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Abstract

The matter-antimatter asymmetry observed in the Universe cannot be explained by the amount of
violation of Charge Conjugation and Parity (CP) in the Standard Model (SM). This shortcoming of the SM
is one of the main motivations that led to the proposal of several extensions of the SM with new sources
of CP-violation, a necessary requirement to explain the baryon asymmetry, according to the Sakharov
conditions for baryogenesis. In this thesis, we will look at some of the main features of a particular type
of models where the SM Higgs potential is changed by the addition of a second scalar doublet to the SM
field content. These models are known as Two-Higgs-Doublet Models (2HDMs). They provide a very
rich phenomenology at the Large Hadron Collider (LHC) and future colliders because of the introduction
of new scalar states, and may answer many unsolved problems that are not addressed in the SM, such as
the insufficiency of CP-violation and the existence of Dark Matter (DM).

The CP-nature of the discovered Higgs is still an open issue. While it has been established by the AT-
LAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) collaborations that the discovered
scalar cannot be a pure pseudoscalar, a mixed state with a large CP-odd component is still possible. This
would be an indication of CP-violation in the scalar sector. The search for new sources of CP-violation and
Beyond the Standard Model (BSM) physics is one of the main goals of the LHC. This can be achieved by
a precise measurement of the Yukawa couplings since the CP-nature of the Higgs can be directly probed
in its production alongside fermions. In this dissertation, we explore the sensitivity of CP-discrimination
in the Higgs (h) couplings to bottom (b) and top quarks (), for bbh, bh and in dilepton final states of tth
events (with h — bb) produced at the LHC and generated with MadGraph5_aMC@NLO. These Higgs
bosons are generic, i.e., they may not correspond to the discovered one with a mass of 125 GeV, and are
either pure CP-even or pure CP-odd. Several observables introduced in previous works are evaluated for a
varying scalar boson mass, my, in order to probe the CP-sensitivity in the different processes. We show
that for bbh and bh final states, CP-discrimination is not possible for the observables considered, even for
very light Higgs masses of 10 GeV. For tth, we found that distinguishing different CP states becomes
increasingly difficult for larger masses, and seemingly impossible for masses above 450 GeV, at parton
level. For the tops, we additionally apply an algorithm to reconstruct, for the first time, tth events with a
Higgs mass different from 125 GeV. Confidence Levels (CLs) for exclusion are computed for this process,
as a function of the LHC luminosity, for different scenarios. We found that exclusion scenarios at the
LHC require more luminosity for a fixed CL as we increase the scalar boson mass. CP-odd exclusion
also requires more luminosity, relative to CP-even exclusion, for m; < 160 GeV. With the current LHC
luminosity of 150 fb~!, exclusion of a pure CP-even Higgs with a mass below 80 GeV, assuming SM-like
couplings, is already possible. Also, the information that we may learn in these exclusion scenarios still
leaves a large allowed parameter space for the Complex Two-Higgs-Doublet Model (C2HDM).

Keywords: Higgs boson, CP-violation, 2HDM, top and bottom Yukawa couplings, LHC.
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Resumo

A quantidade de violagdo de CP no SM ndo € suficiente para explicar a assimetria matéria-antimatéria
observada no Universo. Este ¢ um dos principais motivos que levou ao desenvolvimento de extensdes
do SM com fontes adicionais de violacdo de CP, que é uma das condi¢des necessarias para explicar a
assimetria bariénica, de acordo com as condi¢des de Sakharov para a bariogénese. Nesta tese, abordam-se
0s principais aspectos de um tipo de modelos onde se adiciona ao potencial do Higgs do SM um segundo
dubleto escalar, designados como 2HDMs. Estes modelos caracterizam-se por uma fenomenologia muita
rica ao nivel do LHC e de futuros aceleradores, devido a existéncia de novos escalares, e poderao dar
resposta a varios problemas nao abordados pelo SM, como por exemplo a quantidade insuficiente de
violacdo de CP e a existéncia de matéria escura.

A natureza CP do Higgs descoberto no LHC ainda ndo foi determinada. Embora as colaboracdes
ATLAS e CMS tenham estabelecido que esse Higgs ndo pode ser um pseudoescalar puro, uma mistura
de estados CP com uma componente CP-impar diferente de zero ainda é possivel, o que seria uma
indicacdo de violag@o de CP no sector escalar. O principal objectivo do LHC actualmente consiste na
procura de novas fontes de violagdo de CP e de fisica para além do SM. Para isso € importante medir
de forma precisa os acoplamentos de Yukawa, ja que a natureza CP do Higgs pode ser directamente
investigada na sua producao juntamente com fermides. Nesta dissertacdo, explora-se a possibilidade de
discriminar diferentes estados de CP nos acoplamentos do Higgs com os quarks bottom e top, para eventos
do tipo bbh, bh e para o canal dilepténico em eventos tth (h — bb) produzidos no LHC, e gerados pelo
MadGraph5_aMC@NLO. Os Higgs gerados nem sempre correspondem ao descoberto com uma massa de
125 GeV, e sdo CP-pares ou CP-impares. Varias distribui¢des existentes na literatura foram calculadas
para diferentes massas do Higgs, de modo a investigar a sensibilidade para diferentes componentes de CP
nos vérios processos. Mostra-se que para bbh e bh, nio é possivel distinguir diferentes estados CP para as
varidveis consideradas, mesmo para Higgs muito leves com massas de 10 GeV. Para tth, viu-se que essa
distin¢do se torna mais dificil para massas do Higgs maiores, e praticamente impossivel para massas acima
de 450 GeV. Para os tops, aplicou-se ainda um algoritmo que permitiu reconstruir, pela primeira vez para
massas do Higgs diferentes de 125 GeV, os eventos tth. Calcularam-se também niveis de confianca para a
exclusdo de diferentes cendrios € massas, em funcio da luminosidade integrada do LHC. Descobrimos
que é necessaria mais luminosidade para excluir a existéncia de Higgs mais pesados, para um certo CL.
Também é necessaria mais luminosidade para excluir um Higgs CP-impar relativamente a um que é
CP-par, para m;, < 160 GeV. Tendo em conta a actual luminosidade do LHC de 150 fb~—!, j4 é possivel
excluir um Higgs CP-par com massa abaixo de 80 GeV, assumindo os acoplamentos padrdo do SM. Além
disso, a informacao retirada destas exclusdes ainda deixa um espaco de parAmetros grande para o C2ZHDM.

Palavras-chave: bosdo de Higgs, violacdo de CP, 2HDM, acoplamentos de Yukawa do top e bottom,
LHC.
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Chapter 1

Introduction

The Holy Grail of modern physics is to find a theory that fully explains all physical aspects of
the Universe, sometimes called a Theory of Everything (ToE) [1]. Any viable candidate must at least
describe all known interactions in a common theoretical framework and hopefully unify them into a single
fundamental theory.

Historically, the first ideas of unification go back to classical antiquity, but the first major development
came in the 17th century, when Isaac Newton showed that all celestial objects obey the same fundamental
law of universal gravitation [2]]. In the nineteenth century, Hans Christian @rsted discovered a connection
between electricity and magnetism and later Maxwell provided a description of both interactions as
different aspects of a unified electromagnetic theory [J3]], thanks to the contribution of other scientists such
as Ampere, Ohm, Faraday, Gauss, amongst others.

In the 20th century, two major revolutions took place that lay the foundations of what today we call
modern physics. The first one happened in 1915, when Albert Einstein published his General Theory of
Relativity (GR) [4]], and the second one in the mid-1920s, with the establishment of quantum mechanics.
Later, two new interactions, the strong and weak nuclear forces, were discovered. In the years that
followed, the development of Quantum Field Theory (QFT) played a major part in the understanding of
electromagnetism and the weak and strong nuclear forces under a quantum framework, and in the 1960s,
Glashow, Salam and Weinberg developed a unified picture of these three interactions which was able
to unify the first two in the electroweak interaction. This theory is called the Standard Model (SM) of
particle physicy'| [6H8].

The SM is the expression of our current understanding of particle physics, where forces between
particles are described by the exchange of particles. It explains the mechanism through which elementary
particles acquire mass and introduces a large number of particles which have already been discovered.
The last one was found in 2012, when a new scalar particle with a mass close to 125 GeV, later identified
as the Higgs boson, was discovered by the ATLAS (A Toroidal LHC Apparatus) [9]] and CMS (Compact
Muon Solenoid) [[10] collaborations at the Large Hadron Collider (LHC), thus confirming the prediction of
the electroweak symmetry breaking mechanism of the SM [11]]. The SM provides a successful description
of (almostEb all current experimental data from colliders, and represents one of the triumphs of modern

!The unification attempts did not stop with the SM. For instance, several attempts were made to unify the electroweak and
strong interactions under a Grand Unified Theory (GUT) [5]]. Although these models are puzzling and definitely interesting,
none of them have achieved experimental validation, so the SM and simple extensions of it will be the main focus of this work.

*There are very few exceptions where this is not true, like for instance the measured value for the anomalous magnetic
moment of the muon, which shows a 3.5 ¢ deviation from the SM prediction [12]], and B meson decays such as B° - Dtru,,
in which the measured decay rates differ from the theoretical predictions calculated in the SM [13]].



physics [[14-16].

Whilst the SM is undoubtedly very successful in describing a wide range of precise experimental
measurements, it is an incomplete theory with many unanswered questions, possibly being the low-energy
limit of a more fundamental theory. For example, it cannot explain the observed matter-antimatter
asymmetry in the Universe [|17], it does not contain a viable Dark Matter (DM) candidate [/18]] nor massive
neutrinos (although they can be included) [[12], and it does not include gravity at all. Furthermore, it
is not clear whether the observed Higgs boson corresponds to the scalar predicted by the SM. Other
questions that we may pose are: why are there three generations of fermions, can we unify the strong and
electroweak interactions, why are the weak interactions left-handed, why do the fermion masses have the
values that they have, and so forth. Therefore, it is necessary to explore new physics in order to give an
answer to the problems not addressed by the SM.

In the SM, the use of a single Higgs doublet is the simplest choice, but it is not the only possibility.
Since the SM is incomplete, a few of its problems can be solved by keeping the entirety of its structure,
and simply adding new pieces to it, such as more scalar doublets. These extensions of the SM are the
type of models that will be studied in this thesis. While none of the models considered in this thesis
provide solutions to all of the aforementioned problems simultaneously, they solve at least some of the
experimental and theoretical shortcomings of the SM.

Models with non-minimal Higgs sectors lead to a rich spectrum of characteristic collider signatures
and astroparticle consequences which is why the main task of the LHC experiments at the moment is the
search and probe of the fundamental properties of the discovered Higgs and physics beyond the Standard
Model (BSM). In particular, a primary goal is the determination of the Higgs Charge Conjugation and
Parity (CP) quantum numbers as that may give clues to the baryogenesis problem [19]], and to measure
more accurately its couplings to the fermions.

The structure of this thesis is the following. In chapter 2, the mathematical formulation of the sectors of
the SM - the strong, the electroweak and the Higgs sector - is presented, highlighting the importance of
symmetries, the local gauge principle, Spontaneous Symmetry Breaking (SSB) and the Higgs mechanism.
Also, the origin of CP-violation in the SM is discussed.

In chapter 3, extensions of the scalar sector of the SM with two doublets are discussed. We start by
presenting the main reasons why these models are necessary, followed by the most important constraints
that one must consider when dealing with this type of BSM models. Then, to illustrate some of the features
of Two-Higgs-Doublet Models (2HDMs), two of its several versions will be looked into: the first one
is CP-conserving and the second one explicitly violates CP and is called Complex Two-Higgs-Doublet
Model (C2HDM).

In chapter 4, we study the possibility of determining the CP nature of a scalar produced at the LHC in
association with a bottom quark pair (bbh), in single bottom and Higgs associated production (bh), and in
the dileptonic channel of the associated production with a top pair (tth), with the Higgs, h, decaying to a
bottom pair (h — bb). A generic CP-violating Yukawa coupling for the bottom and top quarks is used to
study these interactions, which are simulated in MadGraph5_aMC@NLO. We consider a scalar which is
either CP-even, like in the SM, or CP-odd, and we look for the possibility of distinguishing these two
states from each other at parton level by using CP-sensitive observables introduced in previous works.
This study is performed for a wide range of scalar boson masses, between 10-125 GeV for bbh, and
40-500 GeV for tth. Afterwards, a full reconstruction is applied in tth samples with a Higgs boson whose
mass varies between 40 GeV and 300 GeV, but also to the expected Standard Model backgrounds at the

3The Higgs sector is actually a part of the electroweak sector. The distinction made here is just to separate the parts of the
electroweak sector with or without the Higgs in them.



LHC for those processes. We present the main aspects of event generation, selection, and reconstruction
for all the samples that go through reconstruction. Also, in order to estimate the experimental sensitivity
for a search, expected Confidence Levels (CLs) for the exclusion of several scenarios are presented as a
function of the luminosity, for different distributions and Higgs masses. Some of the questions that we
answer are: are we sensitive to the CP-components of an hypothetical new scalar that may be found at the
LHC? Does that sensitivity change with the scalar boson mass? Also, does the CP nature of said scalar
affects the possibility of excluding (or discover) its existence? And what can we conclude in the context
of the C2HDM with this type of exclusion scenarios?

Finally, we conclude in chapter 5 by summarizing the main results obtained in the previous chapters.






Chapter 2

The Standard Model

2.1 The elements of the SM

The world around us is composed mostly of protons, neutrons, electrons (the three constituents of
atoms) and electron neutrinos, interacting with each other via the electromagnetic, strong and weak
forceﬂ However, at higher energy scales, a much richer structure is observed. For example, the protons
and neutrons are actually bound states of fundamental particles called quarks, with both the protons and
the neutrons being composed of different numbers of up and down-quarks. The electron, the electron
neutrino, the up-quark and the down-quark are known as the first generation of fermions [[20]].

The fermions are particles with half-integer spin. They obey the Fermi-Dirac statistics and the Pauli
exclusion principle and are described by antisymmetric wave functions. In the SM there are two types
of spin-1/2 fermions: the leptons, which do not interact via the strong force, and the quarks, which
have all types of interactions. In total there are six leptons and six quarks, organized in three families
or generations, and each fermion has a corresponding antiparticle. They are thought to be elementary
particles, and are the constituents of matter (apart from the neutrinos). Each generation is actually a copy
of the others with a different mass. This can be seen in [Table 2.1] and [Table 2.2] As for the neutrinos,
while it is known that they are not massless, their masses have yet to be determined [|12].

Interactions in the SM are mediated by spin-1 particles, known as gauge or vector bosons. The photon
is the gauge boson of the electromagnetic force. In the case of the strong interaction, that role is played by
the gluon which, like the photon, is massless. The weak interaction is mediated by the charged W™ and
W ™ bosons, responsible for S-decay, and the neutral Z boson. All three of them are massive particles.

The final element of the Standard Model is the Higgs boson. Unlike the previous particles, the Higgs
boson has zero spin, and is the only fundamental scalar discovered to date. It plays a very special role
in the SM since it provides the mechanism by which all other elementary particles acquire mass. The
properties of the bosons of the SM are shown in

'Not considering Dark Matter.



Table 2.1: Leptons of the SM. They interact via the electromagnetic and weak interactions, apart from the neutrinos who only
interact via the weak force. Each member of a generation has greater mass than the corresponding particles of lower generations.
Uncertainties and further details about the mass values presented here and in the tables below can be found in [|12].

Leptons (spin = 1/2)
Generation Flavour Charge (e) Mass
I Electron - e -1 ~ 511 keV

Electron neutrino - v, 0 <2eV

I Muon - i -1 ~ 105.7 MeV
Muon neutrino - v, 0 <2eV

1 Tau - 7 -1 ~ 1.78 GeV
Tau neutrino - v 0 <2eV

Table 2.2: Quarks of the SM. They interact via all forces: electromagnetic, weak and strong.

Quarks (spin = 1/2)
Generation Flavour Charge (e) Mass

I Up-u 2/3 2.16 MeV
Down - d -1/3 4.67 MeV

I Charm - ¢ 2/3 1.27 GeV

Strange - s -1/3 93 MeV
10 Top - t 2/3 172.9 GeV
Bottom - b -1/3 4.18 GeV

Table 2.3: Bosons of the SM. The photon mediates the electromagnetic force, the W= and Z° the weak force and the gluons the
strong force.

Bosons
Type Name Charge (e) Mass
Photon - 0 0
Gauge Bosons W bosons - W+ +1 80.379 GeV
(spin=1) Z boson - Z° 0 91.1876 GeV
Gluon - g 0 0
(Ssﬁfr:%‘))sons Higgs boson - H 0 125.10 GeV




2.2 Symmetries and gauge principle

The mathematical framework of the SM is based on quantum field theory. The dynamics and
kinematics of the theory are dictated by a Lorentz invariant quantity which is called Lagrangian densit
(although people usually refer to it just as Lagrangian), and the particles are described by quantum fields
that depend on space-time coordinates.

