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a b s t r a c t 

The performance of the state estimation for Gaussian state space models can be degraded if the mod- 

els are affected by the non-Gaussian process and measurement noises with uncertain degree of non- 

Gaussianity. In this paper, we propose a flexible robust Student’s t-based multimodel approach. More 

specifically, the degrees of freedom parameter from the Student’s t-distribution is assumed unknown and 

modelled by a Markov chain of state values. In order to capture more information of the Student’s t- 

distributions propagated through multiple models, we establish a model-based Versoria cost function in 

the form of a weighted mixture rather than the original form, and maximize the function to interact 

and fuse the multiple models. Simulated results prove the flexibility of the robustness of the proposed 

Student’s t-basedmultimodel approach when the existence probability of the outliers is uncertain. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

As a classical state estimation method, Kalman filter [1] has 

been thoroughly applied in a variety of applications such as posi- 

tioning, navigation, brain imaging, and traffic control, together with 

its numerous nonlinear or off-line extensions [2–6] . These estima- 

tors assume that the model parameters and the noise statistics are 

exactly known, which is too perfect for most real applications and 

usually cannot be satisfied, hence resulting in reduced accuracy of 

the state estimation. 

Known and correct information of the process noise and mea- 

surement noise is a key factor affecting the state estimation per- 

formance. However, uncertainties are practically inevitable to most 

state estimation problems. Many sources of uncertainties are due 

to the abnormal changes in the process of state evolution or sensor 

observation, which makes the Gaussian assumption on the process 

noise and measurement noise invalid. For the state estimation with 

measurement outliers, the Masreliez–Martin method has been 

used to develop a robust extended Kalman filter [7] and a robust 

unscented Kalman filter together with the adaptivity to process 

and measurement covariances [8] . In [9] , a nonlinear unscented 

filter that is robust to measurement outliers and adaptive to a 

∗ Corresponding author. 
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time-variant measurement covariance matrix has been designed 

by using Huber’s M-estimation and the variational Bayesian ap- 

proach. The variational Bayesian approach has proven its efficiency 

in suppressing the measurement outliers when the measurement 

noise is represented by the Student’s t-distributionof a hierarchical 

form [10–12] . Aforementioned Huber’s M-estimation approach 

and the hierarchical Student’s t-distribution have also been used 

for the state estimation with non-Gaussian process noise, in 

the light of inertial and Global Positioning System navigation 

[13–14] . 

In most real-time systems, simultaneous consideration of non- 

Gaussian process and measurement noises is necessary. By us- 

ing the similar modelling idea in [14] , a robust Student’s t-based 

Kalman filter using variational Bayesian approach is presented in 

[15] to cope with the unknown non-Gaussian process and mea- 

surement noises. In [16] , a generalized Gaussian scale mixture 

model has been proposed to model the heavy-tailed and skewed 

non-Gaussian process and measurement noises for the Kalman 

filter. Instead of the minimum mean-square error criterion, the 

maximum correntropy criterion has been introduced to establish 

a new state estimation framework [17–18] to deal with outliers 

both in the process and measurement noises. During recent years, 

the interests in the Student’s t-filter methodology [19] have been 

significantly increasing, especially thanks to its ability to repre- 

sent heavy-tailed distributions in many applications, with a light 

computational cost. Multiple advanced nonlinear Student’s t-filters 

https://doi.org/10.1016/j.sigpro.2020.107941 
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Fig. 1. Comparisons with popular probability density functions. 

with efficient computations of integrals involving nonlinear func- 

tions have been developed in [20–23] . 

Although many effort s have been devoted to developing ro- 

bust state estimation filters, the research on state estimation with 

non-Gaussian noises with time-variant nature still receives much 

less attention than its Gaussian counterpart. Especially, there is 

lack of works targeting on the flexibility of the robustness, i.e. 

most current available filters are only suitable for the non-Gaussian 

noise with fixed or specific degree of non-Gaussianity, e.g. heavy- 

tailedness. These estimators are vulnerable to the outliers with an 

uncertain or time-variant existence probability in the system and 

measurement processes. Although an adaptive approach to change- 

able noise covariances has been developed in [9] and approaches 

using parameters learning have been proposed in [10–12] for the 

non-Gaussian noises, these works do not take into account the un- 

certain degree of heavy-tailedness, which makes the robustness of 

these filters lack of flexibility. Pioneering works on similar topics 

have been proposed in [24–26] by constructing several noise mod- 

els. Nevertheless, the developed multimodel particle filters [24–

25] are usually computationally expensive, and these works mainly 

focus on the measurement noise. In addition, the flexibility of the 

robustness has not been validated by the noise with different lev- 

els of heavy-tailedness. The Bayesian model averaging (BMA) ap- 

proach has been successful with handling multiple noise models in 

[24–26] , but the model fusion only involves second-order informa- 

tion and high order information that is crucial to the non-Gaussian 

data has not been considered. 

In this paper, we aim at enhancing the robustness of the 

Student’s t-filter against noises with uncertain degree of heavy- 

tailedness, and propose a flexible robust Student’s t-based multi- 

model approach. The main contribution of our work is two-fold. 

Firstly, the unknown degrees of freedom (dof) parameter is consid- 

ered to follow a Markov process with interactive dof modes. Thus 

the flexibility problem of robustness can be naturally translated 

into an interacting multiple models (IMM) framework [27] . This 

modelling method is different from the one in [24] and therein 

the noise models are only combined directly at the final stage. 

Secondly, we introduce the maximum Versoria criterion, an effec- 

tive optimization criterion recently used in kernel adaptive filtering 

area [28–29] , within the multiple Student’s t-based models, and 

design a novel and effective model fusion strategy for the estab- 

lished dof multiple models. Using the synthetic data, we demon- 

strate that the proposed fusion strategy offers better model fusion 

for state estimation in the presence of non-Gaussian noises with 

uncertain degree of heavy-tailedness. 

