
 

2020 

 

UNIVERSIDADE DE LISBOA 

FACULDADE DE CIÊNCIAS 

DEPARTAMENTO DE ESTATÍSTICA E INVESTIGAÇÃO OPERACIONAL 

 

 

 

 

 

 

Obesity Genetic Risk Score 

 

 

 

 

Catarina Isabel Nogueira Ribeiro 

 

 

 

Mestrado em Bioestatística   

 

 

Dissertação orientada por: 

Prof.a Doutora Lisete Sousa 

Prof. Doutor Miguel Brito 

 



ola



É coisa preciosa, a saúde, e a única, em verdade, que merece que em sua procura empreguemos

não apenas o tempo, o suor, a pena, os bens, mas até a própria vida; Tanto mais que sem ela

a vida acaba por tornar-se penosa e injusta.

Michel de Montaigne
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Resumo

A obesidade é a doença metabólica humana mais comum e mais antiga que foi registada até aos

dias de hoje. Desde a pré-história que a obesidade assumiu um papel preponderante na vida

do ser humano, sendo referida como śımbolo de fertilidade e beleza. Remetendo ao Peŕıodo

Neoĺıtico (cerca de 10.000 A.C.), as ”deusas”, isto é, as mulheres com caracteŕısticas como seios

volumosos e coxas bem definidas já eram admiradas neste peŕıodo. Contudo, nesta época, o ser

humano tinha grande dificuldade em obter comida e conseguir stock da mesma. Portanto, a

natureza foi encarregada de fornecer ao corpo humano um mecanismo para armazenar energia.

Esse mecanismo consistia em incentivar o Homem, através da fome, a ingerir uma grande

quantidade de calorias e fazer com que seu organismo transformasse o excesso em gordura,

armazenando-o por peŕıodos de falta de comida. As sementes, ráızes e frutos eram os principais

alimentos ingeridos pelo Homem e foi para esse padrão alimentar que a genética preparou o

organismo herdado por nós. O problema é que nosso estilo de vida é completamente diferente

do estilo de vida levado pelo Homem no Peŕıodo Neoĺıtico. Atualmente, os alimentos estão

facilmente dispońıveis nas sociedades modernas e, por outro lado, as mudanças no nosso

ambiente ocorrem mais rapidamente do que as modificações no contexto genético. Desta forma,

ao considerar o desequiĺıbrio do nosso estilo de vida moderno e do nosso perfil genético ”antigo”,

é compreenśıvel que muitas pessoas ganhem peso com tanta facilidade. Embora fazendo este

paralelismo entre o passado e a atualidade a obesidade não é o simples resultado de indisciplina

pela qual o indiv́ıduo ingere uma quantidade excessiva de alimentos ou o facto de não fazer

atividade f́ısica suficiente. Muitos indiv́ıduos são mais suscet́ıveis do que outros a aumentarem

de peso, ou desenvolverem obesidade, devido aos próprios genes. Na maioria dos casos, os genes

envolvidos no aumento de peso aumentam o risco ou a suscetibilidade de um indiv́ıduo para

desenvolver a obesidade, quando exposto a fatores ambientais adversos. Em casos raros, a ação

direta de certos genes pode causar diretamente aumento de peso ou obesidade.

Assim, podemos afirmar que a obesidade é uma doença crónica grave associada ao excesso de

gordura corporal, na medida em que pode ter um efeito negativo na saúde. A escolha de estilos

de vida pouco saudáveis ou fatores ambientais contribuem para o aparecimento desta doença

que é conhecida por ser hereditária e altamente poligénica. Milhões de variações subtis na

sequência de DNA humano, ou genoma, são a chave para uma série de condições, do cancro

de mama às doenças card́ıacas. Este estudo de caso-controle de associação genética compara

a frequência de alelos ou genótipos nos loci dos marcadores genéticos, isto é, polimorfismos

de nucleot́ıdeo único (SNPs), numa amostra de indiv́ıduos, com e sem uma determinada

caracteŕıstica de doença, de uma determinada população. Os sucessos recentes nas descobertas

de polimorfismos de nucleot́ıdeo único (SNPs) potencialmente causais para doenças complexas

são bastante promissores. Curiosamente, nos dias de hoje, várias empresas oferecem, por

taxas relativamente modestas, serviços genómicos personalizados que fornecem estimativas
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individualizadas de risco de doença com base na genotipagem do SNP em todo o genoma. A

maioria das empresas que oferecem esse perfil deixa claro que não é um serviço cĺınico e que

seus cálculos não se destinam a fins de diagnóstico ou prognóstico. Apenas aconselham os seus

clientes a consultar o seu médico para obter mais informações.

Foi recolhida uma amostra de 212 mulheres caucasianas, composta por 112 mulheres obesas e

um grupo de controle (peso normal) de 100 mulheres. Para os dois grupos, foram registados

o peso corporal total, o ı́ndice de massa corporal (IMC), a circunferência da cintura e do

quadril, a relação cintura-quadril e a gordura corporal. Além disso, foi também recolhida

informação correspondente a 19 SNPs relacionados com a obesidade em 13 genes, também estes

relacionados com a doença, para ambos os grupos de mulheres.

Este tipo de estudo de caso-controlo considera métodos e técnicas básicas de análise estat́ıstica

e tem como objetivo determinar se existe associação entre a caracteŕıstica da doença, isto

é, a obesidade e o marcador genético. Um pressuposto fundamental deste tipo de estudo é

que os indiv́ıduos selecionados nos grupos de caso/controlo forneçam estimativas imparciais

da frequência do alelo. Caso contrário, os resultados encontrados da associação refletirão

apenas vieses resultantes do desenho do estudo. Os modelos dominante e recessivo, para cada

SNP, são exemplos que são estudados através de tabelas de contingência e nos quais se quer

encontrar alguma associação estat́ıstica entre a doença e o respetivo modelo, neste trabalho de

investigação. Num modelo recessivo são necessárias duas cópias do alelo A para que o risco da

doença aumente. Assim, a tabela de contingência, isto é, uma tabela 2×2 é composta pelas

observações dos genótipos de aa versus as observações dos genótipos Aa e AA. Enquanto que

um modelo dominante, cujo número de cópias do alelo A aumenta o risco de doença, a tabela

de contingência pode ser resumida como uma tabela 2×2 da contagem de genótipos de AA

versus Aa e aa combinado.

Perfis multi-locus de risco genético, os chamados ”scores de risco genético”, podem ser usados

para traduzir descobertas de estudos de associação, em todo o genoma, sendo ferramentas para

pesquisa da saúde da população. Portanto, os principais objetivos deste trabalho são identificar

polimorfismos associados à obesidade em mulheres portuguesas, identificar o score de risco

genético da obesidade e associar polimorfismos genéticos a traços relacionados à obesidade,

usando o software Excel, SPSS e Rstudio.

Como sabemos, fatores como idade, sexo, etnia e massa muscular podem influenciar a relação

entre o IMC e a gordura corporal. Além disso, o IMC não faz distinção entre excesso de

gordura, músculo ou massa óssea, nem fornece qualquer indicação da distribuição de gordura

entre os indiv́ıduos. Apesar dessas limitações, o IMC continua a ser amplamente utilizado como

indicador de excesso de peso. Como existem fatores que podem influenciar os valores de IMC, é

necessário incluir, neste estudo, covariáveis adicionais para lidar com caracteŕısticas complexas,

i.e, aplicar modelos de associação de regressão loǵıstica e, posteriormente, avaliar a qualidade

de um modelo de risco através da curva ROC (Operating Operating receiver Characteristic) e

da AUC (Area Under The Curve).

Com base em toda a análise estat́ıstica apenas os SNPs PON 1 Q192R, the AdipoQ G11377C,

ACE I D and FTO A T SNP demonstraram estar geneticamente associados com a obesidade.

Contudo, através do modelo de regressão loǵıstico apenas os SNPs AdipoQ G11377C,

FTO A T SNP e PON 1 Q192R demonstraram ser estatisticamente significativos. Dado este

resultado, o score de risco genético foi calculado apenas com base nestes 3 SNPs, apresentando

um maior risco genético quando uma mulher é portadora de 2 alelos de risco pertencentes
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aos SNPs AdipoQ G11377C e PON 1 Q192R, mas não apresentar nenhum alelo de risco

pertencente a FTO A T.

Este tipo de estudos de associação genética têm sido amplamente utilizados para melhor

entender a patogénese genética de determinadas doenças a fim de melhorar as estratégias

preventivas, meios de diagnóstico e terapias.

Palavras-Chave: Obesidade, IMC, Polimorfismos, Score de Risco Genético, Regressão

Loǵıstica
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Abstract

The obesity is a serious chronic disease associated with having excess body fat to the extent

that it may have a negative effect on your health. Unhealthy lifestyle choices or environmental

factors contribute to the development of this disease, which is known to be hereditary and

highly polygenic. Millions of subtle variations in the human DNA sequence, or genome, hold

the key to a host of conditions, from breast cancer to heart disease.

This genetic association case-control study compares the frequency of alleles or genotypes at

genetic marker locus, i.e, single-nucleotide polymorphisms (SNPs), in a sample of individuals

with and without a particular disease characteristic from a given population.

A sample of 212 Caucasian women, which is composed by 112 obese women and a control group

(normal weight) of 100 women, was collected. For both groups was recorded the total body

weight, body mass index (BMI), waist and hip circumference, waist-hip ratio and body fat.

Moreover, 19 obesity-related SNPs in 13 obesity related genes, where genotyped for all samples.

This type of study considers basic methods and techniques of statistical analysis and aims to

determine whether there is an association between the disease characteristic and the genetic

marker read-based association study. Multi-locus profiles of genetic risk, so-called ”genetic risk

score,” can be used to translate discoveries from genome-wide association studies into tools

for population health research. Therefore, the main purposes of this dissertation are identify

polymorphisms associated with obesity in Portuguese Women, identifying the obesity genetic

risk score and associate genetic polymorphisms with obesity related traits, using Excel, SPSS

and Rstudio software. As we know, factors such as age, sex, ethnicity, and muscle mass can

influence the relationship between BMI and body fat. Also, BMI does not distinguish between

excess fat, muscle, or bone mass, nor does it provide any indication of the distribution of fat

among individuals. Despite these limitations, BMI continues to be widely used as an indicator

of excess weight. For this reason, it is necessary to understand if a high risk score is a guarantee

of being obese, as their data show or if despite the strength of these associations, polygenic

susceptibility to obesity is not deterministic.

Keywords: Obesity, BMI, Polymorphisms, Genetic Risk Score, Logistic Regression
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Glossary

Allele - A variant of a polymorphism at a locus.

B Cells - The human body has millions of different types of B cells every day circulating in

blood and lymph which have an important role in immune surveillance. Each cell has a protein

receptor (called a B cell receptor or BCR) on its binding scale. BCR is a major protein involved

in the B cell, which link between the cell membrane and the immunoglobulin, and this molecule

allows the distinction of B cells between other types of lymphocytes. Once the B cell is located,

the antigen receives a signal additional T cell assists, it can differentiate into one of the two

types of B cells.

Gene - Functional unit of DNA that contains the necessary information for the cell

machinery to produce a RNA template that is either functional by itself or can be translated

to a protein.

Genotype - Combination of two alleles across both chromosomes at a particular locus

in an individual.

Hardy-Weinberg equilibrium - Given a minor allele frequency of q, the probabilities

of the three possible genotypes (aa, Aa, AA) at a biallelic locus which is in Hardy-Weinberg

equilibrium are ((1-q)2, 2q(1-q), q2). In a large randomly mating homogenous population these

probabilities should be stable from generation to generation.

Single Nucleotide Polymorphism (SNP) - A genetic variant that consists of a single DNA

base pair change, resulting in two possible allelic identities at that position.

The WNT Signaling pathway - The WNT signaling pathway is an ancient and evolutionarily

conserved pathway that regulates crucial aspects of cell fate determination, cell migration, cell

polarity, neural patterning and organogenesis during embryonic development. The WNTs are

secreted glycoproteins and comprise a large family of nineteen proteins in humans hinting to a

daunting complexity of signaling regulation, function and biological output.
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Chapter 1

Introduction

1.1 Context of the Obesity Health Problem

To understand why obesity is advancing in nowadays it is necessary to take a journey to the

past. Our ancestors had great difficulty in getting food and even more so to stock it. Therefore,

nature was charged with endowing the human body with a mechanism for storing energy. This

mechanism consisted in encouraging the man, through hunger, to ingest a great quantity of

calories and to make his organism transform the excess into fat, storing it for periods of lack of

food.

However, our ancestors ate mainly seeds, roots and fruits and it was for this food pattern

that genetics prepared the organism inherited by us. The problem is that our lifestyle is

completely different from that. Today, food is easily available in modern societies and on the

other hand, the changes in our environment occurred more rapidly than the modifications in

our genetic background. Therefore, when considering the imbalance in our modern lifestyle and

our ”ancient” genetic profile, it is understandable that many people gain weight so easily.

Obesity is a global public health concern from an excessive fat accumulation that results from

a positive balance between total energy intake and fat catabolism.

This disease is associated with a set of hormonal changes affecting the perpetuation of that

condition as well as the development of co-morbidities and may contribute for a significant

number of diseases including stroke, metabolic syndrome, cardiovascular diseases, type 2

diabetes mellitus, premature death and some cancers.

However, human obesity is not only due to the excessive consumption of foods rich in sugars

and fats, but also influenced by genetic factors and the environment in which one lives from the

moment of maternal to adult life. A complex mix of genetic, environmental, and psychological

factors can increase a person’s risk for obesity.

Due in part to evolutionary forces, genetic drift and environmental conditions, changes occurred

in the human species. For example, in all subpopulations there have always been obese and

non-obese individuals. This difference arises mainly as a consequence of genetic factors, as

evidenced by the high heritability of the body mass index (BMI). A characteristic such as

eye color, hair color, body size, etc may reflect the activity of a single gene (Mendelian or

monogenic) or more than one gene (polygenic). Both cases can be affected by environmental

factors. The polygenic multifactorial condition reflects the additive condition of many genes

conferring different degrees of susceptibility. Accordingly, we can understand a polygenic trait

as the combined action of several genes producing a ”continuously variable” phenotype. With
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the advent of the Human Genome Project (1990-2003), millions of variants of DNA sequences

have been discovered in the human genome.

In Portugal, obesity is a health problem that is affecting more and more the entire population.

Almost half of the population is overweight and close to one million adults suffer from obesity.

The principal objective of this project is to investigate for the first time, in Portugal, the genetic

of common obesity in Portuguese women, which could help in the future to identify a genetic

predisposition to obesity and develop possible approaches to treat this condition.