In order to construct the Lagrangian in terms of the fields, certain guidelines should be followed. The
first one is that the Lagrangian should preserve the symmetries of the system under consideration, and
the second one is that the Lagrangian should be renormalizable - if the Lagragian is non-renormalizable,
infinities would appear when calculating amplitudes and other quantities that we cannot cancel out.
The first thing to do is to postulate what are those symmetries, after which we write the most general
renormalizable Lagrangian that respects them. It is at this point that we use the gauge principle [21]],
which is a way to derive interactions between the objects that appear in the Lagrangian from continuous
symmetries. The method consists in demanding that a theory invariant under some global continuous
symmetry remains invariant if the symmetry is local, i.e. if its parameters depend on the space-time points,
which leads to the introduction of extra vector fields called gauge ﬁeld

To see how this works, we will use the gauge principle to derive the Lagrangian of Quantum Electro-
dynamics (QED). For a Dirac field 1) with mass m, the Lagrangian can be written as

L= S0 @) — @ub ] - miy, @

where ¢ = 170 and oy = 6% is the partial derivative with respect to one of the four space-time
components. ¢ is a4 x 1 column field called a spinor, and +y,, and O are 4 x 4 matrice{'-] which obey

{'Y/u YW= VY + YV = 29w (2.2)

Yyt =qk, (") =4" (2.3)

Since 0, and m have mass (M) dimension, the dimension of 1) must be M/ 3/2 and the matrices o
and 4 are both dimensionless, as every term in a Lagrangian must have dimension M* (see appendix @
Now consider a U(1) gauge transformation of the Dirac fields of the form

P — e Q% ) — 9y, (2.4)

where () is the generator of the U (1) group and also, in this case, the electric-charge operator, and « is an
arbitrary phase independent from the space-time coordinates. The Lagrangian in [Equation 2.1|is invariant
under the transformation in |[Equation 2.4] But if we make the parameter o dependent on x* then it no

21t plays a role similar to that of the Schrédinger equation in non-relativistic quantum mechanics, but a Lagrangian is not an
equation of motion - it is a polynomial function of the fields and their derivatives which may be used to derive an equation of
motion according to the Hamilton principle.

3Theories resulting from the application of this principle are called gauge theories. The SM is an example of a gauge theory
witha SU(3)cor x SU(2) x U(1)y group symmetry.

“In the Dirac representation, ,yo = 713 ® I2x2 and 'yk = (—im2) ® 7% (k = 1,2, 3) where 73 are the Pauli matrices (see
appendix@) and ® the Kronecker product.



longer remains that way since the kinetic term changes into

L7 (Ou) — Oud"] = S (Ou) — O] + Q). 25)

In order to restore the gauge invariance we introduce a real vector field A* which transforms under

the local gauge transformation as
e
At — AP 4 — (2.6)
e
where e is the electric charge of the proton and in particular the coupling constant of electromagnetism,
and we add to the Lagrangian the term

—eQ iy Ay, 2.7

Notice that this is the same as making p, — p, — eQA, and p, — p, + eQA, for the momentum
pu = 10, of the fields 1) and 1), respectively, since

£ = L7 (@) — O] — mibv — eQ iy A,

(2.8)
= S 157460, — QA — {0+ CQA)FI] — mi

To complete the Lagrangian of this interaction, we need to introduce a kinetic-energy term for the new
field A, (representing the photon) which must be invariant under this field transformation. After that we
obtain the Lagrangian of QED

_ 1 ,
Lorp = V("0 —m — eQY' A — ZFWF“
- 1 (2.9)
— G(i7" Dy — m)p —  Fru ™,

where F,, = 0,A, — 0, A, and D,, = 0,, +ieQA, E} Hence, from a simple symmetry we were able to
fully derive the Lagrangian of the electromagnetic interaction - this is the usefulness of the gauge principle
that is used everywhere in the SM to construct interactions out of symmetries. Notice how we cannot add
to the Lagrangian in[Equation 2.9a mass term for the gauge field A, i.e. a term proportional to A, A* as
that would break the gauge invariance. A, must then be massless.

2.3 The strong sector

The strong interaction is described by Quantum Chromodynamics (QCD), which is a non-abelian
gauge theory with gauge group SU(3) [22]. QCD describes the interactions between coloured particles,
where colour is a quantum number like the electric charge of electromagnetism. There are two types
of fundamental coloured particles: the quarks (anti-quarks), which can have three distinct colours (anti-
colours), and the gluons, which may carry one of eight colours. The gluons are the gauge bosons of
QCD. Due to a phenomenon called colour confinement, colour charged particles cannot be isolated
indefinitely, and therefore their direct observation is not possible [[12]. Their existence is known through
the observation of colourless particles called hadrons, which are formed out of quarks and gluons through
the process of hadronization as a consequence of the aforementioned phenomenon of colour confinement.

>The generalized momentum operator D, is called a covariant derivative.



There are two types of hadrons: the baryons, formed by three quarks, and the mesons, formed by a quark
anti-quark pair.

Besides colour, the quarks and the anti-quarks carry a flavour. In total there are six flavours, as we
have seen in Since the quarks are particles with spin-1/2 and for each flavour ¢ there are three
quarks with different colours ¢, g2 and g3, the QCD Lagrangian is given by

3 8
. 1 a
Lstrong - Z Z qu’y’u(Du)ijIf - Z ZGW/Gg ’ (210)
a=1

q=u,d,s,c,b,t j,k=1

where (D) jk = Oudjk+igs Yoy G435k and G%, = 9,G% — 0,G% — g3 3 o fareGYGE. In these
expressions, g; is the strong coupling constant , A, are the Gell-Mann matrices (see appendix [B)), fapc
are the structure constants of SU(3) and GY are the fields of the 8 gluons. Notice that the matrices in
act in different spaces: 7, acts on the Dirac space and ), is a 3 X 3 matrix acting on colour
space.

The structure of QCD is very similar to that of QED: both are mediated by massless gauge bosons
that only couple to particles (anti-particles) with non-zero colour charge or non-zero electric charge,
respectively. Nevertheless, since the former arises from a non-abelian group, i.e. a group whose generators
do not commute, to keep the gauge invariance there is an extra term in the kinetic components of the
gluon fields, proportional to the structure constants of SU(3), giving rise to gluon self—interactionﬂ

2.4 The electroweak sector

In the Standard Model the electromagnetic and the weak nuclear forces are unified through the
electroweak interaction, despite them being very different from each other. While the weak interaction
violates parity and only acts on left-handed fermions, electromagnetism conserves parity and acts on both
left- and right-handed fermions. Parity violation by the weak interaction was demonstrated in the Wu
experiment [23]].

The electroweak interaction in the SM is a gauge theory with gauge group SU(2) x U (1)y. The SU(2)
group has coupling constant —g and three generators 7', T, and T3 which obey [T}, Tj;] = iZ?:l €kl
It is the group of the weak isospin (7). The gauge group U(1)y has coupling constant —g’ and only one
generator, Y, which plays the same role as the electric charge of QED. It is called the weak hypercharge.

The covariant derivative is given by
DF = 9" — ig (WITy + WET, + Wi'Ts) — ig' BMY, 2.11)
where W/ (i = 1,2, 3) and B* are the gauge fields of the SU(2) and U (1)y gauge groups, respectively.

These fields mix in order to create the states that are physically observable. Also, since we must recover
the covariant derivative of QED, instead of g and g’ we will use the electric charge ¢ and the Weinberg

®Since the structure constants are zero for abelian groups like U(1), there are no such terms in QED.



angle 6,, which have the following definitions:

e
= — 2.12
; —e
g = (2.13)
cos 0,

The gauge fields A* and Z* are defined as

B’; _ CO‘.S 0, sinf, AP ' 2.14)
Ws —sinf,, cosb, s

As we can see in the |[Equation 2.14{the Weinberg angle is a mixing angle that allows to rotate between
the fields of the unphysical gauge bosons (B* and WY and the fields A* and Z*. Notice that this
transformation is unitary so that the kinetic-energy terms remain well normalized, i.e.

(9"B) (9,B,) + (9"W3) (8, W) = (9"A") (8,4,) + (0" 2") (0,2,),  (2.19)
and orthogonal since the fields A* and Z* are real. We also define
Q=T1T3+Y (2.16)

to be the electric charge operator. Since

e

sin 6,

gWi'Ts + ¢ B'Y = (—AFsin b, + Z* cos0,,) T}

S (A¥cos Oy + Z"sinb,,) Y
cos 0y, 517
= —eA" (T3 +Y) @.17)
+ eZ! (T5cot By, — Y tanby,),
the definition in comes naturally as we want to recover QED. Using Equations [2.12] [2.13]

[2.14)and [2.16]in the derivative in yields

J (T3 — Qsin? Gw) As
s O (2.18)
—ig (W + W) .

DH =0H 1 ieQA* — i
CO

If we further define

Wi Fiwl
\/§ )

which again is a unitary transformation, then we finally have the covariant derivative written in a way

Wk = (2.19)

where we can see the dependence on the physical gauge fields

DF =" + ieQAH
cosg O (T3 - Qsin® 0,,) 2" (2.20)
—ig (WHT + WH T,

—1
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and we retrieve the covariant derivative of electromagnetism. The 7'y are the raising and lowering
operators of SU(2) given by

T £iT

.= (2.21)

2.4.1 The Fermions

Fermions can be classified according to their chirality, which is a relativistic invariant corresponding
to the eigenvalue of a 4 x 4 matrix which we call 75 and define as 75 = i7°y'v2~3. The eigenvalues
of v5 are =1. Fermions with chirality +1 are called right-handed (R), while L is used for left-handed
fermions (chirality -1). In the limit of zero mass, chirality and helicity, the latter being the projection of
the spin of the fermion relative to its momentum direction, are the same thingﬂ, which is related to the
right/left-handed naming. Chirality is important because weak interactions are chiral, that is, fermions
with distinct chiralities interact in a different way.

In the SM we have both R and L fermions, which have different values of 75 and Y, but the same
electric charge, i.e., an electron has always electric charge -1, regardless of being left-handed or right-

handed. The left-handed components of the leptons are put in SU(2) doublets with Y = —1/2,

VeL vuL VrL (2.22)
€L ’ ML ’ TL ’

while for the quarks we have Y = 1/6

(i) () ()
dr, ST, br,

In this way, the upper components (713 EI = +1/2) have zero charge for the neutrinos and + 2/3 for the up
quarks, and the lower components (73 = —1/2) have charge -1 for the charged leptons and - 1/3 for the
down quarks.

The right-handed components are singlets of SU (2), i.e., the weak isospin 7" is zero (hence T3 = 0).
Therefore, the charged leptons eg, pr and 7z have hypercharge Y = —1, the up quarks ug, cg and
tr have Y = 42/3 and the down quarks dg, sg and br have Y = —1/3. There are no right-handed
neutrinos in the SM, since neutrino oscillations were not known at the time and therefore they were though
to be massless [24]. Then, the kinetic terms for the leptons are given by

3
_ , 0 0 g [ 1/2 0
ﬁleptons:ZLLﬂu[Za“Jr(O eA >+C< 0 32—1/2>ZM
H w w

j=1

g 0 Wlf S w gs2
+ AR Lij+ Y Iriy" (i0u +eAu + T2 ) lny, (2.24)
Iz j=1 w

where in this notation Ly, = {(ver, er)?, (vur, pr)T, (vrn, )T} and Ig = {er, pr, Tr}. The index

"Outside of this limit, chirality and helicity are very different things. Helicity has physical interpretation and changes
depending on the reference frame. Chirality is an intrinsic property and a purely mathematical concept that defines the
transformation law of a given field.

8Here T refers to the third component of the weak isospin.
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j refers to the generation, so we have L1 = (ver, € L)T, lr1 = eR, and so on. We are also using the

notation where s,, = sin8,, and ¢,, = cos 0.

For the quarksﬂ we have

3
[,quarks = Z QLJ"}"u
Jj=1

| 2/3 0 g (0 Wi
Oy + — A+ L g
u 6(0 —1/3) ”+\/§<W; 0 >

g [ 1/2—-2s2/3 0 _
T ( 0 s2/3—1/2 ) Z“] QL

LA 2 gs>
+ ]; URj'y“ (lau 3 [eAu + CwZM:|> Ugj

3 2
S 1
+Y Driv" (z'au +3 [eAM + QCS“’ZMD Dgj, (2.25)

w

with Qr, = {(ur, dp)T, (cr, sp)¥, (t, br)T}, Ur = {ug, cr, tr} and D = {dR, sg, br}.

There is a couple of aspects worth mentioning from |[Equation 2.24]and [Equation 2.25| Looking at the

vertices which involve a Wj we see that they only couple to left-handed fermions of different flavours.
For that reason, these interactions are sometimes called Flavour Changing Charged Currents (FCCCs). On
the contrary, A, and Z,, couple to both left- and right-handed fermions of equal flavour, therefore there
are no Flavour Changing Neutral Currents (FCNCs) at tree level in this secto Also, notice the absence
of mass terms in both [Equation 2.24| and [Equation 2.25| This is because those break the electroweak

symmetry. To see that, we introduce the projector operators

1 1—
Pp=-— p =7 (2.26)
2 2
which obey the usual relations for projector operators:
Pp+Pp=1, (Pp)’=Pn, (Pr)’=PL, PrPL=PrPr=0. 2.27)
One may write ¢ = (P, + Pr)Y = 1, + ¥g. Since 'yg = —4%5(7%) 71, then
P — AP — oyt PIAO — P — s
VP =)'y P =)' Ppy” = PRy = Y, (2.28)
and ) Pr = 1. Thus,
mpy = mip (P + Pr)
=my (P} + Pg) ¢ (2.29)

=m (YrYr +YLYR) .

From [Equation 2.29|we conclude that a Dirac mass terms breaks chirality, and since in the SM ¢,
and 1 have different quantum numbers, it also breaks the SU(2) x U(1)y gauge invariance. On the

%As it was said before, each quark has three different colours, but that is only relevant for the strong interaction. In the
electroweak sector we sum over the colours, i.e., whenever we have something like gq that is the same as ¢, q1 + g>q2 + 73¢s.
!0There is not FCNCs at tree level in the SM, since the gluons and the Higgs also preserve flavour [25} [26]).
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contrary, terms like Efy“DMZ) conserve chirality, since {7*,v5} = 0 and therefore

YYDty = ¢ (P + Pr) YDyt
=4 (P + Pp) v Dyt
= (Ppy" DpPr + Ppy" Dy PrL)y
=YV DR + ¥y Dy,

(2.30)

hence the kinetic terms for the fermions keep the electroweak symmetry unbroken. As a side note, notice
how the couplings between the fermions and A, and W*, apart from constants, are Q fYu and v, Pr,
respectively. Since A, comes multiplied by ~,, but let has terms like v, — 7,75, electromagnetism is
sometimes called a vector interaction, while the weak interaction is called a vector minus axial vector

interaction.

2.4.2 Electroweak gauge sector

Once again we must write the kinetic terms for the gauge fields. Since we now have in SU(2) a
non-Abelian gauge group plus an Abelian group U (1), these terms will be equal to

3
1 v v 1
Lewgage =~ | 4 Fuy + S PR |, (2.31)

J=1

where F}" = 0/BY — 0VB* and F}" = O"WY — O"W}' + g Zz,zzl ;W[ W}. To check that the
kinetic-energy terms are adequately normalized, we must look into the terms that are quadratic in the
fields, denoted as £(?). They are given in and we see that fields with zero electric charge
are multiplied by a factor of 1/2, while charged fields do not have the same factor, because of their

definitions in [Fquation 219

Limgange = — (*WH) (8,W,) + (W) (8,W},)
1 1
—5 (0"Z") (0uZy) + 5 (0"Z") (0uZ,) (2.32)

1

= 5 (0"A7) (8,40) + 5 (9" A7) (B, Ap) -

1
2
Putting all pieces together, the Lagrangian of the electroweak sector is equal to

Lew = Lleptons =+ Lquarks + LEWgauge- (2.33)
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2.5 The Higgs sector

2.5.1 Spontaneous symmetry breaking

Spontaneous Symmetry Breaking (SSB) is a process that causes the ground state of a system to be
less symmetric than the Lagrangian of the system itself. In nature, an example of SSB happens when a
thin cylindrical metal bar is under pressure along the direction of its axis. The bar has symmetry under
rotations around the axis, but if the pressure on the bar becomes strong enough, it will bend towards
one arbitrary side, breaking the original rotational symmetry when in the state of minimum energy [27].
Although the system has lost symmetry, stability is gained in a process that resembles a phase transition.

