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Abstract

In this dissertation we do a detailed study of the results of Adami R., Serra E., Tilli P., in the articles
[NLS ground states on graphs, Calc. Var. (2015) 54:743–761] and [Threshold phenomena and existence
results for NLS ground states on metric graphs, J. Funct. Anal. (2016) 271(I):201-223] concerning the
existence of ground states of prescribed mass for the nonlinear Schrödinger energy functional on metric
graphs. The problem under consideration in these articles is

EG(µ) = inf

{
E(u,G) =

1

2
‖u′‖2L2(G) −

1

p
‖u‖pLp(G), u ∈ H

1(G), ‖u‖2L2(G) = µ

}
,

where G is a non-compact metric graph and µ > 0 is prescribed. Note that through Lagrange multiplier
theory we see that any solution of the above minimization problem is a weak solution to the stationary
nonlinear Schrödinger equation

−u′′ + λu = |u|p−2u on G,

for some Lagrange multiplier λ > 0. The main focus of our study is, by following the aforementioned
articles, to show how does the topology (shape) of the graph influences the existence or non-existence of
minimizers. We start by reviewing the theory of ground states in the classical case G = R, where exis-
tence and qualitative properties of minimizers are established. We will refer to them as solitons. Passing
on to graphs and following the work of Adami, Serra and Tilli, we exhibit a topological assumption on
the graph can rule out the existence of ground states except for very particular graphs which are fully
described. This allows a general existence/non-existence result within the class of graphs that satisfy this
assumption. For graphs that do not satisfy this assumption the question of existence of minimal energy
solutions is more delicate. We show that in fact the condition

EG(µ) < ER(µ)

is a sufficient condition for existence of ground states. This existence result is deeply connected with
a dichotomy principle which completely characterizes the behaviour of minimizing sequences for this
problem.

Following the second aforementioned reference we show that not only the topology of a graph affects
the existence of solutions. In fact, it is shown that a particular interplay between the mass of the solutions
and certain metric properties of the graph, such as the length of bounded edges, provides the existence
of a sharp threshold between existence and non-existence of ground states.

The question concerning existence of solutions to the equation

−u′′ + λu = |u|p−2u

can be posed in different two different ways. The first one is to consider λ unknown and, by imposing
a mass constraint, λ will arise as a Lagrange multiplier. The second one is to consider the value λ fixed
and considering as constraint the Lp norm. In the case G = R due to scalings the solutions can be
related. However, for a fixed graph G scalings no longer work and therefore, we need to focus on the
minimization problem

min

{
T (u,G) =

1

2
‖u′‖2L2(G) +

λ

2
‖u‖2L2(G), u ∈ H

1(G), ‖u‖pLp(G) = pµ

}
,

v



where, again, G is a non-compact metric graph and µ is prescribed. We will refer to this problem as the
Pohozaev problem. We start again by studying the case G = R. After this study we investigate if on
a graph the same results of Adami, Serra and Tilli are still valid. In particular, we show that the same
topological assumption still allows for a complete characterization of which graphs admit and do not
admit minimizers.

Key-words: Nonlinear Schrödinger equation, minimization, ground states, metric graphs.

Mathematics Subject Classification: 35R02, 35Q55, 81Q35, 49J40, 58E30
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Resumo

Nesta dissertação é abordada a equação de Schrödinger não linear no contexto de grafos métricos. Em
particular, são seguidos com grande detalhe os artigos de Adami R., Serra E., Tilli P., [NLS ground states
on graphs, Calc. Var. (2015) 54:743–761] e [Threshold phenomena and existence results for NLS ground
states on metric graphs, J. Funct. Anal. (2016) 271(I):201-223]. O foco destes artigos é a existência ou
não existência de soluções de energia mı́nima, com massa fixa, para o funcional de energia da equação
de Schrödinger com um fator não linear do tipo potência em grafos métricos.

Considere-se RN , N ≥ 1. A equação de Schrödinger com este tipo de não linearidade toma a forma:

i∂tu+ ∆u+ λ|u|p−2u = 0, 2 < p < 2 +
4

N − 2
(2 < p <∞, if N ≤ 2), (NLS)

onde λ ∈ R determina a tipologia da equação, ou seja, se é de tipo focusing (λ > 0), ou de tipo defocusing
(λ < 0). Sem perda de generalidade, podemos supôr, multiplicando por uma constante conveniente, que
λ = ±1.

É sabido que o problema de Cauchy local para esta equação localmente está bem posto em H1(RN )
para uma certa condição inicial ϕ ∈ H1(RN ). O comportamento assimptótico das soluções está depende
do sinal de λ e do expoente crı́tico de massa L2 dado por α = 2 + 4

N . Como estamos interessados em
soluções globais para qualquer dado inicial em H1(RN ) focamo-nos no chamado caso subcrı́tico, λ > 0
e p < α. Destas soluções globais estamos particularmente interessados em construir soluções da forma

u(t, x) = eiωtϕ(x), (1)

onde ω ∈ R e ϕ ∈ H1(RN ). Estas soluções são chamadas de estados estacionários. Dada a periodici-
dade em t, esta classe de soluções é de grande importância em fı́sica matemática. Note-se que se u é da
forma (1) então, a função ϕ é uma solução do problema elı́ptico semilinear{

−∆ϕ+ ωϕ = |ϕ|p−2ϕ,

ϕ ∈ H1(RN ).
(2)

A equação (NLS) goza de algumas leis de conservação; são de particular interesse para nós a lei de
conservação da massa e da energia. Estas duas quantidades são expressas, respetivamente, por

M(u(t, x)) =

∫
Ω
|u(t, x)|2dx

e
E(u(t, x)) =

1

2

∫
Ω
|∇u(t, x)|2dx− 1

p

∫
Ω
|u(t, x)|pdx.

Tendo em conta a conservação destas quantidades, podemos usar o problema de minimização

min

{
E(u) =

1

2
‖∇u‖2L2(RN ) −

1

p
‖u‖p

Lp(RN )
, u ∈ H1(RN ), ‖u‖2L2(RN ) = µ

}
. (3)

para construir soluções de (NLS) da forma (1), caso em que ω, como dado em (2), será visto como um
multiplicador de Lagrange. Esta abordagem só é possı́vel no caso subcrı́tico, pelas desigualdades de
Gagliardo-Nirenberg.
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O porquê de estudar a dinâmica da equação de Schrödinger não linear em grafos pode ser motivado
de diversas formas. Aplicações comuns surgem na teoria de Condensados de Bose-Einstein ou em ótica
não linear. Em geral as motivações são de natureza fı́sica e a ideia fundamental é usar grafos para modelar
espaços mais complexos onde um certo fenómento em estudo pode ocorrer.

Recorde-se que um grafo é uma estrutura matemática composta por vértices e arestas, arestas es-
sas que estabelecem uma ligação entre pares de vértices. Neste tipo de estrutura não é possı́vel fazer
muita análise. Para a poder fazer precisamos de um grafo métrico. Dito de forma simples um grafo
métrico é um grafo em que cada aresta é indentificado com um intervalo da forma [0, `], onde ` > 0 é o
comprimento da aresta, ou uma semi-reta, [0,+∞).

Posto isto, o problema fundamental desta tese é estudar, em grafos, o problema de minimização (3)
e responder às questões:
• De que modo a topologia (forma) de um grafo métrico afeta a existência ou inexistência de

soluções de energia mı́nima?
• Existem propriedades de um grafo, que não a sua forma, que afetem a existência ou inexistência

de soluções de energia mı́nima?
Para este fim, a tese encontra-se estruturada da seguinte forma:
• No Capı́tulo 2 é feito um estudo detalhado do problema de minimização do funcional de energia

da equação NLS com massa fixa em R. Obtém-se a existência de solução através do Lema de
Concentração-Compacidade e caracterizam-se as soluções do problema de forma explı́cita.
• No Capı́tulo 3 é feito com detalhe a construção de grafos métricos e é adaptado a este novo setting

o problem (3). É também abordado o conceito de rearranjo de funções em grafos e deduzida uma
desigualdade do tipo Pólya-Szegő.
• O Capı́tulo 4 é dedicado inteiramente a resultados de existência e de não existência. Mostra-se

que grafos compactos (i.e. com todas as arestas de comprimento finito) admitem sempre soluções
para qualquer massa. Dentro da classe de grafos não compactos é dado um argumento de natureza
topológica que garante a não existência de soluções à exceção de certas topologias bem caracter-
izadas. Ainda dentro da classe de grafos não compactos é dada uma condição suficiente para a
existência de soluções de energia mı́nima. É também analisado, para uma famı́lia particular de
grafos, um fenómeno em que existe uma transição de existência de soluções para não existência.
Este fenómeno está dependente de uma relação ı́ntima entre a massa e o comprimento de cer-
tas arestas do grafo. Isto dá ainda uma resposta positiva à última questão feita acima, tornando
evidente que a existência de solução não está dependente de forma única da topologia do grafo.
• No último capı́tulo da tese investiga-se o problema de minimização de Pohozaev que é dado como:

min

{
T (u) =

1

2
‖∇u‖2L2(RN ) −

ω

2
‖u‖2L2(RN ), u ∈ H

1(RN ), ‖u‖p
Lp(RN )

= µ

}
, (4)

para λ, µ > 0. A escolha de nomenclatura para este problema deve-se a Lions em [The concentra-
tion -compactness principle in the Calculus of Variations. The Locally compact case, part 2,Vol-
ume 1, Issue 4, 1984, Pages 223-283]. A motivação deste problema está no facto de que a equação
(2) pode também ser vista como equação de Euler-Lagrange deste problema de minimização. Esta
perspetiva corresponde a fixar o valor ω enquanto, na abordagem anterior, ele é desconhecido e
surge como um multiplicador de Lagrange. Em RN os dois problemas estão relacionados através
de scalings apropriados. Dado que em grafos os scalings não se podem utilizar os resultados dos
capı́tulos anteriores para obter soluções deste novo problema. Tendo isso em conta, é feito em
detalhe o estudo do problema (4) e, em paralelo com os capı́tulos anteriores, são obtidos resulta-
dos no que toca a não existencia de minimizantes para o problem (4). Em particular, vemos que a
mesma condição topológica continua a garantir os mesmos resultados não existência.

Palavras-Chave: Equação Schrödinger não linear, minimização, soluções de energia mı́nima, grafos
métricos.

Classificação AMS 2010: 35R02, 35Q55, 81Q35, 49J40, 58E30
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Chapter 1

Introduction

Nonlinear Schrödinger equations, NLS, are a class of equations that arise naturally in several fields of
physics, such as quantum field theory and nonlinear optics. Even though most of the applications are
physical in nature this equation received a lot of attention from mathematicians, since it is one of the
good equations to model dispersive phenomena. Other notable dispersive equations are for example the
wave and KdV equations. We will focus on a particular class of NLS equations, namely those with a
prototype power nonlinearity which can be taken as

i∂tu+ ∆u+ λ|u|p−2u = 0, 2 < p < 2 +
4

N − 2
(2 < p <∞, if N ≤ 2), (1.1)

defined in RN and λ ∈ R. Note that for λ = 0 the nonlinear part of the equation degenerates, making
(1.1) into the linear Schrödinger equation. For λ < 0, the equation is said to be of defocusing type, and
for λ > 0 it is said to be of focusing type.

It is known, see for example [10, Corollary 4.34], that the local Cauchy Problem is well posed in
H1(RN ). Depending on the sign of λ and the value of the L2-mass critical exponent for the nonlinearity,
α = 2 + 4

N , the asymptotic behaviour of the solutions changes significantly. We summarize this as
follows:
• If λ < 0, then for all initial condition ϕ ∈ H1(RN ) solutions are global in time.
• If λ > 0 and p ≥ α then, the asymptotic behaviour of the solution depends also on the on the “size”

initial data. For small initial data solutions converge weakly to zero as t → ∞, see [10, Theorem
6.2.1], and if the initial data is large, then blow-up in finite time occurs, see [10, Remark 6.8.1].

In the literature, the case p < α is known as the subcritical problem. The cases p ≥ α correspond to the
critical and supercritical problems.

In order to motivate the contents of this dissertation let us delve into the world of quantum physics.
In particular, we will use as a motivation Bose-Einstein Condensates, BEC. For more applications and
motivations, we refer for example to [27] and the references therein.

First of all, what is a Bose-Einstein Condensate? In nature there are four states in which matter
can exist, solid, liquid, gas and plasma. A BEC is what is sometimes referred as a fifth state of matter.
Satyendra Nath Bose and Albert Einstein, two theoretical physicists, in the years of 1924-1925 theorized
that this new state of matter could be attained. Moreover, they stated that this state of matter is attained
on a single quantum level when a gas of subatomic particles, called bosons (in honor of Bose), with low
density is exposed to temperatures near absolute zero. What was verified experimentally in the 1990’s
was that under these conditions the particles of the gas occupy the lowest quantum state (energy) for
the system. These experimentations confirmed, seventy years later, the theoretical results of Bose and
Einstein.

It is shown in [13] that when considering a boson gas composed of N particles confined through
some external potential the total energy of this system is given by the functional

E(Φ) =

∫
− }

2m
|∇Φ(r, t)|2 + V (r)|Φ(r, t)|2 +

g

2
|Φ(r, t)|4dr,

1



CHAPTER 1. INTRODUCTION

where
• Φ is a complex wave function that defines the probability of finding a particle in the position r at

time t;
• m is the mass of the boson particles;
• V is the external potential acting on the system;
• g is a constant, positive or negative, relating the interactions between particles the gas.

Taking a variational approach, we can deduce that the equation that governs this system is the so called
Gross-Pitaevskii equation which takes the form:

i}Φt(r, t) = Φ(r, t)
(
− }

2m
∆ + V (r) + g|Φ(r, t)|2

)
.

Note right away that this is a particular case of the NLS equation with power nonlinearity coupled with a
potential. If we take V ≡ 0 and normalize some of the constants we reach the case p = 4 in the equation
(1.1).

As shown in [13], under the formalism of mean-field theory, which is something that goes beyond the
scope of this dissertation, a ground state that is, a minimal energy solution, exists. Under this formalism
it is also proven that any ground state will give rise to a condensate wave function that has the shape of a
stationary state, that is, the function that describes the condensate is of the form

Φ(r, t) = φ(r)e−iωt,

where φ is a real valued function renormalized in L2 to the total number of particles and ω a constant
depending on the conditions under which the condensation is taking place. Functions like Φ above rep-
resent standing waves, meaning functions that do not travel in space. Essentially, φ gives the amplitude
of the wave and the parameter ω gives its frequency. Note that Φ is a solution of the Gross-Pitaevskii
equation if and only if the function φ is a solution of the stationary semilinear elliptic equation:

ωφ(r) = φ(r)

(
− }2

2m
∆ + V (r) + gφ2(r)

)
.

To summarize, the mathematical treatment of BEC is as follows. Firstly, choose a spatial domain
Ω and minimizer the Gross-Pitaevskii energy functional. If minimizers exist then, theoretically, it is
possible that a BEC can arise in the domain Ω.

One might now ask: what kind of domains can one use to produce a BEC? In practical experiments
they are often taken to be optical or magnetic traps with the shape of disks or cigar shaped traps. However,
it was envisioned recently the possibility of constructing ramified traps, see [1] and the references therein.
This matter of domains leads us finally into graphs. It is expected that a ramified trap Ω can be modelled
by a suitable graph G. Then, if minimizers exist in G this suggests the possibility of creating a BEC in the
trap modelled by the graph. An absence of minimizers on the graph would then suggest that the system
on the trap would be unstable and that condensation would not occur in the trap modelled by the graph.

Before any considerations are done let us quickly recall what is a graph. A graph on its own is a
very interesting mathematical object and has had an intense focus from mathematicians. It is a struc-
ture composed of two key elements which we refer to as vertices and edges, the latter component also
establishes a connection with the former. The study of graphs was extremely important throughout math-
ematics. From the viewpoint of pure mathematics graphs allowed the connection between what at first
might seem very distinct fields of study, take for instance combinatorics and topology, see for exam-
ple [6]. From the viewpoint of applications, they are one of the most useful tools to model very complex
systems. To name a few take for example road connections, airline flights, social media networks and
even the internet.

The previous motivation establishes a connection with graphs and the NLS equation, whilst also
giving an important and practical motivation for studying the NLS equation on graphs. The most natural
question is now: how can we study it?
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The main problem of this dissertation is to find functions of prescribed mass that minimize the NLS
energy functional on graphs. Taking a graph in the combinatorial sense is not enough, in these graphs
not much analysis can be done. In order to do it we need a metric graph. Put simply, a metric graph is
a graph upon which we assign to each edge an interval of the form [0, `], where ` > 0 is the length of
the edge, or of the form [0,+∞). This means these graphs admit bounded and unbounded edges. The
problem only becomes mathematically relevant if there exits at least one unbounded edge in the graph.
In fact, a multitude of situations might happen. Take Figures 1.1 and 1.2, for instance.

Figure 1.1: A metric graph which admits
a ground state Figure 1.2: A metric graph that does not

admit a ground state

We will see that the first graph admits ground states of arbitrary mass but the second one does not
admit ground states at all! Note that the graphs are not that different. Simple differences like this one
culminated in the question: what properties of the graphs (like their shape or length of particular edges)
affect the existence or non-existence of minimal energy solutions? The answer to this question is the
core of this dissertation.

We now describe the contents of this thesis. In order to translate this problem into graphs we need
some tools. Given that metric graphs can have edges of infinite length it makes sense to first understand
the minimization problem in R. Chapter 2 is devoted to this. Consider the equation

i∂tu+ u′′ + |u|p−2u = 0, 2 < p <∞,

where u′ denotes the spatial derivative. It is known that stationary states, meaning solutions of the form

u(x, t) = eiωtϕ(x), (1.2)

exist for p > 2 (in fact we construct them). We focus on the subcritical case, p ∈ (2, 6), in order to
have solutions defined for all times. On this matter of criticality we make the remark that even though
this thesis concerns the subcritical case, in graphs some advances have been made recently in the critical
case, see for example [14] and [15]. The problem under study in Chapter 2 is then to find solutions of
the following minimization problem,

min

{
E(u) =

1

2
‖u′‖2L2(R) −

1

p
‖u‖pLp(R), u ∈ H

1(R), ‖u‖2L2(R) = µ

}
. (1.3)

Section 2.1 is devoted to the study of existence of solutions to the above problem. Since the func-
tional is bounded from below, see Lemma 2.2, solutions might exist. However, the lack of compactness
that comes with the unboundedness of R prevents us from using the direct method of the Calculus of
Variations. This problem is then solved by the Concentration-Compactness Principle, and the use of
a powerful lemma which states a certain dichotomy for the behaviour of minimizing sequences, see
Lemma 2.4; the lemma and the whole principle is due to P. Lions, see [23] and [24]. This principle
is a fundamental tool in Calculus of Variations in order to treat problems in unbounded domains and
therefore, a large part of Chapter 2 is devoted to present this technique. With this lemma proved we can
finally show that minimizing sequences converge to a minimizer, see Theorem 2.7. In Section 2.2 we
provide a characterization of solutions. The first natural question is: are the solutions unique? Through
the differentiability of E we can apply the theory of constrained extrema problems in order to see that a
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CHAPTER 1. INTRODUCTION

solution to the minimization problem (1.3) necessarily needs to satisfy, in a weak sense, the stationary
nonlinear Schrödinger equation

−u′′ + λu = |u|p−2u, (1.4)

for some Lagrange multiplier λ > 0. Solutions to this problem have been completely characterized.
In particular, in dimension one, all solutions are, up to translation and phase multiplication, strictly
decreasing in (0,+∞), positive and even. In fact, the main result of this section, Theorem 2.16, states
that u is a complex valued solution if and only if u has the form

u(x) = eiθϕ(x− y), y, θ ∈ R, (1.5)

and whereϕ has all the properties mentioned above. Moreover, it is also seen that the mass of the function
u, as well as its energy, is given precisely by those of function ϕ. This is related with the conservation
laws of the solutions to the NLS equation, which we also discuss. Finally, in Section 2.3 it is shown that
solutions scale with the mass, that is, if ϕµ is the unique positive and even minimizer of (1.3) with mass
µ, then,

ϕµ(x) = µαϕ1(µβx), (1.6)

where α and β are positive constants that depend on p, and ϕ1 is the unique positive and even minimizer
with mass 1. Moreover, we show that ϕ1 takes the form of a hyperbolic secant. We will refer to these
solutions as solitons.

In Chapter 3, we turn our attention to graphs and formalize the minimization problem (1.3) in this
new setting. In Section 3.1 all the concepts related to graphs are introduced. Special attention is given
to the definition of metric graph and to the formalization of some properties related with this structure.
Function spaces such as C(G), H1(G) and Lp(G), for p ∈ [1,+∞], are then defined on a metric graph
G. We make sense of the differential expression

f 7→ −d
2f

dx2
+ λf

in graphs and through it we define an operator. In this context we introduce the standard or Neumann-
Kirchhoff vertex conditions which can be seen as an analogue of the Neumann boundary conditions on
an interval. We then finish the chapter by stating the new problem, which now becomes

inf

{
E(u,G) =

1

2
‖u′‖2L2(G) −

1

p
‖u‖pLp(G), u ∈ H

1(G), ‖u‖2L2(G) = µ

}
, (1.7)

and by proving some a priori regularity results, see Proposition 3.17, as well as necessary conditions
for the existence of minimizers. To solve this problem the notion of rearrangement of a function will
be fundamental and, therefore, some time is devoted to bring this concept into the setting of metric
graphs. Particular attention is devoted to decreasing rearrangement and the Schwarz symmetrization
or spherically symmetric decreasing rearrangement. The ability to know if a rearrangement increases
or decreases the energy of a function will be crucial. Therefore, following the ideas of [18], we state
and prove a Pólya-Szegő-type inequality in metric graphs, see Theorem 3.21, which states that for the
decreasing rearrangement the kinetic term of the energy functional always decreases and that a sufficient
condition for the same to happen for the Schwarz symmetrization is that the pre-level sets of the function
to be rearranged to have at least 2 elements. To finish this chapter we present two results which are
Gagliardo-Nirenberg-type inequalities to estimate Lp and L∞-norms on non-compact graphs (meaning
the graph has at least one unbounded edge).

Chapter 4 is devoted entirely to the matter of existence and non existence of ground states and follows
closely the work done in [1] and in [2]. We begin by proving that the problem is only mathematically
interesting when graphs are non-compact, since for compact graph G, meaning a graph where all its
edges have finite length, we have that H1(G) is compactly embedded in Lp(G) for all p ≥ 1 and thus the
infimum in (1.7) is always attained. For non-compact graphs a multitude of situations might happen, as
was mentioned before with Figures 1.1 and 1.2. As we will see in Section 4.1, it will be easier to rule out
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existence than to prove it and while there is no general theory concerning existence, the question of non-
existence has some general results. As can be seen in [1], we will see that when a graph satisfies a certain
topological assumption, which roughly states that if we disconnect the graph then all the connected
components contain at least one half-line, then minimizers will not be attained except for graphs with a
very particular structure (they are completely described, see Figures 3.5 and 4.3). Therefore, under the
class of graphs that satisfy this assumption we have a necessary and sufficient condition for existence of
ground states. Consequently, also for non-existence. This result is given in Theorem 4.9. Note that the
graph in Figure 1.2 satisfies this assumption, while the one in Figure 1.1 does not.

Section 4.2 is devoted entirely to existence results. We start by proving some a priori estimates
for minimizers and by establishing qualitative properties of ground states on the unbounded edges of
graphs, see Proposition 4.15. In this section an important scaling rule for both functions and graphs is
also introduced, see Proposition 4.11. This result simplifies computations significantly, since it roughly
says that the minimization problem (1.7) is equivalent to minimize with a different mass constraint on a
homotheticaly scaled graph. The main results of this section are Theorem 4.18 and 4.19. The first shows
that the behaviour of minimizing sequences only has two possibilities: either the sequence converges
to zero or to a minimizer. The second result is the one that gives us a sufficient condition to have a
minimizer. Namely, let EG(µ) be defined by the quantity in (1.7), then ground states of mass µ will
exist if the energy of a solution of the same mass in R is a strict upper bound to EG(µ). A practical
corollary of this existence result is introduced straight away and this section finishes with a series of
examples. Finally, Section 4.3 means to exhibit in detail what in [2] is called the threshold phenomenon.
Comparing back with the other existence results we see now that not only the topology of the graph
influences the (non-)existence of solution; some metric properties of the graphs, such as the lengths of
bounded edges, can influence the existence of solution. This is shown in Proposition 4.23 and, after
proving a stability result, it is shown that graphs like the one in Figure 4.15 admit ground states of mass
µ if and only if the quantity µβ` is larger than a certain threshold (hence the name). Here the constant β
is exactly the one given in the rescaling (1.6) and ` is the length of the terminal bounded edge of these
graphs.

In the previous sections we saw that if a minimizer u to the minimization problem exists, then there
exists a Lagrange multiplier λ > 0 such that the minimizer solves the stationary equation (1.5). Note
now that by considering the functionals

T : H1(G)→ R; T (u) =
1

2

∫
G
|u′|2dx+

λ

2

∫
G
|u|2dx,

where λ > 0, subject to the constraint

R : H1(G)→ R; R(u) =
1

p

∫
G
|u|pdx = µ,

where µ > 0 and p > 2, we arrive, via constrained minimization, at the Euler-Lagrange equation

−u′′ + λu = θ|u|p−2u,

where θ ∈ R is a Lagrange multiplier. By multiplying by a suitable constant depending on θ and p
we can reduce to the equation (1.4). This motivated an important question: given any fixed Lagrange
multiplier λ > 0 and a graph G taking a different variational approach can we deduce the existence of
solutions to the same equation? In RN , through scalings we can relate both problems. However, for a
fixed graph G scalings no longer work and therefore we need to focus on the minimization problem:

inf

{
T (u,G) =

1

2

(
‖u′‖2L2(G) + λ‖u‖2L2(G)

)
| u ∈ H1(G), R(u,G) =

1

p
‖u‖pLp(G) = µ

}
,

for µ > 0. We will call this problem as the Pohozaev problem, see [24] for a justification of the nomen-
clature.
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CHAPTER 1. INTRODUCTION

To finish this dissertation, in Chapter 5 we focus on studying this problem. In particular, we inves-
tigate, in parallel with the previous chapters, if the results of [1] and [2] still valid. In Section 5.1 we
turn ourselves to the study of the Pohozaev problem in R. We do not use the scalings approach to solve
the problem in R, instead we use a method that is entirely similar to that of minimizing the NLS energy
functional in R. It involves a variation of the Concentration-Compactness Lemma presented in Chapter 2
which was introduced by Lions in [23]. See Lemma 5.6. Section 5.2 is then devoted to graphs. The first
non-existence results are obtained. In particular, we show that under assumption(H) the graphs for which
there is existence of minimizers to the Pohozaev problem are exactly the same as the ones in Chapter 2.
This again gives us a necessary and sufficient condition for non-existence within this class of graphs that
satisfy this assumption.

The appendices are designed to make the reading of this dissertation as self-contained as possible.
The more frequently used results are stated there. Even though the proofs are omitted, references are
provided. Appendix A contains results of measure theory and Sobolev embeddings. A quick overview of
rearrangements of functions in RN is also presented. Appendix B contains some notions of Differentiable
Calculus in Banach spaces and the Theory of Lagrange Multipliers in Banach spaces as well. Finally,
in Appendix C one can find results on the one dimensional NLS equation like regularity, existence and
qualitative properties.
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Chapter 2

A Constrained Minimization Problem in R

Let us begin by studying the one dimensional NLS and clarifying some of the matters said in the in-
troduction. For now let us assume all functions are complex valued. We are concerned with finding a
solution in H1(R,C) to the problem {

i∂tu+ u′′ = λ|u|p−2u,

u(0, x) = ϕ(x).
(2.1)

where u′ denotes the spatial derivative of u, ϕ ∈ H1(R,C) \ {0}, p > 2 and λ ∈ R. Henceforth we
consider only the subcritical case, λ > 0 and 2 < p < 6. Note that α = 6 is, for us, the L2-mass critical
exponent. Suppose now a solution u to the above problem exists. Setting v = λ

1
p−2u and plugging v

into (2.1) we arrive at
i∂tu+ u′′ = |u|p−2u.

Hence, without loss of generality, we may assume λ = 1 in (2.1) and thus in what follows the problem
to be considered is {

i∂tu+ u′′ = |u|p−2u,

u(0, x) = ϕ(x).
(2.2)

Before passing to the question of existence of solutions let us state the conservation laws of mass and
energy mentioned in the introduction.

Proposition 2.1: Conservation Laws of the NLS

If u is a solution to the Cauchy Problem (2.2) then, in its interval of definition,

d

dt

[∫
R
|u(x, t)|2dx

]
= 0,

and,
d

dt

[
1

2

∫
R
|u′(x, t)|2dx− 1

p

∫
R
|u(x, t)|pdx

]
= 0.

For a proof of this result we refer to [11, Section 7.4]. For smooth solutions the main idea of the
proof is to multiply the equation by u and ∂tu and integrate over R. By taking the imaginary part in the
first and the real part in the second we get both conservation laws.

We are now interested in constructing solutions of the form

u(t, x) = eiωtϕ(x) (2.3)

where ω ∈ R and ϕ ∈ H1(R,C). These solutions have physical interest because they are periodic in
time. In the literature they are referred as standing waves or stationary states. It is clear that if u as above
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CHAPTER 2. A CONSTRAINED MINIMIZATION PROBLEM IN R

is a solution to (2.2) then ϕ has to solve the following stationary semilinear elliptic equation

−ϕ′′ + ωϕ = |ϕ|p−2ϕ. (2.4)

This equation was intensively studied and it is known that for ω ≤ 0 no solutions exist. For a justification
of this fact we refer the reader to [7] or [29]. Henceforth, we assume ω > 0.

Note now that if a solution to (2.2) is of the form given in (2.3) then, since both the mass and the
energy are conserved this yields that the energy and mass of the solution are exactly those of the function
ϕ. We are now interested in discovering which of the solutions of (2.4), for a certain prescribed mass,
minimize the energy functional of the NLS equation. These are to be called ground states or minimal
energy solutions.

To state this problem rigorously let µ > 0, p ∈ (2, 6) and consider the nonlinear Schrödinger energy
functional, E : H1(R,C)→ R, as follows:

E(u) =
1

2
‖u′‖2L2(R,C) −

1

p
‖u‖pLp(R,C) (2.5)

=
1

2

∫
R
|u′|2dx− 1

p

∫
R
|u|pdx.

The functional is well defined since, from Corollary A.10, if u ∈ H1(R,C) then u ∈ Lq(R,C) for
q ≥ 2.

As a consequence of the negative term in (2.5) and since p > 2, the functional E is clearly not
bounded from below. This naturally creates a problem when looking for minimizers. Therefore we focus
on the problem of minimizing E in the following subset of H1(R,C):

H1
µ(R,C) :=

{
u ∈ H1(R,C) : ‖u‖2L2(R,C) = µ

}
.

That is, we look for solutions with prescribed mass. Thus, in a more compact way, our problem can be
written as:

find u0 ∈ H1
µ(R,C) such that E(u0) = inf

u∈H1
µ(R,C)

E(u). (2.6)

Furthermore, should a minimizer exist, we wish to characterize it. The goals for this chapter are as
follows. In the first section we concern ourselves with the existence of ground states followed by a
characterization of them in the second section. In the final part of this chapter we focus mainly on
scaling properties of the solutions to problem (2.6).