1.2 How Obesity is Classified?

Obesity is a medical condition in which excess body fat has accumulated to the extent that it

may have an adverse effect on health and its prevalence during the past years has dramatically

increased worldwide (Ogden et al., 2007). Obesity is measured in terms of body mass index

(BMI), which is the most commonly measure used to classify overweight and obesity, adiposity,

and waist/hip proportions. It is estimated that nearly 500 million people worldwide to have

obesity and 1.4 billion are estimated to be overweight. In less than a generation, the total

number of people with obesity has doubled.

Body Mass Index (BMI): defined as a person’s weight in kilograms divided by the square

of his height in meters (Kg/m2) and is further evaluated in terms of fat distribution via the

waist-hip ratio and total cardiovascular risk factors.

The BMI allows, in a quick and straightforward way, to tell if an adult is underweight, normal

weight or overweight and has therefore been adopted internationally to classify obesity. Obesity

is classified in three classes according to the WHO (World Health Organization):

◦ Class I (BMI 30.0 Kg/m2- 34.9 Kg/m2)

◦ Class II (BMI 35.0 Kg/m2- 39.9 Kg/m2)

◦ Class III (BMI ≥ 40.0 Kg/m2)

There is a relation between the mentioned classes of obesity and the risk of comorbidities (Table

1.1), can be affected by several factors, including diet and physical activity.

Nutritional Status BMI (kg/m2) Risk of Comorbidities

Underweight < 18.5 Low ( But increased risk of other clinical problems)

Normal range 18.5 - 24.9 Medium

Overweight 25.0 - 29.9 Increased

Obesity Class I 30.0 - 34.9 Moderate

Obesity Class II 35.0 - 39.9 Serious

Obesity Class III ≥ 40 Very Serious

Table 1.1: WHO (2000) - Classification for BMI in adults

An important aspect in the evaluation of the obese adult is the distribution of fat body. That

is, when adipose tissue accumulates in the upper half of the body, especially in the abdomen, it
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is said that obesity is android, abdominal or visceral, being typical in male individuals. When

fat is distributed mainly in half the lower part of the body, particularly in the gluteal region

and thighs, is said to be of the gynoid type, which is typical of the obese woman.

The identification of these morphological types is very important, since demonstrated today

that visceral obesity is associated with metabolic complications, such as type 2 diabetes and

dyslipidemia and cardiovascular diseases, such as hypertension, coronary heart disease and

cerebrovascular disease. The prevalence of obesity during the past years has dramatically

increased worldwide.

1.3 Genetics of Obesity

There is scientific evidence that there is a genetic predisposition in certain individuals, which

determine a greater accumulation of fat in the abdominal area due to excessive energy intake

and/or decreased physical activity. This visceral fat, located inside the abdomen, is directly

related to the development of insulin resistance, metabolic syndrome associated with obesity.

This genetic predisposition may be hereditary, that is, there will be a transmission of traces

and, occasionally, the risk of suffering from diseases.

Mendelian inheritance is observed for some rare diseases. On the other hand, most common

diseases do not present typical Mendelian inheritance. According to the common disease

common variant hypothesis, some of those common variants lead to susceptibility to complex

polygenic diseases. Each variant of each gene that influences a complex disease will have a

small effect on the disease phenotype and susceptibility.

1.4 Syndromic Obesity vs Non-Syndromic Obesity

Syndromic obesity describes obese children and adults with mental retardation, dysmorphic

features, organ-specific abnormalities, hyperphagia, and/or other signs of hypothalamic

dysfunction. Obesity syndromes may be inherited in either an autosomal or an X-linked

pattern. More than 100 syndromes are now associated to obesity, but the most frequent

syndromes are Prader-Willi and Bardet. In this case, the patients are clinically severely

obese and additionally distinguished with dysmorphic features, organ-specific developmental

abnormalities and a mental retardation (Bell et al., 2005).

In Non-syndromic obesity, which will be the focus of this study, both autosomal dominant and

recessive forms of obesity have resulted due to several gene mutations.

1.4.1 Non-Syndromic Obesity

1.4.1.1 Monogenic Forms of Obesity

According to Bell et al. (2005), mutations in genes that encode proteins with potential function

in regulating appetite are responsible for Mendelian diseases in which obesity is the most

obvious phenotype.

Based on genetic and phenotypic characteristics, several types of obesity are seen. Monogenic
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forms of obesity result from an alteration in a single gene and follow the Mendelian pattern of

inheritance, affecting about 5% of the population. This mutation occurs in genes of the leptin

(LEP), Leptin Receptor (LEPR), pro-opiomelanocortin (POMC), Melanocortin 4 receptor

(MC4R) and proconvertase 1 (PC1), affect appetite regulation resulting in a severe obesity

phenotype due to hyperphagia, indicating that these pathways are explicitly important in

regulating weight and adiposity in humans (Barness et al., 2007). Early onset of the disease

and an extreme phenotype characterize monogenic obesity.

1.4.1.2 Polygenic Forms of Obesity

Polygenic obesity is the more common clinical situation which is responsible for more than 95%

of cases (Bell et al., 2005). A group of alleles responsible for a trait is termed as ”polygenic”

variants being that these polygenic variants play a role in obesity. Here, the unbalanced lifestyle

(stress, overeating, sedentary lifestyle ...) is responsible for obesity in association in genes. The

contribution of each gene has only had a small effect on weight and the allelic effects can be

additive or nonadditive. Variants of obesity genes show variation in frequency between obese

subjects making the study of polygenic obesity more complex.

SNPs (Single Nucleotide Polymorphisms) may fall within coding sequences of genes, non-coding

regions of genes, or in the intergenic regions (regions between genes). Unlike in the case

of monogenic obesity where a single mutation in a gene is causal in producing the disease

phenotype, in polygenic obesity, each polymorphism confers susceptibility to obesity and the

presence of an obesogenic environment leads to the phenotype.

For the detection and analysis of obesity genes and their variants, several molecular genetic

approaches are employed to help in unraveling the genomics of obesity. These genetics

approaches are linkage studies, candidate gene association study and genome-wide association

studies (GWAS).

1.5 The Common Loci Associated With Obesity

The most commonly methodology used is the GWAS approach, which are allowing geneticists

to scan numerous polymorphisms across the entire genome by using a powerful statistical

methods to identify loci associated with a particular phenotype. According to Aguilar et

al.(2012), recently, new loci associated with obesity have been reported, but their function and

metabolic implications remain to be elucidated. Advances in genetics have revealed more than

15 loci associated with common obesity using hypothesis-free genome-wide association studies

(GWAS).

Through GWAS, the first loci identified for obesity was the insulin-induced gene 2 (INSIG2).

Although, replication studies demonstrated very inconsistent results. In this way, FTO gene

was the first loci unequivocally associated with obesity and more than 50 genetic loci have been

identified as being associated with at least one obesity-related trait. Within the 50 loci there

are 5 loci that have entered into several studies related to obesity:
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Melanocortin 4 receptor (MC4R)

The Melanocortin 4 receptor (MC4R) gene on chromosome 18q22 encodes 332 amino acid

and is mainly responsible for regulating energy balance. It is expressed mainly in the central

nervous system contributing to food intake and energy expenditure regulation. According to

Mutch et al.(2006), the effects of mutations in the melanocortin-4 receptor gene, for which

the obese phenotype varies in degree of severity among individuals, are now thought to be

influenced by one’s environmental surroundings.

The most frequent form of heredity of obesity is caused by mutations in the melanocortin

receptor-4 (MC4R) gene.

The patients have an early linear and hyperphagia growth, low blood pressure and also present

hyperfadiga, but not as severe as that observed in LEP deficiency.

The MC4R deficiency represents the common cause (1% - 6%) of morbid obesity in adults and

children.

Pro-opiomelanocortin (POMC)

Complete POMC deficiency is caused by homozygous or compound heterozygous loss-of-function

mutations in the POMC gene.

The POMC gene, located in the 2p23.3 region, is transcribed into various tissues, including

corticotropic cells from the anterior pituitary, neurons from the arcuate nucleus of the

hypothalamus and cells into the dermis and lymphatic system.

POMC is regulated by leptin and is cleaved by prohormone convertases to produce

the melanocortin receptor (MC-R) ligands adrenocorticotrophin (ACTH) and

melanocyte-stimulating hormones (MSH) alpha, beta and gamma. The red hair pigmentation,

adrenal insufficiency and obesity are caused by deficiencies in the ligands and subsequent lack

of activation of the MC1, MC2, and MC4 receptors, respectively.

Proconvertase 1 (PC1))

Proprotein convertase 1, PC1, is an enzyme that in humans is encoded by the PCSK1 gene

(Proprotein convertase subtilisin/ kexin type 1). The PC1 is the enzyme largely responsible

for the first step in the biosynthesis of insulin. PC1 enzyme performs the proteolytic cleavage

of prohormones to their intermediate forms and it is present only in neuroendocrine cells such

as brain, pituitary and adrenal and most often cleaves after a pair of basic residues within

prohormones.

Deficiency of proconvertase 1, due to PCSK1 gene mutations, is reported as an important cause

of obesity.

Leptin (LEP) and Leptin Receptor (LEPR)

The LEP gene is located on the chromosome 7q31.3, while the protein encoded by the leptin

receptor (LEPR) gene is located on the chromosome 1P31.3 (Coll et al., 2004). The anorexigenic

hormone leptin seems to be the main indicator of adiposity and the signal of the nutritional

state, since its plasma levels are highly correlated with the number of adipocytes and the fat

content.

When LEP is not detected in the blood, there is a great possibility of diagnosing the congenital

deficiency of Leptin, due to homozygosity of the mutated gene that leads to the loss of its

function. The mutation in the leptin receptor (LEPR) gene results in abnormal splicing of
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mRNA, generating a receptor without the transmembrane and intracellular domains.

Thus, the mutant receptor circulates in high concentration, bound to leptin, leading to a high

concentration of leptin in the blood, leading to extreme obesity.

FTO Gene

Recently, in studies conducted by researchers (Gerken et al., 2007), a gene (FTO) on

chromosome 16q12.2, Figure 1.1, has been discovered, which is closely associated with body

mass index control.

The Fat mass and obesity-associated protein, also known as Alpha-ketoglutarate-dependent

dioxygenase FTO.

Figure 1.1: Chromossomal Location - FTO Gene. (Source:https://ghr.nlm.nih.gov/gene/FTO#location)

In 2009, variants in the FTO gene were further confirmed to associate with obesity in two very

large genome wide association studies of body mass index (BMI).

According to Scuteri et al. (2007), the FTO gene showed the strongest association with

BMI (p − value = 8.6 × 10−7), hip circumference (p − value = 3.4 × 10−8), and weight

(p − value = 9.1 × 10−7), that in later we will have the capacity to discuss these values,

depending on the results of this investigation.

1.6 Main Goals

This work will contribute to the genetic knowledge of obesity in Caucasian women and, in further

studies, the genetic diversity that is associated with obesity in the Portuguese population could

be compared with other populations.

To achieve the main goal of this work, it is important to establish more detailed objectives:

1. Identify the polymorphisms associated with obesity in Portuguese women, i.e, the

association between obesity and 19 SNPs in 13 genes PON-1, AdipoQ, LEP, LEPR,

GHRL, MC4R, ACE, ApoA5, FTO, IL6, PPARγ, TCF7L2 and TNF∝ in the previously

established sample (case-control study); ;

(a) The Odds ratios will be calculated for allelic and genotypic (Dominant and Recessive

models) contingency tables to compare the prevalence of obesity among persons with

normal alleles/genotypes and persons with variant alleles/genotypes.

2. Associate genetic polymorphisms with obesity related traits;
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(a) Tests of genetic association will be performed separately for each individual SNP.

For alleles the Pearson’s Chi-Squared will be applied. During the literature review,

in biological research, the methodology that was used in the genotypic association

was the Cochran Armitage Test, but the SNPs, in our database, are not an ordinal

variables. Nevertheless, after all the previous analysis and after discovering which

allele has the disease it was possible to build a score for the SNPs under study.

3. Identify the Obesity Genetic Risk Score.

(a) In order to construct a Genetic Risk Score, the Binary Logistic Regression will be

used. This methodology allows us to find the most parsimonious model consisting of

SNPs that will be associated with obesity, by adding the number of risk alleles (0 or

1) across selected SNPs;

(b) The ROC curve will be constructed and the AUC will be calculated to understand if

the model can distinguish between patients with disease and without disease.

(c) Finally, the Genetic Risk Score (GRS) will be built based on a combination of

obesity-associated polymorphisms.
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Chapter 2

Theoretical Framework and Methods

2.1 Study Sample

A sample of 212 Caucasian premenopausal women was selected in 2006, from Curry Cabral

Hospital. The sample was composed of two groups. One of the groups was constituted by 112

obese Caucasian premenopausal women, which attended the obesity outpatient clinic. The

control (normal-weight) group consisted of 100 Caucasian premenopausal women who either

attended a routine health check or belonged to the health care staff of Curry Cabral Hospital.

No woman was on any pharmacological regimen (except for oral contraceptives) or took any

sporadic drug in the previous 7 days and only women without any previous diagnosis of any

acute/chronic health condition (except obesity for the obese group) were selected for this study.

A venous blood sample was collected from patients and controls. Genomic DNA was isolated

from white blood cells by phenol extraction and the genotyping was done through realtime

PCR with TaqMan probes, or PCR and agarose Gel. Each woman was characterized for total

body weight, BMI, Waist and hip circumferences, Ratio waist-to-hip ratio and the body fat

mass (bioelectrical impedance, Tanita TBF-300A R©).

2.1.1 The analyzed polymorphisms

In recent years, 52 genetic loci were identified to be unequivocally associated with obesity-related

traits, in source populations (Loos, 2012). According to Frayling et. al (2007), a strong

association was detected between common SNPs in the first intron of the fat mass and

obesity-associated gene (FTO), on the chromosome 16q12.2 and risk of obesity.

In this case study, there are 13 genes that will be analyzed, of which 5 have already been

enumerated in the previous chapter.

ADIPOQ Gene

Adiponectin is a hormone secreted by adipocytes that regulates energy homeostasis and glucose

and lipid metabolism, located in the chromosomal region 3q27.3, as shown in Figure 2.1.

ADIPOQ gene have been linked, in some SNPs Studies, with obesity and with adiponectin

levels in various populations. According the investigation by Apalasamy et al. (2014), whose

objective was investigate the association of ADIPOQ rs17366568 and rs3774261 SNPs with

obesity and with adiponectin levels in Malaysian Malays. A significant genotypic association
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was observed between ADIPOQ rs17366568 and obesity.

In this work, will be studied the AdipoQG (SNP: rs1501299 G/T), the AdipoQ G11377C (SNP:

rs266729 C/G), the AdipoQ G11391A (SNP: rs17300539 G/A) and the AdipoQ 45T G (SNP:

rs224176 T/G, Intron Variant), all located in the chromosomal region 3q27.3.