In field theory, SSB occurs when a field acquires a Vacuum Expectation Value (VEV), i.e. a nonzero
value in the VaCCUTTE This is done by giving a VEV to a scalar field, so that the Lorentz symmetry is not
spontaneously brokeﬂ To illustrate what happens when we spontaneously break a continuous symmetry
in the vaccum, consider the Lagrangian for a complex scalar field with a |$|* interaction

L= (9,0) (0"¢*) — m*¢pd™ — Ap*¢™>. (2.34)

This Lagrangian has a global U (1) symmetry under random phase changes of ¢. We assume A > 0 in
order for the potential to be bounded from below, preventing its energy to become infinitely negative as ¢
grows. The state of minimum energy is achieved when 9V /3¢ = 0, which has two solutions: |¢|? = 0
and |¢|? = —m?/2)\ = v2. Replacing the first solution ingives V' = 0. For the second one,
we get V = —m*/4\ < 0. Then, the minimum is not at V' = 0, since there is a solution which has less
energy. However, this is only true for m? < 0, because we must have |$|> > 0, hence in this case the term
with m? cannot be interpreted as a mass term. More so, m? actually has a similar role to that of pressure
in the case of the bending cylindrical bar: when m? goes from positive to negative, it triggers SSB.
Suppose that m? < 0. Since the phase of ¢ at the minimum is arbitrary, there is a continuum of values
of ¢ with an identical minimum energy. Without loss of generality, we choose the vacuum to be at ¢ = v.
Since the field ¢ can still oscillate around its VEV, we can write it as ¢ = v + ¢,s., and its oscillations as

a—+1b
osc — 5 2.35
o 7 (2.35)
where a and b are real fields with zero VEV. Hence, we have
2,2 1 1
L=— m;’ + 5 (0,0) (9"0) + ma® + 5 (9,0) (90)
(2.36)

m3a (aQ + 62) N m? (a2 + 62)2

V20 8v2

The first term in|Equation 2.36|is just a constant (irrelevant for dynamics). Notice that the linear terms in
a and b have vanished, as they should, because we are at the minimum of those fields. Also, we see that

while @ has a positive squared mass —2m?, b is massless. This massless field is called a Goldstone boson

"In particle physics we call vacuum to the state of minimum energy of a physical system.
12This is not a problem with scalar fields since they are invariant under the Lorentz symmetry.
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and its existence is predicted by the Goldstone theorem [28},29] which states that there is an unphysical
massless scalar corresponding to each generator of a continuous global symmetry of the Lagrangian that
is not a symmetry of the Vacuunm This is what happens in SSB - the number of broken symmetries
result in an equal number of unphysical bosons, while the remaining Degrees of Freedom (DoF) give rise
to massive scalar particles.

2.5.2 The Higgs mechanism

The SM is a theory with many particles, and the majority of them have mass. But if we add mass
terms to the Lagrangian, its gauge symmetries are broken. Thus, we need an alternative way to give mass
to the particles of the SM while keeping its gauge invariance.

The alternative is the Higgs mechanism [11]], which is a way of generating mass by adding a field
with a VEV that causes Spontaneous Symmetry Breaking. To see how this works, we will look at the
scalar sector of the SM. In this sector, we start with a SU(2) x U(1)y gauge symmetry which is broken
down to a U(1)g symmetry in the vacuum, the actual observed symmetry in nature, and we introduce a
scalar field with a VEV. This field cannot be a singlet of weak isospin, otherwise we would not break
SU(2), and it must have zero electric charge, so that U (1) remains unbroken and the photon remains
massless. The simplest solution is to add a single doublet of isospin: this is the choice made in the SM,
sometimes referred to as the minimal Higgs structure [30]. The doublet scalar field is denoted by ¢ and is
composed of complex Klein-Gordon (KG) fields. It is equal to

+
b= ( ZO ) . (2.37)

Given the definition in of electric charge, we must have Y = 1/2 for this field. To
write the potential, we can only have terms that are invariant under SU(2) x U(1)y and with dimension
M* at most. To meet the first condition, we must know that under an SU (2) transformation, ¢ — U ¢,
where U is an SU(2) matrix. Since U is unitary, i.e., UTU = 1, then only terms like gZ)Tgi) are invariant,
and because a scalar field has mass dimension one, both conditions are met if the potential takes the very
simple form given by
2

V= 126th + A <¢+¢> (2.38)

where 12 has dimension M? and \ is dimensionless. Assuming A > 0 and p? < 0 the minimum is at
T = —p?/2)\ = v2. We also choose the VEV of ¢ to be zero. Since we can always put all VEVs
in the lower component of the isospin doublet by a gauge transformation in the fields, or change the
definition of () to make sure the vacuum remains invariant under U (1), this choice is not an assumption.
Also, this choice is what really determines the expression of the electric charge, which by definition must
be such that the VEV has zero charge [31].

To check the remaining symmetries of the vacuum state, we must determine the value of G (¢),,,
where G are the generators of a symmetry group and (¢), | ®|is the value of the field ¢ at the state of
minimum energy. If it is zero, the vaccuum is still invariant under that symmetry. Otherwise, the symmetry

BThese scalars correspond to vibrations around the vacuum along a direction that offers no resistance because the potential is
constant.
*(#), = (0|¢|0), where |0) is the ground state.
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is said to be broken because it does not preserve the ground state. With (¢), = (0,v)”, we have

211 (9)g = 71 (8) = ( . ) : (2.39)
2Ty (p) = 72 (B)g = —i ( 8 > , (2.40)
2T () = 73 (8)o = - ( " ) , 2.41)
Y@%=;<S>, (2.42)
Q () = ( 8 > : (2.43)

Then, according to the Goldstone theorem, we will have 3 Goldstone bosons corresponding to the
breaking of SU(2) x U(1)y to U(1)¢, and one massive scalar particle (the Higgs), as we have 4 Degrees
of Freedom in the doublet. To see that this is indeed the case we write

@0:u+H;;? (2.44)
where H and Y are real fields with zero VEV and expand the potential in which gives
V:uz[’g—HQ—\gv(Hz—l—xQ—l-Qcp_sﬁ)
_232<fﬂ1x4+_ff§2 (2.45)
+§0_<,0+ (H2 4 XQ) + 90_280+2>:| .
Since both y and T are massless, while H is a massive particle with mass m%{ = —2u2, we do have

three Goldstone bosons and one Higgs boson.
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Finally, let us look at the kinetic-energy terms. Expanding the Lagrangian we have

Liin = (D) D" = (Dug™) (Do) + (D) (D)

— . gu _ . _ . g —
= [8ug0 + ZEWM —ieA,p + v (cfu — sfu) Zup

w

N . o gU n
+Z§WM (H — zx)] X [@“tp - ZEW bt ieArp

—45?@%—%)%@*—%W”WH+QJ (2.46)
oH  Oux . gv g
il St A S S A 7 (H —
|: 2 \/5 l2cw g fu) M( ZX)
w ©
it —] [8 X 9v

Considering only the quadratic terms that come from the relation in[Equation 2.46],

L2 = (u¢7) (0"0")
1
L (@.11) @) + (0,0) (0*)
2,2 2,2 (2.47)
gevt g-v
I WoW S 2,20

. gu _ _ gu
132 (W ot —WHoFte™) + 22—
! \/§ ( " 'u ) \/ﬁcw

we see that three of the four gauge bosons are now massive. This is how the Higgs mechanism works - the

Zua'LLX,

Golstone bosons that came from SSB are swallowed by the gauge bosons, becoming their longitudinal
components, which makes them massive (massless gauge bosons only have two DoF, while gauge bosons
with mass have three).

Looking at the masses of the gauge bosons, they are my = gv/v/2 and mz = gv/v/2c,, which
leads to the correct relation myy = mzc,,. Finally, to deal with terms such as Wu_ O™, in order to
define a propagator for the fields, a gauge must be chosen. A possibility is to choose the unitary gauge
[32], which removes the unphysical bosons from the Lagrangian by an appropriate transformation of the
scalar field. Another possibility is to use the Feynman—t Hooft gauge, which adds to the Lagrangian a
term W, 0" ¢ with opposite sign from the one in so that they cancel each other out. Even
though the calculations that follow still include Goldstone bosons, these particles can be removed and we
do not end up with more Degrees of Freedom than what we had at the beginning.
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2.5.3 The Yukawa sector

Similarly to the gauge bosons, we know experimentally that the leptons and the quarks have mass.
Since a Dirac mass term cannot be included in the initial Lagrangian as it breaks the gauge invariance of
the SM, we need an alternative way to give mass to the fermions. Once again we will use the Higgs for
that. The couplings between the fermions and the Higgs are called the Yukawa couplings. For the leptons,
we can write

3 +
Licpon Yukawa = — »_ My, L1; ( :’;0 ) lre + Hee, (2.48)
jik=1

where M is a diagonal matrix with real elements and H.c. is the Hermitian conjugate. Since the fields in
LrpjhaveY = —1/2, ¢ has Y = 1/2 and [gj, has Y = —1, the Lagrangian in [Equation 2.48|is gauge

invariant. If we write explicitly for the electron, we have
+ —
—— - ¥
Liepton Yukawa =+ — M I:VeLeRv + CRVeL™ -

) (2.49)
+ee <1 + H) + er%e]

V2v) V2 ’
where we find a mass term for the electron equal to —m.ee. We also have a Yukawa coupling between the
electron and the Higgs, which shows an important aspect about these couplings: they are proportional to
the fermion mass. Then, for smaller masses, they are smaller too (m./ V20 & 511 keV /246 GeV =~ 106
[12]; for the top, m;/v/2v ~ 173 GeV /246 GeV ~ 0.7, so the Yukawa coupling of the top is about 5
orders of magnitude larger than the Yukawa coupling of the electron). Notice as well how there is not any
mass term for the neutrinos, since the SM does not consider right-handed neutrinos. There is another way
to give them mass [33]], but that is outside the scope of this work.

The main difference between the leptons and the quarks in the Yukawa sector is that for each left-
handed quark there is also a right-handed one. To give mass to the up-quarks, we use b= Xo* = iro*,
which also transforms as an SU(2) doublet (see appendix . Hence, the Yukawa Lagrangian for the
quarks is:

3 3 4
L quark Yokawa =— > _ Y _TjxQr; Dk ( ZO )

j=1 k=1
3.3 . 0* (2.50)
_ZZAijLjURk< c )
j=1 k=1 -
+ H.c.,

where I and A are 3 x 3 complex and arbitrary matrices with the Yukawa couplings of the quarks.
Since these matrices are not diagonal, the quark fields that we have used so far are actually unphysical
states (weak eigenstates). In order to write the Lagrangian as a function of the physical states (or mass
eigenstates) only, we will need to perform a basis transformation which rotates the matrices and the
fields simultaneously so that in the end we have diagonal matrices. To do this, we define M, = vA and
My = vl plus four 3 x 3 unitary matrices VL“7 ’g such that

VLuTMuVﬁ = M, = diag (my, me, my) (2.51)
VLdTMdVI% = M, = diag (mg, ms, mp) . (2.52)
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As for the physical fields, they are

Uy, Uuj,

ﬁzzlhy = ¢ I = VLU f Cy,
tr, tr,

dr, dr,

Cizzlhy = s L = Vg f ST,

b, br,

UR UR

= & | =V cr
tr tr

dr dg

(i%hy = SAR = V}gT SR
b b
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(2.54)

(2.55)

(2.56)



Expanding in and rotating into the physical fields the quark Yukawa Lagrangian
becomes

oy ; H+i
['quark Yukawa — _dlihyVLClTMdng%hy <1 + X>

V2v

~phyy rut u ~phy H — iX
—ay "V, M, Vet 1+
v (14 £2)

—_— +
~phyy rut d jphy P
— Uy, VL MdVRdR 7

+ VI AL VB T 4 e,
v

(2.57)

R e H +1x
= —d NIy <1 + )
L d%R \/§v

~phy 15 ~phy H_,LX
—ay " Myu 1+
bR < V20 >

— +
~ph or Gphy P
— Ui yVCKMMdd%yT

+dmy VLY E 4 Hec,
v

where Vo = V! TVLd is the Cabibbo-Kobayashi-Maskawa (CKM) matrix (see appendix . Finally,
with aPh = g™ 4 G2 and dPhv = @B + GBI,

L quark Yukawa = —dPM MydPh¥ (1 + %) - dphde%dphy%

P N, P (1 v %) + PR N s P X

(2.58)
+aphy (MuVCKMPL - MdVCKMPR) dphy%

- dphy (MquK PR - MdngMpL) e

Notice that the kinetic-terms for the quarks in [Equation 2.25|remain unchanged by this basis trans-
formation since we are using unitary matrices, except for the vertices containing 1'%+ bosons. For instance,
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(Ev 67 E) ’Y'u (UL, CL, tL)T

_ »phyyrut oy rusphy
=ty VMV,

(2.59)
_ ﬂ}zhy,yuaihy
— ﬂphyfyﬂ pLaphy’
but
(E> E> E) 7“ (dL7 SL, bL)T
—
(2.60)

__ ~bhy ~phy
= uy "Voergmy g,

= WPV gyt PP .

In summary, the Higgs sector describes the interactions betweens the Higgs with itself, the gauge
bosons and the fermions, and the Higgs mechanism is responsible for giving mass to all these particles.
The full Lagrangian of the Higgs sector is

EHiggs = Ekm -V+L lepton Yukawa +L quark Yukawa - (2‘61)

2.6 The CP symmetry

In particle physics, the CP symmetry is the product of two symmetries: parity (P) and charge
conjugation (C). Parity is a classical physics symmetry that changes left to right and vice-versa, just like a
mirror. For example, under parity the position vector 7 = (z,y, z) changes sign. In relativistic notation,
at — x,, 00 — 0, , A — Ay, and so on. The transformation of a scalar field and a Dirac field under
parity is [34]

Pot,7)PT = ePro(t, —r), (2.62)
Po*(t,7)PT = e Brp*(t, —r1), (2.63)
Py (t, r)PT = ePergip(t, —7), (2.64)
PY(t, 7)PT = e~ Praj(t, =)0, (2.65)

where P is the parity operator and /3, an arbitrary phase.

Unlike parity, charge conjugation is not a symmetry of classical physics. It changes a particle into its
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antiparticle. Under this transformatio [134],

CopCT = ePep*, (2.66)
CPp*Cl = e e, (2.67)
CACT =—A,, (2.68)
cyct = efeqe = ¢ifeCiy’ (2.69)
CYCT = emPerpe = —e~heqpT'C 1, (2.70)

and a weak interaction current of the type 1)y Pr1 transforms as

Cr Pt = "0 2oyt

1—~I_rp
— ¢T,YHT 5 5 ¢

I %v% 2.71)
= —W#w
= — " Prp.
Similarly,
Py Py Pt = ¢y, Prp. (2.72)

As we can see, both P and C change the chirality of weak interactions. Since in the SM the W ¥
bosons do not couple to right-handed fermions, the SM is neither C- nor P-invariant. However, if we
apply both C and P a left-handed (right-handed) current is transformed back to itself, then CP can be a
symmetry of the weak interaction. To see the effect of this symmetry in the various SM fields, we will
assume that all the Lagrangian components are CP-invariant, and check if there are any terms where CP is
violated. The CP transformation for the gauge bosons is [|34]]

(CP)A*(t,7)(CP)T = —A,(t, —7), (2.73)
CPYWHH(t,7)(CP)T = —e“W W, (¢, —7), (2.74)
CPYW H(t, ) (CP)T = —e “WW F(¢, —7), (2.75)
(CP)Z"(t,7)(CP) = —Z,(t, —7), (2.76)
and for the Higgs and the Goldstone bosons we have [34]
(CP)™ (t,7)(CP)T = €W (8, —r), 2.77)
(CP)e ™ (t, 1) (CP)T = e Wt (t,—r), (2.78)
(CPYH(t,7)(CP)" = H(t,—r), (2.79)
(CP)x(t,7)(CP)T = —x(t, 7). (2.80)

With these transformations, all the terms that only involve scalar and gauge bosons are indeed invariant
under CP. Also, notice the relative minus sign between the Higgs and the Goldstone . Since the CP

SIn IEquation 2.69| andIEquation 2.701 C'is a4 x 4 matrix such that ,%? = C7'5,Cand 7 = C~'~5C, and B. another
arbitrary phase. In the Dirac representation, C' = 7 v2~°.
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eigenvalue of H and yx is +1 and —1, respectively, the first one is said to be CP-even (or scalar) and the

second one CP-odd (or pseudoscala&

Now if we look at terms like @ oy pp dp hy,

(CP)p ™ Prdy™ (CP) = e/ =Aitew) o= dihy pral, (2.81)
and therefore CP-invariance implies V~kei(5k_5j +Hw) = V-* (see|Equation 2.58)) for all possible flavours,
which is equivalent to say that Vj V., f OLVW,{; VJQVQQV k- The quantity Qj ke = VjrVia ]’g Tk

is called a quartet. Hence, CP-invariance can only be achieved if the quartets of the CKM matrix are real.
Since the imaginary part of the quartets (also called Jarlskog invariant, J) depends on a CP-violating
phase that cannot be removed for more than two generation (see appendix , there can be (and there
is!) CP violation in the Yukawa sector of the S

!Notice how the Yukawa couplings of a pseudoscalar always have a -5 (see for example [Equation 2.49).
7We can only have CP-violation for more than 2 generations of quarks. The third generation of quarks was first proposed to

explain the presence of CP-violation in the quark sector [35].

