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Machine Learning and Big Data for Neuro-Diagnostics: 
Opportunities and Challenges for Clinical Translation 

 

1. The scope of this report  
In this Report, The Foresight Lab of the Human Brain Project (HBP) will examine some developments 
in neurodiagnostics that make use of machine learning and other algorithms, with a particular focus 
on the potentials and challenges for clinical translation.  This is part of our commitment, in the 
current phase of the HBP,1 to undertake research on the contributions of the HBP to the state of 
the art in relation to psychiatric and neurological diagnostics, with a focus on the role of brain 
signatures and their clinical, personal, social and ethical implications.  These issues have to be 
understood in the context of more general questions concerning the social and ethical implications 
of brain research for psychiatric and neurological clinical practice, and, more widely, in relation to 
identifying biomarkers that will allow more accurate and individualised diagnosis and treatment, 
and potentially, in the future, could enable preventive intervention for those at risk of developing 
disorders.2 

 These are large issues, and this report focuses on concerns specifically relevant to the HBP.3   
In the HBP, work is underway within the Medical Informatics Platform (MIP) and throughout various 
work-packages in other sub-projects to analyse large clinical and research datasets, using 
algorithms and machine learning, to search for patterns in data that can individuate the 
neurobiological correlates of a disorder in ways that could be used to aid diagnosis, to target 
treatments and hence to improve prognosis.   During the early phases of the HBP, although the 
focus was particularly on the dementias, the hope was that the collection and analysis of patterns 
in large volumes of existing clinical data held in hospitals would be possible to identify ‘brain 
signatures’ for other mental disorders – a hope that was shared with other large international 
research initiatives at the time.4  However for a range of reasons which we discuss later in this 
report, it proved difficult to access and curate the volume of clinical data that was required for 
analysis.  Hence, in the current phase of this work, the focus has been narrowed to disorders where 
there are clear neurobiological correlates, and where there is extensive data potentially available 
for analysis.5     

 The empirical research upon which this report is based includes analysis of published and 
grey literature, fieldwork, attendance at relevant workshops and conferences, in addition to 
stakeholder interviews (in the UK and Europe). While we do refer to some wider issues, we shall 
largely focus on two areas in this report: dementias and epilepsy, which although perhaps the least 
problematic of domains, nonetheless illustrate challenges that will be all the more significant in 
domains where neurobiological evidence of brain anomalies underlying disorders is more 
ambiguous.  As the ultimate aim of development of diagnostic algorithms is for their use in the 
diagnosis and treatment of patients, we shall focus particularly on the possibilities and challenges 
of clinical translation. We draw attention to the challenges faced in relating probabilistic 

 
1  The current phase of the HBP is that funded under the second Specific Grant Agreement with the European 

Commission, referred to here as SGA2. 
2  We were asked to consider these wider issues by reviewers of our previous reports. 
3  For the broader discussion of the role of brain research and neurobiology for psychiatry and mental health, we 

refer the reader to Professor Nikolas Rose’s book Our Psychiatric Future: The Politics of Mental Health, 
published in October 2018. 

4  We discuss these in our first Foresight Report: Aicardi, Christine, Michael Reinsborough, and Nikolas 
Rose. Foresight report on future medicine: A Report from the HBP Foresight 
Lab (2015), https://kclpure.kcl.ac.uk/portal/files/86508529/KCLForesightLab_2015_Future_Medicine.pdf 

5  Data is also being collected on traumatic brain injury, and in addition the interest in wider issues in mental 
disorder remains, and a new partner has been recruited to the HBP who will contribute large data sets on mental 
disorder, however this work is not yet integrated into the MIP. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://kclpure.kcl.ac.uk/portal/files/86508529/KCLForesightLab_2015_Future_Medicine.pdf
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predictions derived from such algorithms to individualised clinical interventions, and we highlight 
the importance of trust in the relationships that enable clinical translation of technologies – trust 
between researchers, clinicians, patients, and regulators.  

2. The Role of Technology in Diagnosis of Brain 
Disorders 

2.1 Revising Diagnostic Categories  
Much discussion of diagnosis has focussed on its craft like nature, and its dependence on the skilled 
‘gaze’ of the clinician (Feinstein, 1973;  Mattingly and Fleming, 1994).  However, technology has 
long played a key part in diagnosis, at least since the invention of the stethoscope in the eighteenth 
century. Laboratory science has played an increasing role in developing new tools and techniques 
for diagnostic practices, and the introduction of microscopes, blood chemistry, EEG, imaging 
technologies such as CT, PET and MRI have sometimes led to the re-classification of diseases based 
on their underlying pathophysiology.  

 A belief in the necessity of such reclassification has emerged in psychiatry in the last 
decade.  This was because, despite a large research effort over several decades, involving genetic, 
scanning and other advanced neurotechnologies, with the exception of some forms of dementia, it 
proved impossible to identify neurological ‘biomarkers’ for any of the current diagnostic categories 
used in clinical practice, for example those embodied in the successive editions since 1980 of the 
American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders (Rose, 
2013).  Many psychiatric researchers, notably at the US National Institutes of Mental Health,  argued 
that we should no longer base our research on such diagnostic categories, but develop new 
approaches that would diagnose disorders on the basis of their biology.  They argued that this would 
almost certainly radically revise our diagnostic categories, revealing similarities in aetiology and 
neurobiology between disorders that had been kept distinct, and show that broad diagnostic 
categories such as major depression actually encompass a number of conditions with distinct 
aetiologies linked to distinct neurobiological bases which should be the focus of diagnosis and 
treatment.   

