen
based on the characteristics of code that MISIM will be trained on and, eventually, used for. We
conducted a series of experiments that train MISIM-GNN models with two CASS configurations on
several randomly sampled sub-training sets and compared their test accuracy. The two configurations
used were C1, which is the CASS baseline configuration of 0-0-0-0-0 and C2, which is a non-baseline
configuration of 2-2-3-2-1 that provides a higher abstraction over the source code than C1 (e.g.,
replace global variable names with a unified string, etc.). Table 3 shows the results from four selected
sub-training sets, named TA, TB , TC , and TD from POJ-104. It can be seen that when trained on
TA or TB , the system using configuration C2 performs better than the baseline configuration in all
three accuracy metrics. However, using the training sets TC or TD, the results are inverted.
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To better understand this divergence, we compared the semantic features of TA ∩ TB to TC ∩ TD.
We observed that some CASS-defined semantically salient features (e.g., global variables – see
Appendix A) that C2 had been customized to extract, occurred less frequently in TA ∩ TB than in
TC ∩ TD. We speculate that, in the context of the POJ-104 dataset, when global variables are used
more frequently, they are more likely to have consistent meaning across different programs. As a
result, abstracting them away as C2 does for TC , TD, leads to a loss in semantic information salient
to code similarity. Conversely, when global variables are not frequently used, there is an increased
likelihood that the semantics they extract are specific to a single program’s embodiment. As such,
retaining their names in a CASS, may increase syntactic noise, thereby reducing model performance.
Therefore, when C2 eliminates them for TA, TB , there is an improvement in accuracy.

5 CONCLUSION

In this paper, we presented MISIM, an end-to-end code similarity system. MISIM has two core
novelties. The first is the context-aware semantics structure (CASS) designed specifically to lift
semantic meaning from code syntax. The second is a neural-based code similarity scoring algorithm
for learning code similarity scoring using CASS. Our experimental evaluation showed that MISIM
outperforms three other state-of-the-art code similarity systems usually by a large factor (up to 43.4×).
We also provided anecdotal evidence illustrating that there may not be one universally optimal CASS
configuration. An open research question for MISIM is in how to automatically derive the proper
configuration of its various components for a given code corpus, specifically the CASS and neural
scoring algorithms which we plan to explore in future work.
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A CONTEXT-AWARE SEMANTICS STRUCTURE DETAILS

The following is the formal definition of CASS.

Definition 1 (Context-aware semantic structure (CASS)) A CASS consists of one or more CASS
trees and an optional global attributes table (GAT). A CASS tree, T , is a collection of nodes,
V = {v1, v2, . . . , v|V |}, and edges, E = {e1, e2, . . . , e|E|}, denoted as T = (V,E). Each edge is
directed from a parent node, vp to a child node, vc, or ek = (vp, vc) where ek ∈ E and vp, vc ∈ V .
The root node, vr, of the tree signifies the beginning of the code snippet and has no parent node, i.e.,
@vp, (vp, vr) ∈ E. A child node is either an internal node or a leaf node. An internal node has at
least one child node while a leaf node has no child nodes. A CASS tree can be empty, in which it
has no nodes. The CASS GAT contains exactly one entry per unique function definition in the code
snippet. A GAT entry includes the input and output cardinality values for the corresponding function.

Definition 2 (Node labels) Every CASS node has an associated label, lv . During the construction of
a CASS tree, the program tokens at each node, tv are mapped to its corresponding label or lv = f(tv).
This is depicted with an expression grammar for node labels and the function mapping tokens to
labels below.6

〈bin-op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ...
〈unary-op〉 ::= ‘++’ | ‘--’ | ...
〈leaf-node-label〉 ::= LITERAL | IDENT | ‘#VAR’ | ‘#GVAR’ | ‘#EXFUNC’ | ‘#LIT’ | ...
〈exp〉 ::= ‘$’ | ‘$’ 〈bin-op〉 ‘$’ | 〈unary-op〉 ‘$’ | ...
〈internal-node-label〉 ::= ‘for’ ‘(’ 〈exp〉 ‘;’ 〈exp〉 ‘;’ 〈exp〉 ‘)’ 〈exp〉 ‘;’

| ‘int’ 〈exp〉 ‘;’
| ‘return’ 〈exp〉 ‘;’
| 〈exp〉
| ...

lv = f(tv) =

{
〈leaf-node-label〉 if v is a leaf node
〈internal-node-label〉 otherwise

Definition 3 (Node prefix label) A node prefix label is a string prefixed to a node label. A node
prefix label may or may not be present.

