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Abstract: Although natural convection and thermal creep have been well recognized in the 

continuum and rarefied regimes, respectively, the study of the competition of them in the whole flow 

regime, especially in the slip and transitional regimes, is very scarce. From a theoretical point of view, 

natural convection can be described by Navier-Stokes-Fourier (NSF) equations at the macroscopic 

level, while thermal creep is  based on kinetic theory at the molecular level. Therefore, it is quite 

challenging to capture these two effects simultaneously. In this work, we employ the unified 

stochastic particle Bhatnagar-Gross-Krook (USP-BGK) method, which was developed by the authors 

lately [J. Comput. Phys., 400, 108972 (2020)], to investigate thermally driven gas flow in a square 

enclosure. The simulation results obtained by the USP-BGK method are validated by comparing to 

those from NSF solutions and  direct simulation Monte Carlo (DSMC) method for the continuum and 

transitional regimes, respectively. Through massive simulations in a wide range of computational 

parameters, we find that the flow patterns in the whole flow regime cannot be determined by just one 

nondimensional parameter, i.e., the Rayleigh number ( Ra ), but needs two nondimensional 

parameters, i.e., the Knudsen number ( Kn ) and the Froude number ( Fr ), or Kn  and Ra . 

Specifically, small Knudsen and Froude numbers tend to generate natural convection with one vortex 

in the enclosure, while large Knudsen and Froude numbers tend to cause thermal creep with two 

vortices arrayed vertically. Moreover, our simulation results and analyses demonstrate that when 

0.12Kn  , thermal creep is dominant if 1.0Ra  , while natural convection is dominant if 

0.28Ra Fr  . These findings provide useful guidance for better understanding of the complex gas 

flow resulting from the  competition of natural convection and thermal creep under microscale or 

low-density conditions such as on the Mars.  
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mechanism 

1. Introduction 

Natural convection is a type of heat and mass  transport phenomenon, in which the fluid motion is  

generated by density differences in the fluid due to temperature non-uniformity. It has received 

sustained interest  due to its ubiquitous existence in nature and  a wide variety of engineering 

applications, such as electronic device cooling, solar thermal engineering, material processing, 

nuclear engineering, and so on1. The simplest model of natural convection is a fluid layer confined 

between two parallel walls maintained at different temperatures. Generally, it can be classified into 

vertical convection and horizonal convection, depending on the relative direction of the gravity and 

temperature gradient. A vast amount of research has been devoted to predicting the characteristics of 

fluid flow and heat transfer in these two types of natural convection2. 

It is well known that in the case of vertical convection, also referred to as Rayleigh-Bénard 

convection, macroscopic fluid motions and convective heat transfer only occur when the imposed 

temperature gradient exceeds a certain value. The Rayleigh number ( Ra ) at this condition is 

commonly called as critical Ra . For the case of fluids confined between two horizontal parallel walls 

that are heated from below, the linear stability analysis based on Navier-Stokes-Fourier (NSF) 

equations predicts a  critical Ra  of ~1708, above which pairs of counter-rotating vortices are formed3. 

On the contrary, there is no critical Ra  for the horizontal convection. Specifically, a circulation 

consisting of rising fluids along the heated wall and descending fluids along the cold wall is always 

formed, as long as there is a temperature gradient in a direction perpendicular to gravity. 

It should be noted that the aforementioned conclusions are accurate for the continuum regime, 

while they may become problematic when the fluids are in the rarefied regime, where nonequilibrium 

gas effect plays an important role. The extent of nonequilibrium can be defined by a non-dimensional 

parameter, namely, the Knudsen number ( Kn ), which is the ratio of the molecular mean free path to 

the characteristic length of the system. Generally, typical flow regimes can be classified as follows: 

continuum regime ( 0.001Kn  ), slip regime ( 0.001 0.1Kn  ), transition regime ( 0.1 10Kn  ), 

and free molecular regime ( 10Kn  ). Note that the demarcation between two neighboring regimes 

is not very strict. For example, a few studies demonstrated that the flow could be considered in the 

continuum regime if 0.01Kn  . Stefanov et al.4, 5, Manela and Frankel6, 7, and Zhang et al.8-10 have 

reported that the Knudsen number, namely, the effect of rarefaction also plays an important role in 

determining the instability of Rayleigh-Bénard convection.  

In the slip and transition regime, there is a unique phenomenon called thermal creep, which is 

resulted from the presence of temperature gradient along the walls rather than normal to the walls. 
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The creep mechanism cannot be described by continuum theories, but requires the viewpoint from 

the kinetic theory11. Considering a wall with a temperature gradient parallel to the surface, the  total 

tangential momentum of the molecules reflected from a given point at the surface is statistically equal 

to zero, however  the incident molecules coming from the hot region impart larger tangential 

momentums to the surface than those  coming from the cold region. Consequently, a shear stress is 

exerted on the wall, with the gas flowing from the cold to the hot region as a reaction force12. 

