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Abstract

Synchronization phenomena have been studied for a long time and are present in many natural and
artificial systems. They are the key phenomena in areas like biology, neurosciences and condensed matter
physics. In our work we try to understand the synchronization behaviour of a binary mixture of moving
oscillators. We established a working framework to model synchronization phenomena, implementing
the Kuramoto model and with this framework we confirmed some of the theoretical results of this theory.
We used a computational library to perform Langevin dynamics and then modified the Kuramoto model
to apply it to a binary mixture of Brownian particles. The synchronization interaction of this binary
mixture can be modeled in numerous ways, thus we studied two different models. In Model I we split
our oscillators into two groups where similar particles had a positive coupling constant, which lead them
to phase lock with phase difference 0, and two different particles had a negative coupling constant,
which lead them to phase lock with a phase difference of π. Model II consists of a mixture of oscillators
where one type of oscillators has a negative coupling constant in all its interactions, these being called
contrarian oscillators, and the other type has a positive coupling with similar oscillators and a negative
coupling with the other type. We also applied model I to active Brownian particles, in a similar way to
the continuous Vicsek model, to connect this model to some phenomena that can be observed in nature.

We explored a broad range of parameters for these models. We looked at different splits of the
mixture, from 5% to 95%, at different coupling constant ranges, but we considered that all oscillators
have the same internal phase frequency and that the range of interaction is constant.

Model I enhances synchronization for particles of both groups, allowing control over the synchro-
nization behaviour by changing the interaction strength and the mixture split percentage. Model II can
enhance synchronization for the contrarians, which would not synchronize if they were left alone, and
can suppress synchronization for both oscillator groups if their interaction is strong enough. The abil-
ity for the oscillators to move and exchange neighbours increases the synchronization speed, as was
observed when active Brownian particles were used.

Keywords: Synchronization, Brownian particles, Complex Networks, Complex Systems
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Resumo

Fenómenos de sincronização estão presentes em muitos sistemas naturais e artificiais, e são o fenómeno
chave no estudo de alguns destes sistemas. É possı́vel observar fenómenos de sincronização em ecologia,
por exemplo nas oscilações de presa e predador; na etologia com a sincronização de coros de sapos e do
piscar de pirilampos; na fisiologia, na sincronização de ritmos biológicos, como o ciclo circadiano e al-
guns ciclos hormonais; na matéria condensada, na sincronização de osciladores de spin Hall; e em tantos
outros sistemas. A compreensão de fenómenos de sincronização, e o estudo de modelos de sincronização
são portanto campos bastante ativos atualmente.

Estabelecemos um modelo de trabalho para estudar o fenómeno de sincronização. Primeiro estu-
damos o modelo de Kuramoto, um modelo usado para estudar sincronização desde 1975. Este modelo
consiste num sistema de equações diferencias, não lineares e autónomas, que regem a evolução da fase de
cada oscilador que modelam. Kuramoto introduziu alguns resultados analı́ticos sobre o modelo e desde
então ele tem sido cada vez mais usado e novas técnicas foram desenvolvidas. A outra base do nosso
modelo de trabalho são as partı́culas brownianas, ou seja partı́culas que por estarem imersas num fluı́do
têm um movimento aleatório dentro dele. O estudo das partı́culas Brownianas também já tem muita
história existindo uma grande quantidade de resultados teóricos e experimentais sobre elas. Usamos al-
guns dos resultados teóricos mais conhecidos para validarmos o código que usamos para este trabalho.
Neste trabalho utilizamos o LAMMPS, uma biblioteca em C++ para desenvolver algoritmos de dinâmica
molecular e modelos coarse-grained. e tivemos que implementar de raiz a interação de Kuramoto para as
nossas partı́culas. Esta biblioteca permite realizar simulações moleculares em paralelo e o nosso código
passou em todos os testes teóricos.

O nosso objectivo era estudar como se dava a sincronização de uma mistura de osciladores, que
interagiam com os seus vizinhos e que se deslocavam no espaço como particulas Brownianas. Assim,
modificamos o modelo de Kuramoto para aplicá-lo a uma mistura binária de partı́culas Brownianas. A
interação de sincronização dessa mistura binária pode ser modelada de várias maneiras e estudamos dois
modelos diferentes.

No Modelo I, dividimos os osciladores em dois grupos onde partı́culas semelhantes tinham uma
constante de acoplamento positiva, o que leva a que a fase desses osciladores evolua para que fiquem
com uma diferença de fase de 0. Se os osciladores fossem de dois tipos diferentes as partı́culas tinham
uma constante de acoplamento negativa, o que conduz a uma diferença de fase de π. Chamamos a
este modelo o modelo de osciladores repulsivos visto que os osciladores de tipos diferentes tendem a
ficar com a fase desfasada por π. Estávamos interessados em controlar a sincronização e em saber se
era possı́vel acelerá-la, retardá-la ou até mesmo impedi-la. Para isso estudamos neste modelo o papel
de diferentes constantes de acoplamento, de diferentes percentagem para a mistura de osciladores, de
diferentes densidades do sistema de osciladores, e verificamos que apesar de ser impossı́vel impedi-la é
possı́vel acelerá-la e retardá-la.

O Modelo II consiste numa mistura de osciladores onde um tipo de oscilador possui uma constante de
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acoplamento negativa em todas as suas interações, sendo estes denominados osciladores “contrariados”,
e o outro tipo possui acoplamento positivo com osciladores semelhantes e acoplamento negativo com o
outro tipo. Com este modelo foi possı́vel impedir a sincronização de partı́culas e estudamos o efeito da
quantidade de osciladores contrariados e também o papel da constante de acoplamento negativo. Este
resultado é interessante devido às possı́veis aplicações em situações onde a sincronização é um fenómeno
indesejado, como a sincronização do disparo dos neurónios num paciente com epilepsia ou Parkinson.

Estendemos ainda ambas as modificações ao modelo de Kuramoto para partı́culas brownianas ativas,
de forma semelhante ao modelo contı́nuo de Vicsek, para conectar este modelo a alguns fenômenos que
podem ser observados na natureza. O modelo de Vicsek foi extensamente usado na caracterização de
fenomenos de deslocação colectivos. Com ele é possı́vel explicar e prever as trajetórias observadas nos
voos de conjuntos de pássaros ou no deslocamento de cardumes. O uso do modelo de Kuramoto como
interação entre as partı́culas ativas permitiu observar alguns dos fenomenos previstos por Vicsek, como
os engarrafamentos, onde as colisões das partı́culas geram aglomerados, e permitiu nos colocar questões
sobre possı́veis trabalhos próximos. Foi possı́vel observar que a velocidade de propulsão das partı́culas
contribui para o processo de sincronização, confirmando a importância da capacidade de mistura entre
os osciladores para que a sincronização se processe mais rápido.

Palavras-chave: Sincronização, Particulas Brownianas, Redes Complexas, Sistemas Complexos
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Chapter 1

Introduction

When Christian Huygens was looking at two pendulum clocks that were hanging from a common support
he noticed that their pendulums moved in sync and that when he put them in opposite sides of the
room they would become out of sync and never synchronize again. He was probably the first scientist
who described the synchronization of two oscillators and since then there exist extensive studies on
synchronization.

On a much bigger scale, the synchronization of swarms of fireflies amazed scientists for years as
reports from Asian and Africa arrived to Europe telling tales of ”a great belt of light, some ten feet wide,
formed by thousands upon thousands of fireflies whose green phosphorescence bridges the shoulder-
high grass” [7] and that were answered with scepticism from the scientific community as an impossible
phenomena and given various explanations not related with synchronization.

The study of these ordered phenomena in a world ruled by thermodynamics, which dictates that
disorder is the final degenerate state of the universe, has attracted scientists for a long time, and synchro-
nization being no exception, is a very active field of research and its phenomena are found in ecology, on
the synchronization of frog choirs [8]; firefly blinking [9]; on neurosciences with the firing of neurons
[10]; in physiology with biological rhythms [11]; in the swimming of bacteria [12]; in nanophysics, with
the synchronization of mechanical nanodevices [13]; in hard condensed matter physics, with spin Hall
nano-oscillators [14]; in sociology, when people clap their hands together [15]; and there even exists
works on hindering and stopping synchronization when it is unwanted [16].

Synchronization can be thought about as the ”adjustment of rhythms of oscillating objects due to
their weak interaction” [17] and this definition requires us to understand what are oscillating objects,
what is an interaction between oscillators, what is the rhythm of an oscillating object and how can this
rhythm be adjusted. The most interesting oscillating objects are self-sustained oscillators, oscillators
which can sustain their natural rhythm due to some internal energy source and that are normally stable
to small perturbations, returning to their original rhythm when left by themselves. These oscillators
can be modeled by mathematical objects, called limit-cycle oscillators, that are normally described by
autonomous, non-linear, differential equations. A limit-cycle is a closed trajectory in the phase-space
of an oscillator meaning that the oscillator has a well defined periodic behaviour. An autonomous, non-
linear, differential equations is a non-linear differential equations that does not explicitly depend on time.

Understanding how we can enhance and/or hinder synchronization to control it is a very sought after
result, potentially leading to the cure for Parkinson [18] [19] [20] by understanding how neurons in the
brain synchronize and what can be done to stop it. It can also mean controlling the movement of bacteria
[12] or swarms/herds of animals [21] by controlling the oscillatory nature of these collective motion.