The outline of this paper is summarized as follows. The 

maximum Versoria criterion is briefly introduced in Section 2 . 

Section 3 presents the proposed flexible robust Student’s t- 

basedmultimodel algorithm. The computational complexity and 

stability of convergence are briefly discussed in Section 4 . Sim- 

ulated results are presented in Section 5 followed by concluding 

remarks in Section 6. 

2. Maximum Versoria criterion 

The original Versoria function, also named as Agnesi function, 

is defined as follows [30] 

f ( x ) = 
A 3 

A 2 + x 2 
= 

2 a 

1 + τx 2 
(1) 

where x denotes the variable, A = 2 a is the diameter of the gen- 

erating adjoined circle of the Versoria function, meaning that the 

centroid of the circle x 2 + ( f ( x ) − a ) 2 = a 2 is located at ( 0 , a ) , and 

τ = (1 / 2 a ) 2 is the Versoria shape parameter. In Fig. 1 , the Versoria 

function with a = 0 . 5 is plotted and compared with the appropri- 

ate Gaussian and Student’s t probability density functions. It can be 

seen that the Versoria function has the heaviest tail among all and 

its tail is even thicker than the tail of a Student’s t density func- 

tion ( v = 3 ) which is acknowledged as suitable for characterizing 

data with a heavy-tailed non-Gaussian distribution. 

In the literature of kernel adaptive filtering, the objective of us- 

ing the Versoria function is to estimate the unknown weight vector 

ω from the output signal as defined in [28] 

D k = Y 
T 
k ω + γk (2) 

where γk is the noise with impulsive interferences and Y k is the 

input vector of the unknown system. The output error e k is defined 

as 

e k = D k − Y 
T 
k ω k −1 (3) 

2 
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where ω k −1 represents the estimate of ω of at time k − 1 . The op- 

timization problem under maximum Versoria criterion (MVC) is to 

compute f ( e k ) using (1) or other relevant forms as the cost func- 

tion and maximize it to achieve the minimum error. 

MVC has been shown with excellent robustness against non- 

Gaussian interferences such as impulsive noise in kernel algo- 

rithms [28–32] . It provides superior performance than algorithms 

using Gaussian-based kernel. Actually, not only have the kernel- 

based functions been used in the community of adaptive signal 

processing and communication, but also been extended to develop 

optimal state estimation rules to capture high order information 

existing in the stochastic dynamical system [17–18] . Given that the 

heavy-tailedness of the specific Versoria function shown in Fig. 1 , 

the general Versoria function is believed to have the potential to 

fully exploit the non-Gaussian characteristics and offer better han- 

dling of high order information than the Gaussian function for 

the stochastic dynamical system. Inspired by the above, we intro- 

duce the MVC to the Student’s t-filter based model fusion where 

second-order moments are not accurate enough and high order in- 

formation in multiple models is crucial to the estimation accuracy. 

In the next section, the novel MVC based model fusion will be de- 

rived. 

3. Maximum Versoria criterion based model fusion 

The following stochastic dynamical system is considered for the 

Student’s t-filter 

x k = F k x k −1 + w k −1 

z k = H k x k + v k 
(4) 

where x k and z k denote the m × 1 state variable and d × 1 mea- 

surement, respectively, F k is the state evolution matrix and H k is 

the measurement matrix. The process noise w k −1 and the mea- 

surement noise v k are the non-Gaussian noises with nominal co- 

variance matrices Q k −1 and R k , respectively. In the standard Stu- 

dent’s t-filter framework, the state x k and the noises w k −1 and v k 
are assumed to be marginally Student’s t-distributed [19] . 

In order to develop a Student’s t-filter able to estimate the 

system state with non-Gaussian noises of time-variant heavy- 

taildness, M appropriate models are introduced and each of them 

uses a different value for the dof υ
s k 
k 

∈ { υ1 
k 
, υ2 

k 
, · · · , υM 

k 
} . These val- 

ues for the dof could be chosen according to the prior knowledge 

about the non-Gaussianity, more specifically, the intensity of the 

heavy-tailedness. Here s k indicates the system mode which is rep- 

resented by a M-state Markov chain and the state transition prob- 

ability matrix is � = { πi j } satisfying the condition 
∑ M 

j=1 πi j = 1 for 

any i ∈ { 1 , 2 , · · · , M } . Each element πi j denotes the transition prob- 

ability from mode i to mode j. 

In fact, this modelling idea is originally taken from the works 

in the area of wireless localization [33–34] where the condition of 

the communication channel in the cellular networks switches be- 

tween LOS and NLOS randomly due to the obstructed radio trans- 

missions. In their works, a two-state Markov process is adopted to 

represent the mode state for the NLOS and LOS conditions. In our 

work, for each model i ∈ { 1 , 2 , · · · , M } , suppose we have obtained 

the Student’s t-distributed filtering density at the end of discrete 

time instance k − 1 such that 

p ( x k −1 | s k = i, z 1: k −1 ) 

= Std 
(

x k −1 | ̂ x 
i 
k −1 | k −1 , P 

i 
k −1 | k −1 , υ

i 
k −1 

)

= 

Ŵ

(

υ i 
k −1 + m 
2 

)

Ŵ

(

υ i 
k −1 
2 

)

∣

∣P i k −1 | k −1 

∣

∣

−1 / 2 (
υ i 
k −1 π

)d/ 2 

×

( 

1 + 

(

x k −1 − ˆ x i 
k −1 | k −1 

)T (
P i 
k −1 | k −1 

)−1 (
x k −1 − ˆ x i 

k −1 | k −1 

)

υ i 
k −1 

) −( υ i 
k −1 + d ) / 2 

(5) 

where x i 
k −1 | k −1 

is the estimated state, P i 
k −1 | k −1 

is the scale matrix, 

υ i 
k −1 

is the dof parameter, and Ŵ(·) is the gamma function. 