Papadopulos and Rosner13 first studied gas flows generated by thermal creep in a rectangular 

enclosure, where the top and bottom walls were kept at different temperatures and a linear temperature 

profile was assumed along the two side walls. They observed two main counter-rotating vortices with 

a mass flow from the cold region to the hot one in the vicinity of the side walls. Afterwards, many 

studies have been conducted on the gas flows in cavities and channels with different geometrical 

configurations and different temperature distributions along the walls10, 14-16.  

During the past two decades, there has been an ever-increasing research interest in thermal creep 

as the advent of micro-electro mechanical systems (MEMS). A variety of Knudsen pumps, sensors, 

and actuators have been developed utilizing the effect of thermal creep17-23. Recently, de Beule et al.24 

predicted that it is possible to generate thermal creep gas flows through the porous soil in Mars due 

to the temperature gradients provided by local and temporal variations in solar insolation and low gas 

pressure. In this case, the Martial soil virtually act as a Knudsen pump, and this may be the reason 

for the frequent dust storms on Mars25. On the other hand, natural convection is also ubiquitous on 

Mars and even more intense than that on Earth, as reported in the literatures26, 27. Therefore, it is 

interesting to study the competition of natural convection and thermal creep under some specific 

conditions such as microscale or low-density flows, where these two effects may play important roles 

simultaneously. 

In the present paper, we numerically study gas flow and heat transfer in a square enclosure, where 

the left and right walls are kept at different temperatures and linear temperature distributions are 

assumed along both the top and bottom walls. In this model, thermal creep is caused by the 

temperature gradient along the top and bottom walls, and the magnitude of creep velocities is 

dependent on the Knudsen number. Note that gravity is also included, so natural convection 

(horizontal convection) is spontaneously triggered due to the temperature gradient between the left 

and right walls, and the magnitude of convective velocities is proportional to the Rayleigh number. 

Our aim is to obtain thorough understanding of the characteristics of flow and heat transfer in 

enclosures for a wide range of Knudsen and Rayleigh numbers. To the best of our knowledge, there 

has been almost no research devoted to the combined effects of natural convection and thermal creep, 
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except that Weng and Chen28 studied the effect of thermal creep on the natural convective gas flow 

in a vertical  open-ended parallel-plate microchannel. They found that thermal creep enhanced the 

flow rate and heat transfer rate, but the flow patterns did not change much as the microchannel is 

open-ended in their model. On the contrary, the present results demonstrate that the competition 

between natural convection and thermal creep makes the flow in an enclosure much more complicated, 

and the flow patterns are dependent on both Knudsen number and Rayleigh number. 

Simulating gas flows in enclosures covering a wide  flow regime is quite challenging. It is 

commonly accepted that the NSF equations with no-slip or slip boundary conditions are trustable to 

describe gas behaviors for the continuum regime and slip regime, respectively. Correspondingly, the 

conventional computational fluid dynamics (CFD) methods are applicable in these flow regimes. 

However, when the gas flow goes to the transition and free molecular regime, the NSF equations with 

linear constitutive models break down, and thus conventional CFD calculations are no longer valid. 

Instead, direct simulation Monte Carlo (DSMC) method11 at the molecular level has been proved to 

be an efficient and accurate method under this condition. Theoretically, DSMC is valid for the whole 

flow regimes, as it can be regarded as a particle simulation method of solving Boltzmann equation 

based on the kinetic theory. However, it is required that the cell sizes and time steps in DSMC need 

to be smaller than the mean free path and mean collision time, respectively29. Therefore, the 

application of DSMC to the continuum regime is computationally too expensive to accessible.  

In this work, a new multiscale method called unified stochastic particle Bhatnagar-Gross-Krook 

(USP-BGK)30, which was developed by the authors lately, is employed to simulate thermal-driven 

gas flows in enclosures in a wide range of Knudsen and Rayleigh numbers. Comparing with DSMC, 

the USP-BGK method  can be implemented using much larger time steps and cell sizes by coupling 

the effects of molecular movements and collisions. We have successfully applied it to a variety of 

multiscale gas flows30, and here it is extended to simulate thermal-driven flows.  

 

2. Simulation model and numerical method 

Figure 1 shows a schematic diagram of our simulation model. The argon gas is confined in a square 

enclosure with a side length of 100 m. The left and right walls are kept at different constant 

temperatures, i.e., 600
l

T K=  and 300
r

T K= , and linear temperature distributions are assumed along 

both the top and bottom walls. All the walls are assumed to be diffuse reflection, which means that 

molecules colliding with a wall are reflected with velocities sampled randomly from a half-range 

Maxwellian distribution at the temperature of the specific colliding position. The gravity acceleration 

is downward in the vertical direction.  
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Fig. 1. Schematic diagram of argon gas confined in a square enclosure with temperature gradients along the 

horizontal direction. 