 This approach is now often referred to as ‘precision medicine’6 because it  "aims to identify 
somatic, cognitive, affective, motor and social behaviour domains defined by associated, 
potentially common, aetiological neural mechanisms. This is in contrast to existing diagnostic 
criteria which are usually based on patient report, observation and duration of symptoms and do 
not incorporate biological or neuropsychological markers (Kapur et al., 2012). The hope is that the 
"aetiology-based research cutting across diagnostic boundaries may be a critical step towards 
overcoming what some view as “therapeutic stagnation in psychiatry” and ...may offer a new and 
rational path for the development of a stratified psychiatry" (Schumann et al, 2010: 7). The launch 
of the U.S. National Institute of Mental Health's “precision medicine for psychiatry” project 
Research Domain Criteria (RDoC) in 2010 and the development of such a research strategy 
supported by the EC H2020-funded Roadmap for Mental Health Research (ROAMER, 2013) energised 
such approaches to psychiatry that aimed to link neural, cognitive and behavioral dimensions. 
However, at the time of writing this report, this approach has not succeeded in identifying clinically 
useful neurobiological or genetic biomarkers for diagnostic precision or treatment choice in the 
area of mental health.  Hence the hope that large data sets that contain information from genetic 
tests, brain scans and other physiological markers, together with data on clinical presentation, 

 
6  It was previously referred to as ‘personalised medicine’; later, when it became evident that available 

technologies would identify, not individuals, but groups with particular biological characteristics, some 
researchers and organizations chose to use the term ‘stratified medicine’.  Both of these terms remain in use, 
leading to some confusion.  

http://creativecommons.org/licenses/by-nc-nd/4.0/
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symptomatology, treatment and prognosis, when analysed using machine learning techniques, may 
reveal previously hidden relations between neurobiology, symptomatology and treatment success. 

2.2 Making sense of the data avalanche 
It is widely recognized that it is challenging to interpret the large quantities of data that are now 
available in many medical specialisms, including psychiatry and neurology. For example, while 
neurologists such as Kurt Goldstein (1878-1965) had access to the brains of patients’ only after 
death, and thus diagnosed living patients using case records and visual technologies such as films, 
now neurologists have access to the living brain via a range of imaging technologies which they use 
in the diagnostic process - CT, PET, MRI, fMRI, EEG, etc. (Rose and Gainty, 2019).   Nonetheless, 
these images do not speak for themselves and, as in previous diagnostic practices, require the 
intervention of the trained eye of the expert (see Mahfoud, 2014 for a more detailed overview of 
these studies). For example, Barry F. Saunders studied the craft practices involved in “learning to 
read” radiological images such as CT scans. He outlined the complex institutional and hierarchical 
context within which doctors are trained, with special attention given to tacit practices - or 
practices that are taught outside of formalised education, that require apprenticeship (Saunders 
2008).  

 Indeed, neurologists we have interviewed for this report highlighted how learning to see 
brain images was never something they were formally taught as part of their medical degrees, but 
was a kind of tacit knowledge (Collins, 2010) acquired though their apprenticeship. Anthropologist 
Andreas Roepstorff uses the term “skilled vision” for this kind of tacit knowledge (2007).  While the 
practices of interpretation are now part of formal education of medical practitioners, they must 
still be integrated into the ‘expert gaze’ of neuroscience researchers as well as clinicians. The skills 
developed by neuroscientists to be able to interpret fMRI brain scans involve both formal and 
informal education - one is required to know in order to see.  Practitioners are not required to 
understand the mathematics involved in producing these images in order to ‘read’ and analyse 
brain scans, but, as we shall see, they do need to have confidence in the process that has led from 
the initial data to the images that they have to interpret and utilise.  

 Despite the recognition of the ‘craft skills’ of interpretation required across clinical 
medicine, there have long been attempts to codify the diagnostic process, for example in the 
interpretation of medical imaging,  and to formalise it in standard and computerised programmes, 
with limited success (Doi, 2007).  However in an increasing number of areas, machine learning is 
now being used to analyse case records, clinical and physiological data, test results and images 
from scans and to link these to diagnosis and prognosis – in some cases producing results that are 
more accurate and reliable than those of even the most skilled diagnostician (EMERJ, 2019;  Nuffield 
Council on Bioethics, 2018; Future Advocacy, 2018).  This has become an area of considerable 
commercial investment,7 and it is in this domain that we can locate the current work being 
undertaken in the MIP of the HBP. 

 In assessing the social and ethical implications of these developments, it is important to 
recognise that technological artefacts, whether simple devices such as stethoscopes or blood 
pressure monitors, or highly sophisticated apparatuses such as scanners, are not merely extensions 
of the naked eye.  The images that they produce not only depend upon very sophisticated 
technology – magnetic resonance imaging uses magnetic field gradients that act upon certain atoms 
to generate detectable radio waves that are then processed using sophisticated algorithms to 
generate data on the distribution of water and fat in the body that is then further processed to 
generate images of the organs - but also embody many assumptions.  For example, the hypothesis 

 
7  In the United States, this has been spurred on by evidence on the cost of settlements for medical malpractice 

as a result of diagnostic errors. See the analysis by researchers at Johns Hopkins reported here: 
https://www.hopkinsmedicine.org/news/media/releases/diagnostic_errors_more_common_costly_and_harmf
ul_than_treatment_mistakes  

http://creativecommons.org/licenses/by-nc-nd/4.0/
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built into fMRI is that an increase in blood flow is a marker of an increase in brain activity; this is 
embedded in the images produced by the device itself, and despite longstanding critical evaluation, 
this is seldom questioned in the practices that utilise fMRI for research or diagnosis (Logothetis, 
2008).  However, the standard fMRI paradigms have become controversial with the increasing 
recognition that measures of changes in blood oxygenation levels neglect the key role of highly 
distributed neural activity – known as the ‘resting state’ - that is necessary for task performance, 
but is usually ‘subtracted’ from fMRI outputs as a result of the algorithms that are used to create 
the images (Gusnard and Raichle, 2001; Raichle, 2011; Callard and Margulies, 2014).  

 Technology is thus far more than an aid to vision: it renders some things visible at the 
expense of others, yet frequently does so in ways that are ‘black boxed’ and not known or fully 
understood by those who use the results.  These issues are further complicated when large volumes 
of data produced by these technologies in many different clinics and research projects, using 
different research protocols, are linked and then analysed using machine learning to generate 
algorithms – once more not known or fully understood by potential users - that produce a medical 
diagnosis.  It is to this question that we now turn. 

2.3 Artificial Intelligence and Diagnosis 
One problem faced by those seeking to interpret the range of information potentially available for 
diagnosis, is that the masses of data from different sources now available - fMRI, MRI, PET, CT, 
EEG, MEG… - are extremely difficult for human beings to integrate and analyse together. It is this 
problem that machine learning promises to solve.  The hope is that machine learning tools can be 
used to analyse these large amounts of data from different sources, and further, that these 
computer-driven methods will be more objective than person-driven analyses, because they do not 
depend on the interpretive skills of different clinicians. Thus many argue that the digitization of 
data from patients’ clinical records and medical images combined with advanced data analytics 
can enable AI technologies such as machine learning and machine vision to distinguish between 
different potential diagnoses in a clinically meaningful way and thus can enable clinicians to target 
specific treatments (Luo et al., 2016).  