In this work we studied how synchronization is affected by the addition of movement and a new
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kind of synchronization interaction, one where oscillators do not try to align their phases but instead
try to have a phase difference of π radians. We studied two different models for this interaction and
try to determine what parameters enhance, hinder or kill synchronization. It is possible to apply the
Kuramoto model to study the synchronization in any kind of network. For networks that are static it is
possible to hinder synchronization by introducing, on the highest connectivity nodes, a small fraction,
around 15%, of contrarian oscillators, oscillators that try to anti-align with other oscillator [16]. Take
a fixed network of oscillators that is composed of two disconnected sub-networks. In this example it is
trivial that this network would never synchronize because the sub networks would be independent[22].
By allowing this network to change in time, by some mechanism that would change its topology, it is
possible for this set of oscillators to synchronize, contrary to what would happen if the network stayed
fixed and disconnected. Allowing for the network to change in time, e.g. by allowing the oscillators
to move and change neighbours, thus makes synchronization possible even in networks that originally
were disconnected [23, 24]. The study of active particles [25] shows the importance of motility and how
decreasing the mixing time is important for the speed up of synchronization. It also shows how there is
a non-monotonic dependence of the synchronization rate on the motility when excluded volume inter-
actions are taken into account. Designing the interaction between particles to attract or repel, based on
their phases, provides an opportunity to control their collective behaviour, including full synchronization,
spatial segregation by phases and even phase waves, as shown in [26]. To understand synchronization
we started by explaining what the Kuramoto model is and what are some of its proprieties as we will be
using it in all this work.
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Chapter 2

Kuramoto Model

The Kuramoto model [27] is used to study synchronization phenomena [28, 29] and allows us to un-
derstand both dynamic and static networks of interacting oscillators. It was first introduced in 1975
by Yoshiki Kuramoto [27] and his work expanded on the earlier work on synchronization by Winfree in
1967 [30]. This model gives us an equation for the time evolution of the phases of a system of oscillators,
equation (2.1), and can be used to model the synchronization of weakly coupled oscillators:

θ̇i = ωi +
K

N

N∑
j

sin(θj − θi), (2.1)

where θ̇i is the time derivative of the phase of the i-th oscillator; ωi is the natural frequency of the i-th
oscillator when it is not interacting with any other oscillator; N is the number of oscillators and K is a
coupling constant. By introducing the complex order parameter z(t) for the population of oscillators,

z(t) = r(t)eiΨ(t) =
1

N

N∑
j=1

eiθj(t), (2.2)

with r(t) quantifying the global oscillator coherence, and Ψ(t) being the average phase, it is possible to
look at equation (2.1) as a system of oscillators forced by a mean field Ψ(t):

θ̇i = ωi + r(t)K sin(Ψ(t)− θi). (2.3)

The Kuramoto model has a mean-field steady state solution, found by Kuramoto in his original work,
that first gave insight about this phenomena.

2.1 Mean-field continuous solution

It is possible to reach some analytical results by employing a mean-field continuous approach. Kuramoto
was looking for steady state solutions, which in this context means that r(t) is constant and that Ψ̇ = Ω,
with Ω being a constant frequency. It is then possible to look at the system in the reference frame rotating
at Ω and setting Ψ = 0, as we can choose the reference frame as we wish without loss of generality. The
equation (2.3) can be rewritten this way:

3



θ̇i = ω′i + r(t)K sin(Ψ(t)− θi)
= ω′i − Ω + rK sin(0− θi)
= ωi − rK sin(θi), for i = 1, ..., N.

(2.4)

With ωi = ω′i − Ω. Due to the mean-field coupling we got N independent oscillators which can have 2
different long time behaviours: if |ωi| < rK the oscillator will approach the fixed point

sin(θi) =
|ωi|
rK

, (2.5)

and become ’locked’, moving at the same frequency, Ω as our frame of reference; if |ωi| > rK the
oscillators phase will ’drift’ without a fixed frequency, having a different frequency depending on its
phase. This second behaviour at first glance does not seem to agree with our hypothesis of a steady state
solution and was explained by Kuramoto by using a stationary distribution of oscillators’ phases in a
circle, ρ(ω, θ), meaning that even though the oscillators would move non-uniformly the phase distribu-
tion of the ensemble would constant constant through time. This means we have 2 different populations,
the ’locked’, or synchronous population ns and the ’drifting’, or asynchronous population nas. In the
N → ∞ limit we can talk about a stationary continuous distribution ρ(ω, θ) with ρ(ω, θ)dθ being the
fraction of oscillators with frequency ω that have phases between θ and θ + dθ. For this distribution to
be stationary it has to be inversely proportional to the frequency, θ̇, at a given phase [27], due to the con-
tinuity equation ∂ρ

∂t = − ∂
∂θ (ρθ̇), meaning that there will be many oscillators with lower frequency and

there will be few with high frequencies. It is important to distinguish the frequency of each oscillator,
given by θi, and the intrinsic frequency of each oscillator, ωi, which follows a distribution g(ω). The
two different populations have different expressions for ρ(ω, θ). The synchronous population, where all
oscillators have an intrinsic frequency smaller that rK, has all oscillators in their fixed point given by
equation 2.5, taking into account the normalization condition

∫ 2π
0 ρ(ω, θ)dθ = 1 for all ω, its possible to

write the stationary distribution for the synchronous as:

ρ(ω, θ) = δ(θ − sin−1(
ω

rK
)). (2.6)

We can then calculate ρ(ω, θ) for asynchronous population using equation (2.4):

ρ(ω, θ) =
C

|ω − rK sin(θ)|
, (2.7)

with the normalization constant, C, being determined by the normalization condition
∫ 2π

0 ρ(ω, θ)dθ = 1

for all ω, yielding:

C =
1

2π

√
ω2 − (Kr)2.

From the initial assumption that the system is in a steady state we can infer that the population average
of the order parameter is a constant, and remembering that we can set Ψ = 0, 〈eiθ〉 = 1

N

∑n
j=0 e

iθj =

reiψ = r, and we can split the population in the ”drifting” and ”locked” :

〈eiθ〉 = 〈eiθ〉locked + 〈eiθ〉drift,
r = 〈eiθ〉locked + 〈eiθ〉drift,

(2.8)

The contribution of the term 〈eiθ〉drift is 0:
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〈eiθ〉drift =

∫
|ω|>Kr

∫ π

−π
eiθg(ω)ρ(ω, θ)dθdω

=

∫
|ω|>Kr

∫ π

0
eiθg(ω)ρ(ω, θ)dθdω +

∫
|ω|>Kr

∫ 0

−π
eiθg(ω)ρ(ω, θ)dθdω

Using the assumption that g(ω) = g(−ω) and noting from equation (2.7) that ρ(ω, θ) = ρ(−ω, θ + π)

〈eiθ〉drift =

∫
|ω|>Kr

∫ π

0
eiθg(ω)ρ(ω, θ)dθdω +

∫
|ω|>Kr

∫ 0

−π
eiθg(−ω)ρ(−ω, θ + π)dθdω

=

∫
|ω|>Kr

∫ π

0
eiθg(ω)ρ(ω, θ)dθdω +

∫
|ω′|>Kr

∫ π

0
eiθ
′−πg(ω′)ρ(ω′, θ′)dθ′dω′

=

∫
|ω|>Kr

∫ π

0
eiθg(ω)ρ(ω, θ)dθdω −

∫
|ω|>Kr

∫ π

0
eiθg(ω)ρ(ω, θ)dθdω

= 0

The oscillators that are phase-locked will have approached the fixed point given by equation 2.5, with the
phases of these oscillators being determined by the initial frequency distribution, g(ω). The contribution
of the term 〈eiθ〉locked term can be split into its real and imaginary parts. The imaginary contribution is
0, by using g(ω) = g(−ω) :

〈sin(θ)〉locked =

∫ 2π

0

∫ Kr

−Kr
sin(θ)ρ(ω, θ)g(ω)dωdθ

=

∫ 2π

0

∫ Kr

−Kr
sin(θ)δ(θ − sin−1(

ω

rK
))g(ω)dωdθ

=

∫ Kr

−Kr

ω

Kr
g(ω)dω

= 0.

The real contribution is equal to:

〈cos(θ)〉locked =

∫ 2π

0

∫ Kr

−Kr
cos(θ)ρ(ω, θ)g(ω)dωdθ

=

∫ 2π

0

∫ Kr

−Kr
cos(θ)δ(θ − sin−1(

ω

rK
))g(ω)dωdθ

By integrating in theta and then using equation 2.5 to write ω = sin(θ)Kr and dω = cos(θ)Kr:

〈cos(θ)〉locked =

∫ Kr

−Kr
cos(sin−1(

ω

rK
))g(ω)dω

= Kr

∫ π
2

−π
2

cos2(θ)g(Kr sin(θ))dθ

The self-consistency condition now is:

r = Kr

∫ π
2

−π
2

cos2(θ)g(Kr sin(θ))dθ (2.9)

This condition has a trivial solution r = 0, which translates to all oscillators belonging to the asyn-
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chronous population and that ρ(ω, θ) = 1
2π , meaning that they cover the circle homogeneously. There is

a second branch of solution that arises from letting r → 0+:

1 = Kc

∫ π
2

−π
2

cos2(θ)g(0+)dθ,

Kc =
1∫ π

2

−π
2

cos2(θ)g(0+)dθ
,

Kc =
2

πg(0+)
.

(2.10)

The value Kc is the critical coupling strength above which some part of the oscillators spontaneously
synchronize and the oscillators split into two populations, the synchronous and the asynchronous. The
total population is given by the integral:

ns + nas =

∫ 2π

0

∫ ∞
−∞

ρ(ω, θ)g(ω)dωdθ, (2.11)

with ns + nas = 1. The steady state value for this populations depend on the initial frequency
distribution g(ω) on K and on r∞:

ns =

∫ 2π

0

∫ Kr

−Kr
δ(θ − sin−1(

ω

rK
))g(ω)dωdθ,

nas =

∫ 2π

0

∫
|−ω|>Kr

1

2π

√
ω2 − (Kr)2

|ω − rK sin(θ)|
g(ω)dωdθ.