Let us start by establishing some notation. We will see in the second section of this chapter that if
ϕ ∈ H1

µ(R,C) is a solution to the above problem then, up to phase multiplication by a complex constant,
the function ϕ is a real valued function. Moreover, it is also straightforward to check thatE(|u|) ≤ E(u)
for all u ∈ H1

µ(R,C), hence
inf

u∈H1
µ(R,C)

E(u) = inf
u∈H1

µ(R,R)
E(u).

Therefore, there is no loss of generality when working with real valued functions. With that in mind we
establish the following notations:

H1(R) := H1(R,R),

H1
µ(R) := H1

µ(R,R).

The same reasoning holds for Lebesgue spaces.

2.1 Existence of Solution to the Minimization Problem

In this section, via the direct method of the calculus of variations, we prove existence of solution to
problem (2.6). The fundamental idea of the direct method is to consider minimizing sequences, that is,
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2.1. EXISTENCE OF SOLUTION TO THE MINIMIZATION PROBLEM

a sequence in the space H1
µ(R) such that the sequence E(un) converges to the value of (2.6). However,

as a consequence of the negative term in the functional E, a priori, the functional does not have to be
bounded from below even when considering the subset H1

µ(R), thus, such a sequence might not exist.
Therefore, the first step is to prove that E is in fact bounded from below in H1

µ(R).

Lemma 2.2

Let µ > 0, p ∈ (2, 6). Then there exists K = K(p, µ) > 0 such that

E(u) ≥ 1

2
‖u′‖2L2(R) −

K

p
‖u′‖

p−2
2

L2(R)
for all u ∈ H1

µ(R). (2.7)

In particular, the functional E is bounded from below in H1
µ(R).

Proof. Let u ∈ H1
µ(R). By Corollary A.4 we have, for α = p−2

2p , the following estimate

‖u‖Lp(R) ≤ C‖u′‖αL2(R)‖u‖
1−α
L2(R)

, for all u ∈ H1(R),

for some positive constant C = C(p). By restricting u to H1
µ(R) we get that:

‖u‖pLp(R) ≤ K‖u
′‖
p−2
2

L2(R)
,

where K = K(µ, p) is a positive constant. Plugging this estimate into (2.5) we get the estimate (2.7).
We can now use this to show that E is in fact bounded from below. Consider the auxiliary function
f : R+

0 → R given by f(x) = 1
2x

2 − K
p x

p−2
2 . For p ∈ (2, 6) we have that f is continuous and coercive,

therefore the functional E is bounded from below. �

To conclude general considerations we prove the following result by using the same argument as
in [31, Remark II.3.2].

Proposition 2.3: Negativity of the infimum

Let µ > 0 and Iµ := inf
u∈H1

µ(R)
E(u). Then Iµ < 0.

Proof. By proving that there exist admissible functions whose NLS energy is negative it follows imme-
diately that Iµ < 0. By reasons that will be better understood at the end of this chapter let us look for
functions of the form

ga,c(x) = ae−
1
2

(x
c

)2 ∈ H1(R)

with a, c > 0. Given a fixed we wish to find c > 0 such that ga,c ∈ H1
µ(R), that is,

∫
R |ga,c|

2dx = µ. By
performing a simple change of variables we get the following relation

µ = ca2

∫
R
e−y

2
dy = ca2√π.

Thus, we have in fact that c = c(a) is given by

c =
µ

a2
√
π
.

Hence, the above mass constraint allows us to take the following one parameter family of functions

ga(x) = ae
− 1

2

(
x
c(a)

)2
∈ H1

µ(R).

9



CHAPTER 2. A CONSTRAINED MINIMIZATION PROBLEM IN R

By plugging the expression for these functions into the functional E we get

E(ga) =
a2

2c2

∫
R

(x
c

)2
e−(xc )

2

dx− 1

p
ap
∫
R
e−

p
2

(x
c

)2dx

=
a2

2c

∫
R
z2e−z

2
dz − apc

√
2

p
√
p

∫
R
e−z

2
dz

=
a2√π

2c
− apc

√
2

p
√
p

√
π = a4 π

4µ
− ap−2µ

√
2

p3
.

By the assumption p ∈ (2, 6) we have that for a small enough the NLS energy of the functions ga is
strictly negative. �

2.1.1 The Concentration-Compactness Lemma

As said before, the fundamental idea underlying the direct method of the calculus of variations is the use
of minimizing sequences. For problem (2.6), with µ > 0 fixed, a minimizing sequence is a sequence
(un)n∈N ⊂ H1

µ(R) that satisfies E(un) → Iµ, whose existence is guaranteed by Lemma 2.2. The key
step of the direct method comes next: through compactness results one obtains a candidate for minimizer
to the problem. If the same problem was posed in the case where the domain of the functions is a
bounded subset of R, things would become significantly simpler. The main reason for that is because of
Rellich-Kondrachov compact embedding results, in particular, for the case of dimension one, Corollary
A.9. When working in R this result does not hold so we need to find a way to regain compactness in
order to get a possible candidate for solution to our problem. The way to do so is via the Concentration-
Compactness Principle, which we will explain ahead. The main result that makes the whole principle
work is the following concentration-compactness lemma due to Pierre-Louis Lions, see [23, Lemma
I.1,Lemma III.1], which we now state and prove.

Lemma 2.4: Concentration-Compactness Lemma

Take µ > 0 and let (un)n∈N be a bounded sequence in H1(R) with ‖un‖2L2(R) = µ. Then, there
exists a subsequence (unk)k∈N satisfying one of the following three properties:

1. (Compactness) There exists a sequence (yk)k∈N of real numbers with the property that for
all ε > 0, there exists T > 0 such that∫ yk+T

yk−T
|unk |

2dx ≥ µ− ε for all k ∈ N.

2. (Vanishing) For all t > 0, one has:

lim
k→+∞

sup
y∈R

∫ y+t

y−t
|unk |

2dx = 0.

3. (Dichotomy) There exist α ∈ (0, µ) and sequences (uk,1)k∈N, (uk,2)k∈N bounded in
H1(R), such that:

(a) ‖unk − (uk,1 + uk,2)‖Lq(R) → 0 as k → +∞ for q ∈ [2,+∞);
(b) limk→+∞

∫
R |uk,1|

2dx− α = limk→+∞
∫
R |uk,2|

2dx− (µ− α) = 0;
(c) dist(supp uk,1, supp uk,2)→ +∞ as k → +∞;
(d) lim infk→+∞

∫
R |u

′
nk |2 − |u′k,1|2 − |u′k,2|2dx ≥ 0.

Proof. Let (un)n∈N be a bounded sequence in H1(R) with ‖un‖2L2(R) = µ, for all n ∈ N. Given n ∈ N
and t ≥ 0, consider the concentration function

Fn(t) := sup
y∈R

∫ y+t

y−t
|un|2dx. (2.8)
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This proof, being quite long, is divided in several steps.

Step 1: Properties of the Concentration Function

Fix n ∈ N. We start by showing that the supremum in (2.8) is a maximum. To prove this claim let
t ≥ 0 be fixed. Take now (yk)k∈N ⊂ R a maximizing sequence. In search of a contradiction, suppose
also that |yk| → +∞ as k → +∞, otherwise the maximum is indeed attained by Lebesgue’s dominated
convergence, Theorem A.1. Passing to a subsequence if necessary we can assume that

(yk − t, yk + t) ∩ (yk+1 − t, yk+1 + t) = ∅ for all k ∈ N.

We then have the following

µ =

∫
R
|un|2dx ≥

∫
∪k(yk−t,yk+t)

|un|2dx =
∑
k∈N

∫ yk+t

yk−t
|un|2dx.

Since µ is finite then the above series converges. This, together with the way the sequence (yk) was
chosen, yields

lim
k→+∞

∫ yk+t

yk−t
|un|2dx = Fn(t) = 0.

However, since the integrand function is both positive and continuous, we get that un ≡ 0 which is a
contradiction since un ∈ H1

µ(R).
Note now that Fn is a real valued function defined in R+

0 which is non-decreasing and non-negative.
The non-negativity follows by definition. As for the non-decreasing property note that for s, t ≥ 0 such
that s > t we have [y − t, y + t] ⊂ [y − s, y + s] for all y ∈ R and therefore Fn(t) ≥ Fn(s), for all
n ∈ N.

The sequence of functions (Fn)n∈N is bounded in L∞(R+
0 ) since

0 ≤ Fn(t) ≤
∫
R
|un|2dx = µ, for all n ∈ N, t ≥ 0. (2.9)

Moreover, for fixed n ∈ N, Fn is continuous. To check this let s, t ≥ 0 and, without loss of generality,
suppose that s ≤ t. Then

|Fn(t)− Fn(s)| =
∣∣∣∣max
y∈R

∫ y+t

y−t
|un|2dx−max

y∈R

∫ y+s

y−s
|un|2dx

∣∣∣∣
≤ max

y∈R

∣∣∣∣∫ y+t

y−t
|un|2dx−

∫ y+s

y−s
|un|2dx

∣∣∣∣
= max

y∈R

∣∣∣∣∫ y−s

y−t
|un|2dx+

∫ y+t

y+s
|un|2dx

∣∣∣∣ ≤ 2K|t− s|.

The first inequality comes from the difference of maximums being smaller then the maximum of the
difference, as well as passing the absolute value inside the maximum. The constant K > 0 comes from
the embedding of H1(R) in L∞(R). This, however, proves more than continuity. Since the constant in
the previous estimate is independent of n we also get that (Fn) is an equicontinuous family of functions.

Step 2: Existence of three Mutually Exclusive Regimes

We now deduce the existence of a subsequence of (Fn) that converges pointwise to a non-negative
and non-decreasing function F : [0,+∞) → R. Our hope would be that we could apply directly
Arzelà-Ascoli, see [17, Chapter 4], to the sequence (Fn). However, we cannot apply it to sequences of
functions defined in non-compact domains. We perform a diagonal argument to extract a subsequence
which converges only pointwise, which for our purposes is enough. The sequence can be constructed

11



CHAPTER 2. A CONSTRAINED MINIMIZATION PROBLEM IN R

as follows. When restricting, for all n ∈ N, the functions Fn to the interval [0, 1], they still remain
equicontinuous and uniformly bounded and we are in conditions to apply Arzelà-Ascoli. Thus, there
exists a subsequence (Fnk)k∈N and F 1 : [0, 1]→ R such that

Fnk → F 1 uniformly in [0, 1].

Let us denote this sequence by F 1
k := Fnk . Applying now to F 1

k the same result but while restricting the
functions to the interval [0, 2] we get another subsequence, F 2

k , and a function F 2 : [0, 2] → R which
satisfies

F 2
k → F 2 uniformly in [0, 2].

Moreover, since this is a subsequence from the previous one we also have that: F 1 = F 2 in [0, 1]. By
repeating this argument for a general N ∈ N, we have constructed a family of subsequences (FNk )k,N∈N
such that FNk → FN uniformly in [0, N ] as k → ∞ for all N ∈ N and such that the limit function FN

satisfies FN = FN+1 in [0, N ] for all N ∈ N. We can now find a sequence Nk → ∞ for which the
elements (FNkk )k∈N define a function F : [0,+∞)→ R by:

F (t) = lim
k→∞

FNkk (t).

It is immediate by construction that F is non-negative and non-decreasing.
Let now α := limt→+∞ F (t). By (2.9) we have that α ∈ [0, µ]. We now split our study in three

cases: α = 0, α ∈ (0, µ) and α = µ, which give us the possible regimes.

Step 3: Determination of the Regimes

• Case 1: α = 0;
This is the easiest case. Since F is non-negative and non-decreasing then α = 0 implies that
F ≡ 0. By definition of F the vanishing regime is the one that holds in this case.
• Case 2: α = µ;

We prove that in this case compactness holds. Firstly note that there exists t0 > 0 such that

F (t) ≥ F (t0) >
µ

2
for all t ≥ t0.

By discarding some elements of the sequence Fnk we can assume that:

Fnk(t) ≥ Fnk(t0) >
µ

2
, for all t ≥ t0 and for all k ∈ N.

Take now (yk)k∈N ⊂ R to be such that

Fnk(t0) =

∫ yk+t0

yk−t0
|unk |

2dx. (2.10)

We prove that this sequence satisfies the compactness property. Let now ε > 0 be arbitrary. Then
there exist t1 > 0 and k0 ∈ N such that

Fnk(t) ≥ Fnk(t1) > µ− ε for all k ≥ k0 and t ≥ t1.

Now take a sequence (zk)k∈N ⊂ R for which

Fnk(t1) =

∫ zk+t1

zk−t1
|unk |

2dx > µ− ε. (2.11)

From the equations (2.10) and (2.11) we can get that, for ε small enough, say ε < µ
2 ,

(zk − t1, zk + t1) ∩ (yk − t0, yk + t0) 6= ∅.

12



2.1. EXISTENCE OF SOLUTION TO THE MINIMIZATION PROBLEM

Indeed, if they were disjoint then, for each k ∈ N,

µ =

∫
R
|unk |

2dx ≥
∫ zk+t1

zk−t1
|unk |

2dx+

∫ yk+t0

yk−t0
|unk |

2dx > (µ− ε) +
µ

2
> µ,

which is a contradiction.
Taking now T := t0 + 2t1, since [zk − t1, zl + t1] ⊂ [yk − t0, yk + t0], we get easily that, for all
k ≥ k0, ∫ yk+T

yk−T
|unk |

2dx ≥
∫ zk+t1

zk−t1
|unk |

2dx > µ− ε.

By discarding the initial elements of the sequence and re indexing it we have compactness.
• Case 3: α ∈ (0, µ);

We now prove that, in this last case, dichotomy holds. As seen in [31, Lemma II.3.5] we can
choose a sequence (tk)k∈N such that Fnk(tk)→ α and Fnk(8tk)→ α as k → +∞. Our goal now
is to construct the sequences (uk,1)k∈N and (uk,2)k∈N. Take θ, ϕ smooth cutoff functions such that
0 ≤ ϕ, θ ≤ 1 and {

θ(x) = 1, ϕ(x) = 0, if |x| ≤ 1,

θ(x) = 0, ϕ(x) = 1, if |x| ≥ 2.

Define the rescaling θλ(x) = θ(xλ) and ϕλ(x) = ϕ(xλ). Take (yk)k∈N to be such that, for each
k ∈ N,

Fnk(tk) =

∫ yk+tk

yk−tk
|unk |

2dx.

With this sequence we now define as well

uk,1(·) := θtk(·+ yk)unk , uk,2(·) := ϕ4tk(·+ yk)unk , for all k ∈ N. (2.12)

We now prove 3.(c). By definition of the sequences (uk,1) and (uk,2) and their supports that for
each fixed k ∈ N

supp uk,1 ⊂ (yk − 2tk, yk + 2tk) (2.13)

and
supp uk,2 ⊂ (−∞, yk − 4tk) ∪ (yk + 4tk,+∞). (2.14)

Thus,
dist(supp uk,1, supp uk,2) > tk →∞ as k →∞.

To prove 3.(a) start by fixing k ∈ N and noting that, by construction, unk − (uk,1 + uk,2) is uni-
formly bounded in H1(R) and hence in L∞(R). As a consequence of the interpolation inequality
(A.1) in Corollary A.10 we only need to prove that∫

R
|unk − (uk,1 + uk,2)|2dx→ 0.

Using the definition of the sequences (uk,1), (uk,2) and equations (2.13) and (2.14) we have, for
every fixed k ∈ N, that∫

R
|unk − (uk,1 + uk,2)|2dx =

∫ yk−4tk

yk−8tk

|unk − uk,2|
2dx+

∫ yk−2tk

yk−4tk

|unk |
2dx+

+

∫ yk+2tk

yk−2tk

|unk − uk,1|
2dx+

∫ yk+4tk

yk+2tk

|unk |
2dx+

∫ yk+8tk

yk+4tk

|unk − uk,2|
2dx

≤
∫
{x∈R:|x−yk|∈(tk,8tk)}

|unk |
2dx =

∫ yk+8tk

yk−8tk

|unk |
2dx−

∫ yk+tk

yk−tk
|unk |

2dx.

13
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Hence, ∫
R
|unk − (uk,1 + uk,2)|2dx ≤ Fnk(8tk)− Fnk(tk).

Taking the limit as k → +∞ concludes the proof of 3.(a).
Let us now prove 3.(b). Note that by fixing k ∈ N we can use the support of the functions uk,1 and
uk,2 to deduce that: ∫ yk+tk

yk−tk
|unk |

2dx ≤
∫
R
|uk,1|2dx ≤

∫ yk+8tk

yk−8tk

|unk |
2dx

and similarly we have that∫
R
|unk |

2dx−
∫ yk+8tk

yk−8tk

|unk |
2dx ≤

∫
R
|uk,2|2dx ≤

∫
R
|unk |

2dx−
∫ yk+tk

yk−tk
|unk |

2dx.

By the way the sequence (yk) was taken and the definition of the function F we get that

Fnk(tk) ≤
∫
R
|uk,1|2dx ≤ Fnk(8tk)

and
µ− Fnk(8tk) ≤

∫
R
|uk,2|2dx ≤ µ− Fnk(tk).

Thus, taking the limit as k → +∞ in both of the above inequalities yields

lim
k→∞

∫
R
|uk,1|2dx = α and lim

k→∞

∫
R
|uk,2|2dx = µ− α.

Finally, to finish the proof, we wish to show 3.(d). Let M := supn ‖un‖H1(R), which is finite by
assumption. Note now that, for all y ∈ R, we have the following estimates.∣∣∣∣∫

R
|(θt(x+ y)unk(x))′|2 − θ2

t (x+ y)|u′nk(x)|2dx
∣∣∣∣ ≤ C

t2
, (2.15)

where C = C(M). Indeed, one has:∣∣∣∣∫
R
|(θt(x+ y)unk(x))′|2 − θ2

t (x+ y)|u′nk(x)|2dx
∣∣∣∣ =

=

∣∣∣∣∣
∫
R

∣∣∣∣1t θ′
(
x+ y

t

)
unk(x) + θt(x+ y)u′nk(x)

∣∣∣∣2 − θ2
t (x+ y)|u′nk(x)|2dx

∣∣∣∣∣
≤ 1

t2

∫
R

∣∣∣∣θ′(x+ y

t

)
unk(x)

∣∣∣∣2 +
2

t
θt(x+ y)|u′nk(x)||θ′

(
x+ y

t

)
||unk(x)|dx =

≤ C

t2
‖unk‖

2
L2(R) +

2

t2

(∫
R
θ2
t (x+ y)|u′nk |

2

) 1
2
(∫

R
θ′2
(
x− y
t

)
|unk |

2

) 1
2

≤ C

t2
µ+

C

t2
√
µM =

C

t2
.

Similarly, one has ∣∣∣∣∫
R
|(ϕt(x+ y)unk(x))′|2 − ϕ2

t (x+ y)|u′nk(x)|2dx
∣∣∣∣ ≤ C

t2
. (2.16)
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2.1. EXISTENCE OF SOLUTION TO THE MINIMIZATION PROBLEM

Fix now k ∈ N. Given that |θ|, |ϕ| ≤ 1 and that the supports of θtk and ϕ4tk are disjoint we deduce
that∫
R
θ2
tk

(x+ yk)|u′nk |
2 + ϕ2

4tk
(x+ yk)|u′nk |

2dx ≤
∫
yk+supp θtk

|u′nk |
2dx+

∫
yk+suppϕ4tk

|u′nk |
2dx

≤
∫
R
|u′nk |

2dx.

Now, using the estimates (2.15) and (2.16) with t = tk and t = 4tk, repectively, we have that∫
R
|u′nk |

2dx ≥
∫
R
θ2
tk

(x+ yk)|u′nk |
2 + ϕ2

4tk
(x+ yk)|u′nk |

2dx

=

∫
R
θ2
tk

(x+ yk)|u′nk |
2 + |u′k,1|2 − |u′k,1|2 + ϕ2

4tk
(x+ yk)|u′nk |

2

+ |u′k,2|2 − |u′k,2|2dx

=

∫
R
|u′k,1|2dx−

∫
R

(∣∣(θtk(x+ yk)unk(x))′
∣∣2 − θ2

tk
(x+ yk)|u′nk |

2
)
dx

+

∫
R
|u′k,2|2dx−

∫
R

(∣∣(ϕ4tk(x+ yk)unk(x))′
∣∣2 − ϕ2

4tk
(x+ yk)|u′nk |

2
)
dx

≥
∫
R
|u′k,1|2 + |u′k,2|2dx+O

(
1

t2k

)
.

Passing the integrals in the last inequality to the left hand side and taking the limit as k →∞ gives
us the desired inequality.

�

Remark 2.5:

1. It is important to note that this result can be adapted to higher dimensions, see for example [23],
[24] and [31].

2. It is clear from the statement that only one of the three alternatives can occur each time.
3. The construction of the sequences uk,1 and uk,2 in (2.12) will be crucial ahead. In particular, the

estimate ∫
R
|u′nk |

2dx ≥
∫
R
|u′k,1|2 + |u′k,2|2dx+O

(
1

t2k

)
, (2.17)

where tk →∞ as k →∞. This in fact can be used to show that we can split the sequence unk in
two sequences without any essential loss of energy. In fact, it follows from equation (2.17) that

E(unk) ≥ 1

2

(∫
R
|u′1k|2dx+

∫
R
|u′2k|2dx+O

(
1

t2k

))
− 1

p

∫
R
|unk |

pdx.

Moreover, note that ‖unk − (uk,1 + uk,2)‖Lq(R) → 0 as k → +∞ for q ∈ [2,+∞), therefore we
can choose a sequence (ak)k∈N ⊂ R, with ak → 0 as k → +∞, and such that, for each k,∫

R
|unk |

pdx+ ak =

∫
R
|uk,1 + uk,2|pdx =

∫
R
|uk,1|pdx+

∫
R
|uk,2|pdx.

The last equality follows from using the disjointness of the supports. From here it follows that

E(unk) ≥ E(uk,1) + E(uk,2) + o(1), (2.18)

as k →∞.

15



CHAPTER 2. A CONSTRAINED MINIMIZATION PROBLEM IN R

2.1.2 Compactness Regained

In this subsection we will illustrate how to apply the Concentration-Compactness Principle to regain
compactness of the minimizing sequences for problem (2.6), yielding the existence of a minimizer, our
main objective. This technique, as seen in [23] and [24] through numerous examples, was proven to be
fundamental to solve problems in calculus of variations. The same references show that the steps which
one uses when applying this technique in different contexts are essentially the same. Below we give a
quick outline for simpler cases.

We begin by proving the following lemma:

Lemma 2.6: Strict Subadditivity of Iµ.

For all α ∈ (0, µ), one has
Iµ < Iα + Iµ−α. (2.19)

Proof. By symmetry, without loss of generality, one can assume that α ∈ [µ2 , µ). Now fix θ ∈ (1, µα ].
We then have that

Iθα = inf
‖u‖2

L2(R)
=θα

{
1

2

∫
R
|u′|2dx− 1

p

∫
R
|u|pdx

}

= θ inf
‖v‖2

L2(R)
=α

{
1

2

∫
R
|v′|2dx− θ(p−2)/2

p

∫
R
|v|pdx

}

< θ inf
‖v‖2

L2(R)
=α

{
1

2

∫
R
|v′|2dx− 1

p

∫
R
|v|pdx

}
= θIα,

where in the second equality the change of variable u = θ
1
2 v was used. The inequality above can be

justified by the fact that θ > 1 and that the exponent p−2
2 is also strictly positive from our assumption on

p. By choosing θ = µ
α > 1, it follows that

Iµ <
µ

α
Iα = Iα +

µ− α
α

Iα.

Now note that µ−αα ≤ 1. Thus,

µ− α
α

Iα = inf
‖u‖2

L2(R)
=α

{
1

2

∫
R
|
(
µ− α
α

) 1
2

u′|2dx−
(µ−αα )1− p

2

p

∫
R
|
(
µ− α
α

) 1
2

u|pdx

}

= inf
‖v‖2

L2(R)
=µ−α

{
1

2

∫
R
|v′|2dx−

(µ−αα )1− p
2

p

∫
R
|v|pdx

}
≤ Iµ−α,

where the inequality comes from the fact that the exponent 1− p
2 is negative. Hence, we obtain (2.19). �

We now outline, in an informal way, how to apply the Concentration-Compactness Principle.
1. To begin we need to prove a sub-additivity condition like the one in (2.19).
2. Take a minimizing sequence. After confirming that the assumptions on Lemma 2.4 are satisfied, we

proceed to prove that only the compactness property of said lemma is satisfied. The subadditivity
condition proved in step 1 is crucial to rule out the dichotomy regime - item 3 in Lemma 2.4.

3. The last step is to conclude that there exists a minimizer. By looking at the numerous examples
in [23] and [24] we see that this step is different from problem to problem. It depends not only
on the functional one is minimizing but also on the space where the minimization is being done.
The dimension also plays an important role due to the possible Sobolev embeddings it provides.
One example where this dependence is explicit is [24, Lemma I.1], which in higher dimensions is
crucial to rule out the vanishing regime, together with some interpolation results. In Lemma 2.10
we apply the ideas of this proof in dimension 1.
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Finally, note that this outline is for the simpler cases. In fact, it was shown in [23] and [24] that this
method can be used to obtain existence of minimizers for problems with more general nonlinearities and
potentials. The main result of this section is the following:

Theorem 2.7: Compactness of minimizing sequences

Let p ∈ (2, 6) and µ > 0. Then, for any minimizing sequence (un)n∈N of problem (2.6) there
exists (yn)n∈N ⊂ R and u ∈ H1(R) such that, up to a subsequence, un(·+ yn)→ u strongly in
H1(R) and u is a minimizer.

In order to simplify the proof we will divide it in several lemmas.

Lemma 2.8: Minimizing sequences are bounded in H1(R)

Let µ > 0 and let (un)n∈N ⊂ H1
µ(R) be a minimizing sequence to the problem (2.6). Then un is

bounded in H1(R).

Proof. Let (un)n∈N be a minimizing sequence. Suppose, in search of a contradiction, that ‖un‖H1(R) →
∞ as n → ∞. Since (un)n∈N ⊂ H1

µ(R) we have that ‖u′n‖L2(R) → ∞ as n → ∞. Then, from (2.7),
and since 2 > p−2

2 , E(un)→ +∞ which, according to Proposition 2.3, is a contradiction. �

Lemma 2.9: Dichotomy does not occur

Let µ > 0 and (un)n∈N ⊂ H1
µ(R) be a minimizing sequence to the problem (2.6). Then item 3 in

Lemma 2.4 does not occur.

Proof. Let (un)n∈N ⊂ H1
µ(R) be a minimizing sequence. By Lemma 2.8 we know that un is bounded

in H1(R). Suppose, in search of a contradiction, that dichotomy occurs. Then there exist a subsequence
(unk) of (un), α ∈ (0, µ) and sequences (uk,1)k∈N and (uk,2)k∈N, defined as in (2.12), for which the
properties (a) through (d) in item 3 of Lemma 2.4 are satisfied.

Take now (αk)k∈N and (βk)k∈N sequences of positive real numbers such that

‖αkuk,1‖2L2(R) = α, ‖βkuk,2‖2L2(R) = µ− α, for all k ∈ N. (2.20)

It follows easily from the above equalities that

lim
k→+∞

αk = lim
k→+∞

βk = 1. (2.21)

Now consider the estimate (2.18), that is,

E(unk) ≥ E(uk,1) + E(uk,2) + o(1) as k →∞.

Multiplying and dividing, conveniently, by αk and βk the last term in the previous inequality yields

E(unk) =
1

2α2
k

‖αku′k,1‖2L2(R) −
1

pαpk
‖αkuk,1‖pLp(R)+

+
1

2β2
k

‖βku′k,2‖2L2(R) −
1

pβpk
‖βkuk,2‖pLp(R) + o(1). (2.22)

From (2.21) we get that 1
2α2
k

= 1
2 + o(1) and 1

pαpk
= 1

p + o(1) as k →∞ and similarly for βk. Moreover,

since all the L2 and Lp norms in (2.22) are bounded, we have that

E(unk) ≥ E(αkuk,1) + E(βkuk,2) + o(1), as k →∞.
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From (2.20) we also have that E(αkuk,1) ≥ Iα and E(βkuk,2) ≥ Iµ−α. Thus,

E(unk) ≥ Iα + Iµ−α + o(1), as k →∞. (2.23)

Taking the limit on the previous inequality we have

Iµ ≥ Iα + Iµ−α,

which, according to Lemma 2.6, is a contradiction. �

Lemma 2.10: Vanishing does not occur

Let µ > 0 and (un)n∈N ⊂ H1
µ(R) be a minimizing sequence to the problem (2.6). Then item 2 in

Lemma 2.4 does not occur.

Proof. Let (un)n∈N ⊂ H1
µ(R) be a minimizing sequence. By Lemma 2.8 we know that un is bounded

in H1(R). Suppose, in search of a contradiction, that vanishing occurs for some subsequence (unk) of
(un). We claim that

‖unk‖
p
Lp(R) → 0 as k → +∞.

Note that if this happens then
Iµ = lim

k→∞
E(unk) ≥ 0

which, according to Proposition 2.3, is a contradiction.
Let z ∈ Z. It follows from the interpolation inequality (A.1) and Sobolev embeddings that

‖u‖4L4(z−1,z+1) ≤ K‖u‖
2
H1(z−1,z+1)‖u‖

2
L2(z−1,z+1), for all u ∈ H1(R). (2.24)

Then, since the union of the intervals (z − 1, z + 1) with z ∈ Z covers R and any x ∈ R is in at most 2
of these intervals we have

‖unk‖
4
L4(R) ≤

∑
z∈Z
‖unk‖

4
L4(z−1,z+1) ≤ K sup

y∈R
‖unk‖

2
L2(y−1,y+1)

∑
z∈Z
‖unk‖

2
H1(z−1,z+1).

From the way the intervals (z − 1, z + 1) were chosen we have that∑
z∈Z
‖unk‖

2
H1(z−1,z+1) = 2‖unk‖

2
H1(R),

hence,
‖unk‖

4
L4(R) ≤ 2K sup

y∈R
‖unk‖

2
L2(y−1,y+1)‖unk‖

2
H1(R).

By the vanishing assumption we then have that ‖unk‖L4(R) → 0 as k → ∞. Now, from (A.1) we know
that Lp norms converge to zero for p ≥ 4. By interpolation the same happens for p ∈ [2, 4], therefore

‖unk‖
p
Lp(R) → 0 as k →∞, for all p > 2.

�

Remark 2.11:
This proof is, for dimension 1, a particular case of Lemma I.1 shown in [24].

Now we proceed to the proof of Theorem 2.7.
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Proof of Theorem 2.7. We now follow the steps 1 through 3 mentioned before Theorem 2.7.
Step 1 follows by Lemma 2.6. The hardest step is number 2, to show that we are in the compactness

regime. This problem was solved by Lemmas 2.9 and 2.10. We now conclude the proof, by showing that
any minimizing sequence converges strongly in H1(R), up to a subsequence, to a minimizer. It follows
from the first item in Lemma 2.4 that there exists (yk)k∈N ⊂ R such that, for all ε > 0, there exists
T > 0 such that ∫ yk+T

yk−T
|unk |

2dx ≥ µ− ε for all k ∈ N. (2.25)

Moreover, we also have that ∫
R\(yk−T,yk+T )

|unk |
2dx ≤ ε. (2.26)

We now define vk := unk(· + yk), for k ∈ N, and apply a diagonal argument to extract a subsequence
that converges in L2(R). Start by recalling that by construction we have that (vk) is bounded in H1(R),
therefore up to a subsequence, which we still denote by (vk), converges weakly to some v ∈ H1(R). It
follows from the above weak convergence and Rellich-Kondrachov that, up to a subsequence

vk → v in L2
loc(R). (2.27)

Let now εn = 1
n , where n ∈ N. Then, from (2.25) and (2.26) we have that there exists Tn > 0 such that,

for all k ∈ N, ∫ Tn

−Tn
|vk|2dx ≥ µ−

1

n
(2.28)

and ∫
R\(−Tn,Tn)

|vk|2dx ≤
1

n
. (2.29)

Now note that by (2.27) we have that∫ Tn

−Tn
|vk − v|2dx→ 0 as k → +∞ for all n ∈ N.