'8 J is very small, but not zero - measurements show that J = (3.18 4 0.15) x 107° [[12]]. The observation of the decay of
neutral kaons into two pions lead to the discovery of CP-violation in 1964 [36]. This experiment showed that the kaons have a
component with C'P = +1 and another with C P = —1, which allowed them to decay to two pions, a state with CP = +1, but
also to three pions, with C'P = —1, therefore violating CP.
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Chapter 3

Two-Higgs-Doublet Models

3.1 Motivation

Models with several Higgs doublets are often called N-Higgs-Doublet Models (NHDMs). They are
among the simplest extensions of the SM Higgs sector, and they are based on the simple assumption that
there can be more than one Higgs doublet, just like there is more than one family of fermions in the SM.
The number of doublets must be established experimentally, since in the model there is no limitation to
it [31]]. Then, it becomes necessary to investigate these models theoretically in order to predict future
experimental results that may indicate how many generations of Higgs there are.

Although these extensions of the SM are very conservative, they lead to extremely rich phenomenology.
For example, they introduce several new massive scalar particles, and may introduce FCNCs at tree level,
viable candidates for Dark Matter, and extra sources of CP-violation in the Higgs sector. Besides, many
BSM theories like Supersymmetry (SUSY) also require the presence of several Higgs doublets at the
electroweak scale [37]]. For these reasons, NHDMs - and particularly 2HDMs - are very popular in
phenomenological studies.

Historically, the original motivation to consider models with more than one doublet was due to the
possibility of having spontaneous CP-violation in them [38]], unlike the SM where CP-violation appears
explicitly by forcing the Yukawa matrices to be complex. The need for CP-violation comes from the fact
that we observe a dominance of matter over anti-matter in the Universe, which can be explained, according
to the Sakharov conditions for baryogenesis, if C and CP were violated during the early moments of the
Universe [[17]]. Even though we have CP-violation in the SM, it is not enough to explain the Universe’s
matter dominance [[39]]. The other conditions for baryogenesis are baryon number violation, necessary to
produce an excess of baryons over anti-baryons, and the interactions must be out of thermal equilibrium,
otherwise any baryon number violating process will be balanced by the inverse process.

Another observation that is not explained in the SM is the fact that ordinary baryonic matter accounts
only for roughly 15% of the total matter in the Universe, with the other 85% being called Dark Matter
[40]. Amongst 2HDMs, the Inert Doublet Model (IDM) provides a scalar Dark Matter candidate [41]].

3.2 BSM Constraints

In physics we always need to consider theoretical and experimental constraints since they determine
the rules that we must follow when constructing a new theory. If we want to study an extension of a
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certain model, in this case the SM, we must be careful not to violate those constraints.
The first one is that the p parameter, defined as
> vi [Ti(Ti+1) — V7]

= 3.1

where 73, Y; and v; are the weak isospins, weak hypercharges, and neutral VEVs of the scalar Higgs
doublets ®;, respectively, must be close to one at tree level [30], since experimentally pexp, = 1.00039 £

0.00019 [12]. For the SM, reduces to

2
m
W
PSM = —5

——— =1 3.2
m? cos? (Bw) ’ (3-2)

so it is automatically fulfilled at tree level. Likewise, it is possible to add an arbitrary number of additional
SU(2) singlets or doublets to the Lagrangiarﬂ and even more complicated SU(2) structures, such as a
multiplet of SU(2) with T' = 3 and Y = 2, since in these cases we also have p = 1. Nevertheless, in this
thesis we consider only the simpler case where we add an additional doublet to the Lagrangian.

The second constraint is that processes involving FCNCs must be either prohibited or very suppressed.
Experimentally, data puts very strict restrictions on such processes [25,[26]. In the SM, they are completely
forbidden at tree level.

The third type of constraints comes from theoretical aspects, as opposed to the previous ones. They
are called the unitarity constraints. The amplitude in 2 — 2 scattering processes of massive vector bosons
(VV — VV,V = Z, W) and fermions to vector bosons (ff — VV) depends on the Center of Mass
(CM) energy, which violates the unitarity of the S matrix. In the SM, this problem is solved through the
Higgs boson, which leads to a set of non-trivial cancellations between Feynman diagrams containing the
vector bosons, fermions and the Higgs boson, that regulates the high energy behaviour and preserves the
unitarity of the theory. For this to remain true in theories with an extended Higgs sector it is sufficient to
fulfill the following sum rules for the couplings between fermions, vector bosons and scalar particles [30]:

Z(ghphyvv)Q = (91%%\/)27 (3.3)
> Iy v Gpen 7 = IINV Y g0 (3.4)

where we are summing along the physical neutral Higgs bosons spectrum AP, Ipwhy £F (gppryyy) and
gzj}/ff (gflﬂgv) represent those couplings in the 2HDM and in the SM, respectively. These sum rules are
only valid in models containing doublet and singlet Higgs fields. Higgs sector extensions involving triplet
or higher Higgs representations lead to more complicated sum rules [30].

'Tn a model with only Higgs doublets and singlets, the tree level value of p = 1 is automatic [30].
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3.3 The CP-conserving 2HDM

3.3.1 The 2HDM scalar sector

To construct the most general potential with two doublets, we must respect the exact same principles
that we have used to derive the SM Higgs potential: all the pieces that we add to the potential must have
dimension M*, and the SU(2) x U(1)y symmetry must be preserved. In total, there are 14 different
combinations of the scalar fields that are invariant under the electroweak symmetry, therefore the most
general potential has 14 free parameters. Also, this potential can be explicitly CP-violating and have
several minima which either preserve or violate CP and the electric-charge [31].

In order to understand some of the common traits of these SM extensions?| as well as the main
differences between them and the SM itself, we start by looking into one of the simplest types of 2HDMs.
We will restrict ourselves for now to a CP-conserving potential with an additional Zy symmetry of the
form ®&; — ®; and $3 — —P». In this scenario, the 2HDM potential is given by [42]

ValDM = mfl (Q)i(bl) + m§2 ((135‘1)2) — m%z [(@I‘Pg) + (@;@1”
=5 (o) + 5 (o4ma) s (3]01) (o}o) (3
Y (cb}cbg) (cbgcbl) + % [(@{%)2 + <<I>§<I>1>2} ,

where ®; (i = 1,2) are complex SU(2) doublets with Y = 1/2, A\; (: = 1,...,5) are real-valued
dimensionless parameters and my1, mo2 and mqo are real mass parameters. This reduces the number
of total parameters to eight. Notice how still contains a term that explicitly breaks the Zo
symmetry - since mq2 is non-vanishing, the potential is not invariant under the transformation ®o — —®,.
But as the coefficient in that term has squared mass dimension, this symmetry breaking is only soft, i.e., it
does not introduce new divergences in the theory, and therefore, the theory remains renormalizable.

The potential must also be bounded from below to ensure the existence of a global minimum which
means that its parameters must obey certain conditions. For the potential in we must have
[43]

A>0, X>0, VAA+A3>0, VA A+ A3+ — |)\5| > 0. (3.6)

The CP-conserving neutral minima are of the form

o= (). wa=( )
V2 V2

where v; and vs are real numbers representing the VEVs of the doublets ®; and ®», respectively. If for
example we decided to add a phase to vs, then we could have spontaneous CP-violation, despite the fact
that we have started with a CP-conserving potential. Also, if the upper component of the first doublet in
was non-zero, we would have a charge-breaking minimum that would result in a massive
photon, which is another exotic possibility absent in the SM. The minimum in [Equation 3.7|is stable. This
comes from a result which states that in a generic 2HDM, if at tree level there is a minimum that preserves

2To be clear, the only thing that we are changing relative to the SM is the Higgs sector. Everything else remains the same.
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the U(1)¢g and CP symmetries, then that minimum is the global one, and any stationary points that break

charge conservation or CP are saddle points with more energy [44, |45].

As before, these fields may be expanded around the vacuum state that was chosen. By introducing the
fields (pgt, h; and a; (1 = 1, 2), we write

+ +
¥1 ©q
(131:(1)1“1%)’ (I)2:<1)2—H12—i-m>- (3.8)

V2 V2

Once again, the vacuum in [Equation 3.7|breaks SU(2) x U(1)y down to U(1)g, hence, according to
the Goldstone theorem, we have three Goldstone bosons and three massive gauge bosons plus a massless

one. Since now we have two scalar field doublets instead of just one, there are eight DoF in total thus we
will have five massive scalar particles, four more than in the SM. This is the first major consequence of

having a second doublet.

Inserting in the 2HDM potential of and expanding, we find for instance

terms that are linear in h;. There are no terms linear in the fields gogt or a;, because of charge and
CP-conservation. To minimize the potential, we must fulfill the conditions

OVonrpm _0 OVarpMm —0 (3.9)
oo! T 09 ’ '

<<1>1)0,<<I>2>0 <<I>1>07<c1>2>0

which is equivalent to saying that the linear terms in h; must vanish. These equations give two minimum

conditions: . 1
V2
mi; = m%za - 5)\112% - 5)\34511%, (3.10)
(% 1 1
My = m%2£ - 5)\211% — 5)\34511%7 (3.11)

where A3q5 = A3 + Mg + As.

Looking now at the bilinear terms in the fields, the 2HDM potential containing those terms can be

iy (o )ast ()5 (o o )iz (22 )

written as

_ (3.12)
2| 1
(ot so;)M@( )
2
where M ,%, M?2 and M, g are 2 x 2 squared-mass matrices given by
M2 =2 m%?% +A07 —miy + A3a50109 (3.13)
—miy + A3450102 m%% + Aov3
2 2 _
M2 =2 <m12 —>\5> ( 2 . ) : (3.14)
V1U2 —vivg U7,
2 2
2 miy A+ As vy —UIU2
M¢:<v - )(_ ) ) (3.15)
102 V1V2 vy

These matrices are non-diagonal, hence we are not in the basis of the mass eigenstates. To rotate into
that basis we will use once again orthogonal matrices. Since we have three different matrices but two of
them are proportional to each other, we only need two mixing angles which we will call « and 8. The
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explicit form of the transformation matrices is

Ra:<0a _Sa>’ R,@?:(C’B —3/3)’ (316)
Se  Ca sg cp

where we are using the notation s, = sinz, ¢; = cosz and t;, = tanx. The diagonal squared-mass
matrices are given by

D? = RYM?R,, (3.17)
D? = Ry M} Rg, (3.18)
D2 = RyMZ2Rg, (3.19)

and the physical fields are

) (3.20)

(; al
= RY , 3.21

(;i T ¢ft
(Hi>:Rﬁ<é : (3.22)

Then, may be rewritten as
2 _1 o H 1 o G
Vit =5 ( H h)Dh<h>+2<G A)DG<A

o
+ + 2
+(ctoH )Dw<H>.

The entries of the mass matrices D,Ql, D? and D?p, which are the squared masses of these physical

(3.23)

fields, are given explicitly by

miy = [(Mﬁ)u + (M5) 5 + \/((Mﬁ)u — (M2),,)" +4 (M,%)fz] : (3.24)
m% = [(Mlg)n + (Mi%)ﬂ - \/((Mf%)n - (M}%)22)2 +4 (M,%);] , (3.25)
me =0 (3.26)
2
ma =2 <ml2 - A5> ’ (3.27)
V1V
me =0 (3.28)
2
2 2 (M MAtAs
s = (UIU2 2 ) ’ (3.29)

where v? = v} + v3 with vy = vcos 3 and vo = vsin 8, and (M?);; (i, = 1,2) are the entries of the
mass matrix M. }% As we can see, we have indeed three Goldstone bosons like in the SM, G and G, and
five massive scalars. Two of them (H*) are charged Higgs bosons, and the remaining three are all neutral,
with H and h forming a CP-even pair and A being a CP-odd Higgs. Furthermore, the two angles « and 3
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are related to the 2HDM potential parameters after the diagonalization through the following expressions

v
tg = i (3.30)

523 (M2 — )\3451)2)

ton = , (3.31)
2 g (M2 — Mu?) — 83 (M2 — Agv?)

where M? = m3,/szcs [46].

As for the kinetic-energy terms, since the symmetry of this extended Higgs sector is the same, the
covariant derivative in these terms is the one from [Equation 2.20] Then, the masses of the gauge bosons
are also the same as long as the VEV w is interpreted as the measured value of v ~ 246 GeV [12]. The
difference from the SM comes from the fact that we now have several massive scalars that couple with the
gauge bosons of the SM, giving rise to a richer phenomenology in this sector.

To study the interactions between the Higgs and the gauge bosons it is easier to write the Lagrangian
in a different basis called the Higgs basis [47]]. The doublets in this basis are obtained if we perform an
orthogonal transformation on them parametrized by the angle 3 introduced before. Denoting #; as the
Higgs doublets in this basis and with

()= ()= 2) (%)
Ho dy —8s3 ¢ Dy

Gi H:t
M=l 1) and o= gy ) (3.33)

we have

[\

This rotation in the doublets space puts all the Goldstone bosons in the first doublet, just like in the
SM, while the physical Higgses are in both doublets, in a way that the separation between them is more
evident. Also, it brings all the VEVs to the first doublet.

Looking at the Higgs couplings to gauge bosons relative to the SM, they are

gnvv = gty sin(8 — a), (3.34)
grvv = gijvy cos(B — a), (3.35)
gavy =0, (3.36)

where gglg 4, = gmy/ cos b, and g%%w = gmyw . These trilinear couplings only exist if the doublet
has a VEV, which is why gayvy is zer(ﬂ For the same reason, the CP-even fields interact with gauge
bosons only via the unphysical field h}. The factors of sin(8 — «) and cos(3 — «) come from the
fact that b} = cos(8 — a)H + sin(8 — «)h (see[Figure 3.1). Therefore, is verified since
> (ghPhyVV)Q = (gzsqj‘\gv)z’ where h?" = {h, H, A}.

In this model (and also in other 2HDMs), it can happen that there is a scalar which resides almost
entirely in the first doublet and is very SM-lile, while the remaining neutral Higgs interacts very weakly
with gauge boson pairs. This is called alignment in the scalar sector [31]]. In this case, there are two

3gavy being zero is actually a consequence of having a CP-conserving potential where A is CP-odd.
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limits that can lead to alignment: if 5 — o — 7/2, then the lightest neutral Higg corresponds to the
experimentally observed 125 GeV Higgs hi25, while H decouples from the gauge bosons; if 5 ~ «, the
heavier scalar H is SM-like, and /h does not couple to gauge bosons. Both limits may explain why we still
have not observed extra massive scalars, assuming that they exist.

For completeness, the Lagrangian of this sector is given by

Lycauonom = (DuH1)T (D*Hy) + (D Ha)' (DFH2) — Varpu. (3.37)
§ h2 4 Higgs basis
h ’I h’l
/
/
7
h /
Y‘\\ ,’I p H mass eigenstates
\\\\ II
So 7 a

* hl original basis

Figure 3.1: Relation between the three bases in the space of CP-even neutral scalar fields. Adapted from [31].

3.3.2 The 2HDM Yukawa sector

The most general Yukawa Lagrangian where both doublets are used is equal to

3

LoHDM Yukawa = — Z <QLj [©1T 1 + Pol'2ji] DRy
=1

_ QiLj |:‘i>1A1jk + (i)gAgjk} Urk (3.38)

— TLJ [(I)lMllkj + (I)QMlgkj] le> + H.c..

In the SM, the Yukawa matrices can be diagonalized individually, giving rise to the fermion masses
and ruling out FCNC:s at tree level. But in a general 2HDM, when we rotate into the basis of the mass
eigenstates, we cannot always guarantee that those matrices are simultaneously diagonalizable 31}, 42].
For instance, if I'; and fg represent the I" matrices in the new basis, since we cannot be sure that both of
them are diagonal, there is now the possibility of having flavour-changing neutral currents due to terms
such as h; cZ’ihy T; cf%hy. This presents a problem because of the very strong experimental constraints on
FCNCs. Fortunately, there are mechanisms which suppress FCNCs at tree level - they are allowed but kept
under control - and those which completely forbid them, which can be achieved naturally, i.e., without
the need of fine-tuning the parameters of the theory, by imposing discrete or continuous symmetries [31]].
In fact, the purpose of the Zo symmetry imposed in the beginning was precisely to avoid FCNCs in the
Yukawa sector.

“By convention, h is the lightest of the neutral Higgses.
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In this thesis, we restrict ourselves to models which prohibit FCNCs at tree level. This symmetry-
protected Natural Flavour Conservation (NFC) can be implemented through four independent types of
2HDM Yukawa sectors [31], where we extend the Zs symmetry to the fermionic fields:

Type I: all fermions couple exclusively to ®.

Type II: the down-type fermions Dp and [ couple to ®; while the up-type quarks couple to ®s.

Lepton-specific or Type X: the quarks couple to ®5 and the leptons couple to P;.

Flipped or Type Y: similar to type X but now we have ®; coupling to Dy instead of (.

These 4 types are represented schematically in [Table 3.1||ﬂ In [Table 3.2, we show the Yukawa
couplings for the neutral Higgs bosons of the CP-conserving 2HDM.

Table 3.1: Four Yukawa types for 2HDMs with Natural Flavour Conservation. The signs shown for the fermionic fields represent

how they change under the Z, symmetry &, 2z, @, and &, E=N —oo.