 However, many of these discussions have concluded that these ‘new’ technologies can only 
assist, not replace, expert opinion (Stone et al., 2016). Such use of technology is often referred to 
by practitioners as ‘augmented intelligence’.  Data-driven technologies aimed at assisting 
healthcare practitioners in diagnostic processes have been approved by the US Food and Drug 
Administration (FDA) in recent years (Future Advocacy, 2018). For example, the smartphone 
application ‘Viz.AI’ analyses CT images of the brains of patients admitted to hospitals with 
symptoms of stroke, identifies vessel blockages through these images, and sends this analysis via 
text to neurovascular specialists. This software was approved by the FDA as a “clinical decision 
support software” based on evidence submitted by the developers which demonstrated through a 
clinical trial that the software application more quickly identified the vessel blockages.8 There are 
several other software applications under development (i.e. not yet approved by the FDA), such as 
the collaboration between DeepMind Health and Moorfields Eye Hospital, London which uses neural 
networks to diagnose Age-related Macular Degeneration (AMD) through the analysis of Optical 
Coherence Tomography (OCT) (De Fauw et al, 2018).  

 Despite the problems that many have identified with current diagnostic categories, much 
psychiatric research in this area still begins from or utilises such diagnoses.  Thus a collaboration 
between IBM and the University of Alberta uses neural networks to diagnose schizophrenia through 
an analysis of fMRI scans while patients undertook an audio-based exercise. The researchers claim 
to have identified “combinations of statistical features extracted from the data that can serve as 
reliable statistical (bio)markers of the disease, capable of accurately discriminating between 
schizophrenic patients and controls” (Gheiratmand et. al. 2017). These ‘bio-markers’ included an 

 
8  https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm596575.htm  
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“abnormal” increase of connectivity between the thalamus and the primary motor/primary sensor 
cortex as well as ”hyperconnectivity” in the fronto-parietal  network. While the model was 
relatively successful at predicting a clinical diagnosis of schizophrenia (at above 70%), this research 
has not yet undergone the clinical trials needed for software regulation and approval.  Further, it 
is being undertaken at a time when the very categories such as schizophrenia are contested by 
many experts in the field.   There is a widespread recognition that, across the whole spectrum of 
mental disorders, and particularly in relation to psychoses,  similar symptomatology may result 
from very different neurobiological pathways.  There is a certain unhelpful circularity in seeking 
brain based biomarkers that correlate with symptom based diagnoses that are themselves contested 
and considered to lump together a variety of conditions that are developmentally, neurobiologically 
and prognostically distinct (Murray, 2016).   

 Some six years ago, an Editorial in Nature Biotechnology entitled “What happened to 
personalized medicine?” reflected on the slow progress and unrealized hopes of those who 
predicted a revolution in medical diagnosis and treatment targeting based on biomarkers.  The 
barriers they identified were less biological than social: a need “to broaden the concept of 
personalized medicine from the genetically reductionist version to one that includes other types of 
markers”; a need for more long term studies “linking specimens, sequence and other biomarker 
information to clinical outcomes”, a need for patients to be encouraged to share their data for 
research purposes, and a need to educate physicians ”about the new diagnostics and how to 
integrate them with existing clinical information” which will require not only better education but 
also “the development of robust point-of-care devices and data-sharing technology and the 
establishment of trusted sources (e.g., medical association position statements on tests or the 
National Institutes of Health’s genetic testing registry) (Nature Biotechnology, 2012).  Indeed the 
issue of trust is crucial, for if clinicians and patients do not have legitimate trust in the accuracy, 
validity and utility of biomarkers, and that certainly includes brain based biomarkers, whatever the 
hopes of those who develop them, they will not ‘translate’ into clinical practice.   

 However, before we consider this issue of translation, and the key role of trust, we will 
return directly to the work of the MIP of the HBP, for, as we have said, for the above reasons as 
well as others, the MIP has restricted its current focus to conditions where there is little or no 
dispute about the links between symptomatology and brain based anomalies.  As we have said, we 
will focus on epilepsy and dementia. 

3. The Search for Brain Signatures in the HBP 
The initial aim of the HBP’s Medical Informatics Platform (MIP) – which formed Sub-Project 8 (SP8) 
in HBP research up to the end of March 2020 - was to be “a collaborative open source platform … 
that allows researchers worldwide to share medical data, enabling the use of machine-learning 
tools for brain-related diseases, while strictly preserving patient confidentiality.”9 With this goal 
in mind, during the current phase of research,10 the MIP prioritised the need to generate scientific 
impact from brain disease research.  This involved consolidating and accelerating the readiness of 
the platform for end users, and giving careful consideration to the range of disorders that could 
realistically be addressed by the MIP.11 

 
9  https://www.humanbrainproject.eu/en/about/project-structure/subprojects/#SP8, 26/11/2018   
10    This refers to work in the period of the Second Grant Agreement (SGA2) to fund the HBP from 1 April 2018 to 31 

March 2020.   
11  In SGA3, there is a proposal to develop what has been termed MIP Central, which will contain data that is not 

public, and which requires special treatment to ensure privacy that cannot be carried out in the existing 
federated structure – for example the ‘defacing’ of data from patients undergoing intracerebral recording which 
can be used to reconstruct identifiers of specific individuals. The MIP Central will also seek to develop specific 
encryption technologies, using a unique identifier, that can connect all data from a given patient, but without 
it being possible for that to be traced back to that specific individual.  As this proposal is currently at an early 
stage, we shall not discuss it in this report.    

http://creativecommons.org/licenses/by-nc-nd/4.0/
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 Following extensive discussion and refinement of the technical infrastructure design, in part 
to address the privacy and confidentiality concerns raised in a previous report by the Foresight 
Lab12 and the subject of the first Opinion by the Ethics and Society Division of the HPB13, the MIP 
uses a data collection architecture employing MIP-Local terminals deployed in hospitals and clinical 
research settings, and federating them in ways that aim to both preserve the anonymity of the 
patients to whom the data refers, and to enable researchers to explore the aggregated data to 
identify potential correlations between brain related data and clinically relevant symptomatology.  
Developments proposed in the current phase of work include ongoing development and refinement 
of the interfaces between data providers and researchers, with new end-users of the interface 
between the MIP-Federate layer and the MIP-Local terminals deployed in hospitals and clinical 
research setting.  It also entails the development of new data alignment and mapping tools to 
connect the data from hospitals, and from  a range of cohorts collected in the course of clinical 
trials or other research. It also requires the integration and extensive testing of data analytics 
algorithms and methods into the MIP – which  is being complicated by more stringent data 
anonymisation requirements to conform with the General Data Protection Regulation (GDPR). 