From this, we can now conclude that in fact vk → v in L2(R). Indeed note that, for each n ∈ N,

‖vk − v‖2L2(R) =

∫
R
|vk − v|2dx =

∫ Tn

−Tn
|vk − v|2dx+

∫
R\(−Tn,Tn)

|vk − v|2dx

≤
∫ Tn

−Tn
|vk − v|2dx+ 2

∫
R\(−Tn,Tn)

|vnk |
2 + |v|2dx

Taking the limit as k →∞ yields

lim sup
k→+∞

‖vk−v‖2L2(R) = lim sup
k→+∞

∫
R\(−Tn,Tn)

|vnk−v|
2dx ≤ 2 lim sup

k→+∞

∫
R\(−Tn,Tn)

|vnk |
2+|v|2dx ≤ 4

n
,

for all n ∈ N, where we also used that
∫
R\(−Tn,Tn) |v|

2 ≤ 1
n . By letting n→ +∞ we get that

‖vk − v‖L2(R) → 0, as k →∞.

In particular, we have ‖v‖2L2(R) = µ and therefore v ∈ H1
µ(R) and Iµ ≤ E(v). From here on the proof

is straight forward. Note that since vk ⇀ v in H1(R) then it is uniformly bounded, which together with
the interpolation inequality (A.1), yields

vk → v in Lp(R).
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We also have from the weak convergence in H1(R) that∫
R
|v′|2dx ≤ lim inf

k→+∞

∫
R
|v′k|2dx.

It then follows that
Iµ ≤ E(v) ≤ lim inf

k→+∞
E(vk) = Iµ.

Hence v is a minimizer. To finish we show that vk → v in H1(R). Since E(vk) → E(v) and
‖vk‖Lp(R) → ‖v‖Lp(R) we have that ‖v′k‖L2(R) → ‖v′‖L2(R), thus ‖vk‖H1(R) → ‖v‖H1(R). From
the convergence of norms together with the weak convergence in H1(R) we get the desired strong con-
vergence. �

2.2 Characterization of Minimizers

In the previous section we proved that solutions to the problem (2.6) do exist. We now focus on a more
delicate problem, that of characterizing them. For this purpose, concepts of differentiable calculus in
Banach spaces will be required. We refer the reader to Appendix B.

Let us begin with an auxiliary result:

Lemma 2.12: E is a functional of class C1

Let p ∈ (2, 6) and consider the functional E defined by

E : H1(R)→ R; E(u) =
1

2
‖u′‖2L2(R) −

1

p
‖u‖pLp(R).

Then E ∈ C1(H1(R)). Moreover, given any point u ∈ H1(R), the differential of E at u, is given
by:

E′(u)v =

∫
R
u′v′ − |u|p−2uvdx, for all v ∈ H1(R).

Proof. Let E = J −K, where both J and K are the functionals defined by:

J : H1(R)→ R; J(u) =
1

2
‖u′‖2L2(R) and K : H1(R)→ R; K(u) =

1

p
‖u‖pLp(R).

Step 1: Differentiability of J:

Note that J can be seen as the quadratic form of the bilinear continuous and symmetric form defined
in H1(R) × H1(R) by a(u, v) = 1

2

∫
R u
′v′dx. The continuity of a is an immediate consequence of

the Cauchy-Schwartz inequality. Therefore J is differentiable in H1(R) and its differential at a point
u ∈ H1(R) is given by:

J ′(u)v =

∫
R
u′v′dx for all v ∈ H1(R).

The only thing left to check is that the derivative of J , that is, the map J ′ : H1(R) → H−1(R), is
continuous. Recall that H−1(R) is by definition the dual space of H1(R).
Let u, v, w ∈ H1(R). Then,

∣∣(J ′(u)− J ′(v))w
∣∣ =

∣∣∣∣∫
R
u′w′ − v′w′dx

∣∣∣∣ ≤ ∫
R
|u′w′ − v′w′|dx ≤ ‖u′ − v′‖L2(R)‖w′‖L2(R)

≤ ‖u− v‖H1(R)‖w‖H1(R),
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where the second inequality is a consequence of the Cauchy-Schwartz inequality. From this estimate we
get:

‖J ′(u)− J ′(v)‖H−1(R) = sup
‖w‖H1(R)=1

∣∣(J ′(u)− J ′(v))w
∣∣ ≤ ‖u− v‖H1(R).

Thus J ′ is continuous.

Step 2: Differentiability of K:

To study the differentiability ofK we apply a standard argument. We first compute the Gâteaux derivative
of K and then prove its continuity. These conditions, as seen in Theorem B.5, are sufficient to deduce
differentiability in the sense of Fréchet.

Consider the real function of a real variable f(t) = p|t|p−2t. It is clear that f is continuous. More-
over, we have that K is a functional of the form K(u) = 1

p

∫
R F (u(x))dx where F is the continuously

differentiable real function defined by F (t) = |t|p =
∫ t

0 f(s)ds. Now we compute the first variation of
K. We claim that the following equality holds:

1

p
lim
t→0

∫
R

F (u+ tv)− F (u)

t
dx =

1

p

∫
R

lim
t→0

F (u+ tv)− F (u)

t
dx =

∫
R
|u|p−2uvdx. (2.30)

It is, as expected, a matter of applying Lebesgue’s dominated convergence theorem, Theorem A.1. In
order to do so take u, v ∈ H1(R) and note that, almost everywhere in R, we have that

1

p
lim
t→0

|u(x) + tv(x)|p − |u(x)|p

t
=

1

p
lim
t→0

F (u(x) + tv(x))− F (u(x))

t
=

1

p
F ′ (u(x)) v(x)

= |u(x)|p−2u(x)v(x).

Moreover, for each fixed x ∈ R, the C1 map defined by

ϕ(t) = F (u(x) + tv(x))

is a real function of a real variable. It follows now from the mean value theorem for real functions that,
for some real number θ such that |θ| ≤ |t| we have

|ϕ(t)− ϕ(0)| = |ϕ′(θ)||t| = |f(u+ θv)v||t|.

Hence, from the definition of ϕ, we get:∣∣∣∣F (u+ tv)− F (u)

t

∣∣∣∣ =

∣∣∣∣ϕ(t)− ϕ(0)

t

∣∣∣∣ = |f(u+ θv)v| = p
∣∣∣(u+ θv) |u+ θv|p−2 v

∣∣∣ .
Recalling that we are working with fixed x, it follows from Lemma A.11 that∣∣∣(u+ θv) |u+ θv|p−2 v

∣∣∣ = |u+ θv|p−1 |v| ≤ K
(
|u|p−1|v|+ |θ|p−1|v|p

)
≤ K

(
|u|p−1|v|+ |v|p

)
where the last inequality comes from taking |t| ≤ 1. Now, integrating the last term in the above in-
equalities over R and taking into account the Sobolev embedding of H1(R) in L∞(R), Cauchy-Schwarz
inequality and (A.1), we get that∫
R
|u|p−1|v|+ |v|pdx =

∫
R
|u|p−1|v|dx+ ‖v‖pLp(R) ≤ ‖u‖

p−2
L∞(R)

∫
R
|u||v|dx+ ‖v‖pLp(R)

≤ ‖u‖p−2
L∞(R)‖u‖L2(R)‖v‖L2(R) + ‖v‖pLp(R) < +∞
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Therefore, from the Dominated Convergence Theorem we have the validity of the equality in (2.30), thus
proving the claim. From this equality and the continuity in v, we conclude that for all u ∈ H1(R) the
Gâteaux differential at u is given by the linear map defined in H1(R) by

K ′G(u)v =

∫
R
|u|p−2uvdx.

To finish the proof the only thing that is left to see is that the Gâteux derivative of K, K ′G : H1(R) →
H−1(R), is continuous. To do so take a sequence (un) such that un → u in H1(R) and any v ∈ H1(R).
Let us estimate the quantity ∣∣K ′G(un)v −K ′G(u)v

∣∣ .
We have by linearity that∣∣K ′G(un)v −K ′G(u)v

∣∣ =
∣∣(K ′G(un)−K ′G(u))v

∣∣ ≤ ∫
R

∣∣∣|un|p−2 un − |u|p−2u
∣∣∣ |v|dx. (2.31)

Applying the mean value theorem to the function s 7→ s|s|p−2 we get, for fixed n ∈ N, that∣∣K ′G(un)v −K ′G(u)v
∣∣ ≤ (p− 1)

∫
R
|un(x)− u(x)||ξn(x)|p−2|v(x)|dx,

where ξn(x) is between u(x) and un(x) for every x ∈ R, since un and u are continuous. From this
we conclude that ξn is measurable, |ξn(x)| ≤ max

{
‖u‖L∞(R), ‖un‖L∞(R)

}
, whence ξn ∈ L∞(R), and

ξn → u uniformly as n→∞ by Sobolev embeddings.
We can now proceed with the estimate in (2.31):∣∣K ′G(un)v −K ′G(u)v

∣∣ = (p− 1)

∫
R
|un(x)− u(x)||ξn(x)|p−2|v(x)|dx

≤ (p− 1)‖ξn‖p−2
L∞(R)

∫
R
|un(x)− u(x)||v(x)|dx

≤ K(p)‖un − u‖H1(R)‖v‖H1(R),

where the second inequality comes by the Cauchy-Schwartz inequality, the inclusion ofH1(R) in L2(R)
and the fact that ‖ξn‖L∞(R) is uniformly bounded. To finish we only need to compute the operator norm
of K ′G:

‖K ′G(un)−K ′G(u)‖H−1(R) = sup
‖v‖H1(R)=1

∣∣K ′G(un)v −K ′G(u)v
∣∣ ≤ K‖un − u‖H1(R) −→

n→+∞
0,

which concludes the proof. �

Remark 2.13:
An important result to keep in mind for the following chapter, is that even in bounded subsets of R this
functional still remains of class C1.

We have that E is a C1 functional in H1(R), but the space where we want to minimize E is H1
µ(R).

Let us take a closer look at this space. We begin by defining the map:

G : H1(R)→ R; G(u) = ‖u‖2L2(R).

We have straight away that H1
µ(R) = G−1{µ}. This means that the minimization taking place can be

seen as minimizing E in H1(R) subject to the constraint G(u) = µ. Should this restriction map G have
a surjective differential at any point of H1

µ(R) then we would be in the setting of constrained extremum
problems and the results in Appendix B can be applied.
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The first verification that we must do is that G is a C1 map in H1(R). Indeed note that G can be seen
as the quadratic form of the continuous symmetric bilinear form defined by

a : H1(R)×H1(R)→ R

(u, v) 7→
∫
R
uvdx.

Then, G is of class C1(H1(R)) and its differential at a point u ∈ H1(R) is given by

G′(u)v = 2

∫
R
uvdx, for all v ∈ H1(R). (2.32)

Finally, we need to check that G′(u) is a surjective map for all u ∈ H1
µ(R); equivalently, note that

G′(u)u = 2µ 6= 0.

We can now prove, via constrained extrema problems, the following

Proposition 2.14: Constrained Euler-Lagrange equation

Let µ > 0, p ∈ (2, 6) and u ∈ H1
µ(R) be a solution to the minimization problem

inf
u∈H1

µ(R)
E(u).

Then,there exists λ ∈ R such that u satisfies∫
R
u′v′ + λuvdx =

∫
R
|u|p−2uvdxdx for all v ∈ H1(R).

In other words, u is a weak solution of the equation

−u′′ + λu = |u|p−2u. (2.33)

Proof. From the previous section we know that there exists a solution u ∈ H1
µ(R) to problem (2.6).

Moreover, according to the discussion made prior to Proposition 2.14, we know that we can apply the
results from Appendix B. In particular, according to Proposition B.8 we know that u is a critical point of
E|G−1{µ}, that is, there exists a Lagrange multiplier, θ ∈ R, such that:

E′(u) = θG′(u).

From Lemma 2.12 and equation (2.32) the previous equation becomes:∫
R
u′v′ − |u|p−2uvdx = 2θ

∫
R
uvdx for all v ∈ H1(R).

This means exactly that, by choosing λ = −2θ, u is a weak solution to the equation (2.33). �

This result gives us a fundamental tool to characterize the ground states. In fact we deduced just now
that if u ∈ H1

µ(R) is a ground state, then u is a non-trivial solution to an equation of the form given in
(2.4). This then leads us into the setting of Appendix C. Moreover, this last result also gives a different
way to prove existence of solution to the stationary equation in (2.4) in a completely different way from
the one in [10, Chapter 8], see the Appendix C for details. In the setting of this appendix we can, a
priori, assume that λ > 0 and even some extra regularity on the solution, namely it will be of class
C2(R), according to Lemma C.1.
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To start the characterization of the solutions consider complex valued solutions as well. All the
results presented so far still hold. In particular, in this case the constrained Euler-Lagrange equation is
still the same. The following result describes how the solutions look like:

Lemma 2.15

Suppose u ∈ H1
µ(R,C) is a solution to problem (2.6). Then there exist y, θ ∈ R and an H1(R)

function ϕ that is positive, even and strictly decreasing on the interval (0,+∞), such that:

u(x) = eiθϕ(x− y), ∀x ∈ R. (2.34)

Moreover, E(u) = E(ϕ), ‖u‖2L2(R,C) = ‖ϕ‖2L2(R); consequently ϕ is also a minimizer for prob-
lem (2.6).

Proof. Take u ∈ H1
µ(R,C) a solution to the problem (2.6). Then, u is a weak solution to the equation

(2.33) for some positive Lagrange multiplier λ. As a consequence of Theorem C.3 we have that there
exist real numbers θ and y and an H1(R) function ϕ that satisfy the following properties: ϕ is positive,
even, it is strictly decreasing on the non-negative real numbers and

u(x) = eiθϕ(x− y), for all x ∈ R.

Then, ‖u‖L2(R,C) = ‖ϕ‖L2(R) and

min
v∈H1

µ(R,C)
E(v) = E(u) =

1

2
‖eiθϕ′‖2L2(R,C) −

1

p
‖eiθϕ‖pLp(R,C)

=
1

2
‖ϕ′‖2L2(R) −

1

p
‖ϕ‖pLp(R)

= E(ϕ),

which concludes the proof of the lemma. �

The natural question now is: is the solution unique? By the previous lemma, we have that if u is a
solution to our problem then it is of the form given by (2.34). By choosing different constants y and θ
we still have a solution to the problem. So in a way we do not have uniqueness of solution. However, our
main concern should be the function ϕ. Since it arises as a consequence of the existence of a Lagrange
multiplier it could also depend on it. This would lead to as many different solutions as there are Lagrange
multipliers. However, should we be able to prove that the function ϕ does not depend on the Lagrange
multiplier then, up to phase multiplication and translation, we do have a unique solution to the problem.
The result that follows will clarify this matter.

Theorem 2.16: Uniqueness of Solution to the Problem (2.6).

Let µ > 0 and p ∈ (2, 6) and consider the problem of

finding u0 ∈ H1
µ(R,C) such that E(u0) = min

u∈H1
µ(R,C)

E(u).

Then there exists a unique function ϕ ∈ H1
µ(R), depending on both µ and p, which is a positive,

even and strictly decreasing function on the interval [0,+∞), such that every minimizer of the
functional E is given, up to phase multiplication and translation, by the function ϕ. In other
words, u ∈ H1

µ(R,C) is a minimizer for problem (2.6) if and only if

u(x) = eiθϕ(x− y), ∀x ∈ R,

for some θ, y ∈ R.

24



2.3. SOME SCALING PROPERTIES

Proof. The necessary condition is an immediate consequence of Theorem C.3. We prove the sufficient
condition by showing that ϕ is unique and independent of the Lagrange multiplier. Taking Lemma 2.15
into account, let ϕ,ψ ∈ H1(R) be two solutions of (2.6). Then, there exist two Lagrange multipliers, λ1

and λ2 which are positive real numbers, such that ϕ and ψ satisfy the equations:{
−ϕ′′ + λ1ϕ = |ϕ|p−2ϕ, (2.35a)

−ψ′′ + λ2ψ = |ψ|p−2ψ. (2.35b)

Our goal now is to relate these two functions and their respective Lagrange multipliers. To do so we
resort to standard scaling techniques. Let us make the following ansatz:

ψ(x) := kϕ(hx)

where ϕ is the solution to equation (2.35a) above and

k =

(
λ1

λ2

)− 1
p−2

and h =

(
λ1

λ2

)− 1
2

.

For these values we have that, for all x ∈ R,

−ψ′′(x) + λ2ψ(x) = −
(
λ1

λ2

)−1− 1
p−2

ϕ′′(hx) + λ1

(
λ1

λ2

)−1− 1
p−2

ϕ(hx)

=

(
λ1

λ2

)−1− 1
p−2 [
−ϕ′′(hx) + λ1ϕ(hx)

]
= |ψ(x)|p−2ψ(x).

Thus, from Theorem C.3, we get that up to phase multiplication and translation, ψ = ψ.

Now, by taking
λ1

λ2
= $ we get the following relation

ψ(x) = $
− 1
p−2ϕ

(
$−

1
2x
)
. (2.36)

It is now clear that we have ϕ = ψ if and only if λ1 = λ2, or equivalently $ = 1, which we now prove.
Since ϕ,ψ ∈ H1

µ(R) we have from (2.36) that:

µ =

∫
R
ψ2(x)dx = $

− 2
p−2

∫
R
ϕ2
(
$−

1
2x
)
dx = $

− 2
p−2

+ 1
2

∫
R
ϕ2(z)dz = $

− 2
p−2

+ 1
2µ.

In turn this yields $−
6−p

2(p−2) = 1, whence $ = 1. �

Remark 2.17:
Note that Lemma 2.15 and Theorem 2.16 are stated for complex valued functions in order to make it
consistent with the notation in appendix C. However, we mentioned that there is no loss of generality in
assuming that solutions are real valued therefore we can, a priori, assume that the expression eiθ reduces
to ±1. Put differently, since the solutions are real, then up to a change of sign, they are given by the
translation of the function ϕ.

2.3 Some Scaling Properties

In this final section we focus on scaling properties of the solutions to the problem (2.6). By themselves
the properties we will consider are interesting; however, in the developments that are to follow, they will
also have great importance.
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Theorem 2.18: Minimizers scaling properties.

Let µ > 0 and p ∈ (2, 6). Consider the problem of

finding u0 ∈ H1
µ(R) such that E(u0) = min

u∈H1
µ(R)

E(u),

and let ϕµ ∈ H1(R) be the unique positive and even minimizer. Then, the minimizer satisfies the
following scaling rule:

ϕµ(x) = µαϕ1(µβx), (2.37)

where the constants α and β are given by α = 2
6−p and β = p−2

6−p . Moreover, there exist positive
constants Cp and cp such that

ϕ1(x) = Cp sech(cpx)
α
β ∀x ∈ R.

Proof. Let ϕµ ∈ H1
µ(R) be the unique positive and even minimizer to problem (2.6). We know that there

exists λ > 0 such that ϕµ satisfies the equation:

−ϕ′′µ + λϕµ = |ϕµ|p−2ϕµ.

We make the following ansatz:

ϕµ(x) = kϕ(hx)

where k, h > 0 and ϕ is a function in the unit circle of L2(R). Our goal is now to find under which
conditions will ϕ also be a solution to an equation of the type given in (2.33), with ‖ϕ‖L2(R) = 1.
Computing the derivatives of ϕµ in this new form and using the fact that it is also a solution to the above
problem it follows that

−ϕ′′µ(x) + λϕµ(x) = |ϕµ(x)|p−2ϕµ(x)⇔ −kh2ϕ′′(hx) + kλϕ(hx) = kp−1|ϕ(hx)|p−2ϕ(hx).

Note that due to regularity of the soliton the above equivalence holds in R, therefore to ease the notation
we forget the points on which the functions are being evaluated. It now follows that dividing the last
equation above by kh2 we have:

−ϕ′′µ + λϕµ = |ϕµ|p−2ϕµ ⇔ −ϕ′′ +
λ

h2
ϕ =

kp−2

h2
|ϕ|p−2ϕ.

Now since we want ϕ to solve an equation of the form (2.33) this gives us a relation between the constants
k and h, that is kp−2

h2
= 1. Moreover, for ϕ with

∫
R ϕ

2 = 1, we can get another relation between these
constants through the following equation:

µ =

∫
R
ϕ2
µ(x)dx = k2

∫
R
ϕ2(hx)dx.

By performing the change of variable y = hx and using the fact that ϕ is in the unit circle of L2(R)
yields us the following necessary condition:

hµ = k2.

We thus have the following system in the variables k and h:
kp−2

h2
= 1

hµ = k2
⇔


k = h

2
p−2

h =
k2

µ

⇔

k = µ
2

6−p

h = µ
p−2
6−p

.
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From this it follows that
ϕµ(x) = µαϕ(µβx),

where α and β are as in the statement. We claim that ϕ = ϕ1. With the computations above we have
shown that ϕ is the unique positive and even solution to the equation:

−ϕ′′ + λ

µ2β
ϕ = |ϕ|p−2ϕ

We also know that there exist θ > 0 a Lagrange multiplier and ϕ1 ∈ H1(R) with ‖ϕ1‖L2(R) = 1 that is
the unique positive and even solution to the equation

−ϕ′′1 + θϕ1 = |ϕ1|p−2ϕ1.

Recurring to the equation (2.36) we get the following equality:

ϕ1(x) =

(
λ

θµ2β

)− 1
p−2

ϕ

((
λ

θµ2β

)− 1
2

x

)

Now computing the square of the L2-norm of ξ yields

1 =

∫
R
ϕ2

1dx =

(
λ

µ2β

)− 2
p−2

+ 1
2
∫
R
ϕ2dx.

From here it follows easily that

θ =
λ

µ2β
.

In turn, this gives that ϕ1 is also a solution to the equation −ϕ′′1 + λ
µ2β

ϕ1 = |ϕ1|p−2ϕ1. It follows now
from Theorem C.3 that ϕ = ϕ1. This gives us the desired scaling:

ϕµ(x) = µαϕ1(µβx).

To finish the proof we wish to check that, up to a choice of positive constants Cp and cp, the function
ϕ1 can be taken as:

ψ(x) = Cp sech(cpx)
α
β .

Now we need to find for which values Cp and cp, do we have

−ψ′′ + θψ = |ψ|p−2ψ (2.38)

and ∫
R
ψ2dx = 1, (2.39)

for if this happens then Theorem C.3 asserts that ψ = ϕ1. By differentiation we have that

ψ′(x) = Cp

[
α

β
sech(cpx)

α
β
−1

tanh(cpx)(− sech(cpx))cp

]
= −Cpcp

α

β
sech(cpx)

α
β tanh(cpx)

= −cp
α

β
ψ(x) tanh(cpx)
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Hence,

ψ′′(x) = −cp
α

β

[
ψ′(x) tanh(cpx) + ψ(x) sech2(cpx)cp

]
= −cp

α

β

[
−Cpcp

α

β
sech(cpx)

α
β tanh2(cpx) + Cpcp sech

α
β

+2
(cpx)

]
= −Cpc2

p

α

β
sech

α
β (cpx)

[
−α
β

tanh2(cpx) + sech2(cpx)

]
= −Cpc2

p

α

β
sech

α
β (cpx)

[
−α
β

+ (1 +
α

β
) sech2(cpx)

]
,

where in the last equality we used the following hyperbolic trigonometric identity:

sech2(x) + tanh2(x) = 1.

Note also that since ψ is a positive function,

|ψ(x)|p−2ψ(x) = Cp−1
p sech(cpx)

α(p−2)
β

+α
β = Cp−1

p sech(cpx)
2+α

β .

Since we want ψ to solve equation (2.38) we require that:

− ψ′′(x) + θψ(x) = |ψ(x)|p−2ψ(x)

⇔ Cpc
2
p

α

β
sech

α
β (cpx)

[
−α
β

+ (1 +
α

β
) sech2(cpx)

]
+ θCp sech(cpx)

α
β =

= Cp−1
p sech(cpx)

2+α
β .

Dividing the last equation above by Cp sech(cpx)
α
β > 0, we arrive at the following identity:

c2
p

α

β

[
−α
β

+ (1 +
α

β
) sech2(cpx)

]
+ θ = Cp−2

p sech2(cpx),

which in turn is equivalent to having

−c2
p(
α

β
)2 +

[
c2
p

α

β
(1 +

α

β
)− Cp−2

p

]
sech2(cpx) = −θ.

Now, given that the first term on the left hand side and the term on the right hand side of the equation
are constant, this forces that the quantity in brackets to be zero, thus leading to the following system of
equations: c

2
p

α

β
(1 +

α

β
)− Cp−2

p = 0,

−c2
p(
α

β
)2 = −θ.

Solving now for the values of Cp and cp we have:c
2
p

α

β
(1 +

α

β
)− Cp−2

p = 0

−c2
p(
α

β
)2 = −θ

⇔


c2
p

α

β
(1 +

α

β
)− Cp−2

p = 0

cp = ±β
α
θ

1
2

⇔

Cp =
(
β+α
α

) 1
p−2

,

cp = ±β
α
θ

1
2 .

Moreover, since ψ is in the unit circle of L2(R) we can deduce that

1 =

∫
R
ψ2(x)dx =

∫
R
C2
p sech(cpx)

2α
β dx =

C2
p

cp

∫
R

sech(z)
2α
β dz.
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From this cp > 0 and therefore the constants are determined:Cp =
(
θp
2

) 1
p−2

,

cp =
p− 2

2
θ

1
2 .

�

We conclude this chapter with some remarks. In the proofs of several previous results we made use
of the ansatz u(x) = kv(hx) for constants k and h. We can make this ansatz due to the homogeneity
of the terms in the nonlinear Schrödinger equation. Its utility, as it was seen, is what allows us to do
algebraic manipulations to obtain either new solutions with different mass or to relate solutions with the
same mass. Secondly, note that in this last result we confirm the remarks done prior to Lemma 2.15.
Finally, we depict in the Figure 2.1 below the graph of an hyperbolic secant. Observe that hyperbolic
secants have the shape of a wave and, by scaling, any solution of arbitrary mass will have this shape. We
will refer to these solutions as solitons.

−4 −3 −2 −1 1 2 3 4−0.5

0.5

1

1.5

Figure 2.1: The graph of an hyperbolic secant
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Chapter 3

Minimization of the NLS Energy
Functional on Metric Graphs

3.1 Metric Graphs

The main goal of this section is to introduce the necessary notions from graph theory in order to create
a good setting for the problem to which this chapter is devoted to. With this objective in mind we will
use reference [6] for the graph theoretical notions, whereas [8] will be the main reference for the aspects
related directly with metric graphs. As a combinatorial structure a graph can be defined as follows:

Definition 3.1: Graph

A graph, G, is a triple G = (V (G), E(G), IG) composed of two non-empty disjoint and countable
sets E(G) and V (G) and where IG is a map that associates to each element of E(G) an unordered
pair of elements of V (G) (possibly the same). We refer to V (G) as the set of vertices and to E(G)
as the set of edges of the graph.

Even though a formal definition is required, when working with graphs one always envisions a di-
agrammatic representation of them in the plane. As an example see Figures 3.1 and 3.2 below. From
this, the relation IG is typically well understood and therefore we refer to a graph simply as a pair
G = (V (G), E(G)).

Definition 3.2: Finite and Infinite Graphs

We say that a graph G is finite if |V (G)| <∞ and |E(G)| <∞, where | · | denotes the cardinality
of a set. If the graph is not finite we say that it is infinite.

Henceforth, we consider only finite graphs. Another concept we will require from graph theory is
that of degree of a vertex.

Definition 3.3: Degree of a Vertex

Let G = (V (G), E(G)) be a graph.
1. We say that an edge is e ∈ E(G) is incident to a vertex v ∈ V (G) if there is a vertex
w ∈ V (G) such that IG(e) = {v, w}. The notation e ≺ v is then used to say that the edge
e is incident to the vertex v;

2. The degree of a vertex as the number of times the vertex v appears in the sets IG(e) for all
e ∈ E(G). If IG(e) is a singleton then it is to be counted twice.

An easy way to envision the degree at a vertex is simply to count how many edges are incident to the
vertex. Loops are to be counted twice. As an example, in Figure 3.1, the degree of both the vertices v1

and v2 is 1. As for Figure 3.2 the vertex v1 as degree 3 and v2 has degree 4. As a final remark on this
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definition, we assume throughout this dissertation that the degree of a vertex is always finite and positive.
This rules out the existence of graphs with isolated vertices.

v1 v2

e1

Figure 3.1: A line segment as a graph.
According to the definition this is the rep-
resentation of the graph V (G) = {v1, v2},
E(G) = {e1} and IG(e1) = {v1, v2}.

v1 v2

v3 v4

e1

e2
e3 e4

e5

e6

Figure 3.2: The graph depicted in this figure is
V (G) = {v1, v2, v3, v4}, E(G) = {e1, · · · , e6} and
IG(e1) = {v1, v2}, IG(e2) = {v1, v3}, ..., IG(e5) =
{v2, v2} = {v2} and IG(e6) = {v3, v4}.

Definition 3.4: Digraph

A digraph, G, is a triple G = (V (G), E(G), DG) composed of two non-empty disjoint and count-
able sets E(G) and V (G) and where DG is a map that associates to each element of E(G) an
ordered pair of elements of V (G) (possibly the same). We refer to V (G) as the set of vertices and
to E(G) as the set of directed edges, or bonds, of the graph.

Remark 3.5:

1. When working with a bond b ∈ E(G) we can specify its origin and terminal vertices via the maps:
o : E(G) → V (G) and t : E(G) → V (G) which are defined, respectively, by o(b) := the first
component of the pair DG(b) and t(b) := the second component of the pair DG(b);

2. For a fixed vertex v ∈ V (G) we now have outgoing bonds, those that satisfy o(b) = v, and
incoming bonds, which satisfy t(b) = v;

3. It is clear that if G is a digraph then the degree of a vertex v ∈ V (G) is the sum of all the incoming
and all the outgoing bonds;

Figures 3.3 and 3.4 depict the diagrammatic representation of directed graphs.

v1 v2

e1

Figure 3.3: According to the definition
this is the representation of the digraph
V (G) = {v1, v2}, E(G) = {e1} and
DG(e1) = (v1, v2).

v1 v2

v3 v4

e1

e2
e3 e4

e5

e6

Figure 3.4: The digraph depicted in this figure is
V (G) = {v1, v2, v3, v4}, E(G) = {e1, · · · , e6}
and DG(e1) = (v1, v2), DG(e2) = (v1, v3), ... ,
DG(e5) = (v2, v2) and DG(e6) = (v3, v4).
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When one takes a combinatorial approach to study a graph, the main focus are the vertices, while
the edges only exhibit how the vertices are related with one another. Our approach will be exactly the
opposite. The main players for us will be the edges of the graph, in particular, the way they are connected
to each other through the vertices and the length of the edges themselves. This viewpoint of graphs leads
to the following definition:

Definition 3.6: Metric Graph

A metric graph is a pair (G, `) where G = (V (G), E(G)) is a graph and ` : E(G)→ (0,+∞] is a
map that to each edge e ∈ E(G) assigns a positive length le ∈ (0,+∞], which we call the length
of the edge e. We are then assigning to each edge an interval Ie that is either a closed interval
[0, le] or a half-line, which is naturally associated to [0,+∞). To ease the notation a metric graph
will always be denoted by G unless it is specified otherwise.