Model Up | Dr | lg | QL |Ur | Dr | Ly | Ir
Type I Oy | Dy | Py | + - - -
Type 11 Py | Py | Py |+ | - + + ]t
Lepton-specific | &5 | &y | &1 | + - - + 0t
Flipped Gy | &y | Py | + - + + |-

Table 3.2: Neutral Higgses couplings to up-type quarks (gn,r/Auz), down-type quarks (g g/ aqq)> and leptons (g, s g/ a2)s
in the different Yukawa types for the CP-conserving 2HDM. The Yukawa Lagrangian with the neutral Higgs bosons is:

Lo e = — Zf:u,d,é gff;% (ghffffh + ngf-ffH - igAfffysz), with gIS{JJ\% = mTf These couplings, together
with the ones for the gauge bosons, verify [Equation 3.4}
Model Ghua 9hdd 9net 9Hua | 9H4] 9uer | JAuu | 9Add Jaer
Type I ca/S3 | Ca/sp ca/S3 | Sa/S3 | Sa/s8 | Sa/sg | 1/tg | —1/tg | —1/tg
Type 11 ca/S8 | —Sa/cg | —Sa/cs | Sa/Sp | cafcs | cafcs | 1/t tg tg
Lepton-Specific | ca/sg | ca/Ss | —Sa/Cs | Sa/S8 | Sa/S8 | ca/cs | 1/tg | —1/t3 tg
Flipped Ca/Sg | —Sa/cs | Ca/Sp | Sa/Sp | cafCcs | Sa/Sp | 1/ts tg —1/tg

3.4 The C2HDM

The C2HDM is one of the simplest scalar sector extensions of the SM to include new sources of
CP-violation. Due to its simplicity, this model has been used as a benchmark to search for CP-violation
and to probe the CP quantum numbers of both the discovered Higgs and any other yet undiscovered scalar
at the LHC. It has been the subject of many studies [19, 49-52]].

To construct this model, we use the potential from but now both m2, and A5 are complex
parameters - due to the hermiticity of the potential, only these two parameters can be non-real [S1]. Then,

There is a class of models where the fermions can couple to both doublets since their Yukawa matrices are proportional to each
other. Then, both matrices can be individually diagonalized, preventing FCNCs. They are called the Aligned Two-Higgs-Doublet
Models (A2HDMs) [48]], and they are non-renormalizable models.
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we have

V =m0 + mdy [ — (md, @] @ + H. c)
(3.39)

| (ole) 5 (ohoa)’

2
+ A3 (@}@Q <¢;¢2>+A4 (cb}% c1>T<I> [ <I>T<I>2 —|—Hc]

In the C2ZHDM the CP-violation is explicit and there is only one independent CP-violating phase.

Expanding the doublets as in[Equation 3.8] the minimum conditions are
A A
mi vy + 21 v+ % v1v5 = Re (mi,) v, (3.40)
A2 A
M3y + 5 - % vive = Re (mi,) v, (3.41)
2Im (m},) = viva Im (Ns) (3.42)

where \345 = A3+ Ay +Re()5). Parametrizing m?, and A5 as m2, = \m%Q\ew(m@ and \s = |)\5|ei9(>‘5)
and choosing the vacuum expectation values to be real, together with the condition 8(\5) # 20(m3,),

makes it impossible to remove both CP-violating phases simultaneously [[19].

As a result of having complex parameters in the potential, the Higgs spectrum will be modified. We
still have two charged scalars H*, but the neutral Higgses H; (i = 1,2, 3) are now a mixture between the
fields h; and a; (j = 1,2) with no definite CP quantum numbers given by the rotation

Hy hy
H, =R| hy |, (3.43)
Hs as
where a3 = —sga + cgaz. The squared-mass matrix of the neutral scalar states i1, ho and a3, Mfeutrals,
is diagonalised via
T : 2 2 2
RMneutrdlsR = diag (mHl y M H,, mHg) ) (3.44)
with R parametrized as [51]]
Cc1C2 S1C2 52
R = — (618283 + 8163) C1C3 — 515283 283 s (3.45)
—c152c3 + 5153 — (c183 + s152¢3)  cacs3

where s; = sina;, ¢; = cosay, and —7/2 < a; < w/2 (i = 1,2,3). By convention, mg, < mpg, <

mp,.

The full set of interactions between the Higgs bosons and the remaining SM fields can be found in
[52]]. The Yukawa interactions found in are of particular interest since they differ in structure
from the SM. Now, besides the usual CP-even coupling component, there is also a CP-odd component
that did not exist in the SM. If this structure is found in the Yukawa couplings, not only would we be in
the presence of new physics, but also we would have new sources of CP-violation. The existence of more
general Yukawa couplings in BSM theories can be probed directly either in the production or decay of
Higgs bosons at the LHC [[19]. This will be the main topic considered in the next chapter.
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Table 3.3: Neutral Higgses couplings to fermions in the C2ZHDM. The Yukawa Lagragian has the form £2mas 0 e =

- Z?:l Zf:%d,é gf}]}\f? f [aHiff- +iby, 7 75] f Hi, where ay, ;7 and by, ; 7 are the coefficients of the CP-even and CP-odd
parts of the couplings shown in this table, respectively. Table from [19].

u-type d-type leptons
Type Il 02 —iffys 8 —itgRigys 2 — itgRigys
Lepton-Specific f“ —i}f—?% ?—;f—l-ilj—g“m i—;—z’tBRigf\/g,
Flipped 2 —iflity; L —itgRigy; 2 4 iffiyg
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Chapter 4

Probing the CP nature of a scalar
produced at the LHC

4.1 Introduction

A common strategy to determine the Higgs CP is to look for observables sensitive to its CP that can
be measured at the LHC, such as angular correlations in Higgs decays or in Higgs production channels.
Since only the CP—even component of the hVV couplings is projected out - the VV couplings with a
pure CP-odd state are zero at tree level and higher order corrections are tiny - the couplings to fermions
may provide a better way to probe the Higgs CP nature. The reason is that both CP-even and CP-odd
components can be non-zero in the case of fermionsﬂ [53]]. Nevertheless, the VV couplings are still
useful. The pure pseudoscalar hypothesis for the discovered scalar has already been ruled out at 99.98
% Confidence Level, which was achieved by an analysis of the 7, Z and W interactions with the Higgs
[14}|15]]. Even though so far all measurements of the properties of the discovered Higgs are compatible
with the SM [14116], a precise measurement of its Yukawa couplings is still lacking. Therefore, mixing
between a CP-even and CP-odd component is still allowed by experimental data [54].

Within the SM, there are four main production modes of the Higgs at the LHC: Gluon Fusion
(GGF), Vector-Boson Fusion (VBF), Higgs production in association with a W/Z boson (Vh), and Higgs
production in association with a ¢t pair. Representative diagrams for these processes are shown in
The gluon-fusion production mode has the largest cross-section at the LHC, and the dominant
contribution to this process in the SM comes from a top loop [55]]. On the contrary, tth production has
the smallest cross-section (see[Figure 4.2). Also, tth has a complicated final state, with the top decaying
mostly into a bottom and a W, which in turn may decay either hadronically or leptonically, as well as
large backgrounds that complicate its study. Despite those reasons, this is the only procesﬂ where we
can measure directly the couplings between the top and the Higgs [55[]. This measurement may allow
the determination of the Higgs CP nature and the observation of CP-violating effects. Besides, since
the top and Higgs coupling is the largest of all Higgs to fermion couplings, this channel will have large
production rates relative to the other fermions, making it the most direct probe that we can use.

ISince we are only sensitive to CP-even components in hVV couplings (apart from constants that may come from CP-odd
components), this interaction would only change by a multiplicative factor in the case of a Higgs with both CP components. On
the other hand, we are sensitive to both CP-states in the case of fermions. That may allow to determine CP by searching for
differences in differential distributions for CP-sensitive variables, instead of just looking for differences in the number of events
expected.

2 Apart from the single top and Higgs associated production, which will not be discussed in this work.
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Figure 4.1: Main Leading Order (LO) Feynman diagrams in Higgs production. (a) GGF; (b) VBF; (c) Vh; (d) tth; (e-f) single
top and Higgs associated production. Image from [@]
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Figure 4.2: SM Higgs boson production cross-sections as a function of the Center of Mass energy, for proton-proton (pp)
collisions. The VBF process is represented as qqH. Image from [@]

In spite of its rarity, the observation of the tth process was recently announced independently by the
CMS and the ATLAS collaborations 57]. Several discriminating observables to probe the vertex
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of this interaction have been suggested throughout the years by many authors [|55} |58H61]], including
kinematic quantities of the ¢¢h system and angular distributions between the decay products of the top
and anti-top.

Fewer studies exist for the bottom quark, since its production rate relative to the top’s is expected to
be smaller in the SM. The studies that exist have shown that it is difficult to measure anomalous couplings
in the bbh process [[58, 62} 63]]. Nevertheless, in the hope of reaching different conclusions or, in a worst
case scenario, confirm the ones already stated, we will examine the possibility of determining the structure
of the bottom quark Yukawa couplings. Afterwards, we will consider the situation of an hypothetical
scalar of arbitrary mass produced at the LHC with a ¢t pair and see how that affects the sensitivity to its
CP nature.

4.2 Simulations of bbh events at parton level

The Higgs couplings to fermions are parametrized in a model-independent way through the effective
Lagrangian

ngfﬁffﬁhf (cosa +i sinans) fh, “.1)

where gflj\]fl7 = my /v is the SM Yukawa coupling and x, 7 represents the total coupling strength relative
to the SM. In this work we set x;, 7= 1, unless otherwise stated. The CP phase is determined by a: if
cos a = 1, we have a pure CP-even Higgs boson (h = H); if cos a = 0, the interaction is purely CP-odd
(h = A). The interaction with the SM Higgs is recovered by setting ;7 = 1, cosa = 1 and the mass of
h, my, to 125 GeV. In our analysis, only the CP-even and CP-odd cases are considered.

The simulations of proton-proton collisions at the LHC with a Center of Mass energy of 13 TeV were
performed at parton leve using the Monte Carlo (MC) event generator MadGraphS_aMC@NLO [64]
with Next-to-Leading Order (NLO) corrections in QCD, for bbh production. To account both CP-even
and CP-odd coupling components the HC_NLO_XO0 model [65]] was used. The masses of the bottom and
top quarks were set to 4.7 GeV and 173 GeV, respectively. The mass of the scalar h is indicated in the
text or in the ﬁgureﬂ Other details that depend on the topology that we chose will be discussed further
on. Every result related to bbh production is shown at parton level only, and no background events were
generated for this case. Since for tth production we perform an event reconstruction and we generate
background processes as well, that production process will be discussed separately further on.

3Parton or generator level refers to the hard-scattering part of a collision process and its first subsequent decay products,
before any showering/hadronization occurs. By showering we are refering to effects that lead to the emission of additional QCD
radiation before hadronization.

“Throughout our analysis, h will represent different particles which may have a different mass and CP, but & is always a
scalar boson.
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4.3 CP-violation in bbh production

We begin our discussion of pp — bbh by choosing the variables that best suit our goal. We have
decided to use the observables introduced in the literature [58}|59], with the prospect that these may also
show sensitivity to the bottom Yukawa interactions.

In particular, we have considered the Gunion-He variable by, defined in

Pyp;
by = =2

== (4.2)
[Pl |pg|

where pp (55) is the b (b) three-momentum and py, (p7) its z component. The z-direction corresponds to
the beam line. Also, we used several angular observables denoted as 0{5 , which are defined as the angle
between the direction of flight of the Y system, measured in the rest frame of X, with respect to the
direction of X in the rest frame of its mother. Essentially, these are three-dimensional angles between the
momenta of the decay products of bbh final states. To visualize them we can imagine bbh events from the
point of view of a decay chain of successive one-to-two processes. The first decay starts from the bbh
Center of Mass system, labeled 123, and its decay products will then follow successive decays until all
intermediate particles have decayed. The successive two-body decays that 123 goes through are: 123 —
1+23,23 52+3and3 — 4 +5. shows the angles that we can measure. Three families
of further observables can be constructed: f(60123)g(63), f(0323)g(62%) and f(623)g(63), where f, g are
simple trigonometric functions. The 123 system momentum direction is measured with respect to the
Laboratory (LAB) frame. Particles 1 to 3 can be the b, b or h, without repetition. Particle 4 can be any of
the products of the decay of the b-quarks and the Higgs boson.

23 4
23 b3

123

123
91

Figure 4.3: Schematic representation of the bbh decay chain and angles between the different systems and decay products. Image
from [66]).

The computation of these angles requires several Lorentz boosts in order to change between reference
frames. Since the generators of the Lorentz group do not commute, the result of boosting particle 4
directly from the Laboratory frame into the CM frame of particle 3 or sequentially through all intermediate
CM systems is different, thus both approaches need to be considered. To give some examples for the
sake of clarity, ngi’h would be the angle between the momentum direction of the b-quark, in the bbh CM
system, and the bbh direction, in the LAB frame. 9?_ is the angle between the momentum of the 77, in

the Higgs boson CM frame (with a direct boost from the 7~ momentum in the LAB frame into the Higgs
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CM frame), and the Higgs momentum in the bh (or bh) CM frame. (9’;, (sequential boost, labeled seq)
is the angle defined as the previous one but now the 7~ momentum is boosted through all intermediate
CM systems (bbh, bh or bh and h). Finally, Gzh would be the angle between the momentum of the Higgs,
in the bh CM system, and the bh direction in the bbh CM frame. Since angles are defined by reference
systems we can permute the different particles through the positions of those systems. This increases even

more the number of angles that we can calculate.

In we show a few normalized distributions of the observables that were considered, each
of them at generator level with the cuts described previously. We see no significant difference between
the cos o = 1 (blue solid line) and cos @ = 0 (red solid line) cases, suggesting that it is not possible to
distinguish between these two situations. We have verified this for other kinematic distributions, and the

results are the same.

Z| s
S22 ,s|_ LHC, {s=13Tev
MadGraph5_ aMC@NLO  bbh (h=H) m, =125 GeV
HC_NLO_X0,NLO bbh (h=A)m_ =125GeV
04— h-> 1" 1 A
03—
0.2—
0.1—
07 =y 5 55 1
Xy, =b,
Z| < |
S2%" LHC, (s=13Tev
MadGraph5_aMC@NL O bbh (h = H) m, =125 GeV
HC_NLO_XO0, NLO bbh (h=A) m = 125 GeV
h-> 1t 1 A
0.1—
0.05—
00 O.I2 O.I4 O.I6 O.I8 1

x, = sin (62™) sin (6%)
Figure 4.4: Parton level by and 65 distributions at NLO, normalized to unity. The red lines correspond to the pseudoscalar signal

and the blue lines to the scalar SM-like signal. Spin correlation effects were preserved by using MadSpin [[67] to perform the
decay of the Higgs bosons to taus (h — 77 77).
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Figure 4.4: Continued.
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In order to study how the differences between a CP-even and a CP-odd state change as a function of
the quark mass, we have set the mass of the bottom equal to the mass of the top quark, which is similar to
generating tth processes, and we have compared two distributions, b4 and sin (6%°") sin (Gb), with the

similar distributions for ¢th (bs and sin (O,tfh) sin (Hff)) that are in . This is shown in

Z|x<x
SIS 005— LHC, V13 Tev B 3o LHC, Vs =13 TeV ttbb
MadGraph5_aMC@NLO bbh (h = H) my = 125 GeV “°[ MadGraph5_aMC@NLO g: §:=R; mfgg ge:/,
_ =, m = e
0.0al— HC_NLO_X0, NLO bbh (h = A) m, = 125 GeV A
mp = 173 GeV

03 03 0 05 1 E X ! ; 02 04 08 08 1
Xy = b, Xy=b,

22 004 LHC V13 Tev bbh (h = H) my = 125 GeV £ " LHC, {s=13 TeV ttbb
MadGraph5_aMC@NLO 0.05—MadGraph5_aMC@NLO tth (h=H) m =125 GeV

bbh (h = A) ms = 125 GeV tth (h=A) m:=125 GeV

HC_NLO_XO0, NLO
003— my=173 GeV 0.04

Il
0 0.2 0.4 0.6 0.8 1 - - - : . 0.6 0.7 08 t?ﬁg ﬁ1
5 5 e o
Xy = sin(B5°") sin(62°) Xy = sin(e")"sin(6})

Figure 4.5: Left: distributions b4 (top) and sin (02°7) sin (9%’5) (bottom) for bbh with m, = 173 GeV. Right: distributions by
(top) and sin (65" sin (6%%) (bottom) for tth after event selection and reconstruction. For more details see .

There are two observations that are important to make about these results: first, the histograms on the
left and right panels are similar, which shows that the signal was simulated in a consistent way relative to
previous studies. Second, the differences observed are sensitive to the mass of the quark that is produced
alongside the scalar particle. This is in agreement with the observations in [58]], where it was proven by
an explicit evaluation of the ffh production from the gg or ¢q initial states that the differences between
the CP-even and CP-odd components are proportional to m?c and are only significant when m is of the
same order of magnitude as my,. This is why only the top can be used to probe the vertex of this process.

