MISCELLANEOUS SEARCHES

Magnetic Monopole Searches							2017
Supersymmetric Particle Searches							2019
$Technicolor . \ . \ . \ . \ . \ . \ .$							2062
Quark and Lepton Compositeness							2063
Extra Dimensions							2067
WIMP and Dark Matter Searches							2073
Other Particle Searches							2085

SEARCHES IN OTHER SECTIONS

Neutral Higgs Bosons, Searches for				1056
Charged Higgs Bosons $(H^{\pm} \text{ and } H^{\pm\pm})$, Searches for	or			1065
New Heavy Bosons				1068
Axions (A^0) and Other Very Light Bosons				1084
Heavy Charged Lepton Searches				1134
Double- β Decay $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$				1145
Heavy Neutral Leptons, Searches for				1168
b' (Fourth Generation) Quark				1197
t' (Fourth Generation) Quark				1199
Free Quark Searches $\ . \ . \ . \ . \ . \ . \ . \ .$				1201

Related Reviews in Volume 1

86. Extra dimensions (rev.)							. 889
87. W' -boson searches (rev.)							. 897
88. Z' -boson searches (rev.)							. 900
89. Supersymmetry: theory (rev.)							. 905
90. Supersymmetry: experiment (rev.) .							. 923
91. Axions and other similar particles (rev.)							. 939
92. Quark and lepton compositeness, searche	es fo	r (r	ev.)			. 953
93. Dynamical electroweak symmetry							. 958
breaking: implications of the $H(0)$ (rev.)							
94. Grand unified theories (rev.)							. 971
95. Leptoquarks (rev.)							. 986
96. Magnetic monopoles (rev.)					•		. 989

SEARCHES not in other sections

Magnetic Monopole Searches

See the related review(s):

Magnetic Monopoles

Monopole Production Cross Section — Accelerator Searches

(cm ²)	(GeV)	(g)	(GeV)	BEAM		DOCUMENT ID		TECN
<2.5E-37 2	00-6000	1	13000	рр	1	ACHARYA	17	INDU
<2E-37 2	00-6000	2	13000	рр	1	ACHARYA	17	INDU
<4E-37 2	00-5000	3	13000	рр	1	ACHARYA	17	INDU
< 1.5 E - 36 4	00-4000	4	13000	рр	1	ACHARYA	17	INDU
<7E-36 10	00-3000	5	13000	рр	1	ACHARYA	17	INDU
<5E-40 2	00-2500	0.5-2.0	8000	рр	2	AAD	16AB	ATLS
<2E-37 1	00-3500	1	8000	рр	3	ACHARYA	16	INDU
<2E-37 1	00-3500	2	8000	рр	3	ACHARYA	16	INDU
<6E-37 5	00-3000	3	8000	рр	3	ACHARYA	16	INDU
<7E-36 10	00-2000	4	8000	рр	3	ACHARYA	16	INDU
<1.6E-38 2	00-1200	1	7000	рр	4	AAD	12cs	ATLS
< 5 E - 38	45-102	1	206	e^+e^-	5	ABBIENDI	08	OPAL
<0.2E-36	200-700	1	1960	pp	7 0	ABULENCIA	06K	CNTR
< 2.E - 36		1	300	е+ р	7,8	AKTAS	05A	INDU
< 0.2 E - 36		2	300	e+p	7,8	AKTAS	05A	INDU
< 0.09E - 36		3	300	$e^+ p$	7,8	AKTAS	05A	INDU
< 0.05 E - 36		≥ 6	300	$e^+ p$	7,8	AKTAS	05a	INDU
< 2.E - 36		1	300	e ⁺ p	7,9	AKTAS	05a	INDU
< 0.2E - 36		2	300	e^+p	7,9	AKTAS	05A	INDU
$< 0.07 \mathrm{E} - 36$		3	300	e^+p	7,9	AKTAS	05A	INDU
< 0.06E - 36		≥ 6	300	$e^+ p$	7,9	AKTAS	05A	INDU
< 0.6E - 36	>265	1	1800	pp	10	KALBFLEISCH	04	INDU
< 0.2E - 36	>355	2	1800	p p	10	KALBFLEISCH	04	INDU
< 0.07E-36	>410	3	1800	p p	10	KALBFLEISCH	04	INDU
< 0.2E - 36	>375	6	1800	p p	10	KALBFLEISCH	04	INDU
< 0.7E - 36	>295	1	1800	p p	11,12	KALBFLEISCH	00	INDU
< 7.8E - 36	>260	2	1800	р <mark>р</mark>	11,12	KALBFLEISCH	00	INDU
< 2.3E - 36	>325	3	1800	p p	11,13	KALBFLEISCH	00	INDU
< 0.11E - 36	>420	6	1800	$p\overline{p}$	11,13	KALBFLEISCH	00	INDU
<0.65E-33	<3.3	≥ 2	11A	197Au	14,15	HE	97	
< 1.90E - 33	<8.1	≥ 2	160A	208Pb	14,15	HE	97	
< 3.E - 37	<45.0	1.0	88-94	e^+e^-		PINFOLD	93	PLAS
< 3.E - 37	<41.6	2.0	88-94	e^+e^-		PINFOLD	93	PLAS
< 7.E - 35	<44.9	0.2-1.0	89-93	e^+e^-		KINOSHITA	92	PLAS
< 2.E - 34	<850	≥ 0.5	1800	p p		BERTANI	90	PLAS
< 1.2E - 33	< 800	≥ 1	1800	pp		PRICE	90	PLAS
< 1.E - 37	<29	1	50-61	e+ e-		KINOSHITA	89	PLAS
< 1.E - 37	<18	2	50-61	e^+e^-		KINOSHITA	89	PLAS
< 1.E - 38	< 17	$<\!\!1$	35	e^+e^-		BRAUNSCH	88B	CNTR
< 8.E - 37	<24	1	50-52	e^+e^-		KINOSHITA	88	PLAS
< 1.3 E - 35	<22	2	50-52	e^+e^-		KINOSHITA	88	PLAS
< 9.E - 37	<4	< 0.15	10.6	e^+e^-		GENTILE	87	CLEO
< 3.E - 32	< 800	≥ 1	1800	p p		PRICE	87	PLAS
< 3.E - 38		<3	29	e^+e^-		FRYBERGER	84	PLAS
< 1.E - 31		1,3	540	p p		AUBERT	83B	PLAS
< 4.E - 38	< 10	<6	34	e^+e^-	10	MUSSET	83	PLAS
<8.E-36	<20		52	рр	16	DELL	82	CNTR
< 9.E - 37	<30	<3	29	e^+e^-		KINOSHITA	82	PLAS
< 1.E - 37	<20	<24	63	рр		CARRIGAN	78	CNTR
< 1.E - 37	<30	<3	56	рр	1.0	HOFFMANN	78	PLAS
			62	рр	10	DELL	76	SPRK
<4.E-33			300	р	10	STEVENS	76B	SPRK
<1.E-40	<5	<2	70	р	16	ZRELOV	76	CNTR
<2.E-30			300	n	10	BURKE	75	OSP K
<1.E-38			8	ν	10	CARRIGAN	75	HLBC
<5.E-43	<12	<10	400	р		EBERHARD	75B	INDU
<2.E-36	<30	<3	60	рр		GIACOMELLI	75	PLAS
<5.E-42	<13	<24	400	р		CARRIGAN	(4 72	
< b.E-42	<12	<24	300	р	17		13	
<2.E-36	~ =	1	0.001	γ	- 1	CUREVICU	12	
<1.E-41	< 5	~?	70	p			12	
<1.E-40	< 3	<2	20	p			63	
<2.E-40 <1 E- 25	< 3	<2	20	P		FURCELL	00 61	
<1.L - 33	< 3 ~1	<4	20	P D		RRADNER	50	EMU
~2.L - JJ	< 1	T	U	Р		DIADNEN	55	LINIOL

2017 Searches Particle Listings Magnetic Monopole Searches

٠	٠	We do not	use the	following	data fo	r averages,	fits,	limits, etc.	٠	٠	•
---	---	-----------	---------	-----------	---------	-------------	-------	--------------	---	---	---

	to not use the	iono ming	aara ioi	arcragesi	, most mines, erer + +	-		
<1.3E-40	200-4000	1	13000	рр	¹⁹ aad	20G	ATLS	
<5.6E-40	500-4000	2	13000	рр	¹⁹ AAD	20G	ATLS	
	200-5000	2	13000	рр	²⁰ ACHARYA	19B	INDU	
	200-5000	1	13000	рр	²¹ ACHARYA	18A	INDU	

 1 The search was sensitive to monopoles which had stopped in aluminium trapping volumes Monopoles with spins 0 and 1/2 were considered; mass-dependent spin $1/2\ monopole$ limits are quoted here.

 $^2\,\text{AAD}$ 16AB model-independent 95% CL limits estimated using a fiducial region of approximately constant acceptance. Limits are mass-dependent.

³ACHARYA 16 limits at 95% CL estimated using a Drell-Yan-like production mechanism for scalar monopoles.

⁴ AAD 12Cs searched for monopoles as highly ionising objects. The cross section limits are based on an assumed Drell Yan-like production process for spin 1/2 monopoles. The limits are mass- and scenario-dependent.

 5 ABBIENDI 08 assume production of spin 1/2 monopoles with effective charge $g\beta$ (n=1), Via $e^+e^- \rightarrow \gamma^* \rightarrow M\overline{M}$, so that the cross section is proportional to $(1 - \gamma)$, via $e^+e^- \rightarrow \gamma^* \rightarrow M\overline{M}$, so that the cross section is proportional to $(1 + \cos^2\theta)$. There is no z information for such highly saturated tracks, so a parabolic track in the jet chamber is projected onto the xy plane. Charge per hit in the chamber produces a clean separation of signal and background.

Separation of signal and background. 6 ABULENCIA 06K searches for high-ionizing signals in CDF central outer tracker and time-of-flight detector. For Drell-Yan $M\overline{M}$ production, the cross section limit implies M > 360 GeV at 95% CL. 7 AKTAS 05A model-dependent limits as a function of monopole mass shown for arbitrary

mass of 60 GeV. Based on search for stopped monopoles in the H1 Al beam pipe.

 $^{8}\,\text{AKTAS}$ 05A limits with assumed elastic spin 0 monopole pair production.

 $^9\,{\rm AKTAS}$ 05A limits with assumed inelastic spin 1/2 monopole pair production

 $^{10}\,\rm KALBFLEISCH$ 04 reports searches for stopped magnetic monopoles in Be, Al, and Pb samples obtained from discarded material from the upgrading of DØ and CDF. A large-aperture warm-bore cryogenic detector was used. The approach was an extension of the methods of KALBFLEISCH 00. Cross section results moderately model dependent; interpretation as a mass lower limit depends on possibly invalid perturbation expansion.

III KALBFLEISCH OU used an induction method to search for stopped monopoles in pieces of the DØ (FNAL) beryllium beam pipe and in extensions to the drift chamber aluminum support cylinder. Results are model dependent.

12 KALBFLEISCH 00 result is for aluminum.

13 KALBFLEISCH 00 result is for beryllium.

¹⁴ HE 97 used a lead target and barium phosphate glass detectors. Cross-section limits are well below those predicted via the Drell-Yan mechanism.

¹⁵ This work has also been reinterpreted in the framework of monopole production via the thermal Schwinger process (GOULD 17); this gives rise to lower mass limits.

¹⁶ Multiphoton events.

17 Cherenkov radiation polarization.

¹⁸Re-examines CERN neutrino experiments.

 $^{19}\mathrm{AAD}$ 20G give limits for Drell-Yan production with spin-0 and spin-1/2 monopoles. The above limit is for spin = 0 at mass = 3 TeV. 20 ACHARYA 19B limits both β -dependent and β -independent on monopoles with spins 0,

1/2, and 1 and with magnetic charges ranging from one to five times the Dirac charge in mass ranges between 200 GeV and 5000 GeV.

²¹ ACHARYA 18A provide limits on monopoles with spins 0, 1/2, and 1 and with magnetic charges ranging from two to five times the Dirac charge

Monopole Production — Other Accelerator Searches

MASS (GeV)	CHG (g)	SPIN	ENERGY (GeV)	BEAM	DOCUMENT ID	TECN
> 610	≥ 1	0	1800	pp	¹ АВВОТТ 98к	D0
> 870	≥ 1	1/2	1800	pp	¹ АВВОТТ 98к	D0
> 1580	≥ 1	1	1800	pp	¹ аввотт 98к	D0
> 510			88-94	e^+e^-	² ACCIARRI 95c	L3

 1 ABBOTT 98K search for heavy pointlike Dirac monopoles via central production of a

pair of photons with high transverse energies. ²ACCIARRI 95C finds a limit B($Z \rightarrow \gamma \gamma \gamma$) < 0.8 × 10⁻⁵ (which is possible via a monopole loop) at 95% CL and sets the mass limit via a cross section model.

Monopole Flux — Cosmic Ray Searches

'Caty" in the charge column indicates a search for monopole-catalyzed nucleon decay.

FLUX	MASS CHG	COMMENTS				
<u>(cm⁻²sr⁻¹s⁻¹</u>	(<u>GeV</u>) (g)	$(\beta = v/c)$	EVTS	DOCUMENT ID		TECN
< 1.5 E - 18	1	$\beta > 0.6$	0	¹ ALBERT	17	ANTR
$<\!2.5\mathrm{E}\!-\!21$	1	$1E8 < \gamma < 1E13$	0	² AAB	16	AUGE
<1.55E-18		eta >0.51	0	³ AARTSEN	16B	ICCB
<1E-17	Caty	$1E-3 < \beta < 1E-2$	0	⁴ AARTSEN	14	ICCB
<3E-18	1	$\beta > 0.8$	0	⁵ ABBASI	13	ICCB
<1.3E-17	1	$\beta > 0.625$	0	⁶ ADRIAN-MAR.	12A	ANTR
<6E-28	<1E17 Caty	$1E-5 < \beta < 0.04$	0	⁷ UENO	12	SKAM
<1E-19	1	$\gamma > 1E10$	0	⁸ DETRIXHE	11	ANIT
<3.8E-17	1	$\beta > 0.76$	0	⁵ ABBASI	10A	ICCB
< 1.3E - 15	1E4 <m<5e13 1<="" td=""><td>$\beta > 0.05$</td><td>0</td><td>⁹ BALESTRA</td><td>08</td><td>P LA S</td></m<5e13>	$\beta > 0.05$	0	⁹ BALESTRA	08	P LA S
< 0.65 E - 15	>5E13 1	$\beta > 0.05$	0	⁹ BALESTRA	08	P LA S
<1E-18	1	$\gamma > 1$ E8	0	⁸ hogan	08	RICE
<1.4E-16	1	$1.1E-4 < \beta < 1$	0	¹⁰ AMBROSIO	02в	MCRO
< 3E - 16	Caty	$1.1\mathrm{E}-\mathrm{4} < \beta < \mathrm{5E}$	-30	¹¹ AMBROSIO	02c	MCRO
< 1.5 E - 15	1	$5\mathrm{E}-3<\beta<0.99$	0	¹² AMBROSIO	02D	MCRO
< 1E - 15	1	$1.1 \times 10^{-4} - 0.1$	0	¹³ AMBROSIO	97	MCRO
<5.6E-15	1	(0.18-3.0)E-3	0	¹⁴ AHLEN	94	MCRO
< 2.7 E - 15	Caty	$\beta \sim 1 \times 10^{-3}$	0	¹⁵ BECKER-SZ	94	IMB
< 8.7 E - 15	1	>2.E-3	0	THRON	92	SOUD
< 4.4 E - 12	1	all β	0	GARDNER	91	INDU
<7.2E-13	1	all β	0	HUBER	91	INDU

2018 Searches Particle Listings Magnetic Monopole Searches

< 3.7E - 15	>E12	1	$\beta = 1.E - 4$	0	10	ORITO	91	PLAS
< 3.2E - 16	>E10	1	$\beta > 0.05$	0	16	ORITO	91	PLAS
< 3.2E - 16	>E10-E12	2,3		0	16	ORITO	91	PLAS
< 3.8E - 13		1	all β	0		BERMON	90	INDU
< 5.E - 16		Caty	$\beta < 1.E-3$	0	15	BEZRUKOV	90	CHER
< 1.8E - 14		1	$\beta > 1.1 E - 4$	0	17	BUCKLAND	90	HEPT
< 1E - 18			$3.E-4 < \beta < 1.5E-3$	0	18	GHOSH	90	MICA
<7.2E-13		1	all B	0		HUBER	90	INDU
<5.E-12	>E7	1	$3.E - 4 < \beta < 5.E - 3$	0		BARISH	87	CNTR
<1.E-13	-	Caty	$1.E - 5 < \beta < 1$	0	15	BARTELT	87	SOUD
<1.E-10		1	all B	0		EBISU	87	INDU
<2.E-13			$1.E - 4 < \beta < 6.E - 4$	0		MASEK	87	HEPT
< 2 E - 14			$4 E - 5 < \beta < 2 E - 4$	0		NAKAMURA	87	PLAS
<2 E - 14			$1 E = 3 < \beta < 1$	0		NAKAMURA	87	PLAS
<5 E - 14			$9E_4 < \beta < 1E_2$	ñ		SHEPKO	87	CNTR
<2 E - 13			$\beta = 4 < \beta < 1 = 2$	0			87	CNTR
<2.L-13		1	all β	1	19	CAPLIN	86	
<5.E 17		1	an p	0		CROMAR	96	
<1 E 12		1	7 5 4 < 8	0			96	CNTP
<1.L-13		1	r = 4 < p	0			96	
<1.E 10		1		0	18	DDICE	00	MICA
<1.E-18		1	$4.E-4$	0		PRICE	00 07	
<5.E-12		1		0		BERMON	05	INDU
<6.E-12		1		0		CAPLIN	85	INDU
< 6.E - 10				0	15	EBISU	85	INDU
<3.E-15		Caty	$5 E-5 \leq \beta \leq 1 E-3$	0	20	KAJITA	85	KAMI
< 2.E - 21		Caty	$\beta < 1.E-3$	0 15	15	KAJITA	85	KAMI
< 3.E - 15		Caty	$1.E-3 < \beta < 1.E-1$	0	15	PARK	85 B	CNTR
<5.E-12		1	$1.E-4 < \beta < 1$	0		BATTISTONI	84	NUSX
<7.E-12		1		0	17	INCANDELA	84	INDU
<7.E-13		1	$3.E-4 < \beta$	0	17	KA JI NO	84	CNTR
< 2.E - 12		1	$3 E - 4 < \beta < 1 E - 1$	0		KA JI NO	84B	CNTR
<6.E-13		1	5.E $-4 < \beta < 1$	0		KAWAGOE	84	CNTR
< 2.E - 14			$1.E-3 < \beta$	0	15	KRISH NA	84	CNTR
< 4.E - 13		1	$6.E-4 < \beta < 2.E-3$	0		LISS	84	CNTR
< 1.E - 16			$3.E-4 < \beta < 1.E-3$	0	18	PRICE	84	MICA
< 1.E - 13		1	$1.E-4 < \beta$	0		PRICE	84B	PLAS
$<\!\!4.E\!-\!13$		1	$6.E-4 < \beta < 2.E-3$	0		TARLE	84	CNTR
				7	21	ANDERSON	83	EMUL
< 4.E - 13		1	$1.E-2 < \beta < 1.E-3$	0		BARTELT	83B	CNTR
< 1.E - 12		1	$7.E-3 < \beta < 1$	0		BARWICK	83	PLAS
< 3.E - 13		1	$1.E-3 < \beta < 4.E-1$	0		BONARELLI	83	CNTR
< 3.E - 12		Caty	$5.E-4 < \beta < 5.E-2$	0	15	BOSETTI	83	CNTR
< 4.E - 11		1		0		CABRERA	83	INDU
< 5.E - 15		1	$1.E - 2 < \beta < 1$	0		DOKE	83	PLAS
< 8.E - 15		Caty	$1.E-4 < \beta < 1.E-1$	0	15	ERREDE	83	IMB
<5.E-12		1	$1 E - 4 < \beta < 3 E - 2$	0		GROOM	83	CNTR
<2.E-12			$6.E - 4 < \beta < 1$	0		MASHIMO	83	CNTR
<1.E-13		1	$\beta = 3.E - 3$	0		ALEXEYEV	82	CNTR
< 2 E - 12		1	$7E-3 < \beta < 6E-1$	0		BONARFILL	82	CNTR
6 E - 10		1	all B	1	22	CABRERA	82	INDU
< 2 E - 11		-	$1 E_{-2} < \beta < 1 E_{-1}$	Ô.		MASHIMO	82	CNTR
<2.E 11			concentrator	ñ		BARTIETT	81	DIAS
<1 E - 13	<u>\1</u>		$1 E - 3 < \beta$	0		KINOSHITA	81p	PLAS
<1.E-13	~E17		$3 = 4 < \beta < 1 = 3$	0			010	CNTD
<0.E - 11			$5.L-4$	0			70	DIAC
<u>_</u> ∠.∟−11 1 ⊑ 1	> 200	n	Concentrator	1	23	DDICE	70	DIAG
1.E - 1 2 E 12	>200	~ 2		1	-		71 71	FLAS
<2.E-13		>2	obsidion mico	0			11	PLAS
<1.E-19	-15	>2	obsidian, mica	0			090	FLAS
<5.E-15	<15	<3	concentrator	U		CARITHERS	00	ELEC
<2.E-11		<1-3	concentrator	U		MALKUS	51	EMUL

 $^1\,\rm ALBERT$ 17 limits were estimated using a Cherenkov light in an array of optical modules under the Mediterranean Sea. The limits are for MM masses between 10^{10} and 10^{14} GeV. The limits are speed-dependent.

 $^2\,{\rm AAB}$ 16 search was made with a set of telescopes sampling the longitudinal profile of fluorescence light emitted by extensive air showers. Limits are speed dependent

³AARTSEN 16B was based on a Cherenkov signature in an array of optical modules which were sunk in the Antarctic ice cap. Limits are speed-dependent.

A Beyond the monopole speed, the limits of AARTSEN 14 depend on the catalysis cross section (σ) which corresponds to the monopole radiating \hat{I} times the light per track length compared to the Cherenkov light from a single electrically charged, relativistic particle. The values quoted here correspond to $\sigma = 1$ barn or $\hat{l} = 30$.

⁵ ABBASI 13 and ABBASI 10A were based on a Cherenkov signature in an array of optical modules which were sunk in the Antarctic ice cap. Limits are speed-dependent. ⁶ADRIAN-MARTINEZ 12A measurements were based on a Cherenkov signature in an

underwater telescope in the Western Mediterranean Sea. Limits are speed-dependent. The limits from UERO 12 depend on the monopole speed and are also sensitive to assumed values of monopole mass and the catalysis cross section.

⁸HOGAN 08 and DETRIXHE 11 limits on relativistic monopoles are based on nonobser-

- vation of radio Cherenkov signals at the South Pole. Limits are speed-dependent. 9 BALESTRA 08 exposed of nuclear track detector modules totaling 400 m² for 4 years at the Chacaltaya Laboratory (5230 m) in search for intermediate-mass monopoles with β > 0.05. The analysis is mainly based on three CR39 modules. For M $> 5 \times 10^{13}$ GeV there can be upward-going monopoles as well, hence the flux limit is half that obtained for less massive monopoles. Previous experiments (e.g. MACRO and OHYA (ORITO 91)) had set limits only for M $> 1 imes 10^9$ GeV.
- set limits only for $M>1\times10^{9}$ GeV. 10 AMBROSIO 02B direct search final result for $m\geq10^{17}$ GeV, based upon 4.2 to 9.5 years of running, depending upon the subsystem. Limit with CR39 track-etch detector extends the limit from $\beta\!=\!4\times10^{-5}$ $(3.1\times10^{-16}\,{\rm cm}^{-2}\,{\rm sr}^{-1}\,{\rm s}^{-1})$ to $\beta\!=1\times10^{-4}$ $(2.1\times10^{-16}\,{\rm cm}^{-2}\,{\rm sr}^{-1}\,{\rm s}^{-1})$. Limit curve in paper is piecewise continuous due to different detection techniques for different β ranges.

- $^{11}\,\mathrm{AMBROSIO}$ 02c limit for catalysis of nucleon decay with catalysis cross section of $\approx 1\,\text{mb}$. The flux limit increases by ~ 3 at the higher β limit, and increases to $1\times 10^{-14}\,\text{cm}^{-2}\,\text{sr}^{-1}\,\text{s}^{-1}$ if the catalysis cross section is 0.01 mb. Based upon 71193 hr
- 12 AMBROSIO 02D result for "more than two years of data." Ionization search using several subsystems. Limit curve as a function of β not given. Included in AMBROSIO 02B. 13 AMBROSIO 02D result for "more than two years of data." Ionization search using several subsystems. Limit curve as a function of β not given. Included in AMBROSIO 02B. 13 AMBROSIO 97 global MACRO 90%CL is 0.78×10^{-15} at $\beta = 1.1 \times 10^{-4}$, goes through a minimum at 0.61 $\times 10^{-15}$ near $\beta = (1.1 2.7) \times 10^{-3}$, then rises to 0.84 $\times 10^{-15}$ Locc a mean $p = (1,1-2,1) \times 10^{-5}$, then rises to 0.84×10^{-15} . Less stringent limits are established for $4 \times 10^{-5} < \beta < 1 \times 10^{-4}$. Limits set by various triggers and different subdetectors are given in the paper. All limits assume a catalysis cross section smaller than a few cross section smaller than a few mb. 14 AHLEN 94 limit for dyons extends down to β =0.9E-4 and a limit of 1.3E-14 extends
- In the AHLEN 94 result is that in the case of monopoles catalyzing nucleon decay, relativistic particles could veto the events. See AMBROSIO 97 for additional results.
- 15 Catalysis of nucleon decay; sensitive to assumed catalysis cross section.
- ¹⁶ ORITO 91 limits are functions of velocity. Lowest limits are given here. ¹⁷Used DKMPR mechanism and Penning effect.
- 18 Assumes monopole attaches fermion nucleus.

19 Limit from combining data of CAPLIN 86, BERMON 85, INCANDELA 84, and CABR-ERA 83. For a discussion of controversy about CAPLIN 86 observed event, see GUY 87. EKA 83. For a discussion or controversy used of a line 2.1. Also see SCHOUTEN 87. 20 Based on lack of high- energy solar neutrinos from catalysis in the sun. 21 Anomalous long-range α (⁴He) tracks.

²⁷CABERA 82 candidate event has single Dirac charge within ±5%.
²³ALVAREZ 75, FLEISCHER 75, and FRIEDLANDER 75 explain as fragmenting nucleus.

EBERHARD 75 and ROSS 76 discuss conflict with other experiments. HAGSTROM 77 reinterprets as antinucleus. PRICE 78 reassesses.

Monopole Flux — Astrophysics

FLUX cm-2sr-1s-1)	MASS (GeV)	СНG (g)	$\frac{COMMENTS}{(\beta = v/c)}$	DOCUMENT ID	TECN
<1.3E-20			faint white dwarf	¹ FREESE 99 ,	ASTR
< 1.E - 16	E17	1	galactic field	² ADAMS 93	COSM
<1.E – 23			Jovian planets	¹ ARAFUNE 85 J	ASTR
< 1.E - 16	E15		solar trapping	BRACCI 85B	ASTR
< 1.E - 18		1		¹ HARVEY 84	COSM
<3.E-23			neutron stars	KOLB 84	ASTR
<7.E – 22			pulsars	¹ FREESE 83B	ASTR
< 1.E - 18	<e18< td=""><td>1</td><td>intergalactic field</td><td>REPHAELI 83</td><td>COSM</td></e18<>	1	intergalactic field	REPHAELI 83	COSM
< 1.E - 23			neutron stars	DIMOPOUL 82	COSM
<5.E-22			neutron stars	^I KOLB 82	COSM
< 5.E - 15	>E21		galactic halo	SALPETER 82	COSM
< 1.E - 12	E19	1	$\beta = 3.E - 3$	³ TURNER 82	COSM
< 1.E - 16		1	galactic field	PARKER 70	COSM

¹ Catalysis of nucleon decay.

 2 ADAMS 93 limit based on "survival and growth of a small galactic seed field" is $10^{-16}~(m/10^{17}~{\rm GeV})~{\rm cm}^{-2}~{\rm s}^{-1}~{\rm sr}^{-1}$. Above $10^{17}~{\rm GeV}$, limit $10^{-16}~(10^{17}~{\rm GeV}/m)$ ${\rm cm}^{-2}\,{\rm s}^{-1}\,{\rm sr}^{-1}$ (from requirement that monopole density does not overclose the universe) is more stringent.

³Re-evaluates PARKER 70 limit for GUT monopoles.

Monopole Density — Matter Searches

•						
DENSITY	CHG (g)	MATERIAL		DOCUMENT ID		TECN
<9.8E—5/gram	≥ 1	Polar rock		BENDTZ	13	INDU
<6.9E-6/gram	>1/3	Meteorites and other		JEON	95	INDU
<2.E – 7/gram	>0.6	Fe ore	1	EBISU	87	INDU
<4.6E-6/gram	> 0.5	deep schist		KOVALIK	86	INDU
<1.6E-6/gram	> 0.5	manganese nodules	2	KOVALIK	86	INDU
<1.3E-6/gram	> 0.5	seawater		KOVALIK	86	INDU
>1.E+14/gram	>1/3	iron aerosols		MIKHAILOV	83	SPEC
<6.E-4/gram		air, seawater		CARRIGAN	76	CNTR
<5.E-1/gram	>0.04	11 materials		CABRERA	75	INDU
<2.E-4/gram	>0.05	moon rock		ROSS	73	INDU
<6.E-7/gram	$<\!\!140$	seawater		KOLM	71	CNTR
<1.E – 2/gram	< 120	manganese nodules		FLEISCHER	69	PLAS
<1.E-4/gram	> 0	manganese		FLEISCHER	69B	PLAS
<2.E-3/gram	<1-3	magnetite, meteor		GOTO	63	EMUL
<2.E-2/gram		meteorite		PETUKHOV	63	CNTR
1	1	7				

2 MOAS 1 × 10⁻⁻¹ × 10⁻⁻ 1 × 10⁻⁻ 2 KovALt & 6 examined 498 kg of schist from two sites which exhibited clear mineralogical evidence of having been buried at least 20 km deep and held below the Curie temperature.