A.1 DISCUSSION

We believe there is no silver bullet solution for code similarity for all programs and programming
languages. Based on this belief, a key intuition of CASS’s design is to provide a structure that
is semantically rich based on structure, with inspiration from Aroma’s SPT, while simultaneously
providing a range of customizable parameters to accommodate a wide variety of scenarios. CASS’s
language-agnostic and language-specific configurations and their associated options serve for explo-
ration of a series of tree variants, each differing in their granularity of detail of abstractions.

For instance, the compound statements configuration provides three levels of abstraction. Option 0
is Aroma’s baseline configuration and is the finest level of abstraction, as it featurizes the number
of constituents in a compound statement node. Option 2 reduces compound statements to a single
token and represents a slightly higher level of abstraction. Option 1 eliminates all features related to
compound statements and is the coarsest level of abstraction. The same trend applies to the global
variables and global functions configurations. It is our belief, based on early evidence, that the
appropriate level of abstraction in CASS is likely based on many factors such as (i) code similarity
purpose, (ii) programming language expressiveness, and (iii) application domain.

Aroma’s original SPT seems to work well for a common code base where global variables have
consistent semantics and global functions are standard API calls also with consistent semantics (e.g.,
a single code-base). However, for cases outside of such spaces, some question about applicability

6Note: the expression grammar we provide is non-exhaustive due to space limitations. The complete set of
standard C/C++ tokens or binary and unary operators is collectively denoted in shorthand as ‘...’.
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arise. For example, assumptions about consistent semantics for global variables and functions may
not hold in cases of non-common code-bases or non-standardized global function names (Wulf &
Shaw, 1973; Gellenbeck & Cook, 1991; Feitelson et al., 2020). Having the capability to differentiate
between these cases, and others, is a key motivation for CASS.

We do not believe that CASS’s current structure is exhaustive. With this in mind, we have designed
CASS to be extensible, enabling a seamless mechanism to add new configurations and options.
Our intention with this paper is to present initial findings in exploring CASS’s structure. Based on
our early experimental analysis, presented in Section C.5, CASS seems to be a promising research
direction for code similarity.

An Important Weakness. While CAST provides added flexibility over SPT, such flexibility may
be misused. With CAST, system developers are free to add or remove as much syntactic differ-
entiation detail they choose for a given language or given code body. Such overspecification (or
underspecification), may result in syntactic overload (or underload) which may cause reduced code
similarity accuracy over the original SPT design, as we illustrate in Section C.5.

B MODELS

In this section, we describe the models evaluated in our experiments other than MISIM-GNN, and
discuss the details of the experimental procedure.

B.1 MODEL: MISIM-BOF

The MISIM-BoF model takes a bag of manual features extracted from a CASS as its input. The fea-
tures include the ones extracted from CASS trees, using the same procedure described in Aroma (Luan
et al., 2019), as well as the entries in CASS GATs. As shown in Figure 5, the output code vector is
computed by taking the elementwise mean of the feature embeddings and projecting it into the code
vector space with a fully connected layer.

… …

Embedding Elementwise
mean

Fully 
connected

CASS manual 
features

Feature
embedding vectors

Mean vector Code vector

Figure 5: MISIM-BoF Architecture.

B.2 MODEL: MISIM-RNN

The input to the MISIM-RNN model is a serialized representation of a CASS. Each CASS tree,
representing a function in the program, is converted to a sequence using the technique proposed in (Hu
et al., 2018). The GAT entry associated with a CASS tree is both pretended and appended to the
tree’s sequence, forming the sequence of the corresponding function. As illustrated in Figure 6, each
function’s sequence first has its tokens embedded, and then gets summarized to a function-level vector
by a bidirectional GRU layer (Cho et al., 2014). The code vector for the entire program is subsequently
computed by taking the mean and max pooling of the function-level vectors, concatenating these two
vectors, and passing the resulting vector through a fully connected layer.
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Figure 6: MISIM-RNN Architecture.

C EXPERIMENTAL DETAILS

C.1 TRAINING PROCEDURE AND HYPERPARAMETERS

We use the AdamW optimizer with a learning rate of 10−3 (Loshchilov & Hutter, 2019). The training
runs for 100 epochs, each containing 1,000 iterations, and the model that gives the best validation
accuracy is used for testing.7 The hyperparameters used for the Circle loss are γ = 80 and m = 0.4.
For all of our MISIM models, we use 128-dimensional embedding vectors, hidden states, and code
vectors. We also apply dropout with a probability of 0.5 to the embedding vectors. To handle rare or
unknown tokens, a token that appears less than 5 times in the training set is replaced with a special
UNKNOWN token.

