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ABSTRACT:  The binary and ternary mixtures of nitrates are desirable phase change materials 9 

(PCMs) as latent heat thermal energy storage media for solar energy applications. In this study, 10 

graphene oxide was synthesized with graphite powder firstly, then it was doped into HITEC salt 11 

or solar salt solvent with sonication using two-step methods. Metal foams including nickel and 12 

copper ones were impregnated with the salt seeded with graphene (nanocomposite) finally. The 13 

morphologies of the synthesized composites were analyzed extensively, while the thermo-physical 14 

properties of the composites were both theoretically predicted and experimentally investigated. 15 

The results indicated that metal foam was compatible with nanocomposite, and the thermal 16 

stabilities of the composite PCMs were good regarding the thermal cycle characteristics. The 17 
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effective thermal conductivities of the salt/graphene/metal foam composites were distinctly 1 

enhanced, while the latent heats of the present composite PCMs were smaller than that of pure salt 2 

to some extent. Furthermore, the phase change temperatures shifted slightly in the presence of 3 

porous metal foam and graphene, while the addition of graphene could compensate for the 4 

reduction of specific heats of the composite PCMs caused by metal foam. Finally, it was found 5 

that the thermal effusivities of the salt/graphene/metal foam composites were larger than those of 6 

pure salt, indicating the increments of 110~270% in solid state and 150~360% in liquid state, 7 

respectively. The fundamental information of the nanocomposites with porous media could 8 

broaden their application in thermal energy storage system.  9 

 KEYWORDS: molten salt; graphene; metal foam; morphological characteristics; thermal 10 

characterization 11 

1. INTRODUCTION 12 

Nowadays, renewable energy as one source of energy has drawn much attention due to the 13 

increasing environmental problems such as global warming, COx emissions, depletion of zone 14 

layer, etc. Solar energy as the clean and almost endless source of renewable energy is considered 15 

as accessibility to energy resources in most countries in the world. However, energy system 16 

integrated with solar energy is short of stability and reliability, which is caused by the intermittence 17 

and instability of solar energy, as various regions with different climates. To overcome the 18 

inevitable barriers of the imbalance between energy supply and requirement, energy storage is 19 

proposed to address the time-dependant limitation essentially [1-2]. There are three different 20 

methods for energy storage, including sensible heat storage, latent heat storage and chemical heat 21 
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storage. Among them, latent heat thermal energy storage (LHTES) can provide a much higher 1 

energy storage density with a smaller temperature variation [3-4].  2 

      Molten salts as the phase change materials (PCMs), with relatively low cost and no 3 

flammability, are widely used as the storage media of LHTES system among the temperature range 4 

of 100-500 oC. It is difficult to directly use molten salts in real systems, as their weak thermal 5 

stability and low thermal conductivity lead to low charging/discharging rates of the LHTES system. 6 

It should be noted that many techniques related to heat transfer enhancement are adopted to 7 

improve the thermo-physical properties of PCMs, and composite PCMs have received increasing 8 

research interests. One of the effective methods is to impregnate PCMs into porous media such as 9 

graphite foam and metal foam, which can significantly increase the thermal conductivities of the 10 

PCMs [6-9]. Kholmanov et al. [6] fabricated carbon nanotube (CNT) network inside continuous 11 

ultrathin graphite foam (UGF), then impregnated erythritol into the hybrid structure of UGF-CNT. 12 

The results indicated that the thermal conductivity increased to 4.1 W m-1K-1 and the sub-cooling 13 

of erythritol was apparently suppressed. Wang et al. [7] synthesized cetyl palmitate/nickel foam 14 

composites via melting infiltration method. It was found that the thermal conductivities of the 15 

composites fabricated with nickel foam of the pore sizes of 70, 90, 110 PPI were 0.6465, 0.6942, 16 

1.6687 W m-1K-1, respectively, compared to that of pure cetyl palmitate of 0.3432 W m-1K-1. Xiao 17 

et al. [8] synthesized the composite PCMs with paraffin and copper/nickel foams of different 18 

porosities and pore sizes under vacuum impregnation method. The highest effective thermal 19 

conductivity in the results was 16.01 W m-1K-1, which was fabricated with copper foam of 89.0% 20 

porosity and 1.0 mm pore size. Additionally, it was found that the pore size hardly affected the 21 

effective thermal conductivity of the composite PCM. Feng et al. [9] experimentally and 22 

theoretically studied the effects of the porosity and pore density of the foam on the freezing rate, 23 
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which was conducted in a water/copper foam system with unidirectional freezing. They pointed 1 

out that the pore size slightly affected the freezing rate, and the local thermal equilibrium was 2 

verified with the temperature measurements of the foam skeleton and pore. However, majority of 3 

the studies indicated that the addition of metal foam would decrease the latent heat and specific 4 

heat of the composite PCM to some extent.  5 

      In other words, nanoparticles such as Al2O3, SiO2, Fe2O3, TiO2, CuO, MgO and CNT are with 6 

exceptional thermal properties, and the utilization of those materials is one of the key effective 7 

methods to improve the thermo-physical properties of pure PCMs [10-11]. Moreover, 8 

nanoparticles have been recently proposed to mitigate the issue of low specific heats of molten 9 

salts, i.e., keep and increase the specific heats of the nanocomposites [12-15]. Tiznobaik et al. [12] 10 

studied the enhancements of specific heat of molten salt (Li2CO3:K2CO3=62:38) with the addition 11 

of magnesium oxide nanoparticle. It was found that a semi-solid layer of dendritic shaped phase 12 

was formed, contributing to the enhancement of the specific heats. Riazi et al. [13] experimentally 13 

investigated the effects of the morphology and dispersion of particle on the specific heat of nano-14 

salts fabricated by solar salt and silica nanoparticle, and stable dispersion could induce the 15 

enhancement of the specific heat by 17.6%. Song et al. [14] investigated the specific heat of the 16 

nanofluids made of Ca(NO3)2·4H2O-KNO3-NaNO3-LiNO3 and 1.0 wt.% SiO2 nanoparticle with 17 

the size of 20 nm. The maximum specific heat increased by 17.0% when the nanofluid was 18 

prepared under the condition of 750 rpm (stirring rate) and 15 min (mixing time). An enhancement 19 

of 34.0% in the specific heat of binary carbonate salt was obtained by Zhang et al. [15], while the 20 

salt was microencapsulated with silica shell. Graphene is with large specific surface area and stable 21 

chemical characteristics, and extensively studied recently [16-23]. Yang et al. [20] synthesized the 22 

composite PCMs made of polyethylene glycol (PEG) and hybrid graphene aerogels (HGA) via 23 
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vacuum impregnation, where HGA was composited of graphene oxide (GO) and graphene 1 

nanoplatelets (GNP). It was found that the PEG/HGA composite presented high thermal 2 

conductivity and good shape stabilization, e.g., the composite (0.45 wt.% GO, 1.8 wt.% GNP) had 3 

the thermal conductivity of 1.43 W m-1K-1, while that of pure PEG was 0.31 W m-1K-1. Chen et al. 4 