Monopole Density — Astrophysics

DENSITY	(g)	MATERIAL	DOCUMENT ID		TECN
<1.E-9/gram	1	sun, catalysis	¹ ARAFUNE	83	COSM
<6.E-33/nucl	1	moon wake	SCHATTEN	83	ELEC
<2.E-28/nucl		earth heat	CARRIGAN	80	COSM
<2.E-4/prot		42cm absorption	BRODERICK	79	COSM
$< 2.E - 13/m^3$		moon wake	SCHATTEN	70	ELEC
¹ Catalysis of n	ucleon dec	av			

Searches Particle Listings Magnetic Monopole Searches, Supersymmetric Particle Searches

REFERENCES FOR Magnetic Monopole Searches

AAD	20 G	PRL 124 031802	G. Add et al. (ATLAS Collab.)
A CHARYA A CHARYA	19B 18A	PRL 123 021802 PL B782 510	B. Acharya et al. (MoEDAL Collab.) B. Acharya et al. (MoEDAL Collab.)
A CHARYA	17 17	PRL 118 061801 IHEP 1707 054	B. Acharya et al. (MoEDAL Collab.) A Albert et al. (ANTARES Collab.)
GOULD	17	PRL 119 241601	O. Gould, A. Rajantie A. Ash et al.
AAD	16AB	PR D 93 052009	G. Aad et al. (ATLAS Collab.)
AARTSEN ACHARYA	16B 16	EPJ C76 133 JHEP 1608 067	M.G. Aartsen et al. (IceCube Collab.) B. Acharya et al. (MoEDAL Collab.)
AARTSEN Also	14	EPJ C74 2938 EPI C79 124 (errat)	M.G. Aartsen et al. (IceCube Collab.) M.G. Aartsen et al. (IceCube Collab.)
ABBASI	13	PR D87 022001	R. Abbasi et al. (IceCube Collab.)
AAD	12 CS	PRL 109 261803	G. Aad et al. (ATLAS Collab.)
UENO	12A 12	ASP 35 634 ASP 36 131	K. Ueno et al. (ANTARES COIIAD.) K. Ueno et al. (Super-Kamiokande Collab.)
DETRIXHE ABBASI	11 10 A	PR D83 023513 EPJ C69 361	M. Detrixhe et al. (ANITA Collab.) R. Abbasi et al. (IceCube Collab.)
ABBIENDI BALESTRA	08 08	PL B663 37 EPL C55 57	G. Abbiendi et al. (OPAL Collab.) S. Balestra et al. (SLIM Collab.)
HOGAN	08	PR D78 075031	D.P. Hogan et al. (KANS, NEBR, DELA)
AKTAS	05 A	EPJ C41 133	A. Abuencia et al. (CDF Collab.) A. Aktas et al. (H1 Collab.)
KALBFLEISCH AMBROSIO	04 02 B	PR D 69 052002 EPJ C25 511	G.R. Kalbfleisch et al. (OKLA) M. Ambrosio et al. (MACRO Collab.)
AMBR OSIO AMBR OSIO	02 C 02 D	EPJ C26 163 ASP 18 27	M. Ambrosio et al. (MACRO Collab.) M. Ambrosio et al. (MACRO Collab.)
KALBFLEISCH	00	PRL 85 5292	G.R. Kalbfleisch et al.
ABBOTT	99 K	PRL 81 524	B. Abbott et al. (D0 Collab.)
AMBROSIO	97 97	PL B406 249 PRL 79 3134	M. Ambrosio et al. (MACRO Collab.) Y.D. He (UCB)
ACCIARRI JEON	95 C 95	PL B345 609 PRI 75 1443	M. Acciarri et al. (L3 Collab.) H. Jeon M.J. Longo (MICH)
Also	0.1	PRL 76 159 (erratum)	H. Jeon, M.J. Longo
BARISH	94	PRL 73 1306	B.C. Barish, G. Giacomelli, J.T. Hong (CIT+)
BECKER-SZ PRICE	94 94	PR D49 2169 PRL 73 1305	R.A. Becker-Szendy et al. (IMB Collab.) P.B. Price (UCB)
ADAMS PINEOLD	93 93	PRL 70 2511 PL B316 407	F.C. Adams et al. (MICH, FNAL) JI Pinfold et al. (ALBE HARV MONT+)
KINOSHITA	92	PR D46 881	K. Kinoshita et al. (HARV, BGNA, REHO)
GARDNER	92 91	PR D46 4846 PR D44 622	R.D. Gardner et al. (STAN)
HUBER ORITO	91 91	PR D44 636 PRL 66 1951	M.E. Huber et al. (STAN) S. Orito et al. (ICEPP, WASCR, NIHO, ICRR)
BERMON	90 90	PRL 64 839 EPL 12 613	S. Bermon et al. (IBM, BNL) M. Bertani et al. (BGNA, INEN)
BEZRUKOV	90	SJNP 52 54	L.B. Bezrukov et al. (INRM)
BUCKLAND	90	PR D41 2726	K.N. Buckland et al. (UCSD)
HUBER	90 90	PRL 64 835	M.E. Huber et al. (STAN)
PRICE KINOSHITA	90 89	PRL 65 149 PL B228 543	P.B. Price, J. Guiru, K. Kinoshita (UCB, HARV) K. Kinoshita <i>et al.</i> (HARV, TISA, KEK+)
BRAUNSCH	88 B 88	ZPHY C38 543 PRI 60 1610	R. Braunschweig et al. (TASSO Collab.) K. Kinoshita et al. (HARV, TISA, KEK+)
BARISH	87	PR D36 2641	B.C. Barish, G. Liu, C. Lane (Cardea Collection)
Also	87	PR D40 1701 (erratum)	J.E. Bartelt <i>et al.</i> (Soudan Collab.)
EBIS U A Iso	87	PR D36 3359 JP G11 883	T. Ebisu, T. Watanabe (KOBE) T. Ebisu, T. Watanabe (KOBE)
GENTILE	87 87	PR D35 1081 NAT 325 463	T. Gentile et al. (CLEO Collab.) J. Guy (LQIC)
MASEK	87	PR D35 2758	G.E. Masek et al. (UCSD) S. Nakamura et al. (INUS WASCR NIHO)
PRICE	87	PRL 59 2523	P.B. Price, R. Guoxiao, K. Kinoshita (UCB, HARV)
SCHOUTEN	87 87	JP E20 850 PR D35 2917	J.C. Schouten et al. (LOIC) M.J. Shepko et al. (TAMU)
TSUKAMOTO CAPLIN	87 86	EPL 3 39 NAT 321 402	T. Tsukamoto et al. (ICRR) A.D. Caplin et al. (LOIC)
A Iso		JP E20 850 NAT 325 463	J.C. Schouten et al. (LOIC)
CROMAR	86	PRL 56 2561	M.W. Cromar, A.F. Clark, F.R. Fickett (NBSB)
INCANDELA	86 86	PR D34 2637	J. Incandela et al. (ICKK, KYOT, KEK, KOBE+) J. Incandela et al. (CHIC, FNAL, MICH)
KOVALIK PRICE	86 86	PR A33 1183 PRL 56 1226	J.M. Kovalik, J.L. Kirschvink (CIT) P.B. Price, M.H. Salamon (UCB)
ARAFUNE	85 95	PR D32 2586	J. Arafune, M. Fukugita, S. Yanagita (ICRR, KYOTU+)
BRACCI	85 B	NP B258 726	L. Bracci, G. Fiorentini, G. Mezzorani (PISA+)
CAPLIN	85	NAT 317 234	A.D. Caplin et al. (LOIC)
EBIS U KAJITA	85 85	JP G11 883 JPSJ 54 4065	T. Ebisu, T. Watanabe (KOBE) T. Kajita et al. (ICRR, KEK, NIIG)
PARK	85 B 84	NP B252 261 PL 133B 454	H.S. Park et al. (IMB Collab.) G. Battistoni et al. (NUSEX Collab.)
FRYBERGER	84	PR D29 1524	D. Fryberger et al. (SLAC, UCB)
INCANDELA	84 84	NP B236 255 PRL 53 2067	J.A. Harvey (PRIN) J. Incandela <i>et al.</i> (CHIC, FNAL, MICH)
KAJINO KAJINO	84 84 B	PRL 52 1373 JP G10 447	F. Kajino et al. (ICRR) F. Kajino et al. (ICRR)
KAWAGOE	84 94	LNC 41 315	K. Kawagoe et al. (ŤOKY) E.W. Kolb. M.S. Turror (ENAL CHIC)
KRISHNA	84	PL 142B 99	M.R. Krishnaswamy et al. (TATA, OSKC+)
PRICE	84 84	PR D30 884 PRL 52 1265	P.B. Price et al. (ROMA, UCB, IND+)
PRICE TARLE	84 B 84	PL 140B 112 PRL 52 90	P.B. Price (CERN) G. Tarle, S.P. Ahlen, T.M. Liss (UCB, MICH+)
ANDERSON	83 83	PR D28 2308 PL 133 B 380	S.N. Anderson et al. (WASH)
AUBERT	83 B	PL 120B 465	B. Aubert et al. (CERN, LAPP)
BARWICK	83 B 83	PR D28 2338	S.W. Barwick, K. Kinoshita, P.B. Price (UCB)
BONARELLI BOSETTI	83 83	PL 126B 137 PL 133B 265	R. Bonarelli, P. Capiluppi, I. d'Antone (BGNA) P.C. Bosetti <i>et al.</i> (AACH3, HAWA, TOKY)
CABRERA DOKF	83 83	PRL 51 1933 PL 129B 370	B. Cabrera et al. (STAN) T. Doke et al. (WASU RIKK TTAM RIKEN)
ERREDE	83 93 P	PRL 51 245	S.M. Errede et al. (IMB Collab.)
GROOM	03 B 83	PRL 50 573	D.E. Groom et al. (UTAH, STAN)
MASHIMO MIKHAILOV	83 83	PL 128B 327 PL 130B 331	i. masnimo et al. (ICEPP) V.F. Mikhailov (KAZA)
MUSSET REPHAELI	83 83	PL 128B 333 PL 121B 115	P. Musset, M. Price, E. Lohrmann (CERN, HAMB) Y. Rephaeli, M.S. Turner (CHIC)
SCHATTEN	83 82	PR D27 1525	K.H. Schatten (NASA)
BONARELLI	82	PL 112B 100	R. Bonarelli et al. (BGNA)

ABRERA	82	PRI 48 1378	B Cabrera (STAN)
DELL	82	NP B209 45	G.F. Dell et al. (BNL, ADEL, ROMA)
DIMOPOUL	82	PL 119B 320	S. Dimopoulos, J. Preskill, F. Wilczek (HARV+)
CINOSHITA	82	PRL 48 77	K. Kinoshita, P.B. Price, D. Fryberger (UCB+)
KOLB	82	PRL 49 1373	E.W. Kolb, S.A. Colgate, J.A. Harvey (LASL, PRIN)
	82 90	JP5J 51 3067 DDI 40 1114	E. Salaster S.J. Shapiro, J. Wasserman, (CORN)
	02	PRL 49 1114 DD D06 1006	M.S. Turner, E.N. Barker, T.I. Bordon, (CUIC)
BARTLETT	81	PR D24 612	DE Bartlett et al (COLO GESC)
INOSHITA	81B	PR D24 1707	K. Kinoshita, P.B. Price (UCB)
JLLMAN	81	PRL 47 289	J.D. Uliman (LEHM, BNL)
ARRIGAN	80	NAT 288 348	R.A. Carrigan (FNAL)
BRODERICK	79	PR D19 1046	J.J. Broderick et al. (VPI)
SARILEII	78 70	PR D18 2253 PR D17 1754	D.F. Bartiett, D. Soo, M.G. White (COLO, PRIN) R.A. Carrigan, R.B. Strauss, G. Giacomelli (ENALL)
ARRIGAN N	78	INC 23 357	H Hoffmann et al (CERN ROMA)
PRICE	78	PR D18 1382	PB Price et al. (UCB HOUS)
AGSTROM	77	PRL 38 729	R. Hagstrom (LBL)
ARRIGAN	76	PR D13 1823	R.A. Čarrigan, F.A. Nezrick, B.P. Strauss (FNAL)
DELL	76	LNC 15 269	G.F. Dell et al. (CERN, BNL, ROMA, ADEL)
ROSS	76	LBL-4665	R.R. Ross (LBL)
	76B	CZID D26 1206	V.D. Zrolov et al. (UND)
	75	CZJF 620 1500	I.W. Alvanaz (I.B.)
BURKE	75	PL 60B 113	D.L. Burke et al. (MICH)
CABRERA	75	Thesis	B. Cabrera (STAN)
ARRIGAN	75	NP B91 279	R.A. Carrigan, F.A. Nezrick (FNAL)
Also		PR D3 56	R.A. Carrigan, F.A. Nezrick (FNAL)
BERHARD	/5 75 D	PR DII 3099	P.H. Eberhard et al. (LBL, MPIM)
LEISCHER	75 75	PRI 35 1412	R I Eleischer R N E Walker (GESC WUSL)
RIEDLANDER	75	PRL 35 1167	M.W. Friedlander (WUSL)
GIACOMELLI	75	NC 28A 21	G. Giacomelli et al. (BGNA, CERN, ŠACL+)
PRICE	75	PRL 35 487	P.B. Price et al. (UCB, HOUS)
ARRIGAN	74 72	PR DIU 3867	R.A. Carrigan, F.A. Nezrick, B.P. Strauss (FNAL) R.A. Carrigan, F.A. Nezrick, R.P. Strauss (FNAL)
2055	73	PR D8 698	R.R. Ross et al. (IRI SLAC)
Also		PR D4 3260	P.H. Eberhard et al. (LBL, SLAC)
A Iso		SCI 167 701	L.W. Alvarez et al. (LBL, SLAC)
BARTLETT	72	PR D6 1817	D.F. Bartlett, M.D. Lahana (COLO)
SUREVICH	72	PL 38B 549	I.I. Gurevich et al. (KIAE, NOVO, SERP)
Also		JETP 34 917 Translated from ZETE 61	L.M. Barkov, I.I. Gurevich, M.S. Zolotorev (KIAE+) 1721
Also		PL 31B 394	I.I. Gurevich et al. (KIAE, NOVO, SERP)
LEISCHER	71	PR D4 24	R.L. Fleischer et al. (GESC)
KOLM	71	PR D4 1285	H.H. Kolm, F. Villa, A. Odian (MIT, SLAC)
PARKER	70	APJ 160 383	E.N. Parker (CHIC)
	60	PK DI 2245 DD 177 2020	R.H. Schalten (NASA) R.I. Eleischer at al. (GESC ESII)
ELEIS CHER	69B	PR 184 1393	R L Eleischer et al. (GESC UNCS GSCO)
LEISCHER	69C	PR 184 1398	R.L. Fleischer, P.B. Price, R.T. Woods (GESC)
A Iso		JAP 41 958	R.L. Fleischer et al. (GESC)
CARITHERS	66	PR 149 1070	W.C.J. Carithers, R.J. Stefanski, R.K. Adair
MALDI	63	NC 28 773	E. Amaldi et al. (ROMA, UCSD, CERN)
DETIKHOV	03 63	FR 132 387	E. GULU, H.H. KOIIII, K.W. FORG (TUKY, MIT, BRAN) V A Petukhov, M.N. Vakimenko (TEPD)
PURCELL	63	PR 129 2326	E.M. Purcell et al. (HARV BNI)
IDECARO	61	NC 22 657	M. Fidecaro, G. Finocchiaro, G. Giacomelli (CERN)
BRADNER	59	PR 114 603	H. Bradner, W.M. Isbell (LBL)
/ALKUS	51	PR 83 899	W.V.R. Malkus (CHIC)
	-		RELATED PAPERS
ROOM	86	PRPL 140 323	D.E. Groom (IITAH)
	- ×		(01AII)

GROOM Review 86 PRPL 140 323 (UTAH)

2019

Supersymmetric Particle Searches

The exclusion of particle masses within a mass range (m_1, m_2) will be denoted with the notation "none $m_1 - m_2$ " in the VALUE column of the following Listings. The latest $\dot{u}npu\dot{b}lished$ results are described in the "Supersymmetry: Experiment" review.

See the related review(s):

Supersymmetry, Part I (Theory) Supersymmetry, Part II (Experiment)

CONTENTS:

 $\widetilde{\chi}^0_1$ (Lightest Neutralino) mass limit – Accelerator limits for stable $\widetilde{\chi}_1^0$ – Bounds on $\widetilde{\chi}_1^0$ from dark matter searches $-\widetilde{\chi}_1^0$ - ρ elastic cross section Spin-dependent interactions Spin-independent interactions – Other bounds on $\tilde{\chi}^0_1$ from astrophysics and cosmology – Unstable $\widetilde{\chi}^0_1$ (Lightest Neutralino) mass limit $\tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0$ (Neutralinos) mass limits $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$ (Charginos) mass limits Long-lived $\tilde{\chi}^{\pm}$ (Chargino) mass limit $\tilde{\nu}$ (Sneutrino) mass limit Charged sleptons R-parity conserving ẽ (Selectron) mass limit
 R-partiy violating ẽ (Selectron) mass limit - R-parity conserving $\tilde{\mu}$ (Smuon) mass limit - R-parity violating $\tilde{\mu}$ (Smuon) mass limit - R-parity violating $\tilde{\tau}$ (Stau) mass limit - R-parity violating $\tilde{\tau}$ (Stau) mass limit - R-parity violating $\tilde{\tau}$ (Stau) mass limit

- Long-lived $\tilde{\ell}$ (Slepton) mass limit \tilde{q} (Squark) mass limit

– R-parity conserving \widetilde{q} (Squark) mass limit

- R-parity violating \widetilde{q} (Squark) mass limit

Long-lived \tilde{q} (Squark) mass limit
\tilde{b} (Sbottom) mass limit
$-$ R-parity conserving \tilde{b} (Sbottom) mass limit
– R-parity violating \tilde{b} (Sbottom) mass limit
\tilde{t} (Stop) mass limit
- R-parity conserving \tilde{t} (Stop) mass limit
— R-parity violating \tilde{t} (Stop) mass limit
Heavy \widetilde{g} (Gluino) mass limit
— R-parity conserving heavy \widetilde{g} (Gluino) mass limit
— R-parity violating heavy \tilde{g} (Gluino) mass limit
Long-lived \tilde{g} (Gluino) mass limit
Light \tilde{G} (Gravitino) mass limits from collider experiments
Supersymmetry miscellaneous results

Most of the results shown below, unless stated otherwise, are based on the Minimal Supersymmetric Standard Model (MSSM), as described in the Note on Supersymmetry. Unless otherwise indicated, this includes the assumption of common gaugino and scalar masses at the scale of Grand Unification (GUT), and use of the resulting relations in the spectrum and decay branching ratios. Unless otherwise indicated, it is also assumed that R-parity (R) is conserved and that:

- 1) The $\tilde{\chi}_1^0$ is the lighest supersymmetric particle (LSP)
- 2) $m_{\tilde{f}_L} = m_{\tilde{f}_R}$, where $f_{L,R}$ refer to the scalar partners of leftand right-handed fermions.

Limits involving different assumptions are identified in the Comments or in the Footnotes. We summarize here the notations used in this Chapter to characterize some of the most common deviations from the MSSM (for further details, see the Note on Supersymmetry).

Theories with R-parity violation (R) are characterized by a superpotential of the form: $\lambda_{ijk}L_iL_je_k^c + \lambda'_{ijk}L_iQ_jd_k^c +$ $\lambda''_{ijk} u_i^c d_j^c d_k^c$, where i, j, k are generation indices. The presence of any of these couplings is often identified in the following by the symbols $LL\overline{E}$, $LQ\overline{D}$, and \overline{UDD} . Mass limits in the presence of R will often refer to "direct" and "indirect" decays. Direct refers to R decays of the particle in consideration. Indirect refers to cases where R appears in the decays of the LSP. The LSP need not be the $\tilde{\chi}_1^0$.

In several models, most notably in theories with so-called Gauge Mediated Supersymmetry Breaking (GMSB), the gravitino (G) is the LSP. It is usually much lighter than any other massive particle in the spectrum, and $m_{\widetilde{G}}$ is then neglected in all decay processes involving gravitinos. In these scenarios, particles other than the neutralino are sometimes considered as the next-to-lighest supersymmetric particle (NLSP), and are assumed to decay to their even-R partner plus \tilde{G} . If the lifetime is short enough for the decay to take place within the detector, G is assumed to be undetected and to give rise to missing energy $(\not\!\!E)$ or missing transverse energy $(\not\!\!E_T)$ signatures.

When needed, specific assumptions on the eigenstate content of $\widetilde{\chi}^0$ and $\widetilde{\chi}^{\pm}$ states are indicated, using the notation $\widetilde{\gamma}$ (photino), \tilde{H} (higgsino), \tilde{W} (wino), and \tilde{Z} (zino) to signal that the limit of pure states was used. The terms gaugino is also used, to generically indicate wino-like charginos and zino-like neutralinos.

In the listings we have made use of the following abbreviations for simplified models employed by the experimental collaborations in supersymmetry searches published in the past year.

WARNING: Experimental lower mass limits determined within simplified models are to be treated with extreme care as they might not be directly applicable to realistic models. This is outlined in detail in the publications and we recommend consulting them before using bounds. For example, branching ratios, typically fixed to specific values in simplified models, can vary substantially in more elaborate models.

Simplified Models Table

- **Tglu1A:** gluino pair production with $\tilde{g} \to q\bar{q}\tilde{\chi}_1^0$
- **Tglu1B:** gluino pair production with $\tilde{g} \to qq' \tilde{\chi}_1^{\pm}, \, \tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$.
- **Tglu1C:** gluino pair production with a 2/3 probability of having a $\tilde{g} \to qq'\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \to W^{\pm}\tilde{\chi}_1^0$ decay and a 1/3 probability of having a $\tilde{g} \to qq\tilde{\chi}_2^0, \tilde{\chi}_2^0 \to Z^{\pm}\tilde{\chi}_1^0$ decay.
- **Tglu1D:** gluino pair production with one gluino decaying to $q\bar{q'}\tilde{\chi}_1^{\pm}$ with $\tilde{\chi}_1^{\pm} \to W^{\pm} + \tilde{G}$, and the other gluino decaying to $q\bar{q}\tilde{\chi}_1^0$ with $\tilde{\chi}_1^0 \to \gamma + \tilde{G}$.
- **Tglu1E:** gluino pair production with $\tilde{g} \to qq'\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_1^{\pm} \to W^{\pm}\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0 \to Z^{\pm}\tilde{\chi}_1^0$ where $m_{\tilde{\chi}_1^{\pm}} = (m_{\tilde{g}} + m_{\tilde{\chi}_1^0})/2$, $m_{\tilde{\chi}_2^0} = (m_{\tilde{\chi}_1^{\pm}} + m_{\tilde{\chi}_1^0})/2$. $m_{\tilde{\chi}_{1}^{0}})/2.$
- **Tglu1F:** gluino pair production with $\tilde{g} \to qq' \tilde{\chi}_1^{\pm}$ or $\tilde{g} \to qq \tilde{\chi}_2^0$ with equal branching ratios, where $\tilde{\chi}_1^{\pm}$ decays through an intermediate scalar tau lepton or sneutrino to $\tau\nu\tilde{\chi}^0_1$ and where $\tilde{\chi}^0_2$ decays through an intermediate scalar tau lepton or sneutrino to $\tau^+ \tau^- \bar{\chi}_1^0$ or $\nu \bar{\nu} \bar{\chi}_1^0$; the mass hierarchy is such that $m_{\chi^\pm_1} \sim$ $m_{\tilde{\chi}_2^0} = (m_{\tilde{g}} + m_{\chi_1^0})/2$ and $m_{\tilde{\tau},\tilde{\nu}} = (m_{\tilde{\chi}_1^{\pm}} + m_{\tilde{\chi}_1^0})/2$.
- **Tglu1G:** gluino pair production with $\tilde{g} \to q\bar{q}\tilde{\chi}_2^0$, and $\tilde{\chi}_2^0$ decaying through an intermediate slepton or sneutrino to $l^+l^-\tilde{\chi}_1^0$ or $\nu \bar{\nu} \tilde{\chi}_1^0 \text{ where } m_{\tilde{\chi}_2^0} = (m_{\tilde{g}} + m_{\tilde{\chi}_1^0})/2 \text{ and } m_{\tilde{\ell},\tilde{\nu}} = (m_{\tilde{\chi}_2^0} + m_{\tilde{\chi}_1^0})/2.$
- **Tglu1H:** gluino pair production with $\tilde{g} \to q\bar{q}\tilde{\chi}_2^0$, and $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 Z^{0(*)}$. **Tglu1I:** gluino pair production with $\tilde{g} \to q\bar{q}\tilde{\chi}_2^0$, and $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 H$.
- **Tglu1J:** gluino pair production with $\tilde{g} \to q\bar{q}\tilde{\chi}_2^0$, and $\text{BR}(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 Z^{0(*)}) = \text{BR}(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 H) = 0.5.$
- **Tglu1LL** gluino pair production where $\tilde{g} \to q\bar{q}\tilde{\chi}_1^0$ happens with 1/3 probability and $\tilde{g} \to q\bar{q}\tilde{\chi}_1^{\pm}$ happens with 2/3 probability. The $\tilde{\chi}_1^\pm$ is assumed to be few hundreds of MeV heavier than the $\tilde{\chi}_1^0$, and decays to $\tilde{\chi}_1^0$ via a pion.
- **Tglu2A:** gluino pair production with $\tilde{g} \to b\bar{b}\chi_1^0$
- **Tglu3A:** gluino pair production with $\tilde{g} \to t\bar{t}\chi_1^{0}$
- **Tglu3B:** gluino pair production with $\tilde{g} \to t\tilde{t}$ where \tilde{t} decays exclusively to $t \tilde{\chi}_1^0$
- **Tglu3C:** gluino pair production with $\tilde{g} \to t\tilde{t}$ where \tilde{t} decays exclusively to $c\tilde{\chi}_1^0$
- **Tglu3D:** gluino pair production with $\tilde{g} \to t\bar{b}\tilde{\chi}_1^{\pm}$ with $\tilde{\chi}_1^{\pm} \to W^{\pm}\tilde{\chi}_1^0$.
- Tglu3E: gluino pair production where the gluino decays 25% of the time through $\tilde{g} \to t\bar{t}\tilde{\chi}_1^0$, 25% of the time through $\tilde{g} \to b\bar{b}\tilde{\chi}_1^0$ and 50% of the time through $\tilde{g} \to t \bar{b} \tilde{\chi}_1^{\pm}$ with $\tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$
- **Tglu4A:** gluino pair production with one gluino decaying to $q\bar{q'}\tilde{\chi}_1^{\pm}$ with $\tilde{\chi}_1^{\pm} \to W^{\pm} + \tilde{G}$, and the other gluino decaying to $q\bar{q}\tilde{\chi}_1^0$ with $\tilde{\chi}_1^0 \to \gamma + \tilde{G}$.
- **Tglu4B:** gluino pair production with gluinos decaying to $q\bar{q}\tilde{\chi}_1^0$ and $\tilde{\chi}_1^0 \to \gamma + \tilde{G}.$
- **Tglu4C:** gluino pair production with gluinos decaying to $\tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ and $\tilde{\chi}_{1}^{0} \rightarrow Z + \tilde{G}.$
- **Tglu4D:** gluino pair production with $\tilde{g} \to q\bar{q}\tilde{\chi}_1^0$ where the $\tilde{\chi}_1^0$ decays with equal probability to $\tilde{\chi}_1^0 \to \gamma + \tilde{G}$ or to $\tilde{\chi}_1^0 \to H + \tilde{G}$. **Tglu4E:** gluino pair production with $\tilde{g} \to b\bar{b}\tilde{\chi}_1^0$ where the $\tilde{\chi}_1^0$ decays
- **Tglu4F:** giving pair production with $g \to \delta \delta \chi_1$ where the χ_1 decays with equal probability to $\tilde{\chi}_1^0 \to \gamma + \tilde{G}$ or to $\tilde{\chi}_1^0 \to Z + \tilde{G}$. **Tglu4F:** gluino pair production with $\tilde{g} \to t\bar{t}\tilde{\chi}_1^0$ where the $\tilde{\chi}_1^0$ decays with equal probability to $\tilde{\chi}_1^0 \to \gamma + \tilde{G}$ or to $\tilde{\chi}_1^0 \to Z + \tilde{G}$.
- **Tsqk1:** squark pair production with $\tilde{q} \to q \tilde{\chi}_1^0$.
- **Tsqk1LL** squark pair production where $\tilde{q} \to q \tilde{\chi}_1^0$ and $\tilde{q} \to q' \tilde{\chi}_1^{\pm}$ each happen with 50% probability. The $\tilde{\chi}_1^{\pm}$ is assumed to be few hundreds of MeV heavier than the $\tilde{\chi}_1^0$, and decays to $\tilde{\chi}_1^0$ via a pion.
 - **Tsqk2:** squark pair production with $\tilde{q} \to q \tilde{\chi}_2^0$ and $\tilde{\chi}_2^0 \to Z + \tilde{\chi}_1^0$
 - **Tsqk3:** squark pair production with $\tilde{q} \to q' \tilde{\chi}_1^{\pm}, \ \tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$ (like Tglu1B but for squarks)

- **Tsqk4:** squark pair production with squarks decaying to $q\tilde{\chi}_1^0$ and $\tilde{\chi}_1^0 \to \gamma + \tilde{G}.$
- **Tsqk4A:** squark pair production with one squark decaying to $q\tilde{\chi}_1^{\pm}$ with $\tilde{\chi}_1^{\pm} \rightarrow W^{\pm} + \tilde{G}$, and the other squark decaying to $q\tilde{\chi}_1^0$ with $\tilde{\chi}_1^0 \rightarrow \gamma + \tilde{G}$.
- **Tsqk4B:** squark pair production with squarks decaying to $q\tilde{\chi}_1^0$ and $\tilde{\chi}_1^0 \to \gamma + \tilde{G}.$
- **Tstop1:** stop pair production with $\tilde{t} \to t \tilde{\chi}_1^0$. **Tstop1LL** stop pair production where $\tilde{t} \to t \tilde{\chi}_1^0$ and $\tilde{t} \to b \tilde{\chi}_1^\pm$ each happen with 50% probability. The $\tilde{\chi}_1^\pm$ is assumed to be few hundreds of MeV heavier than the $\tilde{\chi}_1^0$, and decays to $\tilde{\chi}_1^0$ via a pion. **Tstop2:** stop pair production with $\tilde{t} \to b \tilde{\chi}_1^\pm$ with $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0$. **Tstop2:** the pair production with the subsequence four-body decays

 - **Tstop3:** stop pair production with the subsequent four-body decay $\tilde{t} \rightarrow bff'\tilde{\chi}_1^0$ where f represents a lepton or a quark.
 - **Tstop4:** stop pair production with $\tilde{t} \to c \tilde{\chi}_1^0$.