Note that in the continuum regime, natural convection spontaneously sets in as long as there is a 

temperature gradient in the direction perpendicular to gravity. For the simulation model considered 

in Fig.1, a clockwise vortex is formed with the gas ascending along the left wall and descending 

along the right wall. The magnitude of natural convection in the continuum regime can be quantified 

using the Rayleigh number 

                                                                            ,
3αgΔTL

Ra
νκ

=                                                                             (1) 

where α ,  , and   are the isobaric thermal expansion, kinematic viscosity, and thermal diffusivity 

coefficients, respectively, g  is the acceleration of gravity, L  is the height of the fluid layer, and T  

is the temperature difference between the left and right walls. 

On the other side, in the slip and transition regimes, the thermal creep mechanism caused by the 

temperature gradient along the walls also plays an important role. In this case, a gas flow from the 

cold region (left) to the hot region (right) is formed in the vicinity of the bottom and top walls. The 

magnitude of thermal creep is dependent on the Knudsen number. The competition between natural 

convection and thermal creep makes the flow patterns in the square enclosure complicated. To 

determine the specific flow state, it is required to use two nondimensional parameters in the whole 

flow regime rather than one counterpart in the continuum regime.  

Following the previous studies for the Rayleigh-Bénard flow4, 31, we expressed the Rayleigh 

number in terms of Knudsen number and Froude number. Specifically, based on the state equation 

of a perfect gas, the isobaric thermal expansion coefficient is dependent on temperature as 

                                                                         
1 1

= ,
p

V

V T T
   =  

                                                                      (2) 

where V  denotes the volume of gas, and p  is pressure.  

According to the kinetic theory, for a variable hard-sphere (VHS) gas model employed in this 

work, the viscosity and thermal diffusivity coefficients can be expanded as11 
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( )( )

15
,

2 7-2 5-2
m

c
 

 
=                                                              (3) 

                                                                   
( )( )

45
,

4 7-2 5-2
m

c
 

 
=                                                               (4) 

where   is the molecular mean free path, m
c  is the most probable molecular thermal speed at the 

temperature T , i.e., 2
m

c RT= , R  is the specific gas constant, and   is the index of viscosity for 

VHS model. In this work,   is set to 0.81 for argon gas11. Consider that density and temperature 

fields are not uniform in the enclosure. We use the average temperature and mean free path in the 

flow field to estimate the average thermal expansion, viscosity, and thermal diffusivity coefficients, 

which are defined in Eqs. (2)-(4). Substituting Eqs. (2)-(4) into Eq. (1) yields 

                                                          
( ) ( )

( )

2 2

2 2

32 7-2 5-2 1
,

675 1

r
Ra

r Kn Fr

 


−
=

+
                                             (5) 

where the temperature ratio is =
r l

r T T , the Knudsen number is Kn L= , the Froude number is 

2= lFr C gL , and l
C  is the most probable molecular thermal speed at the temperature l

T . Note that 

l
C  is used in the definition of the Froude number, in order to make the form of Eq. (5) consistent 

with the previous definition for the Rayleigh number4. Specifically, Eq. (5) automatically degrades 

to that defined for hard sphere (HS) gas4 if the viscosity index is set to 0.5.   

When the Knudsen number is small, the gas flow can be solved using the conventional CFD 

methods based on the NSF equations. However, for the rarefied flow regime where the Knudsen 

number is large, the continuity assumption is no longer valid and the descriptions at the molecular 

level is required. The most successful method for the simulation of rarefied gas flows is the DSMC 

method proposed by Bird11. In the DSMC method, the molecular motions and inter-molecular 

collisions are assumed to be uncoupled in a small time step and are simulated sequentially. 

Macroscopic gas properties, such as density, velocity, and temperature, are obtained by sampling 

corresponding molecular information and making an average at the computational cells32, 33. 

Although the DSMC method can be applied to the simulation of gas flows in the whole flow regimes, 

its usage is limited by the limitation of  the cell size and time step, which should be smaller than the 

molecular mean free path and mean collision time, respectively, to ensure its accuracy. Therefore, 

DSMC is computationally inefficient in the continuum regime. Consequently to investigate 

thermally induced gas flows in a wide range of Knudsen number in this work, a simulation method 

that is both accurate and efficient for the whole flow regimes is required.  

The unified stochastic particle method based on the Bhatnagar-Gross-Krook model (USP-BGK) is 

employed in the present work. The USP-BGK method was proposed by the authors recently and has 
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been successfully applied to the whole flow regimes with the same accuracy but higher efficiency in 

the continuum and slip regimes compared to the DSMC method30. Here, we just provide a brief 

description of the basic algorithm of the USP-BGK method, and we refer readers to the original 

paper30 for details.  