If the Higgs mass also affects the observation of different CP-states in this process, then it is only
natural to ask whether we can see any significant difference of asymmetries when its mass is smaller.
With this in mind, we decided to look into bb production with a new scalar of different mass. In
we show distributions for several Higgs masses which go from m; = 10 GeV to mj; = 100 GeV, but the
lack of differences is still notorious, even for very small Higgs masses. A few other observables were
considered but to no avail.
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Figure 4.6: Generator level by distributions for different Higgs masses.

In a last attempt to probe the couplings between the bottom quark and the Higgs, we have considered
the only other process where the vertex of this interaction can be studied directly: the single bottom and
Higgs associated production (bh). This process was generated in MadGraph5_aMC@NLO at LO. The
relevant tree level Feynman diagrams are shown in This time three b4-like distributions were
used: by(h,b), bs(j,b) and by(j,h), where j represents a gluon or any quark lighter than the b-quark. The
b4(i,k) notation corresponds to

PPk
ba(iy k) = Sk
[Pil[px]
The results are shown in from which we again conclude that both CP-even and CP-odd signals
behave in a similar way.

(4.3)
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Figure 4.7: Tree level Feynman diagrams for the gb — gbh and gb — gbh processes at LO. Diagrams where the production is
mediated by a Z boson or a photon were not considered.

Even though the results in this section are in general largely negative, we have managed to confirm
previous findings and to show the incapability of CP probes in these channels, using these observables,
even for very light Higgses. In the following sections we consider again a scalar of arbitrary mass but this

time produced alongside a top pair, which as we show next is a much more interesting scenario.
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Figure 4.8: Distributions for the single bottom and Higgs associated production at parton level. On the right panels we show the
same distributions with m; = 173 GeV, showing that changing the mass of the quark in this case has very little influence in the
results.

4.4 Generation of ¢t/ and background events

As it was mentioned, previous works [55 |58-60] proposed several angular variables, not only to
increase the sensitivity in discriminating signals from irreducible backgrounds, but also as a means to
probe the CP nature of the Yukawa coupling in ¢t/ production at the LHC. The results in [59}|60] showed
that we can define a minimal set of variables to obtain the best possible sensitivity to achieve both goals.
While these studies assumed a mass of 125 GeV for the Higgs boson, in this thesis we extend their use to

a wider mass range, from 40 GeV to 500 GeV.

Since tt events will be the main background for ¢th signal events, it is important to know the decay
chain of the top quark (top production at the LHC occurs through the processes in appendix [D). Due to its
large decay width - I'y = 1.35 GeV [[12]] - and, consequently, short lifetime (73 ~ 0.5 X 10724 5), the top
decays much before hadronization. This decay is mostly to a Wb pair, because |Vip| > |V, 4], |V; o] (see
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appendix |C) and m; > mw + my. Top quark pair decay can be separated into three classes [|12]:

(a) tt — WHTOW b — qq'bq"q"b, (45.7%) 4.4)
(b) tt — WHTOW b — qq'bl™ g + (T vpbg"q"b, (43.8%) (4.5)
(c) tt — WToW b — £Tubl' " Dpb. (10.5%) (4.6)

The quarks in the final state will give rise to jetf] due to the hadronization process. What separates these
channels is their final state products which in turn depend on whether the W bosons decay hadronically or
to leptons. The channels (a), (b) and (c) are referred to as fully hadronic (6 jets, two hadronic decays),
semileptonic (2 leptons + 4 jets, one hadronic and one decay to leptons) and dileptonic (4 leptons + 2
b-jets, two leptonic decays), respectively. In parenthesis is their Branching Ratio (BR), which is defined
as the ratio between the decay rate of each channel and the total decay rate. In principle, the W bosons can
decay to any lepton, but tipically most analyses distinguish the electron (e) and muon (u) from the tau (7)
channel, since the latter is more difficult to reconstruct. In this thesis, we have considered the dileptonic
channel with electrons and muons (e + ) for the signal events. Although the two neutrinos in the final
state make this channel difficult to reconstruct, the two charged leptons that come with them provide a
clean experimental signature.

Signal events of pp — tth, with h = H, A, were generated using MadGraph5_aMC@NLO at NLO
precision with the Higgs characterization model HC_NLO_X0. Feynman diagrams at LO are shown in
The CP-even/odd Higgs boson is set to decay to a pair of b-quarks. The ¢ system decays to a
pair of b-quarks and two intermediary W+ gauge bosons which, in turn, decay to two charged leptons
and two neutrinos. The final particles, at parton level, are two oppositely charged leptons, two neutrinos
and two bb quark pairs.

In addition to signal samples, background events are also generated using MadGraph5_aMC@NLO,
now with the Standard Model implementation. The dominant background, ¢£bb, a pair of top- and b-quarks,
and ttH5M  where H*M is the SM Higgs, are generated at NLO and have the same final state products
as our signal. Every other background topology is generated at tree level. The remaining backgrounds
considered are:

e {143 jets: A top-quark pair plus up-to three jetﬂ

e {tV+ jets: A top-quark pair, one gauge boson plus up-to one jet.
e Single top s-channel: A (tb + {b) pair.

e Single top t-channel+ jets: A t or ¢ plus up-to two jets.

e Single top Wt-channel: A (W*¢ + W ™t) pair.

o W+4 jets: A W boson plus up-to four jets.

o Wbb+2 jets: A W+ boson, two b-quarks and up-to two jets.

o Z+4jets: A Z° boson plus up-to four jets.

o Zbb+2 jets: A Z° boson, a pair of b-quarks plus up-to two jets.

>When a quark goes through the process of hadronization, it creates a large bunch of particles that are confined in a region of
space that forms a narrow cone. This collective of objects that tend to travel in the same direction is called a jet.
SHere, jets refer to gluons and quarks (anti-quarks) lighter than the b-quark that after hadronization may result in an actual jet.
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o W43 jets: AWTW™ pair plus up-to three jets.
o W Z+3 jets: A W Z° pair plus up-to three jets.
o ZZ+3jets: A Z" boson pair plus up-to three jets.

These are the backgrounds that can lead to events with at least 4 jets and 2 leptons of opposite charge.
Each cross-section was computed directly in MadGraph5_aMC@NLO, except for the t#+3 jets and ttbb
cross-sections, which were normalised to the QCD Next-to-Next-to Leading Order (NNLO) cross-section
with Next-to-Next-to Leading Logarithmic (NNLL) resummation of soft gluons [[68]]. Also, the single
top production (including all three channels) was normalized to the NNLO theoretical predictions for the
single top production [[69,|70]. The generated cross-sections (without cuts other than the simulation cuts)
for all background topologies and for tth events with mj, = 40,80, 120, 160 and 200 GeV are shown
in These cross sections are not normalized to the same integrated luminosity. The integrated
luminosity £ is defined as the number of events for a given process, IV, divided by its cross-section, o

L= 4.7)
g

To calculate the number of events at a different luminosity, we only need to multiply the number of
generated events by the weight of each event when the value of £ changes. This weight is defined as

W = L0Ogen /N, gen» Where ogen and Nge, are the generated cross-section and number of events, respectively.
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Figure 4.9: Main LO Feynman diagrams for Higgs production in association with a ¢ pair.

All events were generated for LHC pp collisions, with a Center of Mass energy of 13 TeV. The masses
of the top quark (m;) and the W boson (my) were set to 173 GeV and 80.4 GeV, respectively. For all
samples, the NNPDF2.3 [71] parton distribution functions were used. Spin correlations between the decay
products and the respective heavy resonance parents, h, t,f, W+, are preserved using MadSpin for ¢£h and
ttHSM | Simulation of parton shower and hadronization was accomplished with Pythia6 [72]. Matching
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Table 4.1: Expected cross-sections (in pb) with basic generator selection cuts and including decays of the top, Higgs, W* and Z,
at 13 TeV, for background and (some) signal events at the LHC.

Topology Order Gener.ated Generated
cross-section (pb) | number of events

ttH (mpy =40 GeV) NLO 0.2557 99 984
ttA (my =40 GeV) NLO 0.01994 99 982
ttH (mp =80 GeV) NLO 0.06864 99 979
ttA (my =80 GeV) NLO 0.01362 99 982
ttH (mpy = 120 GeV) NLO 0.02438 99 988
ttA (my = 120 GeV) NLO 0.009516 99 975
ttH (my = 160 GeV) NLO 0.0105 99 980
ttA (my = 160 GeV) NLO 0.006762 99 976
ttH (mpy =200 GeV) NLO 3.406 x107° 99 980
ttA (my =200 GeV) NLO 0.004946 99 983

ttHSM NLO 0.025 2499612

ttbb NLO 0.79 1599 714

tt+3 jets LO 37.89 3624 813
ttV + jets LO 0.0618 120 194
Single top s-channel LO 2.1916 500 000
Single top t-channel+ jets | LO 46.863 500 000
Single top Wt-channel LO 15.1827 500 000
W+4 jets LO 34500 167 519
Wbb+2 jets LO 289 155511
Z+4 jets LO 3120 160 456
Zbb+2 jets LO 123 153 508
WW43 jets LO 84.2 119 409
W Z+3 jets LO 37.9 41 849
Z Z+3 jets LO 11 215 885

Total Background 38 268.1041 10 358 470

between the generator and the parton shower was performed using the MLM [73]] scheme for LO events
and the MC@NLO [74] matching for NLO events.

For a fast detector simulation of a LHC-like experiment, we used Delphes [75]], using the default
ATLAS parameter card. During detector simulation, jets and charged leptons are reconstructed, as well as
the transverse missing energy. For jet reconstruction of the signal and background events, FastJet [76] is
employed with the anti-k; algorithm [[77]], cone size of AR = 0.7[} The analysis of the generated events
was performed with MadAnalysis5 [78]] in the expert mode [[79].

4.5 Event selection

There are three instances where we apply selection cuts to the events that we will generate and
reconstruct. The first one is in the actual simulation of the events, where transverse momentum (pr) cuts
are applied to jets and photons such that, in any events, these objects are kept if the following conditions

"AR = \/A¢? + An?, where ¢ is the azimuthal angle and 1) is the pseudo-rapidity, defined as ) = — In[tan g] The angle
0 is the angle between the three-momentum of a particle relative to the positive direction of the beam axis.
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are met
pr. > 10 GeV, Pl > 20 GeV. (4.8)

No cuts were applied to the transverse momentum of leptons nor to the pseudo-rapidity of jets, leptons
and photons. These initial cuts were applied in the signal events. The remaining cuts are for both signal
and backgrounds events.

The second instance of selection is enforced immediately before the reconstruction of our events. Only
events with (at least) two charged leptons of opposite charge and four jets are eligible for reconstruction.
Also, both leptons and jets were required to have pr > 20 GeV and |n| < 2.5. These are the most
restrictive cuts, after which only 5-20% of tth generated events are accepted (for a range between
myp, = 40 GeV and m;, = 300 GeV). For reconstruction using parton level information, it is additionally
required that only events with an exact number of 12 partons can go through to reconstruction, these
being two top quarks, four bottom quarks, two W gauge bosons, two charged leptons and two neutrinos.
Finally, the third type of cuts is applied upon reconstruction: events where no solution for the neutrino
reconstruction is found are rejected. Further details about the reconstruction process and its performance
will be discussed in the next section.

4.6 Event Reconstruction

The major goal of any analysis done at the LHC is to infer the parton level information of a collision
from the measured data of the detected objects. In our simulations, we have access to the parton level
information. However, we need to estimate how that information would translate in terms of measured
data, to determine the experimental predictions of a certain model. This means that we need to simulate
what would actually be seen in an LHC detector and to match and reconstruct the objects that we observe
at the detector (experimental level) with the corresponding objects at generator level.

The meaning of reconstructing an event is the following: from the available information after sim-
ulation we make the correspondence between the parton level object and the experimental object that
originates from the former. That being done, we determine the four-momentum of the object at generator
level. This process of reconstruction is not trivial. First, the detectors are not perfect, i.e. they devi-
ate/smear the energy of particles, they have blind spots, and so on. Also, NLO effects may lead to the
detection of more (or less) objects than what is expected. For example, two different jets can come from
the same object at parton level, or two jets from different objects can recombine and form only one jet.

The first step in the reconstruction process is to select events that have a similar topology to the signal
events that we want to reconstruct, in order to increase the signal to background ratio. This justifies the
cuts applied to the number of jets, charged leptons, and number of partons already stated, as they match
what is expected for the final state topology of our signal. The cuts on the p7 and 7 of these objects is
motivated by the experimental limitations of the detector. The downside of this event selection is that we
are possibly removing objects which would match better the parton level objects than the ones that are
effectively selected. This has an impact on the purity of the sample, i.e., on how close the reconstructed
events are to the generated events.

Afterwards, it is necessary to match the objects present in the detector to the generator objects. To
simplify the discussion, we introduce some terminology to be used along the text. Parton level objects
will from now on be referred to as GEN objects, while detector objects will be referred to as either REC
or EXP objects. This distinction has to do with the fact that we have two alternatives to perform the
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reconstruction:

e Reconstruction with Truth Match (TM).

e Reconstruction without Truth Match.

The difference between the two is that in reconstruction with TM, the association between GEN and
detector objects is done while having access to the GEN objects. In this case, detector objects = REC
objects. In reconstruction without Truth Match, we do not have access to the GEN objects. In this case,
detector objects = EXP objects. In an ideal scenario, REC and EXP actually point to the same objects, but
since the methodology used for the matching is different, that is not always the case.

The following assumptions are made in order to perform the reconstruction: a single GEN object can
only give rise to one REC/EXP object and one REC/EXP object can only come from a single GEN object.
This is what we call one-to-one correspondence. Also, it is assumed that all of the missing energy is due
to neutrinos.

TM reconstruction corresponds to the best reconstruction method that we can hope to achieve. It
tells us how efficient the reconstruction is when he have access to the GEN objects. We assume that the
right association between GEN and detector objects is obtained for TM reconstruction. This association
is correct[ﬂ when we find a REC object with the least AR distance to the GEN object, considering all
possible combinations. The A R function between two particles of indexes ¢ and j is given by

AR = \/(mGEN _ n;gEc )2 N <¢z’GEN B Q%;EC )2' “9)

Only objects with AR < 0.5 (AR < 0.1) for jets (leptons) can be associated. These objects are said to
be well matched. In order for the reconstruction to continue we need to have six well matched objects in
an event: 4 jets and two leptons. This process is called matching with TM. Afterwards, this information is
used to find the momentum of the remaining particles, as we will see shortly. The matching efficiency,
i.e., the number of times where we have six well matched objects is between 18-61%, taking into account
all the signal samples that have been reconstructed.

For reconstruction without Truth Match, one typically needs to consider all combinations of EXP
objects (jets in particular) along with some criterion to match the GEN objects (b-quarks) that come from
the Higgs and the ones that come from the tops to the observed jets at detector level. Due to the large
number of possible combinations, this association of jets to the b-quarks is one of the main problems of
the reconstruction. Choosing a wrong assignment leads to combinatorial background, i.e., we identify that
the jet comes from a b-quark, but it is the wrong bottom quark (for instance, we say that jet 1 comes from
the b of the £, bz, when in fact it comes from the b of the Higgs, by,).

To tackle this, we find the combination of four jets that best resembles the kinematics of the parton
level b-quarks by using an association algorithm. This algorithm is applied for each of the generated
samples. It relies on a multivariate data analysis method employed using the Toolkit for Multivariate
Analysis (TMVA) [80]. Two samples labeled as signal and background were created from ¢th signal events
and used for training and testing, corresponding to the right and wrong jet combinations, respectively.
For training the methods, eleven parton level variables were used as input: AR, A¢, and Af for the
pairs (by, I 1), (bg,17) and (by, by,), and the invariant masses of the two first pairs. Information about the

8The word correct here is slightly ambiguous. When we say the association is correct, we mean that we found a pair of REC
and GEN objects that meets the criteria chosen for this reconstruction process. However, the REC object that we choose may
have come from a different GEN object, hence in reality it may not be correct.
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invariant mass of the latter pair was also included, and computed after reconstruction with TM. Because
the Higgs decays to two b-quarks, NLO effects will be considerable. These effects lead to a different
reconstructed Higgs mass relative to its parton counterpart, which is why we need to use the former for
the reconstruction. The input variables for TMVA and their correlations are shown in [Figure 4.10|and

for the CP-odd case with m4 = 40 GeV.

For all signal samples, the best methods are Boosted Decision Trees with an adaptatie boost (BDTs)
or Boosted Decision Trees with a Gradient boost (BDTGs). The latter was the method used. The jet
combination chosen is the one returning the highest value of the BDTG discriminant, which maximizes
signal purity in the methods implemented. The Receiver Operating Characteristic (ROC) curve and the
BDT and BDTG discriminant distributions are shown in Figures and respectively, for tt A with
ma = 40 GeV.

In events where the number of jets is more than six, we only consider the six jets with the highest
transverse momentum. Around 95% of all signal events are contained in this subset. Furthermore, the
invariant mass of the jet combinations are required to verify m+, < 150 GeV, m;—; < 150 GeV and
20 GeV < my, 5, < 300 GeV. The first two constraints are because typically those distributions have no
events after 150 GeV for tth.
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Figure 4.10: Distributions of the TMVA input variables for the signal (blue) and background (red) samples for ttA events with
ma = 40 GeV. The angular variables AR, A and A® for the pairs (11, b;) (top) and (ba,ba) (bottom) are computed at
generator level.