3.1 Neurodegenerative disorders 
Neurodegenerative disorders (Alzheimer’s, Parkinson’s) have so far been the focus of the data 
analysis in SP8. A core dimension of the MIP is the development of data analytics tools that will be 
accessible through MIP-Local terminals. As of yet, the data analysis tools in SP8 have been 
developed using publicly accessible data-bases, such as the Alzheimer's Disease Neuroimaging 
Initiative (ADNI) and the Parkinson’s Progression Markers Initiative (PPMI). This is due to problems 
inhibiting data sharing between hospitals and researchers within SP8.  While the hope had been 
that clinicians in hospitals would readily share their data with the MIP, in reality it became clear 
that incentives for clinicians to share medical data are not high enough to perform the labour 
necessary to make the data findable, accessible, interoperable and reusable (FAIR). The machine 
learning tasks currently performed include: semi-supervised classification, re-description mining, 
option predictive clustering, feature ranking, and equation discovery. All these methods require 
standardised and well-distributed data-sets to explore associations between features in the data, 
and the results of various clinical and imaging tests.  

 For example, research in the Department of Knowledge Technologies at Jožef Stefan 
Institute in Ljubljana, Slovenia found associations between gene variants and cognitive impairments 
in the ADNI databases, as well as a high correlation of PAPP-A (pregnancy associated plasma protein) 
and Alzheimer’s Disease, which had not been reported elsewhere and was identified as an area for 
further study (Mihelčić et. al. 2017). This research has served as a ‘proof of principle’ within the 
HBP.  However, researchers are aware that to move beyond ‘proof of principle’ more clinical data 
from hospitals would be required. Towards this end, the Neurodegenerative Virtual Brain (TVD-
NDD) joined the HBP as a partnering project (WP8.7) in 2018 and is run by The Virtual Brain 
consortium (TVB),14 which aims at bringing to the MIP additional data processing and integration 
facilities.  Using EEG, MEG and BOLD data, the role of TVD-NDD is to develop multiscale simulations 
that link these data to whole-brain atlases, as well as neuron and population-level simulations in 
order to “identify key mechanisms that predict neurodegenerative disease (NDD) progression”. This 
aspect of the HBP’s MIP builds on The Virtual Brain platform which was originally developed as a 
generic modelling platform, later developed for epilepsy modelling, and which is described in more 
detail below.  

 
12  https://kclpure.kcl.ac.uk/portal/en/publications/foresight-report-on-future-medicine(7a09988a-4596-4505-

ac25-76f8e71937a9).html 
13  https://sos-ch-dk-2.exo.io/public-website-production/filer_public/42/e2/42e28dca-6d5d-4513-9771-

88ab71fc3ce1/data_protection.pdf 
14  https://www.thevirtualbrain.org/tvb/zwei/home 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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3.2 Epilepsy: F-TRACT and The Virtual Epileptic Patient 
The Virtual Epileptic Patient (VEP) merges together various different individual patient data with 
generic brain models, blurring the boundaries between data and model. The constraints, or 
limitations of the models, are set using a patient’s structural data from MRI and connectivity data 
from Diffusion-weighted MRI (dMRI). These data undergo a series of processing steps using open-
access software. The non-personalised models and tools include: 1) a “parcellation template” which 
divides the brain into different functional regions, and 2) the Epileptor model - a population neuron 
model - which simulates features of seizure dynamics. The network models are ‘fitted’ to the 
functional data obtained from an individual patient’s SEEG recordings.  

 VEP is described by its developers as a ‘Personalised Brain Model’ (Jirsa et al., 2017). The 
idea of a personalised brain model is something of an oxymoron because a model by its very 
definition is generic. The justification for the term here refers to the use of individual patient data 
as constraints and parameters, and utilising them for fitting and validating the models. A new model 
is built for each individual patient, although certain features and functions remain generic.  

 VEP is currently part of a clinical trial across several clinics in France investigating the 
effectiveness of computational neuroscience tools in determining the placement of SEEG 
electrodes, in the localization of patients’ ‘epileptogenic zone’ to be removed during surgery, and 
in simulating surgical procedures and outcomes in terms of compromises to brain function15. The 
suggestion is that this tool can become a routine part of the pre-surgical analysis of epilepsy 
patients. Despite the promising results of these modelling techniques, some clinicians we 
interviewed for this report expressed concerns about the introduction of these ‘black-boxed’ 
models into clinical procedures. We explore these in Section 4.3.  

 In addition to the VEP, a new data-rich partnering project (WP8.8) that joined the HBP in 
2018 has the objective to provide access through the MIP to a multicentre database of human 
intracranial responses to direct cortical stimulations (CCEP) performed during 
stereoelectroencephalography (SEEG) explorations of epileptic patients who are candidates for 
resective epilepsy surgery. The F-TRACT database16, constituted through working with 25 
hospitals, has as its aim is to work towards the standardisation of the SEEG exploration of 
epileptic patients and the development of a human atlas of cortico-cortical connections. 

3.3 Psychiatric Disorders 
With the aim of expanding the scope of the MIP, new partners have joined to pursue research 
related to psychiatric disorders such as schizophrenia, depression, and addiction. Given that such 
research requires large quantities of clinical data required to develop and test data analytics tools, 
a Call of Expressions of Interest was launched in the Spring 2018 to find interested consortiums that 
already possess such large clinical data sets. 