Through the above identifications we can now consider points inside the edges as elements of the
metric graph. In fact if e is an edge of the metric graph then it is identified with an interval Ie which
is either a compact interval or a half-line. In this interval we have a natural coordinate xe that allows
to identify each point in the edge of the graph. That is, we say that x ∈ e if x = xe for some element
xe ∈ Ie. Now there is the matter of vertices. For a given vertex v, if e is any edge such that e ≺ v
then, either v = 0 or v = le, if e is identified with the interval [0, le], otherwise v = 0 or v = ∞ if e is
identified with a half-line. Consequently, we can now make sense of the expression x ∈ G, it is either
a vertex that is not identified with ∞ or some point xe ∈ Ie for some edge e. Note that by doing this
we are also giving a direction to the edge e, which is the one that increases with the coordinate xe in
Ie. Therefore we have that a metric graph is a digraph. Later in this thesis we will in fact realize that
all the results will be independent of the direction of the edges. Figures 3.3 and 3.4 are also examples
of metric graphs on which all the edges have assigned finite length. We make a the following structural
assumption on metric graphs: all the vertices of the form v =∞ have degree one.

Contrary to what the name might suggest, by itself a metric graph is not a metric space. Nonetheless
we can define on it a natural metric, thus endowing the graph with the extra structure of a metric space.
To do so we need to define the concept of a path in a metric graph.

Definition 3.7: Path between Vertices

Let G be a metric graph. A path between vertices is a finite alternating sequence of elements of
V (G) and E(G), γ = v1e1v2e2 · · · vk−1ek−1vk, that starts and finishes with an element of V (G)
and such that for each i ∈ {1, · · · , k}, the edge ei is incident to both the vertices vi and vi+1. We
define the length of this path as L1(γ) =

∑k−1
i=1 lei

For example, in Figure 3.2 the alternating sequence v1e3v4e4v2e1v1 defines a path on the graph while
v1e5v2 does not. The following definition will also be required ahead.

Definition 3.8: Trails and Cycles in Graphs

Let G be a metric graph. We call trail a path between vertices in which no edge is repeated. We
say that a path between vertices is closed if the terminal vertex is the same as the original one.
We call cycle to a closed trail in which all the vertices are also distinct, with the exception of the
first and last ones, which are equal.

In Figure 3.4 the sequence v1e1v2e5v2e4v4 defines a trail. In this figure a cycle is for example v2e5v2.
Note that there are no other cycles, however if we reverse the orientation of the edge e3 then cycles do
exist. One such cycle is, for example, the sequence v1e1v2e4v4e3v1.

We now wish to extend this notion of path not only between vertices but between arbitrary points of
the graph. Take then x, y ∈ G. If they belong to the same edge e ∈ E(G) we say that the portion between
them forms a path γ of length L(γ) = |xe − ye|. If x ∈ e1 ∈ E(G) and y ∈ e2 ∈ E(G) then we connect
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x to a vertex v1 and y to v2 such that e1 ≺ v1 and e2 ≺ v2. Finally take a path γ1 between the vertices
v1 and v2, thus obtaining, by concatenation, a path γ whose total length is:

L(γ) = |xe − v1|+ L1(γ1) + |ye − v2|.

Note that the usage of v1 and v2 in the above expression is an abuse of notation. In fact both v1 and v2

are being used as the coordinate that they represent on the respective edges.
It is through this notion of path that we can define the concept of connectedness in a graph.

Definition 3.9: Connected Graph

Let G be a metric graph. We say that G is a connected graph if for any x, y ∈ G there is a path
connecting them. If a graph is not connected we say that it is disconnected.

We can now define the following map in G × G:

ρ : G × G −→ R+
0

(x, y) 7→ min{L(γ) : γ is a path between x and y}.

as the canonic metric in G. Note that if G is disconnected then there exist points which cannot be joined
by a path and in those cases the above metric would not make sense.

Note that (G, `) is not the same as (G, ρ). However, if all the edges of the graph are identified with
compact intervals of the real line then they can be identified. Should edges of infinite length be present
then we would need to be a bit more careful with the identifications. In (G, `) such an edge will have
an original vertex, the one corresponding to xe = 0, and a terminal one that we will refer to as a vertex
at infinity. However, vertices at infinity are not points of (G, ρ), since the coordinate xe → +∞. In the
Figure 3.5 below is depicted a representation of R as a metric graph.

∞
v

∞

Figure 3.5: The real line as metric graph

The symbol∞ represents a vertex at infinity. Thus, as a metric graph, R is composed of one vertex
v (the origin) on which two half-lines meet.

Finally, the last concepts we will require are related with the notion of compactness.

Definition 3.10: Compact Graph

Let G be a finite metric graph. We say that G is compact if all its edges have finite length.

Remark 3.11:
It is easy to check that if (G, `) is compact then so is (G, ρ) for the topology induced from the metric. Let
(Uα)α∈I be an open cover of G. Take now any edge, e. By considering Uα ∩ e we get an induced open
cover of the compact interval Ie. By compactness of Ie in R we can extract a finite number of indices,
αe1, · · · , αep, p ∈ N, such that e ⊂ ∪pi=1Uαei . By performing this for each edge of the graph, which by
assumption has a finite number of edges, we get a finite subcover of G.

The relation between the compact part of the graph (bounded edges) and its non-compact part (un-
bounded edges) will play an important role ahead. Therefore we introduce the following definition.

Definition 3.12: Compact core of a metric graph

If G is a metric graph we call compact core the metric graph obtained from G by removing every
unbounded edge. We denote this graph by K.
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v

Figure 3.6: This represents the compact core of the
graph in Figure 4.1

Of course this graph is composed solely by
bounded edges and therefore, as a metric space,
it is compact, as the name suggests. From the
viewpoint of metric spaces what we formally do
is to remove the interior of the unbounded edges
so that the original vertex of these edges still
remains in K. Finally, note that since all un-
bounded edges of G are terminal edges of the
graph, we have that if G is connected then so is K. For a more concrete example, Figure 3.6 represents
the compact core of the metric graph depicted in Figure 4.1 ahead.

3.1.1 Function Spaces defined on Metric Graphs

Before tackling the equivalent problem to (2.6) on graphs we need to know how to define functions and
functions spaces on them. On a metric graph all the points inside the edges also belong to the graph and
thus we can define a function f on the whole graph as a family of functions, (fe)e∈E(G), defined on each
edge. Naturally, we can now speak of continuity of a function. We say that a function f is continuous if
it is continuous on each edge and if for any vertex v ∈ V (G); whenever e, e′ ∈ E(G) are such that e ≺ v
and e′ ≺ v then fe(v) = fe′(v). This allows us to define the space of continuous functions, which we
denote by C(G).

Take now G to be a metric graph. Let Ie be the interval or half-line that represents the edge e.
Consider the Lebesgue measure dxe associated to the coordinate xe. This allows to define a Lebesgue-
type measure, dx, on the whole graph. With the existence of this measure we can now define more
useful spaces of functions on graphs such as Lebesgue and Sobolev spaces. Henceforth, we assume that
a metric graph G is imbued with a canonic metric, ρ, and a measure dx without any reference.

Definition 3.13: Lebesgue Spaces

Let p ∈ [1,+∞], G = (V (G), E(G)) be a finite metric graph and u : G → R, u = (ue)e∈E(G), a
function. The Lebesgue spaces on graphs are defined as

Lp(G) = {u : G → R | ue ∈ Lp(Ie), ∀e ∈ E(G)}.

These are Banach spaces for the norms

‖u‖pLp(G) =
∑

e∈E(G)

‖ue‖pLp(Ie)
, for p <∞ and ‖u‖L∞(G) = sup

e∈E(G)
‖ue‖L∞(Ie).

The above notion of Lebesgue space is quite natural given the structure that a metric graph possesses.
In fact, we have that

Lp(G) =
⊕

e∈E(G)

Lp(Ie). (3.1)

For general Sobolev spaces it is not so clear how one can define them and that is because of how
the functions might behave at the vertices. Recall that if I is an open interval of R we can define
distributional derivatives of a given function defined over the set I , see for example [9], [22]. We then
define the Sobolev space H1(I) as

H1(I) :=
{
u : I → R : u, u′ ∈ L2(I)

}
,

which is a Hilbert space for the norm ‖u‖2H1(I) := ‖u‖2L2(I) + ‖u′‖2L2(I). Since in a metric graph,
functions are, for all purposes, defined in one dimension through the identifications with intervals, we
define the notion of a distributional derivative in the same way on a metric graph. Moreover recall that,
in one dimension, H1-functions admit a continuous representative. This gives us a natural way to define
the Sobolev space H1(G).
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Definition 3.14: Sobolev Space H1(G)

Let G = (V (G), E(G)) be a finite metric graph. The Sobolev space H1(G) is defined as:

H1(G) :=
{
u : G → R | u ∈ C(G) and ue ∈ H1(Ie), ∀e ∈ E(G)

}
.

Moreover, we endow it with the norm

‖u‖2H1(G) :=
∑

e∈E(G)

‖ue‖2H1(Ie)

which makes it into a Hilbert space.

Remark 3.15:
Note that for finite graphs the above norms are always finite. When working with infinite graphs a
finiteness condition on the sums needs to be imposed for both Lp(G) and H1(G).

3.1.2 Differential Operators on Metric Graphs

Let G be a metric graph. Consider the operator that acts of functions defined in G as

(Af)(x) = −d
2f

dx2
(x) + λf(x), (3.2)

where λ is a positive real number and x is to be understood as the coordinate along each edge.
The case where the graph is simply a line segment is included in this one. In this classical case, to

completely define the above operator, we need to state the domain in which it is defined, this includes the
smoothness inside the interval and eventually boundary conditions. In a graph, G, the idea is the same.
We need to specify the smoothness along the edges of the graph and eventually vertex conditions, which
are the boundary conditions analogue for an interval. Recall now that if I ⊂ R is an open interval, the
natural domain for the operator A is H2(I), that is:

H2(I) :=
{
u : I → R : u, u′, u′′ ∈ L2(I)

}
.

Remember also that this is a Hilbert space when endowed norm:

‖u‖2H2(I) := ‖u‖2L2(I) + ‖u‖2L2(I) + ‖u′′‖2L2(I).

Then, in a metric graph, it is natural to consider

D(A) = H̃2(G) :=
⊕

e∈E(G)

H2(Ie),

as the domain of A. In other words, to require that f is in H2 on the interval that identifies each edge e.
Of course the natural norm to be considered in this space is

‖f‖2
H̃2(G)

:=
∑

e∈E(G)

‖fe‖2H2 <∞.

Again, the finiteness condition is only relevant in infinite graphs.
As for vertex conditions there are many conditions one may take, however, for the variational ap-

proach we will be undertaking, the natural ones are the homogeneous Neumann-Kirchhoff conditions, or
standard conditions, which are given byf continuous on G, and∑

e∈Ev

df

dxe
(v) = 0, for all v ∈ V (G),

(N-K)
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where the above derivative is taken from the vertex into the edge, andEv := {e ∈ E(G) : e ≺ v}. Recall
that by Sobolev embeddings, H2(I) is embedded in C1, 1

2 (I), see [16, Section 5.6.3] and [22, Theorem
12.55], therefore the second equation in (N-K) makes sense.

Remark 3.16:

• Note that for vertices of degree one the above conditions are in fact the homogeneous Neumann
conditions. Moreover, these conditions will ensure that the quadratic form associated with the
above operator will be defined in H1(G). Indeed, let 〈·, ·〉 denote the inner product in L2(G), then

〈Au, u〉L2(G)×L2(G) =
∑

e∈E(G)

〈Aue, ue〉L2(Ie)×L2(Ie) =
∑

e∈E(G)

∫
Ie

−d
2ue
dx2

e

ue + λu2
edxe.

Now using the Neumann-Kirchhoff conditions we can integrate by parts without worrying about
the boundary terms, whence

〈Au, u〉L2(G)×L2(G) =
∑

e∈E(G)

∫
Ie

|u′e|2 + λ|ue|2dxe =

∫
G
|u′|2 + λ|u|2dx.

• A final remark on the spaceH1(G). The space H̃1(G) can be constructed just as it was done above
for H̃2. Since we want functions to be continuous this is in fact not the correct definition for us.
However, since both H1 and H̃1 are endowed with the same norm, and convergence in this norm
implies uniform convergence (by Sobolev embeddings), we have that H1(G) is in fact a closed
subspace of H̃1(G).
• For vertices of degree 2 the Neumann-Kirchhoff conditions allow the removal or creation of ver-

tices. The first condition in (N-K) ensures continuity of the function while the second ensures the
continuity of the first derivative at the vertex, therefore we can glue the two H2 -pieces of the
function in a single H2-function defined on the longer edge. Such a vertex is often called a dummy
vertex.

3.2 A New Setting for an Old Problem

In what follows, G = (V (G), E(G)) is always a connected metric graph. Let again µ > 0 and p ∈ (2, 6).
We now have the tools to reconstruct problem (2.6) in the new setting of graphs.

Let u ∈ H1(G). The NLS energy functional of u is defined as

E(u,G) :=
1

2

∫
G
|u′|2dx− 1

p

∫
G
|u|pdx (3.3)

=
∑

e∈E(G)

{
1

2

∫
Ie

|u′e|2dxe −
1

p

∫
Ie

|ue|pdxe
}
.

Notation: We will consider now the NLS functional dependent also on the graph, therefore we
slightly change the notation from Chapter 2 in order to make this dependence more evident.

For precisely the same reason as in Chapter 2, for G = R, this functional is well defined. Defining

H1
µ(G) :=

{
u ∈ H1(G) : ‖u‖2L2(G) = µ

}
the analogue of problem (2.6) takes the form:

finding u0 ∈ H1
µ(G) such that E(u0,G) = inf

u∈H1
µ(G)

E(u,G). (3.4)
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Let us now take a moment to make some connections with the previous section. Consider on a metric
graph G the equation

−u′′ + λu = |u|p−2u,

A function u ∈ H1(G) is called a weak solution to this equation if∫
G
u′η′ + λuη − |u|p−2uηdx = 0 for all η ∈ H1(G). (3.5)

The following result will give us some necessary conditions for the existence of ground states to the
problem (3.4).

Proposition 3.17

Let G be a connected metric graph, µ > 0 and p ∈ (2, 6). Let also u ∈ H1
µ(G) be a solution to

problem (3.4). Then:
(i) there exists λ > 0 such that u is a weak solution to the equation −u′′ + λu = |u|p−2u in G

and, on each edge e, ue is a classical solution of the equation:

−u′′e + λue = ue|ue|p−2 for all e ∈ E(G). (3.6)

Consequently, u ∈ H̃2(G).
(ii) For every vertex v ∈ V (G) that is not a vertex at infinity the conditions (N-K) are satisfied.

(iii) Up to a change of sign, u > 0 on G.

Proof. Let us begin by proving (i). The functional defined in (3.3) is a class C1 functional in H1(G).
This can be seen as a consequence of Lemma 2.12 and Remark 2.13. Since for each edge e the functionals
are C1(Ie) then the sum over all the edges is in C1(H1(G)). The same happens to the functional that
defines the restriction. Then if u ∈ H1

µ(G) is a solution to the problem we have that u is a critical point
in the sense of constrained extrema problems. Therefore, there exists a Lagrange multiplier θ ∈ R such
that ∫

G
u′η′ − |u|p−2uηdx = θ

∫
G
uηdx, for all η ∈ H1(G). (3.7)

Passing all to the left hand side and taking λ := −θ gives that u is a weak solution to the equation. By
fixing now an edge e ∈ E(G), taking η ∈ C∞0 (Ie) we get that ue is also a weak solution to the equation
on the interval Ie. By the regularity Lemma C.1 we have that ue ∈ H2(Ie) and, by Sobolev embedding,
it is a classical solution. Consequently, u ∈ H̃2(G).

For (ii) fix v ∈ V (G) that is not a vertex at infinity. Let e be an edge such that e ≺ v. In this edge we
can construct a smooth cutoff function ϕ such that |ϕ| ≤ 1 and ϕ(v) 6= 0, and ϕ = 0 on the other vertex
of e. Performing this construction in each edge incident to v and extending to the rest of the graph by
zero we construct a function η ∈ H1(G). Moreover, the value of η at v can be made arbitrary. Note also
that this function is zero at every vertex except v, then testing (3.5) with η and using the fact that u is C2

on each edge yields

0 =
∑

e∈E(G)

{[
u′eηe

]le
0

+

∫ le

0

(
−u′′e + λue − |ue|p−2ue

)
ηedx

}

=
∑

e∈E(G)

[
u′eηe

]le
0

+

∫
G

(
−u′′ + λu− |u|p−2u

)
ηdx.

Taking into account (i), the construction of η and that the derivatives in the Neumann-Kirchhoff condi-
tions are taken in the direction of the edges we have∑

e∈Ev

due
dxe

(v)ηe(v) = 0.
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Using now the fact that η ∈ H1(G) and that η(v) can be made arbitrary by construction we get∑
e∈Ev

due
dxe

(v) = 0 (3.8)

where Ev = {e ∈ E(G) : e ≺ v}. Thus the second item is proved.
To prove (iii) start by noticing that since we assume that solutions are real valued and that for these

we have that E(|u|,G) = E(u,G), there is no loss of generality in assuming that solutions are non-
negative. Suppose that for some vertex v we have that u(v) = 0. Since u ≥ 0 we have that all the
derivatives in (3.8) are non-negative. Hence, the Neumann-Kirchhoff conditions give us that

due
dxe

(v) = 0, for all e ≺ v.

Since for all theses edges we have that ue(v) = due
dxe

(v) = 0 and that for each edge, ue satisfies the ODE
(3.6); then, by uniqueness of solution we have that ue ≡ 0 for all edges incident to v. By repeating this
argument to any neighbouring vertices to v and using the connectedness of G we get that u ≡ 0 on G,
which is a clear contradiction since u, as a ground state, has strictly positive mass. Finally, if there exists
an edge e such that ue(x) = 0 for some x ∈ (0, le) then, from the non-negativity of ue, we deduce again
that ue(x) = due

dxe
(x) = 0. From here, uniqueness of solution to the ODE (3.6) gives us that ue ≡ 0

the edge e. In particular, u = 0 at the vertices that are incident with the edge e. From here the previous
reasoning follows. �

We finish this section by introducing the notion of rearrangement of functions on metric graphs. We
refer the reader to Kawohl [20, Chapter II] and Kesavan [21, Chapter 1] as well as to the section A.4
of the Appendix A for rearrangements in subsets of RN . Since we assume solutions to be non-negative
we introduce the notion of rearrangement on graphs only for these functions. Fix now a graph G and
let ω = m(G) :=

∑
e∈E(G)m(Ie) be the length of G, where m denotes the one dimensional Lebesgue

measure.
Definition 3.18: Distribution Function

Let G be a metric graph, u ∈ H1(G), u ≥ 0. The distribution function of u is defined as
ρu(t) : [0,+∞)→ [0, ω] by

ρu(t) :=
∑

e∈E(G)

m ({xe ∈ Ie : ue(xe) > t}) , t ≥ 0.

Note that for each t > 0 this function is finite. First, recall that all the graphs are assumed to be finite.
Now, if G is compact then by the continuity of the function u we have that all the measures involved are
finite. When G is non compact, that is ω = +∞, we need a bit more than the continuity alone, we
need the function to vanish at infinity on the unbounded edges of the graph, see section A.4. This is
automatically satisfied by H1(G) functions.

Definition 3.19: Rearrangement

We say that two functions are equimeasurable if they have the same distribution function. In this
case we say that they are rearrangements of one another.

We can now define two particular types of rearrangements of a function u ∈ H1(G). We define:
(i) the decreasing rearrangement u# : I# := [0, ω)→ R as the function

u#(x) := inf{t > 0 : ρu(t) < x}. (3.9)

(ii) the symmetric decreasing rearrangement, or Schwarz symmetrization, u∗ : I∗ :=
(
−ω

2 ,
ω
2

)
→ R

as the function
u∗(x) := inf{t > 0 : ρu(t) < 2|x|}. (3.10)
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Also, since no special adaptation to the proofs are required, just as in the Appendix A we refer the reader
to [21] for the proof that these functions are equimeasurable. Consequently, from the definition of the Lp

norms on graphs and Corollaries A.16 and A.18 we have that∫
G
|u|qdx =

∫
I#
|u#|qdx =

∫
I∗
|u∗|qdx for all q ≥ 1. (3.11)

Remark 3.20:
Taking q = 2 in the above equalities says that the above rearrangements do not change the mass of a
function.

In what follows we will need to compare energies of functions with the energy of their rearrange-
ments. Holding the previous remark into account we see immediately that Polya-Szegő inequality, see
Theorems A.19 and A.20 will be a fundamental tool to determine whether the energy is maintained
or decreases, by providing information on the kinetic part of the energy functional. We now state and
prove a Pólya-Szegő type inequality for metric graphs. Let us start by establishing some notation. Let
u ∈ H1(G). For simplicity assume u ≥ 0 and let M := supx∈G u > 0 and m := infx∈G u ≥ 0. For
t ∈ (m,M) define

n(t) := # {x ∈ G : u(x) = t} .

Theorem 3.21: A Pólya-Szegő type Inequality

Let G be a connected metric graph and let u ∈ H1(G) be a non-negative function. Then∫
I#
|(u#)′|2dx ≤

∫
G
|u′|2dx, (3.12)

with strict inequality unless n(t) = 1 for almost every t ∈ (m,M). Also,

n(t) ≥ 2 for a.e. t ∈ (m,M)⇒
∫
I∗
|u∗′|2dx ≤

∫
G
|u′|2dx, (3.13)

where the equality implies that n(t) = 2 for almost every t ∈ (m,M).

Before proceeding with the proof of the above result let us prove the following Lemma

Lemma 3.22

Let G be a metric graph and define

U(G) := {u ∈ C(G) : ue ∈ C∞(Ie) ∩H1(Ie), ∀e ∈ E(G)}.

Then, U(G) is dense in H1(G).

Proof. Let u ∈ H1(G). We will split the proof by construction the approximation in two cases:
1. In finite edges. Let e be a bounded edge of the graph identified with the compact interval Ie =

[0, le]. Consider the function ue ∈ Ie. Since ue is continuous take now the following affine
function

f(x) =
u(le)− u(0)

le
x+ u(0) ∈ H1(0, le).

Note now that ue − f ∈ H1
0 (0, le) Therefore, we can take a sequence un ∈ C∞c ([0, le]) such that

un → ue − f strongly in H1(0, le). Consequently, vn := un + f converges strongly to ue in
H1(0, le). Moreover, we have vn ∈ C∞([0, le]) ∩ H1(0, le), ue(0) = vn(0) and that ue(le) =
vn(le) for all n ∈ N.
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2. In the half-lines. Fix any x0 > 0 and the values ue(0) and ue(x0). Take now ρ a C∞(R+) cutoff
function such that supp ρ ⊂ [0, x0] and such that ρ(0) = ue(0). Again, ue − ρ ∈ H1

0 (R+) and
therefore we can take a sequence un ∈ C∞c (R+) such that un → ue − ρ strongly in H1(R+).
Consequently, vv := un + ρ converges strongly to ue in H1(R+). Moreover, by the way the
function ρ was chosen we have that vn ∈ C∞(R+) ∩ H1(R+) and that vn(0) = ue(0) for all
n ∈ N.

From items 1 and 2 we can now take a sequence (wn)n∈N continuous on the whole graph and that it is
C∞(Ie) ∩H1(Ie) on each edge and that converges strongly in H1(G) to u. �

With this lemma we can now prove Pólya-Szegő inequality on graphs.

Proof of Theorem 3.21. According to the previous lemma we apply a density argument:
1. Proof for u ∈ U(G). Let u ∈ U(G). Given the regularity of u on the edges we can speak of

critical points. We define critical points as a point x ∈ Ie, where Ie identifies the edge e, for
which u′e(x) = 0 or as being a vertex. Now it follows from Sard’s Theorem, see [19, Section 1.7],
that the set of critical values of u has measure zero (note that even if a vertex is a critical point we
only have a finite number of them), hence almost every t ∈ (m,M) is a regular value of u . We
now claim that n(t) is finite for almost every t ∈ (m,M). In order to see this we resort to a result
from manifold theory. Consider u = (ue)e∈E(G), where ue : Ie → R. By definition, we have
that n(t) =

∑
e∈E(G) ne(t), where ne(t) := # {x ∈ Ie : ue(x) = t}. If Ie is compact, since ue

is also C∞ and t is a regular value, then, from the Regular Level Set Theorem, see [25, Theorem
9.9], u−1

e {t} defines a 0 dimensional submanifold of Ie. Moreover, it is compact. Recalling that
0-dimensional compact manifolds are finite we get that ne(t) < ∞ for each finite edge of the
graph. For the unbounded edges recall that since u ∈ H1(Ie), lim|x|→∞ ue(x) = 0. This, together
with the fact that t is a regular value, yields that also in the unbounded case ne(t) < ∞, whence
n(t) is also finite.
Applying the Coarea Formula, see [21, Section 2.2], we get that∫

G
|u′|2dx =

∫ M

m

∫
u−1{t}

|u′|dσdt,

where dσ is the counting measure. With this in mind we can rewrite the kinetic term as:∫
G
|u′|2dx =

∫ M

m

∑
x∈u−1{t}

|u′(x)|dt.

It also follows by the definition of n(t) and Cauchy-Schwarz inequality that

n(t)2 =

 ∑
x∈u−1{t}

1

2

=

 ∑
x∈u−1{t}

|u′(x)|
1
2 |u′(x)|−

1
2

2

≤
∑

x∈u−1{t}

|u′(x)|
∑

x∈u−1{t}

|u′(x)|−1.

Therefore,  ∑
x∈u−1{t}

|u′(x)|−1

−1

n(t)2 ≤
∑

x∈u−1{t}

|u′(x)|. (3.14)

Using (3.14) and the fact that n(t) ≥ 1 we have the following estimate for the L2 norm of the
derivative: ∫

G
|u′|2dx ≥

∫ M

m

 ∑
x∈u−1{t}

|u′(x)|−1

−1

= −
∫ M

m

dt

ρ′u(t)
. (3.15)
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In the last equality we used [21, Theorem 2.2.3]. If we now consider the function u# the same
precise computations hold for the rearrangement too. However, since u# is strictly decreasing
nu#(t) = 1 for almost every t ∈ (m,M), where nu#(t) is the number of elements in the pre-
image of the function u# at the level t ∈ (m,M), and all the computations above hold with
equalities. The conclusion now follows from the equimeasurability between u and u#, which
means they have the same distribution function, whence∫

G
|u#′|2dx = −

∫ M

m

dt

ρ′
u#

(t)
= −

∫ M

m

dt

ρ′u(t)
≤
∫
G
|u′|2dx.

This proves (3.12). To prove (3.13) the computations are exactly the same. The only thing to
notice is that since u∗ is an even function then nu∗(t) = 2 for almost every t ∈ (m,M), where
nu∗(t) is the number of elements in the pre-image of the function u∗ at the level t ∈ (m,M), thus
the computations hold as long as n(t) ≥ 2. If we suppose that an equality holds, then carrying out
the computations backwards yields that n(t) = 2.

2. Passing to the limit
Let now u ∈ H1(G) and (un)n∈N ⊂ U(G) be such that un → u in H1(G). It then follows by the
convergence in L2 of both the function and its derivative that∫

G
|u′|2dx = lim

∫
G
|u′n|2dx ≥ lim

∫ m(G)

0
|u#
n
′|2dx =

∫ m(G)

0
|u#′|2dx.

We just point out that the last equality holds because the operator # : L2(G) → L2(0,m(G))
is continuous, see [21, Theorem 1.2.3]. Similarly we have the same argument for the Schwarz
symmetrization.

�

Remark 3.23:
Note that Theorem 3.21 and the equalities in (3.11) allows one to conclude that for any graph G, u# ∈
H1(0, ω). It also gives a sufficient condition for the Schwarz symmetrization u∗ to be in H1

(
−ω

2 ,
ω
2

)
.

To finish this chapter, now that the notion of rearrangement was already introduced in graphs, we
show some universal Gagliardo-Nirenberg-type inequalities in non-compact graphs.

Proposition 3.24: Universal Gagliardo-Nirenberg Inequality

Let G be a non-compact metric graph. Then, there exists Cp, depending only on p, such that

‖u‖pLp(G) ≤ Cp‖u‖
p
2

+1

L2(G)
‖u′‖

p
2
−1

L2(G)
for all u ∈ H1

µ(G). (3.16)

Proof. We know, from Corollary A.4, that the same inequality holds when the domain is R. Then, it also
holds when the domain is R+ by simply taking the even extension to the whole R.

Take now u ∈ H1(G). Given that G is non-compact we can consider the decreasing rearrangement
of u, u# : R+ → R. The equimeasurability of u# and u it follows that

‖u‖pLp(G) = ‖u#‖p
Lp(R+)

.

Applying the Gagliardo-Nirenberg inequality for R+ yields

‖u‖pLp(G) ≤ Cp‖u
#‖

p
2

+1

L2(R+)
‖u#′‖

p
2
−1

L2(R+)
≤ Cp‖u‖

p
2

+1

L2(G)
‖u′‖

p
2
−1

L2(G)
,

where the last inequality holds by the preservation of mass and Polya-Szegő’s inequality (3.12). �

42



3.2. A NEW SETTING FOR AN OLD PROBLEM

Also, using Corollary A.5, we prove in the exact same way

Proposition 3.25: Universal Gagliardo-Nirenberg Inequality for L∞ norm

Let G be a non-compact metric graph. Then, there exists Cp, dependig only on p, such that

‖u‖2L∞(G) ≤ Cp‖u‖L2(G)‖u′‖L2(G) for all u ∈ H1
µ(G). (3.17)

Remark 3.26:
The term universal here is used to express that the constants in both the embeddings are independent of
the graph. Finally note that these inequalities are valid only for non-compact graphs. We will see in the
next chapter that these inequalities will only be required in the non-compact case.
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Chapter 4

Existence and Non-existence Results

Our interest in this chapter is to study the existence or non existence of ground states of prescribed mass
for the NLS energy functional on metric graphs. Recall that the problem at hand is to

find u0 ∈ H1
µ(G) such that E(u0,G) = inf

u∈H1
µ(G)

E(u,G). (4.1)

Throughout this chapter G is a connected metric graph. We will follow closely the approach taken [1]
and in [2]. The focus of these references is only on non-compact graphs; here we present a detailed
description of what happens in the compact case.

Lemma 4.1: A compact embedding in graphs

Let p ≥ 1. If G is a compact metric graph then H1(G) is compactly embedded in Lp(G).

Proof. Let p ≥ 1, G a compact metric graph and u ∈ H1(G). Firstly notice that

‖u‖pLp(G) =
∑

e∈E(G)

‖ue‖pLp(Ie)
.

Since G is compact, all its edges are bounded. Thus, from Corollary A.9 it follows that,

‖u‖pLp(G) ≤ C(p,G)‖u‖p
H1(G)

.

with compact embedding because we can write the inclusion operator on each edge as

ι : H1(Ie)
ι1−→ C(Ie)

ι2−→ Lp(Ie),

with both ι1, ι2 linear and continuous and, ι1 compact. Moreover, we have a finite number of edges. �

Thus, the direct method of the calculus of variations can be carried out in these graphs

Proposition 4.2: Existence of solution in a compact graph

Let G be a compact metric graph, µ > 0 and p ∈ (2, 6). Then, problem (4.1) admits a solution.