Figure 2.1: Chromossomal Location - ADIPOQ Gene. (Source:

https://ghr.nlm.nih.gov/gene/ADIPOQ#location)

GHRL Gene

The GHRL (Ghrelin and Obestatin Prepropeptide) is a Protein Coding gene which encodes

the ghrelin-obestatin preproprotein that is cleaved to yield two peptides, ghrelin and obestatin.

This gene is located at region 3p25.3, on the short (p) arm of chromosome 3, at position 25.3

and contains five exons, as we can see on Figure 2.2.

Figure 2.2: Chromossomal Location - GHRL Gene. (Source:

https://ghr.nlm.nih.gov/gene/GHRL#location)

The Ghrelin is a powerful appetite stimulant and plays an important role in energy homeostasis.

Its secretion is initiated when the stomach is empty, whereupon it binds to the growth hormone

secretagogue receptor in the hypothalamus which results in the secretion of growth hormone

(somatotropin). Ghrelin is thought to regulate multiple activities, including hunger, reward

perception via the mesolimbic pathway, gastric acid secretion, gastrointestinal motility, and

pancreatic glucose-stimulated insulin secretion.

The Ghrelin R51Q, SNP: rs34911341 C/T with a missence mutation (Arg/Gln), and

Ghrelin Leu72Met, SNP: rs696217 (G/T) with a missence mutation (Leu/Met), both located

in the same chromosomal region, will be studied in this work.

PON1 Gene

The paraoxonase 1 (PON1) is a protein coding gene, which encodes a member of the paraoxonase

family of enzymes and exhibits lactonase and ester hydrolase activity. Succeeding synthesis in

the liver and kidney, the enzyme is secreted into the circulation, where it binds to high density

lipoprotein (HDL) particles and hydrolyzes thiolactone and xenobiotics, including paraoxon,
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a metabolite of the insecticide parathion. This gene is located at region 7q21.3, in long (q)

arm of chromosome 7, at position 21.3 (Figure 2.3). The diseases associated with PON1 are

Microvascular Complications Of Diabetes 5 (MVCD5) and Amyotrophic Lateral Sclerosis 1. The

PON 1 Q192R, SNP: rs662,C/T with a missence mutation (Gln/Arg), and the PON 1 M55L,

SNP: rs854560 A/T, with a missence mutation (Met/Leu) will be studied here.

Figure 2.3: Chromossomal Location - PON1 Gene. (Source:

https://ghr.nlm.nih.gov/gene/PON1#location)

ACE Gene

The Angiotensin I Converting Enzyme (ACE) gene provides instructions for making the

angiotensin-converting enzyme. This enzyme can cut (cleave) proteins and by cutting a protein

called angiotensin I at a particular location, the angiotensin-converting enzyme converts this

protein to angiotensin II. The Angiotensin II protein causes blood vessels to narrow (constrict),

which results in increased blood pressure. The ACE gene located on chromosome 17 at position

23.3, in the long (q) arm 17q23.3 (Figure 2.4) is part of the renin-angiotensin system, which

regulates blood pressure and the balance of fluids and salts in the body. There are diseases

associated with a certain variation in the ACE gene, as Microvascular Complications Of Diabetes

3 (MVCD3) and Renal Tubular Dysgenesis. The polymorphism ACE I D (SNP: rs4646994 (287

bp Ins/ Del)) will be studied.

Figure 2.4: Chromossomal Location - ACE Gene. (Source:

https://ghr.nlm.nih.gov/gene/ACE#location)

ApoA5 Gene

The ApoA5 gene, exclusively expressed by the liver is located proximal to the apolipoprotein

gene cluster, on region 11q23.3, according to the Figure 2.5. The protein encoded by this gene

is an apolipoprotein that plays an important role in regulating the plasma triglyceride levels,

a major risk factor for coronary artery disease. According Xin et al. (2018), several studies

has demonstrated an association between apoA5 and the increased risk of obesity and metabolic

syndrome. They verified that apoA5 could significantly reduce plasma triglyceride (TG) level by

stimulating lipoprotein lipase (LPL) activity, and the intracellular role of apoA5 has also been

proved since apoA5 is associated with cytoplasmic lipid droplets (LDs) and affects intrahepatic
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TG accumulation. So, mutations in this gene have been associated with hypertriglyceridemia

and hyperlipoproteinemia type 5.

In this work, the ApoA5 T1131C, SNP: rs662799 T/C, Upstream gene variant (-1131), will be

investigated.

Figure 2.5: Chromossomal Location - ApoA5 Gene. (Source:

https://ghr.nlm.nih.gov/gene/APOA5#location)

IL 6 Gene

The Interleukin 6 (IL6) Gene, SNP: rs1800796 (G/C), non coding transcript exon variant (UTR

region), according to the Figure 2.6, is located at region 7p15.3. This gene encodes a cytokine

that functions in inflammation and the maturation of B cells. The functioning of this gene is

implicated in a wide variety of inflammation-associated disease states, including susceptibility

to diabetes mellitus and systemic juvenile rheumatoid arthritis. The IL6 is primarily produced

at sites of acute and chronic inflammation, where it is secreted into the serum and induces a

transcriptional inflammatory response through interleukin 6 receptor, alpha.

Figure 2.6: Chromossomal Location - IL6 Gene. (Source: https://ghr.nlm.nih.gov/gene/IL6#location)

PPARγ Gene

As we can observe on Figura 2.7, Peroxisome proliferator activated receptor gamma, PPARγ

(SNP: rs1801282 (C/G) with a missence mutation (Pro/Ala)) gene is located at 3p25.2.
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Figure 2.7: Chromossomal Location - PPARγ Gene.(Source:

https://ghr.nlm.nih.gov/gene/PPARG#location)

The PPARγ gene encodes a member of the peroxisome proliferator-activated receptor (PPAR)

subfamily of nuclear receptors. The PPARs form heterodimers with retinoid X receptors

(RXRs) and these heterodimers regulate transcription of various genes. There are three

subtypes of PPARs: PPAR-alpha, PPAR-delta, and PPAR-gamma. The PPAR-gamma is

the protein encoded by PPARs and is a regulator of adipocyte differentiation. Additionally,

PPAR-gamma has been implicated in the pathology of numerous diseases including obesity,

diabetes, atherosclerosis and cancer.

TCF7L2 Gene

The Transcription factor 7 like 2, TCF7L2, is a protein coding gene located at region

10q25.2-q25.3, consonant Figure 2.8.

Figure 2.8: Chromossomal Location - TCF7L2 Gene.(Source:

https://ghr.nlm.nih.gov/gene/TCF7L2#location)

The TCF7L2 encodes a high mobility group (HMG) box-containing transcription factor that

plays a key role in the Wnt signaling pathway. The protein has been implicated in blood

glucose homeostasis. Genetic alterations of this gene are associated with increased risk of type

2 diabetes.

In this work will be studied the TCF7L2 rs7903146 C T (SNP: rs7903146 (C/T), Intron

variant) polymorphism.

TNFα Gene

Tumor necrosis factor-alpha (TNFγ), SNP: rs1800629 (G/A),Upstream gene variant (-308),

encodes a cytokine with pleomorphic actions and plays a pivotal role in inflammation, according

to Russo et al., (2018). This cytokine is mainly secreted by macrophages and belongs to the

tumor necrosis factor (TNF). The TNF gene is located at region 6p21.33, as we can see on Figure

2.9. TNF is involved in the regulation of a wide spectrum of biological processes including cell
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proliferation, differentiation, apoptosis, lipid metabolism and coagulation. This cytokine has

been implicated in a variety of diseases, including autoimmune diseases, insulin resistance, and

cancer.

Figure 2.9: Chromossomal Location - TNFα Gene.(Source:

https://ghr.nlm.nih.gov/gene/TNF#location)

2.2 Mendelian Genetics - Mendel’s Laws of Inheritance

First, it is necessary to understand how genes can be hereditary and what their composition

is. In 1860, an Austrian monk named Gregor Mendel introduced a new theory of inheritance

based on his experimental work with pea plants.

Mendel believed that heredity is the result of discrete units of inheritance, and every single unit

(or gene) was independent in its actions in an individual’s genome. According to this Mendelian

concept, inheritance of a trait depends on the passing-on of these units. For any given trait, an

individual inherits one gene from each parent so that the individual has a pairing of two genes.

We now understand the alternate forms of these units as ’alleles’. If the two alleles that form

the pair are identical, then the individual is said to be homozygous and if the two genes are

different, then the individual is heterozygous for the trait.

Based on his pea plant studies, Mendel proposed that traits are always controlled by single

genes. After crossing two plants which differed in a single trait, Mendel discovered that the next

generation, the ”F1” (first filial generation), was comprised entirely of individuals exhibiting

only one of the traits. However, when this generation was interbred, its offspring, the ”F2”

(second filial generation), showed a 3:1 ratio - three individuals had the same trait as one parent

and one individual had the other parent’s trait.

Mendel then theorized that genes can be made up of three possible pairings of heredity units,

which he called ”factors”: AA, Aa, and aa. The big ’A’ represents the dominant factor and

the little ’a’ represents the recessive factor. In Mendel’s crosses, the starting plants were

homozygous AA or aa, the F1 generation were A or a and the F2 generation were AA, Aa, or

aa. The interaction between these two determines the physical trait that is visible to us.

Mendel’s Law of Dominance predicts this interaction. When mating occurs between two

organisms of different traits, each offspring exhibits the trait of one parent only. If the dominant

factor is present in an individual, the dominant trait will result. The recessive trait will only

result if both factors are recessive.

Therefore, Mendel’s observations and conclusions are summarized in the following two

principles, or laws.
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Law of Segregation

The Law of Segregation states that for any trait, each parent’s pairing of genes (alleles) split

and one gene passes from each parent to an offspring. Which particular gene in a pair gets

passed on is completely up to chance.

Law of Independent Assortment

The Law of Independent Assortment states that different pairs of alleles are passed onto the

offspring independently of each other. Therefore, inheritance of genes at one location in a genome

does not influence the inheritance of genes at another location.

Figure 2.10: Mendel’s Laws of Inheritance. (Source: Mendelian Genetics - Genetics Generation

(http://knowgenetics.org/mendelian-genetics/) Last access in: 28/07/2019

2.3 Hardy-Weinberg equilibrium

Hardy-Weinberg equilibrium (HWE) is a principal stating that the genetic variation in a

population will remain constant from one generation to the next in the absence of disturbing

factors, i.e. no mutation, no migration, no selection, random mating and infinite population size

and can be calculated through a mathematical expression. When mating is random in a large

population in these circumstances, the law predicts that both genotypic and allelic frequencies

will remain constant because they are in equilibrium. In population genetics studies, the

Hardy-Weinberg equation can be used to measure whether the observed genotype frequencies

in a population differ from the frequencies predicted by the equation.

However, when mutations occur, they disrupt the equilibrium of allele frequencies by introducing
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new alleles into a population. Similarly, natural selection and nonrandom mating break the

HWE, because they result in changes in gene frequencies.

There are factors that can alter the HWE. One of them is when certain alleles help or harm the

reproductive success of the organisms that carry them. Another factor is genetic drift, which

occurs when allele frequencies grow higher or lower by chance and typically takes place in small

populations. Gene flow, which occurs when breeding between two populations transfers new

alleles into a population, can also alter the Hardy-Weinberg equilibrium.

2.3.1 The Hardy-Weinberg equation:

The Hardy-Weinberg law can be used under some circumstances to calculate genotype

frequencies from allele frequencies. To explore the Hardy-Weinberg equation, we can examine a

simple genetic locus at which there are two alleles, A and a. If the p and q allele frequencies are

known, then the frequencies of the three genotypes may be calculated using the Hardy-Weinberg

equation. The Hardy-Weinberg equation is expressed as:

p2 + 2pq + q2 = 1 (2.1)

Where:

p is the frequency of the A allele, in the population, 0 ≤ p ≤ 1;

q is the frequency of the a allele in the population, 0 ≤ q ≤ 1.

The distribution of allele frequencies is the same in men and women, i.e.: men (p); women

(q) and if they procreate the equality remains in the next generation:

(p+ q)2 = p2 + 2pq + q2 = 1 (2.2)

Where:

p + q = 1;

p2 = frequency of the homozygous genotype AA;

2pq = frequency of the heterozygous genotype Aa;

q2 = frequency of the homozygous genotype aa.

And these frequencies remain constant in successive generations.

2.4 Odds and Odds Ratio (OR)

The odds of an event are defined as the probability that the event will occur (p, i.e., probability

of success) divided by the probability that the event does not occur (1-p, i.e., unsuccess).
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Odds =
p

1− p
. (2.3)

Probability p always ranges between 0 and 1.

The Odds Ratio is the measure of association for a case-control study. It tells us how much

higher the odds of exposure are among cases of disease compared with controls. The Odds

Radio is one of the main ways to quantify how strongly the presence or absence of property A

is associated with the presence or absence of property B, in a given population.

2.4.1 OR Calculation from contingency table

If each individual in a population either does or does not have a property ”A” (e.g. ”obesity”),

and also either does or does not have a property ”B” (e.g. ”allele B”) where both properties are

appropriately defined, then a ratio can be formed which quantitatively describes the association

between the presence/absence of ”A” (obesity) and the presence/absence of ”B” (allele B) for

individuals in the population. For this example, an odds ratio (OR) can be calculated following

three steps, which are described below:

Initially, for a given individual or any set of entities that have ”B” calculate the odds that the

same individual has ”A”. Secondly, for a given individual that does not have ”B” calculate

the odds that the same individual has ”A”. Finally, divide the odds from step 1 by the odds

previously calculated to obtain the odds ratio (OR).

For a case-control study, the data look like this:

Exposed Case Control Total

Yes a b a + b

No c d c + d

Total a + c b + d a + b + c + d

Table 2.1: Contingency table

Odds of exposure (cases) =
number of cases with the exposure

number of cases without exposure
=
a

c
(2.4)

Odds of exposure (controls) =
number of controls with the exposure

number of controls without exposure
=
b

d
(2.5)

OR =
Odds of exposure (cases)

Odds of exposure (controls)
=
ad

bc
(2.6)

An odds ratio:

Less than 1 means that the exposure (allele B) is associated with lower odds of outcomes

(obesity),

Greater than 1 means that there is a higher odds of obesity happening with exposure to the

allele B. In other words, the odds of exposure among cases is greater than the odds of exposure

among controls.
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Equal to 1 (or close to 1) means that exposure to allele B does not affect the odds of obesity,

i.e, means that the odds of exposure among cases is the same as the odds of exposure among

controls.