[21] synthesized mePCMs with graphene oxide and octadecylamine (GO-ODA) via in-situ 5 

polymerization. It was found that the supercooling of n-octadecane could be retrieved, and the 6 

thermal conductivity and energy storage ability were substantially enhanced. Kant et al. [22] 7 

numerically investigated the melting characteristics of an aluminum square cavity, which was 8 

encapsulated with Capric Acid, CaCl2·6H2O, or n-octadecane mixed with graphene nanoparticles 9 

in three different volumetric ratios (1%, 3%, and 5%). It was found that the graphene improved 10 

the melting characteristics, but considerably degraded its natural convection heat transfer 11 

efficiency. Yuan et al. [23] investigated the influences of the surface functionalization of graphene 12 

on the properties of the polyethylene glycol/graphene composites with MD simulations. It was 13 

found that the graphene increased the phase change temperature and specific heat. But these studies 14 

indicated that the heat transfer enhancement with the addition of nanoparticles is very limit.  15 

      The integration of metal foam and nanoparticles together to enhance the thermo-physical 16 

properties of pure salt can fill the research gap between thermal conductivity and thermal storage 17 

capacity. However, the research on doping nanoparticles into molten salt/metal foam composite is 18 

very few. The investigations of thermo-physical properties of the salt/graphene nanocomposites 19 

and salt/graphene/metal foam composites are of vital importance. Based on the research 20 

background of the storage of solar energy and geothermal energy within the temperature range of 21 

100~300 oC for electricity generation, this research will be focused on preparation and 22 

characterization of the salt/graphene/metal foam composites so as to see how the thermo-physical 23 
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properties of pure salt are affected by additives. Considering the suitable phase change 1 

temperatures and moderate melting enthalpies [24-25], HITEC salt (40 wt.% NaNO2, 7 wt.% 2 

NaNO3 and 53 wt.% KNO3) and solar salt (60 wt.% NaNO3 and 40 wt.% KNO3) were employed 3 

as the PCMs. Graphene oxide synthesized with several chemical processes were doped into salt 4 

solvent with two-step method firstly, and metal foam was impregnated with graphene seeded salt 5 

finally. The morphologies of the materials were analyzed by Scanning Electron Microscope (SEM), 6 

Fourier Transform Infrared Spectrometer (FTIR) and X-ray diffraction (XRD), and the thermal 7 

conductivities of the composite PCMs were theoretically predicted based on the correlations and 8 

models of the porous media. The thermal behaviors of all the materials were analyzed with DSC 9 

(differential scanning calorimeter), and the thermal stabilities and thermal effusivities were studied 10 

subsequently. It is highly indispensable to study the thermo-physical properties of the composite 11 

PCMs, which largely determine the performance and applicability of the LHTES system. And the 12 

LHTES system can be integrated into solar energy and geothermal energy utilization systems.  13 

2. PREPARATION AND THERMAL CHARACTERIZATION 14 

2.1. Graphene oxide and composite PCMs 15 

The graphene oxide was produced from graphite powder involving several chemical processes 16 

by adopting the modified Hummer’s method [26-27], which was done in controlled environment. 17 

Graphite powder (<20 μm, Sigma Aldrich, UK) was considered as the starting material. Sulphuric 18 

acid (H2SO4, concentration: 95%, VWR Chemicals, UK) and nitric acid (HNO3, concentration: 19 

69%, VWR Chemicals, UK) were used to oxidize graphite powder in water solution. As a typical 20 

synthesis procedure shown in Figure 1 (a), 12 g of graphite powder was mixed with 100 mL 21 

H2SO4 and 50 mL HNO3 in a conical flask, and the solution was kept on stirring for 24 h at a hot 22 
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plate of about 50 oC. The reactants were synthesized with the addition of 100 mL of Deionized 1 

(DI) water, which were continuously magnetic stirring in a whole day. Then 12 g of potassium 2 

permanganate (KMnO4, concentration: 99%, Sigma-Aldrich, UK) was slowly added to the above 3 

solution, and stirred in an ice bath of 0 oC for 5 h. 60 mL of hydrogen peroxide (H2O2, 4 

concentration: 36%, Sigma-Aldrich, UK) was added, and the suspension was stirred overnight, 5 

which was conducted in the ice bath to keep the temperature low. Subsequently a filter paper 6 

(Whatman #42) was used to filter the resultant suspension. Then the filtrate from the solution was 7 

successively washed three times with hydrochloric acid (HCl, concentration: 10%, Sigma-Aldrich, 8 

UK) and DI water, which was then centrifuged with Heraeus Megafuge 16R (ThermoFisher 9 

Scientific, UK) at 13000 rpm for 1 h. After discarding the supernatant, the remaining material was 10 

then vacuum-dried overnight at 40 °C. Finally the graphene oxide nano-sheets were obtained.   11 

     NaNO3 (Honeywell Fluka, UK), KNO3 (Acros Organics, UK) and NaNO2 (Honeywell Fluka, 12 

UK) were used as the base PCM, and the previous graphene and metal foam (Suzhou Longde 13 

Metal Foam Electronics Co. Ltd., CN; Porosity: 95.0%; Pore size: 10 pores per inch) were applied 14 

to enhance the thermo-physical properties of pure salt. Table 1 lists the thermo-physical properties 15 

of HITEC salt, solar salt, graphene (subscript np), and metal foam [28-30]. Figure 1 (b) shows the 16 

synthesis process of the salt/graphene/metal foam composites, which was similar to that of the 17 

salt/Al2O3 nanopowder/metal foam composites in a previous research [31]. Firstly, NaNO2, 18 