At this point, we have two leptons and four b-quarks identified. The last part consists in the recon-
struction of the undetected neutrinos, and is valid for both TM and without TM reconstruction. This is
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Figure 4.11: Invariant masses for the systems (I*, b;) at parton level (top left) and (b4, b ) obtained with Truth Matching (top
right), for t£A events with m 4 = 40 GeV. Below, we have the matrix correlations between the TMVA input variables for the
signal (left) and background (right) samples.
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samples, for t£A events with m 4 = 40 GeV.

done by using energy-momentum conservation which allows us to write the following set of equations

(o +pv)* =miys, (4.10)
(- +po)* = miy—, @.11)
(pw+ +pp,)* = mi, (4.12)
(pw- +p5,)* = m, (4.13)
P +ri = E°, (4.14)
ph+ph=F. (4.15)

The first four equations are relativistic on-shell conditions and the last two are due to momentum
conservation, where Ex/ Y are the missing transverse energy components. Its values are measured by the
detector. Since we already know the momenta of the two b-quarks that come from the pair of tops, as
well as the momenta of the charged leptons from the gauge bosons decay (p;+ and p;-), we are left with
six unknowns. They are the components of the three-momentum of the neutrino and anti-neutrino (the
neutrinos masses are assumed to be zero), thus a solution can be found. The masses of the top-quarks and
the W* bosons are randomly generated from Two-Dimensional Probability Density Functions (2D PDFs)
constructed with parton level information, so to preserve possible correlations. If no solution is found, the
generation of masses is repeated up-to a maximum of 500 trials. If there is still no solution, the event is
discarded. Additionally, because the first four equations are quadratic, there might be several solutions
instead. In that case, a likelihood function is computed for each solution from the transverse momenta
PDFs of the neutrinos, top-quarks and ¢t system at parton level, respectively P(pr,), P(pr,), P(p1,),
P(pr;), P(pr,;). Furthermore, we consider the two dimensional mass PDF of the ¢ pair, P(m;, m7), and
the mass of the reconstructed Higgs, P(my,), obtained with Truth Matching. Some of the PDFs used in

the reconstruction are shown in [Figure 4.14] and [Figure 4.15| again for the CP-odd case with m4 = 40
GeV. With all these pieces the likelihood reads

Ly, o< P(pt,)P(p1,) P(p1,) P(DT3) P(DT,7) P (01, M) P (101, (4.16)

br, P15

and the solution with the largest value of L;z;, is chosen. Since energy losses due to QCD radiation as

well as detector effects may result in overestimating the neutrino and anti-neutrino pr after reconstruction,
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the pre-factor 1/pr, pr, is introduced in the likelihood to preferentially pick solutions with lower neutrino
and anti-neutrino pr that better match parton level.
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Figure 4.14: 2D PDFs at parton level for the masses of the pairs (¢, %) (top), (W™, t) (middle) and (W, ) (bottom).
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Following event selection, 66-73% of tth signal events are successfully reconstructed with Truth Match
(after matching), for a Higgs mass ranging from 40 to 300 GeV. Without Truth Match, the efficiency of the
reconstruction is around 49-63% (matching included). In 29-55% of the cases, the reconstruction without
Truth Match results in the same jet combination as the Truth Matched one. Given these percentages, if we
start with a given number of tth events, N, gen» We end up with (atleast) Nrpo = Ngen X0.05x0.18 X 0.66
and Ngxp = Ngen % 0.05 x 0.49, where Nrpc and N x p are the total number of reconstructed events
with and without Truth Match, respectively. The various efficiencies cited along the text about the
reconstruction and selection of events are summarized in Similar performance numbers for the
reconstruction discussed in this thesis were found relative to the one discussed in [60]].

Table 4.2: Efficiencies of the selection cuts and of the reconstruction method applied to tth events where my, varies between

40 GeV and 300 GeV. Njcts > 4 & Niep > 2 already includes objects with pr > 20 GeV and |n| < 2.5. The efficiencies for
specific A boson masses for the first and last rows are shown in appendix

Efficiency (%)
Njets > 4 & Niep > 2 5-20
Matching with TM 18-61
Reconstruction with TM (after matching) 66-73
Reconstruction without TM (matching included) 49-63

shows, after reconstruction without Truth Match of tZH events for my = 40 GeV, Two-
Dimensional pp distributions of the W™ (top-left), the top quark (top-right), the ¢ system (bottom-left)
and the Higgs boson (bottom-right). The correlation between the parton level pr distributions at NLO
with shower effects (x-axis), labeled NLO+Shower, and reconstructed ones without Truth Match (y-axis),
is clearly visible. The same kind of plots are obtained for the ¢t A signals and are shown in
The neutrino reconstructed py for tH and ttA is compared with the pr at NLO+Shower in
(left) and (left), respectively. The distribution of the reconstructed Higgs boson masses is
shown in[Figure 4.17) (right) and [Figure 4.19)(right). In spite of the wider spread of values in the neutrino
pr distribution, a direct consequence of the reconstruction of two neutrinos in each one of the events,
good correlation between the NLO+Shower distribution and the reconstructed neutrino pr is observed.
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4.7 Asymmetries in the Yukawa sector

Since the differences between distinct CP-states in f fh production depend on m?, those differ-
ences should show an increase of at least 3 orders of magnitude in tth, relative to the bbh. Thus,
CP-discrimination between the different CP-states of the Higgs might now be possible. The variables
considered to this effect are

ba = pip; /Ipel Pl (4.17)
by = (D1 x k2).(P; % k=) /|pe||p. (4.18)
cos (9 ) 0s (9 ) 4.19)
sin (6}) sin (6}, ) (sequential boost), (4.20)
sin (eg'h) cos <0§h) sequential boost ), @.21)
sin (0 h) sin <0{}V +) sequential boost), (4.22)
sm( )sm <9,?h) (sequential boost), (4.23)
sin (e;;h) sin (egt) , (4.24)

with 0 < 6 < . In ];:z is the unitary vector along the z-direction. The by and b4 variables
were computed in the LAB and in the CM frame of the tth system (b5 and b™). and
show the NLO+Shower by and by distributions, without any cuts, for t#H and tfA events
with different Higgs masses, in the LAB and CM frames, respectively. Clear differences are now visible
between the scalar and pseudoscalar signals, and also between the distributions computed in the Laboratory
and in the Center of Mass frame. For completeness, we also show the same distributions in
and [Figure 4.23] after reconstruction without TM. As we can see, the shape of these distributions is largely
preserved, hence there is still a good level of discriminatiomﬂ

To see how asymmetry differences between CP-even and CP-odd signals change with the scalar boson
mass, forward-backward asymmetries associated to each of the observables under study were defined
according to [59]

_ o(zy > ) — oy (zy < i)
B oy(zy > ay) + oy (zy <zi)’ (4.25)

where o(zy > ) and o(xzy < z¥,) correspond to the total cross section with =y above and below a
cut-off value equal to the central value of the £y domain, respectively. Some of those asymmetries are
shown in As we can see, for large enough Higgs masses the difference between CP-even and
CP-odd distributions vanishes. This was observed for all the variables that were tested. Also, the exact i
boson mass for which these differences disappear depends on the variable. The maximum value of the
scalar boson mass for which we can still see a visible difference is around 450 GeV.

Finally, the dependence of the total cross section for the process pp — ttH (blue) and pp — ttA
(red) as a function of the scalar boson mass was computed at NLO in For smaller Higgs

“While detector simulation and reconstruction degrade the discriminating power of these observables, the most dramatic
effect on the distribution shapes comes from applying the acceptance cuts, which spoils the purity of the samples.
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masses, we see a significant relative difference (more than one order of magnitude) between the scalar and

pseudoscalar cross sections. This difference gradually decreases as the Higgs mass increases, which is

consistent with the observation that the differences between scalar and pseudoscalar distributions vanish

for large enough Higgs masses.
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Figure 4.24: Forward-backward asymmetries as a function of the scalar boson mass, without cuts, at NLO+Shower. On top, we

have two angular distributions, sin

tth
0%

sin 0:—? (left panel) and sin 6;

tth

sin 93V+ with a sequential boost (right panel). On the

middle and last rows, we show the variables b (left) and b4 (right), in the LAB and CM frame, respectively.
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4.8 Background contributions

The reconstruction described in section was applied not only to tth events, but also to its
backgrounds, in order to estimate the number of background events that we are expecting to find when
looking for tth. To further reduce the background to signal ratio, additional selection criteria are
applied after reconstruction, for both signal and background samples. Depletion of the Z + 4 jets and
Zbb + 2 jets backgrounds is accomplished by selecting events with a dilepton invariant mass such that
|my+;- — myz| > 10 GeV. Most backgrounds, notably ¢t + 3 jets, are then mitigated by selecting events
with at least 3 b-tagged jets, i.e., three jets that the detector identifies as coming from a b-quark. In
the expected number of events that survive all stages of selection cuts for the different SM
backgrounds is shown for a luminosity of 100 fb—!, and compared to the CP-even and -odd signals with
myp, = 40 GeV, for different observables. In this figure, single top refers to the three channels of single top
production. Z+jets includes Z + 4 jets and Zbb + 2 jets, W-jets includes W + 4 jets and Wbb + 2 jets.
Diboson events are the WW + 3 jets, W Z + 3 jets and ZZ + 3 jets backgrounds, ttce, tt+ light jets is
the tf + 3 jets process and ttH (mp = 125 GeV) is the ttH M process. In we show the number
of signal and total background events that survive the reconstruction and all additional cuts, when we look
for tt H events with five different scalar boson masses. The numbers on this table are the ones effectively
used in the calculation of the expected Confidence Levels, which will be discussed in the next section.

Table 4.3: Total number of predicted events for the total background, CP-even and CP-odd signal samples. These are the events
that survive reconstruction without TM and all additional selection cuts, for a luminosity of 100 fb~! at the LHC. The efficiencies

for the final selection cuts (|m;+;— —mz| > 10 GeV and at least 3 b-tagged jets) are shown in appendix@
Nﬁnal ttH Nﬁnal ttH Nﬁnal ttH Nﬁna] ttH Nﬁnal ttH
myg =40GeV | mg =80GeV | my =120GeV | myg =160 GeV | myg =200 GeV
Total background 775 821 838 844 787
CP-even signal 68 42 27 13 0
CP-odd signal 8 13 12 10 8
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Figure 4.26: Expected number of background versus signal events with m, = 40 GeV for the distributions b2 (top left), b4 (top
right), b%th (bottom left) and bffh (bottom right), for a luminosity of 100 fb~!. Reconstruction without TM and final selection
cuts are considered.

4.9 Expected Confidence Levels in ¢t/ production

In this section, Confidence Levels for tth production in different scenarios are calculated, following
the description in [81}|82]. We start by a brief explanation on how those Confidence Levels were computed,
after which we show the results obtained for each of the scenarios that were studied.

The analysis of search results can be formulated in terms of a hypothesis test. Usually, the null
hypothesis, Hy, is that the signal is absent (background only) and the alternative hypothesis, Hy, is that
it exists. The goal is to exclude the alternative hypothesis in favor of the null hypothesis, with a certain
degree of confidence.

The first step in defining an analysis of search results is to identify the observables in the experiment
that we want to measure. In our case, we have considered the by and b, variables, both in the LAB and
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in the CM of the ¢th system. The next step is to define a test-statistic or function of the observables and
the model parameters that indicates which hypothesis is more compatible with the expected observations.
The test-statistic that was chosen in this analysis is the likelihood ratio test, Q, which is defined as the
ratio of probability densities of H; and Hy. This method is a good indicator of the compatibility between
our data and our hypothesis since in the high-statistics limit the distribution of -2 In Q converges to a x>
distribution.

The likelihood ratio for experiments with N¢h,, independent search channels, assuming that both the
alternative and null hypotheses likelihoods are described by Poisson distributions, can be written as

— 7,
chan i >\ Nchan

_ A\
Q= H A = ¢ o) TT (AO) : (4.26)

i=1

In [Equation 4.26| n; is the number of observed events in each channel assuming a certain hypothesis,
and Ag; and Agyor (A1; and Aqgor) are the number of predicted events per channel and in total, respectively,
for the null (alternative) hypothesis. Thus, we have Ef\;c{‘“” Xoi = Aot and vach“" Mi = Mwot. The
observed events are the ones seen in an actual experiment. In our case, they are generated randomly using
the number of predicted events for a given hypothesis, i.e., the number of events after reconstruction with
TM and additional cuts in that hypothesis. Ao;, Aoor, A1; and Aqyor are already determined (see [Figure 4.26|
and and fixed for a given exclusion scenario.

The logarithm of takes the form

Nchan
Ali
IHQ = —()\hm — )\Otot) + ZZ; n; hl(A;) . (427)

Computing the logarithm of the likelihood for H;, we have

Nchan _)\11 )\nl

InL(H;) =In H (4.28)

3 Nc an —
With p; = A5/ Ao and lef N = Niot, WE get

Nchan
InL(Hy) = Z (n; Inp; +n; In Aot — pidicor — Inn;!)
i=1
4.2
Nchan chan ( 9)
= Z (ni Inp;) + (Mot In Atior — Attot) — Z Inn;!l.
i=1
The first term in the bottom line of depends on the shape of the distributions (number of

events in each bin). The second and third terms, where no summation exists, depend only on the total
number of observed and predicted events. Both the shape and total number of events are considered for
the calculation of the Confidence Levels.

After the test-statistic is defined, the last step consists in specifying a CL above which we decide to
exclude our alternative hypothesis. In particle physics, that CL is 20 for exclusion, and 5o for discovery.
The Confidence Level is defined as a function of the test-statistic by

CL =P (Q = Qobs| H1), (4.30)
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where Q)5 is the value observed for the test-statistic assuming the null hypothesis and

P(Q 2 Quye| HL) = /OO APQIH) 4y @31)

Qobs dQ

This is the probability that () > Qqps, i.€. that we observe a value of () equal or more extreme than ops.
In dP(Q|H1)/dQ is the probability distribution function of the test-statistic according to
the alternative hypothesis. If 1 - CL < «, where « is the significance level of the test, we claim that for a
given null hypothesis, the alternative hypothesis is excluded with a Confidence Level of CLx100%.

Now that the CLs are defined, we will show the results for the hypotheses studied. Four different
scenarios were considered:

e Scenario 1: Exclusion of the SM plus a new CP-even scalar particle, assuming the SM. In this case,
Hp is the SM only hypothesis{ﬂ while H; is the SM plus a new CP-even signal hypothesis.

e Scenario 2: Exclusion of the SM plus a new CP-odd scalar particle, assuming the SM. In this case,
Hpy is the SM only hypothesis, while H; is the SM plus a new CP-odd signal hypothesis.

e Scenario 3: Exclusion of the SM plus a new CP-odd scalar particle, assuming the SM plus a new
CP-even scalar particle of the same mass. In this case, Hp is the SM plus a new CP-even signal
hypothesis, while H; is the SM plus a new CP-odd signal hypothesis.

e Scenario 4: SM exclusion, assuming the SM plus a new CP-even scalar particle. In this case, Hg is
the SM plus a new CP-even signal hypothesis, while H; is the SM only hypothesis.

For each scenario, 1.000.000 pseudo-experiments were simulated for both the null and alternative
hypotheses. In each pseudo-experiment, the number of observed events is randomly generated, bin-by-bin,
according to a Poisson distribution. That distribution has a mean value equal to the predicted number of
events for each bin according to the assumed hypothesis. This gives us the value of n; per bin. Furthermore,
the value of In ) is computed and used to construct dP(Q|H1)/dQ and dP(Q|Hy)/dQ. The latter is the
probability distribution function of the test-statistic according to Hy. The value of In Qo is taken as the
median of dP(Q|Hy)/dQ. The values of the median +10 of dP(Q|Hy)/dQ were also determined and
used to estimate the statistical uncertainty of the CLs computed. This is depicted in

[Figure 4.28|to [Figure 4.31|show the expected Confidence Levels, for all four scenarios, and different

Higgs masses. In each plot, different observables are presented, as a function of the integrated luminosity.
Only statistical uncertainties are considered. In (scenario 1), we conclude that the luminosity
to achieve a certain CL increases with the scalar boson mass. For instance, myg = 40 GeV requires
roughly 500 fb~! and 1400 fb~! less luminosity to achieve CL= 2¢ when compared with my = 120
GeV and mpy = 160 GeV, respectively. This is consistent with the decrease of the ttH cross section
with said mass (see [Figure 4.25)), which in this case leads to a smaller signal to background ratio and
smaller CLs for larger Higgs masses. We exclude the existence of the CP-even hypothesis for the first
two CP-even Higgs masses, with a Confidence Level that exceeds 20 given the current LHC luminosity.
CP-even Higgs masses above 200 GeV cannot be excluded in our analysis. Similar results are seen in
IFigure 4.31| (scenario 4). Exclusion of the SM-only hypothesis is possible with a 50 CL for the three
lighter & boson masses.