(2.12)

Kuramoto calculated how r grows given a specific g(ω) = γ
π(γ2+ω2)

, the Cauchy distribution, by solving
equation (2.9):

r =

√
1− Kc

K
. (2.13)

The N → ∞ limit also allows us to make predictions about the time evolution of the order parameter
[31].The state of the system at time t is given by distribution function, f(ω, θ, t), which can be integrated
to give the initial, time independent, phase distribution g(ω):

∫ 2π

0
f(ω, θ, t)dθ = g(ω), (2.14)

It is then possible to write complex order parameter, z = reiΨ using this distribution function:

z =

∫ 2π

0
dθ

∫ +∞

−∞
dωfeiθ, (2.15)

and using the Euler’s formula to rewrite 1
N

∑
j sin [θj − θi] in the expression for θ̇, equation (. 2.1) it is

possible to write it as:

θ̇ = ω +
K

2i
(ze−iθ − z∗eiθ) (2.16)

distribution function, f(ω, θ, t), obeys the continuity equation for the conservation of the number of
oscillators, ∂f∂t + ∂

∂θ{θ̇f} = 0, and it is possible to write:
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Figure 2.1: Second order phase transition of the Kuramoto model.For the Cauchy distribution of frequencies the Kuramoto

model the order parameter is 0 below a critical value of K,KC and above KC , r behaves like r =
√

1− Kc
K

∂f

∂t
+

∂

∂θ

{[
ω +

K

2i

(
ze−iθ − z∗eiθ

)]
f

}
= 0 (2.17)

can expand this distribution function in a Fourier series in θ:

f(ω, θ, t) =
g(ω)

2π

{
1 +

∞∑
n=1

fn(ω, t)e(inθ) +
∞∑
n=1

f∗n(ω, t)e(−inθ)

}
. (2.18)

By using the anzat fn = αn used in [31], which is consistent with both the incoherent state, f = g(ω)
2π

with α(t) = 0 and also with the synchronized state with |z| = r, with r a constant, it is possible to write
the continuity function, equation (. 2.17) in the following form:

∂

∂t

g(ω)

2π

[
1 +

∞∑
n=1

(
αneinθ + α∗ne−inθ

)]
+

∂

∂θ

{[
ω +

K

2i

(
ze−iθ − z∗eiθ

)] g(ω)

2π

[
1 +

∞∑
n=1

(
αneinθ + α∗ne−inθ

)]}
= 0,

(2.19)

which can be written as:
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∞∑
n=1

(
nα̇αn−1einθ + nα̇∗α∗n−1e−inθ

) g(ω)

2π
− ziG(ω)e−iθ − z∗iG(ω)eiθ

+G(w)zi
∞∑
n

αn(n− 1)eiθ(n−1) −G(w)z∗i
∞∑
n

an(n+ 1)eiθ(n+1) + Ω(w)
n∑
n=1

inαneinθ

−G(w)zi
∑

α∗n(n+ 1)e−iθ(n+1) +G(ω)z∗i
∑

α∗n(n− 1)e−iθ(n−1) − Ω(ω)

n∑
n=1

inα∗ne−inθ = 0,

(2.20)

with G(ω) = kg(ω)
4iπ and Ω = ωg(ω)

2π and α̇ = dα
dt . This equation has to be valid for any value of θ so we

know that for this equality to hold we have to look at the powers of eiθ. The first power and all higher
order give us an expression for the time evolution of α:

∂α

∂t
+ (

K

2
)
(
zα2 − z∗

)
+ iωα = 0. (2.21)

Substituting the Fourier expansion eq. (2.18) in the definition complex order parameter, z, eq. (2.15) we
can get a relation between z and α:

z =

∫ +∞

−∞
dωα∗(ω, t)g(ω) (2.22)

This equation can be solved for the standard Cauchy distribution, g(ω) = 1
π(1+ω2)

yielding z = a∗(−i, t)
and for the Dirac distribution, g(ω) = δ(ω−ωD), yielding z = a∗(ωD, t). Because we will be looking at
the Dirac distribution further in our work we will look with more detail in the case that expand ωD = 0

case, although analytic solutions can be reached for other distributions. Writing the complex order
parameter as z = reiΨ and substituting α by z in equation (2.21) we can reach an expression for the time
evolution of r:

dr

dt
=
K

2

(
r − r3

)
(2.23)

,

that can be solved for a given initial condition r(0) as :

r(t) =
1√

1 + e−K(t−t0)
, (2.24)

with

t0 =
ln( 1

r(0)2 − 1)

K
. (2.25)

The curve given by r(t) is the square root of the logistic curve and their shapes resemble one another.
K, the coupling parameter, governs how fast the curve reaches its saturation value, 1, and t0 is related
to the horizontal shift of the curve, being inversely proportional to K. To see how widely the Kuramoto
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model can be applied we will give examples of its uses in control theory and also in neurobiology.

2.2 Examples

It is also possible to use the Kuramoto model in control theory, more specifically in motor coordination
[32]:

ṙi = vpe
iθi(t),

θ̇i = ωi +
K

Ni

∑
i,j

sin(θj − θi),
(2.26)

with vp being the propulsion velocity of the steering agents, θi representing the heading direction and ω
the steering velocity of each agent, with K being the coupling between the different heading directions.

By changing some parameters of how thesesteering agents interact with their neighbours they can
have different steering behaviours,see figure 2.2. By controlling their intrinsic frequencies ωi and their
coupling strength it is possible to display various flocking patterns, as seen in [33] and as shown by
Vicsek [34], works that that demonstrated that thesesimple model can capture behaviour from animals,
by simplifying them to these steering agents.

Figure 2.2: Application of the Kuramoto model in steering agents. Panel (a) illustrates the particle kinematics (6). Panels
(b)-(e) illustrate the controlled dynamics, eq. (2.26) with n=6 particles, a complete interaction graph, and identical and constant
natural frequencies: ωi(t) = 0 for all agents in panels (b) and (c) and ωi(t) = 1 for all agents in panels (d) and (e). The values
of K are K = 1 in panel (b) and (d) and K=1 in panel (c) and (e). The arrows depict the orientation, the dashed curves show
the long-term position dynamics, and the solid curves show the initial transient position dynamics. As illustrated, the resulting
motion displays “synchronized” or “balanced” heading angles for K = 1, and translational motion for ωi(t) = 0, respectively
circular motion for ωi(t) = 1. Taken with permission from [1].

The Kuramoto model can also be used as an easy-to-solve model for neurons, as some of the be-
haviour it exhibits is qualitatively similar to synchronization behaviours found in neurons [2]. When
considering Rulkov neurons [35], which is a model hard to solve analytically, the order parameter, that is
defined similarly to eq. (4.3), behaves like the Kuramoto model, which is a easy to solve model numer-
ically. Figure 2.3 shows how both models behave similarly, for both uniform and Cauchy distributions
for the intrinsic frequencies and also for different oscillator couplings, all-to-all coupling or global cou-
pling, Erdös–Rényi networks [36], small-world [37] and scale-free networks [38]. In the next section we
will look into the main results of Brownian motion as a precursor to the modeling of our oscillators as a
mixture of Brownian particles.
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Figure 2.3: Application of the Kuramoto model in networks of neurons.Order parameter magnitude as a function of the
coupling strength for a network of Rulkov neurons (black: uniform, red: Cauchy) and Kuramoto oscillators (green: uniform,
blue: Cauchy) with N = 1000 nodes, for (a) global coupling, (b) Erdös–Rényi; (c) small-world, and (d) scale-free. Taken with
permission from [2]

2.3 Simulations

To understand the Kuramoto model, we integrated the Kuramoto equation (2.1) using the Euler method
and we calculated r(t) given by equation (2.2) for different numbers of oscillators, N ranging from 10
to 1000, for different values of K, ranging from 0 to 2, and different distributions, g(ω), of ωi, the Dirac
distribution, δ(ω), and the standard Cauchy distribution.

The behaviour of the order parameter, r, can be divided into two categories, it either goes to 0, as in
figure 2.4(a-c), meaning that the system is not synchronized, or it increases and stabilizes at a specific
value greater than 0, as observed in figure 2.4(d-f), which we denominate r∞, and the closer the value of
r∞ is to 1 the more synchronized the system is.

We observed that this transition was mainly governed by the value of K, meaning that for the same
value of N and the same ωi distributions, systems would not synchronize below a critical point, KC .
This is the same behaviour predicted by Kuramoto where a second degree phase transition happens at
the critical point KC . The distribution of ωi, g(ω), is also important as it determines the value of KC

and determines the value of r∞ for K above KC .
For values of K below the critical point KC each oscillator phase drifts around the unit circle with

an angular frequency that varies in time,as figure 2.5(a-b) shows, while for values of K greater than KC

a percentage of the oscillators become enthralled by a new common frequency with the phase difference
between these oscillators becoming constant, meaning that they are synchronized,like in figure 2.5(c-d).

The time evolution of r can be obtained for some g(ω), like the Cauchy and the Dirac distributions,
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by solving equation (2.21) and equation (2.22), and it can be written as:

r(t) =
r∞√

1 + e−κ(t−t0)
, (2.27)

with r∞ being the value that r(t) approaches at long times, κ being the growth rate and t0 being a time

shift related to the initial conditions, t0 =
ln( 1

r(0)2
−1)

K , with r(0) being the initial condition. If we plot
the value of r∞ around the critical coupling KC , calculated for the case the standard Cauchy distribution
of ωi, as figure 2.6(a) shows, it is possible to observe the behaviour described by Kuramoto, see figure
2.1. We observe that the stable solution for the steady state, r∞ = 0, below KC splits at KC into a
stable branch where r∞ approaches 1 and a unstable branch where r∞ = 0, which cannot be observed
in simulations. The stable branch can be described by equation (2.13) and the results of our simulations
match the predicted behaviour. For the case of the Dirac distribution of intrinsic frequencies we find that
the value of r∞ discontinuously jumps to one, as the only theoretical values allowed for this distribution
are 0, for K < KC , or 1, for K > KC , this being called a first order phase transition, like in figure
2.6(b).