2.5 Association Tests On Contingency Tables

Tests of genetic association are usually performed separately for each individual SNP. The data

for each SNP with minor allele a and major allele A can be represented as a contingency table

of counts of disease status by either genotype count (e.g., aa, Aa and AA) or allele count (e.g.,

a and A). A genetic association case-control study compares the frequency of genotypes or

alleles at genetic marker loci, usually single-nucleotide polymorphisms (SNPs), in individuals

from a given population, with and without a given disease trait, in order to determine whether

a statistical association exists between the disease trait and the genetic marker (Clarke et al.,

2011). Although individuals can be sampled from families (”family-based” association study),

the most common design involves the analysis of unrelated individuals sampled from a particular

outbred population (”population-based association study”).

Disease-related traits are usually the main trait of interest and any of the methods described

here to test for genetic association, are generally applicable to any binary trait (exposed / non

exposed), as Fisher’s Test. Nonetheless, the Cochran-Armitage Trend Test is typically used

in categorical data analysis when some categories are ordered and the score is chosen as the

number of alleles (0, 1, 2).

2.5.1 Cochran Armitage Trend Test (CATT)

In biological research, 2×K genotype contingency tables of N case-control are frequently used

for the analysis of ordered categorial data, as we can see through the Table 2.2, which is

an example of a 2×3 contingency table. The Cochrane Armitage Trend Test (CATT) has

become a standard procedure for association candidate gene testing in large-scale genome-wide

association studies (GWAS)(Emily, 2018).

aa

(w0=0)

Aa

(w1=1)

AA

(w2=2)
Total

Case n0 n1 n2 n

Controls m0 m1 m2 m

Total N0 N1 N2 N

Table 2.2: 2×3 Contingency Table of N case-control by genotype (aa, aA, AA)

Considering a single-marker locus with two possible alleles which are commonly denoted by A

and a, each individual has three possible genotypes AA, Aa, and aa. Then we denote the two

alleles by 0 and 1 instead of A and a and the genotypes by 0, 1, 2, the sum of the two allele

indices involved. Finally, we assume a random sample of n cases and m unrelated controls. The

case-control data can then be summarized according to genotypes as shown in Table 2.2.
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The Cochran Armitage Test is different from the Pearson Chi-Squared Test. Here, there are K

ordered groups in return for the binary response variable. The Cochran Armitage test for trend

(CATT) is frequently used to calculate the trend of binominal proportions. These proportions

are ordinal or quantitative metric or assignable scores over independent groups in K categories

(Tekindal et al., 2016). For example, K groups can be ordered as normal, moderately normal,

and abnormal, and 1, 2 and 3 can be assigned to them respectively as scores. This test is

widely used in epidemiological and genetic research, in biomedical studies and in toxicological

risk assessment (Kpoghomou et al., 2013). The CATT is based on an asymptotic approach and

thus shows a poor performance in very small and unbalanced samples.

According to Ghodsi et al., (2016) the power of the test is very often improved as long as

the probability of having the disease increases with the number of disease-associated alleles.

In genetic association studies in which the underlying genetic model is unknown, the additive

version of this test is the most commonly used.

The null hypothesis is the hypothesis of no trend, which means that the binomial proportion is

the same for all levels of the explanatory variable.

The test is sensitive to the linearity between independent variable (e.g.: Group case/controls)

and dependent variables (e.g: Genotype/ Alleles) and detects trends that would not be noticed

by more crude methods, that is, for example, the Pearson Chi-Squared Test.

In order to measure the effect of genotype i and to detect particular types of association, the

weights have been introduced, wi. The special choice (w0, w1, w2) = (0,1,2), represents the

additive effect of allele A.

Here, (n0, n1, n2) are the counts of the genotypes in cases and (m0,m1,m2) are counts of the

genotypes in controls, (N0, N1, N2) are the counts of the genotypes in case-control samples

and (w0, w1, w2) are the number of disease alleles. Let n and m be the total number of

cases and controls, respectively, and the total sample size, N=n+m. As cases and controls

are independently sampled the genotype counts for cases and controls follow independent

multinomial distributions with parameters (p0,p1,p2), and (p′0,p
′
1,p
′
2), respectively, where pi and

p′i, i = 0,1,2, are the genotype probabilities in cases and controls.

(n0,n1,n2)∼ Multinomial (n; p0,p1,p2),
1

(m0, m1, m2)∼ Multinomial (m; p′0,p
′
1,p
′
2)

1

Under the null hypothesis of no genetic association (Homogeneity):

H0 : pi = p′i for i = 0,1,2.

The Cochran-Armitage’s trend test statistic for the data in Table 1.3 is given by:

T =
N(N(n1 + 2n2)− n(N1 + 2N2))

2

n(N − n)(N(N1 + 4N2)− (N1 + 2N2)2)
(2.7)

and follows the Chi-Squared distribution with one degree of freedom (df) under the null

hypothesis.

1For simplicity and following the notation at Ghodsi et al. (2016), we decided to keep the random variables

with small letters.
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However, Agresti (2007) considered that CATT can be set in terms of the Pearson Chi-Squared

statistic. Consider a contingency table 2×J with ordered column (Table 2.3).

Let nj ∼ Bin (Nj , pj), j =0, ... ,J -1, it is of interest to test the following null hypothesis:

H0 : p0 = p1 = · · · = pJ−1 vs. H1 : ∃i, j = 1, ..., j − 1; i 6= j, pi 6= pj (2.8)

Score

w0 w1 ... wJ−1

Case n0 n1 ... nJ−1 n

Control m0 m1 ... mJ−1 m

Table 2.3: 2×K Contingency Table

It can be carried out by using a linear probability model

pj = α+ βwj (2.9)

One can use the ordinary least square approach for testing β. Let

w̄ =
∑

Njwj/N ; (2.10)

p̃j = nj/Nj (2.11)

and

p̂ = n/N. (2.12)

The prediction equation is

p̂j = p̂+ β̂(wi − w̄) (2.13)

where

β̂ =

∑
Nj(p̃j − p̂)(wj − w̄)∑

Nj(wj − w̄)2
. (2.14)

When the linear probability model holds, the statistic Z2, under H0 follows an approximately

Chi-Squared distributionon with 1 degree of freedom and tests for a linear trend in the

proportions. The trend test may give strong evidence of positive or increasing linear trends,

of constant or stable trends over time, or of negative or decreasing trends. Results of the trend

test are similar to those obtained by testing that the slope is zero in a linear logit model.

Z2 =
β̂2

p̂(1− p̂)
∑
j

Nj(wj − w̄)2, (2.15)

When the disease model is unknown, there is consensus on the most powerful test to be used

between CATT, allelic and genotypic tests. According to Emily (2018), although power for

CATT depends on the sample size, the case-to-control ratio and the minor allelic frequency, there

is largely influenced by the mode of inheritance and deviation from Hardy-Weinberg Equilibrium

(HWE). Furthermore, when compared to other tests, CATT is shown to be the most powerful test
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under a multiplicative disease model or when the single-nucleotide polymorphism largely deviates

from HWE. In all other situations, CATT lacks in power and differences can be substantial,

especially for the recessive mode of inheritance.

2.5.2 Fisher’s Test

Fisher’s Test is applied to a 2×2 contingency table (Table 2.4) and it is used to test the

independence of two variables, where the hypotheses underlying the test, focused in this study

are:

H0: There is no genetic association between disease and alleles

vs.

H1: There is genetic association between disease and alleles

Exposed Non Exposed Total

Case A B A+B

Control C D C+D

Total A+C B+D n

Table 2.4: 2x2 contingency table

The Fisher’s Exact Test is more accurate than the Chi-Squared Test when the expected numbers

are small, because the p-value is required for all sample sizes, while the results from the

Chi-Squared Test that examines the same hypotheses may be imprecise when the number of cells

is small. Fisher’s exact test is based on the hypergeometric distribution and it is characterized

in estimating only p-value, that is, no test statistic is used. Therefore, the p-value is conditional

on the marginal totals of the table.

The p-value under H0 is determined by finding all possible tables, keeping the same marginal

totals and varying the lowest observed frequency. For each table, the respective p-value is

estimated, given by:

p =
(A+B)!(C +D)!(A+ C)!(B +D)!

n!A!B!C!D!
(2.16)

Thus, the final p-value is the sum of all p-values calculated for the tables with a situation equal to

or more extreme than observed (according to the direction of H1). The Hypothesis H0 is rejected

when p-value is less or equal than the significance level. It should be noted that this test implies

time-consuming calculations, which are now easily surpassed by the use of appropriate software

(in this case, the use of RStudio).

However, despite the possibility of using Fisher’s test to test if there is a genetic association

between the allele and obesity, the Chi-square test will be applied, because the cells did not

have a small number of observations. The Fisher Test will be applied only for the Odds ratio

test.

2.6 The Multiple Logistic Regression Analysis

One of the major reasons the logistic regression model has seen such wide use, especially in

epidemiologic research, is the ease of obtaining adjusted odds ratios from the estimated slope
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coefficients when sampling is performed conditional on the outcome variables, as in a case-control

study. Although this is not the case in this study. The procedure is quite similar to multiple

linear regression, with the exception that the response variable is binomial (Sperandei, 2014).

Look at a compilation of m independent variables denoted by the vector x = (x1, x2,..., xm)

where each of these variables is at least interval scaled. Let Y be the random variable with

Bernoulli distribution, so that, the conditional probability that the outcome Y=1 is present is

denoted by P(Y=1| x) =π(x).

The equation for the logit of the multiple logistic regression model is given by:

g(x) = ln

(
π(x)

1− π(x)

)
= β0 + β1x1 + β2x2 + ...+ βmxm (2.17)

For the multiple logistic regression model the equation is:

π(x) =
exp(β0 + β1x1 + β2x2 + ...+ βmxm)

1 + exp(β0 + β1x1 + β2x2 + ...+ βmxm)
=

eg(x)

1 + eg(x)
, (2.18)

Where β′is are the regression coefficients associated with the reference group.

According to Hosmer et al.(2000), if some of the independent variables are discrete, nominal

scale variables such as sex, treatment group, race and so forth, it is inappropriate to include

them in the model as if they were interval scale variables. The various levels of these nominal

scale variables can be represented through the numbers that are merely identifiers and have no

numeric significanse. So, in this case, the method of choice is to use dummy variables. For

example, let’s suppose that one of the independent variables is eye color, which has been coded

as ”blue”, ”brown” and ”other”. In this example, two dummy variables are necessary. One

possible coding strategy is that when the respondent is ”blue”, the two dummy variables, D1

and D2 would both be set equal to zero. When the respondent is ”brown”, D1 would be set

equal to 1 while D2 would still equal to 0. When the eye color of the respondent is ”other”, we

would use D1 = 0 and D2 = 1, as we can see through the table 2.5.

EYE COLOR D1 D2

Blue 0 0

Brown 1 0

Other 0 1

Table 2.5: Coding of dummy variables for eye color coded at three levels

Nevertheless, in our case study we only have two levels for the dominant and recessive models,

but if a nominal scaled variable has k possible values, then k - 1 dummy variables are needed.

The reason for using one less than the number of values is that, unless stated otherwise, the

models have a constant term (Hosmer et al.,2000).

Imagine that the j th independent variable xj has kj levels. The kj-1 dummy variables will be

denoted as Djl and the coefficents for these dummy will be denoted as βjl, l= 1, 2, ..., kj -1. In

this way, the logit for a model with m variables with the j th variable being discrete is

g(x) = β0 + β1x1 + β2x2 + ...+

kj−1∑
l=1

βjlDjl + ...+ βmxm (2.19)
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In agreement with Hosmer et al.(2000), the summation and double subscripting needed to

indicate when dummy variables are being used are suppressed when discussing the multiple

logistic regression model.

In the case of the dependent random variable Y assuming only two possible states (0 or 1) and

be a set of m independent variables X1, X2, ..., Xm, the logistic regression model can be written

as follows:

P (Y = 1) =
1

1 + e−g(x)
. (2.20)

2.6.1 The Process of Fitting the Multiple Regression Model

The Maximum Likelihood is the method of estimation used in the multivariable case and in the

univariable situation.

Assuming a sample of n independent observations (xi,yi), i=1, 2, ..., n. Fitting the model

requires that we obtain estimates of the vector β = (β0, β1, ..., βm).

The likelihood function is identical to (2.18). There will be m+1 likelihood equations that are

obtained by differentiating the log-likelihood function with respect to the m+1 coefficients.

The resulting likelihood equations may be expressed as follows:

n∑
i=1

[yi − π(xi)] = 0 (2.21)

and

n∑
i=1

xij [yi − π(xi)] = 0 (2.22)

for j =1, 2, ..., m and xi=(xi1,xi2,..., xim) .

Therefore, the fitted values for the multiple logistic regression model are a vector of dimension

m, π̂i, with the value of the expression in equation (2.18) being computed using β̂, which is a

vector of dimension m+1, and xi.

The variances and covariances of the estimated coefficients can be estimating through the

maximum likelihood estimation. The maximum likelihood estimation states that the estimators

are obtained from the matrix of second partial derivatives of the log-likelihood function and

these partial derivatives have the following general form

∂2L(β)

∂β2j
= −

n∑
i=1

x2ijπi(1− πi) (2.23)

and

∂2L(β)

∂βj∂βl
= −

n∑
i=1

xijxilπi(1− πi) (2.24)

for j,l = 0,1,2,...m where πi denotes π(xi). The (p + 1) × (p + 1) is the matrix containing the

negative of the terms given in equations (2.22) and (2.23). This matrix is denoted as I(β̂) and

is called the ”observed information matrix”. The variances and covariances of the coefficients
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are obtained from the inverse of this matrix, which we denote as V ar(β̂) = I−1(β̂). However, in

very special cases it is not possible to write down an explicit expression for the elements in this

matrix. Thus, it is necessary to use the notation V ar(β̂j) to denote the j th diagonal element

of this matrix, which is the variance of β̂j and Cov(β̂j , β̂l) to denote an arbitrary off-diagonal

element, which is the covariance of β̂j and β̂l. The estimators of the variances and covariances,

which will be denoted by V̂ ar(β̂) are obtained by evaluating V ar(β̂) at β̂. The V̂ ar(β̂j) and

Ĉov(β̂j , β̂l), j, l =0,1,2,.., m are used to denote the values of the matrix. The estimated standard

errors of the estimated coefficients are denoted as

ŜE(β̂j) = [V̂ ar(β̂j)]
1/2 (2.25)

for j =0,1,2,...,m.

2.6.2 The Significance of the Model

In order to fit a particular multiple logistic regression model, the first step is usually to assess

the significance of the variables in the model. According to Hosmer et al.(2000), the likelihood

ratio test for overall significance of the m coefficients for the independent variables in the model

is performed in exactly the same manner as in the univariable case. The test is based on the

statistic G given by:

G = 2

{
n∑
i=1

[yi ln(π̂i) + (1− yi) ln(1− π̂i)]− [n1 ln(n1) + n0 ln(n0)− n ln(n)]

}
(2.26)

Here, the fitted values, π̂i, under the model are based on the fitted model containing m+1

parameters, β̂. Under the hypothesis that the m incline coefficients for the covariates in the

model are equal to zero, the distribution of G is chi-square with m degrees of freedom.