 Data-intensive algorithmics has been facing difficulties in the domain of mental health 
research due to a number of complex factors, but it is increasingly gaining traction (Schumann et 
al., 2010; Kendler et al., 2018; Karatheodoris Davis, 2019). A key data-rich Partnering Project 
(WP8.10) resulting from this call is comprised of 4 research centres (3 in Germany, 1 in the UK), 
and is working with datasets related to schizophrenia, depression, and addiction. The German 
centres are part of the Psychiatric Imaging Network Germany (PING), which serves to coordinate, 
standardize and optimize data acquisition and storage of the neuroimaging studies of 9 participating 
clusters17.  The UK centre, King’s College London, leads IMAGEN, a European research project 

 
15  http://ins.univ-amu.fr/science/epinov-improving-epilepsy-surgery-management-and-prognosis-using-virtual-

brain-technology/  
16  https://f-tract.eu/  
17 http://www.ping.rwth-aachen.de/ 
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“examining how biological, psychological, and environmental factors during adolescence may 
influence brain development and mental health. Using brain imaging and genetics, the project will 
help develop prevention strategies and improved therapies for mental health disorders in the 
future.18” Between them, these 4 centres pursue a large diversity of studies and collect clinical 
datasets, spanning 3 dimensions usually studied independently: 

1) Behavioural and cognitive data: Numerous questionnaires and tests are applied to acquire the 
relevant behavioural measures. These measures are overlapping across different studies. Some 
of the major tests include: Positive and Negative Syndrome Scale (PANSS), Beck’s depression 
Inventar (BDI), Global Assessment of Functioning (GAF). 

2) Structural and activity imaging of the brain 

3) Genetic and biological data (collected through targeted blood tests) 

Each of the 4 centres have a MIP-Local terminal, and will be using, and testing, different data 
analytical tools and methods provided by the MIP, such as Sparse Canonical Clustering Analysis 
(SCCA). Running multivariate analysis across the 3 dimensions in conjunction aims at making new 
clusters emerge that will highlight patterns not found in any single dimension. Such a cluster 
constitutes a pathophysiological model of disease that can then be analysed and tested to assess 
its relevance. Further, the 2 lead centres (King’s College London and Aachen University) are 
cooperating with the MIP on its mission of interconnection and integration through MIP-Federate, 
by helping develop text mining and design data structures, curation, etc.  As this work is at an early 
stage, we have not explored it in detail in this report, however the more general issues that we 
raise below are certain to affect the use of conclusions drawn from algorithmic data mining that 
we discuss below. 

4. Clinical Translation and the Challenge of Trust 
At the 2018 Summit meeting of the HBP, the chair of the HBP Clinical Advisory Board urged 
researchers to remember that when developing even the most wonderful of medical tools, it is 
mandatory, always, to develop the human side of these tools. The human side of data-intensive 
algorithmics for brain disorders comprises a triangle of trust relationships: between patients and 
researchers, between patients and clinicians, and between clinicians and researchers. The 
Foresight Lab has explored the former during the Ramp-Up Phase of the HBP, in its Foresight Report 
on Future Medicine 19  and in its contribution to the HBP Ethics and Society Opinion on Data 
Protection and Privacy. 20    One of our central recommendations was that patients, patient 
representatives and patient bodies should be involved at every stage of the research, and actively 
engaged in the process – patients should be regarded as collaborators in the co-production of 
results, not merely as data points.  Here we explore similar issues concerning questions of trust 
between patients and clinicians and between clinicians and researchers as they may impact the use 
of diagnostic technologies based on machine learning techniques of analysis of large quantities of 
patient data gathered in hospitals, in research projects and elsewhere. 

 Such data-driven medical research necessitates collecting and accessing increasingly 
detailed data that stand as proxy for increasingly large cohorts of patients. A consequence is the 
frequent lack of direct relations between patients and researchers, with data collection and access 
largely intermediated by hospitals and other healthcare institutions. Gathering large quantities of 
data anew from large numbers of patients is a costly and time-consuming undertaking, and hence 
there is a strong incentive to re-use existing data from previous research subjects or from patients’ 

 
18  https://imagen-europe.com/ 
19  https://kclpure.kcl.ac.uk/portal/en/publications/foresight-report-on-future-medicine(7a09988a-4596-4505-

ac25-76f8e71937a9).html 
20  https://sos-ch-dk-2.exo.io/public-website-production/filer_public/42/e2/42e28dca-6d5d-4513-9771-

88ab71fc3ce1/data_protection.pdf 
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medical records in hospitals and clinics. Data anonymisation is often used, as it is in the Human 
Brain Project, in order to avoid having to seek new consent from patients or their relatives in order 
to re-use these data for a new purpose.  However it can lead to a double bind: excess anonymisation 
can void the data of valuable research information and yield only noise, but insufficient 
anonymisation has the potential for re-identification. More significantly for our current discussion, 
from the patients and public perspective, the lack of direct human relation with researchers, the 
lack of control and oversight on how and when patients’ data may be used and re-used, and the 
opacity of certain research initiatives, can lead to lack of confidence in the veracity and clinical 
utility of the resulting diagnostic technologies, as well as to perceived breaches of trust.  

4.1 Trust in patient-clinician relationships 
The 2012 Health Survey by the Pew Research Centre and California Healthcare Foundation of 3014 
adults living in the United States found that 70% of study respondents “got information, care or 
support from a doctor or other health care professional, 60% got information or support from friends 
and family and 24% got information from others who have the same health condition - also known 
as peer-to-peer support” (Fox and Duggan, 2013). It also found that “Clinicians are the central 
resource for information or support during serious episodes”. This not only attests to the high 
degree of trust between patients and clinicians when it comes to health decisions but to the fact 
that “the care and conversation take place mostly offline”, which adds a physical face-to-face 
dimension to the ways in which trust between clinicians and patients are nurtured and maintained 
(Fox and Duggan, 2013).  

 As to “Why do individuals trust their doctors the most?” a similarly large survey by 
PricewaterhouseCoopers (2012) found that “Human relationships” were instrumental in trust-
building and trust-maintaining processes. In the adoption of clinical technologies, this is key as 
Kathryn Armstrong, senior producer of web communications at Lehigh Valley Health Network, USA 
noted:  

“You want to trust and connect with the people providing you the care. It’s easier to trust a 
person than an organization ... while medical technology companies will disseminate 
information via their product sites, very few have actually engaged with patients due to 
regulatory concerns. Healthcare providers have the ability to form human relationships and 
connections with their patients, which ultimately leads to increased trust” (ibid). 