By plotting the value of the growth rate, κ, against K its we confirmed their equality, as predicted by
equation (2.24), figure 2.7(a). We also observe that t0 ∼ 1

K , the behaviour described by equation (2.25),
like figure 2.7(b) shows. The value of κ and t0 was calculated by fitting equation (2.27) to the simulation
results of a specific system.

To study oscillators in networks with nodes which change their neighbours as if they were Brownian
particles moving in space we firstly have to study Brownian motion.

11



Figure 2.4: Evolution of the order parameter. Panels (a),(b),(d),(e) represent system of oscillators at a given time. The
position of each red point in the unit circle is given by the phase of a specific oscillator and the position of the black point
is given by the complex order parameter reiΨ(t), equation 2.2. (a) and (d) show the initial configuration of the system with
N = 500, and g(ωi) the Dirac distribution, δ(ω). The initial phases were drawn from an uniform distribution in the interval
[0;2π]. The value of K is -1 and 1 respectively. (b) and (e) are the systems in (a) and (d) after 10000 timesteps, (c) and (f)
corresponds to the time evolution of the value of r, the order parameter. The time evolution for this distribution can be solved
analytically and is given by equation (2.24), which is represented as the dashed red line in the plot. In (c) the system remains
not synchronized, r ∼ 0, even after long time periods because the value of K is smaller than the critical value that allows for
synchronization, which for this system is KC = 0 In (f) the system synchronizes,r ∼ 1, and remains phase-locked because the
value of K is higher than the critical value of for synchronization, KC = 0, for this system.
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Figure 2.5: Phase drifting and phase locking. (a) and (c) shows the final configuration of a system of 200 oscillators, with
a standard Cauchy distribution of frequencies after 50000 and 10000 timesteps respectively. The values of K were 1 for (a)
and 3 for (b) The initial phases were drawn from an uniform distribution in the interval [0;2π]. The position of each red point
in the unit circle is given by the phase of a specific oscillator and the position of the black point is given by the complex
order parameter reiΨ(t), equation 2.2. The green triangle and the blue square represent 2 oscillators chosen at random. (b)
and (d) show the evolution of the difference of the chosen oscillators phase and Ψ(t) in their respective colors. In (b) it is
possible to observe the phase drift of the randomly chosen oscillators as their phase changes non uniformly. This system is
does not synchronize because the value of K is below its critical value for synchronization, KC = 2. In (d) we observe the
phase-locking that is a characteristic of synchronization, with the phase difference of each oscillator staying constant in time.
Synchronization is possible because value of K is larger than the critical value for synchronization, KC = 2
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Figure 2.6: Synchronization phase transition. The nature of the Kuramoto phase transition depends on the distribution of
the frequency distribution of its oscillators and also on the geometry. For the standard Cauchy distribution this transition is a
second order phase transition. Below KC the only stable steady state solution is r = 0, but above KC this solution becomes

unstable and the stable steady state solution becomes r =
√

1− KC
K

as shown in panel (a). The simulations are done for N =
500, the value of r∞ of does not exactly match up with the theoretical behaviour for N → ∞. Panel (b) shows the first order
phase transition characteristic of the Dirac distribution for the oscillators frequency. The simulations are done for N = 500 and
the values close to the critical point do not correspond to the theoretical results due to the long simulation times needed for the
system to reach its stationary value.

Figure 2.7: Dependence of the r(t) curve parameters on K. The value of the growth rate, κ, is equal to the value of K for
the Dirac distribution of frequencies, g(ω) = δ(ω). The simulations match up with the theoretical result as we can observe
in panel (a). The value of the timesift, t0, is inversely proportional to the value of K for the Dirac distribution of frequencies,
g(ω) = δ(ω).The simulations match up with the theoretical result as can be observed in panel (b). All the simulations were
done with N = 300
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Chapter 3

Brownian Motion

The random movement of small particles (µm) in fluids has been observed at least as far as 1784, by J.
Ingen-Housz [39], who described the irregular motion of coal particles immersed in a fluid, but the name
for this kind of motion, Brownian motion, is associated with Robert Brown [40], who in 1828 observed
it in small pollen grains and other granular material immersed in water. The motion of these particles in a
fluid is due to the interactions of the particles with the molecules of the fluid, which move randomly due
to thermal fluctuations. The theoretical background for these phemomena was developed by Einstein
[41] and Smoluchowski [42] with a probabilistic approach. This was later reformulated by Langevin
[43] with stochastic differential equations, and Perin was awarded the Nobel Prize by confirming some
theoretical claims with the experimental observation of this motion [44].

3.1 Analytic Results

At a mesoscopic timescale, larger than the duration of the interaction of a fluid molecule with a Brownian
particle, the motion of a Brownian particle can be modeled by the Langevin equation:

m~̇v = −∇U(~r)− γ~v + ~Fr, (3.1)

wherem is the mass of the particle; ~r is the position of the particle; U(~r) is the external potential; γ is the
friction constant that models the interaction of the particle with the fluid environment; ~v is the velocity
of the particle; and ~Fr is a random force applied to the particle accounting for the random kicks of the
fluid molecules on the particle surface. The random force ~Fr has the following properties [45]:

• it is, for a uniform system, independent of the particle position;

• its average over time (or over different realizations) is 0, 〈 ~Fr〉 = 0;

• it is uncorrelated in timescales larger than the duration of one molecule kick, 〈 ~Fr(t1) ~Fr(t2)〉 =

2Aδ(t1 − t2). A is given by the equation A = γkbT , where γ is the friction constant in equation
(3.1); kb is the Boltzmann constant; and T is the temperature of the fluid.

• In numerical simulations, this force is chosen to be Gaussian distributed, with mean 0 and standard
deviation 2γkbT .

If we consider the case of a free, U(x) = 0, Brownian particle moving in one dimension, the solution
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to equation (3.1) with initial condition v(t = 0) = v0 is:

v(t) = v0e
− γt
m + e−

γt
m

∫ t

0
e
γt′
m
Fr(t

′)

m
dt′ (3.2)

The average velocity of the particle decays exponentially:

〈v(t)〉 = 〈v0e
− γt
m 〉+ e−

γt
m

∫ t

0
e
γt′
m
〈Fr(t′)〉
m

dt′,

〈v(t)〉 = v0e
− γt
m ,

(3.3)

due to the fact that 〈Fr〉 = 0. We can then say that for times much larger than the relaxation time m
γ the

particle has no drift velocity and we can consider 〈v(t)〉 = 0. The mean-square velocity is:

〈v2(t)〉 = v2
0e
− 2γt

m +
e−

2γt
m

m2

∫ t

0

∫ t

0
e
γ(t′+t′′)

m 〈Fr(t′)Fr(t′′)〉dt′dt′′,

= v2
0e
− 2γt

m +
e−

2γt
m

m2

∫ t

0

∫ t

0
e
γ(t′+t′′)

m γkbTδ(t
′ − t′′)dt′dt′′,

= v2
0e
− 2γt

m +
kbT

2m
(1− e−2 γ

m
t),

(3.4)

which is the the result agrees with the equipartition theorem for the long time limit as 〈v2(t → ∞)〉 =
kbT
2m . Integrating equation (3.2), with initial condition x(t = 0) = x0, it is possible to calculate the
particle displacement:

x(t) = x0 +
m

γ
v0(1− e−

γt
m ) +

∫ t

0

∫ t′

0
e−

γ(t′−t′′)
m Fr(t

′′)dt′′dt′ (3.5)

in such a way that the average displacement is given by 〈x(t)〉 = x0 + m
γ ~v0(1 − e−

γt
m ). We can obtain

the mean square displacement by calculating 〈[~r(t)− ~r(t′)]2〉:

〈[x(t)− x(t′)]2〉 = (v2
0m

2 − kbT )
(e−

γt′
m − e−

γt
m )2

γ2
+

2kbT

γ
[|t− t′| − 1− e

−γ|t−t′|
m

γ
] (3.6)

If we look at this expression for values of t and t′ smaller than the relaxation time m
γ we see that the

particle moves balistically with its initial velocity, and that for values much larger than the relaxation
time averaging over the initial velocities and setting t′ = 0 yields:

〈[x(t)− x(0)]2〉 =
2kbT

γ
|t|

= 2D|t|
(3.7)

which is called the Einstein relation. This relation couples the self diffusion coefficient,D, with the
friction constant, γ. We will now look to some examples of applications of the Brownian dynamics.
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3.2 Examples

It is possible to use Brownian dynamics to study real systems and make predictions about molecules
or small particles (µm), like in [3] where the self assembly of amphiphiles into vesicles is studied by
using equation (3.1) and an effective potential U to mimic the hydrophobic and hydrophobic behaviour
of amphiphilic molecules:

m ~̈ri,j = −∇rU − γ ~vi,j + ~F ri,j

U =
∑
i 6=i′

Urep

(∣∣ri,j − ri′,j′
∣∣)+

∑
j=2,3

Uhp (ρi,j)

Urep(r)

ε
= e−20(r/σ−1)

Uhp(ρ)

ε
=


−0.5ρ ρ < ρ∗ − 1

0.25(ρ− ρ∗)2 − c ρ∗ − 1 < ρ < ρ∗

−c ρ > ρ∗

ρi,j =
∑

i 6=i′,j′=2,3

h
(∣∣ri,j − ri′ , j

′∣∣) ,
h(r) =

1

exp{20(r/σ − 1.9)}+ 1

(3.8)

where i corresponds to the index of the amphiphilic molecule and j corresponds to the index of con-
stituent particles that make it up, j = 1 is the hydrophilic one and j = 2, 3 the hydrophobic ones, σ is
the soft radius of each particle, ρi, j is the number of hydrophobic particles in the sphere whose radius
is approximately 1.9σ. The function h(r) is cut at 1.6σ and 2.2σ: h(r) = 1 at r < 1.6σ and h(r) = 0

at r > 2.2σ. and c and ρ∗ are empirical parameters. The hydrophobic interaction is mimicked by Uhp,
at low density (ρ < ρ∗ − 1), Uhp works as the pair-wise potential h(r). It is assumed that the particle is
shielded by hydrophobic particles from solvent molecules and hydrophilic particles at ρ∗. Thus, Uhp is
constant at higher density (ρ > ρ∗). In [3] they demonstrate how this simple model can create bi-layer
structures like the vesicles, figure 3.1 found in organism cells, showing that it is possible to form complex
structures of particles that move randomly by choosing with the a specific inter-particle interaction.