 - **Tstop5:** stop pair production with $\tilde{t} \to b\bar{\nu}\tilde{\tau}$ with $\tilde{\tau} \to \tau \tilde{G}$. **Tstop6:** stop pair production with $\tilde{t} \to t + \tilde{\chi}_2^0$, where $\tilde{\chi}_2^0 \to Z + \tilde{\chi}_1^0$ or $H + \tilde{\chi}_1^0$ each with Br=50%.
 - **Tstop7:** stop pair production with $\tilde{t}_2 \to \tilde{t}_1 + H/Z$, where $\tilde{t}_1 \to t + \tilde{\chi}_1^0$. **Tstop8:** stop pair production with equal probability of the stop decaying via $\tilde{t} \to t\tilde{\chi}_1^0$ or via $\tilde{t} \to b\tilde{\chi}_1^\pm$ with $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0$.
 - **Tstop9:** stop pair production with equal probability of the stop decaying via $\tilde{t} \to c\tilde{\chi}_1^0$ or via the four-body decay $\tilde{t} \to bff'\tilde{\chi}_1^0$
- where f represents a lepton or a quark. **Tstop10:** stop pair production with $\tilde{t} \to b \tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^{\pm} \to W^{\pm *} \tilde{\chi}_1^0 \to (\tilde{\chi}_1^{\pm})^{\pm 0}$ $(f\bar{f}') + \tilde{\chi}_1^0$ with a virtual W-boson.
- **Tstop11:** stop pair production with $\tilde{t} \to b \tilde{\chi}_1^{\pm}$ with $\tilde{\chi}_1^{\pm}$ decaying through
- an intermediate slepton to $l\nu\tilde{\chi}_1^0$ **Tstop12:** stop pair production with $\tilde{t} \to t\tilde{\chi}_1^0$ and $\tilde{\chi}_1^0 \to \gamma + \tilde{G}$ **Tstop13:** stop pair production with $\tilde{t} \to t\tilde{\chi}_1^0$ where the $\tilde{\chi}_1^0$ can decay with equal probability to $\tilde{\chi}_1^0 \to \gamma + \tilde{G}$ or to $\tilde{\chi}_1^0 \to Z + \tilde{G}$.
- **Tstop1RPV:** stop pair production with $\tilde{t} \rightarrow \bar{b}\bar{s}$ via RPV coupling λ_{323}'' .
- **Tstop2RPV:** stop pair production with $\tilde{t} \to b\ell$, via RPV coupling λ_{i33}^{\prime}
 - **Tsbot1:** sbottom pair production with $\tilde{b} \to b \tilde{\chi}_1^0$.

 - **Typol1** solution pair production with $\tilde{b} \to t\chi_1^-$, $\chi_1^- \to W^-\tilde{\chi}_1^0$. **Typol2** solution pair production with $\tilde{b} \to t\chi_1^-$, $\chi_1^- \to W^-\tilde{\chi}_1^0$. **Typol3** solution pair production with $\tilde{b} \to b\tilde{\chi}_2^0$, where one of the $\tilde{\chi}_2^0 \to Z^{(*)}\tilde{\chi}_1^0 \to f\bar{f}\tilde{\chi}_1^0$ and the other $\tilde{\chi}_2^0 \to \ell\ell\ell^+ \to \ell^+\ell^-\tilde{\chi}_1^0$. **Typol4** solution pair production with $\tilde{b} \to b\tilde{\chi}_2^0$, with $\tilde{\chi}_2^0 \to H\tilde{\chi}_1^0$
- Tchi1chi1A: electroweak pair and associated production of nearly massdegenerate charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_1^0$, where $\tilde{\chi}_1^{\pm}$ decays to $\tilde{\chi}_1^0$ plus soft radiation, and where one of the $\tilde{\chi}_1^0$ decays to $\gamma + \tilde{G}$ while the other one decays to $Z/H + \tilde{G}$ (with equal probability).
- **Tchi1chi1B:** electroweak pair production of charginos $\tilde{\chi}_1^{\pm}$, where $\tilde{\chi}_1^{\pm}$ decays through an intermediate slepton or sneutrino to $l\nu\tilde{\chi}_1^0$ and where the slepton or sneutrino mass is 5%, 25%, 50%, 75% and 95% of the $\tilde{\chi}_1^{\pm}$ mass.
- **Tchi1chi1C:** electroweak pair production of charginos $\tilde{\chi}_1^{\pm}$, where $\tilde{\chi}_1^{\pm}$ decays through an intermediate slepton or sneutrino to $l\nu\tilde{\chi}^0_1$ and where $m_{\tilde{\ell},\tilde{\nu}} = (m_{\tilde{\chi}^\pm_1} + m_{\tilde{\chi}^0_1})/2.$
- **Tchi1chi1D:** electroweak associated pair production of charginos $\tilde{\chi}_1^{\pm}$, where $\tilde{\chi}_1^{\pm}$ decays through an intermediate scalar tau lepton or
- χ_1^{-1} decays encode an inclineating of the formula of the formula $\tau_{\tilde{\chi}_1^0}$ and $\tau_{\tilde{\chi}_1^0} = (m_{\tilde{\chi}_1^1} + m_{\tilde{\chi}_1^0})/2$. **Tchi1chi1F:** electroweak pair and associated production of nearly mass-degenerate charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_1^0$ (*i.e.* $\tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^0$ production) where the $\tilde{\chi}_1^{\pm}$ decays exclusively to $\tilde{\chi}_1^0$ plus soft radiation and the $\tilde{\chi}_1^0$ decays to $\gamma/Z + \tilde{G}$.
- **Tchi1chi1G:** electroweak pair production of charginos $\tilde{\chi}_1^{\pm}$, which are nearly mass-degenerate with neutralinos $\tilde{\chi}_1^0$. The $\tilde{\chi}_1^{\pm}$ decays either to $W^{\pm} + \tilde{G}$, or to $\tilde{\chi}_1^0$ plus soft radiation. The $\tilde{\chi}_1^0$ decays exclusively to $\gamma + \tilde{G}$.
- **Tchi1n1A:** electroweak associated production of mass-degenerate charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_1^0$, where $\tilde{\chi}_1^{\pm}$ decays exclu-
- sively to $W^{\pm} + \tilde{G}$ and $\tilde{\chi}_1^0$ decays exclusively to $\gamma + \tilde{G}$. **Tchi1n2A:** electroweak associated production of mass-degenerate charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_2^0$, where $\tilde{\chi}_1^{\pm}$ decays through an electron $\tilde{\chi}_1^0$ and $\tilde{\chi}_1^$ intermediate slepton or sneutrino to $l\nu\tilde{\chi}^0_1$ and where $\tilde{\chi}^0_2$ decays

through an intermediate slepton or sneutrino to $l^+l^-\tilde{\chi}^0_1$ or $\nu \bar{\nu} \tilde{\chi}_1^0$.

- **Tchi1n2B:** electroweak associated production of mass-degenerate charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_2^0$, where $\tilde{\chi}_1^{\pm}$ decays through an intermediate slepton or sneutrino to $l\nu\tilde{\chi}_1^0$ and where $\tilde{\chi}_2^0$ decays through an intermediate slepton or sneutrino to $l^{+l}-\tilde{\chi}_1^0$ or $\nu \bar{\nu} \tilde{\chi}_1^0$ and where the slepton or sneutrino mass is 5%, 25%, 50%, 75% and 95% of the $\tilde{\chi}_1^{\pm}$ mass.
- **Tchi1n2C:** electroweak associated production of mass-degenerate charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_2^0$, where $\tilde{\chi}_1^{\pm}$ decays through an intermediate slepton or sneutrino to $l\nu\tilde{\chi}_1^0$ and where $\tilde{\chi}_2^0$ decays through an intermediate slepton or sneutrino to $l^+l^-\tilde{\chi}_1^0$ or $\nu \bar{\nu} \tilde{\chi}_1^0$ and where $m_{\tilde{\ell},\tilde{\nu}} = (m_{\tilde{\chi}_1^{\pm}} + m_{\tilde{\chi}_1^0})/2.$
- **Tchi1n2D:** electroweak associated production of mass-degenerate charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_2^0$, where $\tilde{\chi}_1^{\pm}$ decays through an intermediate scalar tau lepton or sneutrino to $\tau \nu \tilde{\chi}_1^0$ and where The include scalar and types a subscalar tau lepton or sneutrino to $\tau^+ \tau^- \tilde{\chi}_1^0$ or $\nu \bar{\nu} \tilde{\chi}_1^0$ and where $m_{\bar{\tau},\bar{\nu}} = (m_{\tilde{\chi}_1^\pm} + m_{\tilde{\chi}_1^0})/2$.
- **Tchi1n2E:** electroweak associated production of mass-degenerate charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_2^0$, where $\tilde{\chi}_1^{\pm} \rightarrow W^{\pm} + \tilde{\chi}_1^0$ and $\tilde{\chi}_2^0 \to H + \tilde{\chi}_1^0$.
- and $\chi_2^{-} \to H + \chi_1^{-}$. **Tchi1n2F:** electroweak associated production of mass-degenerate wino-like charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_2^0$, where $\tilde{\chi}_1^{\pm}$ decays through an intermediate $W^{\pm *}$ to $l\nu\chi_1^0$ and where $\tilde{\chi}_2^0$ decays through an intermediate Z^* to $l^+l^-\chi_1^0$ or $\nu\bar{\nu}\chi_1^0$. **Tchi1n2G:** electroweak associated production of Higgsino-like charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_2^0$ and electroweak associated production
- $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_2^0$, and electroweak associated production of $\tilde{\chi}^0_2$ and $\tilde{\chi}^0_1$, where $m_{\tilde{\chi}^\pm_1} = (m_{\tilde{\chi}^0_2} + m_{\tilde{\chi}^0_1})/2$ and where $\tilde{\chi}^\pm_1$ decays through an intermediate $W^{\pm *}$ to $l\nu \tilde{\chi}_1^0$ and where $\tilde{\chi}_2^0$ decays through an intermediate Z^* to $l^+ l^- \tilde{\chi}_1^0$.
- **Tchi1n2H:** electroweak associated production of mass-degenerate charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_2^0$, where $\tilde{\chi}_1^{\pm}$ decays through an intermediate slepton or sneutrino to $l\nu\tilde{\chi}_1^0$ and where $\tilde{\chi}_2^0$ decays through an intermediate scalar tau lepton or sneutrino to $\tau^+ \tau^- \tilde{\chi}_1^0$ or $\nu \bar{\nu} \tilde{\chi}_1^0$.
- **Tchi1n2I:** electroweak associated production of mass-degenerate charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_2^0$, where $\tilde{\chi}_1^{\pm}$ decays to $W^{\pm} + \tilde{\chi}_1^0$ and where $\tilde{\chi}_2^0$ decays 50% of the time to $Z + \tilde{\chi}_1^0$ and 50% of the time to $H + \tilde{\chi}_1^0$. **Tchi1n12_GGM:** in the framework of General Gauge Mediation (GGM):
 - electroweak pair and associated production of nearly massdegenerate charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ (*i.e.* $\tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_1^{\pm}\tilde{\chi}_1^0$ and $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production) where the $\tilde{\chi}_1^{\pm}$ decays exclusively to $W^{\pm} + \tilde{G}$, the $\tilde{\chi}_2^0$ decays to $Z/H + \tilde{G}$ and the $\tilde{\chi}_1^0$ decays to $\gamma/Z + \tilde{G}$. The branching ratios depend on the composition of the gauge eigenstates of the neutralinos in the GGM scenario.
 - Tn1n1A: electroweak pair and associated production of nearly massdegenerate Higgsino-like charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$, where $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ decay to $\tilde{\chi}_1^0$ plus soft radiation and where both of the $\tilde{\chi}_1^0$ decay to $H + \tilde{G}$.
 - Tn1n1B: electroweak pair and associated production of nearly massdegenerate Higgsino-like charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$, where $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ decay to $\tilde{\chi}_1^0$ plus soft radiation and where the $\tilde{\chi}_1^0$ decays 50% of the time to $H + \tilde{G}$ and 50 % of the time to $Z + \tilde{G}$.
 - Tn1n1C: electroweak pair and associated production of nearly mass-
 - Thruc: electroweak pair and associated production of nearly mass-degenerate Higgsino-like charginos \$\tilde{\chi}_1\$ and neutralinos \$\tilde{\chi}_1\$ and \$\tilde{\chi}_2\$, where \$\tilde{\chi}_1^{\pm}\$ and \$\tilde{\chi}_2^0\$ decay to \$\tilde{\chi}_1^0\$ plus soft radiation and where both of the \$\tilde{\chi}_1\$ decay to \$Z + \$\tilde{G}\$.
 Tn2n3A: electroweak associated production of mass-degenerate neutralinos \$\tilde{\chi}_2^0\$ and \$\tilde{\chi}_3^0\$, where \$\tilde{\chi}_2^0\$ and \$\tilde{\chi}_3^0\$ decay through intermediate sleptons to \$l^+l^-\tilde{\chi}_1^0\$ and where the slepton mass is 5%, 25%, 50%, 75% and 95% of the \$\tilde{\chi}_2^0\$ mass.
 - **Tn2n3B:** electroweak associated production of mass-degenerate neutralinos $\tilde{\chi}_2^0$ and $\tilde{\chi}_3^0$, where $\tilde{\chi}_2^0$ and $\tilde{\chi}_3^0$ decay through intermediate sleptons to $l^+l^-\tilde{\chi}_1^0$ and where $m_{\tilde{\ell}} = (m_{\tilde{\chi}_2^0} + m_{\tilde{\chi}_1^0})/2$.

$\widetilde{\chi}_1^0$ (Lightest Neutralino) mass limit

 $\widetilde{\chi}^0_1$ is often assumed to be the lightest supersymmetric particle (LSP). See also the $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$ section below.

We have divided the $\widetilde{\chi}^0_1$ listings below into five sections:

1) Accelerator limits for stable $\widetilde{\chi}_1^0$,

slepton decays.

2) Bounds on $\tilde{\chi}_1^0$ from dark matter searches,

3) $\widetilde{\chi}_1^0 - p$ elastic cross section (spin-dependent, spin-independent interactions).

4) Other bounds on $\widetilde{\chi}^0_1$ from astrophysics and cosmology, and

5) Unstable $\tilde{\chi}_1^0$ (Lightest Neutralino) mass limit.

– Accelerator limits for stable $\widetilde{\chi}_1^{0}$ –

Unless otherwise stated, results in this section assume spectra, production rates, decay modes, and branching ratios as evaluated in the MSSM, with gaugino and sfermion mass unification at the GUT scale. These papers generally study production of $\tilde{\chi}^0_i \tilde{\chi}^0_j$ $(i \ge 1, j \ge 2)$, $\tilde{\chi}^+_1 \tilde{\chi}^-_1$, and (in the case of hadronic collisions) $\tilde{\chi}_1^+ \tilde{\chi}_2^0$ pairs. The mass limits on $\tilde{\chi}_1^0$ are either direct, or follow indirectly from the constraints set by the non-observation of $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ states on the gaugino and higgsino MSSM parameters M_2 and μ . In some cases, information is used from the nonobservation of

Obsolete limits obtained from $e^+ e^-$ collisions up to $\sqrt{s}{=}184$ GeV have been removed from this compilation and can be found in the 2000 Edition (The European Physical Journal C15 1 (2000)) of this Review. $\Delta m = m_{\widetilde{\chi}^0_2} - m_{\widetilde{\chi}^0_1}.$

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
		¹ DREINER	09	THEO	
>40	95	² ABBIENDI	04н	OPAL	all tan eta , Δm $>$ 5 GeV,
					$m_0 > 500 { m GeV}, A_0 = 0$
>42.4	95	³ HEISTER	04	ALEP	all tan eta , all Δm , all m_0
>39.2	95	⁴ ABDALLAH	03M	DLPH	all tan β , $m_{\widetilde{\mu}} > 500 \text{ GeV}$
>46	95	⁵ ABDALLAH	03M	DLPH	all tan β , all Δm , all m_0
>32.5	95	⁶ ACCIARRI	00d	L3	$\tan \beta > 0.7$, $\Delta m > 3$ GeV, all m_0

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

⁷ AAD 14ĸ ATLS

 $^1\,{\sf DREINER}$ 09 show that in the general MSSM with non-universal gaugino masses there exists no model-independent laboratory bound on the mass of the lightest neutralino. An essentially massless χ^0_1 is allowed by the experimental and observational data, imposing some constraints on other MSSM parameters, including M_2 , μ and the slepton and squark masses.

- squark masses. ² ABBIENDI 04H search for charginos and neutralinos in events with acoplanar leptons+jets and multi-jet final states in the 192-209 GeV data, combined with the results on leptonic final states from ABBIENDI 04. The results hold for a scan over the parameter space covering the region $0 < M_2 < 5000$ GeV, $-1000 < \mu < 1000$ GeV and $\tan\beta$ from 1 to 40. This limit supersedes ABBIENDI 00H. ³UEISTER 04 data collected in to 209 GeV. Undates earlier analysis of selectrons from
- 3 HEISTER 04 data collected up to 209 GeV. Updates earlier analysis of selectrons from HEISTER 02E, includes a new analysis of charginos and neutralinos decaying into stau HEISTER 02E, includes a new analysis of charginos and neutralinos decaying into stau and uses results on charginos with initial state radiation from HEISTER 02J. The limit is based on the direct search for charginos and neutralinos, the constraints from the slepton search and the Higgs mass limits from HEISTER 02 using a top mass of 175 GeV, interpreted in a framework with universal gaugino and sfermion masses. Assuming the assumption of MSUGRA with unification of the Higgs and sfermion masses, the limit improves to 50 GeV, and reaches 53 GeV for $A_0 = 0$. These limits include and update the results of BARATE 01. results of BARATE 01.
- 4 ABDALLAH 03M uses data from $\sqrt{s}=$ 192–208 GeV. A limit on the mass of $\widetilde{\chi}_1^0$ is derived From direct searches for neutralinos combined with the chargino search. Neutralinos are searched in the production of $\tilde{\chi}_1^0 \tilde{\chi}_2^0$, $\tilde{\chi}_1^0 \tilde{\chi}_3^0$, as well as $\tilde{\chi}_2^0 \tilde{\chi}_3^0$ and $\tilde{\chi}_2^0 \tilde{\chi}_4^0$ giving rise to cascade decays, and $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ and $\tilde{\chi}_1^0 \tilde{\chi}_2^0$, followed by the decay $\tilde{\chi}_2^0 \rightarrow \tilde{\tau}\tau$. The results hold for the parameter space defined by values of $M_2 < 1$ TeV, $|\mu| \leq 2$ TeV with the $\tilde{\chi}_1^0$ as LSP. The limit is obtained for $\tan \beta = 1$ and large m_0 , where $\tilde{\chi}_2^0 \tilde{\chi}_1^0$ and chargino pair production are important. If the constraint from Higgs searches is also imposed, the limit improves to 49.0 GeV in the m_h^{max} scenario with $m_t = 174.3$ GeV. These limits whether the use the DST local sector m_h^{max} scenario with $m_t = 174.3$ GeV. update the results of ABREU 00J.
- 5 ABDALLAH 03M uses data from \sqrt{s} = 192–208 GeV. An indirect limit on the mass of $\tilde{\chi}^0_1$ is derived by constraining the MSSM parameter space by the results from direct α_1 , α_2 , α_3 , α_4 , α_5 , α_5 space defined by values of $M_2 < 1$ TeV, $|\mu| \leq 2$ TeV with the $\widetilde{\chi}_1^0$ as LSP. Constraints from the Higgs search in the \overline{m}_h^{\max} scenario assuming m_t =174.3 GeV are included. The limit is obtained for tan $\beta \geq 5$ when stau mixing leads to mass degeneracy between $\tilde{\tau}_1$ and $\widetilde{\chi}^0_1$ and the limit is based on $\widetilde{\chi}^0_2$ production followed by its decay to $\widetilde{\tau}_1 \tau$. In the pathological scenario where m_0 and $|\mu|$ are large, so that the $\tilde{\chi}_2^0$ production cross section provides the second se

 6 ACCIARRI 00D data collected at $\sqrt{s}{=}189$ GeV. The results hold over the full parameter space defined by 0.7 \leq tan β \leq 60, 0 \leq M_{2} \leq 2 TeV, m_{0} \leq 500 GeV, $|\mu|$ \leq 2 TeV The minimum mass limit is reached for tan $\beta{=}1$ and large m_{0} . The results of slepton

searches from ACCIARRI 99w are used to help set constraints in the region of small m_{0} . The limit improves to 48 GeV for $m_0 \gtrsim 200$ GeV and $\tan\beta \gtrsim 10$. See their Figs. 6–8 for the $\tan\beta$ and m_0 dependence of the limits. Updates ACCIARRI 98F. 7 AAD 14 κ sets limits on the χ -nucleon spin-dependent and spin-independent cross sections

out to $m_{\chi} = 10 \text{ TeV}.$

– Bounds on $\widetilde{\chi}^0_1$ from dark matter searches -

These papers generally exclude regions in the M_2 – μ parameter plane assuming that $\tilde{\chi}_1^0$ is the dominant form of dark matter in the galactic halo. These limits are based on the lack of detection in laboratory experiments, telescopes, or by the absence of a signal in underground neutrino detectors. The latter signal is expected if $\tilde{\chi}_1^0$ accumulates in the Sun or the Earth and annihilates into high-energy ν^3 s.

DOCUMENT ID

TECN

• • • We do not use the followin	g d	ata for averages,	, fits,	limits, etc. 🔹 🔹 🔹
	1	DI-MAURO	19	FLAT
	2	JOHNSON	19	FLAT
	3	LI	19D	FLAT
	4	ABDALLAH	18	HESS
	5	AHNEN	18	MGIC
	6	ALBERT	18B	HAWC
	7	ALBERT	18c	HAWC
	8	AARTSEN	17	ICCB
	9	AARTSEN	17A	ICCB
	10	AARTSEN	17c	ICCB
	11	ALBERT	17A	ANTR
	12	ARCHAMBAU	17	VRTS
	13	AARTSEN	16D	ICCB
	14	ABDALLAH	16A	HESS
	15	ADRIAN-MAR.	.16	ANTR
	16	AHNEN	16	MGFL
	17	AVRORIN	16	BAIK
	18	CIRELLI	16	THEO
	18	LEITE	16	THEO
	19	ABRAMOWSKI	15	HESS
	20	ACKERMANN	15	FLAT
	21	ACKERMANN	15a	FLAT
	22	ACKERMANN	15в	FLAT
	23	BUCKLEY	15	THEO
	24	CHOI	15	SKAM
	25	ALEKSIC	14	MGIC
	26	AVRORIN	14	BAIK
	27	AARTSEN	13c	ICCB
	28	ABRAMOWSKI	13	HESS
	29	BERGSTROM	13	COSM
	30	BOLIEV	13	BAKS
	29	JIN	13	ASTR
	29	корр	13	COSM
	31	ABBASI	12	ICCB
	32	ABRAMOWSKI	11	HESS
	33	ABDO	10	FLAT
	34	ACKERMANN	10	FLAT
	35	ACHTERBERG	06	AMND
	36	ACKERMANN	06	AMND
	37	DEBOER	06	RVUE
	38	DESAI	04	SKAM
	38	AMBROSIO	99	MCRO
	39	LOSECCO	95	RVUE
	40	MORI	93	KA MI
	41	BOTTINO	92	COSM
	42	BOTTINO	91	RVUE
	43	GELMINI	91	COSM
	44	KAMIONKOW.	.91	RVUE
	45	MORI	91в	KA MI
none 4–15 GeV	46	OLIVE	88	COSM

none 4-15 GeV

VALUE

 1 DI-MAURO 19 sets limits on the dark matter annihilation from gamma-ray searches in M31 and M33 galaxies using Fermi LAT data.

² JOH NSON 19 sets limits on p-wave dark matter annihilations in the galactic center using Fermi data

Fermi uata. 3 L1190 sets limits on dark matter annihilation cross sections searching for line-like signals in the all-sky Fermi data.

⁴ABDALLAH 18 places constraints on the dark matter annihilation cross section for annihilations into gamma-rays in the Galactic center for masses between 300 GeV to 70 TeV. This updates ABDALLAH 16.

⁵ AHNEN 18 uses observations of the dwarf satellite galaxy Ursa Major II to obtain upper limits on annihilation cross sections for dark matter in various channels for masses between 0.1–100 TeV. ⁶ALBERT 18B sets limits on the annihilation cross section of dark matter with mass

between 1 and 100 TeV from gamma-ray observations of the Andromeda galaxy.

Detween 1 and 100 fev from gamma-ay observations of the characterize galaxy. 7 ALBERT 18C sets limits on the spin-dependent coupling of dark matter to protons from dark matter annihilation in the Sun. 8 AARTSEN 17 is based on data collected during 327 days of detector livetime with lceCube. They looked for interactions of v's resulting from neutralino annihilations in the Earth over a background of atmospheric neutrinos and set 90% CL limits on the spin independent neutralino-proton cross section for neutralino masses in the range 10-10000 Cav

9 AARTSEN 17A is based on data collected during 532 days of livetime with the IceCube 86-string detector including the DeepCore sub-array. They looked for interactions of ν 's

from neutralino annihilations in the Sun over a background of atmospheric neutrinos and set 90% CL limits on the spin dependent neutralino-proton cross section for neutralino masses in the range 10–10000 GeV. This updates AARTSEN 16C.