Analogous to the conventional stochastic particle BGK (SP-BGK) method, the USP-BGK method 

employs the splitting scheme to solve the BGK equation in a time step by two sequential steps, i.e., 

the transport step and collision step as follows,  

( )i USP ESBGK

i

f f
c J

t x

 


−

 
+ =

 
,                                                      (6) 

( )( )
G USP ESBGK

f Pr
f f J

t 


−


= − −


,                                                   (7) 

where *( ; , )f tc x  and ( ; , )f tc x  are the distribution functions in the transport and collision steps, 

respectively. G
f  is the Gaussian distribution function at equilibrium, Pr is the Prandtl number, and 

p =  is the relaxation time of BGK model. Compared to the SP-BGK method, a modified BGK 

collision term 
( )USP BGKJ −  is supplemented in Eqs. (6) and (7) to couple the molecular motion and 

collision effects, and it has the form as 

( ) |( )c
USP BGK e Grad

P
J f f

− = − ,                                                     (8) 

where 
Grad

f  is the 13 moments Grad′s distribution function 
2

13

2 5
[1 ( )]

2 5 2 2
ik i k k

e kGrad

B B B

mC C mq mC
f f f PrC

p k T pk T k T

  = = + + − ,                          (9) 

where 
ij  and i

q  are shear stress and heat flux, respectively, e
f  is the Maxwellian distribution at 

equilibrium, m is the molecule mass, and B
k  is the Boltzmann constant. Note that in Eq. (8), [0,1]

c
P   

is a parameter representing the degree of continuum, i.e., 1
c

P →  denotes the continuum limit and 

0
c

P →  denotes the free molecular limit. With this formulation, the term on the right-hand side of Eq. 

(6), i.e., *
( )USP BGK

J − , virtually considers the collision effect in the continuum regime, while the 

combined effect of those two terms on the right-hand side of Eq. (7) considers the collision effect far 

from equilibrium. 

Similar to the DSMC method, each simulation particle in the USP-BGK method is initially 

assigned position and velocity according to the initial conditions of the flow field. The key point of 

the USP-BGK method is how to implement particle transport and collision steps following the 

governing equations provided in Eqs. (6) and (7). Specifically, with the initial distribution function 

( ; ,0)f c x , the transport step is numerically calculated using the solution along the characteristic line 

as 
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*
( )
*

( )( ; , ) ( ; ,0) ( ; , )+ ( ; ,0)
2

USP BGK USP BGK

t
f t f t tJ J t− −

   = −  +  −  c x c x c c x c x c .             (10) 

Note that the trapezoidal rule is used for the collision term. By introducing two auxiliary PDFs  

            

*
(

* *
)

2
,

USP BGK
f J

t
f −


= −                                 (11a) 

 
( )

2
USP BGK

t
f Jf −


= + ,                                                                (11b) 

then, Eq. (10) can be rewritten as 

*( ; , ) ( ; ,0)f t f t = − c x c x c .                                                          (12) 

Accordingly, the transport step can be implemented easily by just tracking simulation particles with 

an initial distribution function ( ; ,0)f c x . 

The obtained distribution function *( ; , )f tc x  in the transport step is then taken as initial condition 

for the collision step, and the integral solution of Eq. (7) during a time interval  0, t  gives 

( )* / / * *
( )( ; , ) ( ; , ) ( ; , ) ( ; )1 , /t t

G USP BG

Pr Pr

K
t t ff f e t J t Pre

  − −
−  +  −  = −  c x c x c x c x

.   (13) 

It means that, in a computational cell with c
N  particles, the velocities of ( )/1- P tr

c
N e

− 
 particles need 

to be  resampled from the distribution 
* *

( )( , , ) ( , , ) /
G USP BGK

f t J t Pr − − c x c x , while the velocities of 

the remainder particles keep constant. 

In summary, the USP-BGK method can be implemented in a way similar to DSMC, as shown 

in Table 1. 

Table 1. Outline of the implementation of the USP-BGK method. 

1. Initialization Assign initial simulation particles in the computational domain 

(similar to DSMC).  

2. Transport 

 

Introduce auxiliary PDFs and move simulation particles with 

their velocities and apply boundary conditions to obtain 

*( ; , )f tc x  [Eqs. (10-12)]. 

3. Collision ( )/1 Pr

c

t
N e

− −  simulation particles are randomly selected to 

assign new velocities; the velocities of the remaining particles 

are unchanged. [Eq. (13)]. 

4. Sampling Sample the macroscopic quantities (similar to DSMC). 

3. Results and discussions 

In this section, gas flows in a square enclosure with thermal gradient and gravity effect are 

simulated using the USP-BGK method, and the obtained results are compared to the Navier-Stokes-
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Fourier (NSF) solutions and DSMC results for the continuum regime and rarefied regime, 

respectively, to validate the applicability of the USP-BGK method. Then we employ it to study the 

competition of natural convection and thermal creep for a wide range of Kn  and Fr . Based on 

simulation results, the ( Kn , Fr ) plane is classified into typical domains of different flow patterns, 

and the corresponding theoretical criteria are provided.  