Proof. Fix G a compact metric graph. We show that in this case E still remains bounded from below.
From applying Corollary A.7 on each edge we get that:

‖u‖pLp(G) ≤ C‖u‖
p
2

+1

L2(G)
‖u‖

p
2
−1

H1(G)
, for all u ∈ H1(G),

where the constant depends also on the graph. Plugging this estimate in the functional we get a lower
bound for E as in (2.7). Let then (un)n∈N be a minimizing sequence. This new estimate on the graph
gives us that (un) is bounded in H1(G), just as in Lemma 2.8; whence there exists u ∈ H1(G) such that
un ⇀ u in H1(G) up to a subsequence. From here, invoking the compactness of the previous lemma,
the proof is straightforward. �
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Having this in mind the search for ground states for the NLS energy functional in graphs is only non
standard for non-compact graphs. We will also see that the existence of ground states depends strongly
on the topology and metric properties of the graphs.

As said before, the case G = R, that is, for a graph like the one in Figure 3.5, falls under the scope of
this new problem. The following a priori estimates show that in fact ground states to the minimization
problem in R, that is, solitons, provide upper and lower bounds for the energy of the solutions (should
they exist) to the problem (4.1).

Theorem 4.3

Let G be a non-compact metric graph. Then we have that

1

2
E(ϕ2µ,R) = min

u∈H1
µ(R+)

E(u,R+) ≤ inf
u∈H1

µ(G)
E(u,G) ≤ min

u∈H1
µ(R)

E(u,R) = E(ϕµ,R),

where ϕµ and ϕ2µ are the unique positive and even solutions to the minimization problem in R.
Moreover, these inequalities hold even if the infimum is not attained.

Before proving the above result let us prove a lemma that justifies the first equality.

Lemma 4.4: Minimization Problem on a half-line.

Let µ > 0 and p ∈ (2, 6). Consider now problem (4.1) where G = R+. Then the infimum is
attained at ϕ2µ|R+ and, moreover,

min
u∈H1

µ(R+)
E(u,R+) =

1

2
E(ϕ2µ,R).

Proof. Note that if ϕ2µ is a ground state to the problem

min
u∈H1

2µ(R)
E(u,R)

then the restriction of ϕ2µ to R+ is an admissible solution to

inf
u∈H1

µ(R+)
E(u,R+).

Indeed, since ϕ2µ is even, the mass constraint is automatically satisfied and moreover,

E(ϕ2µ,R−) = E(ϕ2µ,R+),

whence
E(ϕ2µ,R+) =

1

2
E(ϕ2µ,R).

We now claim that the above function is in fact the solution. By way of contradiction, suppose that there
exists v ∈ H1

µ(R+) such that E(v,R+) < E(ϕ2µ,R+). Let now w be the even extension of v to the
whole real line. Clearly, w ∈ H1(R) with mass 2µ, that is, w ∈ H1

2µ(R). However,

E(w,R) =
1

2

∫ +∞

0
|v′(x)|2dx− 1

p

∫ +∞

0
|v(x)|pdx+

1

2

∫ 0

−∞
|v′(−x)|2dx− 1

p

∫ 0

−∞
|v(−x)|pdx

= 2E(v,R+) < 2E(ϕ2µ,R+) = E(ϕ2µ,R),

which is a contradiction. �

We now conclude this initial section with the proof of Theorem 4.3.
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Proof of Theorem 4.3. Let G be any non-compact metric graph. We begin by showing that the energy of
a soliton of mass µ in R gives an upper bound for infu∈H1

µ(G)E(u,G).
Let ϕµ ∈ H1

µ(R) denote the unique positive and even ground state for problem (2.6). We will now
construct a family of functions of compact support converging strongly in H1(R) to ϕµ. To do so take
η ∈ C∞(R) a cutoff function such that η(x) = 0 if |x| ≥ 2 and η(x) = 1 if |x| ≤ 1 and such that
|η| ≤ 1. Now, let ε > 0 and consider ηε(x) = η(εx). For

cε =

(
µ∫

supp ηε
|ϕµ|2η2

εdx

) 1
2

↘ 1 as ε→ 0 (4.2)

we define
uε(x) := cεϕµ(x)ηε(x). (4.3)

For this choice of cε note that we have uε ∈ H1
µ(R), for each ε > 0. We now claim that uε → ϕµ as

ε→ 0 in H1(R). Recall that ϕµ, by regularity of the solitons, is C∞ then, since η is smooth and cε → 1
we have that

uε → ϕµ and u′ε → ϕ′µ as ε→ 0

pointwise in R. Moreover,

|uε(x)|2 ≤ c2
ε |ϕµ(x)|2|ηε(x)|2 ≤ K|ϕµ(x)|2,

which is integrable, and also, taking ε small

|u′ε(x)|2 ≤ |ϕ′µ(x)|2 + |ϕµ(x)|2ε2|η′(εx)|2 ≤ K
(
|ϕ′µ(x)|2 + |ϕµ(x)|2

)
.

From Lebesgue’s dominated convergence theorem we have that

uε → ϕµ and u′ε → ϕ′µ in L2(R),

whence uε → ϕµ in H1(R) as ε→ 0, and in particular limε→0E(uε,R) = E(ϕµ,R).
Assume now that supp uε is contained in the interval [0,+∞) (taking vε(x) = uε(x + 2

ε ), which
satisfies supp vε ⊂ [0,+∞), does the job). Even though the convergence to ϕµ is lost, we still have that
limε→0E(vε,R) = E(ϕµ,R). Since G is non-compact it has an unbounded edge, thus by identifying
one such edge with the above interval we can also consider vε ∈ H1

µ(G) simply extending by zero to the
remaining edges. Then

inf
u∈H1

µ(G)
E(u,G) ≤ lim

ε→0
E(vε,G) = lim

ε→0
E(vε,R) = E(ϕµ,R) = min

u∈H1
µ(R)

E(u,R),

which establishes the second inequality in the statement.
Let us now prove the first inequality. Note that for all u ∈ H1

µ(G) we can define its decreasing
rearrangement u# ∈ H1(R+). Since the mass is preserved by this rearrangement, see (3.11), and, by
Theorem 3.21, the kinetic part of the energy functional does not increase, we conclude that

inf
ϕ∈H1

µ(R+)
E(ϕ,R+) ≤ inf

u∈H1
µ(G)

E(u,G).

Recalling Lemma 4.4 the proof is finished. �

4.1 Nonexistence Results for Non-Compact Graphs

For non-compact graphs there is no general theory in what concerns the existence of ground states for the
NLS energy functional (3.3). However, in [1] it was shown that the topology of a graph has an important
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effect in what comes to the existence or non-existence of ground states. In [1] a topological assumption
that rules out the existence of minimizers was introduced and it is given by:

Let G = (V (G), E(G)) be a metric graph. After the removal of the interior of any edge
e ∈ E(G), every connected component of the subgraph (V (G), E(G) \ {e}) contains at least
one vertex at infinity.

(H)

In the figures below we can see one example where the assumption (H) is satisfied and another where it
is not.

∞
v

∞

Figure 4.1: A metric graph which satisfies
(H)

∞
v

∞

e

Figure 4.2: A metric graph for which (H)
is not satisfied. The removal of the inte-
rior of the edge e segregates all the infinity
vertices in one of the two connected com-
ponent.

Remark 4.5:

1. A cut-edge of a metric graph is an edge which upon the removal of its interior disconnects the
graph. Note that condition (H) is only relevant for these edges, otherwise the condition is trivially
satisfied. This makes in practice the verification of condition (H) simpler;

2. Note that (H) implies the existence of at least two vertices at infinity in G. This follows by noticing
that every vertex at infinity, having degree one, the edge connecting it to the graph is necessarily a
cut-edge.

The goal of this whole section is outlined in the following. Note that from assumption (H) we can
injectively immerse R, as a metric graph, inside G. This immersion will then allow us to deduce that for
all the graphs that satisfy condition (H), infu∈H1

µ(G)E(u,G) = E(ϕµ,R). The assumption is crucial to
deduce that n(t) = #{x ∈ G : u(x) = t} = 2 for almost every t ∈ (0, supG u). Then, Theorem 3.21
gives us the equality and that no solutions exist except if the graph G has certain specific topologies that
we can fully describe. This means that under (H) the question of existence and non-existence of ground
states can be completely classified.

The next key step is to make clear how we can immerse R inside the graph. For this we need the
following lemma.

Lemma 4.6: Necessary condition for the assumption (H)

Let G be a metric graph. If G satisfies (H) then, as a metric space, G satisfies the following
condition:

For every x0 ∈ G, there exist two injective curves γ1, γ2 : [0,+∞) → G parametrized
by arclength, with disjoint images except for finitely many points, and such that γ1(0) =
x0 = γ2(0).

(H’)
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Proof. Let us define T to be the set of trails in G such that the original and terminal vertices are vertices
at infinity. Since G is connected and satisfies (H), it has at least two vertices at infinity, therefore, T is
non-empty.

Suppose now that x0 ∈ G is covered by at least one trail T ∈ T . Such trail allows us to define
γ : R → G an immersion between R and G. Due to possible loops this immersion does not need to be
injective, however, by removing all the loops we assume it is injective (up to a finite number of points).
We can now explicitly construct two curves α1 and α2 in the following way:

α1(x) := γ(x0 + x) and α2(x) := γ(x0 − x), for x ≥ 0.

Since T ∈ T both α1 and α2 will be trapped in a half-line at some point, therefore α1 and α2 are indeed
defined on [0,+∞). We may re-parametrize by arclength both these curves to create γ1, γ2 : [0,+∞)→
G as in the statement. Moreover, since T is a trail we have that no edge is repeated and therefore if both
curves intersect it will only be at vertices, which are in finite number.

We now prove that we can cover the whole graph by trails of T . Let E0 ⊂ E(G) be the set of edges
that are not covered by any trail T ∈ T . Suppose, by way of contradiction, that E0 6= ∅. Since G is
connected there exists e ∈ E0 such that one of its terminal or original vertices will be in some trail T ;
call it w. Moreover, since vertices at infinity have degree one we have that w is not a vertex at infinity,
otherwise e /∈ E0. We now split into two cases:

1. e is a cut-edge. Then, by (H) there exists v1 a vertex at infinity in the connected component that is
disjoint from T . Now take a trail that connects v1 and w while passing through e. Following the
rest of the trail T from w to another vertex at infinity (which is different from v1, because e is a
cut-edge) we have constructed, by concatenating both trails, a trail that uses the edge e, which is a
contradiction.

2. e is not a cut-edge. Then there exists a cycle C in G such that e is an edge of the cycle. Since e is
connected to T through w we can construct a trail T ′ from T by going through the cycle C, which
is again a contradiction.

�

Remark 4.7:
It is easy to check that the conditions (H) and (H’) are equivalent. The previous proof shows the sufficient
condition. As for the necessary one, take G satisfying (H’) but not (H). Take an edge e ∈ E(G) that
disconnects the graph. Let G′ denote the connected component that, as a subgraph of (V (G), E(G)\{e}),
is compact. For any x0 ∈ G′ applying (H’) implies that G′ contains at least two vertices at infinity, since
the curves γ1 and γ2 have infinite length and are injective except in a finite number of points. This is a
contradiction.

The next step is to prove:

Theorem 4.8

If G satisfies (H), then

inf
u∈H1

µ(G)
E(u,G) = min

u∈H1
µ(R)

E(u,R) = E(ϕµ,R). (4.4)

Proof. By Theorem 4.3 we have that

inf
u∈H1

µ(G)
E(u,G) ≤ min

u∈H1
µ(R)

E(u,R) = E(ϕµ,R). (4.5)

We now claim that

min
v∈H1

µ(R)
E(v,R) = E(ϕµ,R) ≤ E(u,G), for all u ∈ H1

µ(G). (4.6)
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From here, taking the infimum over the set H1
µ(G) in (4.6), together with the inequality in (4.5) gives

the intended equality. Let us prove the claim. Fix u ∈ H1
µ(G). Without loss of generality, assume that

u ≥ 0. Let now M := supG u > 0, which is attained since u→ 0 in the unbounded edges, and note that
infG u = 0 for the same reason. Take u∗ ∈ H1

µ(R) to be the Schwarz symmetrization of u, as in (3.10),
then

min
u∈H1

µ(R)
E(u,R) ≤ E(u∗,R).

Provided we can prove that n(t) = #u−1{t} ≥ 2 for almost every t ∈ (0,M), then it follows from
Polya-Szegő inequality, Theorem 3.21, that indeed E(u∗,R) ≤ E(u,G).

By assumption we have that G satisfies (H), and therefore, by Lemma 4.6, also (H’). Let x0 ∈ G be
such that u(x0) = M and γ1 and γ2 be as in Lemma 4.6. Define the function v : R→ R, by

v(z) =

{
u(γ1(z)), z ≥ 0,

u(γ2(−z)), z < 0.

Since v is continuous and for z large enough γ1 and γ2 parametrize half lines, we then have that

lim
|z|→+∞

v(z) = 0.

Thus, #v−1{t} ≥ 2 for almost every t ∈ (0,M). Moreover, since the curves only intersect at most at a
finite number of points (which have measure 0), we conclude that n(t) ≥ 2 for almost every t ∈ (0,M)
and the conclusion follows. �

∞
x1

∞ ∞
x2

x1

∞ ∞
xn

xn−1

x2

x1

∞

...

Figure 4.3: The family of graphs for which assumption (H) is satisfied and ground states exist.

We mentioned before that under (H) specific topologies give rise to the existence of ground states.
Take the following examples:
• The simplest graphs that satisfy (H) are those that are isometric to R like the one in Figure 3.5

above. The unique positive and even solution for problem (4.1) is the soliton ϕµ, since it can now
be seen as an element of H1

µ(G). Note that any other better competitor on the graph would lead to
the existence of a function in R with less energy than that of ϕµ, which is a contradiction.
• Now take x1 > 0 and let G be identified with the quotient space R/{±x1}. This creates a graph

whose topology is the same as in Figure 4.3 (on the left). We can exploit the symmetry of a soliton
of mass µ in R in order to construct a ground state here. Gluing the soliton ϕµ at the points
ϕµ(−x1) = ϕµ(x1) gives rise to a function u ∈ H1

µ(G) with the same energy than that of ϕµ in
R. Consequently we have a ground state. This procedure is illustrated in Figure 4.7.
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• The previous argument can be generalized to any finite number of points xn > · · · > x1 > 0. Con-
sidering G the graph which we obtain from R by gluing together the pairs of points±xn, · · · ,±x1,
which can be seen as in Figure 4.3 (on the right), we can use the same procedure to construct a
ground state. The procedure is illustrated in Figure 4.8.

To finish this section we prove the result which states that under assumption (H) no ground states
exist with the exception of graphs isometric to the ones in Figures 3.5 and 4.3. The main idea of the
proof is to show, using the equality in Theorem 4.8, that if a ground state is present then G needs to have
the topologies described above.

Theorem 4.9: Under (H) ground states exist if and only if G has specific topologies

Let G be a metric graph. If G satisfies (H) then

inf
u∈H1

µ(G)
E(u,G) = E(ϕµ,R)

is never attained unless G is isometric to the graphs depicted in Figures 3.5 and 4.3.

Proof. Let G be a metric graph for which condition (H) is satisfied. Let u ∈ H1
µ(G) be a solution to

problem (4.1). Without loss of generality assume u > 0 and let 0 < M := supG u. Take u∗ ∈ H1
µ(R) to

be the Schwarz symmetrization of u, and recall from the proof of Theorem 4.8 that n(t) ≥ 2 for almost
every t ∈ (0,M). From equality (4.4) we deduce immediately the following equalities:

E(ϕµ,R) = E(u∗,R) = E(u,G).

It follows from here the following:
1. the first equality together with Theorem 2.16 gives us u∗ = ϕµ;
2. the second equality together with Theorem 3.21 yields n(t) = 2 for almost every t ∈ (0,M).

Take again x0 ∈ G such that u(x0) = M and curves γ1, γ2 : [0,+∞) → G parametrized by arclength
with γ1(0) = γ2(0) = x0, as in (H’). Let Γi denote the image of the curve γi, i = 1, 2.

We claim that
G = Γ := Γ1 ∪ Γ2.

In other words, we claim that we can cover the graph with a trail.
Define the function v : R→ R, by

v(x) =

{
u(γ1(z)), z ≥ 0

u(γ2(−z)), z < 0
.

Since v is continuous we conclude that n(t) ≥ 2 for almost every t ∈ (0,M), in fact the previous
argument shows that #

(
u−1{t} ∩ Γ

)
≥ 2 for almost every t ∈ (0,M).

From item 2. above we can deduce that the values of t ∈ (0,M) attained by u on G \ Γ forms a set
of measure 0. Indeed, notice that G can be written as the disjoint union of Γ and G \ Γ. Then,

n(t) = #
(
u−1{t} ∩ Γ

)
+ #

(
u−1{t} ∩ (G \ Γ)

)
,

whence
2 ≥ 2 + #

(
u−1{t} ∩ (G \ Γ)

)
,

which in turn implies that u−1{t} ∩ (G \ Γ) = ∅, for almost every t ∈ (0,M). Thus,

m
({
t ∈ (0,M) : u−1{t} ∩ G \ Γ 6= ∅

})
= 0.

Since Γ is a trail we have that Γ is sequentially closed in G, and since G is a metric space, Γ is closed
in G. Therefore, G \ Γ is an open set. From the continuity of u we infer that u is constant on any edge
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e ∈ G \ Γ. From the equimeasurability between u∗ = ϕµ and u we can in fact deduce that u ≡ 0 in
G \ Γ, because every level set of ϕµ has measure 0 and therefore so do the ones of u. However, from
Proposition 3.17, u > 0 on G. If G \ Γ is not empty then this leads to a contradiction, whence G = Γ.

To finish the proof we show that G has to be precisely one of the graphs in the statement. From
(H’) we know that the curves γ1 and γ2 intersect at a finite number of points x0, x1, · · · , xn ∈ G, where
x0 is their common origin. If n = 0, meaning they only intersect at the starting point, then the graph
G = Γ is isometric to the real line; if n = 1 then G = Γ is isometric to the second graph in the Figure
4.3. For the case n > 1 we need to be more detailed. Notice that since γ1 and γ2 are injective curves,
E(v,R) = E(u,G) = E(u∗,R) = E(ϕµ,R). Moreover, since G = Γ we have also that v ∈ H1

µ(R).
Thus, by uniqueness, v = ϕµ. Now take z1, z2 > 0 such that γ1(z1) = γ2(z2); the definition and parity
of v imply that z1 = z2. Since the curves are parametrized by arclength, then both curves have the same
length between any two intersection points. This yields that the graph has to be isometric to the one in
Figure 4.3 (the one on the right). �

4.2 Existence Results for Non-compact Graphs

Note that in the previous section only topological arguments were used to rule out the existence of ground
states. In what comes, following closely reference [2], we show that topological arguments alone are not
enough to deduce existence of minimal energy solutions of fixed mass, µ > 0. We will in fact see that
there exists an intimate connection between µ and some metric properties of the graphs, such as lengths
of bounded edges.

4.2.1 A priori Estimates for Minimizers

Before progressing to questions of existence we want to show some new a priori estimates for ground
states of problem (4.1).

Let us establish some notation for the remainder of this section. The important part of the approach
taken in [2] was to consider the ground state energy level as a function of the mass, µ ≥ 0, which is
defined, for a fixed graph G, by

EG(µ) := inf
u∈H1

µ(G)
E(u,G). (4.7)

In the previous section we have indeed shown that for any non-compact graph,

E(ϕµ,R+) =
1

2
E(ϕ2µ,R) ≤ EG(µ) ≤ E(ϕµ,R). (4.8)

With this notation, and the notation in Theorem 2.18, we can explicitly give upper and lower bounds for
the energy of a ground state.

Lemma 4.10

Let µ > 0 and G be a non-compact graph. Then if θp := −E(ϕ1,R) > 0 we have that

−22βθpµ
2β+1 ≤ EG(µ) ≤ −θpµ2β+1, (4.9)

for β = p−2
6−p .

Proof. Let µ > 0 and G be a non-compact graph. From Theorem 2.18 we have the following scaling
rule for solitons

ϕµ(x) = µαϕ1(µβx),

where α = 2
6−p and β = p−2

6−p . It then follows that

E(ϕµ,R) =
µ2α+2β

2

∫
R
|ϕ′1(µβx)|2dx− µαp

p

∫
R
|ϕ1(µβx)|pdx.
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By taking z = µβx in the above integrals we have

E(ϕµ,R) =
µ2α+β

2

∫
R
|ϕ′1(z)|2dz − µαp−β

p

∫
R
|ϕ1(z)|pdz.

Upon evaluation of the exponents we arrive at:

ER(µ) = E(ϕµ,R) = µ2β+1E(ϕ1,R) = −θpµ2β+1. (4.10)

Finally, from Lemma 4.4 we get that

ER+(µ) =
1

2
E(ϕ2µ,R) = −22βθpµ

2β+1. (4.11)

By plugging (4.10) and (4.11) into (4.8) we get (4.9). �

It was seen in [2] that it was not only useful to scale the solitons but also to scale the graphs them-
selves, this shown that certain quantities were preserved. Note that in metric graphs we have attributed
a length to each edge, by scaling the length of each edge by a certain factor t > 0, we produce a scaled
version of the same graph. We say that G is homothetic to G′ if there exists a constant t > 0 such that
G′ = tG. That is, for each edge e, we perform the scaling I ′e = tIe = t[0, `e] = [0, t`e].

Proposition 4.11: Scaling preserved quantities

Let G be a metric graph and u ∈ H1
µ(G), which implies that µ = ‖u‖2L2(G). Under the following

homothetic scaling of G and rescaling of u,

G → t−βG, u 7→ tαu(tβ·) for t > 0

the following quantities are preserved:

µ−2β−1‖u′‖2L2(G), (4.12)

µ−2β−1‖u‖pLp(G), (4.13)

µ−β−1‖u‖2L∞(G). (4.14)

Proof. Let G = (V (G), E(G)) be a metric graph, u ∈ H1
µ(G), t > 0 and consider both rescales in the

statement.
We begin by proving (4.13). Let G′ = t−βG. Denote v(·) = tαu(tβ·). Denote by K ⊂ E(G) be the

compact core of the graph, recall Definition 3.12. We have that

‖v‖pLp(G′) = tαp

∑
e∈K

∫ t−β`(Ie)

0
|ue(tβxe)|pdxe +

∑
e∈G\K

∫ +∞

0
|ue(tβxe)|pdxe


= tαp−β

∑
e∈K

∫ `(Ie)

0
|ue(ze)|pdze +

∑
e∈G\K

∫ +∞

0
|ue(ze)|pdze

 = tαp−β‖u‖pLp(G).

Since αp− β = 2β + 1 we have that

‖u‖pLp(G) = t−2β−1‖v‖pLp(G′),

which upon multiplying by µ−2β−1 yields

µ−2β−1‖u‖pLp(G) = (tµ)−2β−1‖v‖pLp(G′). (4.15)
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Finally note that ‖u‖2L2(G) = µ. By performing the same homothety and scaling similar computations
yield

‖v‖2L2(G′) = t2α−β‖u‖2L2(G).

Observing that 2α−β = 1 we get that while scaling both the graph and the functions the mass transforms
like: µ 7→ tµ. Therefore, going back to equation (4.15) we have the desired invariance:

‖u‖2(−2β−1)
L2(G)

‖u‖pLp(G) = ‖v‖2(−2β−1)
L2(G′) ‖v‖pLp(G′).

Let us now focus on (4.12). Taking into account what was done in the previous case the only thing
left to prove is that

‖u′‖2L2(G) = t−2β−1‖v′‖2L2(G′). (4.16)

Indeed, v′(x) = tα+βu′(tβx). Thus,

‖v′‖2L2(G′) = t2(α+β)

∫
G′
|u′(tβx)|2dx,

which upon changing variables and using that 2α+ β = 2β + 1 yields (4.16).
Finally, to prove (4.14) we use the same argument. Let us just prove then that

‖u‖2L∞(G) = t−β−1‖v‖2L∞(G′). (4.17)

In fact,

‖v‖2L∞(G′) =

(
sup

e∈E(G′)
‖ve‖L∞(I′e)

)
= t2α

(
sup

e∈E(G′)
ess sup

xe∈I′e
|ue(tβxe)|

)2

= t2α =

= t2α

(
sup

e∈E(G)
ess sup

ze∈Ie
|ue(ze)|

)2

= t2α‖u‖2L∞(G),

whence (4.17) follows from 2α = β + 1. �

Remark 4.12:

1. From equations (4.12) and (4.13) we have that the energy, under the same rescaling and homothety,
satisfies the same invariance, meaning that

µ−2β−1EG(µ) = (tµ)−2β−1EG′(tµ).

This means that for a fixed graph G, the problem of minimizing the functional E under a certain
mass constraint becomes equivalent to minimizing E on a homothetically scaled graph with a
different mass. The constant µ−2β−1 is then acting as a normalizing constant.

2. Similarly, we have that for some characteristic length of a graph, for example the length of a
bounded edge, the homothety transforms ` 7→ t−β`. In the same way we see that the quantity µβ`
is also preserved. This remark will be of particular use in the next chapter.

The next result will provide us upper and lower bounds for both the kinetic and potential terms of the
functional E, as well as bounds for the L∞ norms of ground states.

54



4.2. EXISTENCE RESULTS FOR NON-COMPACT GRAPHS

Lemma 4.13

Let G be a non-compact graph, and u ∈ H1
µ(G) be such that

E(u,G) ≤ 1

2
inf

v∈H1
µ(G)

E(v,G) < 0. (4.18)

Then,
C−1
p µ2β+1 ≤ ‖u′‖2L2(G) ≤ Cpµ

2β+1, (4.19)

C−1
p µ2β+1 ≤ ‖u‖pLp(G) ≤ Cpµ

2β+1, (4.20)

C−1
p µβ+1 ≤ ‖u‖2L∞(G) ≤ Cpµ

β+1, (4.21)

for some constant Cp > 0 depending only on p.

Proof. Let G be a non-compact graph and u ∈ H1
µ(G) be such that (4.18) holds. As a consequence

of the first item in Remark 4.12 we assume that µ = 1. We begin by proving the upper estimates in
(4.19)-(4.21). Let V := ‖u‖pLp(G) and T := ‖u′‖2L2(G), then (3.16) becomes

V ≤ CpT
p−2
4 . (4.22)

Notice now that the assumption satisfied by u leads to

1

2
T − 1

p
V = E(u,G) ≤ −θp

2
< 0 (4.23)

where in the first inequality (4.9) was used. Thus, T < 2
pV . From here and (4.22) it follows that

T ≤ 2

p
CpT

p−2
4 .

Solving for T , yields simultaneously V, T ≤ C ′p. Recurring to (3.17) we also have ‖u‖2L∞(G) ≤ CT
1
2 ≤

C
′′
p . To finish we show the lower estimates. Notice that from (4.23) we can deduce that

V ≥ p

2
θp. (4.24)

Therefore we can take Dp > 0 such that D−1
p = p

2θp. This yields the lower bound in (4.19). Returning
to (4.22) we now have

D−1
p ≤ V ≤ CpT

p−2
4 . (4.25)

Solving again for T yields the lower bound in (4.20). Finally, the interpolation inequality in (A.1) yields

D−1
p ≤ V ≤ ‖u‖

p−2
L∞(G).

From here taking the power 2
p−2 in the first inequality in (4.21) follows. �

Remark 4.14:
One might wonder what kind of functions satisfy the assumption in equation (4.18). Recalling that the
infimum is negative, any ground state, for example, satisfies this assumption. Also, if u is an element of
a minimizing sequence (un)n∈N, the assumption is also satisfied for n large.
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The next result gives us an idea of the qualitative properties of minimizers on unbounded edges of
a non-compact graph, while also providing some upper and lower bounds to the value of the Lagrange
multiplier, λ, that arose in Proposition 3.17.

Proposition 4.15: On unbounded edges solutions are portions of solitons

Let G be a non-compact graph and let u ∈ H1
µ(G) be a ground state. Then,

C−1
p µ2β ≤ λ ≤ Cpµ2β. (4.26)

Moreover, the restriction of u to any half-line of G takes the form

u(x) = ϕm(x+ y), x ≥ 0, (4.27)

where y ∈ R depends on the half-line, while m is the same for all the half-lines, and satisfies

C−1
p µ ≤ m ≤ Cpµ. (4.28)

In order to prove this result we will need to take a few steps back and focus on the following double-
constrained minimization problem:

min
{
E(ϕ,R+) | ϕ ∈ H1

m
2

(R+), ϕ(0) = a
}
, for m, a > 0. (4.29)

We now show that solutions to this problem exist and describe them. Following this we present a proof
for Proposition 4.15.

Lemma 4.16: Double-constrained Minimization Problem

For every m, a > 0 there exists a unique M > 0 and y ∈ R such that the soliton ϕM satisfies

ϕM (y) = a and
∫ +∞

0
ϕM (x+ y)2dx =

m

2
. (4.30)

The function ϕM (· + y) is the unique solution to (4.29) and we have that y > 0 if and only if
a > ϕm(0).

Proof. We divide the proof in 3 steps.
1. Existence of y and M ;

Recall that solitons satisfy the scaling rule given in (2.37). We then set z = Mβy, where M and y
are to be determined. Plugging it into (4.30) yields

Mαϕ1(z) = a (4.31)

and also, making the change of variable x = M−βt in the integral gives us:

m

2
=

∫ +∞

0
ϕM (x+ y)2dx = M2α−β

∫ +∞

0
ϕ1(z + t)2dt = M

∫ +∞

0
ϕ1(z + t)2dt (4.32)

Provided we can determine z, and consequently y, equation (4.31) gives us the value of M , in fact
M = a

1
αϕ1(z)−

1
α . By putting this value of M in (4.32) we can reduce the problem to studying a

real valued function of a real variable defined by

g(z) := ϕ1(z)−
1
α

∫ +∞

0
ϕ1(z + t)2dt =

ma−
1
α

2
. (4.33)
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The function g is clearly continuous, in fact it belongs to C∞(R) by the regularity of solitons.
We claim that the range of this function is R+ and that it is invertible. By taking limits going to
infinity, we have

lim
z→−∞

g(z) = +∞ (4.34)

since the soliton ϕ1 goes to zero and

lim
z→−∞

∫ +∞

0
ϕ1(z + t)2dt = lim

z→−∞

∫ +∞

z
ϕ1(s)2ds = 1.

Now notice that since ϕ1 is decreasing in (0,+∞), for t ≥ 0

ϕ1(z + t)2 = ϕ1(z + t)
1
αϕ(z + t)2− 1

α ≤ ϕ1(z)
1
αϕ(z + t)2− 1

α . (4.35)

Therefore,

0 ≤ lim
z→+∞

g(z) ≤ lim
z→+∞

∫ +∞

0
ϕ(z + t)2− 1

α = lim
z→+∞

∫ +∞

z
ϕ1(s)2− 1

αds = 0.

Then, we have indeed that g(R) = R+. We now show that g is strictly decreasing. If z < 0 then
it is the product of two strictly decreasing functions, hence g is strictly decreasing for z < 0. For
z ≥ 0 we differentiate

g′(z) = − 1

α
ϕ′1(z)ϕ1(z)−

1
α
−1

∫ +∞

0
ϕ1(z + t)2dt+ ϕ(z)−

1
α
d

dz

∫ +∞

0
ϕ1(z + t)2dt

= − 2

2α
ϕ′1(z)ϕ1(z)−

1
α
−1

∫ +∞

0
ϕ1(z + t)2dt+ ϕ(z)−

1
α

∫ +∞

0
2ϕ1(z + t)ϕ′1(z + t)dt

= 2

∫ +∞

0

ϕ1(z + t)2

ϕ1(z)
1
α

[
ϕ′1(z + t)

ϕ1(z + t)
− 1

2α

ϕ′1(z)

ϕ1(z)

]
dt.