- 10 AARTSEN 17c is based on 1005 days of running with the lceCube detector. They set a limit on the annihilation cross section for dark matter with masses between 10–1000 GeV annihilating in the Galactic center assuming an NFW profile. The limit is of 1.2×10^{23} ${
 m cm^3 s^{-1}}$ in the $au^+ au^-$ channel. Supercedes AARTSEN 15E.
- Cm^{-95} In the $\tau^{-1}\tau^{-1}$ channel. Supercease ARATISEN LISE. ¹¹ALBERT 17A is based on data from the ANTARES neutrino telescope. They looked for interactions of ν^{-5} from neutralino annihilations in the Milky Way galaxy over a background of atmospheric neutrinos and set 90% CL limits on the muon neutrino flux. They also obtain limits on the thermally averaged cross section for neutralino masses in the range 50 to 100,000 GeV. This updates ADRIAN-MARTINEZ 15. ¹² ADCUMDAULT 17 performe a bint ctritical applicit of four dwarf galaxies with
- the fange so to 100,000 GeV. This updates ADMAM-WAATTMEZ 12.
 ¹²ARCHAMBAULT 17 performs a joint statistical analysis of four dwarf galaxies with VERITAS looking for gamma-ray emission from neutralino annihilation. They set limits on the neutralino annihilation cross section.
 ¹³AARTSEN 16D is based on 329 live days of running with the DeepCore subdetector of the loeCube detector. They set a limit of 10⁻²³ cm³s⁻¹ on the annihilation cross section to 2⁻³. This updates AAPTCEN 16C
- to $\nu \overline{\nu}$. This updates AARTSEN 15 c.
- 14 ABDALLAH 16A place upper limits on the annihilation cross section with final states in the energy range of 0.1 to 2 TeV. This complements ABRAMOWSKI 13.
- 1^{15} ADRIA N-MARTINEZ 16 is based on data from the ANTARES neutrino telescope. They looked for interactions of ν 's from neutralino annihilations in the Sun over a background of atmospheric neutrinos and set 90% CL limits on the muon neutrino flux. They also obtain limits on the spin dependent and spin independent neutralino-proton cross section for neutralino masses in the range 50 to 5,000 GeV. This updates ADRIAN-MARTINEZ 13.
- neutralino masses in the range 50 to 5,000 GeV. This updates Advisor was true 2 to 16 AHNEN 16 combines 158 hours of Segue 1 observations with MAGIC with 6 year observations of 15 dwarf satellite galaxies by Fermi-LAT to set limits on annihilation cross sections for dark matter masses between 10 GeV and 100 TeV. 17 AVRORIN 16 is based on 2.76 years with Lake Baikal neutrino telescope. They derive
- 90% upper limits on the annihilation cross section from dark matter annihilations in the Galactic center.
- ¹⁸CIRELLI 16 and LEITE 16 derive bounds on the annihilation cross section from radio observations.
- observations. ¹⁹ABRAMOWSKI 15 places constraints on the dark matter annihilation cross section for annihilations in the Galactic center for masses between 300 GeV to 10 TeV.
- annimitations in the datactic tenter for masses between over the tenter of the tenter of a search for monochro-matic gamma-rays in the energy range of 0.2–500 GeV from dark matter annihilations. This updates ACKERMANN 13A.
- ²¹ACKERMANN 15A is based on 50 months of data with Fermi-LAT and search for dark matter annihilation signals in the isotropic gamma-ray background as well as galactic subhalos in the energy range of a few GeV to a few tens of TeV.
- 22 ACKERMANN 158 is based on 6 years of data with Fermi-LAT observations of Milky Way dwarf spheroidal galaxies. Set limits on the annihilation cross section from $m_{\chi} =$ 2 GeV to 10 TeV. This updates ACKERMANN 14.
- 2BUCKLEY 15 is based on 5 years of Fermi-LAT data searching for dark matter annihilation signals from Large Magellanic Cloud.
- ²⁴ CHOI 15 is based on 3903 days of SuperKamiokande data searching for neutrinos produced from dark matter annihilations in the sun. They place constraints on the dark matter-nucleon scattering cross section for dark matter masses between 4–200 GeV.
- ²⁵ ALEKSIC 14 is based on almost 160 hours of observations of Segue 1 satellite dwarf galaxy The first of the model of a model of the model of the second structure of the
- 26 AVRORIN 14 is based on almost 2.76 years with Lake Baikal neutrino telescope. They derive 90% upper limits on the fluxes of muons and muon neutrinos from dark matter annihilations in the Sun. 27 AARTSEN 13c is based on data collected during 339.8 effective days with the IceCube
- 59-string detector. They looked for interactions of ν_μ 's from neutralino annihilations in nearby galaxies and galaxy clusters. They obtain limits on the neutralino annihilation cross section for neutralino masses in the range 30–100,000 GeV.
- 28 ABRAMOWSKI 13 place upper limits on the annihilation cross section with $\gamma\gamma$ final states in the energy range of 0.5–25 TeV.
- ²⁹BERGSTROM 13, JIN 13, and KOPP 13 derive limits on the mass and annihilation cross section using AMS-02 data. JIN 13 also sets a limit on the lifetime of the dark matter particle.
- 9 BOLIEV 13 is based on data collected during 24.12 years of live time with the Bakson Underground Scintillator Telescope. They looked for interactions of ν_{μ} 's from neutralino annihilations in the Sun over a background of atmospheric neutrinos and set 90% CL limits on the muon flux. They also obtain limits on the spin dependent and spin independent neutralino-proton cross section for neutralino masses in the range 10–1000 GeV.
- neutralino-proton cross section for neutralino masses in the range 19-1000 eev. ³¹ ABBASI 12 is based on data collected during 812 effective days with AMANDA II and 149 days of the lecGube 40-string detector combined with the data of ABBASI 098. They looked for interactions of ν_{μ} 's from neutralino annihilations in the Sun over a background of atmospheric neutrinos and set 90% CL limits on the muon flux. No excess is observed. They also obtain limits on the spin dependent neutralino-proton cross section for neutralino masses in the range 50-5000 GeV.
- $^{32}\mathrm{ABRAMOWSKI}$ 11 place upper limits on the annihilation cross section with $\gamma\gamma$ final $^{33}\mathrm{ABDO}$ 10 place upper limits on the annihilation cross section with $\gamma\gamma$ or $\mu^+\,\mu^-$ final
- states. 34 ACKERMANN 10 place upper limits on the annihilation cross section with $b\overline{b}$ or $\mu^+\mu^-$
- final states
- mai states. 35 ACHTERBERG 06 is based on data collected during 421.9 effective days with the AMANDA detector. They looked for interactions of ν_{μ} s from the centre of the Earth over a background of atmospheric neutrinos and set 90 % CL limits on the muon flux. Their limit is compared with the muon flux expected from neutralino annihilations into W^+ W^- and $b \overline{b}$ at the centre of the Earth for MSSM parameters compatible with the
- relic dark matter density, see their Fig. 7. ³⁶ACKERMANN 06 is based on data collected during 143.7 days with the AMANDA-II detector. They looked for interactions of $u_\mu {
 m s}$ from the Sun over a background of atmospheric neutrinos and set 90 % CL limits on the muon flux. Their limit is compared with the muon flux expected from neutralino annihilations into $W^+ W^-$ in the Sun for SUSY model parameters compatible with the relic dark matter density, see their Fig. 3.
- ³⁷ DEBOER 06 interpret an excess of diffuse Galactic gamma rays observed with the EGRET satellite as originating from π^0 decays from the annihilation of neutralinos into quark jets. They analyze the corresponding parameter space in a supergravity inspired MSSM

model with radiative electroweak symmetry breaking, see their Fig. 3 for the preferred region in the $(m_0,\,m_{1/2})$ plane of a scenario with large $\tan\beta.$

- ³⁸AMBROSIO 99 and DESAI 04 set new neutrino flux limits which can be used to limit the parameter space in supersymmetric models based on neutralino annihilation in the Sun and the Earth
- ³⁹LOSECCO 95 reanalyzed the IMB data and places lower limit on $m_{\chi_1^0}$ of 18 GeV if the LSP is a photino and 10 GeV if the LSP is a higgsino based on LSP annihilation in the sun producing high-energy neutrinos and the limits on neutrino fluxes from the IMB
- the surproducing ingre-net by instance and the state of the surproduction of the surproduction $M_2 \mu$ parameter space depending on $\tan\beta$ and lightest scalar Higgs mass for neutralino dark matter $m_{\chi 0} > m_{W}$, using limits on upgoing muons produced by energetic neutrinos from neutralino annihilation in the Sun and the Earth instance account that the lightest
- ⁴¹ BOTTINO 92 excludes some region $M_{2-\mu}$ parameter space assuming that the lightest neutralino is the dark matter, using upgoing muons at Kamiokande, direct searches by Ge detectors, and by LEP experiments. The analysis includes top radiative corrections on Higgs parameters and employs two different hypotheses for nucleon-Higgs coupling. Effects of rescaling in the local neutralino density according to the neutralino relic abundance are taken into account. 4^2 BOTTINO 91 excluded a region in $M_2 - \mu$ plane using upgoing muon data from Kamioka experiment, assuming that the dark matter surrounding us is composed of neutralinos and butter builtiers are superiment.
- and that the Higgs boson is not too heavy.
- ⁴³ GELMINI 91 exclude a region in $M_2 \mu$ plane using dark matter searches.
- ⁴⁴ KAMIONKOWSKI 91 excludes a region in the M_2 - μ plane using IMB limit on upgoing muons originated by energetic neutrinos from neutralino annihilation in the sun, assuming that the dark matter is composed of neutralinos and that $m_{H_1^0}\lesssim$ 50 GeV. See Fig. 8 in the paper.
- In the paper. ⁴⁵ MORI 91B exclude a part of the region in the M_2 - μ plane with $m_{\tilde{\chi}_1^0} \lesssim 80$ GeV using a limit on upgoing muons originated by energetic neutrinos from neutralino annihilation in the earth, assuming that the dark matter surrounding us is composed of neutralinos and that $m_{H_1^0} \lesssim 80$ GeV.
- 46 OLIVE 88 result assumes that photinos make up the dark matter in the galactic halo. Limit is based on annihilations in the sun and is due to an absence of high energy neutrinos detected in underground experiments. The limit is model dependent.

$\widetilde{\chi}_1^0$ p elastic cross section

Experimental results on the $\tilde{\chi}_1^0$ -p elastic cross section are evaluated at $m_{\tilde{\chi}_1^0}$ =100 GeV. The experimental results on the cross section are often

mass dependent. Therefore, the mass and cross section results are also given where the limit is strongest, when appropriate. Results are quoted separately for spin-dependent interactions (based on an effective 4-Fermi Lagrangian of the form $\overline{\chi}\gamma^{\mu}\gamma^{5}\chi\overline{q}\gamma_{\mu}\gamma^{5}q$) and spin-independent interactions $(\overline{\chi}\chi\overline{q}q)$. For calculational details see GRIEST 88B, ELLIS 88D, BAR-BIERI 89C, DREES 93B, ARNOWITT 96, BERGSTROM 96, and BAER 97 in addition to the theory papers listed in the Tables. For a description of the theoretical assumptions and experimental techniques underlying most of the listed papers, see the review on "Dark matter" in this "Review of Particle Physics," and references therein. Most of the following papers use galactic halo and nuclear interaction assumptions from (LEWIN 96).

Spin-dependent interactions

VALUE (pb)			<u>CL%</u>		DOCUM	IENT ID		TECN	COMMENT
••	• We	do not use the	followin	g d	ata for	averages	, fits,	limits, e	etc. • • •
<	4	$\times 10^{-5}$	90	1	AMOL	E	19	PICO	C ₃ F ₈
<	5	$\times 10^{-4}$	90	2	APRIL	E	19A	XE1T	Xe
<	7	$\times 10^{-4}$	90	3	XIA		19A	PNDX	Xe
<	8	$\times 10^{-4}$	90	4	AKER	В	17A	LUX	Xe
<	0.28		90	5	BATT	٩T	17	DRFT	CS_2 ; CF_4
<	0.027		90	6	BEHN	KE	17	PICA	$C_{4}\tilde{F}_{10}$
<	5	$\times 10^{-4}$	90	7	AMOL	E	16	PICO	CF3
<	6.8	$\times 10^{-3}$	90	8	APRIL	E	16B	X100	Xe
<	6.3	$\times 10^{-3}$	90	9	FELIZ,	ARDO	14	SMPL	C ₂ CIF ₅
<	0.01		90	10	AKIM	VC	12	ZEP3	Xe
<	7	$\times 10^{-3}$		11	BEHN	KE	12	COUP	CF ₃ I
<	8.5	$\times 10^{-3}$		12	FELIZ,	ARDO	12	SMPL	C ₂ CIF ₅
<	0.016		90	13	KIM		12	KIMS	Csl
5 ×	10 - 10) to 10 ⁻⁵	95	14	BUCH	MUEL	11в	THEO	
<	1		90	15	ANGL	E	08A	XE10	Xe
<	0.055			16	BEDN	YAKOV	80	HDMS	Ge
<	0.33		90	17	BEHN	KE	80	COUP	CF ₃ I
<	5			18	AKER	В	06	CDMS	Ge
<	2			19	SHIMI	ΖU	06A	CNTR	CaF ₂
<	0.4			20	ALNEF	2	05	NAIA	Nal Spin Dep
<	2			21	BARN	ABE-HE.	.05	PICA	С
$2 \times$	10^{-11}	to 1×10^{-4}		22	ELLIS		04	THEO	μ > 0
<	0.8			23	AHME	D	03	NAIA	Nal Spin Dep.
< 4	40			24	TAKEI	DA	03	BOLO	NaF Spin Dep.
< 1	10	_		25	ANGL	OHER	02	CRES	Saphire
8 ×	10^{-7}	to $2 imes 10^{-5}$		26	ELLIS		01c	THEO	$ aneta \leq 10$
<	3.8			27	BERN	ABEI	00d	DAMA	Xe
<	0.8			20	SPOO	NER	00	UKDM	Nal
<	4.8			28	BELLI		99c	DAMA	F
<1(00			29	OOTA	NI	99	BOLO	LiF
<	0.6			20	BERN	ABEI	98c	DAMA	Xe
<	5			20	BERN	ABEI	97	DAMA	F

- $^1\,{\rm The\ strongest\ limit\ is}$ $<~2.5\,\times10^{-5}$ pb at m_χ $=~25\,$ GeV. This updates AMOLE 17. $^2\,{\rm The\ strongest\ limit\ is}\ <\ 2\times 10^{-4}$ pb at $m_\chi^{\sim}=$ 30 GeV. For scatterings on neutrons,
- the strongest limit is < 6.3×10^{-6} at $m_{\chi} = 30$ GeV.
- $^3\,{\rm The\ strongest\ limit\ is}$ < 4.4 $\times\,10^{-4}$ pb at $\stackrel{\sim}{m_\chi}$ = 40 GeV. This updates FU 17.
- 4 The strongest limit is 5 $\times 10^{-4}$ pb at m_{χ} = 35 GeV. The limit for scattering on neutrons is 3×10^{-5} pb at 100 GeV and is 1.6×10^{-5} pb at 35 GeV. This updates AKERIB 16A. 5 Directional recoil detector. This updates DAW 12.
- $^6\,{\rm This}$ result updates ARCHAMBAULT 12. The strongest limit is 0.013 pb at $m_\chi=$ 20 GeV
- ⁷ The strongest limit is 5 imes 10⁻⁴ pb at m_{χ} = 80 GeV.
- ⁸ The strongest limit is 5.2×10^{-3} pb at 50 GeV. The limit for scattering on neutrons is 2.8×10^{-4} pb at 100 GeV and the strongest limit is 2.0×10^{-4} pb at 50 GeV. This updates APRILE 13.
- 9 The strongest limit is 0.0043 pb and occurs at $m_{\chi} = 35$ GeV. FELIZARDO 14 also presents limits for the scattering on neutrons. At $m_{\chi} = 100$ GeV, the upper limit is 0.13 presents limits for the scattering on neutrons. At $m_\chi^\chi=1$ pb and the strongest limit is 0.066 pb at $m_\chi=35$ GeV.
- 10 This result updates LEBEDENKO 09A. The strongest limit is 8 $\times\,10^{-3}$ pb at $m_{\chi}=$ 50 GeV. Limit applies to the neutralino neutron elastic cross section. 11 The strongest limit is 6 $\times\,10^{-3}$ at m_χ = 60 GeV.
- $^{12}\,\text{The strongest limit is 5.7}\times10^{-3}$ at $\stackrel{\sim}{m}_{\chi}=$ 35 GeV.
- $^{13}\,{\rm This}$ result updates LEE 07A. The strongest limit is at $m_\chi=$ 80 GeV.
- ¹⁴ Predictions for the spin-dependent elastic cross section based on a frequentist approach
- The strongest limit is 0.6 pb and occurs at m_{χ} = 30 GeV. The limit for scattering on neutrons is 0.01 pb at m_{χ} = 100 GeV, and the strongest limit is 0.045 pb at m_{χ} = 30 GeV. 16 Limit applies to neutron elastic cross section.
- 17 The strongest upper limit is 0.25 pb and occurs at $m_\chi \simeq$ 40 GeV.
- ¹⁸ The strongest upper limit is 4 pb and occurs at $m_{\chi} \simeq 60$ GeV. The limit on the neutron spin-dependent elastic cross section is 0.07 pb. This latter limit is improved in AHMED 09, where a limit of 0.02 pb is obtained at $m_{\chi} = 100$ GeV. The strongest limit in AHMED 09 is 0.018 pb and occurs at $m_{\chi} = 60$ GeV.
- 19 The strongest upper limit is 1.2 pb and occurs at $m_\chi~\simeq~$ 40 GeV. The limit on the neutron spin-dependent cross section is 35 pb.
- 20 The strongest upper limit is 0.35 pb and occurs at $m_\chi~\simeq~$ 60 GeV.
- $^{21}\,{\rm The\ strongest\ upper\ limit\ is\ 1.2\ pb\ and\ occurs\ }m_\chi\ \simeq\ 30\ {\rm GeV}.$
- ²² ELLIS 04 calculates the χp elastic scattering cross section in the framework of N=1 supergravity models with radiative breaking of the electroweak gauge symmetry, but without universal scalar masses. In the case of universal squark and slepton masses, but non-universal Higgs masses, the limit becomes 2×10^{-4} , see ELLIS 03E.
- 23 The strongest upper limit is 0.75 pb and occurs at $m_\chi pprox$ 70 GeV
- $^{24}\,{\rm The}$ strongest upper limit is 30 pb and occurs at $m_\chi~pprox$ 20 GeV.
- 25 The strongest upper limit is 8 pb and occurs at $m_\chi\simeq$ 30 GeV.
- ²⁶ELLIS OLC calculates the χ -p elastic scattering cross section in the framework of N=1 supergravity models with radiative breaking of the electroweak gauge symmetry. In models with nonuniversal Higgs masses, the upper limit to the cross section is 6×10^{-4} .
- 27 The strongest upper limit is 3 pb and occurs at $m_\chi\simeq$ 60 GeV. The limits are for inelastic scattering $X^0 + {}^{129}Xe \rightarrow X^0 + {}^{129}Xe^*$ (39.58 keV).
- 28 The strongest upper limit is 4.4 pb and occurs at $m_\chi \simeq 60$ GeV.
- $^{29}\,{\rm The}$ strongest upper limit is about 35 pb and occurs at $m_\chi\simeq 15\,$ GeV.

Spin-independent interactions

VALUE (pb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follo	owing d	ata for averages, fits	s, lim	its, etc.	• • •
$< 2.5 \times 10^{-8}$	90	¹ ABE	19	XMAS	Xe
$< 3.9 \times 10^{-9}$	90	² a ja j	19	DEAP	Ar
$< 2 \times 10^{-8}$	90	³ A MOLE	19	PICO	C ₃ F ₈
$< 2.25 \times 10^{-6}$	90	⁴ ADHIKARI	18	C100	Nal
$< 1.14 \times 10^{-8}$	90	⁵ AGNES	18A	D S5 0	Ar
$< 1.6 \times 10^{-8}$	90	⁶ A G N E S E	18A	CDMS	Ge
$< 9 \times 10^{-11}$	90	⁷ APRILE	18	XE1T	Xe
$< 1.8 \times 10^{-10}$	90	⁸ akerib	17	LUX	Xe
$< 1.4 \times 10^{-10}$	90	⁹ CUI	17a	P NDX	Xe
$< 1.5 \times 10^{-9}$	90	¹⁰ APRILE	16B	X100	Xe
$< 1.5 \times 10^{-9}$	90	¹¹ AKERIB	14	LUX	Xe
$10^{-11} - 10^{-7}$	95	¹² BUCH MUEL	14a	THEO	
$< 4.6 \times 10^{-6}$	90	¹³ FELIZARDO	14	SMPL	C ₂ CIF ₅
$10^{-11} - 10^{-8}$	95	¹⁴ ROSZKOWSKI	14	THEO	
$< 2.2 \times 10^{-6}$	90	¹⁵ AGNESE	13	CDMS	Si
$< 5 \times 10^{-8}$	90	¹⁶ a kimov	12	ZEP 3	Xe
1.6×10^{-6} ; 3.7×10^{-5}		¹⁷ ANGLOHER	12	CRES	CaWO ₄
3×10^{-12} to 3×10^{-9}	95	¹⁸ BECHTLE	12	THEO	
$< 1.6 \times 10^{-7}$		¹⁹ beh n ke	12	COUP	CF31
$< 2.3 \times 10^{-7}$	90	²⁰ KIM	12	KIMS	Csl
$< 3.3 \times 10^{-8}$	90	²¹ AHMED	11A		Ge
$< 4.4 \times 10^{-8}$	90	²² AR MENGAUD	11	EDE2	Ge
$< 1 \times 10^{-7}$	90	²³ ANGLE	80	XE10	Xe
$< 1 \times 10^{-6}$	90	BENETTI	80	WARP	Ar
$< 7.5 \times 10^{-7}$	90	²⁴ ALNER	07A	ZEP 2	Xe
$< 2 \times 10^{-7}$		²⁵ AKERIB	06A	CDMS	Ge
$< 90 \times 10^{-7}$		ALNER	05	NAIA	Nal Spin Indep.
$< 12 \times 10^{-7}$		²⁶ ALNER	05 A	ZEPL	

<14 < 4	$\times 10^{-7}$ × 10^{-7}		2	SANGLARD AKERIB	05 04	EDEL CDMS	Ge Ge
2×10^{-1}	-11 to 1.5 $\times 10^{-7}$	95	2	BALTZ	04	THEO	
2×10^{-10}	$-11_{to 8 \times 10} -6$		29,3		04	THEO	
< 5	× 10 ⁻⁸		3		044	THEO	<i>µ</i> > 0
~ 2	× 10-5		3	² AHMED	03	ΝΔΙΔ	Nal Spin Indep
23	×10-6		3	AKERIB	03	CDMS	Ge
2×10^{-1}	$-13_{to 2 \times 10} - 7$		34	BAFR	034	THEO	90
< 14	× 10 ⁻⁵		3	KLAPDOR-K	03	HDMS	Ge
< 6	× 10 ⁻⁶		3	⁵ ABRAMS	02	CDMS	Ge
1×10^{-1}	$-12_{to 7 \times 10^{-6}}$		2	⁹ KIM	02B	THEO	
< 3	$\times 10^{-5}$		3	MORALES	02B	CSME	Ge
< 1	$\times 10^{-5}$		3	³ MORALES	02c	IGEX	Ge
< 1	$\times 10^{-6}$			BALTZ	01	THEO	
< 3	$\times 10^{-5}$		3	BAUDIS	01	HDMS	Ge
< 7	$\times 10^{-6}$		4) BOTTINO	01	THEO	
< 1	$\times 10^{-8}$		4	L CORSETTI	01	THEO	$\tan \beta < 25$
5×10^{-1}	$^{-10}$ to 1.5×10^{-8}		4	² ELLIS	01c	THEO	$\tan \beta \leq 10$
< 4	$\times 10^{-6}$		4	^L GOMEZ	01	THEO	
2×10^{-1}	$^{-10}$ to 1×10^{-7}		4	^l LAHANAS	01	THEO	
< 3	$\times 10^{-6}$			ABUSAIDI	00	CDMS	Ge, Si
< 6	$\times 10^{-7}$		4	³ ACCOMANDO	00	THEO	
			4	¹ BERNABEI	00	DAMA	Nal
2.5×10^{-1}	0^{-9} to 3.5 $\times 10^{-8}$		4	FENG	00	THEO	$\tan\beta = 10$
< 1.5	$\times 10^{-5}$			MORALES	00	IGEX	Ge
< 4	$\times 10^{-5}$			SPOONER	00	UKDM	Nal
< 7	$\times 10^{-6}$			BAUDIS	99	HDMO	⁷⁶ Ge
< 7	$\times 10^{-6}$			BERNABEI	98c	DAMA	Xe
1 The	strongest upper limit	ic 2 1	~ 10	-8 nh at 60 Ge			

- $.2 \times 10^{-5}$ 'pb at 60 GeV
- ² This updates AMAUDRUZ 18.
- ³ This updates AMOLE 16.
- 4 The strongest limit is 2.05 $\times\,10^{-6}$ at m = 60 GeV.
- The strongest limit is 2.05 × 10⁻¹ at m = 05 GeV. 5 The strongest limit is 1.09×10^{-8} pb at $m_{\chi} = 126$ GeV. This updates AGNES 15.
- ⁶ The strongest limit is 1.0×10^{-8} pb at m_{χ}^{2} = 46 GeV. This updates AGNESE 15B.
- $^7\,{\rm Based}$ on 278.8 days of data collection. The strongest limit is 4.1 $\times\,10^{-11}$ pb at $m_\chi=$ 30 GeV. This updates APRILE 17G.
- 30 GeV. This updates AFRILE 176. ⁸ AKERIB 17. The strongest limit is 1.1×10^{-10} pb at 50 GeV. This updates AKERIB 16. ⁹ The strongest limit is 8.6×10^{-11} pb at 40 GeV. This updates TAN 168. ¹⁰ The strongest limit is 1.1×10^{-9} pb at 50 GeV. This updates APRILE 12. ¹¹ The strongest upper limit is 7.6×10^{-10} at $m_{\chi} = 33$ GeV.

- 12 Predictions for the spin-independent elastic cross section based on a frequentist approach ¹² Predictions for the spin-independent elastic cross section based on a frequentist approach to electroweak observables in the framework of N = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using the 20 fb⁻¹ 8 TeV and the 5 fb⁻¹ 7 TeV LHC data and the LUX data. ¹³ The strongest limit is 3.6×10^{-6} pb and occurs at $m_{\chi} = 35$ GeV. Felizardo 2014 updates
- Felizardo 2012. ¹⁴ Predictions for the spin-independent elastic cross section based on a Bayesian approach
- To electroweak observables in the framework of N = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using the 20 fb⁻¹ LHC data and LUX.
- ¹⁵ AGNESE 13 presents 90% CL limits on the elastic cross section for masses in the range 7-100 GeV using the Si based detector. The strongest upper limit is 1.8×10^{-6} pb at $m_{\chi} = 50$ GeV. This limit is improved to 7×10^{-7} pb in AGNESE 13A.
- 16 This result updates LEBEDENKO 09. The strongest limit is 3.9 $\times\,10^{-8}$ pb at $m_{\chi}=$
- 17 ANGLOHER 12 presents results of 730 kg days from the CRESST-II dark matter detector. They find two maxima in the likelihood function corresponding to best fit WIMP masses of 25.3 and 11.6 GeV with elastic cross sections of 1.6×10^{-6} and 3.7×10^{-5} pb respectively, see their Table 4. The statistical significance is more than 4σ . ANGLOHER 12 updates ANGLOHER 09
- ¹⁸Predictions for the spin-independent elastic cross section based on a frequentist approach to electrons for the spin-endpendent ranework of N=1 supergravity models with radiative breaking of the electroweak gauge symmetry using the 5 fb⁻¹ LHC data and XENON100. ¹⁹ The strongest limit is 1.4×10^{-7} at $m_{\chi} = 60$ GeV.
- 20 This result updates LEE 07A. The strongest limit is 2.1 $\times\,10^{-7}$ at m_{χ} = 70 GeV.
- $^{21}\,{\rm AH\,MED}$ 11A gives combined results from CDMS and EDELWEISS. The strongest limit is at m_χ = 90 GeV.
- 22 ARMENGAUD 11 updates result of ARMENGAUD 10. Strongest limit at $m_{\chi}=$ 85 GeV.
- 23 The strongest upper limit is 5.1 \times 10 $^{-8}$ pb and occurs at m_{χ} \simeq 30 GeV. The values quoted here are based on the analysis performed in ANGLE 08 with the update from SORENSEN 09.
- 24 The strongest upper limit is 6.6 $\times\,10^{-7}$ pb and occurs at $m_\chi\simeq\,$ 65 GeV.
- $^{25}\,\text{AKERIB}$ 06A updates the results of AKERIB 05. The strongest upper limit is 1.6 \times $10^{-7}~{\rm pb}$ and occurs at $m_\chi~\approx~$ 60 GeV.
- 26 The strongest upper limit is also close to 1.0 \times 10 $^{-6}$ pb and occurs at $m_{\chi}~\simeq~$ 70 GeV. BENOIT 06 claim that the discrimination power of ZEPLIN-I measurement (ALNER 05A) is not reliable enough to obtain a limit better than 1×10^{-3} pb. However, SMITH 06 do not agree with the criticisms of BENOIT 06.
- 27 A KERIB 04 is incompatible with BERNABEI 00 most likely value, under the assumption of standard WIMP-halo interactions. The strongest upper limit is $4\times 10^{-7}~\text{pb}$ and occurs at $m_{\chi} \simeq 60$ GeV.
- 28 Predictions for the spin-independent elastic cross section in the framework of N = 1 supergravity models with radiative breaking of the electroweak gauge symmetry.
- 29 KIM 02 and ELLIS 04 calculate the χp elastic scattering cross section in the framework of N=1 supergravity models with radiative breaking of the electroweak gauge symmetry, but without universal scalar masses.

See key on page 999

2025 Searches Particle Listings Supersymmetric Particle Searches

COSM

 30 In the case of universal squark and slepton masses, but non-universal Higgs masses, the limit becomes $2\times 10^{-6}~(2\times 10^{-11}$ when constraint from the BNL g-2 experiment are included), see ELLIS 03E. ELLIS 05 display the sensitivity of the elastic scattering cross ection to the π -Nucleon Σ term.

section to the measurement term. Section to the measurement of the measurement of the measurement of the section of the measurement of the section of the s

- ³³ Under the assumption of standard WIMP-halo interactions, Akerib 03 is incompatible with BERNABEI 00 most likely value at the 99.98% CL. See Fig. 4.
- 34 BAER 03A calculates the χp elastic scattering cross section in several models including the framework of N=1 supergravity models with radiative breaking of the electroweak gauge symmetry. 35 The strongest upper limit is 7 \times 10 $^{-6}$ pb and occurs at $m_\chi\simeq$ 30 GeV.
- 36 ABRAMS 02 is incompatible with the DAMA most likely value at the 99.9% CL. The strongest upper limit is 3×10^{-6} pb and occurs at $m_\chi\simeq$ 30 GeV.
- $^{37}\,{\rm The}$ strongest upper limit is 2×10^{-5} pb and occurs at $m_\chi\simeq$ 40 GeV
- $^{38}\,{\rm The\ strongest\ upper\ limit\ is\ 7\times 10^{-6}\ pb\ and\ occurs\ at\ m_{\chi}^{\sim}\simeq 46\ {\rm GeV}.}$
- 39 The strongest upper limit is 1.8×10^{-5} pb and occurs at $m_\chi \simeq$ 32 GeV
- 40 BOTTINO 01 calculates the χ -p elastic scattering cross section in the framework of the following supersymmetric models: N=1 supergravity with the radiative breaking of the electroweak gauge symmetry, N=1 supergravity with nonuniversal scalar masses and an effective MSSM model at the electroweak scale.
- effective MSSM model at the electroweak scale. ⁴¹ Calculates the χ_{-P} elastic scattering cross section in the framework of N=1 supergravity models with radiative breaking of the electroweak gauge symmetry. ⁴² ELLIS 01c calculates the χ_{-P} elastic scattering cross section in the framework of N=1 supergravity models with radiative breaking of the electroweak gauge symmetry. EL-LIS 02B find a range 2×10^{-8} -1.5 $\times 10^{-7}$ at tan β =50. In models with nonuniversal Higgs masses, the upper limit to the cross section is 4×10^{-7} .
- 3 ACCOMANDO 00 calculate the χ -p elastic scattering cross section in the framework of minimal N=1 supergravity models with radiative breaking of the electroweak gauge
- of minimal N=1 supergravity models with radiative breaking of the electroweak gauge symmetry. The limit is relaxed by at least an order of magnitude when models with nonuniversal scalar masses are considered. A subset of the authors in ARNOWITT 02 updated the limit to $<9 \times 10^{-8}$ (tan $\beta < 55$). ⁴⁴ BERNABEI 00 search for annual modulation of the WIMP signal. The data favor the hypothesis of annual modulation at 4σ and are consistent, for a particular model frame-work quoted there, with $m_{\chi 0} = 44 \frac{-12}{-9}$ GeV and a spin-independent X^0 -proton cross section of $(5.4 \pm 1.0) \times 10^{-6}$ pb. See also BERNABEI 01 and BERNABEI 00c.
- 45 FENG 00 calculate the χ -p elastic scattering cross section in the framework of N=1 supergravity models with radiative breaking of the electroweak gauge symmetry with a particular emphasis on focus point models. At tan β =50, the range is 8×10^{-8} -4 $\times 10^{-7}$.