Step 1) Mixing under maximum Versoria criterion 

At the mixing stage, we are interested in calculating the density 

by using marginalization 

p ( x k −1 | s k = j, z 1: k −1 ) 

= 

M 
∑ 

i =1 

p ( x k −1 | s k = j, s k −1 = i, z 1: k −1 ) Pr ( s k −1 = i | s k = j ) 

= 

M 
∑ 

i =1 

μi | j 
k −1 

Std 
(

x k −1 | ̂  x 
i 
k −1 | k −1 , P 

i 
k −1 | k −1 , v 

i 
k −1 

)

(6) 

where μi | j 
k −1 

is known as the mixing probability. As can 

be seen from (6), we use a single Student’s t-distribution 

Std ( x k −1 | ̂ x 
0 j 
k −1 | k −1 

, P 0 j 
k −1 | k −1 

, υ j 
k −1 

) that will be obtained via 

the proposed MVC-based optimization to approximate 

p( x k −1 | s k = j, z 1: k −1 ) . 

Recall that for the conventional IMM framework [27] where the 

above Student’s t-distribution is replaced by the Gaussian, the mo- 

ments matching technique has been widely used in most Gaussian 

mixture based methods and a single approximate Gaussian distri- 

bution is found by matching the first two moments of the mix- 

ture of Gaussians. However, this assumption is not valid often since 

a mixture of probability distributions does not necessarily have a 

Gaussian distribution, particularly for the jump Markov systems 

with non-Gaussian noises. In our formulated problem, each com- 

ponent of the mixture is assumed to be a Student’s t-distribution. 

For such a heavy-tailed distribution, the moments matching tech- 

nique faces challenges at the information fusion step due to the 

loss of high order information. 

In order to cope with this problem, we introduce the MVC as 

the information measure for model interaction of the multimodel 

state estimates. Instead of using the error (3) defined for adaptive 

filtering, we define the error function for the model fusion as fol- 

lows 

e i, 1 k = 

∥

∥x k −1 | k −1 − ˆ x i k −1 | k −1 

∥

∥

(

P i 
k −1 | k −1 

)−1 (7) 

where the weighted l 2 norm || · || is used, x k −1 | k −1 is the unknown 

state variable. Since our focus is on fusing M models, the Versoria 

cost function here is re-defined in the form 

J 1 
(

x k −1 | k −1 

)

= 2 a 

M 
∑ 

i =1 

μi | j 
k −1 

1 

1 + τ e 2 
i, 1 k 

(8) 

which is of a weighted mixture rather than the original form of 

the Versoria function. In (8) the mixing probability μi | j 
k −1 

is chosen 

as the corresponding weight. 

To maximize the Versoria cost function (8), we need to compute 

its first derivative. After some mathematical arrangements, we ob- 

tain 

x k −1 | k −1 = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

M 
∑ 

i =1 

μi | j 
k −1 

(

P i 
k −1 | k −1 

)−1 

( 

1 + τ || x k −1 | k −1 − ˆ x i 
k −1 | k −1 || 

2 
(

P i 
k −1 | k −1 

)−1 

) 2 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

−1 

×

M 
∑ 

i =1 

μi | j 
k −1 

(

P i 
k −1 | k −1 

)−1 
ˆ x i 
k −1 | k −1 

( 

1 + τ || x k −1 | k −1 − ˆ x i 
k −1 | k −1 || 

2 
(

P i 
k −1 | k −1 

)−1 

) 2 
(9) 

Note that there is no closed-form solution to (9) and a fixed- 

point iteration algorithm is required to solve it. Let L (L ≥ 1) be the 

3 
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maximum iteration number and the value from the L th iteration is 

assigned to the mixing state vector ˆ x 0 j 
k −1 | k −1 

such that 

ˆ x 0 j 
k −1 | k −1 = x (L ) 

k −1 | k −1 = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

M 
∑ 

i =1 

μi | j 
k −1 

(

P i 
k −1 | k −1 

)−1 

( 

1 + τ || x (L −1) 
k −1 | k −1 − ˆ x i 

k −1 | k −1 || 
2 
(

P i 
k −1 | k −1 

)−1 

) 2 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

−1 

×

M 
∑ 

i =1 

μi | j 
k −1 

(

P i 
k −1 | k −1 

)−1 
ˆ x i 
k −1 | k −1 

( 

1 + τ || x (L −1) 
k −1 | k −1 − ˆ x i 

k −1 | k −1 || 
2 
(

P i 
k −1 | k −1 

)−1 

) 2 (10) 

Although a few iterations are involved, the algorithm converges 

very fast to one local optimum due to the property of the Versoria 

function, especially when the error is large. Thus a small number 

of L iterations is enough to find a local optimal solution and also 

provides a satisfactory performance in practice. In the simulation 

section, the fast convergence of this fixed-point iteration will be 

validated. 