Since 1
2α < 1 and ϕ′1 < 0 in (0,+∞), continuing the above computations yields

g′(z) < 2

∫ +∞

0

ϕ1(z + t)2

ϕ1(z)
1
α

[
ϕ′1(z + t)

ϕ1(z + t)
− ϕ′1(z)

ϕ1(z)

]
dt.

Recalling that from the explicit form of ϕ1 we have that

ϕ′1(x) = −cp
(
α

β

)
ϕ1(x) tanh(cpx),

it follows that

g′(z) < 2cp

(
α

β

)
ϕ(z)−

1
α

∫ +∞

0
ϕ1(z + t)2 [tanh(cpz)− tanh(cp(z + t))] dt < 0.

Finally since ϕ1, α, β, cp are positive and tanh is a strictly increasing function we get that g′ < 0
and therefore, g is invertible. Given now any a,m > 0 we know that there exists a unique z (hence
a unique y and M ) such that the equality in (4.33) (hence 4.30) is satisfied.

2. Existence of Unique Solution to (4.29).
By translation, we know that ϕM (·+ y) minimizes E among all functions that satisfy ‖ϕ‖2L2(R) =

M and ϕ(0) = a. Suppose, by way of contradiction, that there exists ϕ a minimizer for (4.29)
better than ϕM (·+ y). Then the function v : R→ R defined by

v(x) =

{
ϕM (x+ y), x < 0;

ϕ(x), x ≥ 0,
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satisfies v(0) = a and

‖v‖2L2(R) =

∫ 0

−∞
|ϕM (x+ y)|2dx+

∫ +∞

0
|ϕ(x)|2dx = M − m

2
+
m

2
= M.

Moreover, E(v,R) < E(ϕM (· + y),R), which is a contradiction. The uniqueness follows then
from the uniqueness of M and y.

3. y > 0 if and only if a > ϕm(0).
Again, note that by rescaling having a > ϕm(0) is equivalent to having a > mαϕ1(0), and since

g(0) = ϕ1(0)−
1
α

∫ +∞

0
ϕ1(t)2dt =

ϕ1(0)−
1
α

2

we have a > mαϕ1(0), equivalent to g(0) > ma−
1
α

2 . The conclusion follows now from the

construction of z and g. Since g is strictly decreasing and g(z) = ma−
1
α

2 , the last inequality is
equivalent to having z > 0; equivalently y > 0.

�

In other words, this result gives us that by fixing a certain height at x = 0 the resulting solution to
the minimization problem (4.29) is always a portion of a soliton.

Figure 4.4: The case y = 0. Figure 4.5: The case y > 0. Figure 4.6: The case y < 0.

We are now in a position to prove the Proposition 4.15.

Proof of Proposition 4.15. Let G be a non-compact graph and u ∈ H1
µ(G) be a ground state. Being a

ground state, u satisfies∫
G
−u′η′ + u|u|p−2ηdx = λ

∫
G
uηdx, for all η ∈ H1(G).

Taking η = u we have that

−
∫
G
|u′|2dx+

∫
G
|u|p = λµ.

We have immediately from (4.20) that

λµ ≤ ‖u‖pLp(G) ≤ Cpµ
2β+1. (4.36)

Moreover, because the energy of a ground state is negative, we have that

−2

p

∫
G
|u|pdx < −

∫
G
|u′|2dx,

whence, using again (4.20) and the fact that 2
p < 1, yields

λµ > (1− 2

p
)

∫
G
|u|pdx ≥ Dpµ

2β+1. (4.37)

From (4.37) and (4.36) it follows indeed that

Dpµ
2β < λ ≤ Cpµ2β.
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It follows now from Lemma 4.16 that the restriction of u to any half-line is indeed a portion of a soliton.
For if it was not we could apply the lemma and construct a better competitor than u, which is a contradic-
tion since u is a ground state. Let now E1 be the set of unbounded edges of G. For each e ∈ E1 we know
that there exist ye and Me such that ue(x) = ϕMe(x+ ye). We now show that Me is in fact determined
by the Lagrange multiplier, independently of each edge. Recall that ϕ1 solves in R the equation

−ϕ′′1 + λpϕ1 = |ϕ1|p−2ϕ1 (4.38)

for some Lagrange multiplier λp. Since ϕMe satisfies the equation

−ϕ′′Me
(x+ ye) + λϕMe(x+ ye) = ϕMe(x+ ye)

p−1,

through the scaling given in Theorem 2.18 ϕMe(x) = Mα
e ϕ1(Mβ

e (x+ ye)) we have that ϕ1 has to solve

−ϕ′′1(Mβ
e (x+ ye)) + λM−2β

e ϕ1(Mβ
e (x+ ye)) = ϕ1(Mβ

e (x+ ye))
p−1.

By subtracting the previous equation to the equation (4.38) computed at the points Mβ
e (x+ ye) yields

λp =
λ

M2β
e

. (4.39)

Therefore, the mass of a ground state in the unbounded edges comes uniquely determined by the
Lagrange multiplier. Letting m := Me, for each edge we obtain λ = λpm

2β . Now, from (4.26) the
estimates in (4.28) follow. �

The last result of this section provides two important properties of the energy level function when G
is non-compact..

Theorem 4.17: EG is strictly concave and subadditive

The function EG : [0,+∞)→ (−∞, 0] defined as in (4.8) is strictly concave and subadditive, that
is EG(µ + µ′) ≤ EG(µ) + EG(µ′) for all µ, µ′ ∈ [0,+∞). Moreover, the inequality is strict for
µ, µ′ > 0.

Proof. Let G be a non-compact metric graph. It follows from Lemma 4.10 that EG is a real function
of a real variable with domain [0,+∞) and range (−∞, 0]. Recall that any concave function f defined
in [0,+∞) that satisfies f(0) ≥ 0 is subadditive. Since EG(0) = 0 we only need to prove that EG is
concave. To do so we consider the following set:

A :=
{
u ∈ H1

µ(G) : ‖u‖pLp(G) ≥ C
−1
p µ2β+1

}
,

where C−1
p is given in (4.20). As a consequence of Remark 4.14 we know that A 6= ∅. Moreover, from

the same remark we see that if we take a minimizing sequence (un)n∈N there exist n0 ∈ N such that for
n ≥ n0 we have un ∈ A, therefore we can conclude that minimizing inH1

µ(G) is the same as minimizing
in A. It is easy to see now that A =

√
µU where U is the set given by

U :=
{
u ∈ H1

1 (G) : µ
p
2 ‖u‖pLp(G) ≥ C

−1
p µ2β+1

}
.

Therefore we have that

EG(µ) = inf
v∈A

E(v,G) = inf
u∈U

{
µ

2
‖u′‖2L2(G) −

µ
p
2

p
‖u‖pLp(G)

}
= inf

u∈U
fu(µ) (4.40)
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where, for each fixed u ∈ U fu is defined as µ 7→ fu(µ) := µ
2‖u

′‖2L2(G)−
µ
p
2

p ‖u‖
p
Lp(G). Notice now that

fu ∈ C2((0,+∞)), moreover,

f ′′u (µ) = −p− 2

4
µ
p
2
−2‖u‖pLp(G) ≤ −Cpµ

2β−1 < 0, for all u ∈ U,

whence fu is strictly concave in compact subsets of (0,+∞) independently of u. The independence of
u of the strict concavity estimate of the function fu gives us the desired strict concavity of EG . �

We close this section with some remarks on the last proof. The key part of the proof is to consider
the set U for two reasons. Firstly, it allowed us to reduce the problem to study a family of functions of
a real variable. Secondly, without considering this set it would have been harder to prove that EG is in
fact strictly concave since it was this set that provided us the independence of u when we computed the
derivatives f ′′u .

4.2.2 Existence Results for Non-compact graphs

We have seen that if a graph satisfies (H) then no ground states will be present except when G is isometric
to one of the graphs described in Theorem 4.9 . One of the most simple examples where this assumption
fails is when the graph is of the form given in Figure 4.2. In [1], by ad hoc techniques that relied heavily
on the topology of the graph, it was shown that ground states do exist for arbitrary mass µ > 0. In
particular, it was seen that for this particular graph the condition EG(µ) < E(ϕµ,R) was a sufficient
condition for a minimizer to exist! In [2] this was generalized to any non-compact graph, see Theorem
4.19, through a dichotomy principle which we now state and prove.

Theorem 4.18: Dichotomy of minimizing sequences

Let G be a non-compact metric graph and µ > 0. Let also (un)n∈N be a minimizing sequence
for problem (3.4). Then un is weakly compact in H1(G). Moreover, if un ⇀ u in H1(G), then
either, up to a subsequence,

1. un → 0 in L∞loc(G) and u ≡ 0, or
2. u ∈ H1

µ(G), u is a minimizer and un → u strongly in H1(G) ∩ Lp(G), for all p ∈ (2, 6).

Proof. Let G be a non-compact metric graph and µ > 0. Let also (un)n∈N be a minimizing sequence for
problem (3.4). Since every minimizing sequence satisfies the assumption in Lemma 4.13 we have that
un is bounded in H1(G) ∩ Lp(G), indeed if not then E(un,G) → +∞ which is a contradiction. Being
bounded in H1(G) we know that there exists u ∈ H1(G) such that un ⇀ u in H1(G). Moreover, due to
the compact embedding in Corollary A.9 we have that

un → u in L∞loc(G).

Define now m := ‖u‖2L2(G). From the weak convergence in L2(G) we have that

m = ‖u‖2L2(G) ≤ lim inf
n→∞

‖un‖2L2(G) = µ.

We now claim that m can only have two possible values: m = 0 or m = µ; each of which give rise to
the cases 1. and 2. in the statement, respectively.

We start by ruling out any other possible value form. To do so notice that the L∞loc convergence gives
us pointwise convergence and also that the Lp norm of the sequence is uniformly bounded. Then we are
in conditions to apply the Brézis-Lieb Lemma, see Lemma A.2, from which we get that

1

p

∫
G
|un|pdx−

1

p

∫
G
|un − u|pdx−

1

p

∫
G
|u|pdx = o(1), as n→∞. (4.41)
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Since H1(G) is a Hilbert space the weak convergence gives the same result for the L2 norms of the
derivatives. Indeed, recalling that we are working with real valued functions,∫

G
|u′n − u′|2dx = 〈u′n − u′, u′n − u′〉L2×L2 =

∫
G
|u′n|2dx+

∫
G
|u′|2dx− 2

∫
G
u′nu

′dx. (4.42)

Passing everything to the right side, dividing by 1
2 and taking the limit as n→∞ we get that

1

2

∫
G
|u′n|2dx−

1

2

∫
G
|u′n − u′|2dx−

1

2

∫
G
|u′|2dx = o(1), as n→∞. (4.43)

Taking the difference between the equations (4.41) and (4.43) we get that

E(un,G) = E(un − u,G) + E(u,G) + o(1), as n→∞.

Denoting by νn := ‖un − u‖2L2(G) we get that

E(un,G) ≥ EG(νn) + E(u,G) + o(1), as n→∞, (4.44)

since EG(νn) ≤ E(un − u,G) for every n ∈ N, by definition of energy level function. Similarly, from
the weak convergence in L2 we deduce, just as in (4.42), that

νn = µ+m− 2

∫
G
unudx.

Taking the limit yields νn → µ− 2m+m = µ−m. Therefore, taking the limit in (4.44) and using the
continuity of EG we get that

EG(µ) ≥ EG(µ−m) + E(u,G) ≥ EG(µ−m) + EG(m). (4.45)

Suppose now, by contradiction, that m ∈ (0, µ). Then, since EG is subadditive we would have EG(µ) <
EG(µ −m) + EG(m), which is a contradiction. We then have two cases. If m = 0 then u ≡ 0 and we
have proved item 1. in the statement. If m = µ then u ∈ H1

µ(G) and putting the new value for m in
(4.45) yields that u is also a minimizer. Finally, it follows now from the definition of m that un → u in
L2(G); consequently, it also converges strongly in Lp(G) since p > 2. This convergence in turn implies
the convergence of the L2 norms of the derivatives because

1

2
‖u′‖2L2(G) −

1

p
‖u‖pLp(G) = E(u,G) = EG(µ) = lim

n→∞

(
1

2
‖u′n‖2L2(G) −

1

p
‖u‖pLp(G)

)
,

whence the desired strong convergence in H1(G) follows. �

The main result of this section is the following

Theorem 4.19: Sufficient condition for the existence of minimizers

Let G be a non-compact graph. If

EG(µ) = inf
v∈H1

µ(G)
E(v,G) < E(ϕµ,R), (4.46)

then, the infimum is attained and a minimizer exists.

Proof. Let (un)n∈N ⊂ H1
µ(G) be a minimizing sequence. By Theorem 4.18 it is enough to prove that

un cannot converge to zero in L∞loc. By way of contradiction let us suppose so. The goal is to construct
a minimizing sequence from un for which the inequality of the statement is not satisfied, yielding the
contradiction. To do so let K be the compact core of G. Note that this set is always non-empty. In
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fact, we only remove the interior of unbounded edges in order to obtain the compact core. Since by
assumption G contains at least one unbounded edge, its original vertex remains in the compact core.
Let now Mn := maxx∈K un(x), for each n ∈ N. Since we assume that un → 0 in L∞loc we have that
Mn → 0 as n→∞. We define the following sequence

vn := max{0, un −Mn} = (un −Mn)+, for all n ∈ N x ∈ G.

and we claim that vn is also a minimizing sequence. Start by noticing that

|un(x)− vn(x)| = |un(x)−max{0, un −Mn}| ≤Mn

Therefore, ‖un − vn‖L∞(G) → 0 as n→∞. Since p > 2 it follows that

‖un − vn‖pLp(G) ≤ ‖un − vn‖
p−2
L∞(G)‖un − vn‖

2
L2(G) = o(1), (4.47)

as n→∞ since the L2 norm is uniformly bounded by µ. Consequently, we have that

‖vn‖pLp(G) = ‖un‖pLp(G) + o(1), as n→∞. (4.48)

Note also that by construction of vn we have that∫
G
|v′n|2dx ≤

∫
G
|u′n|2dx. (4.49)

By joining the equations (4.48) and (4.49) we get that

E(vn,G) =
1

2

∫
G
|v′n|2dx−

1

p

∫
G
|vn|pdx ≤

1

2

∫
G
|u′n|2dx−

1

p

∫
G
|un|pdx+ o(1) = E(un,G) + o(1),

as n → ∞. Hence, vn is a minimizing sequence. Note that by construction ‖vn‖2L2(G) ≤ µ. It follows
by the subbadditivity and strict negativity of EG that EG(µ) ≤ EG(m) for all m ∈ [0, µ], and since
H1
µ(G) ⊂ H1

≤µ(G) := {u ∈ H1(G) : ‖u‖2L2(G) ≤ µ} it follows that for any u ∈ H1
≤µ(G) there exists

m ∈ [0, µ] such that:
EG(µ) ≤ EG(m) ≤ E(u,G).

Now taking the infimum yields that minimizing in H1
µ(G) is the same as minimizing in H1

≤µ(G), since
H1
µ(G) ⊂ H1

≤µ(G).
We can now reach a contradiction. Note that since un → 0 as x → ∞ in unbounded edges then

#v−1
n {t} ≥ 2 for almost every t ∈ (0,maxG vn) and for each n. Thus by taking the Schwarz sym-

metrization v∗n we get, as a consequence of Polya-Szegő inequality, that

E(vn,G) ≥ E(v∗n,R) ≥ ER(µ). (4.50)

Now taking the limit in the above inequality contradicts the assumption in the statement. �

The following corollary gives us a very practical criterion to deduce the existence of a ground state.

Corollary 4.20

Let G be a non-compact graph. If there exists u0 ∈ H1
µ(G) such that

E(u0,G) ≤ E(ϕµ,R), (4.51)

then G admits a ground state of mass µ.
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Proof. If u0 is indeed a ground state then we are done. If not

inf
u∈H1

µ(G)
E(u,G) < E(u0,G) ≤ E(ϕµ,R) = min

ϕ∈H1
µ(R)

E(ϕ,R).

Then the conclusion follows from Theorem 4.19. �

Therefore, if one can construct or deduce the existence of a function with less or equal energy than
that of a soliton the above corollary guarantees the existence of a ground state. Note that in general the
constructed function is not a ground state. We will see this in the following examples.

4.2.3 Examples and Qualitative Properties of Minimizers

The general idea is to start from a soliton of fixed mass in R and by cutting, gluing and rearranging it
conveniently to produce a function of the same mass on the graph with lower or equal energy. Note
that the lengths of the edges of the graphs will play a crucial role here! We need them to do the correct
rearrangements, since we are not always interested in rearranging a whole function but rather some
particular sections.

Example 1: Graphs as Quotients of R

Note that what was done in the graphs of Figures 3.5 and 4.3 already falls under the scope of Corollary
4.20. Moreover, the process which we used to create the ground states in these graphs is precisely the
one we just described. For clarification, Figures 4.7 and 4.8 below illustrate such construction, where the
function in blue represents the gluing of a soliton on the real line of mass µ. Since this construction does
not alter the energy, joining Theorem 4.8 and Corollary 4.20, yields that these are in fact ground states.

Figure 4.7: A ground state, for the graph
in Figure 4.3 depicted in blue.

Figure 4.8: A ground state, for the graph
in Figure 4.3 (in the middle) depicted in
blue.

Example 2: Signpost graph

Sign post graphs are graphs composed of two half-lines joined and one edge of length `2, all joined at
the same vertex, and on the end of the edge we attach a loop of length `1. See for example Figure 4.11. It
is clear also that this graph does not satisfy assumption (H) so ground states might indeed exist. We now
illustrate how one can obtain in this graph an H1

µ(G) function with less energy than a soliton of mass µ.
Consider the folded soliton in Figure 4.8. Suppose that the middle loop of this graph has a total length
of `2 (each edge will have a length of `2

2 ) and that the other loop has length `1. Performing a decreasing
rearrangement on the middle loop into a single H1(0, `2) function, we can place the rearranged soliton
on top of the signpost graph. Consequently, we get an H1

µ(G) function with energy strictly less than
that of the soliton. This is a consequence of Polya-Szegő inequality for the decreasing rearrangement,
see Theorem 3.21, since in this section the sets ϕ−1

µ {t} have two elements. We have now constructed
a function with stricly less energy on the graph than the soliton on the real line. An illustration of this
construction is depicted in Figure 4.9. As a consequence of Corollary 4.20 a ground state of mass µ
exists.
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Figure 4.9: Application of Corollary 4.20 on a
sign post graph.

Figure 4.10: Application of Corollary 4.20 on
a tadpole graph.

Example 3: Tadpole graph

∞ ∞

Figure 4.11: A sign post Graph

∞

Figure 4.12: A tadpole Graph

∞ ∞

Figure 4.13: Line with a terminal edge

A tadpole graph is a graph composed of one unbounded
edge and a loop of length `1. An example is depicted in
Figure 4.12. In what concerns existence, grounds states
of prescribed mass may exist since this graph, containing
only one half-line, does not satisfy assumption (H). We
now use Corollary 4.20 to deduce the existence of ground
states of arbitrary prescribed mass. We construct anH1

µ(G)
function with energy strictly less than that of a soliton as
follows. Consider the construction made for the signpost
graph above. We can further do a decreasing rearrangement
of the function on both the half lines into a single H1(R+)
function. Since the soliton goes to zero in the unbounded
edges, this rearrangement further decreases the energy of
the function constructed in the previous example. In view
of the last item in Remark 3.16, since the middle vertex is a
dummy vertex, we can remove it whilst still having a func-
tion inH1(R+). The resulting function is clearly inH1

µ(G)
and has energy strictly less than a soliton. By performing
again a decreasing rearrangement on the unbounded edge
one produces a function like the one depicted on Figure 4.10.

Example 4: Line with a terminal edge

Let G be the graph depicted in Figure 4.13, which is composed of two half-lines and one bounded edge
of length `3 all joined together at the same vertex. This particular graph has an interesting history on the
references [1] and [2]. We now know that in any non-compact graph existence of ground states can be
verified by Theorem 4.19. In [1] this result was not yet known. In fact, in this reference, the topology of
these particular graphs was heavily exploited to prove that in fact a condition like the one on Theorem
4.19 holds. This was without doubt a stepping stone for the existence results in the latter reference.
Additionally, they also characterized ground states for these graphs. We refer the reader for [1] above, in
particular for Theorems 2.6 and 2.7 for this approach. We now give two different ways to apply Corollary
4.20 in order to deduce existence of ground states of arbitrary mass. The first one is to consider the folded
soliton in Figure 4.7. Suppose that the loop in this figure has length `3. By performing a decreasing
rearrangement of the folded solition in the section of the loop we can produce an H1(0, `3) function that
we can now place on top of the graph G. As before, by Pólya-Szegő inequality, the energy decreases
strictly with this rearrangement and Corollary 4.20 can now be applied. The constructed function will
look like the function in Figure 4.14 The second one has its origin on the construction done for the sign
post graph. Start by considering the function produced in the second example. If one unfolds the soliton
we get an H1

µ(0, `1 + `2) function. Since in the construction of the signpost graph the values of `1 and
`2 can be made arbitrary, we can choose them so that `1 + `2 = `3. This way we can now place the
produced graph on top of the graph G. By further decreasing rearrangement on the terminal edge we get
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a function like the one depicted in Figure 4.14. Again, note that the constructed function does not have to
be, in general, the ground state. However, it was shown in [1], through ad hoc techniques that the ground
states for this graph will be exactly like the one depicted in Figure 4.14.

The following auxiliary result will allow us to understand what ground states look like and this will
be consistent with the ad hoc approach taken in [1].

Theorem 4.21

Assume that G is not homeomorphic to R and that N half-lines, N ≥ 2, emanate from the same
vertex, v. Then, along each of the half-lines, any ground state u, if it exists, takes the form (4.27)
with the same non-negative value y.

Proof. Suppose G contains at least N ≥ 2 half-lines and that it is not homomorphic to R. Let also
u ∈ H1

µ(G) be a ground state. Let Hi, i = 1, · · · , N denote the half-lines with the origin at the same
vertex. From Proposition 4.15 we know that there exists m > 0 and y1, · · · , yN ∈ R such that

u |Hi= ϕm(x+ yi), for all x ≥ 0, i = 1, · · · , N.

Since u is continuous, we know that u(v) = u |Hi (0) for all i = 1, · · · , N . Moreover, given that solitons
are even and decreasing functions then have that the values yi are determined by ϕm(±yi) = u(v). This
means that |yi| is independent of i. We then need to check that yi ≥ 0 for all i. Assuming, by way of
contradiction, that y1 < 0 we will construct functions with lower energy level than u.

Let us decompose G in the following way, G1 := H1∪H2, isometric to R, and G2 := (G \G1)∪{v}.
Note straight away the following, G1 ∩ G2 = {v} and G2 has at least one edge, otherwise G would
be isometric to R. We now split the ground state u as (u1, u2) ∈ H1(G1) × H1(G2). Let also µ1 :=
‖u1‖2L2(G1), µ2 := ‖u2‖2L2(G2). Clearly, µ = µ1+µ2 and by having u > 0 inG it follows that µ1, µ2 > 0.
Finally let us remark that by having y1 < 0,

0 = inf
G1
u1 < u1(v) < max

G1
u1. (4.52)

Let now wεi ∈ H1(Gi), i = 1, 2, be given by

wε1(x) := (1 + ε)
1
2u1(x) and wε2(x) :=

(
1− εµ1

µ2

) 1
2

u2(x) (4.53)

For ε ≥ min{−1, µ2µ1 } we have in fact that wεi ∈ H1(Gi). Moreover, ‖wε1‖2L2(G1) + ‖wε2‖2L2(G2) = µ.
We now claim that for all ε we can shift the function wε1 by an amount so that the translated function w̃ε1
makes the function w̃ε := (w̃ε1, w

ε
2) ∈ H1

µ(G). It is clear that if ε 6= 0 then wε is not continuous at this
vertex. Since the perturbations of u1 and u2 are made continuously, condition (4.52) gives us that for |ε|
small enough

0 = inf
G1
u1 < wε2(v) < max

G1
u1.

This, followed by the construction of wε1, gives us

0 = inf
G1
wε1 < wε2(v) < max

G1
wε1.

Therefore, since G1 is isometric to R, we can shift wε1, i.e w̃ε1(x) = wε1(x+ δε) for some δε ∈ R such that
δε → 0 as ε→ 0, by an amount such that the continuity condition at v is satisfied, whence w̃ε = (w̃ε1, w

ε
2)

becomes a function in H1
µ(G). Now let

f(ε) := E(w̃ε,G) = E(w̃ε1,G1) + E(wε2,G2) = E(wε1,G1) + E(wε2,G2).
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Note that at ε = 0, since u is a ground state, we know that f has a minimum at this point; consequently
f ′′(0) ≥ 0, since f is of class C2 because the ground state u = (u1, u2) is fixed. However,

f ′(ε) =
1

2

∫
G1
|u′1|2dx−

(1 + ε)
p
2
−1

2

∫
G1
|u1|pdx−

µ1

2µ2

∫
G2
|u′2|2dx−

(1− εµ1µ2 )
p
2
−1

2µ2

∫
G2
|u2|pdx,

whence, since p
2 − 1 > 0, making |ε| smaller if necessary, yields

f ′′(ε) = −
(p

2
− 1
) (1 + ε)

p
2
−2

2

∫
G1
|u1|pdx−

µ2
1

2µ2
2

(p
2
− 1
)(

1− εµ1

µ2

) p
2
−2 ∫

G2
|u2|pdx < 0.

This in turn implies that f cannot have a minimum at ε = 0, which is a contradiction, since u is a ground
state. �

Remark 4.22:
One of the simplest cases of a non-compact graph that is not homeomorphic to R is a graph like the
one in Figure 4.13. Figure 4.14 below represents what a ground state looks like for these graphs. For
completeness Figures 4.15-4.16 depict an example of a star graph with a terminal edge and what ground
states on the unbounded edges of these graphs look like, should they exist. In the following section we
prove a necessary and sufficient condition for the existence of ground states in these graphs.

Figure 4.14: A ground state
for a graph composed of a line
with a terminal edge (depicted
in blue).

Figure 4.15: A star graph with
one terminal edge.

Figure 4.16: Ground state on
the half-lines of a star graph
with a terminal edge (depicted
in blue).

4.3 The Threshold Phenomenon

We will now describe what in [2] is called the threshold phenomenon. The phenomenon shows how
for some particular graphs, the interplay between some metric properties of the graph (such as length
of bounded edges) and the prescribed mass, influence the existence or non-existence of ground states.
Moreover, we will see that this interplay between the mass and metric properties will allow, for certain
graphs, the existence of a sharp phase transition from non-existence to existence of ground states.

Firstly recall that for a ground state to exist assumption (H) needs to be violated with the exception
of the family of graphs described by Theorem 4.9. The simplest case where this holds is when the graph
has a terminal edge. Henceforth, we will identify such edge with [0, `], ` > 0 being its length, without
further notice. Similarly, recall the value of the constant β and the solitons scaling rule given in Theorem
2.18.

As an application of Corollary 4.20 we get the following result that gives existence of solution when
a non-compact graph contains a terminal edge.

Proposition 4.23

Let G be a non-compact graph with a terminal edge of length `. There exists C∗p such that if
µβ` ≥ C∗p , then G admits a ground state.
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Proof. By rescaling we can assume that µ = 1, recall Remark 4.12. Note now that since 22β > 1, it
follows from (4.10) and (4.11) that

ER+(1) = E(ϕ2,R+) = 22βE(ϕ1,R) < E(ϕ1,R).

Thus,
E(ϕ2,R+) < E(ϕ1,R). (4.54)

We now construct a function u ∈ H1
µ(G) that satisfies the assumption of Corollary 4.20 in the following

way. For ε > 0, let

uε(x) :=
(ϕ2 − ε)+(x)

‖(ϕ2 − ε)+‖L2(R+)
∈ H1(R+).

Since as ε → 0 we have uε → ϕ2 in H1(R+) we can fix ε0 small so that E(uε0 ,R+) ≤ E(ϕ1,R).
Moreover, by construction, ‖uε0‖2L2(R+) = 1 and there exists C∗p > 0 for which uε0(x) = 0 for all
x ≥ C∗p .

Suppose now that ` ≥ C∗p . By attaching the terminal edge to G at the coordinate x = ` we can extend
uε0 by zero on the rest of G. This way, uε0 ∈ H1

1 (G) has energy less or equal to that of a soliton of mass
1 in R. The conclusion now follows from Corollary 4.20. �

The following result can be seen as a stability result for the existence of ground states.

Theorem 4.24: Stability of existence of ground states

Let µ > 0, G be any non-compact graph and, for n ∈ N, let Kn be a connected compact graph of
total length m(Kn). Denote Gn the graph obtained from G by attaching, to a fixed vertex v ∈ G,
the graph Kn. If every Gn admits a ground state un of mass µ and m(Kn) → 0 as n → ∞, then
G has a ground state of mass µ.

Proof. By scaling let us assume that µ = 1. Suppose, by way of contradiction, that G does not admit a
ground state of mass 1.

Note that for each n ∈ N it follows from (4.9) that

EGn(1) = E(un,Gn) ≤ −θp.
Moreover, since G does not admit a ground state of mass 1 then, by Theorem 4.19, we have that

EG(1) ≥ −θp := E(ϕ1,R). (4.55)

Consequently, EG(1) = −θp.
Let σn :=

∫
G |un|

2dx. By construction G can be seen as a subgraph of Gn for all n ∈ N. Let us
define

vn(x) := σ
− 1

2
n un(x), x ∈ G.

This is now a sequence of functions inH1
1 (G). Note now that σn < 1 for all n ∈ N. Indeed, if there exists

n0 such that σn0 = 1 then the restriction of un0 to G would give rise to a ground state by application of
Corollary 4.20. It then follows that

−θp ≤ E(vn,G) =
1

2

∫
G
|v′n|2dx−

1

p

∫
G
|vn|pdx =

σ−1
n

2

∫
G
|u′n|2dx−

σ
− p

2
n

p

∫
G
|un|pdx

= σ−1
n

(
1

2

∫
G
|u′n|2dx−

1

pσ
p
2
−1

n

∫
G
|un|pdx

)
≤ σ−1

n E(un,G)

= σ−1
n (E(un,Gn)− E(un,Kn)) ≤ σ−1

n (−θp − E(un,Kn))

= σ−1
n

(
−θp −

1

2

∫
Kn
|u′n|2dx+

1

p

∫
Kn
|un|pdx

)
≤ σ−1

n

(
−θp +

1

p

∫
Kn
|un|pdx

)
.
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Note that Kn is compact and un, being ground states, are uniformly bounded, see (4.21), and Remark
4.14. Hence, ∫

Kn
|un|2dx ≤ Cpm(Kn)2 → 0, as n→∞,

and ∫
Kn
|un|pdx ≤ Cpm(Kn)p → 0, as n→∞.

In particular,

1 =

∫
Gn
|un|2dx =

∫
G
|un|2 +

∫
Kn
|un|2dx,

from which follows that σn → 1 as n→∞ and also that

E(vn,G)→ −θp = EG(1). (4.56)

In other words, vn is a minimizing sequence. Now since we have a minimizing sequence, and G does not
admit a ground state, it follows from the first case in Theorem 4.18 that vn → 0 in L∞loc(G). Given that
σn → 1, by definition of vn, it follows that also un → 0 in L∞loc(G). In particular, un(v) → 0. We now
prove that un → 0 uniformly in Kn as well. Since Kn is connected, let x ∈ Kn and γ : R → G a curve
such that γ connects x and v in Kn. Then,

un(x) = un(v) +

∫
γ
u′n(t)dt ≤ un(v) +

∫
Kn
|u′n(x)|dx.