To check the signicance of the model, we also need to look at the univariable Wald Test statistics:

Wj =
β̂j

ŜE(β̂j)
(2.27)

Under the hypothesis that an individual coefficient is zero, these statistics will follow the

standard normal distribution. The goal here is obtain the best fitting model while minimizing

the number of parameters. So, the next step is to fit a reduced model containing only those

variables thought to be significant and compare that reduced model to the full model containing

all the variables.

2.6.3 Logistic Regression ”Step-by-Step”

The stepwise method is a combination of the forward and backward selection techniques, i.e,

a step-by-step iterative construction of a regression model that involves automatic selection of

explanatory variables.

Stepwise regression can be achieved either by trying out one independent variable at a time and

including it in the regression model if it is statistically significant (forward), or by including
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all potential independent variables in the model and eliminating those that are not statistically

significant (backward), or by a combination of both methods (Sperandei, 2014). The goal

is to find a set of independent variables which significantly influence the dependent variable.

Conducting these tests automatically can potentially save time for the individual.

2.6.4 ROC Curve and AUC

An incredibly useful tool in evaluating and comparing predictive models (e.g: Logistic

Regression) is the ROC curve. The ROC curve or ”Receiver Operating Characteristic” is a

way to see how any predictive model can distinguish between the true positives and negatives.

There are useful statistics that can be calculated from this curve, like the Area Under the Curve

(AUC) and the Youden Index. These tell you how well the model discriminate and the optimal

cut point for any given model (under specific circumstances).

The ROC curve, when representing the sensitivity and specificity for all possible values for the

cutoff point, is one of the most used tools to evaluate and compare different types of diagnostic

methodologies. In addition, the AUC is a measure of the performance of the associated test.

The AUC varies between 0.5 and 1, and a classifier with AUC near to the 1 means that the model

has a good measure of separability. A poor model has AUC near to the 0.5 which means it has

worst measure of separability. When AUC is approximately 0.5, the model has no discrimination

capacity to distinguish between positive class and negative class. However in practice, the AUC

performs well as a general measure of predictive accuracy.

Although ROC curves are often used for evaluating and interpreting logistic regression models,

they are not limited to logistic regression. A common usage in medical studies is to run an ROC

to see how much better a single continuous predictor (a ”biomarker”) can predict disease status

compared to chance.

Interpreting the ROC Curve

The ROC curve shows the trade-off between sensitivity (or TPR - True Positive Rate) and

specificity (1 - FPR (False Positive Rate)), according to the Figure 1.3.
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Figure 2.11: ROC Curve. (Source: https://www.theanalysisfactor.com/what-is-an-roc-curve/) Last

Access in: 02/08/2019

Classifiers that give curves closer to the top-left corner indicate a better performance. As a

baseline, a random classifier is expected to give points lying along the diagonal (FPR = TPR).

The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate the

test.

Note that the ROC curve does not depend on the class distribution. This makes it useful

for evaluating classifiers predicting rare events such as rare diseases or disasters. In contrast,

evaluating performance by measuring accuracy:

(TP + TN)

(TP + TN + FN + FP)
(2.28)

Where:

Sensitivity = TPR =
TP

(TP + FN)
(2.29)

Specificity =
TN

(TN + FP)
(2.30)

FPR = 1− Specificity =
FP

(FP + TN)
(2.31)

For Logistic Regression one can create a 2×2 classification table of true (Y) and predicted values

(E) from the model for response: E = 0 or 1 versus the true value of Y=0 or 1. The prediction

(E) being equal to 1 depends on some cut-off probability, π0. For example, for some individual

i, E=1 if π̂i > π0 and E=0 if π̂i ≤ π0. The most common value for π0 is 0.5. Then Sensitivity

is equal to P(E=1| Y=1) and Specificity is P(E=0| Y=0).
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Chapter 3

Statistical Analysis - Results

3.1 Exploratory Analysis

To undersrtand the behavior of the data and before proceeding with the analysis of the SNPs

it is necessary to make an exploratory and graphic analysis of them. The exploratory analysis

of the project was performed using the RStudio statistical software (R version 1.1.456). In

this case study there are quantitative and qualitative variables.

The quantitative variables are numerical variables: counts, percents, or numbers which are

expressed as means, quartiles and standard deviations (SD), as we can see in Figure 4.1, in the

Appendix.

Categorical variables are characterized by not having quantitative values and being defined by

various categories, that is, they represent a classification of individuals and can be ordinal or

nominal. These variables are expressed as absolute and relative frequencies.

As the problem under study is centered on the women’s obesity, we started by analyzing the

variable Obesity Class, which is classified according to the BMI. This variable is an ordinal

variable, whose classes are already defined in this database. Within obese women we have 3

obesity classes, ie, Class I, Class II and Class III of Obesity (categories 2, 3 and 4). In the

Figure 3.1 and through the Table 3.1, we can observe the majority of obese women, that is

about 66.96%, belong to class III of obesity.
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Figure 3.1: Obesity Classes Bar Diagram

Categories Absolute Frequencies Relative Frequencies (%)

2-Class I obesity 10 8.93%

3-Class II obesity 27 24.11%

4-Class III obesity 75 66.96%

Total 112 100%

Table 3.1: Absolute and Relative frequencies of Obesity Classes variable

There are 10 women whose belong to Class I, which represent 8.93% of the obese sample and in

the Class III we have 27 women, about 24.11% of the obese women.

In order to have a better understanding of the data, some variables that will not be considered

later in the statistical models and tests, were subjected a descriptive analysis. These variable

are Smoker, Surgery, Hypertension, Contraception, type of surgery and type of intervention.
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Figure 3.2: Contraception, Smoker and Hyperthension mosaicplot for each Group of women

Figure 3.3: Type of Surgery and Type of Intervention Bar Diagrams in Obese Women who had surgery
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In general, through the Figure 3.2, we can see that among women who do not take contraceptives,

just over half are obese. Among women taking contraceptives, the number is even.

Regarding the Smoker variable, among women who smoke, most are obese. Concerning

non-smokers, almost all the women are obese.

According to the hypertension, among women who have hypertension almost all the women are

obese, but among the women who do not have hypertension, about three quarters are obese.

According to the Figure 3.3, we can find the several types of surgeries that obese women were

subjected, which the most commonly surgery used was Gastric Banding and the least surgery

used was Gastric Bypass.

This database contains 19 SNPs (categorical variables), which will be further analyzed, and only

9 quantitative variables. So, a Box Plot analysis of which of them was performed to observe

the dispersion of the data. All the information of each SNP, ie, the number of genotypic and

allelic observations for both groups (case / control) are present in the tables, on the Appendix.

This information are subdivided by the name of each SNP.

Figure 3.4: Box Plot - Age, Height, Weight, Fat Mass (%), Fat Mass, Waist, Hip, Waist/Hip, Waist/

Height

Considering that all variables have different scales, based on the previous graph (Figure 3.4),

we can see that all variables seem to present asymmetry, except for the variables, Waist/hip
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ratio and Waist/Height ratio for both groups of women, because the median value coincides

with the mean value, as we can observe in Figure 4.1 (Appendix). On these two Box Plot we

can see 2 possible outlier candidates in the group of normal weight, for variable Waist/Hip. For

the variable Waist/Height there are 3 possible outlier candidates in the obese group and only 1

possible outlier candidate in the normal weight group.

For the Age variable, the dispersion is almost the same for both groups of women. The Box

Plot for normal weight women seems to have a negative asymmetry, while the Box Plot for

obese women has a slight positive asymmetry. In the Box Plot of the variable Height, we note

that obese women have lower heights compared to women in the normal weight group. We

can also observe that there is a possible outlier candidate in the group of obese women, that

is the value 180. Regarding Weight, it is noted that data dispersion is much greater in the

obese group than in the normal weight group, as expected, since the weights in the normal

weight group are much more moderate than in the obese group. We can see, on the normal

weight group a possible outlier candidate. However, on the group of obese women there are 5

possible outlier candidates. In the remaining graphs, i.e, for the variables Fat Mass (%), Waist

and Hip, respectively, there are several possible outlier candidates in both groups, as already

expected, due to the women weight differences that exist in this database. Regarding the data

dispersion, through table (Figure 4.1), we verify that all variables have some variability because

all the value of the standard deviations are different to zero. Nevertheless, the Waist/Hip has a

standard deviation of 0.07 in the group of obese and 0.05 in the normal weight group, whereas

the variable Waist/Height has a standard deviation of 0.1 in the obese group and 0.04 in the

normal weight group.

3.2 Hardy-Weinberg equilibrium Test

When studying the genetics of a population, one of the first questions that may be of interest is

whether the genotype frequencies fit Hardy-Weinberg (HW) expectations. Therefore, statistical

tests for Hardy-Weinberg Equilibrium (HWE) are important tools in genetic data analysis

(Graffelman et al., 2016). The genotype frequencies will fit HW if the population is behaving

like a single randomly mating unit without intense viability selection acting on the sampled loci.

Besides, testing for HW proportions is often used for quality control in genotyping, as the test

is sensitive to misclassifications or undetected null alleles. Traditionally, geneticists have relied

on test statistics with asymptotic χ2 distributions to test for goodness-of-fit with respect to HW

proportions. However, as pointed out by several authors (e.g: Rohlfs et al., 2008; Shriner, 2011)

these asymptotic tests quickly become unreliable when samples are small or when rare alleles are

involved. The latter situation is increasingly common as techniques for detecting large numbers

of alleles become widely used.

In this study, the HWChisq command from HardyWeinberg library on RStudio was used to test

the goodness-of-fit with respect to HW proportions, on each SPN, i.e, to perform an exact test

for HWE (Graffelmane et al., 2016). In other words, the null hypothesis is that the population

is at HWE.

There are SNPs that are in the same gene, so in order to decrease the rate of false discoveries,

the Table 3.2 shows the p-values for each SNP for HW Exact test, with and without the

Benjamini-Hochberg (BH) correction. Considering the corrected p-values, all the studied
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polymorphisms are in HWE except LepG-2548A SNP and MC4R rs 17782313 SNP. These SNPs

are statistically significant, considering a significance level of 5%, due to heterozygotes excess

for the LepG-2548A SNP and due to heterozygotes deficit present on MC4R rs 17782313 SNP.

When a population does not meet the assumptions, may mean that there was a mutation, the

population size is small, mating was not random or there was natural selection. Migration and

genetic drift also affect this balance.

In this data base, the genotype table of LepG-2548A SNP (Table 4.37 - Appendix) has one cell

without values, i.e, there are no women with geotype GG. So, this could be the reason for the

LepG-2548A SNP not being in HWE.

Polymorphisms HWE (p-value) HWE (corrected p-value)

PON 1 Q192R 0.7418 1.0000

PON 1 M55L 0.2450 0.7350

AdipoQG 0.8620 1.0000

AdipoQ G11377C 0.1023 0.4604

AdipoQ G11391A 0.7722 1.0000

AdipoQ 45T G 0.7722 1.0000

FTO A T 0.0357 0.2142

PPARG Pro12Ala 1.0000 1.0000

ApoA5 T1131C 0.2108 0.7350

ACE I D 0.4210 1.0000

IL 6 G572C 1.0000 1.0000

TNFa G308A 1.0000 1.0000

Leptin G2548A <0.0001 <0.0001

LeptinR K109R 0.5295 1.0000

Ghrelin Leu72Met 1.0000 1.0000

MC4R V103I 1.0000 1.0000

MC4R rs17782313 <0.0001 <0.0001

TCF7L2 rs7903146 C T 0.6093 1.0000

Table 3.2: HWE of each SNP (Pearson’s Chi-squared (χ2)) - p-values with and without

Benjamini-Hochberg correction

3.3 Likelihood of suffering from the disease in each SPN

Based on Oliveira (1996) when we are dealing with databases that are genetically heterogeneous,

the first task is to determine the gene frequencies at each locus of interest. The frequency of each

allele in a population is determined by the proportion of chromosomes containing that allele.

Since this determination is made in diploid gametes, each individual has two chromosomes

containing the locus. Thus, there is a total of 2N chromosomes to consider for a number of

N individuals and the genetic frequency for a given allele A, for example, is given by the formulas:

p = f(A) =
2× obs(AA) + obs(Aa)

2N
(3.1)
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and

q = f(a) =
2× obs(aa) + obs(Aa)

2N
(3.2)

where obs(AA), obs(aa) and obs(Aa) represent the number of women with a given genotype, for

example AA/aa/Aa, for each SNP, in each group (case/ control).

The allele frequencies were obtained for each SNP, for both groups (case/control) (Table 3.3).

Within the 19 SNPs, the allelic frequency of PON 1 Q192R , PON 1 M55L, AdipoQ G11377C,

PPARG Pro12Ala, ApoA5 T1131C and TNFa G308A, do not differ much between case and

control groups. The non-allelic difference may be a disadvantage when investigating a risk

allele, as the values are very identical in both alleles. So, these values may influence the fact

whether or not they are associated with the disease, when the association tests will be applied.

In opposite, TCF7L2 rs7903146 C T is the SNPs which have major differences in the allelic

frequency level between the two groups, i.e, have a great allelic diversity, from one group to

the other. The allele C, in obese group, has a large allelic difference (f (C)=0.402) compared

to the allelic frequency in the control group (f (C)=0.293). The allele T is the allele with the

highest frequency, in both groups. However, it has a higher allele frequency in the control group

(f (T)=0.707). This difference in allele frequencies, may justify a risk of obesity if, throughout

the work, the allele T is considered a risk allele.