- Other bounds on $\widetilde{\chi}^0_1$ from astrophysics and cosmology \cdot

Most of these papers generally exclude regions in the $M_2 - \mu$ parameter plane by requiring that the $\tilde{\chi}^0_1$ contribution to the overall cosmological density is less than some maximal value to avoid overclosure of the Universe. Those not based on the cosmological density are indicated. Many of these papers also include LEP and/or other bounds

VALUE	DOCUMENT ID		TECN COMMENT
>46 GeV	¹ ELLIS	00	RVUE
••• We do not use the fe	ollowing data for a	verag	es, fits, limits, etc. 🔹 🔹
	² BUCHMUEL	14	COSM
	³ BUCHMUEL	14A	COSM
	⁴ ROSZKOWSKI	14	COSM
	⁵ CABRERA	13	COSM
	⁶ ELLIS	13B	COSM
	⁵ STREGE	13	COSM
	² akula	12	COSM
	² ARBEY	12A	COSM
	² BAER	12	COSM
	BALAZS	12	COSM
	BECHTLE	12	COSM
	BESKIDT	12	COSM
> 18 GeV	BOTTINO	12	COSM
	² BUCH MUEL	12	COSM
	² CAO	12A	COSM
	² ELLIS	12B	COSM
	FENG	12B	COSM
	² KADASTIK	12	COSM
	/ STREGE	12	COSM
	¹² BUCH MUEL	11	COSM
	14 ROSZKOWSKI	11	COSM
	15 DUCUL	10	COSM
	16 DDELNED	09	COSM
	17 DREINER	09	THEO
	13 FLUC	08	COSM
	18 CALIDDI	08	COSM
		07	COSM
		06	COSM
	21 DE AUSTRI	06	COSM
	13 BAFR	05	COSM
	22 BALTZ	04	COSM
> 6 GeV 10.	23 BELANGER	04	THEO
2 0 300	²⁴ FLUS	04 B	COSM
	²⁵ PIERCE	04A	COSM
	²⁶ BAER	03	COSM

		CHAITOPAD	.05	COSIN	
	27	ELLIS	03	COSM	
	13	ELLIS	03в	COSM	
	26	ELLIS	03c	COSM	
	26	LAHANAS	03	COSM	
	28	LAHANAS	02	COSM	
	29	BARGER	01 C	COSM	
	30	ELLIS	01в	COSM	
	27	BOEHM	00в	COSM	
	31	FENG	00	COSM	
< 600 GeV	32	ELLIS	98B	COSM	
	33	EDSJO	97	COSM	Co-annihilation
	34	BAER	96	COSM	
	13	BEREZINSKY	95	COSM	
	35	FALK	95	COSM	CP-violating phases
	36	DREES	93	COSM	Minimal supergravity
	37	FALK	93	COSM	Sfermion mixing
	36	KELLEY	93	COSM	Minimal supergravity
	38	MIZUTA	93	COSM	Co-annihilation
	39	LOPEZ	92	COSM	Minimal supergravity, $m_0 = A = 0$
	40	MCDONALD	92	COSM	0
	41	GRIEST	91	COSM	
	42	NOJIRI	91	COSM	Minimal supergravity
	43	OLIVE	91	COSM	
	44	ROSZKOWSKI	91	COSM	
	45	GRIEST	90	COSM	
	43	OLIVE	89	COSM	
none 100 eV - 15 GeV		SREDNICKI	88	COSM	$\tilde{\gamma}$; $m_{\tilde{f}} = 100 \text{ GeV}$
none 100 eV-5 GeV		ELLIS	84	COSM	$\tilde{\gamma}$; for $m_{\tilde{f}} = 100 \text{ GeV}$
		GOLDBERG	83	COSM	γ̈́
	46	KRAUSS	83	COSM	$\tilde{\gamma}$
		VYSOTSKII	83	COSM	$\tilde{\gamma}$
					•

¹⁰ BOTTINO

²⁶ CHATTOPAD...03

03 COSM

> 6 GeV

¹ ELLIS 00 updates ELLIS 98. Uses LEP e^+e^- data at $\sqrt{s}=202$ and 204 GeV to improve bound on neutralino mass to 51 GeV when scalar mass universality is assumed and 46 GeV when Higgs mass universality is relaxed. Limits on tan β improve to $>2.7~(\mu>0),>2.2~(\mu<0)$ when scalar mass universality is assumed and >1.9 (both signs of μ) when Higgs mass universality is relaxed.

- Implications of the LHC result on the Higgs mass and on the SUSY parameter space in the framework of N = 1 supergravity models with radiative breaking of the electroweak gauge symmetry.
- ³BUCHMUELLER 14A places constraints on the SUSY parameter space in the framework So find the supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches using the 20 fb⁻¹ 8 TeV and the 5 fb⁻¹ 7 TeV and the LUX data.
- A ROSZKOWSKI 14 places constraints on the SUSY parameter space in the framework of N=1 supergravity models with radiative breaking of the electroweak gauge symmetry using Bayesian statistics and indirect experimental searches using the 20 $\rm fb^{-1}$ LHC and the LUX data.
- ⁵ CABRERA 13 and STREGE 13 place constraints on the SUSY parameter space in the framework of N = 1 supergravity models with radiative breaking of the electroweak gauge symmetry with and without non-universal Higgs masses using the 5.8 fb⁻¹, \sqrt{s} = 7 TeV ATLAS supersymmetry searches and XENON100 results.
- 6 ELLIS 13B place constraints on the SUSY parameter space in the framework of N = 1 supergravity models with radiative breaking of the electroweak gauge symmetry with and without Higgs mass universality. Models with universality below the GUT scale are also considered
- ⁷BALAZS 12 and STREGE 12 place constraints on the SUSY parameter space in the framework of N=1 supergravity models with radiative breaking of the electroweak gauge symmetry using the 1 fb $^{-1}$ LHC supersymmetry searches, the 5 fb $^{-1}$ Higgs mass constraints, both with \sqrt{s} = 7 TeV, and XENON100 results.
- ⁸BECHTLE 12 places constraints on the SUSY parameter space in the framework of N =1 supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches, using the 5 fb $^{-1}$ LHC and XENON100 data.
- ⁹BESKIDT 12 places constraints on the SUSY parameter space in the framework of N =
- Is supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches, the 5 fb⁻¹ LHC and the XENON100 data. ¹⁰ BELANGER 04 and BOTTINO 12 (see also BOTTINO 03, BOTTINO 03A and BOTTINO 04) do not assume gaugino or scalar mass unification.
- ¹¹ FENG 12B places constraints on the SUSY parameter space in the framework of N = 1 supergravity models with radiative breaking of the electroweak gauge symmetry and large sfermion masses using the 1 fb⁻¹ LHC supersymmetry searches, the 5 fb⁻¹ LHC Higgs mass constraints both with $\sqrt{s} = 7$ TeV, and XENON100 results.
- $^{12}\,\rm BUCHMUELLER$ 11 places constraints on the SUSY parameter space in the framework of N = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches and including supersymmetry breaking relations between A and B parameters.
- ¹³Places constraints on the SUSY parameter space in the framework of N=1 supergravity models with radiative breaking of the electroweak gauge symmetry but non-Universal Higgs masses.
- ¹⁴ ELLIS 10 places constraints on the SUSY parameter space in the framework of N =1 supergravity models with radiative breaking of the electroweak gauge symmetry with universality above the GUT scale.
- $^{15}\,\mathrm{BUCHMUELLER}$ 09 places constraints on the SUSY parameter space in the framework of N=1 supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches.
- 16 DREINER 09 show that in the general MSSM with non-universal gaugino masses there exists no model-independent laboratory bound on the mass of the lightest neutralino. An essentially massless χ_1^0 is allowed by the experimental and observational data, imposing some constraints on other MSSM parameters, including M_2 , μ and the slepton and squark masses.

- 17 BUCHMUELLER 08 places constraints on the SUSY parameter space in the framework of N = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches.
- 18 CALIBBI 07 places constraints on the SUSY parameter space in the framework of N 1 supergravity models with radiative breaking of the electroweak gauge symmetry with universality above the GUT scale including the effects of right-handed neutrinos.
- ¹⁹ELLIS 07 places constraints on the SUSY parameter space in the framework of N =1 supergravity models with radiative breaking of the electroweak gauge symmetry with universality below the GUT scale.
- 20 ALLANACH 06 places constraints on the SUSY parameter space in the framework of N = 1 supergravity models with radiative breaking of the electroweak gauge symmetry.
- 21 DE-AUSTRI 06 places constraints on the SUSY parameter space in the framework of N = 1 supergravity models with radiative breaking of the electroweak gauge symmetry. ²² BALTZ 04 places constraints on the SUSY parameter space in the framework of N = 1
- supergravity models with radiative breaking of the electroweak gauge symmetry. 23 Limit assumes a pseudo scalar mass < 200 GeV. For larger pseudo scalar masses, m_χ >
- 18(29) GeV for taneta = 50(10). Bounds from WMAP, $(g-2)_{\mu}$, $b
 ightarrow s\gamma$, LEP.
- ²⁴ ELLIS 04B places constraints on the SUSY parameter space in the framework of N=1 supergravity models with radiative breaking of the electroweak gauge symmetry including supersymmetry breaking relations between A and B parameters. See also ELLIS 03D.
- ²⁵ PIERCE 04A places constraints on the SUSY parameter space in the framework of models with very heavy scalar masses
- 26 BAER 03, CHATTOPADHYAY 03, ELLIS 03C and LAHANAS 03 place constraints on the SUSY parameter space in the framework of N=1 supergravity models with radiative breaking of the electroweak gauge symmetry based on WMAP results for the cold dark matter density.
- $^{27}\operatorname{BOEHM}$ 00B and ELLIS 03 place constraints on the SUSY parameter space in the framework of minimal N=1 supergravity models with radiative breaking of the electroweak gauge symmetry. Includes the effect of χ - \tilde{t} co-annihilations. ²⁸LAHA NAS 02 places constraints on the SUSY parameter space in the framework of mini-
- mal N=1 supergravity models with radiative breaking of the electroweak gauge symmetry. Focuses on the role of pseudo-scalar Higgs exchange.
- ²⁹BARGER OIC use the cosmic relic density inferred from recent CMB measurements to constrain the parameter space in the framework of minimal N=1 supergravity models with radiative breaking of the electroweak gauge symmetry.
- 30 ELLIS OIB places constraints on the SUSY parameter space in the framework of minimal $N{=}1$ supergravity models with radiative breaking of the electroweak gauge symmetry. Focuses on models with large $tan\beta$.
- $^{31}\,{\sf FENG}$ 00 explores cosmologically allowed regions of MSSM parameter space with multi-
- 12 EVI masses. 32 ELLIS 986 assumes a universal scalar mass and radiative supersymmetry breaking with universal gaugino masses. The upper limit to the LSP mass is increased due to the inclusion of $\chi \bar{\tau}_R$ coannihilations.
- ³³EDSJO 97 included all coannihilation processes between neutralinos and charginos for any neutralino mass and composition.
- any neutralino mass and composition. 34 Notes the location of the neutralino Z resonance and h resonance annihilation corridors in minimal supergravity models with radiative electroweak breaking. 35 Mass of the bino (=LSP) is limited to $m_{\widetilde{B}} \lesssim 350$ GeV for $m_t = 174$ GeV.
- ³⁶DREES 93, KELLEY 93 compute the cosmic relic density of the LSP in the framework of minimal N=1 supergravity models with radiative breaking of the electroweak gauge svmmetrv
- ³⁷FALK 93 relax the upper limit to the LSP mass by considering sfermion mixing in the MSSM
- ³⁸ MIZUTA 93 include coannihilations to compute the relic density of Higgsino dark matter.
- 39 LOPEZ 92 calculate the relic LSP density in a minimal SUSY GUT model. 40 MCDONALD 92 calculate the relic LSP density in the MSSM including exact tree-level annihilation cross sections for all two-body final states.
- ⁴¹ GRIEST 91 improve relic density calculations to account for coannihilations, pole effects,
- and threshold effects. 42 NOJIRI 91 uses minimal supergravity mass relations between squarks and sleptons to
- ⁴³ Mass of the bino (=LSP) is limited to $m_{\widetilde{H}} \lesssim 150$ GeV for $m_t \leq 200$ GeV. Mass of the higgsino (=LSP) is limited to $m_{\widetilde{H}} \lesssim 1$ TeV for $m_t \leq 200$ GeV.

- 44 ROSZKOWSKI 91 calculates LSP relic density in mixed gaugino/higgsino region. 45 Mass of the bino (=LSP) is limited to $m_{\widetilde{B}} \lesssim 550$ GeV. Mass of the higgsino (=LSP)
- is limited to $m_{\widetilde{H}}\,\lesssim\,$ 3.2 TeV.
- 46 KRAUSS 83 finds $m_{\widetilde{\gamma}}$ not 30 eV to 2.5 GeV. KRAUSS 83 takes into account the gravitino decay. Find that $\lim_{\alpha \to \infty}^{\prime \prime}$ its depend strongly on reheated temperature. For example a new allowed region $m_{\widetilde{\gamma}} = 4$ –20 MeV exists if $m_{\rm gravitino}$ <40 TeV. See figure 2.

Unstable $\widetilde{\chi}_1^0$ (Lightest Neutralino) mass limit

Unless otherwise stated, results in this section assume spectra and production rates as evaluated in the MSSM. Unless otherwise stated, the goldstino or gravitino mass $m_{\widetilde{G}}$ is assumed to be negligible relative to all other masses. In the following, \widetilde{G} is assumed to be undetected and to give rise to a missing energy (₽) signature.

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>525	95	¹ sirunyan	19ca CMS	$\widetilde{\chi}_{1}^{0} \rightarrow \gamma \widetilde{G}$, GMSB, SPS8, $c\tau = 1 \mathrm{m}$
>290	95	² SIRUNYAN	19ci CMS	$\geq 1 H (\rightarrow \gamma \gamma) + \text{jets} + \not\!\!\! E_T$,
>230	95	² sirunyan	19ci CMS	Tn1n1A, GMSB $\geq 1 H (\rightarrow \gamma \gamma) + \text{jets} + \not\!\!{E}_T,$ Tn1n1B GMSB
>930	95	³ SIRUNYAN	19к CMS	γ + lepton + E_T , Tchi1n1A
none 130-230,	95	⁴ AABOUD	18ск ATLS	$2H (\rightarrow bb) + E_T$,Tn1n1A,GMSB
290-880 >295	95	⁵ AABOUD	18z ATLS	\geq 4 ℓ , GMSB, Tn1n1C

>180	95	⁶ SIRUNYAN	18AO	CMS	$\ell^\pm\ell^\pm$ or $> 3\ell$, Tn1n1A
>260	95	⁶ SIRUNYAN	18AO	CMS	$\ell^{\pm}\ell^{\pm}$ or $\stackrel{-}{\geq} 3\ell$, Tn1n1B
>450	95	⁶ SIRUNYAN	18AO	CMS	$\ell^\pm\ell^\pm$ or $\geq 3\ell$, <code>Tn1n1C</code>
>750	95	⁷ SIRUNYAN	18ap	CMS	Combination of searches, GMSB,
>650	95	⁷ SIRUNYAN	18AP	CMS	Combination of searches, GMSB,
>690	95	⁷ SIRUNYAN	18AP	CMS	Combination of searches, GMSB,
>5 00	95	⁸ SIRUNYAN	18AR	CMS	$\ell^{\pm}\ell^{\mp}$ + jets + \mathcal{E}_T , GMSB, Tn1n1B
>650	95	⁸ SIRUNYAN	18ar	CMS	$\ell^{\pm}\ell^{\mp}$ + jets + E_T , GMSB, Thinic
none	95	⁹ sirunyan	180	CMS	$2 H (\rightarrow bb) + E_T$, Tn1n1A,
230-770		10			GMSB
>205	95	¹⁰ SIRUNYAN	18X	CMS	$\geq 1 H (\rightarrow \gamma \gamma) + jets + \not\!\!\! E_T,$ Tn1n1A, GMSB
>130	95	¹⁰ SIRUNYAN	18X	CMS	$\geq 1 H (ightarrow \gamma \gamma) + jets + ot\!$
>380	95	¹¹ KHACHATRY	.14L	CMS	$\widetilde{\chi}_1^0 \rightarrow Z \widetilde{G}$ simplified models,
					GMSB, RPV
• • • We do n	not use	e the following data	for a	verages,	fits, limits, etc. • • •
none 300-1000	95	¹² AABOUD	19G	ATLS	$\widetilde{\chi}_1^0 \rightarrow Z \widetilde{G}$ from gluinos as in Tglu1A, GMSB, depending on
		13	177		$C\tau$
			1600	CMS	$> 3\ell^{\pm}$ RBV) or V couplings
		15	.1087		wino- or higgsino-like neutralinos
		15 AAD	14BH	ATLS	$2\gamma + \not\!\!\! E_T$, GMSB, SPS8
		10 AAD	13AP	ATLS	$2\gamma + \not\!$
none 220-380	95	17 AAD	13Q	ATLS	$\gamma + b + E_T$, higgsino-like neu- tralino, GMSB
		¹⁸ AAD	13r	ATLS	$\tilde{\chi}_1^0 \rightarrow \mu j j, \text{RPV}, \lambda'_{211} \neq 0$
		¹⁹ AALTONEN	131	CDF	$\widetilde{\chi}_1^0 \rightarrow \gamma \widetilde{G}, \not\!$
>220	95	²⁰ CHATRCHYAN	13AH	CMS	$\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, GMSB, SPS8, $c\tau <$
		²¹ AAD	12CP	ATLS	$2\gamma + E_T$, GMSB
		²² AAD	12ст	ATLS	$> 4\ell^{\pm}$, RPV
		²³ AAD	12R	ATLS	$\tilde{\chi}_{0}^{0} \rightarrow \mu i i$, RPV, $\lambda'_{out} \neq 0$
		24 ABAZOV	1240	D0	$\tilde{x}^0 \tilde{x}^0 \rightarrow \alpha Z \tilde{G} \tilde{G} GMSB$
		25 CHATRCHYAN	1200	CMS	$\chi_1\chi_1$, χ_2 , χ_3
			11200	CMS	\widetilde{W}^{0} \widetilde{C} \widetilde{W}^{\pm} \widetilde{C} \widetilde{C} \widetilde{M}
> 1.40	05		10		$n = 1$ $\pi = \pi^0$ $\pi^\pm = 0$ π^\pm
>149	95	ALTONEN	10	CDF	$pp \rightarrow \chi\chi, \chi = \chi_2, \chi_1, \chi_1 \rightarrow \chi_{\widetilde{G}}$, GMSB
>175	95	²⁸ ABAZOV	10p	D0	$\widetilde{\chi}_1^0 \rightarrow \gamma \widetilde{G}$, GMSB
>125	95	²⁹ ABAZOV	08F	D0	$p \overline{p} \rightarrow \tilde{\chi} \tilde{\chi}, \tilde{\chi} = \tilde{\chi}_{0}^{0}, \tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0} \rightarrow$
, 120			50.		$\sim \widetilde{G}$ GMSB
		³⁰ ABULENCIA	07н	CDF	RPV. LLE
> 96.8	95	³¹ ABBIEND	06B	OPAL	$e^+e^- \rightarrow \widetilde{B}\widetilde{B}, (\widetilde{B} \rightarrow \widetilde{G}\gamma)$
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		³² ABDALLAH	05 в	DLPH	$e^+e^- \rightarrow \tilde{G} \tilde{\chi}^0_1, (\tilde{\chi}^0_1 \rightarrow \tilde{G} \gamma)$
> 96	95	³³ ABDALLAH	05 в	DLPH	$e^+e^- \rightarrow \widetilde{B}\widetilde{B}, (\widetilde{B} \rightarrow \widetilde{G}\gamma)$

¹ SIRUNYAN 19CA searched in 77.4 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events containing delayed photons in both single and diphoton plus E_T final states. No excess is observed above the background expected from Standard Model processes. The results are used to set 95% C.L. exclusion limits in the context of GMSB, using the SPS8 benchmark model. For neutralino proper decay lengths of 0.1, 1, 10, and 100 m, masses up to about 320, 525, 360, and 215 GeV are excluded, respectively. See their Fig. 5. The searches involve the simplified models Tglu1D, Tglu4A,B,C, Tsqk4,AA,AB.

- ² SIRUNYAN 19Cl searched in 77.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one or more high-momentum Higgs bosons, decaying to pairs of photons, jets and E_{T} . No significant excess above the Standard Model expectations is observed. Limits are set
- No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in the Tsbot4 simplified model, see Figure 3, and on the wino mass in the Tchiln2E simplified model, see their Figure 4. Limits are also set on the higgsino mass in the Tnln1A and Tnln1B simplified models, see their Figure 5. ³ SIRUNYAN 19K searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with a photon, an electron or muon, and large E_T . No significant excess above the Standard Model expectations is observed. In the framework of GMSB, limits are set on the chargino and neutralino mass in the Tchiln1A simplified model, see their Figure 6. Limits are also set on the gluino mass in the Tglu4A simplified model, and on the squark mass in the Tsqk4A simplified model, see their Figure 7.
- ⁴AABOUD 18CK searched for events with at least 3 *b*-jets and large missing transverse energy in two datasets of pp collisions at $\sqrt{s}=$ 13 TeV of 36.1 fb $^{-1}$ and 24.3 fb $^{-1}$ depending on the trigger requirements. The analyses aimed to reconstruct two Higgs becoming on the rigger requirements. The analyses almost to reconstruct two riggs bosons decaying to pairs of *b*-quarks. No significant excess above the Standard Model expectations is observed. Limits are set on the Higgsino mass in the Tn1nA simplified model, see their Figure 15(a). Constraints are also presented as a function of the BR of Higgsino decaying into an higgs boson and a gravitino, see their Figure 15(b).
- ⁵ AABOUD 18z searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events containing four or more charged leptons (electrons, muons and up to two hadronically decaying taus). No significant deviation from the expected SM background is observed. Limits are set on the Higgsino mass in simplified models of general gauge mediated supersymmetry Tn1n1A/Tn1n1B/Tn1n1C, see their Figure 9. Limits are also set on the wino, slepton, sneutrino and gluino mass in a simplified model of NLSP pair production with R-parity
- violating decays of the LSP via λ_{12k} or λ_{i33} to charged leptons, see their Figures 7, 8. ⁶ SIRUNYAN 18A0 searched in 35.9 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for direct electroweak production of charginos and neutralinos in events with either two or more leptons (electrons or muons) of the same electric charge, or with three or more leptons, which can include up to two hadronically decaying tau leptons. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino/neutralino mass in the Tchiln2A, Tchiln2H, Tchiln2D, Tchiln2E and Tchiln2F simplified models, see their Figures 14, 15, 16, 17 and 18. Limits are also set on the higgsino mass in the Tn1n1A, Tn1n1B and Tn1n1C simplified models, see their Figure 19.

- 7 SIRUNYAN 18AP searched in 35.9 fb $^{-1}$ of pp collisions at \sqrt{s} = 13 TeV for direct electroweak production of charginos and neutralinos by combining a number of previous and new searches. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino/neutralino mass in the Tchi1n2E, Tchi1n2E and Tchi1n2I simplified models, see their Figures 7, 8, 9 an 10. Limits are also set on the higgsino mass in the T1n1A, Tn1nB and Tn1n1C simplified models, see their Figure 11, 12, 13 and 14.
- 11, 12, 13 and 14. 8 SIRUNYAN 18AR searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing two opposite-charge, same-flavour leptons (electrons or muons), jets and \mathcal{E}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4C simplified model, see their Figure 7. Limits are also set on the chargino/neutralino mass in the Tchiln2F simplified models, see their Figure 8, and on the higgsino mass in the Tn1n1B and Tn1n1C simplified models, see their Figure 6. 9. Finally, limits are set on the sbottom mass in the Tsbot3 simplified model, see their Figure 10
- Figure 10. 9 SIRUNYAN 180 searched in 35.9 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with two Higgs bosons, decaying to pairs of *b*-quarks, and large \mathcal{L}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the Higgsino mass in the Tln1A simplified model, see their Figure 9. 10 SIRUNYAN 18x searched in 35.9 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with one or more high-momentum Higgs bosons, decaying to pairs of photons, jets and \mathcal{L}_T .
- The razor variables (M_R and R^2) are used to categorise the events. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in the Tsbot4 simplified model and on the wino mass in the Tchi1n2E simplified model, see their Figure 5. Limits are also set on the higgsino mass in the Tn1n1A and Tn1n1B simplified models, see their Figure 6.
- 11 KHACHATRYAN 14L searched in 19.5 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 8 TeV for evidence In ACHAPTER TAIL THE Searched in 15.3 to -60 pp consistence at $\sqrt{s} = 6$ teV for eventue of direct pair production of neutralinos with Higgs or Z-bosons in the decays chain, leading to H_H , HZ and ZZ final states with missing transverse energy. The decays of 16-20, a Higgs boson to a *b*-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No significant excesses over the expected SM backgrounds are observed. The results are interpreted in the context of GMSB simplified models where the decays $\widetilde{\chi}_1^0
 ightarrow$ $H\,\widetilde{G}$ or $\widetilde{\chi}^0_1 \rightarrow Z\,\widetilde{G}$ take place either 100% or 50% of the time, see Figs. 16–20
- ¹²AABOUD 196 searched in 32.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for evidence of neutralinos decaying into a *Z*-boson and a gravitino, in events characterized by the presence of dimuon vertices with displacements from the *pp* interaction point in the range of 1400 cm. Neutralinos are assumed to be produced in the decay chain of gluinos are distributed and the produced in the decay chain of gluinos are distributed and the produced in the decay chain of gluinos are distributed and the produced in the decay chain of gluinos are distributed and the produced in the decay chain of gluinos are distributed and the produced in the decay chain of gluinos are distributed and the produced in the decay chain of gluinos are distributed and the produced in the decay chain of gluinos are distributed and the produced in the decay chain of gluinos are distributed and the produced and the produced and the decay chain of gluinos are distributed and the produced and
- problem of 1400 cm. Neutralinos are assumed to be produced in the decay chain of gluinos as in Tglu1A models. No significant excess is observed in the number of vertices relative to the predicted background. In GGM with a gluino mass of 1100 GeV, neutralino masses in the range 300-1000 GeV are excluded for certain values of $c\tau$, see their Figure 7. 13 AAIJ 17z searched in 1 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV and in 2 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events containing a displaced vertex with one associated high transverse momentum μ . No excess is observed above the background expected from Standard Model processes. The results are used to set 95% C.L. upper limits on the cross section times branching fractions of pair-produced neutralinos decaying non-promptly into a muon and two quarks. Log-lived particles in a mass range 23-198 GeV are considered, see their Fig. 5 and Fig. 6. 14 KHACHATRYAN 168x searched in 19.5 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events containing 3 or more leptons coming from the electroweak production of wino- or higgsino-like neutralinos, assuming non-zero R-parity-violating leptonic couplings λ_{122} , λ_{123} , and λ_{233} or semileptonic couplings λ'_{131} , λ'_{232} , λ'_{331} , and λ'_{333} . No excess over the expected background is observed and limits are derived on the neutralino mass, see Figs. 24 and 25. 15 AAD 148H searched in 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events containing
- ¹⁵ AAD 14BH searched in 20.3 fb $^{-1}$ of pp collisions at $\sqrt{s} =$ 8 TeV for events containing And then searched in 20.5 to - or pp consists at $\sqrt{s} = 6$ rev to events containing non-pointing photons in a diphoton plus missing transverse energy final state. No excess is observed above the background expected from Standard Model processes. The results are used to set 95% C.L. exclusion limits in the contact of gauge-mediated supersymmetric breaking models, with the lightest neutralino being the next-to-lightest supersymmetric particle and decaying with a lifetime in the range from 0.25 ns to about 100 ns into a photon and a gravitino. For limits on the NLSP lifetime versus A plane, for the SPS8 model cast letter for 7. model, see their Fig. 7.
- proton and gravitino. To finite on the full field for the field for the
- squark and gluino masses, purely on the basis of the expected weak production. ¹⁸AAD 13R looked in 4.4 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events containing new, heavy particles that decay at a significant distance from their production point into a final state containing a high-momentum muon and charged hadrons. No excess over the expected background is observed and limits are placed on the production cross-section of neutralinos via squarks for various $m_{\widetilde{q}}$, $m_{\widetilde{\chi}_1^0}$ in a R-parity violating scenario with
- $\lambda'_{211} \neq 0$, as a function of the neutralino lifetime, see their Fig. 6.
- ¹⁹AALTONEN 13I searched in 6.3 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV for events containing E_T and a delayed photon that arrives late in the detector relative to the time expected from prompt production. No evidence of delayed photon production is observed
- ^{ODSERVEO.} 20 CHATRCHYAN 13AH searched in 4.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events containing E_T and a delayed photon that arrives late in the detector relative to the time expected from prompt production. No significant excess above the expected background was found and limits were set on the pair production of $\tilde{\chi}^0_1$ depending on the neutralino

excess above the expected background was found and limits were set on the neutralino mass in a generalized GMSB model (GGM) with a bino-like neutralino NLSP, see Figs. 6 and 7. The other sparticle masses were decoupled, tan $\beta=2$ and $cr_{NLSP}<0.1$ mm. Also, in the framework of the SPS8 model, limits are presented in Fig. 8.