After obtaining the mixing state vector ˆ x 0 j 
k −1 | k −1 

, the mixing 

scale matrix P 0 j 
k −1 | k −1 

is required as an essential part of the whole 

cycle of the IMM framework. Hence we merge the scale matrices 

from multiple dof models using the efficient Kullback-Leibler based 

method [35] as follows 

(

P 
0 j 
k −1 | k −1 

)−1 

= 

M 
∑ 

i =1 

μi | j 
k −1 

(

P 
i 
k −1 | k −1 

)−1 
(11) 

Step 2) Mode-conditioned Student’s t-filter 

At this stage, the standard Student’s t-filter is run for each dof 

model. The prediction stage consists of 

ˆ x j 
k | k −1 

= F k ̂  x 
0 j 
k −1 | k −1 

(12) 

P 
j 
k | k −1 

= F k P 
0 j 
k −1 | k −1 

F T k + Q k −1 (13) 

The objective of the subsequent update is to compute the fil- 

tering density p(x j 
k 
| z 1: k ) after receiving the measurement vector 

z k . The joint density of the state and measurement is Student’s t- 

distributed as follows 

p 
(

x j 
k 
, z k | z 1: k −1 

)

= Std 

([

x j 
k 

z k 

]

| 

[

ˆ x j 
k | k −1 

H k ̂  x 
j 
k | k −1 

]

, 

[

P 
j 
k | k −1 

P 
j 
k | k −1 

H T 
k 

H k P 
j 
k | k −1 

S j 
k 

]

, υ j 
k −1 

)

(14) 

where 

S j 
k 

= H k P 
j 
k | k −1 

H 
T 
k + R k (15) 

Thus the conditional density of the state can be updated by us- 

ing the standard Student’s t-filter [19] 

ˆ x ∗ j 
k | k 

= ˆ x j 
k | k −1 

+ P 
j 
k | k −1 

H 
T 
k 

(

S j 
k 

)−1 
(

z k − H k ̂  x 
j 
k | k −1 

)

(16) 

(

� j 
k 

)2 
= 

(

z k − H k ̂  x 
j 
k | k −1 

)T 
(

S j 
k 

)−1 
(

z k − H k ̂  x 
j 
k | k −1 

)

(17) 

P 
∗ j 
k | k 

= 
υ j 
k −1 

+ 
(

� j 
k 

)2 

υ j 
k −1 

+ d 

(

P 
j 
k | k −1 

− P 
j 
k | k −1 

H 
T 
k 

(

S j 
k 

)−1 
H k P 

j 
k | k −1 

)

(18) 

υ∗ j 
k 

= υ j 
k −1 

+ d (19) 

ˆ x j 
k | k 

= ˆ x j∗
k | k 

(20) 

P 
j 
k | k 

= 
υ j∗

k 

υ j∗

k 
− 2 

υ j 
k 

− 2 

υ j 
k 

P 
j∗

k | k 
(21) 

where υ j 
k 

= υ j 
k −1 

. As stated in Student’s t-filter related litera- 

ture [19–20] , the moments matching technique (not the moments 

matching in the IMM framework) is often used to obtain (20) and 

(21) to prevent the loss of robustness after a few time steps such 

that ˆ x j∗
k | k 

and P j∗
k | k 

are substituted by ˆ x j 
k | k 

and P j 
k | k 

, respectively. The 

results (20)-(21) are still kept within our algorithm so that infor- 

mation from all the dof models using different values of dof can 

be distinguished and preserved for dof model interaction and fu- 

sion by using the MVC. Otherwise, all the Student’s t-filters reduce 

to Kalman filters resulting in the loss of robustness, not to mention 

the flexibility of the robustness. 

Step 3) Mode probabilities update 

The mode probability is updated by the Bayes’ rule as 

μ j 
k 

= 

L j 
k 

M 
∑ 

l=1 

πl j μ
l 
k −1 

M 
∑ 

i =1 

M 
∑ 

l=1 

πli μ
l 
k −1 

L i 
k 

(22) 

where the measurement likelihood function is in the form of the 

standard Student’s t-distribution (see (5)) instead of the Gaussian 

L j 
k 

= Std 

(

z k | H k ̂  x 
j 
k | k −1 

, H k P 
j 
k | k −1 

H 
T 
k + R k , υ

j 
k 

)

(23) 

Step 4) Estimation fusion under maximum Versoria criterion 

Similar to the mixing stage, the MVC is chosen to replace the 

moments matching technique to find the combination of all the 

models with updated mode probabilities. This time, the error func- 

tion is defined as 

e j, 2 k = 

∥

∥

∥
x k | k − ˆ x j 

k | k 

∥

∥

∥

(

υ
j 
k 

υ
j 
k −2 

P j 
k | k 

)−1 (24) 

from which the covariance matrix 
υ j 
k 

υ j 
k −2 

P j 
k | k 

is selected instead of 

the scale matrix P j 
k | k 

as the weighting matrix. Unlike the cost func- 

tion established in (7), the definition of (24) is due to the con- 

sideration that this fusion stage immediately follows the mode- 

conditioned Student’s t-filter, in which the state and scale matrix 

are all updated using different values of the dof. Thus the covari- 

ance matrix appears to be more accurate than the scale matrix 

alone as the dof parameter is included. 

The Versoria cost function at this stage can be written as 

J 2 
(

x k | k 
)

= 2 a 

M 
∑ 

j=1 

μ j 
k 

1 

1 + τ e 2 
j, 2 k 

(25) 

Taking the first derivate of (25) and setting it to zero, gives the 

fused state vector ˆ x k | k in the iterative form as follows 

ˆ x k | k = x ( ̄L ) 
k | k 

= 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

M 
∑ 

j=1 

μ j 
k 

(

υ j 
k 

− 2 
)

(

P 
j 
k | k 

)−1 

υ j 
k 

( 

1 + τ || x ( ̄L −1) 
k | k 

− ˆ x j 
k | k 

|| 2 
(

P j 
k | k 

)−1 

) 2 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

−1 

×

M 
∑ 

j=1 

μ j 
k 

(

υ j 
k 

− 2 
)

(

P 
j 
k | k 

)−1 

ˆ x j 
k | k 

υ j 
k 

( 

1 + τ || x ( ̄L −1) 
k | k 

− ˆ x j 
k | k 

|| 2 
(

P j 
k | k 

)−1 

) (26) 

4 
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where L̄ denotes the maximum iteration number. The fused scale 

matrix can be obtained by applying Kullback-Leibler divergence 

based method 

(

P k | k 

)−1 
= 

M 
∑ 

j=1 

μ j 
k 

(

P 
j 
k | k 

)−1 

(27) 

It is known that a fixed single value chosen for the dof pa- 

rameter limits the flexibility of the robustness of the Student’s t- 

filter if the degree of heavy-tailedness is uncertain. Our method 

can cope with such an issue from two perspectives. Establishing 

multiple models for the dof parameter with possibly switched val- 

ues makes the robustness of the Student’s t-filter adjustable. With 

the Markovian transition of dof modes, the problem is straight- 

forwardly translated into a multimodel estimation under the IMM 

framework. In addition, to incorporate the robust Student’s t-filter 

effectively, the celebrated IMM framework is altered by introduc- 

ing the Versoria function to combine all models with high order 

moments being processed for better robust fused results. The im- 

provement will be demonstrated shortly in the simulation. 