It follows now from Cauchy-Schwarz and the uniform bound of the derivatives of un given in (4.19) that

un(x) ≤ un(v) + Cpm(Kn)
1
2 → 0, as n→∞.

Letting Mn := ‖un‖L∞(Kn) we have that Mn → 0 as n→∞. Recall the estimate

−θp ≤ σ−1
n

(
−θp +

1

p

∫
Kn
|un|pdx

)
;

or equivalently,

(1− σn)θp <
1

p

∫
Kn
|un|pdx ≤

Mp−2
n

p

∫
Kn
|un|2dx =

Mp−2
n

p
(1− σn) .

Dividing by (1− σn) and letting n→∞ yields θp ≤ 0, which is a contradiction. �

We remark that this stability result exploits heavily the topological properties of the graph in question,
in particular the connectedness and compactness of the Kn.

Following [2] we now show the threshold phenomenon for a very particular family of graphs, namely,
star graphs on which we attach a terminal edge. See Figure 4.15 for an example of such graphs.

Theorem 4.25: Threshold Phenomenon

Let G` denote the graph with N (N ≥ 3) half-lines and a terminal edge of length ` > 0, all
emanating from the same vertex. Then there exists C∗ > 0, depending only on N and p, such
that the G` admits a ground state of mass µ if and only if µβ` ≥ C∗.

Proof. By scaling, without loss of generality, we can assume that µ = 1. We define the constant C∗ as
follows

C∗ := inf{` > 0 : G` admits a ground state of mass 1}. (4.57)
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By Proposition 4.23 we know that the above set is non empty, since for large enough `, G` will admit
a ground state of mass 1. Moreover, C∗ > 0. Indeed if C∗ = 0 then taking a sequence `n → 0 and
applying Theorem 4.24 we would deduce that the graph G0 has a ground state of mass 1. However, note
that G0 is a star graph. Since star graphs satisfy condition (H) and are not isometric to any of the cases
discussed above in Figures 3.5 or to any of the ones in 4.3, then we can rule out existence of ground
states of any mass, and this is a contradiction.

Take now a sequence `n ↘ C∗ such that, for each n ∈ N, G`n admits a ground state of mass 1. Again
applying Theorem 4.24 we deduce the existence of a ground state of mass 1 for GC∗ . We complete the
proof by showing that if `′ > ` and G` carries a ground state u of mass 1, then also G`′ admits a ground
state. To do this we rely again on Corollary 4.20 to construct v ∈ H1

1 (G`′) such that

E(v,G`′) ≤ E(u,G`) = EG`(1) ≤ ER(1) = E(ϕ1,R).

Recall that u = (ue1 , · · · , ueN , u`) ∈ H1
1 (G`). The following steps describe the construction of v:

1. Let e1, · · · , eN be the half-lines of G`′ and e`′ it’s terminal edge of length `′. Now, recall that,
from Theorem 4.21, there exist m, y > 0 such that the restriction of u to any half-line is given by
uei(·) = ϕm(· + y), for all i ∈ {1, · · · , N}. Let δ := `′−`

N . On each half-line we ”cut the piece”
of the function u defined in the interval [0, δ) and do the translation vei(x) := uei(x + δ), for all
i ∈ {1, · · · , N} and x ∈ [0,+∞), so that they all match at the original vertex. Note that since
these functions are all the same and on each we are removing the exact same portion the continuity
at the joining vertex of the half-lines remains assured.

2. We now rearrange manually the portion removed from the solitons in the previous step. Fix any
i ∈ {1, · · · , N}, say i = 1. Let I = [0, Nδ] = [0, `′− `]. By reflecting, scaling and stretching this
portion horizontally by a factor of N we can define

v1(x) := ue1

(
δ − x

N

)
, x ∈ I. (4.58)

This is clearly an H1(I) function. Note also that, v1(0) = ue1(δ), and therefore, continuity is
assured at the joining vertex. Also, v1(Nδ) = ue1(0). Since the origin vertex of all the edges can
be identified with the coordinate x = 0 for each edge, we can now glue the portion of u on the
terminal edge of length ` to v1 on the terminal edge of length `′, thus constructing v`′ ∈ H1(0, `′).;
consequently we have v = (ve1 , · · · , veN , v`′) ∈ H1(G`′).

For clarification we have v defined as follows:

v(x) =


vei(x) = uei(x+ δ), x ∈ [0,+∞), for all i ∈ {1, · · · , N};

v`′(x) =

{
ue1(δ − x

N ), x ∈ [0, `′ − `];
u`(x− (`′ − `)), x ∈ [`′ − `, `′].

Note now that, with this construction of v:∫
G`′
|v|2dx =

N∑
i=1

∫ +∞

0
|vei(x)|2dx+

∫ `′

0
|v`′(x)|2dx

N

∫ +∞

δ
|ue1(y)|2 dy +

∫ `′−`

0

∣∣∣ue1 (δ − x

N

)∣∣∣2 dx
+

∫ `′

`′−`

∣∣u`(x− (`′ − `))
∣∣2 dx = N

∫ +∞

δ
|ue1(y)|2 dy

+N

∫ δ

0
|ue1(y)|2 dy +

∫ `

0
|u`(y)|2 dy =

∫
G`
|u|2dx = 1.

The same argument allows one to compute the Lp norm, and see that it is also left invariant. We now
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have that the derivative of v is given by:

v′(x) =


v′ei(x) = u′ei(x+ δ), x ∈ [0,+∞), for all i ∈ {1, · · · , N};

v′`′(x) =

{
− 1
N u
′
e1(δ − x

N ), x ∈ [0, `′ − `];
u′`(x− (`′ − `)), x ∈ [`′ − `, `′].

Computing the kinetic term of the energy functional for the function v yields

∫
G`′
|v′|2dx =

N∑
i=1

∫ +∞

0
|v′ei(x)|2dx+

∫ `′

0
|v′`′(x)|2dx

N

∫ +∞

δ

∣∣u′e1(y)
∣∣2 dy +

1

N2

∫ `′−`

0

∣∣∣u′e1 (δ − x

N

)∣∣∣2 dx+

∫ `′

`′−`

∣∣u′`(x− (`′ − `))
∣∣2 dx

= N

(∫ +∞

δ

∣∣u′e1(y)
∣∣2 dy +

1

N2

∫ δ

0

∣∣u′e1(y)
∣∣2 dy)+

∫ `

0

∣∣u′`(y)
∣∣2 dy

≤ N
(∫ +∞

δ

∣∣u′e1(y)
∣∣2 dy +

∫ δ

0

∣∣u′e1(y)
∣∣2 dy)

+

∫ `

0

∣∣u′`(y)
∣∣2 dy =

∫
G`
|u′|2dx.

It follows from the last two computations that indeed E(v,G`′) ≤ E(u,G`). �
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Chapter 5

Pohozaev Minimization Problem on
Metric Graphs

In the previous chapters we saw that if u is a solution to the minimization problem (3.4) then for some
Lagrange multiplier λ > 0 it solves the equation

−u′′ + λu = |u|p−2u,

not only in the weak, but also in the classical sense on each edge. Could it be possible that for any given
Lagrange multiplier λ > 0 a solution of the same equation also exists? In R we know that we can relate
both problems through scalings, however, for a fixed graph, the used scalings no longer work. Therefore,
in order to answer this question we rewrite the problem in a different way.

Suppose now λ > 0 is fixed and consider the following functionals:

T : H1(R)→ R; T (u) =
1

2

∫
R
|u′|2dx+

λ

2

∫
R
|u|2dx, R : H1(R)→ R; R(u) =

1

p

∫
R
|u|pdx,

where p ≥ 1. We will see the constrained Euler-Lagrange equation to this problem is exactly the sta-
tionary one dimensional Schrödinger equation with the parameter λ > 0. A new Lagrange Multiplier
will appear but we can multiply solutions by a convenient constant so that the new Lagrange multiplier
disappears. Therefore we focus on the problem which consists of minimizing the functional T (u) with
the constraint R(u) = µ, for µ > 0. This is, according to Lions, the Pohozaev problem, see [24]. Taking
into account the strategy of the previous chapters, in Section 5.1 we start by solving the problem in R
using the Concentration-Compactness Principle and not scalings. Moreover, in the context of this disser-
tation, it is natural to ask if the results of the previous chapters still hold for this problem. Therefore, in
the second section some original work is done in formalizing this problem in the setting of metric graphs
and investigating these questions.

5.1 The Pohozaev Minimization Problem in R

In this section, following arguments of [24], we focus on the following minimization problem. Consider
p ≥ 1, µ > 0 and let Rµ := R−1{µ}. We are concerned on the problem of

finding u0 ∈ Rµ such that T (u0) = inf
u∈Rµ

1

2

{∫
R
|u′|2 + λ|u|2dx

}
= inf

u∈Rµ
T (u). (5.1)

Remark 5.1:

• Taking into account Lemma 2.12 we immediately have that T,R ∈ C1(H1(R)) and, moreover,

T ′(u)v =

∫
R
u′v′ + λuvdx, and R′(u)v =

∫
R
|u|p−2uvdx, for all v ∈ H1(R).
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• Observe that the functional T is clearly non-negative, moreover, it satisfies

min{1, λ}‖u‖2H1(R) ≤ T (u) ≤ max{1, λ}‖u‖2H1(R),

which makes
√
T an equivalent norm to the standard H1 norm, and also a coercive functional;

• Note that T (|u|) = T (u), so there is no loss of generality when working with real valued functions;
• The problem only becomes interesting for p > 2. Note that for p ≤ 2 the embedding of H1 in Lp

fails.

Proposition 5.2: The case p ∈ [1, 2]

For p ∈ [1, 2], problem (5.1) admits no solutions in H1(R).

Proof. Let us start with the case p = 2. Suppose that problem (5.1) admits a solution. Since T and R
are functionals of class C1(H1(R)), there exists a Lagrange multiplier θ ∈ R such that the constrained
Euler-Lagrange equation to the problem is:

−u′′ + λu = θu.

Taking λ1 = (θ − λ) the equation becomes

−u′′ − λ1u = 0.

In one dimension, the explicit solutions to this equation are know. If λ1 < 0 the non-trivial solutions
are linear combinations of exponential functions and therefore not in H1(R). For λ1 > 0 non-trivial
solutions are linear combinations of the sine and cosine functions, which again are not in H1(R), since
they do not converge to zero at infinity. For λ1 = 0 solutions are of the form u(x) = ax + b, a, b ∈ R.
Clearly, any non-trivial solution of this form is not in H1(R). This then yields a contradiction.

For the case p ∈ [1, 2) we claim that the value of the infimum in (5.1) is zero. Note that setting
u = µ

1
p v yields

Iµ = inf
u∈Rµ

1

2

{∫
R
|u′|2 + λ|u|2dx

}
= inf

v∈R1

µ
2
p

2

{∫
R
|v′|+ λ|v|2dx

}
= µ

2
p I1.

Therefore, we assume that µ = 1. Let u ∈ R1. Taking vh(x) = h
1
pu(hx) we have that vh ∈ R1 and that

lim
h→0

T (vh) = lim
h→0

h
2+p
p

2

∫
R
|u′|2dx+

λh
2−p
p

2

∫
R
|u|2dx = 0,

Thus we have that I1 = 0 and, consequently, for every µ > 0 we have Iµ = 0. Suppose now that a
minimizer w ∈ R1 exists. It follow that w ≡ 0, which is a contradiction. �

Let us now focus on the case p > 2. By analogy with what was done in Chapter 2, we start by
noticing that T is a non-negative functional and thus bounded from below. Due to similarities with
Chapter 2 we will only highlight the differences.

Proposition 5.3: Minimizing sequences are uniformly bounded

Let (un)n∈N be a minimizing sequence for the problem (5.1). Then, un is uniformly bounded in
H1(R).

Proof. This result follows immediately from the fact that
√
T defines an equivalent norm to the H1

norm. �

72



5.1. THE POHOZAEV MINIMIZATION PROBLEM IN R

Proposition 5.4: Positivity of the infimum

Let p > 2, µ > 0 and Iµ := infu∈Rµ T (u). Then Iµ > 0.

Proof. By way of contradiction suppose that Iµ = 0. Since T is coercive we then have that

0 = Iµ = inf
u∈Rµ

T (u) ≥ inf
u∈Rµ

min{1, λ}‖u‖2H1(R) ≥ 0.

Now take a minimizing sequence (un)n∈N. Then we have that ‖un‖H1(R) → 0. Since, by Sobolev
embedding, this implies that un converges uniformly to zero then. Hence, by (A.1), we have that
‖un‖pLp(R) → 0 as n→∞, which is a contradiction, since R(un) = µ, for all n ∈ N. �

We will now apply the direct method to deduce the existence of solution for problem (5.1). Similarly
to what happened in Chapter 2 we need to apply the concentration-compactness principle.

Let us start with the strict subadditivity.

Lemma 5.5: Strict Subadditivity

Let µ > 0. Then,
Iµ < Iα + Iµ−α, for all α ∈ (0, µ). (5.2)

Proof. Recall that Iµ = µ
p
2 I1. Consider now the function f : R+

0 → R+ defined by f(µ) = µ
2
p I1.

Since p > 2 we have that f is concave. Recall now that any real valued concave function g defined in
[0,+∞) such that g(0) ≥ 0 is subadditive. Then, since f(0) = 0, we have that f is subadditive, that is

Iµ = f(µ) ≤ f(α) + f(µ− α) = Iα + Iµ−α

for all α ∈ [0, µ]. Using the definition of f it is easy to see that equality only holds for α = 0 and α = µ,
and we deduce (5.2). �

The more general way of stating the concentration-compactness lemma, see [23, Lemma I.1], gives
us some freedom in the choice of functional used for the restriction. For Lemma 2.4 we have chosen the
fixed L2 norm, but we could have also fixed the Lp norm. Taking this last remark into account we state
without proof the following result.

Lemma 5.6: Concentration-Compactness Lemma

Let µ > 0 and p > 2. Let also (un)n∈N be a bounded sequence in H1(R) with ‖un‖pLp(R) = µ.
Then, there exists a subsequence (unk)k∈N satisfying one of the following properties:

1. (Compactness) There exists a sequence (yk)k∈N of real numbers with the property that for
all ε > 0, there exists T > 0 such that∫ yk+T

yk−T
|unk |

pdx ≥ µ− ε for all k ∈ N.

2. (Vanishing) For all t > 0, one has

lim
k→∞

sup
y∈R

∫ y+t

y−t
|unk |

pdx = 0.

3. (Dichotomy) There exist α ∈ (0, µ) and sequences (uk,1)k∈N and (uk,2)k∈N bounded in
H1(R), such that

(a) ‖unk − (uk,1 + uk,2)‖Lq(R) → 0 as k →∞ for q ∈ [p,+∞);
(b) limk→∞ |uk,1|p − α = limk→∞ |uk,2|p − (µ− α) = 0;
(c) dist(suppuk,1, suppuk,2)→ +∞ as k →∞.
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Remark 5.7:
It is fundamental for what follows that the reader keeps in mind that in the proof of this result the choice of
the sequences (uk,1)k∈N and (uk,2)k∈N is done in the exact same way as mentioned in Remark 2.5. Since
(uk)k∈N is uniformly bounded in H1(R) the estimate (2.17) still holds and, moreover, by construction
of these sequences we have that

λ

∫
R
|unk |

2dx ≥ λ
∫

suppuk,1

|unk |
2dx+ λ

∫
suppuk,2

|unk |
2dx ≥ λ

∫
R
|uk,1|2dx+ λ

∫
R
|uk,2|2dx.

Consequently, we have that

T (unk) ≥ T (uk,1) + T (uk,2) + o(1) as k →∞. (5.3)

The main result of this section is the following

Theorem 5.8: Compactness of minimizing sequences and existence of minimizer

Let p > 2, λ > 0 and µ > 0. Then, for any minimizing sequence (un)n∈N of problem (5.1) there
exist (yn)n∈N and u ∈ H1(R) such that, up to a subsequence, un(·+ yn)→ u strongly in H1(R)
and u is a minimizer.

For the proof, in parallel to Chapter 2, we prove the following lemmas.

Lemma 5.9: Dichotomy does not occur

Let µ > 0 and p > 2. Let also (un)n∈N be a minimizing sequence to the problem (5.1). Then
item 3 in Lemma 5.6 does not occur.

Proof. Suppose that the dichotomy regime holds. Then, there exist α ∈ (0, µ) and (uk,1), (uk,2) subse-
quences of (unk) such that the properties (a)-(c) of Lemma 5.6 hold. Let now (αk)k∈N and (βk)k∈N be
sequences of positive real numbers such that

‖αkuk,1‖pLp(R) = α and ‖βkuk,2‖pLp(R) = µ− α for all k ∈ N. (5.4)

Clearly, αk, βk → 1 as k →∞ and thus,

T (unk) ≥ 1

α2
k

T (αkuk,1) +
1

β2
k

T (βkuk,2) + o(1)

as k →∞. Since by (5.4) we have that αk = 1 + o(1) and βk = 1 + o(1) as k →∞ it follows that

T (unk) ≥ T (αkuk,1) + T (βkuk,2) + o(1) ≥ Iα + Iµ−α + o(1), (5.5)

as k →∞, by the way the sequences (αk)k∈N and (βk)k∈N were chosen. Taking the limit as k →∞ in
(5.5) yields

Iµ ≥ Iα + Iµ−α, (5.6)

which by Lemma 5.5 is a contradiction. �

In order to rule out the vanishing regime the following auxiliary lemma will be required

Lemma 5.10

Let p > 2. Suppose that (un)n∈N is bounded in Lp(R) and that (u′n) is bounded in L2(R) and
that there exists T > 0 such that

lim
n→∞

sup
y∈R

∫ y+T

y−T
|un|pdx = 0.

Then, un → 0 in Lr(R) for any r > p.
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Remark 5.11:
This result is stated for one dimension. However, in [24, Lemma I.1], it is stated and proved in higher
dimensions. For dimension one, the argument used in the proof of Lemma 2.10, can be used to prove
this result assuming (un)n∈N to be bounded in H1(R).

Lemma 5.12: Vanishing does not occur

Let µ > 0 and p > 2. Let also (un)n∈N be a minimizing sequence to the problem (5.1). Then
item 2 in Lemma 5.6 does not occur.

Proof. We claim that in this case, the Lp norm of the minimizing sequence converges to zero, which by
definition of minimizing sequence for problem (5.1) is a contradiction. Note that by the Cauchy-Schwarz
inequality, ∫

R
|unk |

pdx ≤
(∫

R
|unk |

2dx

) 1
2
(∫

R
|unk |

2(p−1)dx

) 1
2

.

Taking r = 2(p− 1) > p in the previous lemma and since (unk) is uniformly bounded in H1(R) yields

‖unk‖
p
Lp(R) → 0, as k →∞.

�

With these two previous lemmas we can prove Theorem 5.8.

Proof of Theorem 5.8. Let (un)n∈N be a minimizing sequence for problem (5.1). Then it follows from
Proposition 5.3 together with Lemmas 5.9 and 5.12 that we are in the first case (compactness) of Lemma
5.6. Then, there exists a sequence (yk)k∈N such that for all ε > 0 there exists T > 0 such that∫ yk+T

yk−T
|unk |

pdx ≥ µ− ε

and ∫
R\(yk−T,yk+T )

|unk |
pdx ≤ ε.

Let now vk := unk(· + yk). Since vk is bounded in H1(R), we know that there exists v ∈ H1(R) such
that, up to a subsequence, vk ⇀ v in H1(R). From here, by Rellich-Kondrachov, see Theorem A.8, we
have that

vk → v in Lploc(R). (5.7)

Consequently, by the same argument as the one used in the proof of Theorem 2.7, we have that vk → v
strongly in Lp(R). In particular, we have that ‖v‖pLp(R) = µ. Moreover, from the weak convergence in
H1(R) it follows that

Iµ ≤ T (v) ≤ lim inf
k→∞

T (vk) = Iµ, (5.8)

whence v is a minimizer. To finish we only need to check that vk → v strongly inH1(R). Since T defines
an equivalent norm to the standard H1 norm we have that T (vk) → T (v) implies that ‖vk‖H1(R) →
‖v‖H1(R). This together with the weak convergence in H1(R) yields the desired strong convergence,
since H1(R) is a Hilbert space. �

Now that we have existence of solutions the question follows: are the solutions unique? To answer
this question we state and prove the following proposition.

75



CHAPTER 5. POHOZAEV MINIMIZATION PROBLEM ON METRIC GRAPHS

Proposition 5.13: Constrained Euler-Lagrange equation

Let p > 2, λ > 0 and µ > 0. Let also u ∈ H1(R) with ‖u‖pLp(R) = µ be a solution to the problem
(5.1). Then, there exists a Lagrange multiplier θ > 0 such that u satisfies,∫

R
u′v′ + λuvdx = θ

∫
R
|u|p−2uvdx, for all v ∈ H1(R). (5.9)

In other words, u is a weak solution to the equation −u′′ + λu = θ|u|p−2u.

Proof. Since R ∈ C1(H1(R)), note that

R′(u)u =

∫
R
|u|pdx = pµ 6= 0.

Moreover, from the differentiability of T we can apply the theory of Lagrange multipliers. Thus, there
exists a Lagrange multiplier θ ∈ R such that

T ′(u) = θR′(u),

or equivalently, ∫
R
u′v′ + λuvdx = θ

∫
R
|u|p−2uvdx, for all v ∈ H1(R). (5.10)

Note that since λ > 0, testing (5.10) with u yields that θ > 0. In fact,

θ =
2Iµ
pµ

=
2

p
µ
p
2
−1I1 > 0.

�

We already mentioned that if solutions exist then they are going to be real valued. To easily make the
connection with the results of Appendix C suppose that we are considering problem (5.1) to be defined
over complex valued functions. Then we have some immediate consequences.

Remark 5.14:

1. In fact, it follows from Lemma C.1 that u being a weak solution to the equation −u′′ + λu =
θ|u|p−2u then u ∈W 3,q(R,C) for all q ≥ 2, consequently, u ∈ C2(R,C) and thus it is a solution
of the equation in the classical sense.

2. Note that to simplify things we can get rid of the Lagrange multiplier. If u is a solution to −u′′ +
λu = θ|u|p−2u then, v = θ

1
p−2u solves the equation

−v′′ + λv = |v|p−2v.

Note that this answers the question in the beginning of this Chapter.

This last remark establishes an important connection with the results in Chapter 2. In particular, we
now have, together with Theorem C.3, the answer to our question of uniqueness.

Theorem 5.15: Uniqueness of Solution to the Problem (5.1)

Let µ > 0, λ > 0 and p > 2 and consider the minimization problem (5.1). Then, there exists a
unique function ϕ ∈ Rµ, depending on p, µ and λ, which is positive even and strictly decreasing
on [0,+∞) such that every minimizer of T constrained to Rµ is given, up to phase multiplication
and translation, by the function ϕ. In other words, u ∈ H1(R,C) is a minimizer for the problem
(5.1) if and only if

u(x) = eiγϕ(x− y), x ∈ R.

for some γ, y ∈ R.
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Proof. Given Theorem C.3 and the the second item in Remark 5.14 we have that the necessary condition
is immediate. We then focus on proving the sufficient condition. Let u ∈ H1(R,C) be a minimizer for
problem (5.1). Again by Remark 5.14 we know that there exists a Lagrange multiplier θ > 0 such that
v = θ

1
p−2u solves the equation

−v′′ + λv = |v|p−2v.

Applying now Theorem C.3 we have that there exist a unique function ψ ∈ H1(R), with all the properties
of the statement, and y, γ ∈ R such that

v(x) = eiγψ(x− y) x ∈ R.

Therefore,
u(x) = eiγϕ(x− y) x ∈ R,

for ϕ = θ
− 1
p−2ψ with ‖ϕ‖pLp(R) = pµ. Moreover, since the value of θ is determined uniquely by λ and

µ we have together with the uniqueness of ψ that the function ϕ is also unique. �

Remark 5.16:
Since we already know that solutions are real valued we can, a priori, assume that the factor eiγ reduces
to ±1, which means solutions are unique up to translation and change of sign.

5.2 The Pohozaev Problem in Graphs

5.2.1 Statement of the Problem and the Compact Case

We will now investigate the existence of solutions to the equation

−u′′ + λu = |u|p−2u,

for p > 2 and λ > 0 in metric graphs. Since scaling arguments in graphs do not work, we need to
formalize and study the problem directly in graphs.

Let G = (V (G), E(G)) be a metric graph. Let µ, λ > 0 and p > 2. We define the functionals T and
R on G as:

T (·,G) : H1(G)→ R; T (u,G) =
1

2

∫
G
|u′|2dx+

λ

2

∫
G
|u|2dx

and
R(·,G) : H1(G)→ R; R(u,G) =

1

p

∫
G
|u|pdx.

The problem in question is to find u ∈ H1(R) that minimizes T under the constraint R(u,G) = µ.
Again, letting RµG := R−1(·,G){µ}, in a compact way the problem is written as

inf
u∈RµG

T (u,G) = inf

{
1

2

∫
G
|u′|2dx+

λ

2

∫
G
|u|2dx | u ∈ RµG

}
(5.11)

We are concerned with existence or non-existence of minimizers. Similarly to what was done in Chapter
3 we start by restating and proving some a priori necessary conditions for the existence of minimizers.
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Proposition 5.17

Let G be a metric graph and assume u ∈ RµG is a solution to problem (5.11). Then:
(i) there exists θ > 0 such that u is a weak solution to the equation −u′′ + λu = θ|u|p−2u,

which is given by∫
G
u′v′ + λuvdx = θ

∫
G
|u|p−2uvdx, for all v ∈ H1(G).

Moreover, on each edge e, ue is a classical solution of the equation:

−u′′e + λue = θ|ue|p−2ue for all e ∈ E(G); (5.12)

Consequently, u ∈ H̃2(G).
(ii) For every vertex v ∈ V (G) that is not a vertex at infinity the conditions (N-K) are satisfied;

(iii) Up to a change of sign, u > 0 on G.

Proof. The proofs of items (i) and (ii) follow the exact same steps as in Proposition 3.17 so we omit
them. We focus then on proving (iii). Take u ∈ H1(G) a minimizer of problem (5.11). By item (i) and
Remark 5.14 we know u(x) = θ

− 1
p−2 v(x) where v ∈ H1(G) solves the equation

−v′′ + λv = |v|p−2v.

We can now apply the exact same argument as the one used in item (iii) from Proposition 3.17 to prove
that, up to a change of sign, v > 0. Consequently, up to a change of sign, u > 0. �

We now state the first existence result.
Proposition 5.18: Existence of Solution on a Compact Graph

Let G be a compact metric graph, µ, λ > 0 and p > 2. Then problem (5.11) admits a solution.

Proof. Take (un)n∈N a minimizing sequence for problem (5.11). Again, from the fact that T (·,G) defines
an equivalent norm to the standard H1(G) norm, the uniform boundedness of the minimizing sequence
is immediate. Therefore, there exists u ∈ H1(G) such that un ⇀ u in H1(G) up to a subsequence. By
the compactness that follows from Lemma 4.1 the conclusion follows easily. �

Therefore, just as in Chapter 4, the question of existence or non-existence of minimizers for problem
(5.11) only becomes mathematically interesting in non-compact graphs. Henceforth, we only consider
this type of graphs.

5.2.2 The Non-compact Case. Non-existence Results

Again, let us start by comparing to the particular case of G = R. Just as in Theorem 4.3, denoting by ϕµ
the unique positive and even solution of problem (5.11) we have that

Theorem 5.19

Let G be a non-compact metric graph. Then we have that

1

2
T (ϕ2µ,R) = min

u∈Rµ
R+

T (u,R+) ≤ inf
u∈RµG

T (u,G) ≤ min
u∈RµR

T (u,R) = T (ϕµ,R),

where ϕµ and ϕ2µ are the unique positive and even solutions to the minimization problem (5.11)
with R(ϕµ) = µ and R(ϕ2µ) = 2µ. Moreover, these inequalities hold even if the infimum is not
attained.
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Proof. Let us start with the first equality. Its proof is done in the exact same way as the proof of Lemma
4.4. For the first inequality, note that by Pólya-Szegő inequality and the preservation of Lp norms by the
decreasing rearrangement we have, for every u ∈ RµG ,

T (u,G) ≥ T (u#,R+) ≥ inf
Rµ

R+

T (u,R+).

the first inequality then follows by taking the infimum over RµG . For the second inequality we construct
a sequence of smooth compactly supported functions that converges to ϕµ strongly in H1(R). Let
ϕµ ∈ RµG denote the unique positive and even minimizer for problem (5.11). Take η ∈ C∞(R) a cutoff
function such that η(x) = 0 if |x| ≥ 2 and η(x) = 1 if |x| ≤ 1 and such that |η| ≤ 1. Now, let ε > 0 and
consider ηε(x) = η(εx). For

cε =

(
µ∫

supp ηε
|ϕµ|pηpε dx

) 1
p

↘ 1 as ε→ 0 (5.13)

we define
uε(x) := cεϕµ(x)ηε(x). (5.14)

For this choice of cε note that we have uε ∈ RµG , for each ε > 0. From here the proof follows exactly like
proof of Theorem 4.3. �

We now investigate if the assumption (H) still allows to characterize all the graphs for which existence
of minimizers occurs. Let us start by recalling assumption (H).

Let G = (V (G), E(G)) be a metric graph. After the removal of the interior of any edge
e ∈ E(G), every connected component of the subgraph (V (G), E(G) \ {e}) contains at least
one vertex at infinity.

The first thing to notice is that if G satisfies (H), then the second inequality in Theorem 5.19 becomes an
equality.

Theorem 5.20

If G satisfies (H), then

inf
u∈RµG

T (u,G) = min
u∈RµR

T (u,R) = T (ϕµ,R). (5.15)

Remark 5.21:
The proof of this result follows exactly like the proof of Theorem 4.8. Note that this proof is of topologi-
cal nature, meaning that the conclusion is immediate provided we know that (H) implies the Pólya-Szegő
inequality for the Schwarz symmetrization. This was seen to be true exactly in Theorem 4.8.

We finish this dissertation with a necessary and sufficient condition for the non-existence of mini-
mizers for problem (5.11).

Theorem 5.22: Under (H) ground states exist if and only if G has specific topologies

Let G be a metric graph. If G satisfies (H) then

inf
u∈RµG

T (u,G) = T (ϕµ,R)

but the infimum is never attained unless G is isometric to the graphs depicted in Figures 3.5 and
4.3.
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Remark 5.23:
The proof of this result follows exactly like the proof of Theorem 4.9 by replacing E with T and H1

µ(G)
with RµG . It is important to notice this happens because of the qualitative properties of the solutions to
the minimization problem (5.11) and (4.1) being the same. This is a consequence of the constrained
Euler-Lagrange equation to both problems to either be of the form, or to be able to be reduced to the
form

−u′′ + λu = |u|p−2u.
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Appendix A

Important Results and Estimates

Our goal with this appendix is to make the reading of this dissertation as self contained as possible by
assuring the reader that all the main results which are used continuously throughout the text are stated.
Even though most results are not proved, references to the proofs are provided.

A.1 Measure Theory and Integration

The following is an fundamental result from measure and integration theory and a proof can be seen, for
example, in [17, Theorem 2.24].

Theorem A.1: Dominated Convergence

Let Ω be an open subset of RN and let (uk)k be a sequence of measurable functions such that:
• uk(x)→ u(x) a.e. in Ω as k →∞;
• there exists v ∈ L1(Ω) such that for all k, |uk(x)| ≤ v(x) a.e. in Ω;

Then u ∈ L1(Ω) and uk → u in L1(Ω).