In 2012, PricewaterhouseCoopers’ (PwC) conclusion was that “as building these relationships [of 
trust with patients] becomes increasingly important to establishing trust and credibility with 
consumers, healthcare companies will need to reconsider their approach to these relationships.” 
According to Ferdinand Velasco, Texas Health’s chief medical information officer (op. cit 27), 

There is a lot of patient data—clinical and soon genomics as well. But what is really happening 
in our patients’ lives is missing to us and their record— what’s happening in their lives is 
happening in the social space. ...If we understand the life factors that impact when and who 
they select for care and what challenges they face after receiving care, there is a lot of 
potential for merging analytics with the clinical side and improving care. 

The lack of access to various facets of human suffering that lies underneath the bare data is 
particularly acute for organisations and institutions engaged in translational research where 
researchers traditionally have no direct interaction with patients except during clinical trials.   Yet, 
despite this lack of engagement with patients and clinicians in the upstream development stages, 
the expectation of scientific innovation is that once the technology is developed it will be readily 
adopted by both clinicians and patients at the researchers’ word of its power to improve their lives 
(Datta, 2018). Many scholars suggest that public engagement ‘downstream’ – that is to say after a 
technology is developed - “‘is largely ineffective in rebuilding public trust” (Wynne, 2006, p. 217). 
Technology driven research has widened this divide between the context of research and the 
clinical situation (Epstein, 1996; Smith et al., 2017), creating a widening “chasm in the 
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understanding of end-users between provider’s imagination of a future user and users’ lived 
experiences” (Datta, 2018, p. 354).  

 Some technology providers have attempted to go beyond an imagined picture of the end 
user (Hyysalo & Johnson, 2015) to incorporate evidence on user experiences.  Thus the PwC report 
suggests that technology designers should: 

Invest in monitoring targeted conversations and integrating data into product decisions across 
research and development, drug safety, product complaints, sales and marketing, market 
research, and other business operations. Treat social media as another source of business 
intelligence that can provide insights at the aggregate level (e.g. how is your product working, 
is there an untapped market, and what improvements can be made?). (PwC, 2012, p. 32). 

While, in one sense, this advice recognises that translation will only happen if a technology meets 
user’s needs and is designed in a way that they trust, it is unfortunate if the only considerations 
that lead to such user engagement are the dynamics of profit maximisation.   

4.2 Clinician-driven innovation vs. researcher-driven 
innovation  

Clinician-driven innovation or medical innovation is innovation where the “main goal of innovative 
care is to improve an individual patient’s condition” (International Society for Stem Cell Research, 
2008, p. 15). However, such individualised knowledge of patient’s responses to medical innovation 
is often considered anecdotal, non-generalisable and thus inconclusive for proving safety or 
efficacy. This is distinguished from clinical research or researcher-driven scientific innovation 
where the “aim is to produce generalisable knowledge” based on the conclusiveness of randomised 
clinical trial data (ibid).  Patient acceptance of innovative medical technologies, while it may be 
informed by personal experience or the experience of other patients, ultimately relies on the 
relationship of trust between clinicians and patients (Lindvall & Hyun, 2009).  

 Patient acceptance of scientific innovation thus reflects in large part the trust that the 
administering clinician has in the use of an innovative technology in clinical settings. This suggests 
that researchers need to build trust with clinicians for technology adoption and as numerous studies 
show, including clinician experiences meaningfully in upstream technology development processes 
- rather than as part of a box-ticking exercise in post-development processes - is key to meaningful 
technology adoption and adaption (Wilsdon & Willis, 2004; Wong et al, 2008). For instance, a study 
of the development of an ‘electronic clinical handover system’ at the Department of General 
Internal Medicine (DGIM), Royal Hobart Hospital (RHH) found that: 

Although there are clearly practical difficulties in addressing and responding to the 
heterogeneous requirements expressed by different users, marginalizing these views 
ultimately is to the detriment of the systems built. …[meaningful engagement] with clinicians 
in the development of a sustainable system ...by drawing attention to the importance of users 
[i.e. clinicians] and by outlining the practical experience of dealing with the diversity of 
requirements and views expressed, within the domain of eHealth [was important] for a user-
centred systems approach… (Wong et al, 2008). 

In the domain of psychiatry research and practice, Sullivan et al. (2005) argue for a "bottom-up" 
approach in which services researchers assist frontline clinicians in testing interventions that 
clinicians themselves have devised …and result in interventions that are more likely to be sustained 
over time” (see also Board, 2010; Borkovec, 2004).  
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4.3 Trust and Epistemological Conflict between 
Clinicians and Researchers 

While the HBP Medical Informatics Platform is not currently intended for use in clinical settings, 
there are work packages within SP8 that involve collaborations between researchers and clinicians. 
Interviews with members of these work packages have highlighted the importance of close 
collaborations between clinicians, or “domain experts”, and data analysts not just for the sharing 
of medical data, but more importantly for defining the research questions pursued. Computer 
scientists in SP8 stated that research questions should be defined by clinicians, and only then can 
machine learning tools or methods be selected and decisions made about which types of data are 
needed.  The current relationship between clinicians and computational neuroscientists in some 
work packages of the HBP is that the clinic sends researchers anonymised patient data, researchers 
perform analyses using computational models, and send back the results of the analyses. Trust 
emerged in interviews as an important element in the relationship between clinicians and 
researchers, particularly around data bias, model transparency and different epistemological 
traditions in neurology, the neurosciences, and computer sciences.   

 With regards to model transparency, researchers found it concerning that clinicians do not 
understand the modelling frameworks used - specifically the assumptions of the statistical, machine 
learning and other data analysis methods. Clinicians, on the other hand, found it concerning that 
modellers do not understand the biology and physiology of the conditions being explored, which 
they deemed necessary to develop clinically useful models. Computational modellers suggested 
that future educational programmes for physicians needs to include training in computational 
methods in order to adapt to changing clinical contexts where machine learning and other 
computational tools are likely to become more common-place. While modellers acknowledged that 
“domain-specific” training would be desirable to collaborate with clinicians, the generalist 
traditions of computer science require that tools are developed for general-purpose and are then 
adapted to specific use-cases. While some modellers do develop expertise in specific fields (such 
as neuroscience, or oncology), it is more common for computer scientists and engineers to move 
across biological domains of expertise.  