4. Further discussion 

In this section, we briefly discuss the proposed algorithm in 

terms of computational complexity and stability of convergence, 

respectively. 

4.1. Computational complexity 

The proposed algorithm is within the IMM framework. It is 

known that the IMM framework has the best computational com- 

plexity among those popular multimodel approaches that have ac- 

ceptable estimation errors [36] . As can be seen in the previous sec- 

tion, Step 2 and Step 4 are the main parts of the proposed algo- 

rithm under the IMM framework. Hence we give the computation 

complexity of (10) in terms of matrix inversion (using O (·) nota- 

tion) and matrix/vector multiplication with respect to the state di- 

mension m and the number of models M in the following. 

C Eq . ( 10 ) ( m ) = L 
[

( M + 1 ) O 
(

m 
3 
)

+ M 
(

m 
2 + m 

)

+ Mm 
2 + m 

2 
]

= L 
[

( M + 1 ) O 
(

m 
3 
)

+ ( 2 M + 1 ) m 
2 + Mm 

]

(28) 

which is related to the iteration number L̄ . Since (10) shares the 

same structures with (26), the above computation complexity also 

applies to (26). 

For a clear comparison, we may introduce moments matching 

to our Student’s t-based problem for model fusion also within the 

IMM framework. The consequent algorithm would have a similar 

form to ours except (10), (11), (26) and (27). As a consequence, the 

mixing mean and scale matrix after replacing MVC with moments 

matching are approximated respectively as 

ˆ x 0 j 
k −1 | k −1 

= 

M 
∑ 

i =1 

μi | j 
k −1 ̂

 x i k −1 | k −1 (29) 

P 
0 j 
k −1 | k −1 

= 
υ j 
k −1 

− 2 

υ j 
k −1 

M 
∑ 

i =1 

(

υ i 
k −1 

υ i 
k −1 

− 2 
μi | j 

k −1 
P 
i 
k −1 | k −1 

+ μi | j 
k −1 

[ 

ˆ x i k −1 | k −1 − ˆ x 0 j 
k −1 | k −1 

] [ 

ˆ x i k −1 | k −1 − ˆ x 0 j 
k −1 | k −1 

] T 
)

(30) 

Therefore the major computational complexity is from (30) and 

computed in terms of matrix/vector multiplication as 

C Eq . ( 30 ) ( m ) = Mm 
2 (31) 

One may conclude that the whole computation cost of the pro- 

posed algorithm is evidently much more expensive than that of the 

moments matching based algorithm as the system dimension m 

grows. The primary cost arises from the multiple operations of ma- 

trix inversion/multiplication and depends on the iteration number 

L̄ as well. Despite showing predictable higher computational cost, 

our method is expected to give better robustness performance than 

the moments matching based approach and other related compet- 

ing estimation approaches. Fortunately, a large iteration number 

is usually unnecessary in practice owing to the MVC convergence 

property. Then the heavy computation loads can be avoided. In 

the simulation, we will compare our proposed method with other 

competing methods in terms of computational costs and estima- 

tion accuracy. 

4.2. Stability of convergence 

In this section, we briefly discuss the stability of the MVC-based 

iterative algorithm. The original MVC arises in the area of informa- 

tion theoretic learning, and its stability of convergence has been 

proved via the least square mean algorithm. In contrast, we use 

the MVC to fuse multiple models for the state estimation, which 

is a completely different subject from those in existing literature. 

Hence, unlike what has been done in [28] , it is hard to obtain re- 

cursive update equations for the state estimation error from (10) 

and (26). This results in difficulty in analyzing the convergence di- 

rectly. Fortunately, (10) and (26) are iterative fixed-point solutions 

under MVC, and [37] has offered a complete convergence analysis 

of the fixed-point algorithm with a similar form. For example, we 

rewrite (26) in the following form to match the general iterative 

form shown in [37] such that 

x (l+1) 
k | k 

= g 

(

x (l) 
k | k 

)

= [ M ] 
−1 V (32) 

where l denotes the lth iteration, and we have made the following 

transformation 

M = 

M 
∑ 

j=1 

μ j 
k 

f 

(

|| x ( ̄L ) 
k | k 

− ˆ x j 
k | k 

| | (
P j 
k | k 

)−1 

)

2 a 

(

P 
j 
k | k 

)−1 

(33) 

V = 

M 
∑ 

j=1 

μ j 
k 

f 

(

|| x ( ̄L ) 
k | k 

− ˆ x j 
k | k 

| | (
P j 
k | k 

)−1 

)

2 a 

(

P 
j 
k | k 

)−1 

ˆ x j 
k | k 

(34) 

where f (·) is the function with respect to the norm. Therefore the 

proof in [37] can be similarly applied into our iterative fixed-point 

equations like (10) and (26), and a sufficient condition therein 

guarantees that the iterative solutions are stable to converge to a 

unique fixed point. However, the above may not be extremely strict 

because a Gaussian kernel which is always less than one is used in 

their work, while the Versroria function dependent on the radius 

a is considered in ours. In addition, the relationship between the 

radius and the convergence has not been revealed. Thus a rigorous 

and in-depth theoretical exploration on these issues remain as our 

future work. Nevertheless, we will still demonstrate the conver- 

gence property of the proposed algorithm as a complement, and 

test how the radius influences the convergence in the following 

simulation. 