Figure 3.1: Formation of micels by anphiphilic molecules. By varying the ration between the temperature, T and the strength
of the hydrophilic interaction, ε it is possible to control the formation of vesicles. Figure taken with permission from [3].

It is also possible to create Brownian particles in laboratory and use them as probes of microscopic
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Figure 3.2: Brownian particle in an optical trap. (a) Trajectory of a Brownian particle in an optical trap. The particle
explores an ellipsoidal volume around the center of the trap, as evidenced by the shaded area which represents an equiprobability
surface. (b) and (c) The probability distributions of finding the particle in the z- and y-planes follow a twodimensional Gaussian
distribution around the trap center. Taken with permission from [4].

forces [4]. Understanding the dynamics of Brownian particles inside an optical trap is essential to make
nanoscale force measurements as discussed in [4]. After comparing their numerical results to results that
can be calculated analytically they can make numerical predictions for particles trapped in optical traps,
see figure 3.2.
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3.3 Simulations

To explore some of the results given by the theory of Brownian motion and as a preparation to our mod-
eling of a binary mixture of Brownian oscillators we used LAMMPS[46], Large-scale Atomic/Molecular
Massively Parallel Simulator, which is a C++ library optimized to do molecular dynamics. To validate
our LAMMPS script we used it to simulate a system that consisted of a single particle moving in 2
dimensions, in a box with dimensions L × L, with periodic boundary conditions. LAMMPS applies
a Langevin thermostat as described in [47] modeling a background implicit solvent and performs con-
stant NVE integration, where N stands for the number of particles, V for volume and E for energy,[48].
LAMMPS integrates these equations of motion using the Verlet method:

m~̈ri = −∇U(~ri) + ~F if + ~F ir ,

U(~ri) =


∑

j 4ε[( σ
rij

)12 − ( σ
rij

)6], |~ri − ~rj | < 6
√

2,

0, rij >
6
√

2.

~F if = − m

damp
~v,

~F ir ∝

√
kBTm

dt ∗ damp

(3.9)

where the index i indicates the index of the particle, the position of the particle,U(~ri) is the Lennard-
Jones potential, with ε being the depth of the potential and σ, diameter of a particle, is the viscous drag
term that is proportional to the particle velocity ~v, m

damp taking the place of the friction constant, with m
being the mass of the particle and damp being a constant inversely related to the viscosity of the solvent.
~F ir is the random force that the particle feels due to the solvent atoms and dt = 0.01 being the simulation
timestep. We use Leonard-Jones units, where the fundamental quantities m, mass of a particle, σ, ε and
kb are all equal to 1, and we use the following conversions from our dimensionless variables t∗, r∗, T ∗

values to the dimensional ones:

t = t∗
√
mσ2

ε
, (3.10)

r = r∗σ, (3.11)

T = T ∗
ε

Kb
, (3.12)

A Brownian particles explores 2D space without memory of its past, as figure 3.4(a) shows, with a
trajectory that is random. As predicted by equation 3.7 the mean square displacement is related to
temperature, T ∗, and with the friction constant, γ, which in our case is related with the value of damp,
and by setting T ∗ and damp equal to 1 we get that the diffusion constant, D = 1, which is confirmed by
the results of the simulations reported in figure 3.4(b). By plotting the mean square displacement (MSD)
at different temperatures and constant damp, figure 3.4(c) and plotting the MSD at different damp and
constant temperatures, as in figure 3.4(d) we reproduce the Einstein relation, equation (3.7). As we
wanted to simulate more than one oscillator we then explored what happens when we add more particles,
increasing the density of the system,η defined as η = N∗π∗σ2

4∗L∗L . The diffusion constant goes down as the
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systems packing fraction, η, goes up, figure 3.3, due to the steric interaction between the particles.

Figure 3.3: Dependence of the diffusion constant with packing fraction. As the packing fraction increases, and due to
the steric interaction between particles, their mobility decreases and that is captured by the decrease of the diffusion constant
measured in the system.
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Figure 3.4: Proprieties of a Brownian particle. In panel (a) we can see the trajectories of a Brownian particle moving in a
50x50 box with periodic conditions. As can be observed the trajectory seems random and with no discernible pattern while
exploring space. It is not possible to know the initial condition just by looking into the trajectory, as the system has no memory.
In panel (B) the mean square displacement (MSD) of a Brownian particle, 〈(x(t∗)− x(0))2〉, grows linearly in time, with the
slope being equal to 2D, D being the diffusion coefficient, equation (3.7). Panel (c) shows simulations with damp = 1(green)
and damp = 5(blue) and how they match up with the theoretical results(dashed colored lines), showing that increasing damp
decreases the value of the diffusion constant, D, as it is related to increasing the friction constant γ. In panel (d) we see that
increasing the value of temperature increases the value of the diffusion constant, D, as how the simulations with T = 1(green)
and T = 5(blue) match with the theoretical results (dashed colored lines).
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Chapter 4

Models for a binary mixture of Brownian
oscillators

Nature gives us examples of complex synchronization behaviour where the oscillators are interacting
with an ever changing swat of oscillators. From macroscale organization observed in flocking, where the
oscillators phase is its the heading direction [21], to microscale organization where genetic clocks that
can be controlled [49] and make bacteria blink at the same time [50]. In their 2017 work, Levis et al.
[25], showed that the mobility is important for oscillators in these conditions and that various patterns
can emerge. With these results in mind and wanting to find new behaviour that can give us control into
the synchronization of these oscillators, we delved into what can be called a binary mixture of Brownian
oscillators.

To be able to look into this problem we will have to use what we learned about the Kuramoto model
and apply it to particles undergoing Brownian dynamics. This can be achieved by introducing a new
internal degree of freedom, θ, that each particle will have and that will be governed by a modified
Kuramoto model. We have some freedom in the way we define the mixture and we will look into two
different models.

4.1 Model I - Repulsive interaction

The motion of our oscillators will be given by the Langevin dynamics described in the previous chapter,
equation (5.4). We will be using LJ units as described in equations (3.10-3.12). In our first approach to
the binary mixture of oscillators we split the oscillators into 2 categories, A and B, and changed the way
they interact through the Kuramoto model:

θ̇i∈A = ωi +
1

ni
(

ni∑
j∈A

K sin(θj − θi) +

ni∑
j∈B

H sin(θj − θi)), (4.1)

θ̇i∈B = ωi +
1

ni
(

ni∑
j∈A

H sin(θj − θi) +

ni∑
j∈B

K sin(θj − θi)), (4.2)

where ni represents the current number of neighbors of the particle i, and is determined by interaction
range, Rθ, K and H are coupling constants that drive the interactions and that differentiate the interac-
tions between same type particles and different type particles, K couples similar particles andH couples
unlike particles. To reduce the complexity of the problem and to reduce the number of possible variables
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we fixed for the whole study the values of Rθ = 3, in our dimensionless distance units, and we started
by using ωi = 0 for every i. When K is positive and H is negative the phases of similar oscillators
are attracted and the phases of different type oscillators are repelled and here we will be exploring the
consequences of such choice. These equations are integrated using the Euler method with a timestep
equal to the LAMMPS timestep, dt = 0.01, and the update is done before the forces are applied to the
particles.

We will explore how this model behaves for different values of H , ranging from -0.001 to -1, and
different values of K, 0.001 and 0.1. We will also explore different values of φ = NB

NB+NA
, the number

of B particles, NB , over the total amount of particles, NB + NA, the parameter that controls how many
repulsive pairwise contacts there are in the system, ranging from 0.05 to 0.95. For H or K < 0.05, all
our simulations are done with N = 1800 and we will be looking at one different packing fractions, η,
defined as η = Nπd2

4L2 , with d being the particles diameter, d =
√

2
6
, using L = 50. For H or K > 0.05

we have N = 1800 and N = 7200 and we explore packing fractions ranging from 0.014 to 0.56. We
found useful to use ζ = |H|

K as a parameter as it establishes a relationship between H and K.