NaNO3 and KNO3 with mass ratios of 40:7:53 named HITEC salt was prepared and dissolved into 19 

DI water. Graphene with different mass fractions (1%, 2% or 3%) was suspended in the solution, 20 

respectively, which was then sonicated for 1 h (FB15057 ultrasonicator), so as to make good 21 

dispersion. Then the immersion of metal foam in a metal disc filled with the solution was carried 22 

out, which was sonicated with 10 mins to evacuate the air. The metal disc with the solution was 23 
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heated inside an eurotherm oven manufactured by Carbolite Sheffield at 200 oC for 30 mins, then 1 

the salt/graphene/metal foam composite PCMs were obtained after naturally cooled. A similar 2 

method was used to synthesize the solar salt/graphene/metal foam composites, while NaNO3 and 3 

KNO3 with a mass ratio of 60:40 and a heating temperature of 250 °C were used instead. Series 4 

morphological and thermal characterization of the composites were addressed subsequently.  5 

2.2. Morphological analysis  6 

     TEM (Transmission electron microscopy, FEI Tecnai TF20, Oxford Instruments, UK) was 7 

used to reveal the size of the synthesized graphene, so as to check whether the nanoparticles 8 

prepared are in nanoscale or not. Tabletop Microscope TM3030Plus (SEM, Hitachi High-9 

Technology, Japan) was used to measure the surface characteristics of the composites on an uneven 10 

area, the modes of BSE and EDX were applied.  11 

      FTIR and XRD which investigates the functional groups presented in a specimen can analyze 12 

chemical bonding and molecular structure of the specimens. In the present study, Nicolet IS10 FT-13 

IR spectrometer (ThermoFisher Scientific, UK) with a resolution of 4 cm-1 covers wavelength 14 

range of 400~4000 cm-1, and gives the spectra of all the specimens at room temperature. The lab-15 

based XRD used was a D8 powder diffractometer (Bruker, UK) with a Vantec detector (Cu-Ka 16 

source, 1.540 Å). The reflections of X-Rays was conducted by crystallographic atomic planes, and 17 

the operational voltage and applied current for the instrument were maintained at 40 kV and 40 18 

mA, respectively. The specimen of about 0.5 g was prepared and filled in a shallow and circular 19 

holder, which was with the diameter of 4 cm and the depth of 1.5 cm. During the experiments, the 20 

total scanning time was 45 mins considering a step size of 0.035 o and a scanning range of 10-60 21 

o, then the data were analyzed using X’Pert HighScore Plus software.  22 

https://www.sciencedirect.com/topics/engineering/transmission-electron-microscopy
https://www.sciencedirect.com/topics/engineering/nanoscale
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2.3. Techniques of thermal characterization 1 

2.3.1. Characterization of effective thermal conductivity 2 

Graphene used in the present study are with the density and thermal conductivity of 2200 kg m-3 

3 and 5000 W m-1K-1, respectively [22], and the densities of the nanocomposites are shown in 4 

Supporting Information (Table S1). Nanoparticles can affect the thermal conductivity of the 5 

nanocomposite, which can be estimated with the theoretical models. The effective thermal 6 

conductivity of the nanocomposite (nc) was calculated with the modified Maxwell-Garnett model 7 

[32-33], which considered the Brownian motion and nanoparticles aggregation and shown as 8 

follows: 9 
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(1) 10 

where KB is Boltzmann constant, dnp is nanoparticle size, which is 350 nm in the present study [34]. 11 

Tnc is the temperature of nanocomposite, and μPCM is the viscosity of pure salt. Based on the 12 

comparisons between the experimental measurements with steady state method and the theoretical 13 

predictions with models in the previous research [8], it has been proven that the models can 14 

accurately predict the thermal conductivities of the composite PCMs fabricated by metal foam. 15 

Thus the thermal conductivities of the salt/graphene/metal foam composites were theoretically 16 

predicted in the present study, due to the lack of steady state test device. A series of structural 17 

models were chosen based on the previous comparisons [35-37], as listed in Table S2.   18 

2.3.2. Characterization of thermal behavior  19 

     The phase change behaviours of pure salt and composite PCMs were conducted with a Mettler-20 

Toledo DSC (DSC1, Mettler Toledo Ltd., Leicester, UK), with the accuracy of temperature 21 
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measurement of ±0.02 oC. The specimen was weighted using an Ultra-microbalance Mettler-1 

Toledo balance (UMX2, Mettler Toledo, Leicester, UK) with an uncertainty of ±0.001 mg, and 2 

half of the crucible was filled to avoid the overflow issue. A standard aluminum crucible with 100 3 

µL as the sample crucible was encapsulated with about 20.0~30.0 mg specimen, then the sample 4 

crucible and an empty crucible considered as the reference were symmetrically put into a platinum-5 

iridium furnace. The heating method for HITEC salt and its composites was maintained at 50 oC 6 

for 10 mins, ramped from 50 oC to 200 oC at a rate of 5 oC min-1, then kept isothermally for 10 7 

mins at 200 oC. While the cooling method was similar and ramped from 200 oC to 50 oC at a rate 8 

of -5 oC min-1, and the phase change of the specimens were characterized by both the extrapolated 9 

onset and peak temperatures. The thermal cycle for solar salt and its composites was similar, while 10 

the only difference was the temperature ranged from 100 oC to 300 oC. 11 

The present DSC was also used to measure the specific heat of pure salt and its composites 12 

both in solid phase and liquid phase. The method followed to calculate the specific heat was the 13 

three-step procedure [38]. Firstly, the baseline heat flux (q0) was recorded from two empty 14 

crucibles. Secondly, the heat flux (qsapphire) was recorded from one crucible sealed with the standard 15 

sapphire and one empty one. Thirdly, the heat flux of the specimen was recorded (qs), where one 16 

crucible sealed with the specimen was used instead of the sapphire crucible. The specific heat of 17 

the specimen (cp, s) can be calculated as follows: 18 

sapphiresapphire

ss
sapphire ,s ,

/

/

mq

mq
cc pp 


=

                                                       