5. Simulated results 

In this section, we adopt an example that estimates the loca- 

tion of a single target to assess the performance of the proposed 

method, namely, maximum Versoria Student’s t-based multimodel 
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Table 1 

Effects of the number of iteration. 

L = 1 L = 2 L = 3 L = 4 L = 5 

Case1 ARMSE (m) 11.045 10.753 10.751 10.751 10.751 

SD (m) 2.143 1.967 1.967 1.967 1.967 

Case2 ARMSE (m) 12.417 12.100 12.099 12.099 12.099 

SD (m) 2.255 2.062 2.056 2.056 2.056 

(MVMMStd) method. The constant velocity model and the linear 

position measurement model in [12] are used. 

The total tracking time is 200s and the sampling time is 

set as 2s. The true initial state vector of the target is x 0 = 

[ 50 m 10 m / s ] T . The nominal covariance matrices of the 

process and measurement noises are Q k −1 = diag (1 m 2 , 1 m 2 / s 2 ) 

and R k = 100 m 2 , respectively. The model-based parameters for 

MVMMStd are given as follows: M = 2 , v 1 = 100 and v 2 = 3 , �= 
[ 
0 . 9 0 . 1 

0 . 1 0 . 9 

] 

, μ1 
0 = μ2 

0 = 0 . 5 . 

It is worth pointing out that M is unnecessary to be very large 

in practice and a large M does not ensure the improvement of 

the final estimates but would absolutely cause extra computational 

burden. Too many dof models would not yield satisfactory fusion 

results in consequence of the excessive model competition. Similar 

remarks have been drawn in the area of maneuvering target track- 

ing [38] where multiple models are established for the uncertain 

target dynamics. Thus M dof models should be chosen to have dis- 

tinguishable estimation performance. If there is no accurate prior 

knowledge about the heavy-tailedness of the noises, it is advised 

to select at least two values, for instance, a very high value and a 

low value for the dof models. 

In this simulation, the following two setups for the uncertain 

process noise and measurement noise are considered. 

Case 1 . Noises with abrupt changes: The process noise is purely 

Gaussian in the first 50s and only contaminated by 5% outliers 

N ( w k −1 | 0 , 25 Q k −1 ) in the rest 150s. The measurement outliers 

N ( v k | 0 , 50 R k ) occur with the probabilities of 0%, 5%, 1.5% and 

15% at time intervals [1, 50]s, [51, 100]s, [101, 150]s, and [151, 

200]s, respectively, which indicates the Gaussian noise, the mod- 

erate outlier-contaminated non-Gaussian noise, the mild one, and 

the severe one. 

Case 2 . Noises with progressive changes: The process and mea- 

surement noises are polluted by outliers N ( w k −1 | 0 , 25 Q k −1 ) and 

N ( v k | 0 , 50 R k ) , respectively, both with a constantly changing occur- 

rence probability 0 . 15(k − 1) / 200 , which rises from 0% at the be- 

ginning to 14.9% at k = 200 s. 

First of all, we study the convergence of the proposed algorithm 

and test the influence of the radius on the algorithm. Given five 

predefined values for the number of iteration L ( ̄L = L in this sim- 

ulation) and the assumption that a = 1 , Table 1 gives the average 

root mean square errors (ARMSEs) and standard deviations (SDs) of 

the estimated position after 20 0 0 Monte Carlo repetitions for both 

two cases. A notable decrease in the ARMSEs and SDs is observed 

when the iteration number changes from 1 to 2 both in Case 1 and 

Case 2. It can be seen as well that the ARMSEs and corresponding 

SDs change slightly in both cases when the number increases from 

2 to 3, and remain unchanged if L ≥ 3 , which means the algorithm 

almost converges at L = 3 . This accords with the statement from 

literature that the Versoria function converges very fast to reach 

the local optimum. 

Next, we move our focus on to the impacts of the radius a on 

the estimation accuracy of MVMMStd. The iteration number L = L̄ 

is chosen as 2 in this part. In Fig. 2 , letting the radius range from 

0.0 01 to 10 0 with selective values, we show the relationship be- 

tween the ARMSEs of the estimated position varying with the ra- 

dius a for both cases. The standard errors of the ARMSEs, repre- 

Fig. 2. ARMSEs of the position versus the radius 0.0 01~10 0. 

sented by upper and lower red chain-dotted lines, are provided in 

the figure as well. Note that a nonlinear log scale is employed for 

the horizontal axis to achieve good presentation. From Fig. 2 , it is 

observed that the ARMSE varies remarkably when a is chosen in 

the interval [2, 20], while ARMSE curves for both cases tend to be 

flat out of this interval, which means the algorithm is quite in- 

sensitive to a < 0 . 1 and a > 20 . The estimation error can be dimin- 

ished when 0 . 1 < a < 2 , but not as greatly as 2 < a < 20 . To further 

prove it, we select first 50 Monte Carlo runs from the whole 20 0 0 

runs and compute the ARMSEs of the position over 200s for each 

run. As displayed in Figs. 3 and 4 , the MVMMStd with a = 0 . 1 has 

an apparent estimation advantage over the one with a = 20 but 

performs only slightly better than the one with a = 2 . 