3.1 Validation 

We first validate the applicability of the USP-BGK method to the gas flow in the continuum regime 

by comparing its results with those obtained by CFD method based on the NSF equations. The 

geometry and the wall temperature distributions is the same as described in Section 2, and the gravity 

acceleration is 
210 m s . Consequently, the Froude number is 250.0. The gas density at the initial 

time instant of the simulation is -7 37.16 10  kg m , and hence the global Knudsen number is 0.0012, 

which can be roughly regarded as in the continuum regime. In the NSF equations, the viscosity and 

thermal conductivity coefficients are assumed to be ( )ref ref
T T


  and ( )ref ref

k T T


, respectively, 

where 
52.117 10  

ref
Pa s −=    and ( )0.0165 

ref
k W m K=   are the corresponding values of 

transport properties for argon gas at the reference temperature =273 KrefT . This implementation 

ensures the consistency with the USP-BGK method based on the kinetic theory. The CFD solutions 

are obtained using Fluent 19.2 with the velocity-pressure coupling method and laminar compressible 

model. Both momentum and energy equations are solved using first-order upwind scheme. For the 

sake of comparison, the computational grids for both methods are set to 72 72 ,  and the time step 

is set to 410  s− . Note that the cell size is about 11.6 times of the molecular free path, and the time 

step is about 3.5 times of the molecular mean collision time. This is the key advantage of the USP-

BGK method compared to DSMC method, in which the cell size and time step should be less than 

molecular mean free path and mean collision time, respectively. 

Figure 2 shows the temperature contours and the streamlines obtained by the USP-BGK method 

and CFD method. It can be seen that both methods predict a clockwise vortex in the field, and this is 

the typical phenomenon of natural convection in the continuum regime. Due to the existence of 

convection, the temperature distributions along the vertical direction in the field are no longer uniform, 

and the results predicted by these two methods agree well with each other. Figure 3 shows the 

comparisons of horizontal velocity along the vertical centerline and vertical velocity along the 

horizontal centerline. It can be concluded that the results obtained by the USP-BGK method are 

consistent with the solutions of NSF equations. 
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                                                    (a)                                                                                          (b) 

Fig. 2. Temperature contours and streamlines for 0.0012Kn =  and 250.0Fr =  obtained by the USP-BGK method 

(a) and CFD method (b). 

                

(a)                                                                                                 (b) 

Fig. 3. Horizontal velocity along the vertical centerline (a) and vertical velocity along the horizontal centerline (b) 

for 0.0012Kn =  and 250.0Fr =  obtained by the USP-BGK method and CFD method . 

 We then validate the applicability of the USP-BGK method to the gas flows in the transitional 

regime by comparing its results with those obtained by DSMC method. The Froude number is also 

250.0 as that for the continuum regime, and the gas density at the initial time instant of the simulation 

is changed to -9 37.16 10  kg m , and hence the Knudsen number is 0.12. The computational cells for 

both methods are also 72 72 , and the time step is set to 310  s− . In this case, the computational cells 

are 0.12 times of the molecular mean free path, and the time step is 0.035 times of the molecular mean 

collision time.  

Figure 4 shows the temperature contours and the streamlines obtained by the USP-BGK method 

and DSMC method. It can be seen that both methods predict a pair of vortices, with a flow from the 

clod side to the hot side in the vicinity of the top and bottom walls. This kind of flow is caused by 
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thermal creep, which is a typical phenomenon in the rarefied regime. Figure 5 shows the horizontal 

velocity along the vertical centerline and vertical velocity along the horizontal centerline obtained by 

the USP-BGK method and DSMC method, and they agree well with each other. It can be concluded 

that the USP-BGK method is also capable of simulating thermal-driven gas flows in the rarefied 

regime. 

                   
(a)                                                                                              (b) 

Fig. 4. Temperature contours and streamlines for 0.12Kn =  and 250.0Fr =  obtained by the USP-BGK method 

(a) and DSMC method (b). 

                       
(a)                                                                                                  (b) 

Fig. 5. Horizontal velocity along the vertical centerline (a) and vertical velocity along the horizontal centerline (b) 

for 0.12Kn =  and 250.0Fr =  obtained by the USP-BGK method and DSMC method . 