(2) 19 

In the present study, the salt and its composites were subjected to the same thermal procedure, that 20 

is, heated from 100 oC to 300 oC at 25.0 oC min-1 and isothermal at 100 oC and 300 oC for 10 mins, 21 

respectively.   22 

http://www.baidu.com/link?url=5wU40PSAb4XKC4kGz1LQrbuqG46PeJBgeZWj9BsEqvr-1WcgKVzWnmE34Qw5NYUCNFhsuurnCUjMm87SyDTktFQ2GQN3WTkv1LXREHHlBTq
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2.3.3. Thermo-gravimetric analysis and thermal effusivity 1 

      The weight of a specimen will be positively or negatively affected by the physical or chemical 2 

changes. Mettler-Toledo TGA (DSC1, Mettler Toledo Ltd., Leicester, UK) was used to detect the 3 

variation of mass correlated to temperature, and the operating temperature ranged from 40 °C to 4 

850 °C at 10 oC min-1 in the present study. The ceramic crucibles were selected to adapt the 5 

materials and temperatures of the experiments, and about 5.00 to 10.00 mg specimens were loaded 6 

into the crucibles. Nitrogen purge gas with the purity of 99.99% was worked as carrier under a flow 7 

rate of 50 mL min-1, which was controlled by a gas controller GC100.  8 

The thermal effusivity of a material illustrates the capability of a material to exchange thermal 9 

energy with its surroundings [30, 38]. The thermal effusivity (e) is defined in Eq. (3).  10 

 pce =
                                                                    

(3) 11 

The thermal effusivity consists of the heat capacity and heat transfer rate of the material, and 12 

is a critical physical quantity and a controlling parameter in describing the heat transfer 13 

performance in a number of industrial applications. In the present study, the thermal effusivities 14 

in both solid and liquid states were calculated respectively. For the calculation of thermal 15 

conductivity, 25 oC was considered in Eq. (1) in solid state, while 200 oC for HITEC salt and 250 16 

oC for solar salt were considered in liquid state.   17 

3. RESULTS AND DISCUSSION 18 

3.1. Morphologies of composite PCMs 19 

Figure 2 shows the morphologies of the graphene and composite PCMs characterized by TEM 20 

and SEM. The graphene shown in Figure 2 (a) is with the size of hundred nanometers, consists of 21 
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porous-like flakes. The SEM pictures of the salt/graphene nanocomposites are shown in Figure 2 1 

(b). It can be found that the sample shows a smooth appearance in large scale, and a granular 2 

appearance partially in the SEM pictures. As a result, distinguishing the nanoparticle (graphene) 3 

from salt becomes difficult. Figure 2 (c) and (d) shows the samples of the salt/graphene/metal 4 

foam composites. It can be seen that there is no separation between the nanocomposite and metal 5 

foam, and the existence of the elements Cu, Na, K, N has been verified in the EDS spectrum. In 6 

addition, a dimensionless parameter  [39] is employed to evaluate the compatibility between the 7 

nanocomposite and metal foam, where the parameter reflects the ratio of the actual mass to the 8 

ideal one of the nanocomposite impregnated into the porous metal foam. It was found that the 9 

impregnation ratio can reach above 90.0% in the present study.  10 

      Figure 3 (a) shows FT-IR absorption spectra of pure salts, the salt/graphene nanocomposites and 11 

salt/graphene/metal foam composites. The peaks in FTIR spectra (Figure 3 (a-I)) for HITEC salt 12 

and its composite PCMs are observed at 835 cm−1, 1228 cm−1, 1370 cm−1, 1763 cm−1 and 2396 13 

cm−1, while the peaks in FTIR spectra (Figure 3 (a-II)) for solar salt and its composite PCMs are 14 

observed at 834 cm−1, 1345 cm−1, 1763 cm−1, 1789 cm−1 and 2428 cm−1. The difference should be 15 

attributed to the element of sodium nitrite (NaNO2) in HITEC salt. It can be seen that no apparent 16 

difference of FT-IR absorption spectra are found for all the specimens fabricated by the same salt, 17 

indicating that the physical bonding of graphene with nitrate or nitrite exist does not interrupt the 18 

chemical structure interaction. Thus graphene can mix well with salt, similarly to other 19 

nanoparticles [40]. In addition, FT-IR absorption spectra also indicate that the salt/graphene/metal 20 

foam composite has no occurrence of new structure.  21 

      Figure 3 (b) presents XRD patterns of pure salts, the salt/graphene nanocomposites and 22 

salt/graphene/metal foam composites. It can be seen from the pattern of HITEC salt that, 23 
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characteristic peaks appear at 19.35o, 23.86o, 29.72o, 32.30o, 34.11o, 41.45o, 44.77o and 51.41o. 1 

While characteristic peaks appear at 23.94o, 29.52o, 32.14o, 39.19o and 48.13o from the pattern of 2 

solar salt. The appearance and disappearance of peaks correspond to the relevant elements. Other 3 

characteristic diffraction peaks of the composite PCMs are nearly the same as those of pure salt. It 4 

can be concluded that the salt remains intact in the metal foam without chemical reaction, and is 5 

also not greatly affected by graphene. As a result, all combinations are formed by physical action. 6 

However, it can be seen from Figure 3 (b) that new peaks marked in rectangular regions appear at 7 

around 26~28o in the patterns of the salt/graphene/metal foam composites. Those peaks should be 8 

an indication of the appearance of nickel or copper element. 9 

3.2. Thermal characterization of composite PCMs 10 

3.2.1. Effective thermal conductivities of composite PCMs 11 

 Figure 4 shows the calculations of the effective thermal conductivities of the composite PCMs, 12 

which were considered in solid state (T=25 oC). It is shown that the effective thermal conductivities 13 

of the salt/graphene nanocomposites increase slightly. The effective thermal conductivities of 14 

HITEC salt/graphene nanocomposites are 1.045 W m-1K-1, 1.091 W m-1K-1 and 1.137 W m-1K-1 15 

with the addition of 1 wt.%, 2 wt.% and 3 wt.% graphene, respectively, while those of solar 16 

salt/graphene nanocomposites are 1.049 W m-1K-1, 1.099 W m-1K-1 and 1.150 W m-1K-1. The 17 

phenomenon is a little higher than those in the literature [40-41], e.g., the thermal conductivity of 18 

solar salt/1 wt.% Fe2O3 nanocomposite is 0.828 W m-1K-1 [40], while the thermal conductivity of 19 

solar salt/0.5 wt.% MgO nanocomposite is 0.853 W m-1K-1 [41]. The reason is that the thermal 20 

conductivities of the iron oxide and magesium oxide are slightly lower than that of graphene. 21 