We switch on the Kuramoto dynamics only after the system is at thermal equilibrium and we track
the synchronization of the system by looking at a modified version of the order parameter, equation (2.2),
by taking into account only the particles of one type, we are thus looking at how the addition of the phase
repulsive interactions between the oscillators affect the synchronization of a specific group of oscillators.
As the labels are arbitrary and the interactions are symmetric we focus on the synchronization of A
particles:

|r(t∗)| = | 1

NA

NA∑
j∈A

eiθj(t
∗)|. (4.3)

Our oscillators are not fully connected due to their short range interaction but their movement allows
the network to continuously change over time, each oscillator exchanging its neighbours multiple times.
Static networks of Kuramoto oscillators can sometimes not synchronize due to the network topology, but
we observed that allowing the topology to change over time leads the system to synchronize. When the
coupling constants are small, −0.05 < H < 0 and 0 < K < 0.05 we can recover the time evolution
predicted by mean field solution, and shown in figure 4.1(a), that is r(t∗) ∼ 1√

1+e−κ(t∗−t0)
. This means

that synchronization happens exponentially fast in the early times,t∗ < t0 + 1
κ , and then r asymptotically

approaches 1 at later times. This does not happen when the coupling constants are larger than 0.05. While
in most simulations the value of the order parameter always increases over time it has more fluctuations
and the shape of the time evolution is completely different from simulation to simulation, figure 4.1(c).
After the order parameter grows above a certain threshold, r ∼ 0.8, the shape of the time evolution of the
order parameter is the same in all simulations and that can be well fit with the theoretical curve, seen in
figure 4.2(c). Looking at panels (a)-(d) and (e)-(h) of figure 4.2 we can see the main difference between
these cases. Panels (a)-(d) show the time evolution of the order parameter followed by snapshots of the
oscillators phases at a given time for H = −0.001 and K = 0.001, and panels (e)-(h) show the same but
for H = −0.1 and K = 0.1. In the latter case it is possible to observe the formation of vortices. The
value of the coupling constant above which vortices appear may be related to the density of oscillators,
the radius of interaction and with the ability of the oscillators to explore space, but these parameters were
not studied.

The mean field result discussed previously predicts that κ = K and that t0 ∝ 1
K but the addition of

a second type of oscillators changes this behaviour and κ and t0 become functions of K, H and φ.
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Figure 4.1: Time evolution of the order parameter. Panels (a) and (c) show the time evolution of the order parameter for
systems with N = 1800, φ = 0.5, K = 0.001 and H = −0.001 and -0.1 respectively. The red curve is the fitted curve for
r(t∗) ∼ 1√

1+e−κ(t
∗−t0)

. Panels (b) and (d) show the time evolution of 1−r, highlighting the late time r(t∗) ∼ 1−e−
t∗
τ .Panel

(a) shows how different initial conditions give the same qualitatively behaviour while (c) shows that each initial condition has
a different behaviour qualitatively. Panels (b) and (d) show how the late time behaviour is similar for all initial conditions.

By plotting κ as a function of φ, see figure 4.3(a), we observe that an increase of the value of H leads
to an increase of κ which depends on φ. WhenK = |H|, κ does not seem to significantly change with φ,
but when |H| > K, κ grows for a maximum around φ = 0.5, decreasing again for higher φ. The almost
symmetric shape is a result of the interaction between the two types of oscillators and as soon as one of
the types is fully synchronized the other quickly follows. By plotting t0 as a function of φ, like in figure
4.3(b), we observe that a increase of the value of H leads to a decrease of t0 which depends on φ. When
K = |H|, t0 does not seem to significantly change with the value of t0, but when |H| > K, t0 decreases
to a minima around φ = 0.5, increasing again for high φ. The almost symmetric shape again follows
from the fact that the synchronization of each group of oscillators happens at the same time. Although
this behaviour is similar to what one expects, an increase of H leads to an increase of κ and a decrease
of t0 we could not find an expression for κ(H,φ) or t0(H,φ).

Plotting κ as a function of ζ for different values of φ, as figure 4.4(a) shows an increase of the value
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Figure 4.2: Snapshots of the time evolution of the system. Panels (a) and (e) show the time evolution of the order parameter
for systems with N = 1800, φ = 0.5, K = 0.001 and H = −0.001 and -0.1 respectively. Panels (b) to (d) show the same
system of panel (a) with each panel being at the time respective to the dashed lines in panel (a), and panels (f) to (h) show the
same system of panel (e) with each panel being at the time respective to the dashed lines in panel (e). The color scheme used
for the phase to the oscillators is chosen as to better display the vortices observed. Both systems reach a synchronized state,
r ∼ 1, and an almost uniform coloring is observed in panels (d) and (h).

Figure 4.3: Dependence of κ and t0 on φ. Panel (a) shows the dependence of κ on φ for various values of ζ, by varying
the value of H . Panel (b) shows the dependence of t0 on φ for various values of ζ, by varying the value of H . In all cases,
K = 0.001 and N = 1800.

of κ as the value of ζ increases and that there is a dependence on φ. We see the opposite happen when
when plotting t0 as a function of zeta for different values of φ, see figure 4.4(b).

For values of K or H larger than 0.05 we can not calculate the value of κ or t0 due to the way the
order parameter grows in time. In the course of the system evolution we observe Schlieren patterns that
are normally seen in systems with broken rotational symmetry, like liquid crystals. We also notice a
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Figure 4.4: Dependence of κ and t0 on ζ. Panel (a) shows the dependence of κ on ζ for various values of φ. Panel (b) shows
the dependence of t0 on ζ for various values of φ in a log-log scale, In all cases, K = 0.001 and N = 1800.

coarsening sequence similar to the one observed in a 2D XY-model upont a temperature quench T =∞
to T = 0 showing that the presence of contrarian oscillators does not disrupt the synchronization process
of A-type oscillators, as we observe the growth of synchronized regions until they span the whole system,
as seen in figure 4.5. At later times when all the vortices of opposite topological charge annihilate
each other, the order parameter grows like r = 1 − e

−t∗
τ , like figure 4.2(d) demonstrates, τ being a

characteristic time that depends on ζ, η and φ.

The late time behaviour is almost symmetrical around φ = 0.5, with τ having a minimum value
when ζ > 1, a maximum value when ζ < 1 and staying constant for ζ = 1, as shown in figure 4.6(a).

The synchronization characteristic time τ displays a power law dependence on |H|with the exponent
depending on φ, as shown in figure 4.6(b). This power law dependence is observed when ζ > 10, with
the exponent reaching the maximum absolute value at φ = 0.5.

When comparing τ
N for systems with different numbers of particles, but with similar η we see that

the results match quite well, meaning that τ ∝ N , seen in figure 4.7(a). It is also possible to see a non-
monotonic behaviour of τ on η depending on the value of ζ, as shown in figure 4.7(b). At lower packing
fractions, oscillators will interact rarely due to their interaction being close range but at high enough
packing fraction the steric interactions will jam the system, making the particles exchange neighbours
less often, leading to a slower mixing process. As ζ grows the effect of reduced mobility is less important.

We calculated tc which is the average time it takes the oscillators to reach their almost complete
synchronization, r > 0.95. By plotting tc as a function of φ, like in figure 4.8(a) it is possible to observe
that increasing ζ decreases the value of tc. If we plot tc as a function of ζ, as in figure 4.8(b) we see
that value of tc seems constant when ζ < 1 as the synchronization is mostly driven by the value of the
highest coupling constant, that in this case is K.

Model I shows novel ways to control synchronization. By introducing the ”repulsive” oscillators
it is possible to enhance how the rate of synchronization, both by increasing the value of |H| or by
bringing the value of φ closer to 0.5. Controlling the density of oscillators is also a way to enhance
synchronization as the mobility of the oscillators plays a significant role. It was impossible to completely
stop synchronization with this model and we will be looking at a different formulation of the Kuramoto
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Figure 4.5: Snapshots of some systems. The snapshots show the time evolution of the system from (1) to (3)(t∗ = 200,
t∗=1500, t∗=3500 respectively). Different letters have the same initial conditions but different parameters: (A) has ζ = 20,
η = 0.56, φ = 0, (B) has ζ = 20, η = 0.56, φ = 0.5,(C) has ζ = 0.1, η = 0.56, φ = 0.5, (D) has ζ = 20, η = 0.14, φ = 0.5
and in all cases N=7200.
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Figure 4.6: Dependence of τ on φ and ζ. Panel (a) shows that the synchronization characteristic time, τ increases as a function
of φ. It is symmetrical at φ = 0.5 decreasing to the same value for values of ζ < 1. For values of ζ > 1 the opposite is true,
decreasing as a function of φ until φ = 0.5, after that increasing to close its starting value. When |H| = K τ doesn’t depend
on φ. Panel (b) shows that when ζ > 10, τ ∝ ζα(φ). The dependence of α on φ is shown in the inset.In all cases, η = 0.14,
N = 1800, K = 0.1.

Figure 4.7: Characteristic time dependence on η. Panel (a) shows that if the characteristic time is rescaled by N it is possible
to observe the same dependence of τ

N
with η. In panel (b) we see that for the same ζ, N and φ but different η the system has a

packing fraction that minimizes τ , due to the balance of short range interactions and mixing capability

model to achieve this.
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Figure 4.8: Dependence of tc with φ and ζ. Panel (a) shows the dependence of tc on φ for various values of ζ, by varying the
value of H . Panel (b) shows the dependence of tc on ζ for various values of φ. For all cases K = 0.1 and N = 1800.
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4.2 Model II - Contrarian oscillators

With model II the oscillators are split into 2 categories, A and B, and the Kuramoto interaction is given
by:

θ̇i∈A = ωi +
1

ni
(

ni∑
j∈A

K sin(θj − θi) +

ni∑
j∈B

H sin(θj − θi)), (4.4)

θ̇i∈B = ωi +
1

ni
(

ni∑
j∈A

H sin(θj − θi) +

ni∑
j∈B

H sin(θj − θi)), (4.5)

where ni represents the current number of neighbors of the particle i, is determined by a fix interaction
range,Rθ, K and H are coupling constants that drive the interaction. In this model, particles of the B
type act as contrarians, not trying to synchronize with other B particles nor with A particles, this being
the main difference from model I described in the previous subsection. To reduce the complexity of
the problem and to reduce the number of possible variables we fixed for the whole study the values of
Rθ = 3, in our dimensionless distance units, and we started by using ωi = 0 for every i. These equations
are integrated using the Euler method with a timestep equal to the LAMMPS timestep, dt = 0.01, and
the update is done before the forces are applied to the particles. We will also explore different values of
φ = NB

NB+NA
, the fraction of B particles, NB , over the total amount of particles, NB +NA, the parameter

that controls how many repulsive oscillators there are in the system, ranging from 0.05 to 0.95. All our
simulations are done with N = 1800 and and a box size L = 100.