- mm. Also, in the framework of the SPS8 model, limits are presented in Fig. 8. 2^{2} AAD 12CT searched in 4.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events containing four or more leptons (electrons or muons) and either moderate values of missing transverse momentum or large effective mass. No significant excess is found in the data. Limits are presented in a simplified model of *R*-parity violating supersymmetry in which charginos are pair-produced and then decay into a W-boson and a $\widetilde{\chi}_1^0$, which in turn decays through an RPV coupling into two charged leptons ($e^\pm e^\mp$ or $\mu^\pm \mu^\mp$) and a neutrino. In this model, limits are set on the neutralino mass as a function of the chargino mass, see Fig.
- 3a. Limits are also set in an *R*-parity violating m SUGRA model, see Fig. 3b. ²³ AAD 12R looked in 33 pb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events containing new, heavy particles that decay at a significant distance from their production point into a final state containing a high-momentum muon and charged hadrons. No excess over the expected background is observed and limits are placed on the production cross-section of neutralinos via squarks for various $(m_{\tilde{q}}, m_{\tilde{\chi}_1^0})$ in a R-parity violating scenario with

- $\lambda'_{211} \neq 0$, as a function of the neutralino lifetime, see their Fig. 8. Superseded by AAD 13R. 24 ABAZOV 12AD looked in 6.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 1.96$ TeV for events with a photon, a *Z*-boson, and large E_T in the final state. This topology corresponds to a GMSB model where pairs of neutralino NLSPs are either pair produced promptly or a GMSB model where pairs of neutralino NLSPs are either pair produced promptly or from decays of other supersymmetric particles and then decay to either $Z \tilde{G}$ or $\gamma \tilde{G}$. No significant excess over the SM expectation is observed and a limit at 95% C.L. on the cross section is derived as a function of the effective SUSY breaking scale Λ , see Fig. 3. Assuming $N_{mes} = 2$, $M_{mes} = 3 \Lambda$, $\tan \beta = 3$, $\mu = 0.75 M_1$, and $C_{grav} = 1$, the model is excluded at 95% C.L. for values of $\Lambda < 87$ TeV. ²⁵ CHATRCHYAN 12BK searched in 2.23 fb⁻¹ of ρp collisions at $\sqrt{s} = 7$ TeV for events with two photons and large E_T due to $\tilde{\chi}_1^0 \to \gamma \tilde{G}$ decays in a GMSB framework. No ichilicat evenes above the other terms of the model and indicate one to be
- significant excess above the expected background was found and limits were set on the pair production of $\widetilde{\chi}^0_1$ depending on the neutralino lifetime, see Fig. 6.
- For the product of A_1 coparing out interaction means A_2 which may arise in a generalized gauge mediated model from the decay of Wino-like NLSPs. No evidence for an excess over the expected background is observed. Limits are derived in the plane of squark/gluino mass versus Wino mass (see Fig. 4). Mass degeneracy of the produced squarks and gluinos is assumed. assumed
- 27 AALTONEN 10 searched in 2.6 fb $^{-1}$ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV for diphoton Antioner to be address the set of the term of term of the term of ter is derived on the $\tilde{\chi}^0_1$ mass of 149 GeV for $\tilde{\chi}^0_1\ll 1$ ns, which improves the results of previous searches.
- ²⁸ABAZOV 10P looked in 6.3 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV for events with $\widetilde{\chi}^0_1$ mass range is obtained.
- ²⁹ABAZOV 08F looked in 1.1 fb⁻¹ of $p \overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV for diphoton events
- with at least three leptons (e or μ) from the decay of $\bar{\chi}_1^0$ via $LL\overline{E}$ couplings. The results are consistent with the hypothesis of no signal. Upper limits on the cross-section are extracted and a limit is derived in the framework of mSUGRA on the masses of $\widetilde{\chi}^0_1$ and $\widetilde{\chi}^\pm_1$, see e.g. their Fig. 3 and Tab. II.
- 31 ABBIENDI 06B use 600 pb $^{-1}$ of data from \sqrt{s} = 189–209 GeV. They look for events with diphotons + p final states originating from prompt decays of pair-produced neutralinos in a GMSB scenario with $\tilde{\chi}_1^0$ NLSP. Limits on the cross-section are computed as a function of m($\tilde{\chi}_1^0$), see their Fig. 14. The limit on the $\tilde{\chi}_1^0$ mass is for a pure Bino state assuming
- a prompt decay, with lifetimes up to 10^{-9} s. Supersedes the results of ABBIENDI 04N. $\sqrt{32}$ ABDALLAH 05B use data from $\sqrt{s} = 180-209$ GeV. They look for events with single their Fig. 9b for a pure Bino state in the GMSB framework and in Fig. 9c for a no-scale supergravity model. Supersedes the results of ABREU 00z.
- 33 ABDALLAH 05B use data from $\sqrt{s}=$ 130–209 GeV. They look for events with diphotons the $\tilde{\chi}_1^0$ is the NLSP. Limits are computed in the plane $(m(\tilde{G}), m(\tilde{\chi}_1^0))$, see their Fig. 10. The lower limit is derived on the $\tilde{\chi}_1^0$ m ass for a pure Bino state assuming a prompt decay and $m_{\widetilde{e}_R} = m_{\widetilde{e}_L} = 2 m_{\widetilde{\chi}_1^0}$. It improves to 100 GeV for $m_{\widetilde{e}_R} = m_{\widetilde{e}_L} = 1.1 m_{\widetilde{\chi}_1^0}$ and the limit in the plane $(m(\widetilde{\chi}_1^0), m(\widetilde{e}_R))$ is shown in Fig. 10b. For long-lived neutralinos, cross-section limits are displayed in their Fig 11. Supersedes the results of ABREU 002.

${\widetilde \chi}_2^0,\,{\widetilde \chi}_3^0,\,{\widetilde \chi}_4^0$ (Neutralinos) mass limits

inos are unknown mixtures of photinos, z-inos, and neutral higgsinos (the supersymmetric partners of photons and of Z and Higgs bosons). The limits here apply only to $\tilde{\chi}^0_2$, $\tilde{\chi}^0_3$, and $\tilde{\chi}^0_4$. $\tilde{\chi}^0_1$ is the lightest supersymmetric particle (LSP); see $\tilde{\chi}^0_1$ Mass Limits. It is not possible to quote rigorous mass limits because they are extremely model dependent; i.e. they depend on branching ratios of various $\tilde{\chi}^0$ decay modes, on the masses of decay products (\tilde{e} , $\tilde{\gamma}$, \tilde{q} , \tilde{g}), and on the \tilde{e} mass exchanged in $e^+e^-
ightarrow ~ \widetilde{\chi}^0_j ~ \widetilde{\chi}^0_j$. Limits arise either from direct searches, or from the MSSM constraints set on the gaugino and higgsino mass parameters M_2 and μ through searches for lighter charginos and neutralinos. Often limits are given as contour plots in the $m_{\tilde{v}0} - m_{\tilde{e}}$ plane vs other parameters. When specific assumptions are made, e.g. the neutralino is a pure photino $(\widetilde{\gamma})$, pure z-ino (\widetilde{Z}) , or pure neutral higgsino (\widetilde{H}^0) , the neutralinos will be labelled as such.

Limits obtained from e^+e^- collisions at energies up to 136 GeV, as well as other limits from different techniques, are now superseded and have not been included in this compilation. They can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review. Some later papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
> 680	95	¹ AABOUD	19AU ATL	0, 1, 2 or more ℓ , $H (\rightarrow \gamma \gamma$, bb , WW^* , ZZ^* , $\tau\tau$) (various searches), Tchiln2E, $m_{\tilde{\chi}_{\tau}^0} = 0$
> 112	95	² sirunyan	19ви С M S	$ \begin{array}{c} \operatorname{GeV} & \widetilde{\chi}_{1}^{+} \\ \rho p \rightarrow & \widetilde{\chi}_{1}^{+} \widetilde{\chi}_{2}^{0} + 2 \text{ jets}, & \widetilde{\chi}_{2}^{0} \rightarrow \\ \ell^{+} \ell^{-} \widetilde{\chi}_{1}^{0}, \text{ heavy sleptons}, \\ m_{\widetilde{\chi}_{2}^{0}} - m_{\widetilde{\chi}_{1}^{0}} = 1 \text{ GeV}, & m_{\widetilde{\chi}_{2}^{0}} \\ = & m_{\widetilde{\tau}^{+}} \end{array} $
> 215	95	² sirunyan	19ви СМS	$\begin{array}{c} \sum_{\substack{\chi_1\\ \gamma_1}} \chi_1^0 + \chi_2^0 + 2 \text{ jets, } \tilde{\chi}_2^0 \rightarrow \\ \ell^+ \ell^- \tilde{\chi}_1^0, \text{ heavy sleptons,} \\ m_{\widetilde{\chi}_2^0} - m_{\widetilde{\chi}_1^0} = 30 \text{ GeV, } m_{\widetilde{\chi}_2^0} \\ = m_{\widetilde{\chi}^+} \end{array}$
> 760	95	³ AABOUD	18AY ATLS	$2 au + E_T$, Tchiln2D and $\tilde{\tau}_L$ -only, $m_{\tilde{\chi}_L^0} = 0$ GeV
>1125	95	⁴ AABOUD	18bt ATLS	2,3 $\ell + \not\!$
> 580	95	⁵ AABOUD	18bt ATLS	2,3 $\ell + \not\!$
none 130-230,	95	⁶ AABOUD	18ск ATLS	$2H (\rightarrow b b) + \not\!\!\! E_T, TnlnlA, GMSB$
290-880 none 220-600	95	⁷ AABOUD	18co ATLS	$2,3\ell+ ot\!$
> 145	95	⁸ AABOUD	18R ATLS	2ℓ (soft) + $\not\!$
> 175	95	⁹ AABOUD	18R ATLS	$2\ell \text{ (soft)} + \vec{E}_T, \text{ Tchiln2F, wino,} \\ m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} = 10 \text{ GeV} $
>1060	95	¹⁰ AABOUD	18∪ ATLS	$2 \gamma + E_T$, GGM,Tchi1chi1A, any
> 167	95	¹¹ SIRUNYAN	18AJ CMS	2ℓ (soft) + E_T , Tchi1n2G, hig- gsino, $m_{\tilde{\chi}_1^0}^0 - m_{\tilde{\chi}_1^0}^0 = 15$ GeV
> 710	95	¹² SIRUNYAN	18DP CMS	$2\tau + \not\!\!\! E_T$, Tchiln2D, $m_{\widetilde{\chi}^0_*} = 0$ GeV
none 220–490	95	¹³ SIRUNYAN	17AW CMS	$1\ell+2$ <i>b</i> -jets $+ E_T$, Tchiln2E, $m_{\widetilde{\chi}^0_1} = 0$ GeV
> 600	95	¹⁴ AAD	16AA ATLS	$3,4\ell + \not\!$
> 670	95	¹⁴ AAD	16AA ATLS	$3,4\ell + \not\!$
> 250	95	¹⁵ AAD	15ba ATLS	$m_{\widetilde{\chi}^{\pm}} = m_{\widetilde{\chi}^{0}}, m_{\widetilde{\chi}^{0}} = 0$ GeV
> 380	95	¹⁶ AAD	14H ATLS	$ \begin{array}{c} \chi_1^{\lambda_1} & \chi_2^{\lambda_2} & \chi_1^{\lambda_1} \\ \tilde{\chi}_1^{\pm} \tilde{\chi}_2^{0} \to & \tau^{\pm} \nu \tilde{\chi}_1^{0} \tau^{\pm} \tau^{\mp} \tilde{\chi}_1^{0}, \operatorname{sim-} \\ \text{plified model,} & m_{\tilde{\chi}^{\pm}} = m_{\tilde{\chi}_2^{0}}, \end{array} $
				$m_{\widetilde{\chi}^0} = 0 \text{ GeV}$
> 700	95	¹⁶ AAD	14H ATLS	$\widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{2}^{0} \rightarrow \ell^{\pm} \nu \widetilde{\chi}_{1}^{0} \ell^{\pm} \ell^{\mp} \widetilde{\chi}_{1}^{0}, \text{ sim-plified model}, m_{\widetilde{\chi}_{1}^{\pm}} = m_{\widetilde{\chi}_{2}^{0}},$ $m_{\tau} = 0 \text{ GeV}$
> 345	95	¹⁶ AAD	14H ATLS	$ \begin{split} & \widetilde{\chi}_{1}^{0} = 0 \text{ dev} \\ & \widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{2}^{0} \rightarrow W \widetilde{\chi}_{1}^{0} Z \widetilde{\chi}_{1}^{0}, \text{ simplified} \\ & \text{ model, } m_{\widetilde{\chi}_{1}^{\pm}} = m_{\widetilde{\chi}_{2}^{0}}, m_{\widetilde{\chi}_{1}^{0}} = 0 \end{split} $
> 148	95	¹⁶ AAD	14H ATLS	$ \begin{array}{ccc} \overset{\text{GeV}}{\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{0}} \rightarrow & W\widetilde{\chi}_{1}^{0}H\widetilde{\chi}_{1}^{0}, \text{ simplified} \\ \text{model}, & m_{\widetilde{\chi}_{1}^{\pm}} = m_{\widetilde{\chi}_{2}^{0}}, & m_{\widetilde{\chi}_{1}^{0}} = 0 \end{array} $
> 620	95	¹⁷ AAD	14x ATLS	$\stackrel{GeV}{{}^{\scriptscriptstyle 2}}_{{}^{\scriptscriptstyle 4}\ell^{\pm}}, \tilde{\chi}^0_{2,3} \rightarrow \ell^{\pm} \ell^{\mp} \tilde{\chi}^0_1, \textit{m}_{\widetilde{\chi}^0_1}$
		¹⁸ AAD	13 ATLS	= 0 GeV $3\ell^{\pm}$ + $\not{\!\! E}_T$, pMSSM, SMS
		¹⁹ CHATRCHYAI	N12BJ CMS	\geq 2 ℓ , jets + $ ot\!$
> 62.4	95	²⁰ ABREU	00w DLPH	$\tilde{\chi}_2^0$, $1 \leq \tan\beta \leq$ 40, all Δm , all \bar{m}_0
> 99.9	95	²⁰ ABREU	00w DLPH	$\widetilde{\chi}_{3}^{U}$, $1 \leq aneta \leq 40$, all Δm , all m_{0}
> 116.0	95	^{∠∪} ABREU	00w DLPH	$\widetilde{\chi}_4^{ extsf{o}},1\leq aneta\leq au$ 0, all Δm , all m_0

••• We do	o not use	e the following da	ita for averages,	fits, limits, etc. 🔹 🔹	
none	95	²¹ AAD	14g ATLS	$\widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0 \rightarrow W \widetilde{\chi}_1^0 Z \widetilde{\chi}_1^0$, simplified	
180-355				model, $m_{\widetilde{\chi}_1^{\pm}} = m_{\widetilde{\chi}_2^0}$, $m_{\widetilde{\chi}_1^0} =$	0
		22		GeV AL AL	
		²² KHACHATR	RY14 CMS	$\widetilde{\chi}_2^0 \to (Z, H) \widetilde{\chi}_1^0 \ell \ell$, simplified	
		²³ AAD	12AS ATLS	$3\ell^{\pm} + E_T$, pMSSM	
		²⁴ AAD	12⊤ ATLS	$\ell^{\pm}\ell^{\pm} + \not\!$	
		²³ AAD ²⁴ AAD	12AS ATLS 12T ATLS	$\begin{array}{l} 3\ell^{\pm}+\not\!\!\!E_T \text{, pMSSM} \\ \ell^{\pm}\ell^{\pm}+\not\!\!\!\!E_T \text{, } pp \rightarrow \ \widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0 \end{array}$	

¹AABOUD 19AU searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for direct electroweak production of charginos and next-to-lightest neutralinos decaying into lightest neutralinos and a W and a Higgs boson, respectively. Fully hadronic, semileptonic, diphoton, and multilepton (electrons, muons) final states with missing transverse momentum are considered in this search. Observations are consistent with the Standard Model expectations, and 95% confidence-level limits of up to 680 GeV on the chargino/next-to-lightest neutralino masses are set (Tchiln2E model). See their Figure 14 for an overlay of exclusion contours from all searches exclusion contours from all searches.

of exclusion contours from all searches. ² SIRUNYAN 1980 searched for pair production of gauginos via vector boson fusion as-suming the gaugino spectrum is compressed, in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV. The final states explored included zero leptons plus two jets, one lepton plus two jets, and one hadronic tau plus two jets. A similar bound is obtained in the light slepton limit

 3 AABOUD 18AY searched in 36.1 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 13 TeV for direct electroweak production of charginos and neutralinos as in Tchi1n2D models, in events characterised by the presence of at least two hadronically decaying tau leptons and large missing transverse energy. No significant deviation from the expected SM background is observed. Assuming decays via intermediate $ilde{ au}_L$ and $m_{\widetilde{\chi}_1^\pm}=m_{\widetilde{\chi}_2^0}$, the observed

limits rule out $\tilde{\chi}_2^0$ masses up to 760 GeV for a massless $\tilde{\chi}_1^0$. See their Fig.7 (right). Interpretations are also provided in Fig 8 (bottom) for different assumptions on the ratio between $m_{\tilde{\tau}}$ and $m_{\tilde{\chi}_2^0} + m_{\tilde{\chi}_1^0}$

- 4 AABOUD 188T searched in 36.1 fb⁻¹ of $\rho\,p$ collisions at $\sqrt{s}=13$ TeV for direct electroweak production of charginos, chargino and next-to-lightest neutralinos and sleptons In events with two or three leptons (clearons or muons), with or without jets, and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the next-to-lightest neutralino mass up to 1100 GeV for massless $\tilde{\chi}_1^0$ in the Tchiln2C simplified model exploiting the 3ℓ signature, see their Figure 8(c).
- 5 AABOUD 188T searched in 36.1 fb $^{-1}$ of $\rho \, p$ collisions at $\sqrt{s}=$ 13 TeV for direct electroweak production of charginos, chargino and next-to-lightest neutralinos and sleptons In events with two or three leptons (clearbox) or muons), with or without jets, and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the next-to-lightest neutralino mass up to 580 GeV for massless $\tilde{\chi}_1^0$ in the Tchiln2F simplified model exploiting the $2\ell+2$ jets and 3ℓ signatures, see their Figure 8(d).
- See their right equals 6^{-1} and 243 for events with at least 3 *b*-jets and large missing transverse energy in two datasets of *pp* collisions at $\sqrt{s} = 13$ TeV of 36.1 fb⁻¹ and 24.3 fb⁻¹ depending on the trigger requirements. The analyses aimed to reconstruct two Higgs bosons decaying to pairs of *b*-quarks. No significant excess above the Standard Model expectations is observed. Limits are set on the Higgsino mass in the T1n1n1A simplified word their fields.
- expectations is observed. Limits are set on the riggs in these in the right has a model, see their Figure 15(a). Constraints are also presented as a function of the BR of Higgs ino decaying into an higgs boson and a gravitino, see their Figure 15(b). ⁷ AABOUD 18co searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for direct electroweak production of mass-degenerate charginos and next-to-lightest neutralinos in events with two or three leptons (electrones or muons), with or without jets, and large excluded due to an excess of events above the SM prediction in the dedicated regions. See their Figure 13(d).
- ⁸AABOUD 18R searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for electroweak production in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum. The data are found to be consistent with the SM prediction. Results are interpreted in Tchi1n2G higgsino models, and $\widetilde{\chi}^0_2$ masses the SM prediction. Results are interpreted in TchTh2G nggshib models, and χ_2 masses are excluded up to 145 GeV for $m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} = 5$ GeV. The exclusion limits extend down to mass splittings of 2.5 GeV, see their Fig. 10 (top). Results are also interpreted in terms of exclusion bounds on the production cross-sections for the NUHM2 scenario as a function of the universal gaugino mass $m_{1/2}$ and $m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^1}$, see their Fig. 12.
- ⁹AABOUD 18R searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for electroweak production in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum. The data are found to be consistent with the SM prediction. Results are interpreted in Tch1n2F wino models, and $\tilde{\chi}_2^0$ masses are Eacl with prediction. Results are interpreted in FGH112 with modes, and χ_2^{s} masses are excluded up to 175 GeV for $m_{\chi_2^0} - m_{\chi_1^0} = 10$ GeV. The exclusion limits extend down to mass splittings of 2 GeV, see their Fig. 10 (bottom). Results are also interpreted in terms of exclusion bounds on the production cross-sections for the NUHM2 scenario as a function of the universal gaugino mass $m_{1/2}$ and $m_{\chi_2^0} - m_{\chi_1^0}^{\infty}$, see their Fig. 12.
- ¹⁰ AABOUD 18U searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in events with at least one isolated photon, possibly jets and significant transverse momentum targeting generalised models of gauge-mediated SUSY breaking. No significant excess of events is observed above the SM prediction. Results of the diphoton channel are interpreted in terms of lower limits on the masses of gauginos Tchi1chi1A models, which reach as high as 1.3 TeV. Gaugino masses below 1060 GeV are excluded for any NLSP mass, see their Fig. 10.
- $^{11}\,
 m SiRUNYAN$ 18AJ searched in 35.9 fb $^{-1}$ of $p\,p$ collisions at \sqrt{s} = 13 TeV for events SINGWARN loss searched in 35.9 to -6 to pp consistions at $\sqrt{s} = 13$ fev for events containing two low-momentum, oppositely charged leptons (electrons or muons) and E_T . No excess over the expected background is observed. Limits are derived on the wino mass in the Tch1n2F simplified model, see their Figure 5. Limits are also set on the stop mass in the Tstop10 simplified model, see their Figure 6. Finally, limits are set on the Higgsino mass in the Tch1n2F simplified model, see Figure 8 and in the pMSSM, see Figure 7. see Figure 7

See key on page 999

- $^{12}\,{\rm SIRUNYAN}$ 18DP searched in 35.9 fb $^{-1}$ of $p\,p$ collisions at \sqrt{s} = 13 TeV for direct electroweak production of charginos and neutralinos or of chargino pairs in events with a tau lepton pair and significant missing transverse momentum. Both hadronic and leptonic decay modes are considered for the tau lepton. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino mass in the TchilchilD and Tchiln2 simplified models, see their Figures 14 and 15. Also, excluded
- the production cross sections are shown in Figures 14 and 15. Also, excluded stau pair production cross sections are shown in Figures 11, 12, and 13. ¹³ SIRUNYAN 17AW searched in 35.9 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with a charged lepton (electron or muon), two jets identified as originating from a b-quark, and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the mass of the chargino and the next-to-lightest neutralino in the Trible Standard back set. Tchi1n2E simplified model, see their Figure 6.
- 14 AAD 16AA summarized and extended ATLAS searches for electroweak supersymmetry in final states containing several charged leptons, \mathcal{F}_T , with or without hadronic jets, in 20 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV. The paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as new analyses. Exclusion limits at 95% C.L. are set on mass-degenerate $\tilde{\chi}_2^0$ and $\tilde{\chi}_3^0$ masses in the Tn 2n3A and Tn 2n3B simplified models. See their Fig. 15. ¹⁵ AAD 15BA searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for electroweak production of charginos and neutralinos decaying to a final state containing a *W* boson
- and a 125 GeV Higgs boson, plus missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models of direct chargino and next-to-lightest neutralino production, with the decays $\tilde{\chi}_1^\pm \rightarrow W^\pm \tilde{\chi}_1^0$ and $\tilde{\chi}_2^0 \rightarrow H \tilde{\chi}_1^0$ having 100% branching fraction, see Fig. 8. A combination of the multiple final states for the Higgs decay yields the best limits (Fig. (b8
- ⁶⁰). ¹⁶ AAD 14H searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for electroweak produc-tion of charginos and neutralinos decaying to a final sate with three leptons and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models of direct chargino and next-to-lightest neutralino production, with decays to the lightest neutralino via either all three genera-tions of leaters of the only gauge besone or Hings besone see Fig. 7 An interpretation tions of leptons, status only gauge bosons, or Higgs bosons, see Fig. 7. An interpretation in the pMSSM is also given, see Fig. 8. 17 AAD 14x searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with at least
- four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the neutralino mass in an R-parity conserving simplified model where the decay $\tilde{\chi}_{2,3}^0 o \ell^\pm \ell^\mp \tilde{\chi}_1^0$ takes place with
- a branching ratio of 100%, see Fig. 10. ¹⁸ AAD 13 searched in 4.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for charginos and neutralinos decaying to a final state with three leptons (*e* and μ) and missing transverse energy. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in the phenomenological MSSM, see Fig. 2 and 3, and in simplified models, see Fig. 4. For the simplified models with intermediate slepton decays, degenerate $\widetilde{\chi}_1^\pm$ and $\widetilde{\chi}_2^0$ masses up to 500 GeV are excluded at 95% C.L. for very large mass differences with the $\tilde{\chi}_1^0$. Supersedes AAD 12AS.
- ¹⁹CHATRCHYAN 12BJ searched in 4.98 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV for direct electroweak production of charginos and neutralinos in events with at least two leptons, jets and missing transverse momentum. No significant excesses over the expected SM backgrounds are observed and 95% C.L. limits on the production cross section of $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ pair production were set in a number of simplified models, see Figs. 7 to 12. Most limits are for exactly 3 jets.
- are for exactly 3 jets. 20 ABREU 00W combines data collected at \sqrt{s} =189 GeV with results from lower energies. The mass limit is obtained by constraining the MSSM parameter space with gaugino and sfermion mass universality at the GUT scale, using the results of negative direct searches for neutralinos (including cascade decays and $\vec{\tau}$ final states) from ABREU 01, for charginos from ABREU 001 and ABREU 00T (for all Δm_+), and for charged sleptons from ABREU 01B. The results hold for the full parameter space defined by all values of the scale $|\vec{\tau}| < 2 \cdot \vec{\tau}$ with the $\vec{\sigma}$ as LSD. M_2 and $|\mu| \leq$ 2 TeV with the $\widetilde{\chi}^0_1$ as LSP.
- ¹⁰/₂ and $|\mu| \ge 2$ fev with the χ_1 as Eq. (2) ²¹ AAD 14G searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for electroweak production of chargino-neutralino pairs, decaying to a final sate with two leptons (e and μ) and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models of chargino and next-to-with decay to the limit decay to be lightly using the parameters of the standard model expectation is observed. lightest neutralino production, with decays to the lightest neutralino via gauge bosons, see Fig. 7. An interpretation in the pMSSM is also given, see Fig. 10. 22 KHACHATRYAN 14I searched in 19.5 fb $^{-1}$ of pp collisions at \sqrt{s} = 8 TeV for elec-
- troweak production of charginos and neutralinos decaying to a final state with three lep-tons (e or μ) and missing transverse momentum, or with a Z-boson, dijets and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models, see Figs. 12-16.
- ²³AAD 12As searched in 2.06 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for charginos and neutralinos decaying to a final state with three leptons (e and μ) and missing transverse energy. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in the phenomenological MSSM, see Fig. 2 (top), and in simplified models, see Fig. 2 (bottom).
- 24 AAD 12T looked in 1 fb $^{-1}$ of pp collisions at \sqrt{s} = 7 TeV for the production of supersymmetric particles decaying into final states with missing transverse momentum and exactly two isolated leptons (e or μ). Same-sign dilepton events were separately studied. Additionally, in opposite-sign events, a search was made for an excess of same-flavor over different-flavor lepton pairs. No excess over the expected background is model.

 $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$ (Charginos) mass limits Charginos are unknown mixtures of w-inos and charged higgsinos (the supersymmetric partners of W and Higgs bosons). A lower mass limit for the lightest chargino $(\tilde{\chi}^\pm_1)$ of approximately 45 GeV, independent of the field composition and of the decay mode, has been obtained by the LEP experiments from the analysis of the Z width and decays. These results, as well as other now superseded limits from e^+e^- collisions at energies below 136 GeV, and from hadronic collisions, can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review

Searches Particle Listings Supersymmetric Particle Searches

Unless otherwise stated, results in this section assume spectra, production rates, decay modes and branching ratios as evaluated in the MSSM, with gaugino and sfermion mass unification at the GUT scale. These papers generally study production of $\widetilde{\chi}^0_1\widetilde{\chi}^0_2$. ${\widetilde \chi}_1^+\,{\widetilde \chi}_1^-$ and (in the case of hadronic collisions) ${\widetilde \chi}_1^+\,{\widetilde \chi}_2^0$ pairs, including the effects of cascade decays. The mass limits on $\tilde{\chi}_1^\pm$ are either direct, or follow indirectly from the constraints set by the non-observation of $\tilde{\chi}_2^0$ states on the gaugino and higgsino MSSM parameters M_2 and μ . For generic values of the MSSM parameters, limits from high-energy e^+e^- collisions coincide with the highest value of the mass allowed by phase-space, namely $m_{\chi_1^\pm} \lesssim \sqrt{s}/2$. The still unpublished combination of the results of

the four LEP collaborations from the 2000 run of LEP2 at \sqrt{s} up to \simeq 209 GeV yields a lower mass limit of 103.5 GeV valid for general MSSM models. The limits become however weaker in certain regions of the MSSM parameter space where the detection efficiencies or production cross sections are suppressed. For example, this may happen when: (i) the mass differences $\Delta m_+ = m_{\widetilde{\chi}_1^\pm} - m_{\widetilde{\chi}_1^0}$ or $\Delta m_\nu = m_{\widetilde{\chi}_1^\pm} - m_{\widetilde{\nu}}$ are very small, and the detection efficiency is reduced (ii) the electron sneutrino mass is small, and the $\tilde{\chi}_1^{\pm}$ production rate is suppressed due to a destructive interference between s and t channel exchange diagrams. The regions of MSSM parameter space where the following limits are valid are indicated in the comment lines or in the footnotes.