(scenario 2) shows that the Confidence Levels are different for the CP-odd case, compared
to the CP-even case. The luminosity for CP-odd exclusion at a given CL is higher for lighter CP-odd

0Consisting of diboson, Z + jets, W + jets, single top, t£V + jets, tZbb, ttcc, ti + light jets and tZH (my = 125 GeV) events.
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Figure 4.27: Representation of the calculation of the CLs. The distributions shown here are merely for illustration purposes, and
do not correspond to the actual probability distributions.

Higgs masses. However, for m4 > 160 GeV, the opposite is observed since the cross section of ttA
relative to t#H is much larger (see [Table 4.1). For tfA events with m4 = 40 GeV, the CL for each
luminosity is lower relative to the heavier CP-odd Higgs masses, despite its cross section being larger.
This happens because the decrease of the cross section with the scalar boson mass is smoother for the
CP-odd case in comparison to the CP-even case, being compensated by an increase in the number of
events that go through reconstruction for larger Higgs masse This is why we have more ¢t A events
after reconstruction for heavier CP-odd Higgs masses (see [Table 4.3). Finally, in [Figure 4.30] (scenario 3),
we show that if a new scalar assumed to be CP-even is found, CP-odd exclusion is possible for the Higgs
masses considered, except for mj = 160 GeV. This happens because both hypotheses for this case have
almost the same number of events distributed similarly in the variables considered, which degrades the
sensitivity for exclusion.

A summary of the above conclusions is presented in Each plot shows the luminosity
required to surpass a given CL (20 for the first three scenarios, and 5o for scenario 4). If no points are
shown, that is because, even for £ = 3000 fb~!, exclusion is not possible.

Since a heavier Higgs tends do decay into more energetic b-quarks, the percentage of events accepted after applying the cuts
on the jets pr is normally higher for larger scalar boson masses (see appendix [E). Thus, we end up with more events that may be
reconstructed for t£A.
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Figure 4.32: Luminosity needed to exclude scenarios 1 (top left), 2 (top right) and 3 (bottom left) at the 20 level, and scenario 4
(bottom right) at the 50 level, as a function of the scalar boson mass.
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4.10 The C2HDM revisited

The C2HDM was introduced in section 3.4, Now, we want to understand how a measurement or
an exclusion for a given Higgs mass, such as the ones presented in the last section, affects the allowed
parameter space of this model.

We will consider Hs to be the 125 GeV Higgs, while mg, < 125 GeV. In the C2HDM, there are four
types of Yukawa models that preserve an exact Zo symmetry to suppress FCNCs at tree level. In all four,
the top Yukawa couplings are equal (see [Table 3.3). Hence, this discussion is valid for all of them. The
Yukawa Lagrangian for the top, with H; = Hjy, is given by

myg_1S51€2 )

LY = —= [Sﬂ - Ztﬁ’y5:| tH;. (4.32)

Comparing [Equation 4.32|and [Equation 4.1} with H; = h, we get the following conditions:

51 C2
K COS v =
Sp 2 2 2 2 2 2
) S9 Sﬁfihtt— = 3102 + 3206. (433)
KpgsSina = ——
tg

As no new scalar was found, both x;;7 and « are free to vary in the range that we choose. These are the
parameters that will be measured or constrained experimentally. The limits in this work were set for the
pure scalar and pure pseudoscalar scenarios. For these scenarios we get, respectively,

S1

sinaa =0 = Kpp=Et—

> (4.34)

1
cosa =0 = Rhtt‘:ﬂ::j (if s1=0) oy =t (if ;= 0).
5 8

Thus, a limit set on xy,;; constrains the parameters of the model. For the case cosa = 0 and cy = 0,
kp only depends on 5. Because i3 is already constrained to be above one by low energy physics
measurements [19]], we would have xj;; < 1. Besides, because an exclusion for k;,; > 1 is expected to
be easier, i.e., to require less luminosity for a given CL, we are interested in the limits set for s,z < 1. For
instance, if k5,7 < 1/2, we get for the pure pseudoscalar limit tan 5 > 2 (co = 0) and sg < t5/2 (s1 =0),
and for the pure scalar limit we have s < 1/2 (s3 = 0). In we present the luminosity needed
to exclude k7 at the 20 level for the scenario of exclusion of a new CP-even scalar particle with a mass
of 40 GeV (scenario 1). This is the best of all scenarios for exclusion. We can exclude x,; above 0.4 by
the end of the LHC run. Smaller values of r,; will require to consider more tth decay channels.

As we can see in the CP-even limit is obtained for sin « = 0, which is equivalent
to sin g = 0 in the C2HDM. In order to see how sin ap changes when sin «v is well constrained, the
constraints on the parameter space in scenarios where one is either close to the CP-even or to the CP-odd
limits were studied. In we present the allowed points in the C2HDM parameter space (c; vs.
s2), for the case where we are close to the CP-even limit. We vary the values of 7, sin a and tan 3 in
the ranges 0.1 < k7 < 1.2,0.1 <sina < 0.2 and 1 < tan 8 < 10. In the left plot we see the variation
with k7, in the middle with sin « and on the right with tan 3. In we present the limit where
we are close to the CP-odd case, with 0.8 < sina < 0.9. Even though sin o only changes by 0.1 in
both cases, the allowed values for sin a5 are quite dispersed, and depend on the values of both ;7 and

75



Integrated Luminosity (fo™")

3000

CP-even exclusion at 20 CL for m,, = 40 GeV

2500

2000

1500

1000

500

o »

e
C

O <«

®
[ ]
®
L
0.4 0.6 0.8 1.0
Kntt

bs
bzt?h

b4ITh

Figure 4.33: Luminosity needed to exclude k7 at the 20 level for the pure CP-even case (scenario 1) for a mass of 40 GeV.

tan 8. Thus, the allowed parameter space of the C2ZHDM is quite large and we need some other sources

of measurement to constraint it. To be clear, no other theoretical/experimental constraints for the C2ZHDM

were taken into consideration other than the ones already stated.
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Chapter 5

Conclusion

The original motivation for this study was to examine the possibility to determine the CP-structure
of the bottom quark Yukawa interaction with the discovered Higgs in bbh production. In particular, we
wanted to see if a pure CP-even Higgs could be distinguished from a pure CP-odd one. We found that
strategies suggested in the literature for this determination in the case of the top quark do not work for
the bottom quark. This was also confirmed for very light Higgs bosons with masses of 10 GeV, and
for the single bottom and Higgs associated production. The underlying reason for these observations is
that the differences between CP-even and CP-odd components are proportional to mff, and will only be
meaningful when the fermion mass is of the same order of magnitude as my,.

Previous works established that several kinematic distributions for ¢th are indeed sensitive to the
CP-components of the top Yukawa coupling. While these studies assumed m; = 125 GeV, a study
of its applicability to other Higgs masses was missing. In this thesis, we investigate the dilepton final
states of the tth (with h = H, A) for scalar boson masses up to 500 GeV. We found that for the 4 boson
masses considered, there is still a good level of discrimination between scalar and pseudoscalar Yukawa
interactions, at parton level. However, the differences between those states become smaller as the Higgs
mass increases, and vanish around mj; = 450 GeV.

After the parton level study we proceeded to a full reconstruction of the ¢th events. Confidence levels
are presented for the exclusion of several scenarios as a function of the luminosity, for different Higgs
masses. It is shown that the required luminosity for exclusion at a given CL increases with the scalar boson
mass. Given the current LHC luminosity of 150 fb~!, exclusion of a pure CP-even Higgs with masses
below 80 GeV, assuming SM-like Higgs couplings, is already possible. For myg > 200 GeV, that same
exclusion is not possible. We also found that CP-odd exclusion, again assuming SM-like Higgs couplings,
is harder than CP-even exclusion for ~A boson masses up to 160 GeV. For higher masses, the opposite
is true. Additionally, if a new Higgs is found, we have enough sensitivity to exclude the possibility of
said scalar being purely CP-odd in the explored Higgs mass range. Furthermore, we have set a lower
limit for ;7 of ky,; = 0.4, for exclusion of a new CP-even scalar with a mass of 40 GeV (scenario 1), at
the 20 level. For the limits where we are close to the CP-even or CP-odd cases, we saw that the allowed
parameter space of the C2ZHDM is quite large and that other measurements to constrain it are necessary.

A natural follow up to the work developed in this thesis would be to study how the confidence levels
change as a function of the CP-phase. Another possibility is to combine several tth decay channels, which

should further improve the results obtained.
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Appendix A

Natural units

In particle physics it is common to use a system of units known as natural units where ¢ = A = 1 [20].
The main advantage of this choice is that it simplifies mathematical expressions as there is no longer the
need to carry around powers of /& and c. On the other hand, all quantities are now expressed in terms
of energy units, usually powers of GeV (see[Table A.T)), which makes dimensional analysis impossible
unless the dimensions of the quantity in question are already known.

As a consequence of using units where ¢ = 1, both time and space have the same dimension. The
Compton Wavelengtkﬂis given by A = 27h/mec, therefore in these units length has dimensions of inverse
mass or equivalently inverse energy, which we represent by saying [L] = M ~!. The partial derivative
0, has dimensions of inverse of length, therefore [0,] = M. Since the action .S, which is defined as
S = fj;o dt dx dy dz L, is dimensionless, because it has the same units as 7, this forces the Lagrangian
dimension to be M*. From this, we can determine the dimension of the fields and other objects that come
in the Lagrangian.

Table A.1: Relation between S.I. and natural units.

Quantity S.L h=c=1
Energy | kgm?s—? GeV
Momentum | kgm s~} GeV
Mass kg GeV
Time S GeV~!
Length m GeV~!
Area m? GeV 2

The Compton wavelength of a particle is equal to the wavelength of a photon whose energy is the same as the rest energy of
that particle.
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Appendix B

Some terminology on group theory and the
SU(n) group

The generators are the vectors of a Lie algebrzﬂ that are the elements of its basis. The commutator of
two generators (G, and Gy, is given by

(Gay Gol = 1) fabeGe, (B.1)

where f,;. are the structure constants of the algebra.

In physics, the group SU(n) is of particular importance. It is a Lie group which, in the fundamental
representatiorﬂ is composed of n X n complex unitary matrices U with determinant +1. Such matrices
contain 2n? real Degrees of Freedom, but the unitarity constraints

Y UwUj =0 (B.2)
k=1i#j
and
> Ukl =1 (B.3)
k=1

reduce this number in half. Since the determinant must be 41, the total number of Degrees of Freedom
becomes n? — 1.

The SU(2) group has three generators which are hermitian 2 X 2 matrices with zero trace in the
fundamental representation. They are the Pauli matrices divided by two. The Pauli matrices are equal to

01 0 —1 1 0
7—1:<1 0)77_2:<i OZ>,7—3:<0 _1>a (B4)

and the structure constants are €, (With €123 = 1), which is the fully antisymmetric tensor.

In SU(2), all its representations are equivalent to its complex conjugates. This is because there exists a

"Vector space defined by having the operation [A, B] = C, which is called a Lie parenthesis. A, B and C' are vectors
belonging to this vector space.

2A Lie group is a continuous group whose elements £ around the identity element of the group are written as the exponential
of a vector of a Lie algebra: £ = exp (i Y, 6aGa). In the fundamental representation, tr (GaGs) = 3 8ab.
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matrix X such that U* = X ~1UX, therefore if « is an SU(2) vector, i.e., u — Uu, then Xu* is also an
SU(2) vector, since Xu* — UXu*.

The SU(3) group has 8 generators, which are the Gell-Mann matrices divided by two in the fundamental
representation. The Gell-Mann matrices are given by

010 0 — O
)\1 = 1 0 0 5 >\2 - Z 0 0 )
0 0 0 0 0 O

[a)
(a)
—
e
)
d

)\4 = 0 0 O y >\5 - 00 0 3
1 0 0 1 0 0
(B.5)
0 0 O 0 0 O
e = 0 0 1 , A7 = 0 0 — )
01 0 2 O
1 0 O ] 1 0 O
A3 = 0 -1 0 , Ag = —— 01 O
0O 0 O \/§ 0 0 -2
The structure constants are given by
fi3 =1, (B.6)
1
f1ar = fi65 = foae = fos7 = f345 = f376 = 3 (B.7)
V3
fass = fers = 5 (B.8)
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Appendix C

The CKM matrix

The CKM matrix is a 3 X 3 unitary and in general complex matrix that arises from the mismatch
between weak eigenstates and mass eigenstates in the quark sector [12}35,[83]]. A unitary square matrix
of dimension n has n? real Degrees of Freedom. The standard parametrization of this type of matrices
involves n(n — 1) /2 rotation angles and n(n + 1)/2 phases. If that matrix is the CKM matrix, then 2n — 1
of those phases are independent and therefore physically irrelevant because they can be cast away by
rephasing the quark fields [34].

If we have a 2 x 2 CKM matrix, we can parametrize it using one angle and three phases, but the three
of them can be removed. For a 3 x 3 matrix, we have 3 angles (Euler angles) and six phases, of which 5
are independent. The remaining phase that cannot be canceled out is the source of CP-violation in the SM.

Experimentally, the most accessible quantities of the CKM matrix are the moduli of its elements.
For example, the amplitude for the 5 decay d — wu is suppressed by V4 and its cross-section will be
2, then, by measuring it, we are able to determine |V,,4|. These numbers are always

proportional to |V,4
smaller than unity since unitarity implies [|34]]

Vaal” + Vas* + [Vaal* = 1, (C.1)
Veal” + [Ves|* + Vi[> = 1, (C.2)
Vidl* + Vis|* + [Viol* = 1, (C.3)
Vaal? + [Ved|” + [Via)* = 1, (C.4)
Vasl” + [V + [Vis|* = 1, (C.5)
Vs> + [Vao|* + [Vio|* = 1. (C.6)

The experimental values of the magnitudes of the CKM matrix elements are [|12]]

Vial |Vas|  [Vis| 0.97420 + 0.00021  0.2243 + 0.0005 0.00394 + 0.00036
Veal |Ves| [Vl | =| 021840004  0.997+£0.017  0.0422 +0.0008 |. (C.7)
Vial  |Vis| [Vl 0.0081 +0.0005  0.0394 4+0.0023  1.019 & 0.025

89



90



Appendix D

Top production at the LHC

In hadron colliders, tops are mainly produced in pairs through the processes gqg — tt and gg — tt (at
V/s = 14 TeV, about 90% of the production is from the latter process [12])). [Figure D.1{and |Figure D.2|
show the LO Feynman diagrams for the top quark pair production and its cross section as a function of
the CM energy, respectively.

q

q t g t
9 9
t t
9

Figure D.1: Top quark pair production Feynman diagrams at LO.
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Figure D.2: Experimental and theoretical ¢t cross sections for m; = 172.5 GeV. Image from [|12].

Besides top pair production, single top production is also expected, although the cross section of this
process is smaller. The relevant channels are the s- and t-channels, §'q — bt and qb — ¢'t, respectively,
and the Wt associated production, bg — W ~t and bg — W . The Feynman diagrams are displayed in
The cross sections for the top and anti-top quark are different in all these processes. The cross
section of all three channels that contribute to single top-quark production are shown in|Figure D.4] as a

function of the CM energy.

g 20090009

b —>—

W+

j=all

(a) s-channel.

(c) Wt t-channel.

w-

W+

(b) t-channel.

W+

(d) Wt s-channel.

Figure D.3: Single top production Feynman diagrams at LO.
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Figure D.4: Experimental and theoretical single top cross sections for m; = 172.5 GeV. Image from .
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Appendix E

Efficiencies in tth reconstruction

In the signal efficiencies as a function of different Higgs masses (for both scalar and
pseudoscalar) are shown after the pre-selection (Nje;s > 4 and Ny, > 2), reconstruction without Truth
Match and final selection cuts (Jm;+;- — mz| > 10 GeV and N, > 3). It should be stressed that no
optimization of the reconstruction was intended, which could improve the results shown. That stays
largely outside the scope of this thesis, since it would make more sense to perform such an optimization
when using real data from LHC experiments.

Table E.1: Efficiencies (in %), rounded to the nearest unit, as a function of the selection cuts and reconstruction for tth events.
Np > 3 means at least 3 b-tagged jets.

Njets > 4 Reconstruction without | |m;+;— —mz| > 10 GeV
my, (GeV) Niep > 2 Truth Match Ny >3
h=H h=A|h=H h=A h=H h=A
40 9 12 57 54 5 7
80 13 15 63 62 7 10
120 16 17 61 62 11 12
160 17 19 61 62 12 13
200 18 19 60 61 14 14

More information on the details about reconstruction without Truth Match is given in section 4.6] It
should be noted that the numbers of the efficiencies corresponding to the reconstruction without Truth
Match (the third column of are normalized in respect to the percentage of events that survive
pre-selection (the second column of [Table E.T)). This sort of representation (Table E.T)) offers a correct
perception of the efficiencies resulting from the method used to reconstruct the ¢th system. The final
selection numbers (fourth column of are also normalized to the numbers in the previous column.
Therefore, to retrieve the full efficiency, including event pre-selection, reconstruction and final-selection,
one needs only to multiply the total number of events (see by the numbers in each column of
All statistical uncertainties of the efficiencies are smaller than 0.2% at the pre-selection level.
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