 Shorter-term technical solutions are being explored to circumvent these problems. For 
example, some members of SP8 have argued that machine learning tools need to be interpretable 
to clinicians. This means that the clinician needs to be able to trace back the way an algorithm has 
come to a certain conclusion, thus rendering the decision-making ‘transparent’. Indeed, 
transparency is one of the key ethical principles in discussions around accountability in AI 
(Mittelstadt et. al. 2016). An association of researchers in Microsoft, Google, and others have, for 
example, proposed the principles of “Fairness, Accountability, and Transparency in Machine 
Learning” to address the “potentially discriminatory impact of machine learning” as well as the 
“dangers of inadvertently encoding bias into automated decisions” (FATML, 2018). Interviews with 
computer scientists in the HBP suggested that, to adhere to the principle of transparency, 
supervised and semi-supervised learning algorithms were preferable to unsupervised learning 
algorithms. This is because the supervised and semi-supervised classification algorithms being 
developed in the HBP can be represented as decision-trees, which are more interpretable to 
collaborating clinicians than the ‘black box’ of unsupervised learning.  

 However, even if algorithms are less opaque, there remain other epistemological obstacles 
– that is to say, clashes of epistemologies - to collaborations between clinicians and researchers.  
Clinicians interviewed for this report talked about the importance of clinician-patient interaction 
for diagnosis. For example, in the diagnosis and treatment of epilepsy, clinicians carry the patients 
through from diagnosis to pre-surgical screening, surgery, and post-surgical rehabilitation. This is 
seen by some as an already personalised treatment since each patient is unique in terms of the 
symptoms exhibited and surgical treatment needed. This ‘holistic’ treatment of the individual - 
common in neurology - is seen by computational neuroscientists as “subjective” and “biased”, 
elements that need to be removed or reduced in clinical settings which were described as “low 
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validity environments” by computational neuroscientists. Psychologist Daniel Kahneman’s work on 
decision-making was used to support this idea: "to maximize predictive accuracy... decisions should 
be left to algorithms in low validity environments" (2013).  

 The ‘tacit knowledge’ of the clinicians is crucial, for example concerning the decision on 
where to place SEEG electrodes for an epileptic patient, and the consequent analysis of the various 
data sets from the patients to decide which part of the brain to remove during surgery. Researchers 
consider such tacit or experiential knowledge as an implicit model because it involves a series of 
steps that result in a decision, or solution. However, they expressed concern that these steps are 
not made explicit. On the other hand, clinicians defended this ‘intuition’ as the result of years of 
diagnostic experience and surgical interventions that become internalised in their judgement 
processes. Clinicians insist that just because these were not fully articulated, or perhaps even 
capable of full articulation, does not mean they were not valid.  

 The epistemological conflict between the ‘subjective’ knowledge of the physicians and the 
so-called ‘objective’ knowledge of the data analysis finds its way into discussions around data bias. 
Data scientists need what they call “good data distribution”, standardised data, and comprehensive 
meta-data. An HBP computer scientist said:  

There are different cultures of how clinicians diagnose and treat – different clinicians with 
different expertise and knowledge can label patients differently. And many scores – like the 
Montreal Cognitive Assessment (MoCA) – are arbitrary, on a scale of one to five or something. 
This kind of noise can be compensated for if you have large amounts of physicians involved 
who can make sure the data is distributed well and can check the quality of measurements, 
missing data.  

Interpretable or not, clinicians interviewed for the report suggested that if the computational 
models recommended a different diagnosis or course of treatment than that recommended by 
clinicians, the clinician’s - rather than the researchers’ analyses - would be pursued. However, 
since the use of machine learning tools in clinical settings is still undergoing clinical trials, it 
remains to be seen what the clinical implications of the use of these tools will be, and how clinicians 
will respond to the introduction of these new techniques. Furthermore, because of these 
epistemological differences amongst clinicians themselves, and between clinicians and researchers, 
HBP scientists have said that developing their models for clinical use will require the involvement 
of industry partners to translate or develop these models into marketable and user-friendly 
software – of course, after undergoing clinical trials for EMA or FDA approval. The next section 
discusses the difficulties HBP is likely to face in commercialising the data analytics tools currently 
in development. 

5. Challenges to commercialisation 
Beyond the translational complexities already discussed, there are many challenges in the final 
step, that is to say how these emerging computational diagnostics models developed within the 
HBP, once embodied in 'software' will reach the bedside.  Within the HBP, it is likely that this final 
step - in fact a series of complex steps -  will be undertaken by commercial companies skilled in 
the regulation and marketing of medical devices.  The pathway to market involves complying with 
complex regulatory standards to obtain market authorisation.21 These require the investment of 

 
21  European Medical Devices Directive (MDD 93/42/EEC) till April 2020 and the EU Medical Device Regulation 

(MDR 2017/745) thereafter. Annex VIII, Chapter III, Rule 11 of the EU MDR classifies software as a medical 
device (SaMD) as "...software used for diagnosis or therapeutic purposes" under Class IIa medical device 
"UNLESS: Failure could cause a serious deterioration of health or surgical intervention – then it is Class 
IIb (e.g., software driving monitoring of a respiratory or circulatory system)". Other SaMD relevant sections are 
Annex 1 (General Safety and Performance Requirements), Chapter 1, Sections 15 (page L 117/99), 17 (for 
Programmable Electrical Medical System; page L 117/100-101), 22 (use by lay persons). Relevant FDA 
regulations are the US Quality System Regulation (21 CFR Part 820; specifically 820.30 on design control), an 
updated SaMD guidance in 2017 (https://www.fda.gov/ucm/groups/fdagov-public/@fdagov-meddev-
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considerable capital in the generation of clinical evidence, evaluation, verification and validation 
processes.22  This work is likely to be undertaken by established medical device corporations, as 
the venture capital base in the EU is not only notoriously sparse in early-stage investment unlike in 
the US (Byword & Timmons, 1992; Faria & Barbosa, 2014), but almost non-existent for medical 
applications which are perceived as highly risky based on uncertain regulatory environments 
(Ackerly et al, 2009) involving lengthy pathways to market (Fleming, 2015).  The EC's H2020 
undertook initiatives to boost early-stage financing by "protect[ing] up to €320.14million to help 
innovative firms to gain access to various types of risk financing".  
 According to principal investigators of medical devices research projects based in leading 
Europe research institutions, investors are wary of the stricter regulatory environment within the 
EU compared to the US, and hence consider this an area that is highly risky for investment. This is 
consistent with studies of VC financing trends in medical applications in Europe (Ackerly et al, 2009; 
Fleming, 2015). Thus large corporations in the medical devices industry present the most likely 
option for Europe-based innovators to unlock both capital and regulatory investment needed to 
commercialise, although this private sector investment tends to come at the mature stages when 
there is more certainty of a product's ‘commercialisability’. For instance, in the EPINOV project 
funded by INSERM (France's national funding for research in health and medicine), researchers from 
Aix Marseille Université collaborate with Hôpitaux de Marseille (and other hospitals and clinics 
across France). However, the software development at the mature stages based on the Virtual 
Epileptic Patient models currently under clinical testing, will be done by the private actor Dassault 
Systèmes. This trend of mature-stage buy-out type of extractive innovation financing - i.e. 
extracting private value from publicly funded innovation - is consistent with financing trends in the 
European medical device innovations market (Lehoux et al, 2014 in Lehoux et al, 2016).    