The following result is a refined version of Fatou’s Lemma. A proof of this result can be seen
in [30, Lemma 1.32].

Lemma A.2: Brézis-Lieb Lemma

Let Ω be an open subset of RN , 1 ≤ p < ∞ and let (un)n∈N ⊂ Lp(Ω). If (un)n∈N is bounded
in Lp(Ω) and there exists some function u such that un → u almost everywhere in Ω, then
u ∈ Lp(Ω) and

lim
n→∞

(
‖un‖pLp(Ω) − ‖un − u‖

p
Lp(Ω)

)
= ‖u‖pLp(Ω)

A.2 Embeddings and Interpolation Results

We begin with an interpolation result:
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Theorem A.3: Gagliardo-Nirenberg Inequality

Let 1 ≤ q, r ≤ +∞ and let m, j be two integers, 0 < j ≤ m. Take α ∈ [ jm , 1] and let

1

p
=

j

N
+ α

(
1

r
− m

N

)
+

1− α
q

.

Then there exists C = C(N,m, j, α, q, r) such that

‖Dju‖Lp(RN ) ≤ C‖Dmu‖αLr(RN )‖u‖
1−α
Lq(RN )

for all u ∈ Lq(RN ) ∩W k,r(RN ).

For a proof we refer the reader to [26]. Also we present the following two corollaries of Theorem
A.3 which are used throughout this dissertation.

Corollary A.4

Let p ≥ 2. Taking N = 1, q = r = 2, j = 0 and m = 1 we have, for α = p−2
2p , the following

estimate
‖u‖Lp(R) ≤ C‖u′‖αL2(R)‖u‖

1−α
L2(R)

, for all u ∈ H1(R).

Corollary A.5

Taking N = 1, q = r = 2, j = 0 and m = 1 we have, for α = 1, the following estimate

‖u‖L∞(R) ≤ C‖u′‖
1
2

L2(R)
‖u‖

1
2

L2(R)
, for all u ∈ H1(R).

The next interpolation result is similar to the one above but for the bounded case.

Theorem A.6: Gagliardo-Nirnberg Interpolation for bounded intervals

Let I be a bounded interval and let 1 ≤ r ≤ ∞, 1 ≤ q ≤ p ≤ ∞. Then, there exists a constant
C > 0 such that

‖u‖pLp(I) ≤ C‖u‖
p(1−α)
Lq(I) ‖u‖

pα
W 1,r(I)

, for all u ∈W 1,r(I),

where α ∈ [0, 1] is defined by α(1
q −

1
r + 1) = 1

q + 1
p .

For a proof we refer the reader to Brezis, [9, Chapter 8]. The following direct consequence of this
result is useful in this thesis.

Corollary A.7

Let I be an open bounded interval. For r = q = 2 and p > 2 we have, for α = p−2
2p , that

‖u‖pLp(I) ≤ C‖u‖
p
2

+1

L2(I)
‖u‖

p
2
−1

H1(I)
, for all u ∈ H1(I),

where α ∈ [0, 1] is defined by α(1
q −

1
r + 1) = 1

q + 1
p .

We now present two compact embeddings of Sobolev spaces in dimension one. The first can be seen
as a one dimensional form of the Rellich-Kondrachov compact embedding theorem.
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Theorem A.8: W 1,p(I) is compactly embedded in C(I)

Let I ⊂ R be an open interval and 1 ≤ p ≤ ∞. Then there exists C = C(I) > 0 such that

‖u‖L∞(I) ≤ C‖u‖W 1,p(I), for all u ∈W 1,p(I).

Furthermore, if I is bounded and 1 < p ≤ ∞ then W 1,p(I) is compactly embedded in C(I).

A proof of this result can be seen in [9, Theorem 8.8]. As a consequence we have that

Corollary A.9

Let I ⊂ R be an open and bounded interval and 1 < p ≤ ∞. Then W 1,p(I) is compactly
embedded in Lq(I) for all q ≥ 1.

Proof. Let p > 1 and q ≥ 1. To prove the above result we need to show that the inclusion operator
ι : W 1,p(I) → Lq(I) is a compact. From the above result we can write the above inclusion operator as
the composition of the following inclusion operators

ι : W 1,p(I)
ι1−→ C(I)

ι2−→ Lq(I).

Since both ι1 and ι2 are linear and continuous and ι1 is also compact, then ι is also compact. �

Moreover, in the unbounded case we have the following interpolation estimate

Corollary A.10

Let I ⊂ R be unbounded and u ∈ H1(I). Then u ∈ Lq(I) for all q ≥ 2 and we have:

‖u‖qLq(I) ≤ ‖u‖
q−2
L∞(I)‖u‖

2
L2(I). (A.1)

Proof. Let u ∈ H1(R) and q ≥ 2. Since by Theorem A.8 we have u ∈ L∞(I), then

‖u‖qLq(I) =

∫
I
|u|q−2|u|2dx ≤ ‖u‖q−2

L∞(I)‖u‖
2
L2(I) <∞. �

A.3 Estimates

For the following useful inequality we provide the reader with a proof:

Lemma A.11

For every q > 0 there exists Cq such that

|a+ b|q ≤ Cq (|a|q + |b|q) , ∀a, b ∈ R.

Proof. Fix q > 0 and let a, b ∈ R.
If b = 0 the conclusion holds for Cq = 1. Suppose now that b 6= 0. In this case we can rewrite the
inequality as ∣∣∣a

b
+ 1
∣∣∣q ≤ Cq( ∣∣∣a

b

∣∣∣q + 1
)
.
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Since
∣∣∣a
b

∣∣∣q + 1 6= 0 in R , the above inequality can be rewritten as∣∣∣a
b

+ 1
∣∣∣q∣∣∣a

b

∣∣∣q + 1
≤ Cq.

Taking x = a
b we define in R the auxiliary function: f(x) = |x+1|q

|x|q+1 . If this function is bounded
then the conclusion follows. Note straight away that f is a strictly positive function in R. Clearly f
is continuous being the quotient of continuous functions whose denominator is never zero. Moreover,
when approaching infinity, |x+ 1|q v |x|q and therefore

lim
|x|→+∞

|x+ 1|q

|x|q + 1
= 1.

From the continuity and the asymptotic behaviour shown above the function is bounded by a strictly
positive constant Cq. �

A.4 Rearrangements of Functions

The book of Kawhol [20] is a classical reference regarding this topic, however in this appendix we follow
the approach by Kesavan [21] to introduce the notion of rearrangement of functions, some particular
rearrangements and their elementary properties.

The concept or rearrangement of functions is closely related to the concept of rearranging subsets
of RN , N ≥ 1. For a measurable subset Ω ⊂ RN we denote the N -dimensional Lebesgue measure by
m(Ω).

Definition A.12: Distribution Function

Let Ω be measurable subset of RN with finite measure. Given a measurable function u : Ω→ R
we define the superlevel sets of u as {u > t} := {x ∈ Ω : u(x) > t}, t ∈ R. The distribution
function of u is then defined as the function ρu : R→ [0,m(Ω)] such that

ρu(t) := m({u > t}).

Remark A.13:
The above definition makes sense in bounded sets. In unbounded sets the same definition will work but
we need to impose more conditions on the function u. Let Ω be an unbounded subset of RN . We say
that a measurable function u : Ω → R vanishes at infinity if the superlevel sets of u have finite measure
for all t > 0, that is, m({u > t}) < ∞ for all t > 0. If this assumption on u holds then we can use the
above definition for its distribution function.

The above notion of distribution functions takes the sign of the functions into account. For simplicity
we assume that all the functions in this section are non-negative functions.

Definition A.14: Rearrangement

We say that two real valued functions are equimeasurable if they have the same distribution func-
tion. In this case we say that they are rearrangements of one another.

We now define the first notion of rearrangement.
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Definition A.15: Decreasing Rearrangement

Let Ω be a subset of RN and u : Ω → R a measurable non-negative function that vanishes at
infinity. Then, its decreasing rearrangement is defined as the the function u# : [0,m(Ω)] → R
such that u#(0) = ess sup(u) and u#(s) = inf{t > 0 : ρu(t) < s} for s > 0.

Proposition 1.1.3 in [21], shows that u# is in fact a rearrangement of u. As a consequence of the
equimeasurability between u and u# we have the following corollary:

Corollary A.16: Deacreasing Rearrangement preserves Lp- norms

Let 1 ≤ p ≤ ∞. If u ∈ Lp(Ω) is non-negative then u# ∈ Lp(0,m(Ω)). Moreover,

‖u‖Lp(Ω) = ‖u#‖Lp(0,m(Ω)).

The proof of this corollary can be seen in Corollary 1.1.2 of [21]. We now introduce the other notion
of rearrangement that we require, the Schwarz symmetrization, also known as the spherically symmetric
decreasing rearrangement. To do so we need to define a rearrangement of subsets of RN . For Ω a subset
of RN with finite measure, we define Ω∗ as the ball centred at the origin with the same measure as Ω.

Definition A.17: Schwarz Symmetrization

Let u : Ω→ R be a measurable function vanishing at infinity. We define its Schwarz symmetriza-
tion on RN as

u∗(x) =

∫ ∞
0

χ{u>t}∗(x)dt.

This definition is as in section 1.4 of [21]. Another definition, for bounded subsets of RN , is provided
in section 1.3 and takes the form

u∗(x) = u#
(
ωN |x|N

)
, x ∈ Ω∗,

where ωN is the volume of the N -dimensional unit ball in RN . In this section the most elementary
properties of this rearrangement are stated and proved. Our choice of definition turns out to be equivalent
to this latter one for bounded sets, however, we will need to adapt the concept of rearrangement in the
unbounded case, which justifies our choice for the definition used here. Finally, the equimeasurability of
u and u∗ is also proved in section 1.4 of [21]. As a consequence we also have the following Corollary:

Corollary A.18: Schwarz Symmetrization preserves Lp- norms

Let 1 ≤ p ≤ ∞. If u ∈ Lp(Ω) is a non-negative function then u∗ ∈ Lp(Ω∗). Moreover,

‖u‖Lp(Ω) = ‖u∗‖Lp(R).

We now know that the Lp- norms are preserved by the above rearrangements. What happens if we
now take the rearrangement of a function u ∈ W 1,p(Ω)? What happens to the generalized derivative of
the function? The answer to this question is given by Pólya-Szegő-type Inequality which we now state
for both rearrangements.

Theorem A.19: Pólya-Szegő Inequality for u#

Let Ω be a subset of RN , 1 ≤ p <∞ and u ∈W 1,p
0 (Ω) be a non-negative function. Then∫ m(Ω)

0
|u#′(s)|pds ≤

∫
Ω
|∇u(x)|pdx.
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A proof for this result in dimension one can be seen in the first edition of [22, Theorem 6.28]. Finally
the same inequality holds for the Schwarz Symmetrization:

Theorem A.20: Pólya-Szegő Inequality for u∗

Let Ω be a subset of RN , 1 ≤ p <∞ and u ∈W 1,p
0 (Ω) be a non-negative function. Then,∫

Ω∗
|∇u∗(x)|pdx ≤

∫
Ω
|∇u(x)|pdx.

A proof of this result can be seen in section 2.3 of [21] for the definition given in section 1.3, that is,
for the bounded case. The unbounded case follows easily with the same proof provided the function we
are rearranging vanishes at infinity, which is always true for functions W 1,p(Ω) when Ω is not bounded.

In particular, these last two results, together with the corollaries A.16 and A.18 say that both the
Schwarz and the decreasing rearrangements ofW 1,p functions are alsoW 1,p functions in their respective
domains.

88



Appendix B

Differential Calculus and Constrained
Extrema Problems

B.1 Differentiable Calculus in Banach Spaces

In this section we introduce the concept of differentiability in Banach Spaces. This will be required a few
times along the thesis and also to treat formally the question of Lagrange Multipliers on Banach spaces
in the next section. In order to introduce this topic we follow [5].

Firstly, recall that given a Banach space X , we denote its dual space by X ′ := L(X,R). When
endowed with the norm

‖A‖X′ = sup
‖u‖X=1

|Au|

this space becomes a Banach Space.

Definition B.1: Fréchet Differentiability

Let X be a Banach space, Y an open subset of X and let f : Y → R be a functional. We say that
f is (Fréchet) differentiable at a point u ∈ Y if there exists A ∈ X ′ such that:

lim
‖v‖→0

f(u+ v)− f(u)−Av
‖v‖

= 0.

Such element A, if it exists, is unique and we denote it by f ′(u) and call it the differential of f at u.

Definition B.2: Continuously Differentiable Functional

Let X be a Banach space, Y an open subset of X and let f : Y → R be a functional. If f is
differentiable at every u ∈ Y we say that it is differentiable in Y . Moreover, if the derivative, that
is, the map f ′ : Y → X ′ is continuous, then we say that f is continuously differentiable and we
write f ∈ C1(Y ).

Another concept of differentiation used in Banach spaces is one that resembles directional derivatives
in RN and is as follows:

Definition B.3: Gâteaux Differentiability

Let X be a Banach space, Y an open subset of X and let f : Y → R be a functional. We say that
f is (Gâteaux) differentiable at a point u ∈ Y if the following limit exists for all v ∈ X:

lim
t→0

f(u+ tv)− f(u)

t
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Again, if such an element A exists it is unique and we denote it by f ′G(u) and call it the Gâteaux
differential of f at u.

Remark B.4:

1. It is important in both definitions to know the difference between differential and derivative. For
example, the differential is always a linear map and defined in the whole space X , even if the
derivative is only defined on a subset of X;

2. Independently of the definition used, if a functional is differentiable at a point then it is also con-
tinuous at that point;

3. These types of differentiability are not equivalent. However, Fréchet differentiability implies
Gâteaux differentiability. The reverse is not true just as differentiation is not equivalent to tak-
ing directional derivatives in the case of X = RN .

This last remark leaves the question: under which conditions are both concepts of differentiability
equivalent? The answer is provided by the following theorem:

Theorem B.5

Let Y ⊂ X be an open set and f : Y → R. Assume f is Gâteaux differentiable and f ′G is linear
and continuous at u ∈ Y . Then, f is also Fréchet differentiable and f ′G(u) = f ′(u).

The proof of this result can be seen for example in [4, Theorem 1.9]. Elementary algebraic properties
of the differentials can also be seen in [5, Section 1.3].

B.2 Constrained Extrema Problems

In this section our goal is to present the Theory of Lagrange Multipliers on Banach spaces, while follow-
ing closely [28, Section 1.3]. The main result of this section gives a necessary condition for solutions of
problems of the type:

min{f(u) : u ∈ Y, ϕ(u) = 0}, for c ∈ R, (B.1)

where Y is an open subset of a Banach space X and f, ϕ ∈ C1(Y ). Denote M := ϕ−1{0}. Then the
above problem is the same as finding the minimum of f |M . The following conditions are assumed:

1. M 6= ∅;
2. ϕ′(u) 6= 0 for all u ∈M .

Lemma B.6

Let u0 ∈M . Under condition 2 above, for all z ∈ Null(ϕ′(u0)) there exists ε > 0 and a curve of
class C1, α : (−ε, ε)→M , such that α(0) = u0 and α′(0) = z.

Proof. Let u0 ∈ M . From the condition ϕ′(u0) 6= 0, since the range of the operator has dimension
1, we get that ϕ′(u0) is surjective. Thus, we can take e ∈ X such that ϕ′(u0)e = 1 which allows the
construction of the following decomposition of X:

X = Null(ϕ′(u0))⊕ Re.

Decompose u0 = v0 + s0e, for some v0 ∈ Null(ϕ′(u0)) and s0 ∈ R, and define the C1 functional:
F : Null(ϕ′(u0))×R→ R by F (v, s) = ϕ(v+se) it is easy to check that F is under the hypothesis of the
Implicit Function Theorem, see [4, Theorem 2.3]. Indeed by composition F is a classC1(Null(ϕ′(u0))×
R). At the point u0 ' (v0, s0) ∈ M we have that F (v0, s0) = ϕ(u0) = 0. Finally note that the partial
derivative of F in order to the variable s, which we denote by F ′s, at (v0, s0) is given by the chain rule
through
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F ′s(v0, s0)t = ϕ′(u0)te = tϕ′(u0)e = t.

This means that the partial derivative is the identity and therefore an invertible map. Thus, the Implicit
Function Theorem can be applied and there exist open neighbourhoods V ⊂ Null(ϕ′(u0)) of v0 and
I ⊂ R of s0 and a C1 function φ : V → I such that:

F (v, s) = 0⇔ s = φ(v)

for all v ∈ V , s ∈ I . Take z ∈ Null(ϕ′(u0)). By implicit differentiation we have that φ′(v0) = 0.
Take now ε > 0 so that v0 + tz + φ(v0 + tz)e ∈ M for |t| < ε. We can now define the curve

α : (−ε, ε)→M given by α(t) = (v0 + tz) + φ(v0 + tz)e which is of class C1 and, moreover, verifies
α(0) = u0 and α′(0) = z. �

Definition B.7: Critical Point

We call u ∈ M a critical point of f |M if there exists λ ∈ R such that f ′(u) = λϕ′(u). We call
the scalar λ of Lagrange Multiplier.

The following result gives a necessary condition that solutions to problem (B.1) need to satisfy:

Proposition B.8

Suppose ϕ′(u) is a surjective map for all u ∈ M . If u0 ∈ M is a maximum (or minimum) of
f |M , then u0 is a critical point of f |M .

Proof. Let M be as above and suppose u0 ∈M is a maximum of f |M . Let z ∈ Null(ϕ′(u0)). It follows
from Lemma B.6 that there exists ε > 0 and α : (−ε, ε)→M a C1 curve in M such that α(0) = u0 and
α′(0) = z. Since u0 is a maximum of f |M then the map f ◦ g : (−ε, ε) → R has a maximum at t = 0.
Then,

f ′(u0)z = 0, for all z ∈ Null(ϕ′(u0)).

We now want to evaluate f ′(u0)x for any x ∈ X . Since we can take e ∈ X such that ϕ′(u0)e = 1. This
allows us to make the decomposition X = Null(ϕ′(u0)) ⊕ Re. Hence, there exist x0 ∈ Null(ϕ′(u0))
and s0 ∈ R such that x = x0 + s0e. Now, on one hand,

f ′(u0)x = s0f
′(u0)e.

On another hand
ϕ′(u0)x = s0,

and the conclusion follows by taking λ := f ′(u0)e. �
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Appendix C

The One Dimensional NLS equation

In this appendix we will provide a characterization of the solutions of the one dimensional non linear
Schrödinger equation with a general power nonlinearity, following closely reference [10]. Throughout
this appendix we will consider only complex valued function. For that reason we remark that the Sobolev
space H1(R,C) is endowed with the norm:

‖u‖2H1(R,C) =

∫
R
|u′|2dx+

∫
R
|u|2dx, for all u ∈ H1(R,C),

which is the norm induced by the inner product given by“

〈u, v〉H1(R,C) = Re

∫
R
u′v′dx+ Re

∫
R
uvdx, for all u, v ∈ H1(R,C),

We start by considering the following Cauchy Problem in H1(R,C):{
i∂tu+ u′′ + |u|p−2u = 0,

u(0, x) = ϕ(x),
(C.1)

where u′ denotes the spatial derivative of u, ϕ ∈ H1(R,C) \ {0}, p > 2.
We focus ourselves in the following family of solutions:

u(t, x) = eiωtϕ(x)

for some ω > 0, ϕ ∈ H1(R,C). In the literature these solutions are the so called stationary states or
bound states. If u is in fact of this form then elementary computations show that ϕ has to solve the
stationary equation

−ϕ′′ + ωϕ = |ϕ|p−2ϕ

Therefore we start by considering the problem{
−ϕ′′ + ωϕ = |ϕ|p−2ϕ

ϕ ∈ H1(R,C) \ {0}.
(C.2)

To start with we state a regularity result.

Lemma C.1: Regularity of Solutions

Let ω > 0, θ ∈ R and p > 2. If u ∈ H1(R,C) satisfies the equation −u′′ + ωu = θ|u|p−2u in
H−1(R,C) then the following properties hold:

1. u ∈W 3,p(R,C) for every p ≥ 2. In particular, u ∈ C2(R,C);
2.
∫
R |u

′|2dx+ ω
∫
R |u|

2dx = θ
∫
R |u|

p+1.
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For a proof of this result we refer the reader to [10, Theorems 8.1.1,8.1.2]. This lemma will only
be used to justify why we can perform certain computations in the result that follows. Moreover, this
provides a good justification as to why the defocusing case does not give rise to stationary states, since a
contradiction would arise from item 2.

The first result is concerned with existence of solution.
Theorem C.2: Existence of Solution

If ω > 0 and p > 2, then problem (C.2) admits a real valued solution that is positive, even and
decreasing in (0,+∞).

Given that in the first chapter we deduce the existence of solutions to this equation via Lagrange
multipliers we omit this proof. Indeed note that if u ∈ H1(R,C) solves, for some positive λ,−u′′+λu =
|u|p−2u then,

v(x) =

(
λ

ω

)− 1
p−2

u

((
λ

ω

)− 1
2

x

)
solves the problem (C.2). In this appendix however, we recall a different proof, given in [10, Chapter 8].
This proof provides us not only an existence result but also a few qualitative properties of the solutions,
such as being positive, even and strictly decreasing in (0,+∞). We now sketch a proof of these facts.

Sketch of the proof of Theorem C.2. The main idea of this proof is to study the following initial value
problem: 

−ϕ′′ + ωϕ = |ϕ|p−2ϕ

ϕ(0) = c :=
(ωp

2

) 1
p−2

ϕ′(0) = 0.

(C.3)

Note that the normal form of the first equation in (C.3) allows the use of the Theorem of Picard-Lindelöf,
see [3, II-7.4]. From here we deduce local existence of a real valued solution for the above IVP. Global
existence is then deduced by showing that the solution is bounded, see [10, Chapter 8]. Now defining
ψ(x) := ϕ(−x) we get that ψ also solves (C.3) and therefore, by uniqueness, the solution is even. The
positivity of the solution is also a consequence of the existence and uniqueness of solution to the IVP.
For the decreasing property note that upon multiplying the first equation in (C.3) by ϕ′ and using the
initial conditions we deduce that

1

2
ϕ′

2 − ω

2
ϕ2 +

1

p
|ϕ|p = 0. (C.4)

By regularity we have that

ϕ′′(0) = −ωc(p− 2)

2
< 0.

Hence,
ϕ′′ < 0 in (−a, a),

for some a > 0. Then, the first derivative in this interval is strictly decreasing. Moreover, since ϕ′(0) =
0, have that

ϕ′(0) < 0 in (0, a).

We now can extend this up to infinity. Indeed suppose, by way of a contradiction, that there exists
b > a > 0 such that ϕ′(b) = 0 and that ϕ′ < 0 in the interval (0, b). By evaluating equation (C.4) at the
point x = b we get

1

2
ϕ′(b)

2 − ω

2
ϕ2(b) +

1

p
|ϕ(b)|p = ϕ2(b)

(
−ω

2
+
|ϕ(b)|p−2

p

)
= 0.
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Since we already shown that ϕ is positive we only need to show that if |ϕ(b)| = c we arrive to a
contradiction. Again, ϕ(b) = −c is impossible. If ϕ(b) = c we also get to a contradiction because ϕ is
strictly decreasing in the interval (0, b), continuous, and ϕ(0) = c. In conclusion, we have that

ϕ′ < 0 in (0,+∞). �

The following results will show us that in fact any solution of problem (C.2) will be this one up to
phase multiplication and translation. Let us introduce some notation. Let

A := {ϕ ∈ H1(R,C) \ {0} : −ϕ′′ + ωϕ = |ϕ|p−2ϕ}.

From the previous result we already know that A is a non empty set. Let us also define the action
functional of the stationary equation by

S : H1(R,C)→ R; S(u) =
1

2

∫
R
|u′|2dx− 1

p

∫
R
|u|pdx+

ω

2

∫
R
|u|2dx (C.5)

Just as it was done in Chapter 2, we can see that this functional is also of class C1(H1(R,C)). Addi-
tionally, it is easily seen that S is a coercive functional and, by computing its differential at any point
u ∈ H1(R,C), we see that its critical points are precisely the weak solutions to the stationary NLS
equation. Note that

S′(u)v = Re

∫
R
u′v′ − |u|p−2uv + ωuvdx, for all v ∈ H1(R,C).

Let now
G := {u ∈ A : S(u) ≤ S(v), for all v ∈ A} .

The following result shows, that in dimension one, all the non-trivial solutions of (C.2) are solutions that
minimize the functional S. Moreover, the coming result also provides a characterization the solutions.

Theorem C.3: Characterization of Solutions

If ω > 0 and p > 1. We then have
1. A and G are non empty;
2. A = G;
3. there exists a real valued, positive, even and decreasing function ϕ on (0,+∞) such that:

A = {eiθϕ(· − y) : θ, y ∈ R}.

Proof. From Theorem C.2 we have the first item established. Note now that if there exist ϕ ∈ H1(R)
and θ, y ∈ R with the properties of the statement, eiθϕ(· − y) is in fact a solution to the problem (C.2).
Take now v ∈ A. Recall that v is a complex valued function of class C2(R) as a consequence of Lemma
C.1. Then v solves pointwise in R the equation

−v′′ + ωv = |v|p−2v. (C.6)

Upon multiplying (C.6) by v′ and taking the real part we get that

0 = −Re(v′′v′) + ωRe(vv′)− |v|p−2Re(vv′)

= −1

2

[
v′′v′ + v′′v′

]
+
ω

2

[
vv′ + vv′

]
− |v|

p−2

2

[
vv′ + vv′

]
= −1

2

d

dx
(v′v′) +

ω

2

d

dx
(vv)− |v|

p−2

2

d

dx
(vv)

= −1

2

d

dx
|v′|2 +

ω

2

d

dx
|v|2 − |v|

p−2

2

d

dx
|v|2.
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From this we get, by integration over R, that there exists some K ∈ R such that

K = −1

2
|v′|2 +

ω

2
|v|2 −

∫
R

|v|p−2

2

d

dx
|v|2dx

= −1

2
|v′|2 +

ω

2
|v|2 −

∫
R

|v|p−2

2
2|v|v′dx

= −1

2
|v′|2 +

ω

2
|v|2 −

∫
R
|v|p−2|v|v′dx,

which in turn implies that there exists K1 ∈ R such that

−1

2
|v′|2 +

ω

2
|v|2 − |v|

p

p
= K1.

Since v ∈ H1(R) we have, as |x| → ∞ that v(x) → 0. Taking the limit in the equation (C.6) we
conclude that also v′′(x) → 0 as |x| → ∞. We now want to obtain that K1 = 0. In order to do so
we claim that v′(x) → 0 as |x| → ∞. To check this, let x ∈ R. Given that v is of class C2(R) let us
compute the first order Taylor expansion of v centred at the point x+ 1 with Lagrange remainder.

v(x) = v(x+ 1) + v′(x+ 1)(x− (x+ 1)) +
v′′(ξx)

2
(x− (x+ 1))

= v(x+ 1)− v′(x+ 1)− v′′(ξx)

2
,

where ξx ∈ (x, x + 1). The conclusion is now obvious taking the limit in the previous equation since
x→ +∞ implies that ξx → +∞. For x→ −∞ it is analogous.

We now have that pointwise in R the following equation is satisfied:

1

2
|v′|2 − ω

2
|v|2 +

1

p
|v|p = 0. (C.7)

It follows now immediately from the previous equation that |v| > 0. Should v(x) = 0 at some point
then we would also have from the equation that v′(x) = 0 and thus v ≡ 0 by existence and uniqueness
of solution.

Having |v| > 0 allows us to look for solutions of the form:

v(x) = ρ(x)eiθ(x)

where ρ > 0 and θ are class C2(R). Differentiating the new form of v twice we obtain that

v′′(x) =
(
ρ′′(x)− θ′(x)2ρ(x)

)
eiθ(x) + i

(
2ρ′(x)θ′(x) + θ′′(x)ρ(x)

)
eiθ(x).

Since v solves equation (C.6) we obtain that ρ and θ need to satisfy pointwise in R the equality

−
(
ρ′′ − θ′2ρ

)
− i
(
2ρ′θ′ + θ′′ρ

)
+ ωρ = ρp,

whence
ρθ′′ + 2ρ′θ′ = 0;

or, equivalently,

ρ2θ′′ + 2ρρ′θ′ = 0.

Thus we can conclude that there exists K ∈ R such that

ρ2(x)θ′(x) = K for all x ∈ R.
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From here it follows that θ′(x) = K
ρ2(x)

. Our first goal now is to prove that θ ≡ θ0 for some θ0 ∈ R.
Since v′ is continuous and converges to zero as |x| → ∞, v′ is bounded. Moreover,

|v′|2 = |ρ′ + iθ′ρ|2 = ρ′2 + θ′2ρ2.

Thus we also have that ρ2θ′2 is also bounded. Putting the expression for θ′ in the quantity above we have
that

ρ2θ′2 = ρ2K
2

ρ4
=
K2

ρ2

and therefore the quantity K2

ρ2
is bounded as well. From this the conclusion follows easily. Note that

since ρ(x) → 0 as |x| → ∞, if K 6= 0 then K2

ρ2
is unbounded which is a contradiction. Hence, K = 0.

Again, from the strict positivity of ρ we deduce that

θ′(x) = 0 for all x ∈ R.

Thus, by integration, such a θ0 exists. We have so far that

v(x) = ρ(x)eiθ0 . (C.8)

At this point necessarily we have that ρ is a function in H1(R) and therefore, since it converges to zero
as |x| approaches infinity, there exists x0 ∈ R such that ρ′(x0) = 0. It now follows from equation (C.7)

that ρ(x0) =
(ωp

2

) 1
p−2 = c.

Define now, in R, the following function:

w(x) = ρ(x+ x0).

We have thatw(0) = c andw′(0) = 0. If we prove thatw solves the equation (C.6) then it is immediately
a solution to the IVP defined in (C.3). Taking into account the shape of the solution v given by (C.8) we
have that:

−w′′(x) + ωw(x) =
eiθ0 (−ρ′′(x+ x0) + ωρ(x+ x0))

eiθ0

=
−v′′(x+ x0) + ωv(x+ x0)

eiθ0

=
|v(x+ x0)|p−2v(x+ x0)

eiθ0

=
|ρ(x+ x0)eiθ0 |p−2ρ(x+ x0)eiθ0

eiθ0

= |ρ(x+ x0)|p−2ρ(x+ x0)

= |w(x)|p−2w(x),

where in the first equality we simply used the definition of w and we multiplied and divided the equation
by eiθ0 and in the third equality we used the fact that v is a solution to the problem. Adopting the notation
from the proof of Theorem C.2 we have by uniqueness of solution of the aforementioned IVP that:

w(x) = ρ(x+ x0) = ϕ(x) for all x ∈ R.

Or putting differently, ρ(x) = ϕ(x − x0). This gives us the desired conclusion. We have proved that
indeed if v is a solution then it has the form v(x) = eiθ0ϕ(x − x0). Moreover, ϕ is the unique positive
and even solution to the equation (C.6). To finish the proof we remark that in fact v ∈ G. Note that if v
takes the above form, computing the differential of S at v yields that in fact it is a critical point. From
the coercivity of S we get that v ∈ G. �
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To finish with a remark.

Remark C.4:

1. Note that
E(u) =

1

2

∫
R
|u′|2dx− 1

p

∫
R
|u|pdx = S(u)− ω

2

∫
R
|u|2dx.

Recalling that in Chapter 2 we were concerned about minimizing E with fixed L2 norm, the above
result gives that any non-trivial solution of the stationary NLS equation will also be a ground state
for the NLS energy functional when minimizing on spheres.
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