Polymorphisms
Frequencies

Case (Obese) Control (Normal Weight)

PON 1 Q192R f (Q) = 0.311 f (R) = 0.689 f (Q) = 0.317 f (R) = 0.683

PON 1 M55L f (L) = 0.352 f (M) = 0.648 f (L) = 0.273 f (M) = 0.727

AdipoQG f (G) = 0.369 f (T) = 0.631 f (G) = 0.305 f (T) = 0.695

AdipoQ G11377C f (C) = 0.409 f (G) = 0.591 f (C) = 0.383 f (G) = 0.617

AdipoQ G11391A f (G) = 0.450 f (A) = 0.550 f (G) = 0.402 f (A) = 0.598

AdipoQ 45T G f (T) =0.469 f (G) = 0.531 f (T) = 0.397 f (G) = 0.603

FTO A T f (A) = 0.262 f (T) = 0.738 f (A) = 0.205 f (T) = 0.795

PPARG Pro12Ala f (C) = 0.468 f (G) = 0.532 f (C) = 0.434 f (G) = 0.566

ApoA5 T1131C f (A) = 0.475 f (G) = 0.525 f (A) = 0.458 f (G) = 0.542

ACE I D f (D) = 0.443 f (I) = 0.557 f (D)= 0.283 f (I) = 0.717

IL 6 G572C f (C) = 0.502 f (G) = 0.498 f (C) = 0.445 f (G) = 0.555

TNFa G308A f (G) = 0.458 f (A) = 0.542 f (G) =0.433 f (A) = 0.567

Leptin G2548A f (A) = 0.320 f (G) = 0.680 f (A) =0.276 f (G) =0.724

LeptinR K109R f (K) = 0.412 f (R) = 0.588 f (K) =0.351 f (R) =0.649

Ghrelin R51Q f (R) = 0.541 f (Q) = 0.459 f (R) =0.401 f (Q) =0.599

Ghrelin Leu72Met f (L) = 0.477 f (M) = 0.523 f (L) = 0.437 f (M) =0.563

MC4R V103I f (I) = 0.481 f (V) = 0.519 f (I) = 0.458 f (V) =0,542

MC4R rs17782313 f (T) = 0.396 f (C) = 0.604 f (T) =0.355 f (C) = 0.645

TCF7L2 rs7903146 C T f (C) = 0.402 f (T) = 0.598 f (C) = 0.293 f (T) = 0.707

Table 3.3: SNPs - Allele Frequencies (Case and Control Groups)
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3.4 Odds Ratio

A case-control study compares the prevalence of a specific disease among individuals with normal

alleles and individuals with variant alleles, which generates an odds ratio (OR). The most

common type of allele variation, single nucleotide polymorphism, consists of a major allele

(for example, A) and a minor allele (a). The genotype can be a major allele homozygote (AA -

Dominant), a heterozygote (Aa) or a minor allele homozygote (aa - Recessive). There are several

types of genetic models with different effects, for example, the dominant model, the recessive

model, the over-dominant model that assumes the heterozygote has the strongest impact and

the co-dominant models including additive and multiplicative models. However, only two of

them will be studied here. A dominant model compares AA vs. Aa+aa and a recessive model

compares aa vs. AA+Aa. According to Horita et al. (2015), researchers used to calculate ORs

using many models and then select the best model according to the obtained ORs. This may

increase the possibility of type I error due to multiple comparisons (Bagos, 2013).

Allelic and Genotypic ORs

In this case control study, for each SNP a uppercase letter will be used to a certain allele present

in that polymorphism. So, we start by introducing the Odds Ratio with the notation for the

allello ”A” and for the allele ”B”.

Allelic OR describes the association between disease and allele by comparing the odds of disease

in an individual carrying allele A with the odds of disease in an individual carrying allele B.

Genotypic ORs describe the association between disease and genotype by comparing the odds

of disease in an individual carrying a genotype with the odds of disease in an individual carrying

another genotype. For this reason, there are usually two genotypic ORs, one comparing the

odds of disease between individuals carrying genotype AA and those carrying BB, and the other

comparing the odds of disease between individuals carrying genotype AB and those carrying

genotype BB (Clarke et al. 2011).

In order to understand if there is a genetic association between one of the genetic models and

obesity it is necessary to test the dominant and recessive models for each SNP. If the alleles

of the gene of interest are A and B in haploid cells, and A is the ”increasing”/ ”risk” allele,

i.e, the one causing an effect, the three genotype groups would then be AA, AB and BB. This

dichotomization of the SNP genotypes can be done as follows:

� Dominant: ”AA + AB” vs. ”BB”,

� Recessive: ”AA” vs. ”AB + BB”.

By performing the contingency tables for the recessive and dominant models, it was observed

that there were cells without observations. Therefore, it was decided that only one (dominant

or recessive) genotypic tests would be performed if any of the cells in the genotype count

case/control table contains 0 observations, i.e, missing values.

In each SNP there is an imbalance between the case/control groups, because the number of

observations in each cells is quite distinct, i.e, the number of observations is very high in one

group compared to the other group that contains values close to zero. Due to this, that may

exist genetic influence.

The genotypic OR were calculated for both dichotomization of each SNP genotypes and all the
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ORs greater than 1 were marked in the Table 3.4. This means that there is a higher odds of

obesity happening with exposure to the risk allele. In other words, the odds of exposure among

cases is greater than the odds of exposure among controls.

Polymorphisms
Models

(Dominant and Recessive)
ORs CI

Fisher’s Test

(p-value)

QQ vs. QR+RR 0.448 (0.23843; 0.84252) 0.0170
PON 1 Q192R

QQ+QR vs.RR 0.454 (0.17751; 1.16192) 0.1212

LL vs. LM+MM 0.859 (0.46078; 1.60170) 0.6376
PON 1 M55L

LL+LM vs. MM 2.006 (0.86718; 4.64163) 0.1379

GG vs. GT+TT 0.863 (0.47121; 1.57929) 0.6467
AdipoQG

GG+GT vs. TT 0.562 (0.20293; 1.55570) 0.3303

CC vs. CG+GG 0.283 (0.14163; 0.56681) 0.0003
AdipoQ G11377C

CC+CG vs. GG 0.716 (0.20167; 2.54412) 0.7574

GG vs. GA+AA 0.696 (0.36517 ; 1.32664) 0.3301
AdipoQ G11391A

GG+GA vs. AA 0.581 (0.05182; 6.52327) 0.6564

TT vs. TG+GG 1.587 (0.78676; 3.20087) 0.2161
AdipoQ 45T G

TT+TG vs. GG 1.514 (0.32909; 6.96896) 0.7087

AA vs. AT+TT 2.266 (1.06775; 4.80737) 0.0446
FTO A T

AA+AT vs. TT 1.337 (0.70502; 2.53531) 0.4174

PPARG Pro12Ala CC vs. CG+GG 1.394 (0.68630; 2.83010) 0.3743

AA vs. AG+GG 0.563 (0.23616; 1.33982) 0.2069
ApoA5 T1131C

AA+AG vs. GG 1.072 (0.06614; 17.37896) 0.9998

DD vs. ID+II 1.742 (0.91932; 3.30063) 0.1060
ACE I D

DD+ID vs. II 2.638 (0.84110; 8.27333) 0.0978

IL 6 G572C CC vs. GC+GG 0.936 (0.38587 ; 2.27207) 0.9999

TNFa G308A GG vs. GA+AA 0.571 (0.28815 ; 1.13319) 0.1276

Leptin G2548A AA vs. AG+GG 0.584 ( 0.28104; 1.21512) 0.1903

KK vs. KR+RR 0.693 (0.37305; 1.28853) 0.2748
LeptinR K109R

KK+KR vs. RR 0.458 (0.11729; 1.79106) 0.3510

Ghrelin R51Q RR vs. QR+QQ 1.905 (0.73402; 4.94278) 0.2324

Ghrelin Leu72Met LL vs. LM+MM 0.6 (0.27711 ; 1.29914) 0.2514

MC4R V103I II vs. VI+VV 0.749 (0.28371; 1.97732) 0.6291

TT vs. CT+CC 0.949 (0.53316; 1.68828) 0.8841
MC4R rs17782313

TT+CT vs. CC 0.609 (0.26605; 1.39448) 0.3078

CC vs. CT+TT 1.312 (0.73566; 2.33845) 0.3804
TCF7L2 rs7903146 C T

CC+CT vs. TT 1.184 (0.45746; 3.06214) 0.8091

Table 3.4: Recessive and Dominant Models for each SNP - ORs

In the Table 3.5, we can see all the p-value with and without BH correction. The Benjamini

correction was applied to each SNP pair of models, separately, because adjusts probability

values due to increased risk of a type I error, when making multiple statistical tests for the same

SNP. The Adaptive Group Benjamini Hochberg was tried, which corrects all p-values while

maintaining these groups, but did not work.
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Polymorphisms
Models

(Dominant and Recessive)

Fisher’s Test

(p-value)

Fisher’s Test

(p-value adj.)

QQ vs. QR+RR 0.0170 0.0340
PON 1 Q192R

QQ+QR vs.RR 0.1212 0.2424

LL vs. LM+MM 0.376 1.0000
PON 1 M55L

LL+LM vs. MM 0.379 0.2758

GG vs. GT+TT 0.6467 1.0000
AdipoQG

GG+GT vs. TT 0.3303 0.6606

CC vs. CG+GG 0.0003 0.0006
AdipoQ G11377C

CC+CG vs. GG 0.7574 1.0000

GG vs. GA+AA 0.3301 0.6602
AdipoQ G11391A

GG+GA vs. AA 0.6564 1.0000

TT vs. TG+GG 0.2161 0.4322
AdipoQ 45T G

TT+TG vs. GG 0.7087 1.0000

AA vs. AT+TT 0.0446 0.0892
FTO A T

AA+AT vs. TT 0.4174 0.8348

AA vs. AG+GG 0.2069 0.4138
ApoA5 T1131C

AA+AG vs. GG 0.9998 1.0000

DD vs. ID+II 0.1060 0.2120
ACE I D

DD+ID vs. II 0.0978 0.1956

KK vs. KR+RR 0.2748 0.5496
LeptinR K109R

KK+KR vs. RR 0.3510 0.7020

TT vs. CT+CC 0.8841 1.0000
MC4R rs17782313

TT+CT vs. CC 0.3078 0.6156

CC vs. CT+TT 0.3804 0.7608
TCF7L2 rs7903146 C T

CC+CT vs. TT 0.8091 1.0000

Table 3.5: Recessive and Dominant Models for each SNP - p-values with and without

Benjamini-Hochberg correction

Considering the Table 3.5 and significance level of 10%, within the 19 SNPs, only 4 SNPs,

i.e, PON 1 Q192R, AdipoQ G11377C, FTO A T, ACE I D are statistically significant. The

PON 1 Q192R, in the model QQ vs QR+RR (p = 0.017 < 0.10; p.adj= 0.0340 < 0.10), OR

= 0.448 < 1, that means that the exposure (QQ genotype) is associated with lower odds

of obesity, because the chance of being obese in presence of the QQ genotype is a bit less

than the chance of being obese when this genotype is not present. However, through the

p-value the allele Q is the recessive allele for non-obesity, and R is the dominant allele for obesity.
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The model CC vs CG + GG, in AdipoQ G11377C, (p = 0.0003 < 0.10 ; p.adj = 0.0006 < 0.10),

has an OR = 0.283 < 1, it means that the CC genotype is associated with lower odds of obesity,

because the chance of being obese in the presence of the genotype CC is less than the chance

of being obese when this genotype is not present. So, C is the recessive allele for non-obesity,

and G is the dominant allele for obesity. The FTO A T SNP, in the model AA vs AT + TT

(p = 0.0446 < 0.10 ; p.adj = 0.0892 < 0.10), the OR is equal to 2.266, i.e, greater than 1. For

this reason, the odds of exposure (AA) among the cases is greater than the odds of exposure to

the AA genotype among controls. So, A is the recessive allele for obesity and T is the dominant

allele for non-obesity.

In the SNP ACE I D, the model DD + ID vs II (p = 0.0978 < 0.10 ; p.adj = 0.1956 > 0.10),

OR = 2.638> 1, has a significant p-value only without BH correction. However, since this

SNP has been shown to be important in the study of obesity, I decided to include it in the

conclusions taking from this analysis. Since the OR is greater than one, it means that there is a

higher odds of obesity happening with exposure to the II genotype, because the chance of being

obese in the presence of these genotypes is greater than the chance of being obese when these

genotypes are not present. So, D is the dominant allele for obesity and I is the recessive allele

for non-obesity. Note that the p-value is very close to 0.10 (if we consider the adjusted p-value,

this polymorphism is no longer significant).

After that, the allelic odds ratios were calculated for each SNP and all the p-values proved to

be significant.

Polymorphisms OR CI χ2obs. χ2(p-value) χ2(p-value adj.)

PON 1 Q192R 0.54 (0.28, 1.03) 3.541 0.06 0.08

AdipoQ G11377C 0.39 (0.22, 0.70) 10.639 <0.01 0.04

FTO A T 1.41 (0.95, 2.08) 2.977 0.08 0.08

ACE I D 1.71 (1.04, 2.83) 4.509 0.03 0.06

Table 3.6: Allelic OR for each significant SNP

We can see, through the Table 3.6, that only FTO A T (OR = 1.41) and ACE I D (OR=1.71)

have an odds ratio greater than 1. For example, for FTO A T the women with the A allele

have 1.41 chances to have obesity. However, the women with alelle D have 1.71 chances to

suffer from obesity. Otherwise, the women that have the allele C in the AdipoQ G11377C SNP

(OR=0.39),is associated with lower odds of obesity. Also, the chance of not being obese are 2.6

(1/0.39 = 2.564) times more than being obese.

3.5 Tests for Association

The tests of genetic association compares the frequencies of alleles and genotypes at genetic

marker loci, usually single-nucleotide polymorphisms (SNPs), in individuals from a given

population, with and without a given disease trait, in order to determine if there is a statistical

association between the disease trait and the genetic marker. The data for each SNP with minor

allele a and major allele A can be represented as a contingency table of counts of disease status

by either genotype count (e.g., aa, Aa and AA) (Table 2.2, section 2.5.1) or allele count (e.g.,

a and A). Under the null hypothesis of no genetic association with the disease, we expect the
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relative allele or genotype frequencies to be the same in case and control groups. To test the

genetic association between the alleles of each SNP and the obesity, i.e., to test if they are

statistically significant the Pearson Chi-square Test was applied and the results can be observed

in the Table 3.7.

Polymorphisms χ2 obs. χ2(p-value) χ2(p-value Adj.)

PON 1 Q192R 2.9614 0.0853 0.1559

PON 1 M55L 0.76704 0.3811 0.3811

AdipoQ G11377C 9.7812 0.0018 0.0108

FTO A T 2.6442 0.1039 0.1559

ACE I D 3.982 0.0460 0.1380

Table 3.7: Allelic Association Test - χ2 Test - p-values with and without Benjamini-Hochberg correction

Through the p-values (without BH correction), the PON 1 Q192R (p=0.0853), the

AdipoQ G11377C (p=0.0018) and ACE I D (p=0.0460) are statistically significant considering

the level of 10% of significance. However, with BH correction, i.e., through the p-values adjusted,

only the AdipoQ G11377C (p = 0.0108) is statistically significant. So, as the null hypothesis is

rejected only for this SNP, we can say that there is a genetic association between the allele and

the disease, where the allele G seems to manifest in a dominant way.

Oppositely, the remaining SNPs are not statistically significant, for the Allelic Association Tests,

because all the p-value are higher than the 10% significance level. For this reason, the allele of

each SNP is not associated with the obesity.