3.2 The effect of Knudsen number 

Since the applicability of the USP-BGK method has been validated in both continuum and rarefied 

regimes, we employ it to study the gas flows in a square enclosure with temperature gradients in a 

wide range of the Knudsen and Froude numbers. We first study the effect of the Knudsen number on 

the flow patterns and heat transfer under the same Froude number condition, i.e., 250.0Fr = . To 

this end, besides the two cases presented in Section 3.1, we simulate more cases in the range of 
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0.0012 0.12Kn  to cover from continuum to transitional regime. The required Knudsen number 

is reached by varying the gas density at the initial time. The temperature contours and streamlines for 

4 typical cases are shown in Fig. 6.  

We have seen from Fig. 2 for the case of 0.0012Kn =  that when the effect of natural convection 

is dominant in the continuum regime, one clockwise vortex is formed in the field.  As the Knudsen 

number increases, it is interesting to note that one small vortex first emerging in the upper left corner 

of the enclosure, flowing along the top wall surface from the lower temperature region (right part) to 

the higher temperature region (left part), as shown in Fig. 6(a). This phenomenon is caused by the 

thermal creep mechanism, due to the local rarefaction effect. Although the global Knudsen number 

is 0.0023 for this case, the local Knudsen numbers are about 0.0030 and 0.0013 in the top left corner 

and the top right corner, respectively, due to different local gas densities. Since the local Knudsen 

number is larger in the top left corner, the small vortex caused by thermal creep first comes out there. 

On the other hand, there should be the same thermal creep mechanism at the bottom wall, where the 

direction of the flow caused by thermal creep is the same as that caused by natural convection, so the 

small vortex caused by thermal creep at the bottom wall is invisible due to the dominant effect of 

natural convection for 0.0023Kn = . More details could be found later from the velocity distributions.  

When the Knudsen number increases to 0.0058, another small vortex caused by thermal creep 

comes out in the top right corner, as shown in Fig. 6(b). These two thermal creep vortices grow as the 

Knudsen number increases, and then they emerge into one big vortex in the upper half of the enclosure, 

as shown in Figs. 6(c) and 6(d). It should be noted that in the lower half of the enclosure, as the 

Knudsen number increases, the effect of thermal creep becomes more and more important. When the 

Knudsen number is 0.12, as shown in Fig. 4, the two big vortices in the upper and lower half of the 

enclosure are almost symmetric, indicating that the flow is mainly caused by thermal creep. 

Figure 7 shows the distributions of the horizontal velocities in the vicinity of the top and bottom 

walls. For 0.0012Kn = , the horizontal velocities near the top and bottom walls are positive and 

negative, respectively, following the clockwise direction of flow caused by natural convection. As 

the Knudsen number increases, on one hand, the flow caused by the natural convection becomes 

weaker. The reason for this is that the magnitude of velocity in the natural convection is proportional 

to the Rayleigh number, which decreases as the Knudsen number increases, as indicated in Eq. (5). 

On the other hand, the magnitude of the gas flows caused by thermal creep increases with the Knudsen 

number, and its flow direction is determined by the temperature gradient along the walls. Therefore, 

as the Knudsen number increases, the combined effects of weaker natural convection and stronger 

thermal creep need to be taken into account. Accordingly, the horizontal velocities close to the top 
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wall gradually change from positive to negative, while the horizontal velocities close to the bottom 

wall are always negative, with the magnitude increasing with the Knudsen number, as shown in Fig. 

7.   

 

(a) 0.0023Kn = , 250.0Fr =                                                           (b) 0.0058Kn = , 250.0Fr =  

 

(c) 0.012Kn = , 250.0Fr =                                                            (d) 0.023Kn = , 250.0Fr =  

Fig. 6. Temperature contours and streamlines in a square enclosure for different Knudsen numbers at a fixed 

Froude number 250.0Fr = . 
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(a)                                                                                                      (b)  

Fig. 7. Distribution of tangential velocity in the vicinity of the walls with a fixed Froude number 250.0Fr =  and 

various Knudsen numbers: (a) top wall, (b) bottom wall. 

   The effect of the Knudsen number on heat transfer is also investigated. Using molecular 

simulations, the heat flux at one point on a wall can be determined by taking a time average of the 

difference between the incident energy and reflected energy of the molecules colliding with the 

specific position over a time period. For the enclosure considered here, the heat flux through a wall 

is generated by the combination of thermal conductivity and advection. The former is proportional to 

the temperature gradient, while the latter are dependent on the flow velocity and gas density. Note 

that the advection in this work is caused by either natural convection or thermal creep. Figure 8 shows 

the normalized heat flux, i.e., 3 2( )
ave

q RT , along the left wall and right wall for three different 

Knudsen numbers. In general, the normalized heat flux increases with the Knudsen number, and this 

is a common phenomenon representing the effect of Knudsen number on heat transfer.  