Similarly, the addition of 1~3 wt.% graphene slightly increases the effective thermal conductivities 22 
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of the salt/metal foam composites, i.e., the effective thermal conductivities of the salt/nickel foam 1 

composites and salt/copper foam composites can be enhanced by 8~16% and 26~49%, 2 

respectively. Moreover, the effective thermal conductivities of the salt/graphene/metal foam 3 

composites are greatly enhanced, e.g., the effective thermal conductivity of HITEC salt/3 wt.% 4 

graphene/copper foam composite can reach approximate 8.7 W m-1K-1, indicating about 1140% 5 

increment in comparison with HITEC salt; While that of HITEC salt/3 wt.% graphene/nickel foam 6 

composite can reach approximate 3.0 W m-1K-1, indicating about 330% increment in comparison with 7 

HITEC salt. Therefore, there are apparent difference between the effective thermal conductivities 8 

of the salt/graphene/copper foam composites and those of the salt/graphene/nickel foam 9 

composites, which is caused by the higher thermal conductivity of copper skeleton, as listed in 10 

Table 1. However, because of corrosion issue of copper induced by salt, the balance related to the 11 

thermal conductivity and thermal stability should be considered in practical application. It can be 12 

concluded that the composite PCMs with good thermal characteristics can be the effective media 13 

in the application of LHTES system, given that metal foam provides conductive paths for heat 14 

transfer. In addition, in a preliminary pilot test, it is found that the time-duration of solar salt/2 wt.% 15 

graphene/copper foam composite for heat storage is considerably reduced by about 75.0%, in 16 

comparison with that of pure solar salt, which verifies the large thermal conductivity of the composite 17 

PCMs.  18 

3.2.2. Phase change behaviors of composite PCMs 19 

    The phase change temperatures and latent heats of pure salts, the salt/graphene nanocomposites 20 

and salt/graphene/metal foam composites were obtained with DSC. Figure 5 shows the values of 21 

the phase change temperatures of pure salts and composite PCMs. With the addition of graphene, 22 

the extrapolated onset melting temperatures and onset freezing temperatures of pure salts can be 23 
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slightly decreased and increased, respectively, e.g., for HITEC salt/3 wt.% graphene 1 

nanocomposite, the extrapolated onset melting temperature and onset freezing temperature shift 2 

from 138.67 oC and 141.79 oC to 137.27 oC and 142.08 oC, respectively, in comparison with those 3 

of HITEC salt; While for solar salt/3 wt.% graphene nanocomposite, the extrapolated onset melting 4 

temperature and onset freezing temperature shift from 220.82 oC and 227.29 oC to 219.31 oC and 5 

227.45 oC, respectively, in comparison with those of solar salt. The early occurrence of phase 6 

change is mainly because of the good combination and dispersion performance of the salt and 7 

nanoparticles [38], as depicted in Figure 2 (b). The combined effects of metal foam and graphene 8 

induce the variations of phase change temperatures of the salt/graphene/metal foam composites to 9 

some extent. It can be seen that for HITEC salt, the melting/freezing phase change temperatures 10 

of the salt/graphene/copper foam composites deviate from 1.11 oC maximumly, whereas that of 11 

the salt/graphene/nickel foam composites is about 0.69 oC. For solar salt, the melting/freezing 12 

phase change temperatures of the salt/graphene/copper foam composites deviate from 4.13 oC 13 

maximumly, whereas that of the salt/graphene/nickel foam composites is about 4.96 oC.   14 

     Figure 6 shows the variations of latent heats for pure salts and the composite PCMs. Three 15 

measurements were done to ensure the repeatability and accuracy of the results. The latent heats 16 

of the salt/metal foam composites decrease significantly as metal skeleton does not undergo the 17 

phase change process, e.g., the latent heat of HITEC salt/nickel foam composite decreases from 18 

60.62 kJ kg-1 to 48.37 kJ kg-1, while that of solar salt/nickel foam composite decreases from 108.39 19 

kJ kg-1 to 77.47 kJ kg-1, in comparison with that of pure salt. The addition of graphene can slightly 20 

affect the latent heats of the salt and salt/metal foam composites, e.g., the latent heats of HITEC 21 

salt and HITEC salt/nickel foam composite decrease to 57.59 kJ kg-1 and 46.32 kJ kg-1 with the 22 

addition of 3 wt.% graphene, respectively; while those of solar salt and solar salt/nickel foam 23 
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composite decrease to 104.59 kJ kg-1 and 74.53 kJ kg-1 with the addition of 3 wt.% graphene, 1 

respectively. The phenomenon of the slight decrease of latent heat can be attributed to the two 2 

reasons. On one hand, the mass fraction of graphene is very small and within 3%, which should 3 

reduce the latent heat slightly. On the other hand, the increase of the interfacial thermal resistance 4 

caused by the interface between the salt and graphene might affect the latent heat to some extent 5 

[42]. A compromise between the metal foam and graphene should be considered to get the suitable 6 

thermo-physical properties of the composite PCMs in practical application.  7 

3.2.3. Specific heats of composite PCMs 8 

Table 2 lists the mean specific heats of HITEC salt, the salt/graphene nanocomposites and 9 

salt/graphene/metal foam composites. The specific heats in solid and liquid states were calculated 10 

within the temperature range of 105~110 oC and 180~290 oC, respectively. It can be seen that 11 

with the addition of graphene, the specific heats of the nanocomposites are enhanced both in solid 12 

and liquid states, e.g., the specific heats of HITEC salt/3 wt.% graphene nanocomposite are 1.463 13 

kJ kg-1K-1 and 1.601 kJ kg-1K-1 in solid and liquid states, compared to those of HITEC salt of 14 