C.2 MODIFICATIONS TO CODE2VEC, NCC, AND AROMA

To compare with code2vec, NCC, and Aroma, we adapt them to our experimental setting in the
following ways. The original code2vec takes a function as an input, extracts its AST paths to form
the input to its neural network, and trains the network using the function name prediction task. In our
experiments, we feed the AST paths from all function(s) in a program into the neural network and
train it using the metric learning task described in Section 2.2.2. NCC contains a pre-training phase,
named inst2vec, on a large code corpus for generating instruction embeddings, and a subsequent
phase that trains an RNN for a downstream task using the pre-trained embeddings. We train the
downstream RNN model on our metric learning task in two ways. The first uses the pre-trained
embeddings (labeled as NCC in our results). The second trains the embeddings from scratch on our
task in an end-to-end fashion (labeled as NCC-w/o-inst2vec). For both code2vec and NCC, we use
the same model architectures and embedding/hidden sizes suggested in their papers and open sourced
implementations. The dimension of their output vectors (i.e., code vectors) is set to the same as our
MISIM models. Aroma extracts manual features from the code and computes the similarity score
of two programs by taking the dot product of their binary feature vectors. We experiment with both
its original scoring mechanism (labeled: Aroma-Dot) and a variant that uses the cosine similarity
(labeled: Aroma-Cos).

C.3 EVALUATION METRICS

MAP@R measures how accurately a model can retrieve similar (or relevant) items from a database
given a query. MAP@R rewards a ranking system (e.g., a search engine, a code recommendation
engine, etc.) for correctly ranking relevant items with an order where more relevant items are ranked

7We have observed that the validation accuracy stops to increase before the 100th epoch in all experiments.
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higher than less relevant items. It is defined as the mean of average precision scores, each of which is
evaluated for retrieving R most similar samples given a query. In our case, the set of queries is the
set of all test programs. For a program, R is the number of other programs in the same class (i.e., a
POJ-104 problem). MAP@R is applied to both validation and testing. We use AP and AUPRG to
measure the performance in a binary classification setting, in which the models are viewed as binary
classifiers that determine whether a pair of programs are similar by comparing their similarity score
with a threshold. AP and AUPRG are only used for testing. They are computed from the similarity
scores of all program pairs in the test set, as well as their pair-wise labels. For the systems that require
training (i.e., systems with ML learned similarity scoring), we train and evaluate them three times
with different random seeds.

C.4 MISIM ACCURACY RESULTS (IN TABULAR FORM)

Table 4 shows the results of MISIM in comparison to other systems. Same results are presented in
the graphical form in Figure 4.

Table 4: Code similarity system accuracy. Results are shown as the average and min/max values,
relative to the average, over 3 runs. We had to make a few modifications to adapt code2vec, NCC and
Aroma to our experimental settings. Please refer to Appendix C.2 for details.

Method GCJ POJ-104

MAP@R (%) AP (%) AUPRG (%) MAP@R (%) AP (%) AUPRG (%)

code2vec 7.76 (-0.79/+0.88) 17.95 (-1.24/+1.76) 25.48 (-7.37/+10.37) 1.90 (-0.43/+0.38) 5.30 (-0.80/+0.60) 34.97 (-20.83/+15.10)
NCC 17.26 (-1.11/+0.57) 31.56 (-1.11/+1.46) 68.76 (-1.25/+2.46) 39.95 (-2.29/+1.64) 50.42 (-2.98/+1.61) 98.86 (-0.20/+0.10)
NCC-w/o-inst2vec 34.88 (-5.72/+7.63) 56.12 (-7.63/+9.96) 90.10 (-3.83/+4.49) 54.19 (-3.18/+3.52) 62.75 (-5.49/+4.42) 99.39 (-0.22/+0.17)
Aroma-Dot 29.08 42.47 82.03 52.09 45.99 98.42
Aroma-Cos 29.67 36.21 75.09 55.12 55.40 99.07