Even though the influence of the radius on estimation errors 

have been studied, it is still difficult to investigate the impact of 

the radius on the convergence directly. Instead, we combine with 

the iteration number and study how the ARMSEs change versus 

different iteration numbers as the radius varies. We continue to do 

the experiment as Fig. 2 by using different iteration numbers, and 

obtain the results shown in Fig. 5 . Note that only the results in the 

interval [1, 10] are presented. This is because [1, 10] is the most 

active interval to affect our algorithm, and the difference between 

each curve is quite small for the intervals except [1, 10]. In addi- 

tion to previous results given in Table 1 , Fig. 5 visually describes 

the convergence behavior of the proposed algorithm. A larger iter- 

ation number generally leads to a lower estimation error, and the 

performance of the MVMMStd using L ≥ 3 is quite close, especially 

when the radius is either in [1, 2] or [5, 10]. Thus values of the 

radius from these intervals do not show significant influence on 

the convergence. On the other hand, these four curves present the 

largest gaps between each other when the radius falls into the in- 

terval [2, 5]. Moreover, it can be seen from Fig. 5 that to achieve 

the same estimation error the MVMMStd with a larger radius re- 

quires more iteration steps. It is equivalent to say a smaller ra- 

dius in [2, 5] enables the algorithm to converge faster. Therefore, 

if the convergence speed and estimation precision are simultane- 

ously considered, a small value in [2, 5] is suggested for the radius. 

Secondly, we compare the MVMMStd with several competing 

robust estimation methods in terms of estimation errors. These 

methods include the Student’s t-filters [19] such as Std3 and 

Std100 with fixed dof values as 3 and 100, respectively, the robust 
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Fig. 3. ARMSEs versus first 50 repetitions from Case 1. 

Fig. 4. ARMSEs versus first 50 repetitions from Case 2. 

Bayesian filter using Bayesian model averaging approach (RBFBMA) 

[24] which is essentially a multimodel approach combining BMA 

and restricted variational Bayes, the Student’s t-based multimodel 

approach that shares the same Student’s t-based modelling method 

with ours but uses moments matching (MMMMStd) [27] rather 

than the MVC, the Student’s t-based robust Kalman filter using 

variational Bayesian (RStdKF) without knowing process and mea- 

surement noises [15] , the generalized hyperbolic skew Student’s t 

Kalman filter (GHSStdKF) [16] , the generalized hyperbolic variance 

Gamma Kalman filter (GHVGKF) [16] , the maximum correntropy 

Kalman filter (MCKF) [17] , and the robust Kalman filter using Hu- 

ber’s M-estimation [ 13 , 39 ] (HMKF). All the multimodel algorithms 

are initialized by using the same predefined model parameters 

for fair comparisons. For the MVMMStd, L = 2 and a = 1 are used. 

The number of iteration in GHSStdKF, GHVGKF, and RStdKF is 

chosen as 10 according to literature to ensure convergence. MCKF 

uses threshold detection to end iterative computations instead of 

using fixed iteration steps, and hence the number of iteration is 

dynamic. The actual average iteration steps of MCKF in Case 1 and 

Case 2 are 3.01 and 3.07, respectively. 

Plotted in Fig. 6 are the RMSEs of the position of all the com- 

pared methods in Case 1. In first 50s, since only Gaussian process 

and measurement noises exist, Std100, MCKF and RStdKF have 

the best estimation precision. The performance of MVMMStd is 

still comparable to that of Std100, MCKF and RStdKF. MMMMStd, 

HMKF and RBFBMA have an advantage over Std3. MMMMStd even 

outperforms MVMMStd in this period, which means the loss of 

high order information from the dof models is insignificant and 
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Fig. 5. ARMSEs of the position using different iteration numbers. 

Fig. 6. RMSEs of the position in Case 1. 

the moments matching technique is better compared to the MVC 

under the pure Gaussian environment. In the next 150s with the 

existence of the moderate, mild and severe outliers in noises in 

order, MVMMStd always performs the best among all because of 

the ability to find most probable combination of multiple models. 

MMMMStd and RBFBMA offer worse performance than MVMMStd, 

although they both use the multimodel approach. This is because 

MMMMStd uses moments matching at the mixing and combina- 

tion stages, which ignores the high order information contained in 

Student’s t-filter based models, and RBFBMA is unable to handle 

non-Gaussian process noise apart from using moments matching 

at the stage of overall approximation. Though RStdKF gives the 

lowest estimation errors occasionally and is able to learn unknown 

noise parameters, it is sensitive to the change of heavy-tailedness 

and hence its estimation results have large fluctuations. GHSStdKF 

and GHVGKF have shown the effectiveness when the noise is 

heavy-tailed and skewed in literature, however, they exhibit worse 

than the proposed MVMMStd in this case. It is interesting to note 

that in the last 150s, Student’s t-filters with fixed dof (3 or 100) 

present better performance for some time than the multimodel 

approaches (MMMMStd and RBFBMA) and other robust methods. 

Nonetheless, it is difficult to select a correct dof value for the 

Student’s t-filter in practice, particularly in the case where the 

heavy-tailedness is time-variant. It also implies that solutions to 

the non-Gaussian noise with uncertain heavy-tailedness are nec- 

essary, and appropriate processing of the model fusion is required 

if the multimodel approach is considered. 

Likewise, RMSEs of the position in Case 2 are given in Fig. 7 . 

All the algorithms demonstrate a trend of performance deteri- 

oration as a result of the increasing contamination probability 

0 . 15(k − 1) / 200 for both the process and measurement noises. 

Although all of them exhibit close estimation performance at 

the beginning when the contamination of outliers is very low, 

the disparity among the algorithms keeps progressively growing 

along with the increasing outlier occurrence probability. The 

major reason that the estimation error of RBFBMA significantly 
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Fig. 7. RMSEs of the position in Case 2. 

Table 2 

Average root mean square errors of competing robust methods. 