1.415 kJ kg-1K-1 and 1.562 kJ kg-1K-1, respectively. It can be summaried that the enhancements 15 

are about 0.80~3.39% in solid state, and -1.43~2.47% in liquid state with the graphene 16 

concentration of 1~3 wt.%. Furthermore, the specific heat enhancements are compared with those 17 

in the literature [43], as listed in Table S3. The enhancements are a little lower than those in the 18 

relevant work, which is mainly due to the type, size and concentration of the nanoparticles. In 19 

contrast, the specific heats of the salt/graphene/metal foam composites decrease, in comparison 20 

with that of HITEC salt, which is due to the inclusion of metal foam. It is found that the 21 

weaknesses of specific heat are about 0~12.01% in solid state, and 0.80~11.61% in liquid state 22 

totally.  23 
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Table 3 lists the mean specific heats of solar salt, the salt/graphene nanocomposites and 1 

salt/graphene/metal foam composites. The specific heats in solid and liquid states were calculated 2 

within the temperature range of 150~200 oC and 260~290 oC, respectively. It can be seen that 3 

with the addition of graphene, the specific heats of the nanocomposites are also slightly enhanced 4 

in solid state, e.g., the specific heat of solar salt/3 wt.% graphene composite is 1.843 kJ kg-1K-1 in 5 

solid state, compared to that of solar salt of 1.830 kJ kg-1K-1. It can be seen that the enhancements 6 

are about 0.05~2.45% in solid state with graphene concentration of 1~3 wt.%, which are lower to 7 

be -7.46~-0.27% in liquid state. Similarly, Table S3 lists the comparisons of specific heat 8 

enhancements with those in the literature [13, 40, 41, 44-47]. As different types, sizes and 9 

concentrations of the nanoparticles were used by the researchers, diverse enhancements are 10 

presented accordingly. The specific heat enhancements in the present study show general 11 

agreement with the relevant works. Additionally, the same tendency is found between current 12 

study and the study of Awad et al. [40], that is, the specific heat enhancements become lower in 13 

liquid state than those in solid state. On the contrary, the specific heats of the salt/graphene/metal 14 

foam composites decrease similarly, compared to that of solar salt, due to the inclusion of metal 15 

foam. It is found that the weaknesses of specific heat are about 3.81~19.48% in solid state, and 16 

5.56~18.81% in liquid state.  17 

The phenomenon of the increase of specific heats for the salt/graphene nanocomposites can 18 

be attributed to the following reasons. Graphene nanoparticles strongly interact with the molten 19 

salt molecules around, and contribute to form the nanostructure named compressed layer with 20 

extremely large specific surface area [13, 42, 48-49]. This different structural characteristics cause 21 

large intermolecular force together with the increased surface energy, and induce the 22 

enhancement of the effective specific heat subsequently. Additionally, the interfacial thermal 23 
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resistance of the nanostructure between the salt and graphene will increase with the increased 1 

surface area to some extent [42], but it will not affect the total thermal resistance of the composite 2 

PCMs. Further molecular dynamics simulation and heat transfer analysis are needed to clarify the 3 

mechanism of the enhancement of specific heat.     4 

3.2.4. Thermo-gravimetric analyses of composite PCMs  5 

Figure 7 shows the thermo-gravimetric analyses of pure salts and salt/graphene/metal foam 6 

composites. It can be seen that the tendency of two type of salts and their composites are similar. 7 

There is no mass descending until 300 oC, indicating that the samples are totally dry for the 8 

experiments. HITEC salt is stable up to about 540 oC, then rapid degradation of the salt appears, 9 

as shown in Figure 7 (a). It can be seen that nearly 60% of the mass loses between 550°C and 10 

800°C. The mass remain percentage at 800 oC for HITEC salt, HITEC salt/1 wt.% graphene, 11 

HITEC salt/2 wt.% graphene and HITEC salt/3 wt.% graphene are 41.39%, 44.40%, 48.19% and 12 

53.27%, respectively. The larger percentages of HITEC salt/graphene composites might be due to 13 

the inclusion of graphene, which can exist over 800 oC. A solid stable compound may be produced 14 

as the mass slightly changes above 800°C, e.g., the mass remain percentage of HITEC salt at 850 15 

oC is 39.74%. Because all the TGA tests were conducted under the atmosphere of nitrogen to avoid 16 

oxidation, and most of the mass loss happens through the release of nitrogen and oxygen gases. 17 

The remain mass in the crucible might be a mixture of sodium and potassium oxide. Furthermore, 18 

the salt/graphene/metal foam composites show larger mass left at the final stage, as the metal 19 

skeleton (nickel or copper) can be kept over 850 oC [50-51].   20 

     It can be seen from Figure 7 (b) that solar salt is also stable up to about 590 oC, then rapid 21 

degradation appears. Similarly, the salt/graphene nanocomposites are with larger percentages of 22 



 

19 

mass at 800 oC, in comparison with that of pure solar salt. The salt/graphene/metal foam 1 

composites show larger mass left finally because of the metal skeleton (nickel or copper), almost 2 

65.0% and 75.0% for the salt/3 wt.% graphene/nickel foam composite and the salt/3 wt.% 3 

graphene/copper foam composites. However, it can be seen from Figure 7 that the mass remain 4 

percentages of the salt/graphene composites below 600 oC are slightly lower than that of pure salt, 5 

which might be caused by the tolerance of the experiments.   6 

3.2.5. Thermal stabilities of composite PCMs  7 

The stabilities of the salt/3 wt.% graphene/metal foam composites were determined with DSC, 8 

which were performed similarly to section 3.2.2 of thermal behaviour characterization. Figure S1 9 

shows examples of the curves of fifty thermal cycles, and it can be seen that the peaks  belongs to 10 

solid-solid phase change are obvious in several thermal curves at the beginning, but those peaks 11 

degrade in the following thermal cycles. However, the solid-liquid phase change can be kept well 12 

with the thermal cycles, and slight changes are found after the circulations. It is found that the 13 

phase change temperatures together with latent heats of the composite PCMs after fifty thermal 14 

cycles are almost the same as those shown in Figures 5 and 6, indicating that the samples are with 15 

good stabilities. Furthermore, the morphologies of the sample before and after thermal cycles 16 

indicates that slightly separation between graphene and salt appears after fifty cycles. A 17 

preliminary pilot test shows that the temperature evolutions appear almost no difference after 18 

several heat storage/retrieval processes. 19 

3.3. Thermal effusivities of composite PCMs 20 

The effusivities of pure salts, the salt/graphene nanocomposites and salt/graphene/metal foam 21 

composites are calculated, and the results both in solid and liquid states are listed in Tables 2 and 22 
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3. Here, only the thermal conductivities calculated with the model of Calmidi and Mahajan were 1 

considered [35]. Generally, because of the good thermo-physical properties of graphene, the 2 

present effusivities of the nanocomposites are slightly larger than those in the literature, e.g., the 3 

effusivities of the solar salt/1 wt.% Fe2O3 nanocomposite are 1.636 kJ m-2K-1s-1/2 and 1.301 kJ m-4 