 The capacity to engage with and successfully establish partnerships with large private 
medical devices actors will determine which innovation reaches the market, and thus it is not 
surprising that many of the developments that we have discussed in this report already involve 
collaboration with industry. Since most large public research institution-based innovators in Europe 
and elsewhere (are mostly contractually obligated to) rely on their home institution's 'technology 
transfer centres’ (TTCs) (eg. http://www.mttc.org/) to facilitate the entire 'partnering' process 
particularly in formalising institutional and researchers shared rights to intellectual property 
generated, the HBP - as an external actor to this process - can play an essential match-making role 
in pairing eligible private actors to invest in the research it funds. Notably, TTCs backed by large 
universities often partner with private legal expertise specialised in navigating the regulatory-
approval seeking process that are costly but typically offered gratis to affiliated researchers. 

 Issues of intellectual property add further complexities for commercialisation of HBP-funded 
research. Given that the HBP-funded component of most research team's innovation is required to 
be open-access or publicly accessible e.g. as GNU General Public License (GNU-GPL) software, this 
part of the research will have no intellectual property or 'exchangeable value' to offer private actors 
in return for investment. Only the non-HBP funded non-publicly accessible component of each 
research team's innovation - or what is known as closed-source or proprietary software - will thus 
be of interest to commercia actors. This separation of research from its output in software 
development driven by research funder's open-access requirement is not new and increasingly the 
norm, as, for example, in ONIX23 - "a closed source yet globally distributed SDN [software-defined 
networking] controller" is an early example (Berde et al, 2014).  This is to some extent recognised 

 
gen/documents/document/ucm524904.pdf); 'draft non-binding recommendations' in 2017 to deregulate a new 
class of SaMD as low-risk "Clinical and Patient Decision Support Software" although medical imaging software 
continue to be regulated (page 6 in  
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/ 
guidancedocuments/ucm587819.pdf). 

22  IMDRF/SaMD WG/N41FINAL:2017. Software as a Medical Device (SaMD): Clinical Evaluation Authoring Group: 
International Medical Device Regulators Forum. (Updating IMDRF/SaMD WG/N12FINAL:2014). 

23  https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Koponen.pdf 
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in developments such as The Pan-European Venture Capital Fund(s)-of-Funds programme.24 Of 
course, the question of whether closed-source policies should be adopted to encourage the private 
extraction of publicly-funded research, remain a matter of debate. As does the more problematic 
question of the extent to which profit-based interests of extractive innovation financing, rather 
than social and medical need, shape which health technologies reach the market. 

6. Conclusion: Challenges along the pathways to 
the clinic 

6.1 Transparency is crucial 
Transparency and open science are core values of responsibility in scientific research and 
innovation. These issues have become prominent in debates over algorithmics, with the demand 
for explainability and accountability of inscrutable systems getting stronger (Vayena et al., 2018). 
This demand is gaining traction as it is increasingly believed to be a mandatory step towards safety 
and trustworthiness of AI and machine learning systems, and it is seen as integral to ethically-
aligned design principles. Unsupervised learning algorithms, which aim is to discover inherent 
structures in data without using pre-existing categories, are under special scrutiny for being 
notoriously inscrutable even to their designers. In this context, the idea of using such unsupervised 
machine learning to discover ‘brain signatures’ that could bring about a complete revision of the 
classification of mental disorders appears more problematic than ever. 

6.2 Involvement of clinicians upstream is crucial 
Ongoing collaborations between clinicians and modellers in the HBP, especially in the field of 
epilepsy, provide an opportunity to reflect on the obstacles posed by innovations in data analytics 
and their clinical applications. The involvement of clinicians in the formulation of research 
problems and in the start of the design of research projects before they reach clinical trials has 
been effective in fostering these collaborations.  

 However, clinicians do not have the required training to critically analyse the results of 
these new data analysis tools, and because of a lack of understanding of these models and the ways 
algorithms reach decisions, have expressed a distrust of the results. While unsupervised learning 
has been successful in diagnosis, especially in relation to the analysis of medical images (Google 
DeepMind), these are far less interpretable than other machine learning methods. And even if 
machine learning tools are more interpretable, clinicians interviewed for the report have stated 
that if the data analysis offers different conclusions than their medical opinion, they will likely 
trust their own opinion. Research shows that ‘low-level’ clinical tests are not always trusted across 
institutions, and some clinics only trust data and tests from their own labs.  Thus involvement of 
clinicians in early stage research is a crucial step towards gaining clinical trust necessary for 
translation to the clinic more generally.  

 There is a need to acknowledge the tacit knowledge of clinical reasoning, which has made 
it difficult in the past to incorporate algorithmic tools. While there is a trend towards the 
quantification of healthcare in recent years, and the view that the ‘subjectivity’ of clinicians’ 
assessments are ‘biased’, it is important to see the value of the experiential and tacit knowledge 
of clinicians that is so foundational to the relationships of trust between patients and physicians.  
Technologies that are perceived to add value to clinical reasoning rather than competing with it 

 
24  http://www.eif.org/what_we_do/equity/paneuropean_venture_capital_fund_of_funds/index.html 
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(e.g. the new generation of AI-integrated or 'smart' computation diagnostics tools) are more likely 
to win clinician's trust. 
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