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>1050	95	¹ SIRUNYAN	20B CMS	$\geq rac{1\gamma}{2} + ot\!$
> 825	95	¹ SIRUNYAN	20B CMS	γG $\geq 1\gamma + \not\!$
> 840	95	¹ SIRUNYAN	20B CMS	χ_1 + solution $\geq 1\gamma + \not\!$
> 680	95	² AABOUD	19AU ATL	0, 1, 2 or more $H (\rightarrow \gamma \gamma, bb, WW^*, ZZ^*, \tau\tau)$ (various searches), Tchiln2E, $m_{\tilde{\chi}_1^0}^{0=0}$
> 112	95	³ sirunyan	19ви СМS	$ \begin{array}{l} \operatorname{GeV} & \stackrel{-}{} \\ pp \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_2^0 + 2 \text{ jets, } \widetilde{\chi}_1^+ \rightarrow \\ \ell^+ \nu \widetilde{\chi}_1^0, \text{ heavy sleptons,} \\ m_{\widetilde{\chi}_1^+} - m_{\widetilde{\chi}_1^0} = 1 \text{ GeV, } m_{\widetilde{\chi}_1^+} \\ = m_{\widetilde{\chi}_2^0} \end{array} $
> 215	95	³ sirunyan	19в∪ СМS	$\begin{array}{l} \rho\rho \rightarrow \widetilde{\chi_1^+} \widetilde{\chi}_2^0 + 2 \; {\rm jets}, \; \widetilde{\chi_1^+} \rightarrow \\ \ell^+ \nu \widetilde{\chi}_1^0, \; {\rm heavy\; sleptons}, \\ m_{\widetilde{\chi_1^+}} - m_{\widetilde{\chi_1^0}} = 30 \; {\rm GeV}, \; m_{\widetilde{\chi_1^+}} \\ = m_{\widetilde{\chi_2^0}} \end{array}$
> 235	95	⁴ SIRUNYAN	19ci CMS	$\geq 1 \stackrel{\sim}{H} \stackrel{\sim}{(ightarrow \gamma \gamma)} + ext{jets} + ot\!$
> 930 > 630	95 95	⁵ SIRUNYAN ⁶ AABOUD	19к CMS 18ay ATLS	$\begin{array}{l} \gamma \ + \ {\rm lepton} \ + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
> 760	95	⁷ AABOUD	18AY ATLS	$\mathcal{Z}_{\tau} + E_{T}^{\chi_{1}}$, Tchi1n2D and $\widetilde{ au}_{L}$ -only, $m_{\widetilde{\chi}^{0}} = 0$ GeV
> 740	95	⁸ AABOUD	18b⊤ ATLS	$2\ell + E_T$, Tchi1chi1C, $m_{\gtrsim 0} = 0$ GeV
>1125	95	⁹ AABOUD	18bt ATLS	2,3 $\ell + E_T$, Tchi1n2C, $m_{\tilde{\chi}^0} = 0$ GeV
> 580	95	¹⁰ AABOUD	18bt ATLS	2,3 $\ell + \not\!\!\! E_T$, Tchi1n2F, $m_{\widetilde{\chi}^0} = 0$ GeV
none 130-230,	95	¹¹ AABOUD	18ск ATLS	$2H (\rightarrow bb) + E_T$, Tn1n1A, GMSB
290-880 none 220-600	95	¹² AABOUD	18co ATLS	2,3 $\ell+{\not\!\! E}_T$, recursive jigsaw, Tchiln2F, $m_{\widetilde{\chi}_1^0}=0$ GeV
> 175	95	¹³ AABOUD	18R ATLS	2ℓ (soft) + E_T , Tchi1n2F, wino, $m_{\chi^{\pm}} - m_{\chi^0} = 10$ GeV
> 145	95	¹⁴ AABOUD	18R ATLS	2ℓ (soft) + E_T , Tchi1n2G, hig- gsino, $m_{\gamma\pm} - m_{\gamma 0} = 5$ GeV
>1060	95	¹⁵ aaboud	18∪ ATLS	$2\gamma + \not\!$
>1400	95	¹⁶ AABOUD	18z ATLS	NLSP mass \geq 4 ℓ , RPV, $\lambda_{12k} eq$ 0, $m_{\widetilde{\chi}^0_1}$ $>$
>1 320	95	¹⁶ AABOUD	18z ATLS	500 GeV \geq 4 ℓ , RPV, $\lambda_{12k} eq$ 0, $m_{\widetilde{\chi}^0_1} >$ 50
> 980	95	¹⁶ AABOUD	18z ATLS	GeV $\geq 4\ell$, RPV, $\lambda_{i33} \neq 0$, 400 GeV $< m_{\simeq 0} <$ 700 GeV
> 980	95	¹⁷ sirunyan	18AA CMS	$\overset{\chi_1}{\geq} \begin{array}{l} 1\gamma + \not\!$
> 780	95	¹⁷ sirunyan	18AA CMS	masses $\geq 1\gamma + ot\!$
> 950	95	¹⁷ SIRUNYAN	18AA CMS	$\geq 1\gamma + \not\!\!\! E_T$, TchilchilA
> 230	95	¹⁸ SIRUNYAN	18AJ CMS	$2\ell \ (ext{soft}) + ot\!$

>1150	95	¹⁹ sirunyan	18A0 CMS	$\ell^{\pm}\ell^{\pm}$ or $\geq 3\ell$, Tchiln2A, $m_{\widetilde{\ell}}$ = $m_{\widetilde{ u}} = m_{\widetilde{\gamma}^0} + 0.5 \ (m_{\widetilde{\sim}^{\pm}} - m_{\widetilde{\nu}^0})$	I	> 380	95	³² AAD	14н	ATLS	$\begin{split} \widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{2}^{0} &\to \tau^{\pm} \nu \widetilde{\chi}_{1}^{0} \tau^{\pm} \tau^{\mp} \widetilde{\chi}_{1}^{0}, \text{ sim-plified model, } m_{\widetilde{\chi}_{1}^{\pm}} = m_{\widetilde{\chi}_{2}^{0}}, \\ m_{\pm} = 0 \text{ GeV} \end{split}$
>1120	95	¹⁹ SIRUNYAN	18A0 CMS	$m_{\widetilde{\chi}_1^0}^{\chi_1}$, $m_{\widetilde{\chi}_1^0}^{\chi_1^0} = 0 \text{ GeV}$ $\ell^{\pm}\ell^{\pm} \text{ or } \geq 3\ell$, Tchiln2A, $m_{\widetilde{\ell}}$	I	> 750	95	³³ AAD	14x	ATLS	$ \begin{array}{l} \underset{\widetilde{\chi}_{1}^{0}}{\operatorname{RPV}}, \geq 4\ell^{\pm}, \widetilde{\chi}_{1}^{\pm} \rightarrow W^{(*)\pm}\widetilde{\chi}_{1}^{0}, \\ \underset{\widetilde{\chi}_{1}^{0}}{\operatorname{\chi}_{0}^{0}} \rightarrow \ell^{\pm}\ell^{\mp}\nu \end{array} $
				$= m_{\widetilde{\nu}} = m_{\widetilde{\chi}_{1}^{0}} + 0.05 (m_{\widetilde{\chi}_{1}^{\pm}} - m_{\widetilde{\chi}_{1}^{0}}), m_{\widetilde{\chi}_{1}^{0}} = 0 \text{ GeV}$		> 210	95	³⁴ KHACHATRY	14L	CMS	$ \begin{array}{ccc} \widetilde{\chi}_1^0 & \to & H \widetilde{\chi}_1^0 \text{ and } \widetilde{\chi}_1^{\pm} \to & W^{\pm} \widetilde{\chi}_1^0 \\ & \text{simplified models, } & m_{\widetilde{\chi}_2^0}^0 & = & m_{\widetilde{\chi}_1^{\pm}}, \end{array} $
>1050	95	¹⁹ SIRUNYAN	18A0 CMS	$\ell^{\pm}\ell^{\pm}$ or $\geq 3\ell$, Tchiln2A, $m_{\widetilde{\ell}}$	I						$m_{\widetilde{\chi}^0_1}=0~{ m GeV}$
		19 0000000		$= m_{\widetilde{\nu}} = m_{\widetilde{\chi}_1^0} + 0.95 (m_{\widetilde{\chi}_1^\pm} - m_{\widetilde{\chi}_1^0}), m_{\widetilde{\chi}_1^0} = 0 \text{ GeV}$		> 540	95	³⁵ AAD ³⁶ AAD ³⁷ AAD	13 13в 12ст	ATLS ATLS ATLS	$3\ell^{\pm} + \not\!$
>1080	95	17 SIRUNYAN	1840 CMS	$\ell^{\pm}\ell^{\pm}$ or $\geq 3\ell$, Tchiln2H, $m_{\widetilde{\ell}}$ = $m_{\widetilde{\chi}_1^0} + 0.5 \ (m_{\widetilde{\chi}_1^{\pm}} - m_{\widetilde{\chi}_1^0}),$ $m_{\sim 0} = 0 \text{ GeV}$	•	> 94	95	³⁸ CHATRCHYAI ³⁹ ABDALLAH	N 1 2вј 0 3м	CMS DLPH	$ \begin{array}{l} \geq 2 \ \ell \text{, jets} + \not\!$
>1030	05		1840 CMS	χ_1° $\ell^{\pm}\ell^{\pm}$ or $> 2\ell$ Tabiln2H m.	1	•••We do	not use	the following data	for av	erages	m ₀ fits limits etc.
>1050	55	SITONTAN	1040 CIMS	$= m_{\widetilde{\chi}_{1}^{0}} + 0.05 \ (m_{\widetilde{\chi}_{1}^{\pm}} - m_{\widetilde{\chi}_{1}^{0}}),$	•	> 570	95	⁴⁰ KHACHATRY	16AA	CMS	$\geq 1\gamma + ext{jets} + ot\!$
				$m_{\tilde{\chi}_{1}^{0}} \stackrel{\chi_{1}}{=} 0 \text{ GeV}$		> 680	95	40 KHACHATRY	16AA	CMS	$\geq 1\gamma + \text{jets} + \not\!$
>1050	95	¹⁹ SIRUNYAN	18A0 CMS	$\ell^{\pm}\ell^{\pm}$ or $\geq 3\ell$, Tchiln2H, $m_{\widetilde{a}}$	1	> 710	95	40 KHACHATRY	16AA	CMS	$\geq 1\gamma + \text{jets} + \not\!\!E_T$, GGM, $\chi_2^0 \chi_1^+$
				$= m_{\widetilde{\chi}_{1}^{0}} + 0.95 \ (m_{\widetilde{\chi}_{1}^{\pm}} - m_{\widetilde{\chi}_{1}^{0}}^{\ell}),$ $m_{\widetilde{\chi}_{0}} = 0 \ \text{GeV}$	-	>1000	95	⁴¹ KHACHATRY	16r	CMS	$ \begin{array}{l} \geq 1\gamma + 1 \ \mathrm{e} \ \mathrm{or} \ \mu + \not\!$
> 625	95	¹⁹ sirunyan	18A0 CMS	$\ell^{\pm}\ell^{\pm}$ or $\geq 3\ell$, Tchiln2D, $m_{\widetilde{\tau}}$ = $m_{\sim 0} + 0.5 (m_{\sim +} - m_{\sim 0})$,	I	> 307	95	⁴² KHACHATRY	16Y	CMS	1,2 soft ℓ^{\pm} +jets+ $\not\!$
				$m_{\widetilde{\chi}_1^0} = 0 \text{ GeV} \qquad \chi_1^\perp \qquad \chi_1^{\sigma},$		> 410	95	⁴³ AAD	14AV	ATLS	$\geq 2 \tau + \not\!$
> 180	95	¹⁹ SIRUNYAN	18A0 CMS	$\ell^{\pm}\ell^{\pm}$ or $\geq 3\ell$, Tchiln2E, $m_{\widetilde{\chi}^0_1} =$	I						$\chi_1 \ \chi_1$ production, $m_{\widetilde{\chi}_2^0} = m_{\widetilde{\chi}^\pm}, m_{\widetilde{\chi}^0} = 0$ GeV
> 450	95	¹⁹ SIRUNYAN	18A0 CMS	$\ell^{\pm}\ell^{\pm}$ or $\geq 3\ell$, Tchiln2F, $m_{\widetilde{\chi}^0_1} =$	I	> 345	95	⁴⁴ AAD	14AV	ATLS	$\chi_1 \qquad \chi_1$ $\geq 2 \tau + \not\!\!{E}_T$, direct $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ pro- duction, $m_{-0} = 0$ GeV
> 480	95	²⁰ sirunyan	18AP CMS	Combination of searches, Tchiln2E, $m_{\widetilde{\chi}^0_1} = 0$ GeV	I	none 100-105	95	⁴⁵ AAD	14G	ATLS	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} \rightarrow W^+ \tilde{\chi}_1^0 W^- \tilde{\chi}_1^0$, simpli-
> 650	95	²⁰ SIRUNYAN	18AP CMS	Combination of searches, Tchi1n2F, $m_{\simeq 0} = 0$ GeV	I	120-135, 145-160					$\widetilde{\chi}_1^0 = 0 \text{ GeV}$
> 535	95	²⁰ sirunyan	18AP CMS	χ_1° Combination of searches, Tchi1n2l, $m_{\gamma 0} = 0$ GeV	I	none 140-465	95	⁴⁵ AAD	14G	ATLS	$ \widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{1}^{+} \rightarrow \ell^{+} \nu \widetilde{\chi}_{1}^{0} \ell^{-} \overline{\nu} \widetilde{\chi}_{1}^{0}, \text{ simpli-} $ fied model, $m_{\widetilde{\chi}_{1}^{0}} = 0 \text{ GeV} $
none 160-610	95	²¹ sirunyan	18AR CMS	$\ell^{\pm}\ell^{\mp}_{\mp}$ + jets + E_T , Tchiln2F, $m_{\widetilde{\chi}^0_{\mp}} = 0$ GeV	I	none 180-355	95	⁴⁵ AAD	14G	ATLS	$ \widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{2}^{0} \to W \widetilde{\chi}_{1}^{0} Z \widetilde{\chi}_{1}^{0}, \text{ simplified} $ model, $m_{\widetilde{\chi}_{1}^{\pm}} = m_{\widetilde{\chi}_{2}^{0}}, m_{\widetilde{\chi}_{1}^{0}} = 0 $
none 170-200	95	²² SIRUNYAN	18DN CMS	$\ell^{\pm}\ell^{\mp}$, Tchi1chi1E, $m_{\widetilde{\chi}^0_1} = 1$ GeV	I	> 168	95	⁴⁶ AALTONEN	14	CDF	$ \overset{\text{GeV}}{_{3\ell^{\pm}+\not\!$
> 810	95	²² sirunyan	18DN CMS	$\ell^\pm \ell^\mp$, Tchi1chi1C, $m_{\widetilde{\chi}^0_1}=$ 0 GeV	I			47		~	mSUGRA with $m_0 = 60 \text{ GeV}$
> 630	95	²³ SIRUNYAN	18DP CMS	$2\tau + \not\!$	I			T' KHACHATRY	141	CMS	$\chi_1^- \rightarrow W \chi_1^0, \ell \nu, \ell \nu$, simplified model
> 710	95	²³ SIRUNYAN	18DP CMS	$2 au + ot\!$	1			⁴⁸ AALTONEN	13Q	CDF	$\widetilde{\chi}_1^\pm o \ au X$, simplified gravity- and
> 170	95	²⁴ SIRUNYAN	18x CMS	$ \geq 1 H (\rightarrow \gamma \gamma) + jets + \not\!$	I			⁴⁹ AAD ⁵⁰ AAD	12АS 12т	ATLS ATLS	gauge-mediated models $3\ell^{\pm} + \not\!\!\!E_T, pMSSM$ $\ell^{\pm}\ell^{\mp} + \not\!\!\!E_T, \ell^{\pm}\ell^{\pm} + \not\!\!\!E_T, pp \rightarrow$
> 420	95	²⁵ KHACHATRY.	17L CMS	$2 au + ot\!$					N 1 1 p	CMS	$\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ \tilde{W}_1^0 , $\tilde{\chi}_2^0$, \tilde{W}_2^{\pm} , $\tilde{\chi}_2^{\pm}$ $\tilde{\zeta}$ (MSP)
none 220–490	95	²⁶ sirunyan	17aw CMS	χ_1 $1\ell+2b$ -jets $+ ot\!$		> 163	95	⁵² CHATRCHYAI	N11V	CMS	$tan\beta=3, m_0=60 \text{ GeV}, A_0=0, \mu > 0$
> 500	95	²⁷ AAD	16AA ATLS	$2\ell^{\pm} + \!$		¹ SIRUNYA at least o	AN 20Bs one phot	earched in 35.9 fb ⁻ on and large E_T .	⁻¹ of µ No si	op collis ignificar	sions at $\sqrt{s} = 13$ TeV for events with it excess above the Standard Model
> 220	95	²⁷ AAD	16AA ATLS	$2\ell^{\pm}+\not\!$		expectati SUSY br	ons is ob eaking ((served. Limits are s GGM) scenario Tcl	set on ni1n12-	chargino -GGM,	o masses in a general gauge-mediated see Figure 4. Limits are also set on
> 700	95	²⁸ AAD	16AA ATLS	χ_1^- , χ_1^- 3,4 ℓ + $\not\!$		the NLSF Finally, li	° mass in mits are	i the Tchi1chi1F an set on the gluino m	id Tch 1 ass in	i1chi1G the Tg	simplified models, see their Figure 5. lu4A simplified model, see Figure 6.
> 700	95	²⁸ AAD	16AA ATLS	$3,4\ell + \not\!\!E_T$, Tchiln2C, $m_{\widetilde{\ell}}^{\chi_1} = m_{\widetilde{\chi}_1^0} +$		² AABOUE electrowe) 19A∪ s ak produ	searched in 36.1 ft iction of charginos d a W/ and a Higg	o ⁻¹ of and ne	f pp co xt-to-lig	pollisions at $\sqrt{s} = 13$ TeV for direct ghtest neutralinos decaying into light-
> 400	95	²⁸ AAD	16AA ATLS	0.5 (or 0.95) $(m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^{0}})$ 2 hadronic $\tau + E_T \& 3\ell + E_T$ com- bination Tchiln 2D $m_{-2} = 0$ GeV		diphoton, tum are o expectati	, and mul considere ons. and	tilepton (electrons, d in this search. O 95% confidence-lev	muons bservat vellimi	s) final s tions are ts of up	states with missing transverse momen- e consistent with the Standard Model to 680 GeV on the charging/next-to-
> 540	95 05	²⁹ КНАСНАТКҮ. ³⁰ аар		$\geq 1\gamma + 1 \text{ e or } \mu + \not\!$		lightest n of exclusi 3 SIDUMY	eutralino on conto	masses are set (T ours from all search	chi1n2 es.	E mode	el). See their Figure 14 for an overlay
> 590	95	³¹ AAD	15CA ATLS	$\widetilde{\chi}_1^{\pm} = \widetilde{\chi}_2^0$, $\widetilde{\chi}_1^0 = 0$ GeV > 2 $\gamma + E_T$, GGM, bino-like		suming the	he gaugir	no spectrum is com	presse	d, in 35	gauginos via vector boson rusion as- 5.9 fb ⁻¹ of <i>pp</i> collisions at $\sqrt{s} = 13$
none	95	³¹ AAD	15ca ATLS	NLSP, any NLSP mass > $1 \propto + e \mu + E \pi$ GGM wino-		jets, and	one hadr	onic tau plus two j	ets. A	similar	bound is obtained in the light slepton
124-361	05	32		≥ 1 $\gamma + c, \mu + \varphi_T$, odivi, with like NLSP $\sim + \sim 0$ $e^+ \sim 0 e^+ e^\pm \sim 0$		⁴ SIRUNYA	AN 19CLS	searched in 77.5 fb ⁻	$^{-1}$ of p	op collis	sions at $\sqrt{s}=13$ TeV for events with
> 700	90	AAD	14H ATLS	$\chi_1^-\chi_2^- \rightarrow \ell^- \nu \chi_1^- \ell^- \ell^- \chi_1^-$, sm- plified model, $m_{\chi_1^\pm} = m_{\chi_2^0}$, $m_{\sim 0} = 0 \text{ GeV}$		one or m No signifi on the sb	ore high- icant exc ottom m	momentum Higgs ess above the Stan ass in the Tsbot4 s	bosons dard N implifie	, decayi lodel ex ed mode	ing to pairs of photons, jets and $\not\!\!\!E_T$, pectations is observed. Limits are set el, see Figure 3, and on the wino mass
> 345	95	³² AAD	14H ATLS	$\begin{array}{ccc} \chi_1^{-} & & & \\ \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0 \to & W \widetilde{\chi}_1^0 Z \widetilde{\chi}_1^0, \text{ simplified} \\ \text{model, } m_{\widetilde{\chi}_1^{\pm}} = m_{\widetilde{\chi}_2^0}, m_{\widetilde{\chi}_1^0} = 0 \end{array}$		in the Tc mass in t ⁵ SIRUNYA with a p	niln2Es he Tn1n AN 19к hoton, a	Implified model, see 1A and Tn1n1B sir searched in 35.9 fl n electron or muor	e their nplified o ⁻¹ of 1, and	Figure I model f pp co large J	4. Limits are also set on the higgsino is, see their Figure 5. Illisions at $\sqrt{s} = 13$ TeV for events Z_T . No significant excess above the improvement of CMCP.
> 148	95	³² AAD	14н ATLS	$ \begin{array}{c} \overset{\text{GeV}}{\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0} \to & W \widetilde{\chi}_1^0 H \widetilde{\chi}_1^0, \text{simplified} \\ & \text{model}, m_{\widetilde{\chi}_1^\pm} = m_{\widetilde{\chi}_2^0}, m_{\widetilde{\chi}_1^0} = 0 \\ & \text{GeV} \end{array} $		Standard the charg Limits are mass in t	iviodel e jino and e also set he Tsqk4	expectations is obse neutralino mass in on the gluino mass 4A simplified mode	rved.l the To sin the l,see t	in the fi chi1n1A e Tglu47 heir Fig	ramework of GM35, limits are set on . simplified model, see their Figure 6. A simplified model, and on the squark

- 6 AABOUD 18AY searched in 36.1 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 13 TeV for direct electroweak production of charginos as in Tchi1chi1D models in events characterised by the presence of at least two hadronically decaying tau leptons and large missing transverse energy. No significant deviation from the expected SM background is observed. In the energy. No significant deviation from the expected SM background is observed. In the TchilchilD model, assuming decays via intermediate $\tilde{\tau}_L$, the observed limits rule out $\tilde{\chi}_1^{\pm}$ masses up to 630 GeV for a massless $\tilde{\chi}_1^0$. See their Fig.7 (left). Interpretations are also provided in Fig.8 (top) for different assumptions on the ratio between $m_{\tilde{\tau}}$ and $m_{\tilde{\chi}_1^\pm}$
- $+ m_{\widetilde{\chi}_1^0}$

⁷AABOUD 18AY searched in 36.1 fb $^{-1}$ of pp collisions at \sqrt{s} = 13 TeV for direct electroweak production of charginos and neutralinos as in Tchi1n2D models, in events characterised by the presence of at least two hadronically decaying tau leptons and large missing transverse energy. No significant deviation from the expected SM background is observed. Assuming decays via intermediate $\tilde{\tau}_L$ and $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_2^0}^0$, the observed

limits rule out $\tilde{\chi}_1^{\pm}$ masses up to 760 GeV for a massless $\tilde{\chi}_1^0$. See their Fig.7 (right). Interpretations are also provided in Fig 8 (bottom) for different assumptions on the ratio between $m_{\widetilde{\tau}} \text{ and } m_{\widetilde{\chi}_1^\pm} + m_{\widetilde{\chi}_1^0}$

⁸ AABOUD 18BT searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for direct electroweak production of charginos, chargino and next-to-lightest neutralinos and sleptons in events with two or three leptons (electrons or muons), with or without jets and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino mass up to 750 GeV for massless neutralinos in the Tchi1chi1C simplified model exploiting $2\ell + 0$ jets signatures, see their Figure 8(a)

8(a). ⁹ AABOUD 18BT searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for direct elec-troweak production of charginos, chargino and next-to-lightest neutralinos and sleptons in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino mass up to 1100 GeV for massless neutralinos in the Tchiln2C simplified model exploiting 36 signature, see their Figure 8(c).

- ¹⁰AABOUD 18BT searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for direct elec-Arabodo foot searched in 30.1 to -0.0 pb consists at $\sqrt{s} = 13$ fev to differ telectroweak production of charginos, chargino and next-to-lightest neutralino and sleptons in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino mass up to 580 GeV for massless neutralinos in the Tchiln2F simplified model exploiting $2\ell + 2$ jets and 3ℓ signatures, see their Figure 9(4). 8(d)
- 8(d). ¹¹ AABOUD 18CK searched for events with at least 3 *b*-jets and large missing transverse energy in two datasets of *pp* collisions at $\sqrt{s} = 13$ TeV of 36.1 fb⁻¹ and 24.3 fb⁻¹ depending on the trigger requirements. The analyses aimed to reconstruct two Higgs bosons decaying to pairs of *b*-quarks. No significant excess above the Standard Model expectations is observed. Limits are set on the Higgsino mass in the T1n1n1A simplified model, see their Figure 15(a). Constraints are also presented as a function of the BR of Higgsino decaying into an higgs boson and a gravitino, see their Figure 15(b).
- model, see their Figure 15(a). Constraints are also presented as a function of the BR of Higgsino decaying into an higgs boson and a gravitino, see their Figure 15(b). ¹²AABOUD 18co searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for direct electroweak production of mass-degenerate charginos and next-to-lightest neutralinos in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. The search channels are based on recursive jigsaw reconstruction. Limits are set on the chargino mass up to 600 GeV for massless neutralinos in the Tchi1n2F simplified model exploiting the statistical combination of $2\ell+2$ jets and 3ℓ channels. Chargino masses below 220 GeV are not excluded due to an excess of events above the SM prediction in the dedicated regions. See their Figure 13(d).
- ¹³AABOUD 18R searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for electroweak production in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum. The data are found to be consistent with the SM prediction. Results are interpreted in Tchiln 2G wino models and $\tilde{\chi}_1^{\pm}$ masses are excluded up to 175 GeV for $m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^{0}} = 10$ GeV. The exclusion limits extend down to mass splittings of 2 GeV, see their Fig. 10 (bottom).
- ¹⁴ AABOUD 18R searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for electroweak pro-duction in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum. The data are found to be consistent with the SM prediction. Results are interpreted in Tchiln2G higgsino models and $\tilde{\chi}_1^\pm$ masses are excluded up to 145 GeV for $m_{\tilde{\chi}_1^\pm} - m_{\tilde{\chi}_1^0} = 5$ GeV. The exclusion limits extend down to mass splittings of 2.5 GeV, see their Fig. 10 (top).
- to mass splittings of 2.5 GeV, see their Fig. 10 (top). ¹⁵ AABOUD 180 searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in events with at least one isolated photon, possibly jets and significant transverse momentum targeting generalised models of gauge-mediated SUSY breaking. No significant excess of events is observed above the SM prediction. Results of the diphoton channel are interpreted in terms of lower limits on the masses of gauginos TchilchilA models, which reach as high as 1.3 TeV. Gaugino masses below 1060 GeV are excluded for any NLSP mass, see their fire 1.0 Fig. 10.
- ¹⁶ AABOUD 18z searched in 36.1 fb⁻¹ of ρp collisions at $\sqrt{s} = 13$ TeV for events containing four or more charged leptons (electrons, muons and up to two hadronically decaying taus). No significant deviation from the expected SM background is observed. Limits are
- taus). No significant deviation from the expected SM background is observed. Limits are set on the Higgsino mass in simplified models of general gauge mediated supersymmetry Tn1n1A/Tn1n1B/Tn1n1C, see their Figure 9. Limits are also set on the wino, slepton, sneutrino and gluino mass in a simplified model of NLSP pair production with R-parity violating decays of the LSP via λ_{12k} or λ_{133} to charged leptons, see their Figure 7, 8. ¹⁷ SIRUNYAN 18AA searched in 35.9 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with at least one photon and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on wino masses in a general gauge-mediated SUSY breaking (GGM) scenario with bino-like $\tilde{\chi}_1^0$ and wino-like $\tilde{\chi}_1^+$ and $\tilde{\chi}_2^0$, see Figure 7. Limits are also set on the NLSP mass in the Tch1n1A and Tch1ch1AA simplified models, see their Figure 8. Finally, limits are set on the gluino mass in the Tskq4A and Tsqk4B simplified models, see their Figure 10.