2K-1s-1/2 in solid and liquid states [40], in comparison with those of the solar salt/1 wt.% graphene 5 

nanocomposite of 2.023 kJ m-2K-1s-1/2 and 1.794 kJ m-2K-1s-1/2, respectively. It can be seen that the 6 

effusivities of the composite PCMs are larger than those of pure salt, e.g., the effusivities of HITEC 7 

salt/3 wt.% graphene/copper foam composite are 5.11 kJ m-2K-1s-1/2 in solid state and 5.27 kJ m-8 

2K-1s-1/2 in liquid state, while those of HITEC salt are 1.43 kJ m-2K- s-1/2 and 1.15 kJ m-2K-1s-1/2 in 9 

solid and liquid states, respectively. It is due to the reason that although the specific heats of the 10 

salt/graphene nanocomposites and salt/metal foam composites decrease slightly, the thermal 11 

conductivities of those composite PCMs increase. It can be concluded that the effusivities of the 12 

salt/graphene/metal foam composites can be increased by 110~270% in solid state and 150~360% 13 

in liquid state, respectively. Furthermore, as the inclusion of metal foam greatly increases the 14 

thermal conductivities of pure salts (shown in Figure 4), the thermal effusivities of the 15 

salt/graphene/metal foam composites are larger than those of the salt/graphene nanocomposites, 16 

which benefits heat storage. The potential application of the salt/graphene/metal foam composites 17 

can increase the heat storage/retrieval rates of the LHTES system, inducing the high power and 18 

energy efficiency of the system. 19 

It can be seen from Table 2 that the thermal effusivities of HITEC salt and its composite PCMs 20 

are almost the same in solid and liquid states, which is because that the density and thermal 21 

conductivity of HITEC salt are larger in solid state than those in liquid state, but the specific heat 22 

of HITEC salt is lower in solid state than that in liquid state. However, Table 3 show that the 23 
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thermal effusivities of solar salt and its composite PCMs are very different between solid and 1 

liquid states, which is because that the density, thermal conductivity and specific heat of solar salt 2 

are larger in solid state than those in liquid state. Therefore, the characteristics of different thermal 3 

effusivities in solid and liquid states should be considered in the selection of PCMs used in the real 4 

temperature range. Moreover, the addition of graphene and metal foam can restrict the flow of 5 

liquid salt, and retrieve the issue of the leakage accordingly, which provides a new strategy for 6 

obtaining shape-stabilized PCMs applied for thermal energy storage. 7 

4. CONCLUSIONS 8 

In the present study, HITEC salt and solar salt were used as the pure PCMs, and graphene and 9 

metal foam were combined to enhance pure salts. The composite PCMs were synethesized and 10 

morphologically and thermally characterized, and the conclusions can be drawn as follows: 11 

(1) The salt/graphene nanocomposite is totally compatible with metal foam, and no obvious 12 

changes of wavelength peaks are found with FT-IR analyses. Small peaks appear in XRD 13 

pattern of the salt/graphene/metal foam composites due to the addition of metal elements. 14 

(2) The effective thermal conductivities of the salt/graphene/metal foam composites are greatly 15 

enhanced, while those of the salt/graphene nanocomposites are slightly enhanced, in 16 

comparison with that of pure salt. A preliminary pilot test indicates that the time-duration of 17 

solar salt/2 wt.% graphene/copper foam composite for heat storage can be considerably 18 

reduced by about 75.0%, in comparison with that of pure solar salt.  19 

(3) With the addition of graphene, the extrapolated onset melting temperatures and onset freezing 20 

temperatures of pure salts can be slightly decreased and increased, respectively. The maximum 21 

deviation of the melting/freezing phase change temperatures of the HITEC 22 
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salt/graphene/copper foam composites is 1.11 oC, whereas that of the solar 1 

salt/graphene/copper foam composites is 4.13 oC. The specific heats of the salt/graphene 2 

nanocomposites are enhanced with the addition of graphene in solid state. 3 

(4) Thermo-gravimetric analyses indicate that HITEC salt and solar salt are stable up to about 540 4 

oC and 595 oC, respectively. Slight changes of phase change temperature and latent heat are 5 

found after the composite PCMs underwent fifty melting-freezing cycles, indicating the good 6 

stabilities of the composites. The effusivities of the salt/graphene/metal foam composites are 7 

larger than those of pure salt, indicating the increments of 110~270% in solid state and 8 

150~360% in liquid state, respectively. 9 

Consequently, the investigations of thermo-physical properties of the nanocomposites with porous 10 

media will lead to guide the design and model of the thermal energy storage system and improve 11 

the performance of the system accordingly. In other words, it will extend the application of 12 

nanoparticles in thermal energy storage. 13 
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Table 1 Thermo-physical properties of pure salt, metal foam and graphene used in the present 7 

study 8 

  HITEC 

salt [28] 

Solar 

salt [28-

29] 

Graphene [22] Metal foam 

 Nickel 

foam [30] 

Copper 

foam [30] 

Density  

(kg m-3) 

Solid 2065.5 2079.0 Density  

(kg m-3) 

2200 Porosity 95% 95% 

Liquid 1936.0 1884.0 

Melting point (oC) 140~142 218~228 Thermal 

conductivity 

(W m-1K-1)   

5000 Pore size 10 PPI 10 PPI 

Thermal 

conductivity 

(W m-1K-1) 

Solid 0.70 0.705 Specific 

heat 

(kJ kg-1K-1) 

0.79 Skeleton 

density 

(kg m-3) 

8900 8930 

Liquid 0.4366 0.478 

Dynamic viscosity 

(kg m-1s-1) 

  