MISIM-GNN 74.90 (-1.15/+0.64) 92.15 (-0.97/+0.7) 99.46 (-0.08/+0.05) 82.45 (-0.61/+0.40) 82.00 (-2.77/+1.65) 99.86 (-0.04/+0.03)
MISIM-RNN 66.38 (-2.93/+2.68) 85.72 (-1.19/+0.65) 98.78 (-0.18/+0.1) 74.01 (-2.00/+3.81) 81.64 (-1.52/+2.72) 99.84 (-0.03/+0.04)
MISIM-BoF 72.21 (-0.64/+0.52) 90.54 (-0.81/+0.56) 99.33 (-0.07/+0.05) 74.38 (-1.04/+1.04) 82.95 (-0.70/+0.50) 99.87 (-0.01/+0.01)

C.5 EXPERIMENTAL RESULTS OF VARIOUS CASS CONFIGURATIONS

In this section, we discuss our experimental setup and analyze the performance of CASS compared
to Aroma’s simplified parse tree (SPT). In Section C.5.1, we explain the dataset grouping and
enumeration for our experiments. We also discuss the metrics used to quantitatively rank the different
CASS configurations and those chosen for evaluation of code similarity. Section C.5.2 demonstrates
that, a code similarity system built using CASS (i) has a greater frequency of improved accuracy for
the total number of problems and (ii) is, on average, more accurate than SPT. For completeness, we
also include cases where CASS configurations perform poorly.

C.5.1 EXPERIMENTAL SETUP

In this section, we describe our experimental setup. At the highest level, we compare the performance
of various configurations of CASS to Aroma’s SPT. The list of possible CASS configurations are
shown in Table 1.

Dataset. The experiments use the same POJ-104 dataset introduced in Section 4.

Problem Group Selection. Given that POJ-104 consists of 104 unique problems and nearly 50,000
programs, depending on how we analyze the data, we might face intractability problems in both
computational and combinatorial complexity. With this in mind, our initial approach is to construct
1000 sets of five unique, pseudo-randomly selected problems for code similarity analysis. Using
this approach, we evaluate every configuration of CASS and Aroma’s original SPT on each pair of
solutions for each problem set. We then aggregate the results across all the groups to estimate their
overall performance. While this approach is not exhaustive of possible combinations (in set size or set
combinations), we aim for it to be a reasonable starting point. As our research with CASS matures,
we plan to explore a broader variety of set sizes and a more exhaustive number of combinations.
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Code Similarity Performance Evaluation. For each problem group, we exhaustively calculate
code similarity scores for all unique solution pairs, including pairs constructed from the same program
solution (i.e., program A compared to program A). We use G to refer to the set of groups and g to
indicate a particular group in G. We denote |G| as the number of groups in G (i.e. cardinality) and
|g| as the number of solutions in group g. For g = Gi, where i = {1, 2, . . . , 1000}, the total unique
program pairs (denoted by gP ) in Gi is |gP | = 1

2 |g|(|g|+ 1).

To compute the similarity score of a solution pair, we use Aroma’s approach. This includes calculating
the dot product of two feature vectors (i.e., a program pair), each of which is generated from a CASS
or SPT structure. The larger the magnitude of the dot product, the greater the similarity.

We evaluate the quality of the recommendation based on average precision. Precision is the ratio of
true positives to the sum of true positives and false positives. Here, true positives denote solution
pairs correctly classified as similar and false positives refer to solution pairs incorrectly classified as
similar. Recall is the ratio of true positives to the sum of true positives and false negatives, where
false negatives are solution pairs incorrectly classified as different. As we monotonically increase the
threshold from the minimum value to the maximum value, precision generally increases while recall
generally decreases. The average precision (AP) summarizes the performance of a binary classifier
under different thresholds for categorizing whether the solutions are from the same equivalence class
(i.e., the same POJ-104 problem) (Liu, 2009). AP is calculated using the following formula over all
thresholds.

1. All unique values from the M similarity scores, corresponding to the solution pairs, are
gathered and sorted in descending order. Let N be the number of unique scores and
s1, s2, . . . , sN be the sorted list of such scores.

2. For i in {1, 2, . . . , N}, the precision pi and recall ri for the classifier with the threshold
being si is computed.