In the previous section, the OR values calculated are not much higher than 1, so the p-values

are accordingly.

One of the inherent problems is the fact there is an imbalance in the number of observations for

each allele, in each SNP, i.e, sometimes there are cells with values zero in an allele contingency

table and anothers values between groups of case/control are uneven.

The CATT test is sensitive to the linearity between independent variable (e.g.: Group

case/controls) and dependent variables (e.g: Genotype/ Alleles) and detects trends that would

not be noticed by more crude methods, that is, for example, the Pearson Chi-Squared Test. In a

first literary review, the method to be used would be the Cochran Armitage Test to test whether

there is an association between disease and genotype. However, the SNPs, in our database, are

not ordinal variables, i.e, an explanatory variable without ordered levels. For this reason and

given all the previous analysis it was possible to establish a score for each Genotype of each SNP

that proved to be significant. The special choice was (w0, w1, w2) = (0,1,2) that represents the

presence of the risk allele.
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Polymorphisms CATT (Zobs) CATT (p-value) CATT (p-value) Adj.

PON 1 Q192R 2.628 0.0086 0.0301

PON 1 M55L -0.521 0.6021 0.6021

AdipoQ G11377C 3.07 0.0021 0.0147

FTO A T -1.873 0.0610 0.1068

ApoA5 T1131C 1.16 0.2461 0.2871

ACE I D -2.052 0.0402 0.0938

LeptinR K109R 1.385 0.166 0.2324

Table 3.8: Genotype Association Test - CATT(Z)- p-value with and without Benjamini-Hochberg

correction

In the Tale 3.8, we can see the results obtained in CATT. Observing the p-values with BH

correction, the only SNPs with p-values below than the usual significance levels, especially at

the 10% significance level are PON 1 Q192R (p = 0.0301), AdipoQ G11377C (p = 0.0147),

FTO A T (p = 0.1068) and ACE I D (p = 0.0938). So, the H0 is rejected for these 4 SNPs,

which concludes that there is a genetic association between obesity and the genotype of each

SNP.

3.6 Genetic Risk Score

3.6.1 The Multiple Logistic Regression Models of Association

When there is a need to include additional covariates to handle complex traits, more complicated

logistic regression models of association are used. Examples of this are situations in which

we expect disease risk to be modified by environmental effects such as epidemiological risk

factors (e.g., smoking and gender), clinical variables (e.g., disease severity and age at onset)

and population stratification (e.g., principal components capturing variation due to differential

ancestry), or by the interactive and joint effects of other marker loci. In Logistic Regression

Models, the logarithm of the odds of disease is the response variable, with linear (additive)

combinations of the explanatory variables (genotype variables and any covariates) entering into

the model as its predictors (Clarke et al., 2011).

Despite the results obtained previously, we decided to include all SNPs in order to understand if

we obtain the same results through the logistic regression. So, the explanatory variables that are

used are all the SNPs with 2 categories (Recessive and Dominant models) and the independent

variable is the women’s group (normal weight and obese).

Although the selection is performed partly by software and partly by hand, the stepwise and

best subset approaches are automatically performed by the software.

First, a visual analysis of the missing values might be helpful to check for missing values and

look how many unique values there are for each variable using.

One of the most complex problems in data analysis is that of missing values occurrence. It may

happen in several situations as consequence of different causes such as the type of study, the

sampling procedures and the goal of the inquiry. The Amelia package has a special plotting

function missmap that will plot our dataset and highlight missing values (Figure 3.5).

39



Figure 3.5: Graphical Representation of Missing Values (NA)

There are many variables with missing values, which are coded as NA. For this reason, we will

build manually the logistic regression model.

To build the model by hand, we can choose 2 main approaches, i.e., the forward selection and the

backward elimination, using two models fit of criterion. The model can be chosen through the

p-value criterion or through the AIC criterion. Thus, both models of criterion were considered,

for forward and backward methods.

Despite the terms used in both methods (forward and backward), we always obtained the same

final model and, for this reason we chose to comment only the model obtained by the forward

method.

To build the logistic regression model it was created a model only with an independent variable

(Group), i.e., without explanatory variables, in order to build a model using the forward method.

After that, we started to build the regression model based on the p-value, adding, one by one,

the SNP (if any) whose inclusion gives the most statistically significant fit improvement, and

repeating this process until none improves the model to a statistically significant extent. The
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final model obtained can be found in the Figure 4.21, in Appendix. Based on the output, we

can observe that all SNPs included (AdipoQ G11377C SNP (p= 0.0026), FTO A T SNP (p=

0.0158) and PON 1 Q192R SNP (p= 0.0178) in the model are statistically significant at the

level of significance of 5%, with an AIC = 203.6. Comparatively, with the final model obtained

through the AIC criterion (Figure 4.23 - Appendix), we have a much smaller AIC value (AIC

= 189.28) than the model obtained previously. However, there is a SNP that is not statistically

significant (ACE I D (p= 0.1987)). Besides that, the first model (obtained through the p-value

criterion), has less missing values that have been removed (53 observations deleted), than the

last model (63 observations deleted). For this reason and as we want the most parsimonious

model, i.e., the model that involves the minimum of possible parameters to be estimated and that

explains the behavior of the response variable well, the model we chose is the model obtained

through the stepwise forward method, through the p-value criterion:

Group fator ∼ AdipoQ G11377C SNP + FTO A T SNP + PON 1 Q192R SNP

With this removal, the database consists of 159 observations, being composed by 85 obese

woman and 74 women with normal weight.

In order to diagnose the multicollinearity of the model, the Variance Inflation Factor (VIF)

was calculated for the saturated model. According to Hair et al. (1962), large VIF values

indicate a high degree of collinearity or multicollinearity among the independent variables and

the suggested cutoff for the tolerance value correspond a VIF of 10.0.

In our model, all values are between 1.0030 and 1.0115 (Figure 4.22 - Appendix). Since the

VIF has very low values, there are no multicollinearity problems.

The Hosmer and Lemeshow of Godness of Fit Test (HL) calculates if the observed event rates

match the expected event rates in population subgroups. So, the HL was applied to understand

the goodness-of-fit of the model and the results can be observed at Figure 4.25 - Appendix.

Since the p-value is high (p = 0.9129), the model is considered to be well adjusted.

Finally, the ROC curve was constructed and the AUC calculated to understand if the model can

distinguish between patients with disease and without disease, i.e. the discriminatory capacity

of the model (Figure 3.6). As the xx and yy axis vary between 0 and 1, it was expected that

the graph had the shape of a square. However, there is a graphical limitation since by placing

a scale of 1.1 on the latex software, the image is stretched.
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Figure 3.6: ROC Curve with AUC - Epi package, ROC function (R Version 1.1.463)

The AUC is a measure of discriminative ability across all possible thresholds. The value of AUC

can be interpreted as the probability that a random individual who will develop obesity has a

higher (genetic and/or non-genetic) obesity risk than a random individual who will not develop

obesity (Loos et al., 2017).

The value obtained for the area under the curve (AUC) was 0.718, which according to Hosmer

et al.(2000), indicates that the model has a moderate discriminatory capacity. It is also verified

that it has a sensitivity value (58.8%) lower than the specificity value (74.3%), that means, it

discriminates the true negatives (Y = 0) better than true positives (Y = 1), at the optimal

cutoff point. However, we would expect a cutoff producing sensibility higher than specificity,

identifying more than 58.8% of obese women.

In a future study with a larger sample, specificity and sensitivity values may be compared with

the obtained values in order to understand how the collected sample may influence these values.

Therefore, the multiple logistic regression model that estimates the association of the obesity

between the SNPs is:

log
(

π
1−π

)
= 0.2837 + 1.1451 × (AdipoQ G11377C SNP ) − 1.1881 × (FTO A T SNP ) +

0.8353× (PON 1 Q192R SNP )

3.6.2 Estimated Risk Score Through Logistic Regression Model

The risk prediction models have included an increasing number of BMI-associated loci, typically

combined into a genetic risk score (GRS). The genetic risk score represents the number of

risk alleles across all included genetic variants (SNPs). A negative score indicates a protection

against disease.

The higher the score, the higher the genetic susceptibility to becoming obese, according to Loos
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et al., (2017). The risk score can be expressed as a weighted sum of an event Y = 1, given a

vector with explanatory variables, X, containing the measures of the relevant risk factors:

E(Y|X) = P (Y = 1|X) = g−1(XTβ) (3.3)

Where g−1 :IR→[0,1], i.e,

Score = XT β̂ =

p∑
j=1

Xj β̂j (3.4)

Where β̂j represents the estimated weights obtained through the multiple logistic regression

model, excluding β0, and Xj represents the risk SNPj . In such way, the genetic risk score (GRS)

for the obese women was built based on a combination of 3 SNPs, AdipoQ G11377C SNP,

FTO A T SNP and PON 192 2 SNP, that increase the risk of obesity.

Score = 1.1451×AdipoQ G11377C SNP − 1.1881 × FTO A T SNP + 0.8353 ×
PON 192 2 SNP

The baseline of genetic risk score is 0, which corresponds to an individual not having the risk

allele. For this reason all the SNPs have the value 0, on the equation.

Through this expression we can understand which is the highest risk score. For that we just need

to add a score (0,1,2) which corresponds to the presence of risk alleles (0- none risk allele, 1 - if 1

risk allele is present and 2 - if 2 risk alleles are present), for each SNP (AdipoQ G11377C SNP,

FTO A T SNP and PON 192 2 SNP). Through the Figure 4.26, in the Appendix, we can see

some combinations for each SNP, regarding the number of risk alleles present for each SNP. For

example, if a woman has all the risk alleles in each SNP, the genetic risk score will be equal to

1.58. On the other side, the lowest risk score is -2.38, it means to be carrying 2 risk alleles of

the FTO A T SNP, but not having any risk alleles corresponding to the other SNPs the risk of

obesity decreases.

If a woman has two risk alleles for AdipoQ G11377C SNP and PON 192 2 SNP, but has a

protective allele for FTO A T SNP, the genetic risck score increases to 3.96.

In conclusion, we can understand that the genetic risk score varies greatly depending on the

number of risk alleles that are carrying for each SNP.
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Chapter 4

Discussion and Conclusion

After analyzing the database that was selected in Curry Cabral Hospital, in 2006, for a

case-control study of obese women, several conclusions were reached.

Regarding the HWE, all the SNPs are in HWE except LepG-2548A SNP and MC4R rs 17782313

SNP. While MC4R rs 17782313 SNP has heterozygotes deficit, on LepG-2548A SNP, there are

no women with genotype GG, in this database. So, this could be the reason for the LepG-2548A

SNP are not in HWE.

Based on the calculation of the allele frequency for each SNP, the allelic frequency of

PON 1 Q192R, PON 1 M55L, AdipoQ G11377C, PPARG Pro12Ala, ApoA5 T1131C and

TNFa G308A, do not differ much between case and control groups.

In opposite, the TCF7L2 rs7903146 C T is the SNP which have a great allelic diversity between

the groups (case/control). The allele differency of allele C is higher in the obese group compared

to the control group. However, the T allele is the most frequent allele compared to the C allele

frequency in both groups.

Looking to answer the biggest scientific question: ”What are the polymorphisms associated

with the obesity?”, through genetic odds ratio, only 4 SNPs the PON 1 Q192R (For Recessive

Model : p.adj= 0.0340< 0.05; OR = 0.448< 1), AdipoQ G11377C (For the Dominant Model:

p.adj = 0.0006< 0.05; OR = 0.283< 1), FTO A T (For the Recessive Model: p.adj = 0.0892<

0.10; OR= 2.266), ACE I D (For the Dominant Model : p.adj = 0.1956 > 0.10; OR= 2.638>

1) are statistically signicant.

In the SNP ACE I D, the model DD + ID vs II (p = 0.0978 < 0.10 ; p.adj = 0.1956 > 0.10),

OR = 2.638> 1, has a significant p-value only without BH correction. The PON 1 Q192R and

AdipoQ G11377C have an OR less than 1, on both models (dominant and recessive) and in

some studies related to PON 1 Q192R activity in obesity, no significant differences were found

for PON1 activity between normal and obese women (Veiga et al., 2010).

According to Leoska et al. (2018), the ADIPOQ gene influence the effect of lifestyle on

obesity-related traits. Nevertheless, the studies have reported inconsistent results, as occurs

in this study, where the fact may be related to the type of population, gender, age, the degree

of metabolic risk levels, and physical activity interactions.

According to the results of CATT for the Genotype Association Test, only the AdipoQ G11377C,

is statistically significant, where the allele G seems to manifest itself in a dominant way.

Oppositely, the other SNPs are not statistically significant, because all the p-value are higher

than the 10% significance level. Nonetheless, the OR values calculated in the previous section

are not much higher than 1, so the p-values are accordingly. One of the inherent problems is
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the fact there is an imbalance in the number of observations for each allele, in each SNP, i.e,

sometimes there are cells with zero values in an allele contingency table and anothers values

between groups of case/control are very disparate.

After this, a parsimonious model was found and the genetic risk score was calculated through

it. The genetic risk score (GRS) for the obese women was built based on a combination of 3

SNPs, AdipoQ G11377C SNP, FTO A T SNP and PON 192 2 SNP. In agreement with AUC,

the model that was found has a moderate discriminatory capaticy, but only identifies 58.8% of

obese women. So, the model that estimates the association of the obesity between the SNPs

may not be the best and, for this reason, the Logistic Regression may not be the best method

to build a genetic risk score.

Since, this model was found only with 159 women, it is necessary additional studies with larger

samples to clarify which polymorphisms will be associated with obesity. In future studies, other

methods (e.g: Bayesian (Vilhjálmsson et al.,2015) or Naive methods (Ware et al., 2017)) can

also be used to create a genetic risk score.

The genetic risk score was built and adding a score (0,1,2) which corresponds to the presence

of risk alleles (0- none risk allele, 1 - if 1 risk allele is present and 2 - if 2 risk alleles are

present) we can understand the susceptibility to become obese. For example, an women who

has two risk alleles for AdipoQ G11377C SNP and PON 192 2 SNP, but has a protective allele

for FTO A T SNP, the genetic risk score increases to 3.96 and has the greatest genetic risk of

suffering from obesity. Opposite, the lowest risk score is -2.38, i.e., a women carrying 2 risk

alleles of the FTO A T SNP, but not carrying any risk alleles of the others SNPs.

Throughout the statistical analysis several limitations were found. Many SNPs have not been

shown to have alleles associated with the obesity and many of the women did not have certain

genotypes of each SNP. So, a larger and more specific sample of this SNP will help contribute

to possible future studies.