0.00787 0.00506   Skeleton 

thermal 

conductivity 

(W m-1K-1) 

91.4 398 

 9 

 10 

 11 
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 5 

Table 2 Specific heats and thermal effusivities of pure HITEC salt, salt/graphene 6 

nanocomposites and salt/graphene/metal foam composites  7 

 8 

  9 

 
cps (kJ kg-1K-1) 

(105-110 oC) 

cpl ( kJ kg-1K-1) 

(180-290 oC) 

es 

(kJ m-2K-1s-1/2) 

el 

(kJ m-2K-1s-1/2) 

Pure HITEC salt 1.415 1.562 1.430 1.149 

HITEC salt/1 wt.% graphene 1.440 1.540 1.763 1.777 

HITEC salt/2 wt.% graphene 1.426 1.563 1.794 1.841 

HITEC salt/3 wt.% graphene 1.463 1.601 1.855 1.913 

HITEC salt/1 wt.% 

graphene/nickel foam 

1.274 1.422 3.003 3.099 

HITEC salt/2 wt.% 

graphene/nickel foam 

1.422 1.554 3.202 3.275 

HITEC salt/3 wt.% 

graphene/nickel foam 

1.303 1.427 3.094 3.180 

HITEC salt/1 wt.% 

graphene/copper foam 

1.336 1.495 5.262 5.428 

HITEC salt/2 wt.% 

graphene/copper foam 

1.270 1.391 5.149 5.261 

HITEC salt/3 wt.% 

graphene/copper foam 

1.245 1.381 5.115 5.266 



 

32 

 1 

 2 

 3 

 4 

Table 3 Specific heats and thermal effusivities of pure solar salt, salt/graphene nanocomposites 5 

and salt/graphene/metal foam composites 6 

a The results from Awad et al. [40] are also included for comparison, which clearly indicates that 7 

the thermal effusivities of the composite PCMs in the present study are improved significantly.  8 

 
cps (kJ kg-1K-1) 

(150-200 oC) 

cpl ( kJ kg-1K-1) 

(260-290 oC) 

es 

(kJ m-2K-1 s-1/2) 

el 

(kJ m-2K-1 s-1/2) 

Pure solar salt 1.830 1.677 1.638 1.229 

Solar salt/0.5 wt.% Fe2O3
a 1.570 1.394 1.819 1.583 

Solar salt/0.5 wt.% CuOa 1.530 1.377 1.693 1.425 

Solar salt/1 wt.% graphene 1.875 1.605 2.023 1.794 

Solar salt/1 wt.% Fe2O3
a 1.560 1.400 1.636 1.301 

Solar salt/1 wt.% CuOa 1.520 1.343 1.151 1.203 

Solar salt/2 wt.% graphene 1.831 1.551 2.047 1.817 

Solar salt/3 wt.% graphene 1.843 1.672 2.101 1.940 

Solar salt/1 wt.% 

graphene/nickel foam 

1.760 1.583 3.542 3.238 

Solar salt/2 wt.% 

graphene/nickel foam  

1.591 1.430 3.402 3.117 

Solar salt/3 wt.% 

graphene/nickel foam  

1.729 1.553 3.582 3.291 

Solar salt/1 wt.% 

graphene/copper foam 

1.474 1.371 5.543 5.145 

Solar salt/2 wt.% 

graphene/copper foam 

1.715 1.510 6.001 5.426 

Solar salt/3 wt.% 

graphene/copper foam 

1.515 1.361 5.663 5.177 
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(a) 

(b) 

Figure 1. Schematic diagram of the synthesis processes. (a) graphene (b) salt/graphene/metal 

foam composites. 
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(c-I) (c-II) (d-I)  (d-II) 

Figure 2. TEM and SEM pictures of graphene (a), salt/3 wt.% graphene nanocomposites (b) salt/3 

wt.% graphene/nickel foam composites (c) and salt/3 wt.% graphene/copper foam composites (d) (I: 

HITEC salt, II: solar salt).  

 1 
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 5 
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(a-II) 
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(b-II) 

Figure 3. FT-IR (a) and XRD (b) curves of pure salt, salt/graphene nanocomposites and 

salt/graphene/metal foam composites. (I: HITEC salt, II: solar salt) 
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(b) 

Figure 4. Effective thermal conductivities of salt/graphene nanocomposites and 

salt/graphene/metal foam composites. (a) HITEC salt (b) solar salt. (T=25 oC)   
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(b) 

Figure 5. DSC curves of pure salt and salt/graphene/metal foam composites. (a) HITEC salt 

(b) solar salt. 

 1 

160 180 200 220 240 260 280

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0

219.90°C

 
217.60°C

217.84°C

229.93°Conset

 

peak

Base line

 

Temperature (C)

227.29°C

225.06°C
peak

Base line

 

 

229.35°Conset

222.00°C

220.82°C

onset
Solar salt

 
 

222.29°C
peak

Base line

Salt/1 wt.% graphene

/nickel foam

215.86°C

218.13°C

H
ea

t 
F

lo
w

 (
W

 g
-1

)

Salt/2 wt.% graphene

/nickel foam

Salt/3 wt.% graphene

/nickel foam

peak
224.03°C218.95°C

onset 228.96°C
219.45°C

Base line

160 180 200 220 240 260 280

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0

219.82°C

 

221.77°C

219.00°C

229.43°Conset

 

 

peak

Base line

 

Temperature (C)

227.45°C

223.87°C
peak

Base line

 

 

229.09°Conset

222.49°C

219.31°C

onset

Salt/3 wt.% graphene

 
 

216.69°C
peak

Base line

Salt/1 wt.% graphene

/copper foam

217.14°C

218.98°C

H
ea

t 
F

lo
w

 (
W

 g
-1

)

Salt/2 wt.% graphene

/copper foam

peak
224.30°C

onset

219.09°C

219.37°C

228.77°C

Base line

Salt/3 wt.% graphene

/copper foam



 

41 

 

(a) 

 

(b) 

Figure 6. Comparison of latent heats for pure salt and salt/graphene/metal foam composites. 

(a) HITEC salt (b) solar salt. 
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(a) 

 

(b) 

Figure 7. Thermo-gravimetric analyses of pure salt and salt/graphene/metal foam composites. 

(a) HITEC salt (b) solar salt. 
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