3. Let r0 = 0. The average precision is computed as:

AP =

N∑
i=1

(ri − ri−1)pi

C.5.2 RESULTS

Figure 7a depicts the number of problem groups where a particular CASS variant performed better
(blue) or worse (orange) than SPT. For example, the CASS configuration 2-0-0-0-1 outperformed SPT
in 859 of 1000 problem groups, and underperformed in 141 problem groups. This equates to a 71.8%
accuracy improvement of CASS over SPT. Figure 7a shows the two best (2-0-0-0-1 and 0-0-0-0-1),
the median (2-2-3-0-0), and the two worst (1-0-1-0-0 and 1-2-1-0-0) configurations with respect
to SPT. Although we have seen certain configurations that perform better than SPT, there are also
configurations that perform worse. We observed that the configurations with better performance have
function I/O cardinality option as 1. We also observed that the configurations with worse performance
have function I/O cardinality option as 0. These observations indicates that function I/O cardinality
seems to improve code similarity accuracy, at least, for the data we are considering. We speculate
that these configuration results may vary based on programming language, problem domain, and
other constraints.

Figure 7b shows the group containing the problems for which CASS achieved the best performance
relative to SPT, among all 1000 problem groups. In other words, Figure 7b shows the performance
of SPT and CASS for the single problem group with the greatest difference between a CASS
configuration and SPT. In this single group, CASS achieves the maximum improvement of more
than 30% over SPT for this problem group on two of its configurations. We note that, since we
tested 216 CASS configurations across 1000 different problem groups, there is a reasonable chance
of observing such a large difference even if CASS performed identically to SPT in expectation. We do
not intend for this result to demonstrate statistical significance, but simply to illustrate the outcome of
our experiments.

Figure 7c compares the mean of AP over all 1000 problem groups. In it, the blue bars, moving left to
right, depict the CASS configurations that are (i) the two best, (ii) the median, and (iii) the two worst
in terms of average precision. Aroma’s baseline SPT configuration is highlighted in orange. The best
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two CASS configurations show an average improvement of more than 1% over SPT, while the others
degraded performance relative to the baseline SPT configuration.

These results illustrate that certain CASS configurations can outperform the SPT on average by a
small margin, and can outperform the SPT on specific problem groups by a large margin. However,
we also note that choosing a good CASS configuration for a domain is essential. We leave automating
this configuration selection to future work.
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Figure 7: Comparison of CASS and SPT. The blue bars in (a) and (b), and all the bars in (c), from
left to right, correspond to the best two, the median, and the worst two CASS configurations, ranked
by the metric displayed in each subfigure.

C.5.3 ANALYSIS OF CONFIGURATIONS

Figures 8a-8e serve to illustrate the performance variation for individual configurations. Figure 8a
shows the effect of varying the options for the node prefix label configuration. Applying the node
prefix label for the parentheses operator (option 2) results in the best overall performance while
annotating every internal node (option 1) results in a concrete syntax tree and the worst overall
performance. This underscores the trade-offs in incorporating syntax-binding transformations in
CASS. In Figure 8b we observe that removing all features relevant to compound statements (option
1) leads to the best overall performance when compared with other options. This indicates that
adding separate features for compound statements obscures the code’s intended semantics when the
constituent statements are also individually featurized.

Figure 8c shows that removing all features relevant to global variables (option 1) degrades perfor-
mance. We also observe that eliminating the global variable identifiers and assigning a label to signal
their presence (option 2) performs best overall, possibly because global variables appearing in similar
contexts may not use the same variable identifiers. Further, option 2 performs better than the case
where global variables are indistinguishable from local variables (option 3). Figure 8d indicates
that removing features relevant to identifiers of global functions, but flagging their presence with a
special label as done in option 2, generally gives the best performance. This result is consistent with
the intuitions for eliminating features of function identifiers in CASS as discussed in Section A.1.
Figure 8e shows that capturing the input and output cardinality improves the average performance.
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This aligns with our assumption that function I/O cardinality may abstract the semantics of certain
group of functions.

A Subtle Observation. A more nuanced and subtle observation is that our results seem to indicate
that for each CASS configuration the optimal granularity of abstraction detail is different. For
compound statements the best option seems to corresponds to the coarsest level of abstraction detail,
while for node prefix label, global variables, and global functions the best option seems to corresponds
to one of the intermediate levels of abstraction detail. Additionally, for function I/O cardinality, the
best option has finer level of detail. For our future work, we aim to perform a deeper analysis on this
and hopefully learn such configurations, to reduce (or eliminate) the overhead necessary of trying to
manually discover such configurations.
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(c) Global Variables.

*-*-*-0-* *-*-*-1-* *-*-*-2-*
Configuration

0.68

0.70

0.72

M
ea

n 
of

 A
ve

ra
ge

 P
re

ci
sio

n

(d) Global Functions.
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(e) function I/O cardinality.

Figure 8: The Distributions of Performance for Configurations with a Fixed Option Type.
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