We switch on the Kuramoto dynamics only after the system is at thermal equilibrium and we track
the synchronization of the system by looking at a modified version of the order parameter in, equation
(2.2). While in model I the labels of the particles are arbitrary now particles of the type A have a positive
interaction between themselves and a negative one with particles of type B and particles of type B have an
overall negative interaction. A system with similar characteristics has been considered in reference [16],
were this interaction managed to suppress synchronization in a fixed network of oscillators. As figure
4.9 shows it is possible to completely suppress synchronization of both types of particles by increasing
the value of |H|.

While the value of r∞ ≡ r(t∗ → ∞), of model I is always 1, model II shows a dependence of
r∞ on H , K and φ. There is a continuous configurational transition governed by the H and φ, where
the value of r∞ measured on particles of type A and type B decreases from 1 to 0, that is there is a
configurational transition from synchronizable configurations to unsynchronizable ones driven by either
φ or H , as observed in figure 4.10(a-b).

For H = −1 we plot the value of r∞ for particles of type A and type B. The curve for the particles
A reassembles the curve of the spontaneous magnetization of the Ising model with φ taking the role of
temperature, seen in figure 4.11(a). The curve for particles of type B reassembles the curve o spontaneous
magnetization of the Ising model with φ taking the role of temperature and with a magnetic field applied,
as observed in figure 4.11(b). The synchronization behaviour of the system is presented in figure 4.12,
with the particles of type A, managing to synchronize, panels (a)-(c), for small values of |H|, H =

−0.001, even though particles of type B not displaying any sign of synchronization, panels (d)-(f). For
high values of |H|, H > 10, particles of both types show no sign of synchronization, no discernible
patterns emerging as time evolves.
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Figure 4.9: Time evolution of the order parameters for model II. Panel (a) shows the value of the order parameter for
particles of type A and panel (b) shows the value of the order parameter for particles of type B. For values of |H| < 0.1
synchronization happens like in model I, the system fully synchronizing after a given time. For values of |H| > 0.1 both A
and B particles reach a saturation value, r∞ smaller than 1, the system never fully synchronizing. For even larger values of
|H|, |H| = 10, the order parameter behaves erratically and the system never synchronizes. All simulations were done with
K = 0.001 and φ = 0.5

.

Figure 4.10: Phase diagram for the value of r∞.Panel (a) shows the value of r∞ for particles of type A and panel (b) shows
the value of r∞ for particles of type B. It is possible to observe a continuous configurational transition as the value of r∞ goes
from 1 to 0. The value of r∞ is different for particles of type A, panel (a) and for particles of type B, panel (b) and the values
of ζ or φ that suppress their synchronization are lower for particles of type B. All simulations were done with K = 0.1.
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Figure 4.11: Dependence of ra∞ and rb∞ on φ. In panel (a) we see the decrease of ra∞ as φ increases. In panel (b) we see
the same decrease of rb∞ as φ increases. In both cases N = 1800, H = −1 and K = 0.1.
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Figure 4.12: Snapshots of the time evolution of Model II. Panels (a)-(l) show snapshots with particles A and B separated, top
and bottom plot respectively, to better distinguish their behaviour. Plots (a)-(c) show synchronization of the particles of type A,
r = 0.39, 0.8 and 0.9 respectively, while the particles of type B remain unsynchronized, r < 0.4 in panels (d)-(f), due to the
small value of H , H = −0.001. Plots (g)-(h) show how high values of |H|, H = −10, completely stop synchronization from
happening as the value of r fluctuates for particles of both types, going as high as 0.38 but staying around r = 0.2. For all,
K = 0.1, N = 1800 and φ = 0.1
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Chapter 5

Active Brownian Motion

5.1 Analytic results

Some behaviour of small swimmers (µm) can be captured by the use study of active Brownian particles.
Due to the fact that these particles extract energy from the environment to produce motion and because
they have a preferred direction of motion they break detailed balance and are an out-of-equilibrium
system. They are still subject to thermal fluctuations so their behaviour can be expressed by the Langevin
equations. Due to the small mass of the particles we will not take into account the inertial terms and will
work in the so called overdamped regime. The equation of motion for a ABP moving in two dimensions
is then:

ẋ(t) = vp cos(θ(t) + Fx,

ẏ(t) = vp sin(θ(t)) + Fy,

θ̇(t) = Fθ,

(5.1)

Where Fx, Fy are the components of the translational noise acting on the particle in the x and y direction
respectively and Fθ is the rotational noise and vp is the particle self-propulsion velocity. The Stokes-
Einstein relation gives an expression for the translational diffusion constant D = kbT

γ , where kb is the
Boltzmann constant, T is the temperature of the fluid the particle is immersed in, and γ is the Stokes
coefficient, which is related to the drag the fluid exerts in the particle. And the Einstein–Smoluchowski
relation gives an expression for the rotational diffusion constant Dr = kbT

fr
, where fr is the frictional

rotational drag. An active particle will tend to move in a specific direction during a specific time τR
which is related to the diffusion constant of rotation DR by DR = 1

τR
. The mean square displacement

can be shown, as was done in Bechinger work in 2016, to be given by:

〈(r(t)− r0)2〉 = (4D + 2v2
pτR)t+ 2v2

pτ
2
R(e

−t
τR − 1) (5.2)

Which for times bigger than the rotational relaxation time τR reduces to:

〈(r(t)− r0)2〉 = (4D + 2v2
pτR)t

= 4Deff t,
(5.3)

with an effective diffusion constant Deff = D +
v2
p

2DR
. This means that for long timescales active

particles display a diffusive behaviour with an a higher effective diffusion constant.
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5.2 Examples

The dynamics of living micro-swimmers like spermatozoa or bacteria can be studied using this model and
it is possible to make artificial active Brownian particles like Janus particles [5], which are cylindrical
rods that are coated with 2 different metals gold–platinum (Au–Pt) or gold–nickel (Au–Ni) that when
immersed in hydrogen peroxide (H2O2) solutions will display directed motion. these particles have a
preferred direction of motion, towards the direction the platinum part of the rod, as shown in figure
5.1, however the direction of motion changes in time, such that these particles exhibit active Brownian
behaviour.

Figure 5.1: A schematic illustrating self-electrophoresis. Hydrogen peroxide is oxidized to generate protons in solution and
electrons in the wire on the Pt end. The protons and electrons are then consumed with the reduction of H2O2 on the Au end.
The resulting ion flux induces motion of the particle relative to the fluid, propelling the particle toward the platinum end with
respect to the stationary fluid. Taken with permission from [5].

Active particles are known to show complex out-of-equilibrium behaviour, like motility induced
phase separation (MIPS) [6], where the introduction of activity to Brownian particles makes them cluster
into what can be called ”living crystals”, as can be observed in figure 5.2, that appear depending on the
system density and activity. This kind of behaviour is also observed in colonies of bacteria [51] [52],
showing how useful this model is in describing the behaviour of living organisms.
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Figure 5.2: Living crystals formed by clusters: due to the motility of theseJanus particles it is possible to observe a phase
segregation into the dense, crystal-like phase, and the dilute, gas-like phase. Taken with permission from [6].

5.3 Simulations

We again used LAAMPS as a library to perform molecular dynamics. LAMMPS applies a Langevin
thermostat as described in [47] modeling a background implicit solvent and performing constant NVE
integration, where N stands for the number of particles, V for volume and E for energy,[48]. LAMMPS
integrates these equations of motion using the Verlet method:

m~̈ri = −∇U(~ri) + ~F if + ~F ir + ~F ia,

U(~ri) =


∑

j 4ε[( σ
rij

)12 − ( σ
rij

)6], |~ri − ~rj | < 6
√

2,

0, rij >
6
√

2.

~F if = − m

damp
~v,

~F ir ∝

√
kBTm

dt ∗ damp
,

~F ia ∝ vp cos(θi) ~ux + vp sin(θi) ~uy,

θ̇i = Fθ

(5.4)

where the index i indicates the index of the particle, the position of the particle,U(~ri) is the Lennard-
Jones potential, with ε being the depth of the potential and σ, diameter of a particle, is the viscous drag
term that is proportional to the particle velocity ~v, m

damp taking the place of the friction constant, with m
being the mass of the particle and damp being a constant inversely related to the viscosity of the solvent.
~F ir is the random force that the particle feels due to the solvent atoms and dt = 0.01 being the simulation
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timestep. ~F ia is the propulsion force, being proportional to the propulsion velocity, vp with an heading
given by the vector cos(θi) ~ux + sin(θi) ~uy, with ux and uy being the unitary vectors on those directions,
the value θi changing due to a random number, Fθ. We use Leonard-Jones units, where the fundamental
quantities m, mass of a particle, σ, radius of a particle,ε depth of the Lennard-Jones well, and kb are all
equal to 1, as described in, equation (3.10-3.12).