It can be seen from Fig. 8 that for the case of 0.12Kn = , the heat fluxes of the left and right 

walls are almost the same. They both are symmetric about the center of the height, with the minimum 

values at the both ends, where the temperature difference between the walls and the gas is the smallest, 

as shown in Fig. 4. As the Knudsen number decreases, the difference of heat flux between the left 

and right wall gradually becomes obvious, due to the asymmetric flow pattern in the horizontal 

direction, as shown in Fig. 6(c) for 0.012Kn = . When the Knudsen number is 0.0012, both the heat 

fluxes of the left and right walls are no longer symmetric about the center of the height, caused by the 

effect of natural convection. Specifically, the largest incident velocities normal to the left wall and 

the right wall are around y=0.3 and y=0.8, respectively, as shown in Fig. 4, resulting in the maximum 

values of the heat fluxes at the corresponding positions. 
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Fig. 8. Heat flux along the left wall and right wall for different Knudsen numbers. 

The Nusselt number ( Nu ), which is the ratio of the total heat transfer to the pure conductive heat 

transfer, is generally used to quantify the enhancement of heat flux due to advection. For a standard 

calculation of Nu , the pure conductive heat transfer should be measured under the same temperature 

distributions in the flow field but without any macroscopic gas motions. In molecular simulations, it 

is difficult to achieve only shielding the influence of velocity while keeping the other effects 

unchanged. Here we simulate a simple case for each Knudsen number to be used as a reference state, 

where zero gravity is assumed to avoid natural convection, and symmetric boundary conditions are 

assumed for the top and bottoms walls to avoid thermal creep. In this way, the effective Nusselt 

number for each case with advection is determined by the ratio of the heat flux to the corresponding 

value in the reference state.  

Figure 9 gives the determined Nusselt number of the left wall for different Knudsen numbers. It 

can be seen that for the case of 0.0012Kn = , the Nusselt number is larger than 1.0, indicating that 

advection enhances heat transfer, and this phenomenon is well recognized in the continuum regime. 

As the Knudsen number increases, however, the Nusselt number goes down. The main reason for this 

is that the temperature distributions are greatly changed due to the existence of the top and bottom 

walls. Figure 10 shows the distribution of the temperature in the vicinity of the top wall along the 

horizontal direction, for 0.0012Kn = , 0.012Kn = , and 0.12Kn = . It can be seen that as the Knudsen 

number increases, the temperature close to the left wall under the condition of advection is larger than 

that in the reference state, in other words, the temperature difference between the left wall and the 

gas with advection is smaller than that in the reference state, and thus it would result in smaller heat 

flux due to thermal conductivity. On the other hand, the advection itself may also weaken the heat 

transfer in the rarefied regime, as reported by Rana et al.34. These two effects result in the effective 

Nusselt number less than 1.0.  
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Fig. 9. Nusselt number of the left wall for different Knudsen numbers.  

 

Fig. 10. Distributions of the temperature in the vicinity of the top wall along the horizontal direction for 

0.0012Kn = , 0.012Kn = , and 0.12Kn = . 

 

3.3 The effect of Froude number 

We next study the effect of the Froude number on the flow patterns under the same Knudsen 

number. Here the geometry and the wall temperature distributions remain the same as those in Section 

2, and the gas density at the initial time instant is also invariant to keep 0.012Kn = . The change of 

Fr  is achieved by adjusting the gravity acceleration, like the implementation in the previous studies 

for the Rayleigh-Bénard problem4, 31. 

Figure 11 shows the temperature contours and streamlines for 6 cases with different Froude 

numbers, i.e., 12.5, 25.0, 50.0, 250.0, 1250.0, and 12500.0, corresponding to the Rayleigh numbers 

as 616.0, 308.0, 154.0, 30.8, 6.16, and 0.62, respectively. It can be seen that there is one clockwise 

vortex in the flow field for the case of 12.5Fr =  (Fig. 11(a)), indicating that the effect of natural 

convection is dominant. As the Froude number increases to 25.0, we find that one small vortex first 

emerging in the upper left corner of the enclosure as shown in Fig. 11(b), caused by the thermal creep 
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mechanism. Then, another small vortex caused by thermal creep comes out in the top right corner for 

50.0Fr = , as shown in Fig. 11(c). The sizes of these two thermal creep vortices increases with the 

Froude number, and they gradually emerge into one big vortex in the upper half of the enclosure, as 

shown in Figs. 11(d) and 11(e). When the Froude number is up to 12500.0, it can be seen from Fig. 

11(f) that the two big vortices in the upper and lower half of the enclosure are almost symmetric, 

indicating that the flow is mainly caused by thermal creep and the effect of natural convection 

becomes negligible. 

It is interesting to note that the effect of the Froude number on flow patterns is similar to the effect 

of the Knudsen number.  On one hand, the increase of the Froude number means the decrease of the 

Rayleigh number, as indicated in Eq. (5), and thus the effect of natural convection becomes weaker. 