Std3 MMMMStd MCKF RBFBMA 

ARMSE (m) Case 1 12.039 14.191 13.038 12.872 

Case 2 13.728 15.970 15.432 18.221 

HMKF GHSStdKF-10 GHVGKF-10 RStdKF-10 

ARMSE (m) Case 1 14.590 13.691 13.453 11.130 

Case 2 16.657 15.696 15.449 15.124 

grows after 100s is its inability to handle the time-variant non- 

Gaussian process noise. Due to the same reason explained for 

Case 1, RStdKF has much larger errors and fluctuations in the 

last 100s than it has in the first 100s. It shows that the proposed 

MVMMStd provides the best estimation results throughout the 

whole time except the first 10s, i.e. when the outlier percentage 

is quite low and the actual noise distributions approximate to the 

Gaussian. 

As the ARMSEs of MVMMStd using different iteration numbers 

have been displayed in Table 1 , Table 2 gives the AMRSEs of all the 

rest competing algorithms for Case 1 and Case 2 for comparison in 

addition to Figs. 6 and 7 . Note that the numbers following GHSSt- 

dKF, GHVGKF and RStdKF represent the iteration steps they use in 

the algorithms. As seen from Tables 1 and 2 , the proposed MVMM- 

Std has the best estimation results, which is in line with what we 

observe from Figs. 6 and 7 . 

Furthermore, as MVMMStd and MMMMStd are structurally sim- 

ilar and only differ from each other in terms of the fusion method 

under the IMM framework, we show their mode probabilities in 

Figs. 8 and 9 for Case 1 and Case 2, respectively. As expected, for 

the MVMMStd in both cases, the probabilities of the model using a 

large dof value (Mode 1) are prone to decline as the outliers prob- 

ability rises (at 50s and 150s in Case 1, the whole time in Case 

2) and increase as the outliers probability decreases (at 100s in 

Case 1), while the ones using a smaller value (Mode 2) have an 

opposite trend. In Case 1, it shows that the mode probabilities es- 

timation of MMMMStd is less sensitive to the sudden changes of 

outliers percentage at 50s and 100s, and obviously gives incorrect 

estimates when outliers percentage is high in the last 50s. Even 

if MMMMStd provides relatively close estimates of mode proba- 

bilities to MVMMStd in [50, 150]s, the position estimation errors 

in these periods are still larger than that of MVMMStd as shown 

in Fig. 6 because high order information is not appropriately pro- 

cessed. In Case 2, combining the results from Fig. 7 , we may find 

that MMMMStd underestimates the probability of Mode 1 when 

the degree of heavy-tailedness is mild and moderate except for the 

first 10s, whereas overestimates it when the degree escalates, and 

vice versa for Mode 2. 

Finally, the computational complexity of MVMMStd is further 

compared to that of previous competing robust methods. The com- 

putational complexity of each algorithm is calculated by using the 

cputime function in Matlab. Let Std3 have a computational com- 

plexity of one, and the complexities of the rest are normalized 

relative to Std3. Normalized computational complexities obtained 

from Case 1 are given in Table 3 . 

As can be observed from Table 3 , Std3 has the lowest computa- 

tional complexity among all the competitors. RBFBMA, HMKF, MM- 

MMStd and MCKF are more computationally efficient than the rest 

competing methods apart from Std3. As expected, the computa- 

tional complexity of MVMMStd increases when the number of it- 

erations grows from 2 to 5 (Numbers following MVMMStd are it- 

eration steps). MVMMStd-2 has almost an identical computational 

complexity to RStdKF-10, and is computationally much cheaper 

than GHSStdKF-10 and GHVGKF-10. Among all the iteration-based 

algorithms, MVMMStd has a very high computational complexity 

of a single iteration step because each iteration step of MVMM- 

Std contains not only weighted models aggregation but repeated 

operations of matrix inversion and multiplication. However, if 

we take into account the estimation errors given previously in 

Table 1 , Figs. 6 , and 7 , we may select appropriate iteration steps 

for MVMMStd and avoid spending unnecessary computational re- 

sources. The MVMMStd with 2 iteration steps already provides sat- 

isfactory results in both cases, thus L = 2 and L = 3 are prefer- 

able choices in our simulation. Using L = 4 , L = 5 or larger iter- 

ation number does not provide distinct improvement but leads 

to 3~4 times the computational complexities of RBFBMA, HMKF, 

MMMMStd and MCKF. Even though RBFBMA, HMKF, MMMMStd 

and MCKF have notably lighter computational complexities than 

MVMMStd, the robustness of these algorithms are undermined 
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Fig. 8. Mode Probabilities in Case 1. 

Fig. 9. Mode Probabilities in Case 2. 

Table 3 

Normalized computational complexities. 

Std3 MMMMStd MVMMStd-2 MVMMStd-3 MVMMStd-4 MVMMStd-5 

1 4.12 7.41 9.11 11.32 12.33 

MCKF RBFBMA RStdKF-10 GHSStdKF-10 GHVGKF-10 HMKF 

4.17 1.69 7.20 15.05 17.10 3.33 
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when the process noise and measurement noise are of time-variant 

heavy-tailedness. 

5. Conclusion 

In this paper, a flexible robust Student’s t-based multimodel ap- 

proach is proposed for the state estimation. The key feature of 

the proposed approach is that the unknown degrees of freedom 

is modelled by a Markov process and the MVC has been used to 

fuse multiple Student’s t-based models. Results from the simulated 

data show the superiority of the proposed approach when deal- 

ing with the non-Gaussian noises with uncertain degree of non- 

Gaussianity, ranging from mild to severe heavy-tailedness, in spite 

of higher computational complexity. This approach is expected to 

offer better estimation performance in practice by either optimiz- 

ing transition probabilities or selecting more accurate dof models 

if the prior knowledge about the noises is obtained. The proposed 

approach can be also used to develop the nonlinear counterparts 

with light computational loads using existing Student’s t-based nu- 

merical methods appropriately. 
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