Active particles move in straight trajectories during time intervals smaller than their rotational relax-
ation time, τθ = 1

Dθ
, as can be observed in figure 5.3(a). The long time, t∗ > 1

Deff
, diffusive behaviour

and the short time, t∗ < 1
Dθ

ballistic behaviour of the active particle were also observed, see figure
5.3(b), by plotting the mean square displacement of a particle. By plotting the mean square displacement
(MSD) with different propulsion velocities, like in figure 5.3(c) we were able to reproduce the theoretical
diffusion coefficient that was expected, equation 5.3.

Figure 5.3: Behaviour of a active Brownian particle.In panel (a) we can see the trajectories of an active Brownian particle
moving in a 50x50 box with periodic conditions. In panel (B) the mean square displacement (MSD) of a Brownian particle,
〈(x(t∗) − x(0))2〉, grows linearly in time, with the slope being equal to 2D, D being the diffusion coefficient, equation
(3.7), after a ballistic regimen where the mean square displace grows quadractically in time. Panel (c) shows simulations with
vp = 10(green) and vp = 1(blue) and how they match up with the theoretical results(dashed colored lines), showing that
increasing the propulsion velocity, vp, increases the value of the diffusion constant, D, according to equation 5.3).
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Chapter 6

Active model I: a model for a binary
mixture of active Brownian oscillators

Interested in the potential of active particles and the different ways that these particles can display non-
trivial collective behaviour, we decided to bring together what we described in the chapter of active
particles with what was described with the Kuramoto model. We again used LAAMPS as the library
that handled the molecular dynamics simulations. The dynamics of our active particles were given by
equations:

m~̈ri = −∇U(~ri) + ~F if + ~F ir + ~F ia,

U(~ri) =


∑

j 4ε[( σ
rij

)12 − ( σ
rij

)6], |~ri − ~rj | < 6
√

2,

0, rij >
6
√

2.

~F if = − m

damp
~v,

~F ir ∝

√
kBTm

dt ∗ damp
,

~F ia ∝ vp cos(θi) ~ux + vp sin(θi) ~uy.

(6.1)

and the evolution of the phase of each particle, θ, was given by the Kuramoto equations they were defined
in model I:

θ̇i∈A = ωi +
1

ni
(

ni∑
j∈A

K sin(θj − θi) +

ni∑
j∈B

H sin(θj − θi)) + Fθ,

θ̇i∈B = ωi +
1

ni
(

ni∑
j∈A

H sin(θj − θi) +

ni∑
j∈B

K sin(θj − θi)) + Fθ.

(6.2)

For the equations of motion, eq. (6.1), the index i indicates the index of the particle, the position of the
particle,U(~ri) is the Lennard-Jones potential, with ε being the depth of the potential and σ, diameter of a
particle, is the viscous drag term that is proportional to the particle velocity ~v, m

damp taking the place of
the friction constant, with m being the mass of the particle and damp being a constant inversely related
to the viscosity of the solvent. ~F ir is the random force that the particle feels due to the solvent atoms and
dt = 0.01 being the simulation timestep. ~F ia is the propulsion force, being proportional to the propulsion
velocity, vp with an heading given by the vector cos(θi) ~ux+sin(θi) ~uy, with ux and uy being the unitary
vectors on those directions, the value θi changing due to a random number, Fθ. For the phase equation,
eq. (6.2) where ni represents the current number of neighbors of the particle i, and is determined by
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interaction range, Rθ, K and H are coupling constants that drive the interactions and that differentiate
the interactions between same type particles and different type particles, K couples similar particles and
H couples unlike particles, and Fθ is a rotational noise term. To reduce the complexity of the problem
and to reduce the number of possible variables we fixed for the whole study the values of Rθ = 3, in our
dimensionless distance units, and we started by using ωi = 0 for every i. We use Leonard-Jones units,
where the fundamental quantities m, mass of a particle, σ, radius of a particle,ε depth of the Lennard-
Jones well, and kb are all equal to 1, as described in, equation (3.10-3.12).The equations for the phase
of the oscillators are integrated using the Euler method with a timestep equal to the LAMMPS timestep,
dt = 0.01. LAMMPS is designed to have its iterative scheme done in a specific order, like the creation
of neighboring lists, the calculation of the forces to be applied and the time integration, and the update of
the phases is done before the forces are applied to the particles. We explored values of K and |H| = 0.1,
φ = 0.5, and vp ranging from 0 to 10. We also used 3 different values for the size of the simulation
box, 50, 100 and 200, all with N = 1800. The value of the rotational diffusion coefficient is Dθ = 0.03.
Due to the existence of this noise term the evolution of the order parameter is not the same as what is
reported in figure 4.2(a). Increasing the value of the propulsion velocity, vp, decreased the value of tc,
seen in figure 6.1(b). This correlation between activity and synchronization time was also discussed in
[25] finding similar results. This again indicates that the mobility of the oscillators is important for the
synchronization process, but the fact that there does not seem to be a clear monotonous function for tc
it may indicate that some phenomena may be happening that increases the synchronization time of the
system.

It was observed that before the system reaches complete synchronization a phase segregation hap-
pens where particles form aggregates, as seen in figure 6.2, where clusters of particles appear due to their
collisions and different propulsion directions, a phenomena similar to motility-induce phase separation
(MIPS). As particles synchronize theseclusters disappear and we no longer see them. The formation of
aggregates is represented on panel (f) and (g) of figure 6.2, while no aggregate is seen when the propul-
sion velocity of the particles is low, vp = 0.1 in panels (a) to (d) of the same figure. We speculate that
if the system size was bigger we would potentially see new phenomena like density waves or separation
by type of particle.

Figure 6.1: Time evolution of the order parameter and the dependence of tc. Panel (a) shows the dependence of r with the
value of vp and how the activity of the particle changes the way it synchronizes, the order parameter no longer continuously
growing do to existence of a rotational diffusion coefficient, Dθ . There is a non monotone dependence of tc with vp that may
be due to the way the particles spatially distribute before synchronizing.
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Figure 6.2: Snapshots of clustering of active particles. Panels (a)-(d) and (e)-(h) show the system configuration when the
order parameter is 0.05, 0.30, 0.65, 0.95, respectively. We can see that in panels (a)-(d) there is no clustering, as the propulsion
velocity of the particles is too low, vp = 0.1. Panels (e)-(h) correspond to vp = 1 and show that in intermediate times, while
the system is not still synchronized, r < 0.9, it is possible to observe clustering . The cluster seen in (g) dissipates when the
system is synchronized (h), due to the particles moving together and longer jamming together.
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Chapter 7

Conclusion and future work

The study of a binary mixture of Brownian and active oscillators gave us new a understanding about
the synchronization process and hints into how to control it, enhancing it or even suppressing it. We
showed that if the binary mixture of oscillators behaves according to model I, synchronization cannot be
suppressed but merely controlled. It can be enhanced by increasing the value of ζ = |H|

K and by moving
the system to a state where φ ∼ 0.5, by increasing or decreasing the number of one type of oscillators
depending on the initial system and it can be slowed down by doing the opposite, lowering the value
of ζ or the fraction of repelling oscillators, shown in figures (4.3 - 4.4). Model I showed two different
regimens for synchronization, if K and |H| < 0.05 synchronization happened according to the mean-
field results, equation (2.24) and figure 4.2, and ifK and |H| > 0.05 vortices appeared and the dynamics
of synchronization changed, as can be seen in figure 4.2. For these values of |H| and K there was a
value of the packing fraction where τ , the late time synchronization characteristic time, was minimal,
as observed in figure 4.7, as the interplay of having enough neighbouring oscillators and being able to
diffuse through space conditions how fast the system synchronizes. If the binary mixture behaved like
Model II it was possible to suppress synchronization by increasing the value of ζ and φ, as displayed in
the phase diagram of figure 4.10, and an interplay between these can be used. The addition of particles
of type B conditioned the synchronization of particles of type A, lowering the value of the equilibrium
order parameter, r∞. The addition of particles of type B had the same result as what was observed when
the range of internal frequencies was broadened. This is a continuous configurational transition as the
system goes from synchronizable to non-synchronizable as the value of ζ and φ increase. Finally, we
explored the role of activity as an enhancer for synchronization and found that increasing activity lowers
the synchronization time, and that the synchronization time saturates as the activity increases, figure 6.1.
We also observed clustering of active particles, as can be seen in figure 5.3. This lead us to believe
that later works on binary mixtures of active oscillators can find other kinds of collective behaviour.
Future works could focus on the addition of intrinsic frequencies, ω, for the oscillators and even different
distributions, g(ω), for particles of type A and B. This addition coupled with activity may display novel
collective behaviour, like the separation of particles A and B due to their different chiralites, if the mean
of their respective g(ω) has different signs.
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Deneubourg. Modeling fireflies synchronization. In A Mathematical Modeling Approach from
Nonlinear Dynamics to Complex Systems, pages 131–156. Springer International Publishing, June
2018.

[10] Ramon Guevara Erra, Jose L. Perez Velazquez, and Michael Rosenblum. Neural synchronization
from the perspective of non-linear dynamics. Frontiers in Computational Neuroscience, 11, Octo-
ber 2017.

[11] Leon Glass. Synchronization and rhythmic processes in physiology. Nature, 410(6825):277–284,
March (2001).

[12] O. A. Igoshin, A. Mogilner, R. D. Welch, D. Kaiser, and G. Oster. Pattern formation and traveling
waves in myxobacteria: Theory and modeling. Proceedings of the National Academy of Sciences,
98(26):14913–14918, December 2001.

45



[13] Dario Antonio, David A. Czaplewski, Jeffrey R. Guest, Daniel López, Sebastián I. Arroyo, and
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