On the other hand, the definition of the Froude number can be written in an alternative form as35, 

2= = 2
l

Fr C gL h L ,                                                     (13) 

where h  is the ascent height of one free-moving molecule with the initial upward velocity of l
C  in 

the vertical direction against gravity. In this sense, the Froude number can be thought of as a measure 

of the relative importance of the ascent height of molecules compared to the characteristic length of 

the system. Hence, the increase of the Froude number means the increase of the importance of 

individual molecular movements, resulting in the dominant effect of thermal creep. 

(a) 0.012Kn = , 12.5Fr =                                                         (b) 0.012Kn = , 25.0Fr =  
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(c) 0.012Kn = , 50.0Fr =                                                          (d) 0.012Kn = , 250.0Fr =  

 

(e) 0.012Kn = , 1250.0Fr =                                                     (f) 0.012Kn = , 12500.0Fr =  

Fig. 11. Isotherms and streamlines in a square cavity for various Froude numbers. 

 

3.4  Division of the (Kn, Fr) plane into domains of different flow patterns 

We further carry out a parametric study of the flow patterns in a wide range of Kn and Fr, i.e., 

0.0012 1.2Kn   and 70.12 1.66 10Fr   . Three typical flow states are identified as natural 

convection (Figs. 11(a)-(c)), thermal creep (Fig. 11(f)), and mixed state (Figs. 11(d)-(e)), which are 

denoted in Fig. 12 by squares, triangles, and circles, respectively. Generally, it can be seen from Fig. 

12 that small Knudsen and Froude numbers are more likely to result in natural convection, while large 

Knudsen and Froude numbers are more likely to result in thermal creep.  

The solid black line shown in Fig. 12 is the analytic curve of 1.0Ra = , where the expression of 

Ra  is determined by Eq. (5). It is known that the velocity caused by natural convection increases 
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with the Rayleigh number. Consequently, if 1.0Ra  , the effect of natural convection is very weak, 

but the effect of thermal creep could play an important role. Figure 12 shows that when 0.12Kn  , 

the flow patterns on the right side of the curve of 1.0Ra =  are generally thermal creep. It means that 

the curve of 1.0Ra =  is a reasonable division between thermal creep and mixed state in the slip and 

continuum regimes. However, this demarcation is not applicable for 0.12Kn  , where the flow goes 

to the transitional regime. 

On the other hand, the division of natural convection and mixed states does not seem to be 

determined by any isoline of the Rayleigh number. Instead, it is interesting to find that the analytic 

curve of / 0.28Ra Fr =  basically separates the natural convection and mixed state for 0.12Kn  , as 

shown in Fig. 12. Based on  the computational parameters in the present work, the Rayleigh number 

defined as Eq. (5) can be simplified as 2 11.1Ra Kn Fr
− − , and thus 2 21.1Ra Fr Kn Fr

− − . 

Substituting the definitions of the Knudsen number ( =Kn L ) and the Froude number ( = 2Fr h L , 

as shown in Eq. (13)) into the above formula, we get 4 2 21.1 4Ra Fr L h . In this way, The curve 

of 0.28Ra Fr =  can be presented in an equivalent form as 1.0L h  . Based on the above 

analysis, we propose a new nondimensional parameter to identify the flow patterns as follows,  

*
Zh L L L h= = ,                                                     (13) 

where *
L  is an equivalent characteristic length of molecules, which is the geometric mean of the 

molecular mean free path ( ) and molecular ascent height ( h ) against gravity. Natural convection 

is dominant when 1.0Zh  , namely, the characteristic length of the system is larger than the  

equivalent characteristic length of molecules. It should be noted that this criteria is only applicable to 

the slip and continuum regimes, but not to the transitional regime. 

 

Fig. 12. Division of the (Kn, Fr) plane into domains of different flow patterns. 
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4. Conclusions 

We employed the USP-BGK method to study the competition of natural convection and thermal 

creep in a square enclosure for a wide range of computational parameters. Our simulation results 

show that the flow patterns are determined by two nondimensional parameters, i.e., Kn  and Fr , or 

Kn  and Ra . Generally, small Kn  and Fr  tend to generate natural convection with one vortex in 

the enclosure, while large Kn  and Fr  tend to cause thermal creep with two vortices arrayed 

vertically. We further find that when 0.12Kn   (in the slip and continuum regimes), thermal creep 

is dominant if 1.0Ra  , while natural convection is dominant if 0.28Ra Fr  , or equivalently, 

1.0L h  . Based on this, we proposed a new nondimensional parameter, that is, Zh L h= . 

Our simulation results prove that 1.0Zh   is a good criteria for the importance of the effect of natural 

convection in the slip and continuum regimes. 

    In the present work, we have only studied gas flow in a square enclosure with fixed temperature 

gradient. Further studies with varying aspect ratios of the enclosure and varying temperature gradient 

could be done in the future.  The flow patterns are expected to be more complicated in the slip and 

transitional regimes.  
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