This work has contributed significantly to the genetic knowledge of obesity in Caucasian women

and may help in future meta-analysis studies by clarifying which variants are actually associated

with the tendency to develop an obese phenotype. It also provided a better understanding of

the genetic diversity that is associated with obesity in the Portuguese population and, in further

studies, they can be compared with other populations.
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Rodŕıguez-López, R. (2017). Polymorphisms in the SNRPN gene are associated with obesity

susceptibility in a Spanish population. Journal of Gene Medicine, 19(5).

Albuquerque, S. (2015). Study of genetic variants associated with obesity in Portuguese children

Study of genetic variants associated with obesity in Portuguese children Estudo de variantes
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Yukio (2018). Regressão Loǵıstica no R — EstatSite.com. https://estatsite.com/2018/08/

26/regressao-logistica-no-r/. Last accessed on Sep 8,2019.

Zhang, Y., Cao, Y., Xin, L., Gao, N., and Liu, B. (2018). Association between rs1800629

polymorphism in tumor necrosis factor-alpha gene and dilated cardiomyopathy susceptibility

Evidence from case control studies. Medicine (United States), 97(50).

Zhang, Z. (2016). Variable selection with stepwise and best subset approaches. Annals of

Translational Medicine, 4(7).

Zhao, F., Song, M., Wang, Y., and Wang, W. (2016). Genetic model. Journal of Cellular and

Molecular Medicine, 20(4):765.

52

https://estatsite.com/2018/08/26/regressao-logistica-no-r/
https://estatsite.com/2018/08/26/regressao-logistica-no-r/


Appendix

Descriptive Statistics Analysis

Figure 4.1: Descriptive analysis of continuous quantitative variables

53



PON 1 Q192R

PON 1 Q192R QQ QR RR Totals

Case 29 46 17 92

Controls 38 30 7 75

Total 67 76 24 167

Table 4.1: Genotype count - PON 1 Q192R

QQ QR+RR Totals

Case 29 63 92

Control 38 37 75

Totals 67 100 167

Table 4.2: Genotypic count for PON 1 Q192R - QQ vs. QR+RR

QQ+QR RR Totals

Case 75 17 92

Control 68 7 75

Totals 143 24 167

Table 4.3: Genotypic count for PON 1 Q192R - QQ+QR vs. RR
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Figure 4.2: Bar Chart of Genotype Crossings for PON 1 Q192R

PON 1 M55L

PON 1 M55L LL ML MM Totals

Case 36 44 11 91

Controls 32 26 16 74

Total 68 70 27 165

Table 4.4: Genotype count - PON 1 M55L

LL LM+MM Totals

Case 36 55 91

Control 32 42 74

Totals 68 97 165

Table 4.5: Genotypic count for PON 1 M55L - LL vs. LM+MM

LL+LM MM Totals

Case 80 11 91

Control 58 16 74

Totals 138 27 165

Table 4.6: Genotypic count for PON 1 M55L - LL+LM vs. MM
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Figure 4.3: Bar Chart of Genotype Crossings for PON 1 M55L

AdipoQG276T

AdipoQG276T GG GT TT Totals

Case 43 41 13 97

Controls 36 33 6 75

Total 79 74 19 172

Table 4.7: Genotype count - AdipoQG276T

GG GT+TT Totals

Case 43 54 97

Control 36 39 75

Totals 79 93 172

Table 4.8: Genotypic count for AdipoQG276T - GG vs. GT+TT

GG+GT TT Totals

Case 84 13 97

Control 69 6 75

Totals 153 19 172

Table 4.9: Genotypic count for AdipoQG276T - GG+GT vs. TT
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Figure 4.4: Bar Chart of Genotype Crossings for AdipoQG276T

AdipoQ G11377C

AdipoQ G11377C CC CG GG Totals

Case 51 38 7 96

Controls 60 11 4 75

Total 111 49 11 171

Table 4.10: Genotype Count - AdipoQ G11377C

CC CG+GG Totals

Case 51 45 96

Control 60 15 75

Totals 111 60 171

Table 4.11: Genotypic Count for AdipoQ G11377C - CC vs. CG+GG

CC+CG GG Totals

Case 89 7 96

Control 71 4 75

Totals 160 11 171

Table 4.12: Genotypic Count for AdipoQ G11377C - CC+CG vs. GG
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Figure 4.5: Bar Chart of Genotype Crossings for AdipoQ G11377C

AdipoQ G11391A

AdipoQ G11391A GG GA AA Totals

Case 70 30 2 102

Controls 66 20 1 87

Total 136 50 3 189

Table 4.13: Genotype Count - AdipoQ G11391A

GG GA+AA Totals

Case 70 32 102

Control 66 21 87

Totals 136 53 189

Table 4.14: Genotypic Count for AdipoQ G11391A - GG vs. GA+AA

GG+GA AA Totals

Case 100 2 102

Control 86 1 87

Totals 186 3 189

Table 4.15: Genotypic Count for AdipoQ G11391A - GG+GA vs. AA
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Figure 4.6: Bar Chart of Genotype Crossing for AdipoQ G11391A

AdipoQ 45T G

AdipoQ 45T G TT TG GG Totals

Case 77 15 3 95

Controls 62 19 4 85

Total 139 34 7 180

Table 4.16: Genotype Count - AdipoQ 45T G

TT TG+GG Totals

Case 77 18 95

Control 62 23 85

Totals 139 41 180

Table 4.17: Genotypic Count for AdipoQ 45T G - TT vs. TG+GG

TT+TG GG Totals

Case 92 3 95

Control 81 4 85

Totals 173 7 180

Table 4.18: Genotypic Count for AdipoQ 45T G - TT+TG vs. GG
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Figure 4.7: Bar Chart of Genotype Crossing for AdipoQ 45T G

FTO A T

FTO A T AA AT TT Totals

Case 25 57 23 105

Controls 12 60 27 99

Total 37 117 50 204

Table 4.19: Genotype Count - FTO A T

AA AT+TT Totals

Case 25 80 105

Control 12 87 99

Totals 37 167 204

Table 4.20: Genotypic Count for FTO A T - AA vs. AT+TT

AA+AT TT Totals

Case 82 23 105

Control 72 27 99

Totals 154 50 204

Table 4.21: Genotypic Count for FTO A T - AA+AT vs. TT
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Figure 4.8: Bar Chart of Genotype Crossing for FTO A T

PPARG Pro12Ala

PPARG Pro12Ala CC CG GG Totals

Case 88 15 2 105

Controls 78 21 0 99

Total 166 36 2 204

Table 4.22: Genotype Count - PPARG Pro12Ala

CC CG+GG Totals

Case 88 17 105

Control 78 21 99

Totals 166 38 204

Table 4.23: Genotypic Count for PPARG Pro12Ala - CC vs. CG+GG

CC+CG GG Totals

Case 103 2 105

Control 99 0 99

Totals 202 2 204

Table 4.24: Genotypic Count for PPARG Pro12Ala - CC + CG vs. GG
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Figure 4.9: Bar Chart of Genotype Crossing for PPARG Pro12Ala

ApoA5 T1131C

ApoA5 T1131C AA AG GG Totals

Case 89 15 1 105

Controls 89 8 1 98

Total 178 23 2 203

Table 4.25: Genotype Count - ApoA5 T1131C

AA AG+GG Totals

Case 89 16 105

Control 89 9 98

Totals 178 25 203

Table 4.26: Genotypic Count for ApoA5 T1131C - AA vs. AG+GG

AA+AG GG Totals

Case 104 1 105

Control 97 1 98

Totals 201 2 203

Table 4.27: Genotypic Count for ApoA5 T1131C - AA+AG vs. GG
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Figure 4.10: Bar Chart of Genotype Crossing for ApoA5 T1131C

ACE I D

ACE I D DD ID II Totals

Case 54 31 5 90

Controls 31 27 9 67

Total 85 58 14 157

Table 4.28: Genotype count - ACE I D

DD ID+II Totals

Case 54 36 90

Control 31 36 67

Totals 85 72 157

Table 4.29: Genotypic Count for ACE I D - DD vs. ID+II

DD+ID II Totals

Case 85 5 105

Control 58 9 67

Totals 143 14 157

Table 4.30: Genotypic Count for ACE I D - DD+ID vs. II
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Figure 4.11: Bar Chart of Genotype Crossing for ACE I D

IL 6 G572C

IL 6 G572C CC GC GG Totals

Case 100 12 0 112

Controls 89 10 0 99

Total 189 22 0 211

Table 4.31: Genotype Count - IL 6 G572C

CC GC+GG Totals

Case 100 12 112

Control 89 10 99

Totals 189 22 211

Table 4.32: Genotypic Count for IL 6 G572C - CC vs. GC+GG

CC+GC GG Totals

Case 112 0 112

Control 99 0 99

Totals 211 0 211

Table 4.33: Genotypic Count for IL 6 G572C - CC+GC vs. GG
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Figure 4.12: Bar Chart of Genotype Crossing for IL 6 G572C

TNFa G308A

TNFa G308A GG GA AA Totals

Case 84 26 2 112

Controls 84 16 0 100

Total 168 42 2 212

Table 4.34: Genotype Count - TNFa G308A

GG GA+AA Totals

Case 84 28 112

Control 84 16 100

Totals 168 44 212

Table 4.35: Genotypic Count for TNFa G308A - GG vs. GA+AA

GG+GA AA Totals

Case 110 2 112

Control 100 0 100

Totals 210 2 212

Table 4.36: Genotypic Count for TNFa G308A - GG+GA vs. AA
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Figure 4.13: Bar Chart of Genotype Crossing for TNFa G308A

Leptin G2548A

Leptin G2548A AA AG GG Totals

Case 17 76 4 97

Controls 20 55 0 75

Total 37 131 4 172

Table 4.37: Genotype Count - Leptin G2548A

AA AG+GG Totals

Case 17 80 97

Control 20 55 75

Totals 37 135 172

Table 4.38: Genotypic Count for Leptin G2548A - AA vs. AG+GG

AA+AG GG Totals

Case 93 4 97

Control 75 0 75

Totals 168 4 172

Table 4.39: Genotypic Count for Leptin G2548A - AA+AG vs. GG
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Figure 4.14: Bar Chart of Genotype Crossing for Leptin G2548A

LeptinR K109R

LeptinR K109R KK KR RR Totals

Case 53 35 8 96

Controls 48 24 3 75

Total 101 59 11 171

Table 4.40: Genotype Count - LeptinR K109R

KK KR+RR Totals

Case 53 43 96

Control 48 27 75

Totals 101 70 171

Table 4.41: Genotypic Count for LeptinR K109R - KK vs. KR+RR

KK+KR RR Totals

Case 88 8 96

Control 72 3 75

Totals 160 11 171

Table 4.42: Genotypic Count for LeptinR K109R - KK+KR vs. RR
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Figure 4.15: Bar Chart of Genotype Crossing for LeptinR K109R

Ghrelin R51Q

Ghrelin R51Q RR QR QQ Totals

Case 89 8 0 97

Controls 63 12 0 75

Total 152 20 0 172

Table 4.43: Genotype Count - Ghrelin R51Q

RR QR+QQ Totals

Case 89 8 97

Control 63 12 75

Totals 152 20 172

Table 4.44: Genotypic Count for Ghrelin R51Q - RR vs. QR+QQ

RR+QR QQ Totals

Case 97 0 97

Control 75 0 75

Totals 172 0 172

Table 4.45: Genotypic Count for Ghrelin R51Q - RR+QR vs. QQ
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Figure 4.16: Bar Chart of Genotype Crossing for Ghrelin R51Q

Ghrelin Leu72Met

Ghrelin Leu72Met LL LM MM Totals

Case 84 20 1 105

Controls 80 12 0 92

Total 164 32 1 197

Table 4.46: Genotype Count - Ghrelin Leu72Met

LL LM+MM Totals

Case 84 21 105

Control 80 12 92

Totals 164 33 197

Table 4.47: Genotypic Count for Ghrelin Leu72Met - LL vs. LM+MM

LL+LM MM Totals

Case 104 1 105

Control 92 0 92

Totals 196 1 197

Table 4.48: Genotypic Count for Ghrelin Leu72Met - LL+LM vs. MM
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Figure 4.17: Bar Chart of Genotype Crossing for Ghrelin Leu72Met

MC4R V103I

MC4R V103I II VI VV Totals

Case 69 11 0 80

Controls 67 8 0 75

Total 136 19 0 155

Table 4.49: Genotype Count - MC4R V103I

II VI+VV Totals

Case 69 11 80

Control 67 8 75

Totals 136 19 155

Table 4.50: Genotypic Count for MC4R V103I - II vs. VI+VV

II+VI VV Totals

Case 80 0 80

Control 75 0 75

Totals 155 0 155

Table 4.51: Genotypic Count for MC4R V103I - II+VI vs. VV
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Figure 4.18: Bar Chart of Genotype Crossing for MC4R V103I

MC4R rs17782313

MC4R rs17782313 TT CT CC Totals

Case 69 22 18 109

Controls 60 23 10 93

Total 129 45 28 202

Table 4.52: Genotype Count - MC4R rs17782313

TT CT+CC Totals

Case 69 40 109

Control 60 33 93

Totals 129 73 202

Table 4.53: Genotypic Count for MC4R rs17782313 - TT vs. CT+CC

TT+CT CC Totals

Case 91 18 109

Control 83 10 93

Totals 174 28 202

Table 4.54: Genotypic Count for MC4R rs17782313 - TT+CT vs. CC
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Figure 4.19: Bar Chart of Genotype Crossing for MC4R rs17782313

TCF7L2 rs7903146 C T

TCF7L2 rs7903146 C T CC CT TT Totals

Case 55 41 10 106

Controls 37 36 9 82

Total 92 77 19 188

Table 4.55: Genotype Count - TCF7L2 rs7903146 C T

CC CT+TT Totals

Case 55 51 106

Control 37 45 82

Totals 92 96 188

Table 4.56: Genotypic Count for TCF7L2 rs7903146 C T - CC vs. CT+TT

CC+CT TT Totals

Case 96 10 106

Control 73 9 82

Totals 169 19 188

Table 4.57: Genotypic Count for TCF7L2 rs7903146 C T - CC+CT vs. TT
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Figure 4.20: Bar Chart of Genotype Crossing for TCF7L2 rs7903146 C T

Logistic Regression

Figure 4.21: Output of Rstudio code - Stepwise Method - Forward (through the p-value)

Figure 4.22: Output of Rstudio code - Stepwise Method - Forward (through the p-value) with VIF

values
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Figure 4.23: Output of Rstudio code - Stepwise Method - Forward (through the AIC )

Figure 4.24: Output of Rstudio code - Stepwise Method - Forward (through the AIC) with VIF values

Figure 4.25: Output of Rstudio code - Hosmer and Lemeshow of Fit Test

Figure 4.26: Output of Rstudio code - Genetic Risk Score for some combinations, in each SNP
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