 $^{18}\,\rm SIRUNYAN$ 18AJ searched in 35.9 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 13 TeV for events containing two low-momentum, oppositely charged leptons (electrons or muons) and E_T . No excess over the expected background is observed. Limits are derived on the wino mass in the Tchi1n2F simplified model, see their Figure 5. Limits are also set on the stop mass in the Tstop10 simplified model, see their Figure 6. Finally, limits are set on the Higgsino mass in the Tchi1n2G simplified model, see Figure 8 and in the pMSSM, see Figure 7.

- ¹⁹ SIRUNYAN 18A0 searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for direct electroweak production of charginos and neutralinos in events with either two or more leptons troweak production of charginos and neutralinos in events with either two or more leptons (electrons or muons) of the same electric charge, or with three or more leptons, which can include up to two hadronically decaying tau leptons. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino/neutralino mass in the Tchi1n2A, Tchi1n2H, Tchi1n2D, Tchi1n2E and Tchi1n2F simplified models, see their Figures 14, 15, 16, 17 and 18. Limits are also set on the higgsino mass in the Tn1n1A, Tn1n1B and Tn1n1C simplified models, see their Figures 14, 15 or direct electroweak production of charginos and neutralinos mass in the Tchi1n2F. Tchi1n2F is observed. Limits are also set on the higgsino mass in the Tchi1n2F. Tchi1n2F is observed. Limits are set on the chargino/neutralino subserved. Limits are also set on the higgsino mass in the Tn1n1A, Tn1n1B and Tn1n1C simplified models, see their Figures 17, 8, 9 and 10. Limits are also set on the higgsino mass in the Tn1n1A, Tn1n1B and Tn1n1C simplified models, see their Figures 11, 12, 13 and 14.
- ¹¹, ¹², ¹³ and ¹⁴. ²¹ SIRUNYAN 18aR searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing two opposite-charge, same-flavour leptons (electrons or muons), jets and \mathcal{E}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4C simplified model, see their Figure 7. Limits are also set on the chargino /neutralino mass in the Tchi1n2F simplified models, see their Figure 8, and on the higgsino mass in the Tn1n1B and Tn1n1C simplified models, see their Figure 9. Finally, limits are set on the sbottom mass in the Tsbot3 simplified model, see their Figure 10. Figure 10
- Figure 10. ²² SIRUNYAN 18DN searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for direct electroweak production of charginos and for pair production of top squarks in events with two leptons (electrons or muons) of the opposite electric charge. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino mass in the TchilchilC and TchilchilE simplified models, see their Figure 8. Limits are also the standard the target area in the Charge and the set their Engine 9.
- set on the stop mass in the Tstop1 and Tstop2 simplified models, see their Figure 9. ²³ SIRUNYAN 18DP searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for direct electroweak production of charginos and neutralinos or of chargino pairs in events with a tau lepton pair and significant missing transverse momentum. Both defonic and leptonic decay modes are considered for the tau lepton. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino mass in the TchilchilD and Tchiln2 simplified models, see their Figures 14 and 15. Also, excluded
- stau pair production cross sections are shown in Figures 11, 12, and 13. ²⁴ SIRUNYAN 18x searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one or more high-momentum Higgs bosons, decaying to pairs of photons, jets and E_T . The razor variables (M_R and R^2) are used to categorise the events. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in the Tsbot4 simplified model and on the wino mass in the Tchi1n2E simplified model, see their Figure 5. Limits are also set on the higgsino mass in the Tn1n1A and Tn1n1B simplified models, see their Figure 6.
- ²⁵ KHACHATRYAN 17L searched in about 19 fb⁻¹ of pp collisions at \sqrt{s} = 8 TeV for events with two τ (at least one decaying hadronically) and $\underline{\mathcal{F}}_{T}$. In the TchilchilC model, assuming decays via intermediate $\tilde{\tau}$ or $\tilde{\nu}_{\tau}$ with equivalent mass, the observed limits rule out $\widetilde{\chi}_1^\pm$ masses up to 420 GeV for a massless $\widetilde{\chi}_1^0.$ See their Fig.5.
- 26 SIRUNYA N 17AW searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with a charged lepton (electron or muon), two jets identified as originating from a *b*-quark, and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the mass of the chargino and the next-to-lightest neutralino in the
- Tchiln2E simplified model, see their Figure 6. 27 AAD 16AA summarized and extended ATLAS searches for electroweak supersymmetry in final states containing several charged leptons, $\not\!\!\!E_T$, with or without hadronic jets, in 20 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV. The paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as new analyses. Exclusion limits at 95% C.L. are set on the $\tilde{\chi}^\pm_1$ mass in the Tchi1chi1B and Tchi1chi1C simplified models. See their Fig. 13.
- ²⁸AAD 16AA summarized and extended ATLAS searches for electroweak supersymmetry in final states containing several charged leptons, \mathcal{P}_T , with or without hadronic jets, in 20 fb^{-1} of pp collisions at $\sqrt{s} = 8$ TeV. The paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as new analyses. and statistical combinations of previously published analyses, as well as new analyses. Exclusion limits at 95% C.L. are set on mass-degenerate $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ masses in the Tchi1n2B, Tchi1n2C, and Tchi1n2D simplified models. See their Figs. 16, 17, and 18. Interpretations in phenomenological-MSSM, two-parameter Non Universal Higgs Masses (NUHM2), and gauge-mediated symmetry breaking (GMSB) models are also given in their Figs. 20, 21 and 22. ²⁹ KHACHATRYAN 16R searched in 19.7 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events with one or more photons, one electron or muon, and \not{E}_T . No significant excess above the Standard Model expectations is observed. Limits are set on wino masses in a generation gauge-mediated SIXP breaking model (GGM) for a wino-like neutration on SPS senario.
- gauge-mediated SUSY breaking model (GGM), for a wino-like neutralino NLSP scenario, see Fig. 5. Limits are also set in the Tglu1D and Tchi1n1A simplified models, see Fig. 6. The Tchi1n1A limit is reduced to 340 GeV for a branching ratio reduced by the weak mixing angle.
- mixing angle. ³⁰AAD 15BA searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for electroweak production of charginos and neutralinos decaying to a final state containing a *W* boson and a 125 GeV Higgs boson, plus missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models of direct chargino and next-to-lightest neutralino production, with the decays $\tilde{\chi}_1^{\pm} \rightarrow W^{\pm} \tilde{\chi}_1^0$ and $\tilde{\chi}_2^0 \rightarrow H \tilde{\chi}_1^0$ having 100% branching fraction, see Fig. 8. A combination of the part limit of the light of the light of the bact limit (Fig. combination of the multiple final states for the Higgs decay yields the best limits (Fig.
- ⁶⁰). ³¹ AAD 15CA searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with one or more photons and \mathcal{P}_T , with or without leptons (*e*, μ). No significant excess above the Standard Model expectations is observed. Limits are set on wino masses in the general gauge-mediated SUSY breaking model (GGM), for wino-like NLSP, see Fig. 9, 12 ³² AAD 14H searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for electroweak produc-tion of charginos and neutralinos decaying to a final sate with three leptons and missing transmissions decaying to a final sate with three tables of model.
- transverse momentum. No excess beyond the Standard Model expectation is observed.

Exclusion limits are derived in simplified models of direct chargino and next-to-lightest

- Exclusion implicit are derived in simplified models of direct charging and next-to-logitest neutralino production, with decays to the lightest neutralino via either all three genera-tions of leptons, staus only, gauge bosons, or Higgs bosons, see Fig. 7. An interpretation in the pMSSM is also given, see Fig. 8. 3^3 AAD 14x searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the wino-like chargino mass in an R-parity violating simplified model where the decay $\tilde{\chi}_1^{\pm} \rightarrow W^{(*)\pm} \tilde{\chi}_1^0$, with $\tilde{\chi}_1^0 \rightarrow W^{(*)\pm} \tilde{\chi}_1^0$
- $\ell^{\pm}\ell^{\mp}\nu$, takes place with a branching ratio of 100%, see Fig. 8. ³⁴ KHACHATRYAN 14L searched in 19.5 fb⁻¹ of *pp* collisions at \sqrt{s} = 8 TeV for evidence of chargino-neutralino $\bar{\chi}_1^{\pm} \bar{\chi}_2^0$ pair production with Higgs or W-bosons in the decay chain, leading to HW final states with missing transverse energy. The decays of a Higgs boson to a photon pair are considered in conjunction with hadronic and leptonic decay modes of the W bosons. No significant excesses over the expected SM backgrounds are observed. The results are interpreted in the context of simplified models where the decays $\widetilde{\chi}_2^0 o$ $H\tilde{\chi}_1^0$ and $\tilde{\chi}_1^\pm \rightarrow W^\pm \tilde{\chi}_1^0$ take place 100% of the time, see Figs. 22–23.
- 35 AAD 13 searched in 4.7 fb⁻¹ of pp collisions at $\sqrt{s} =$ 7 TeV for charginos and neutralinos decaying to a final state with three leptons (e and μ) and missing transverse energy. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in the phenomenological MSSM, see Fig. 2 and 3, and in simplified models, see Fig. 4. For the simplified models with intermediate slepton decays, degenerate $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ masses up to 500 GeV are excluded at 95% C.L. for very large mass differences with the $\widetilde{\chi}^0_1$. Supersedes AAD 12AS.
- 36 AAD 13B searched in 4.7 fb $^{-1}$ of pp collisions at $\sqrt{s} =$ 7 TeV for gauginos decaying to a final state with two leptons (e and μ) and missing transverse energy. No excess beyond the Standard Model expectation is observed. Limits are derived in a simplified model
- the Standard Model expectation is observed. Limits are derived \tilde{In} a simplified model of wino-like chargino pair production, where the chargino always decays to the lightest neutralino via an intermediate on-shell charged slepton, see Fig. 2(b). Chargino masses between 110 and 340 GeV are excluded at 95% C.L. for $m_{\tilde{\chi}_1^0} = 10$ GeV. Exclusion limits are also derived in the phenomenological MSSM, see Fig. 3. 37 AAD 12CT searched in 4.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events containing four or more leptons (electrons or muons) and either moderate values of missing transverse momentum or large effective mass. No significant excess is found in the data. Limits are presented in a simplified model of R-parity violating supersymmetry in which charginos are pair-produced and then decay into a W-boson and a $\tilde{\chi}_1^0$, which in turn decays through on participation to the super distribution of χ_1^0 , which in turn decays through and Pair-products and then occur, has a result of the second sec

GeV, see Fig. 3a. The limit deteriorates for lighter $\tilde{\chi}^0_1.$ Limits are also set in an R-parity violating mSUGRA model, see Fig. 3b.

- ³⁸ CHATRCHYAN 12BJ searched in 4.98 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for direct electroweak production of charginos and neutralinos in events with at least two leptons, jets and missing transverse momentum. No significant excesses over the expected SA backgrounds are observed and 95% C.L. limits on the production cross section of $\widetilde{\chi}_1^\pm\widetilde{\chi}_2^0$ pair production were set in a number of simplified models, see Figs. 7 to 12.
- 39 ABDALLAH 03M uses data from $\sqrt{s}=192\text{-}208$ GeV to obtain limits in the framework of the MSSM with gaugino and sfermion mass universality at the GUT scale. An indirect limit on the mass of charginos is derived by constraining the MSSM parameter space by The results from direct searches for neutralinos is cleaved by constraining the wissin parameter space by the results from direct searches for neutralinos (including cascade decays), for charginos and for sleptons. These limits are valid for values of $M_2 < 1$ TeV, $|\mu| \le 2$ TeV with the $\tilde{\chi}_1^0$ as LSP. Constraints from the Higgs search in the $m_h^{\rm max}$ scenario assuming $m_t = 174.3$ GeV are included. The quoted limit applies if there is no mixing in the third family or when $m_{\tilde{\tau}_1} - m_{\tilde{\chi}_1} > 6$ GeV. If mixing is included the limit degrades to 90 GeV. See 43 for the mass limits as a function of $tan\beta$. These limits update the results of

Fig. 43 for th ABREU 00w.

- ABREU 00W. 40 KHACHATRYAN 16AA searched in 7.4 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with one or more photons, hadronic jets and E_T . No significant excess above the Standard Model expectations is observed. Limits are set on wino masses in the general gauge-mediated SUSY breaking model (GGM), for a wino-like neutralino NLSP scenario and with the wino mass fixed at 10 GeV above the bino mass, see Fig. 4. Limits are also set in the TchilchilA and TchilnIA simplified models, see Fig. 3. ⁴¹ KHACHATRYAN 16R searched in 19.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with one or more photons, one electron or muon, and E_T . No significant excess above the Standard Model expectations is observed. Limits are also set in the Tglu1F simplified model, see Fig. 6.
- model, see Fig. 6.
- ⁴² KHACHATRYAN 16Y searched in 19.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with one or two soft isolated leptons, hadronic jets, and E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the $\widetilde{\chi}_1^\pm$ mass (which is degenerate with the $\widetilde{\chi}^0_2)$ in the Tchi1n2A simplified model, see Fig. 4.
- 43 AAD 14Av searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for the direct production of charginos, neutralinos and staus in events containing at last two hadronically decaying τ -leptons, large missing transverse momentum and low jet activity. The quoted limit was derived for direct $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ production with $\tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau \rightarrow \tau \tau \tilde{\chi}_1^0$ and $\widetilde{\chi}_1^{\pm} \rightarrow \widetilde{\tau}\nu(\widetilde{\nu}_{\tau}\tau) \rightarrow \tau\nu\widetilde{\chi}_1^0, m_{\widetilde{\chi}_2^0} = m_{\widetilde{\chi}_1^{\pm}}, m_{\widetilde{\tau}} = 0.5 \ (m_{\widetilde{\chi}_1^{\pm}} + m_{\widetilde{\chi}_1^0}), m_{\widetilde{\chi}_1^0} = 0 \ \text{GeV}.$ No excess over the expected SM background is observed. Exclusion limits are set in simplified models of $\tilde{\chi}_1^\pm \tilde{\chi}_1^\mp$ and $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$ pair production, see their Figure 7. Upper limits on the cross section and signal strength for direct di-stau production are derived, see Figures 8 and 9. Also, limits are derived in a pMSSM model where the only light slepton is the $\tilde{\tau}_R$, see Figure 10.
- AAD 14Av searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for the direct production of charginos, neutralinos and staus in events containing at last two hadronically decaying τ -leptons, large missing transverse momentum and low jet activity. The quoted limit was derived for direct $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ production with $\tilde{\chi}_1^{\pm} \rightarrow \tilde{\tau} \nu(\tilde{\nu}_{\tau} \tau) \rightarrow \tau \nu \tilde{\chi}_1^0$, $m_{\tilde{\tau}} = 0.5$ $(m_{\tilde{\chi}_1^{\pm}} + m_{\tilde{\chi}_1^0})$, $m_{\tilde{\chi}_1^0} = 0$ GeV. No excess over the expected SM background is observed.

Exclusion limits are set in simplified models of $\tilde{\chi}_1^\pm \tilde{\chi}_1^\mp$ and $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$ pair production, see their Figure 7. Upper limits on the cross section and signal strength for direct di-stau where the only light slepton is the τ_R , see Figure 10.

- 45 AAD 14G searched in 20.3 fb $^{-1}$ of pp collisions at $\sqrt{s} =$ 8 TeV for electroweak production And has searched in 20.5 to the promisions at $\sqrt{s} = 6$ fee to be electroweak production of chargino pairs, or chargino-neutralino pairs, decaying to a final sate with two leptons (e and μ) and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models of chargino pair production, with chargino decays to the lightest neutralino via either sleptons or gauge bosons, see Fig 5.; or in simplified models of chargino and next-to-lightest neutralino production, with decays to the lightest neutralino via gauge bosons, see Fig. 7. An interpretation in the nMSSM is also griven see fig. 10
- production, with decays to the indicate learning way and the set of a gauge busines, see Fig. 1. An interpretation in the pMSSM is also given, see Fig. 10. ⁴⁶ AALTONEN 14 searched in 5.8 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV for evidence of chargino and next-to-lightest neutralino associated production in final states consisting of three leptons (electrons, muons or taus) and large missing transverse momentum. The results are consistent with the Standard Model predictions within 1.85 σ . Limits on the chargine mean are divided by a method. chargino mass are derived in an mSUGRA model with $m_0=$ 60 GeV, $\tan\beta=$ 3, $A_0=$ 0 and $\mu~$ >0, see their Fig. 2.
- 47 KHACHATRYAN 141 searched in 19.5 fb $^{-1}$ of pp collisions at \sqrt{s} = 8 TeV for elec-
- ⁴¹ KHACHATRYAN 141 searched in 19.5 fb⁻¹ of pp collisions at √s = 8 TeV for electroweak production of chargino pairs decaying to a final state with opposite-sign lepton pairs (e or μ) and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models, see Fig. 18. ⁴⁸ AALTONEN 13Q searched in 6.0 fb⁻¹ of pp collisions at √s = 1.96 TeV for evidence of chargino-neutralino associated production in like-sign dilepton final states. One lepton is identified as the hadronic decay of a tau lepton, while the other is an electron or muon. Good agreement with the Standard Model predictions is observed and limits are set on the chorgine neutralino cross section for simplified gravity, and gauge mediated models. the chargino-neutralino cross section for simplified gravity- and gauge-mediated models, see their Figs. 2 and 3.
- ⁴⁹AAD 12As searched in 2.06 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for charginos and neutralinos decaying to a final state with three leptons (*e* and μ) and missing transverse energy. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in the phenomenological MSSM, see Fig. 2 (top), and in simplified models, see Fig. 2 (bottom).
- see Fig. 2 (bottom). ⁵⁰ AAD 12T looked in 1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for the production of supersymmetric particles decaying into final states with missing transverse momentum and exactly two isolated leptons (*e* or μ). Opposite-sign and same-sign dilepton events were separately studied. Additionally, in opposite-sign events, a search was made for an excess of same-flavor over different-flavor lepton pairs. No excess over the expected background is observed and limits are placed on the effective production cross section of opposite-sign dilepton events with $E_T > 250$ GeV and on same-sign dilepton events with $E_T > 100$ GeV. The latter limit is interpreted in a simplified electroweak gaugino production model as a lower chargino mass limit. ⁵¹ CHATRCHYAN 11B looked in 35 pb⁻¹ of *pp* collisions at \sqrt{s} =7 TeV for events with an isolated lepton (*e* or μ), a photon and E_T which may arise in a generalized gauge mediated model from the decay of Wino-like NLSPs. No evidence for an excess over the expected background is observed. Limits are derived in the plane of squark/gluino mass versus Wino mass (see Fig. 4). Mass degeneracy of the produced squarks and guinos is assumed.
- assumed.
- assumed. 5^2 CHATRCHYAN 11v looked in 35 pb⁻¹ of ρp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 3 isolated leptons (e, μ or τ), with or without jets and \not{E}_T . No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM ($m_0, m_{1/2}$) plane for tan $\beta = 3$ (see Fig. 5).

Long-lived \tilde{v}^{\pm} (Chargino) mass limit

Limits	λ (N on cha	rginos which leave the	e detector befo	ore decaving
VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>1090	95	¹ AABOUD	19AT ATLS	long-lived $\tilde{\chi}_1^{\pm}$ mAMSB
> 460	95	² AABOUD	18AS ATLS	$\tilde{\chi}^{\pm} \rightarrow \tilde{\chi}_{1}^{0} \pi^{\pm}$, lifetime 0.2 ns,
				$m_{\tilde{\chi}\pm} - m_{\tilde{\chi}0} = 160 \text{ MeV}$
> 715	95	³ SIRUNYAN	18br CMS	$\tilde{\chi}^{\pm} \rightarrow \tilde{\chi}_{1}^{0} \pi^{\pm}$, A MSB, $\tan \beta = 5$ and $\mu > 0$, $\tau = 3$ ns
> 695	95	³ SIRU NYA N	18br CMS	$\tilde{\chi}^{\pm} \rightarrow \tilde{\chi}_{1}^{0} \pi^{\pm}$, A MSB, $\tan \beta = 5$
> 505	95	³ SIRU NYA N	18br CMS	$\widetilde{\chi}^{\pm} \rightarrow \widetilde{\chi}_{1}^{0} \pi^{\pm}$, A MSB, $\tan \beta = 5$,
> 620	95	⁴ AAD	15AE ATLS	stable $\tilde{\chi}^{\pm}$
> 534	95	⁵ AAD	15BM ATLS	stable $\hat{\tilde{y}}^{\pm}$
> 239	95	⁵ AAD	15bm ATLS	$\tilde{\chi}^{\pm} \rightarrow \tilde{\chi}_{1}^{0} \pi^{\pm}$, lifetime 1 ns,
				$m_{\widetilde{\chi}^{\pm}} - m_{\widetilde{\chi}^0} = 0.14 \text{ GeV}$
> 482	95	⁵ AAD	15BMATLS	$\tilde{\mathbf{y}}^{\pm} \rightarrow \tilde{\mathbf{y}}_{0}^{0} \pi^{\pm}$, lifetime 15 ns.
				$m_{\widetilde{\chi}\pm} - m_{\widetilde{\chi}0} = 0.14 \text{ GeV}$
> 103	95	6 AAD	13H ATIS	long-lived $\tilde{v}^{\pm} \xrightarrow{\chi_1} \tilde{v}^0_{\pi^{\pm}}$
/ 100			1011 /11 20	mA MSB, $\Delta m_{\tilde{\chi}_1^0} = 160$ MeV
> 92	95	⁷ AAD	12bj ATLS	long-lived $\tilde{\chi}^{\pm} \rightarrow \pi^{\pm} \tilde{\chi}_{1}^{0}$, mAMSB
> 171	95	⁸ ABAZOV	09M D0	Π ¹
> 102	95	⁹ ABBIENDI	03L OPAL	$m_{\widetilde{\nu}} > 500 \text{ GeV}$
none 2-93.0	95	¹⁰ ABREU	00T DLPH	\widetilde{H}^{\pm} or $m_{\widetilde{\nu}} > m_{\widetilde{\nu}^{\pm}}$
• • • We do	not us	se the following data 1	for averages, f	its, limits, etc. 🔹 🔸
> 260	95	¹¹ KHACHATRY.	15AB CMS	$\widetilde{\chi}_1^{\pm} \rightarrow ~\widetilde{\chi}_1^0 \pi^{\pm}$, $\tau_{\widetilde{\chi}_1^{\pm}}$ =0.2ns, AMSB
> 800	95	¹² KHACHATRY.	15A0 CMS	long-lived $\widetilde{\chi}_1^\pm$, mAMSB, $ au$ >100ns
> 100	95	¹² KHACHATRY.	15AO CMS	long-lived $\tilde{\chi}_1^{\pm}$, mAMSB, $\tau > 3$ ns
	95	¹³ KHACHATRY.	15w CMS	long-lived $\tilde{\chi}^0$, $\tilde{q} \rightarrow q \tilde{\chi}^0$, $\tilde{\chi}^0 \rightarrow \ell^+ \ell^- \nu$ RPV
> 270	95	¹⁴ AAD	13bd ATLS	disappearing-track signature, AMSB
> 278	95	¹⁵ ABAZOV	13B D0	long-lived $\tilde{\chi}^{\pm}_{\pm}$, gaugino-like
> 244	95	¹⁵ ABAZOV	13B D0	long-lived $\widetilde{\chi}^\pm$, higgsino-like

- 1 AABOUD 19AT searched in 36.1 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 13 TeV for metastable R-hadrons. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined. No significant deviations from the expected Standard Model background are observed. Results are interpreted in terms of direct electroweak production of long-lived charginos in the context of mAMSB scenarios. Chargino masses are excluded at 95% C.L. below 1090 GeV. See their Figure 10 (right).
- are excluded at 95% C.L. below 1950 dev. See then Figure 10 (fight). ² AABOUD 18As searched in 361 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for direct elec-troweak production of long-lived charginos in the context of AMSB or phenomenological MSSM scenarios with wino-like LSP. Events with a disappearing track due to a low-momentum pion accompanied by at least one jet with high transverse momentum from initial-state radiation are considered. No significant excess above the Standard Model expectations is observed. Exclusion limits are set at 95% confidence level on the mass of charginos for different chargino lifetimes. For a pure wino with a lifetime of about 0.2 is, corresponding to a mass-splitting between the charged and neutral wino of around 160 MeV, chargino masses up to 460 GeV are excluded, see their Fig. 8. ³ SIRUNYAN 18BR searched in 38.4 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for direct
- electroweak production of long-lived charginos in events containing isolated tracks with missing hits in the outer layer of the silicon tracker and little or no associated calorimetric energy deposits (disappearing tracks). No significant excess above the Standard Model expectations is observed. In an AMSB context, limits are set on the cross section of direct chargino production through $pp \rightarrow \tilde{\chi}^{\pm} \tilde{\chi}^{\mp}$ and $pp \rightarrow \tilde{\chi}^{\pm} \tilde{\chi}^{0}_{1}$, assuming BR($\tilde{\chi}^{\pm} \rightarrow \tilde{\chi}^{\pm} \tilde{\chi}^{0}_{1}$). $\widetilde{\chi}_1^0 \pi^{\pm}) = 100\%$, as a function of the chargino mass and mean proper lifetime, see Figures 4 and 5.
- 3 AAD 15AE searched in 19.1 fb $^{-1}$ of hop collisions at \sqrt{s} = 8 TeV for heavy long-lived charged particles, measured through their specific ionization energy loss in the ATLAS pixel detector or their time-of-flight in the ALTAS muon system. In the absence of an excess of events above the expected backgrounds, limits are set on stable charginos, see Fig. 10
- ¹ AD 156M searched in 18.4 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for stable and metastable non-relativistic charged particles through their anomalous specific ionization energy loss in the ATLAS pixel detector. In absence of an excess of events above the expected backgrounds, limits are set on stable charginos (see Table 5) and on metastable charginos decaying to $\tilde{\chi}^0_1\pi^\pm$, see Fig. 11.
- ⁶ AAD 13H searched in 4.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for direct electroweak production of long-lived charginos in the context of AMSB scenarios. The search is based on the signature of a high-momentum isolated track with few associated hits in based on the signature of a might non-induction is form a charge in the wassociated mits in the outer part of the tracking system, arising from a charge indication decay into a neutralino and a low-momentum pion. The p_T spectrum of the tracks was found to be consistent with the SM expectations. Constraints on the lifetime and the production cross section were obtained, see Fig. 6. In the minimal AMSB framework with $\tan \beta = 5$, and $\mu > 0$, a chargino having a mass below 103 (85) GeV for a chargino-neutralino mass splitting Δm_{χ_0} of 160 (170) MeV is excluded at the 95% C.L. See Fig. 7 for more precise bounds.
- ⁷ AAD 12BJ looked in 1.02 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV for signatures of decaying charginos resulting in isolated tracks with few associated hits in the outer region of the tracking system. The p_T spectrum of the tracks was found to be consistent with the SM expectations. Constraints on the lifetime and the production cross section were obtained. In the minimal AMSB framework with $m_{3/2}$ < 32 TeV, m_0 < 1.5 TeV, aneta = 5, and
- μ > 0, a chargino having a mass below $92~{\rm GeV}$ and a lifetime between 0.5 ns and 2 ns is excluded at the 95% C.L. See their Fig. 8 for more precise bounds. 8 ABAZOV 09M searched in 1.1 fb $^{-1}$ of $\rho\overline{\rho}$ collisions at \sqrt{s} = 1.96 TeV for events with direct production of a pair of charged massive stable particles identified by their TOF. The number of the observed events is consistent with the predicted background. The data are used to constrain the production cross section as a function of the $\tilde{\chi}_1^{\pm}$ mass, see their Fig. 2. The quoted limit improves to 206 GeV for gaugino-like charginos.
- see their Fig. 2. The quoted limit improves to 200 GeV for gaugino-line enarginos. ⁹ ABBIENDI 03L used e^+e^- data at $\sqrt{s} = 130-209$ GeV to select events with two high momentum tracks with anomalous dE/dx. The excluded cross section is compared to the theoretical expectation as a function of the heavy particle mass in their Fig. 3. The bounds are valid for colorless fermions with lifetime longer than 10^{-6} s. Supersedes the results from ACKERSTAFF 98P.
- 10 Seults from ACKERSTAFF 98P. 10 ABREU 00T searches for the production of heavy stable charged particles, identified by their ionization or Cherenkov radiation, using data from \sqrt{s} = 130 to 189 GeV. These limits include and update the results of ABREU 98P. 11 KHACHATRYAN 15AB searched in 19.5 fb⁻¹ of *pp* collisions at \sqrt{s} = 8 TeV for events containing tracks with little or no associated calorimeter energy deposits and with missing bits in the outer layers of the tracking system (disanearing-track signature). Such hits in the outer layers of the tracking system (disappearing-track signature). Such disappearing tracks can result from the decay of charginos that are nearly mass degenerate with the lightest neutralino. The number of observed events is in agreement with the background expectation. Limits are set on the cross section of electroweak chargino production in terms of the chargino mass and mean proper lifetime, see Fig. 4. In the minimal AMSB model, a chargino mass below 260 GeV is excluded at 95% C.L., see their Fig. 5.
- ¹² KHACHATRYAN 150 searched in 18.8 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for evidence ¹² KHACHATRYAN 150 searched in 18.8 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for evidence of long-lived charginos in the context of AMSB and pMSSM scenarios. The results are based on a previously published search for heavy stable charged particles at 7 and 8 TeV. In the minimal AMSB framework with tanβ = 5 and μ ≥ 0, constraints on the chargino mass and lifetime were placed, see Fig. 5. Charginos with a mass below 800 (100) GeV are excluded at the 95% CL. for lifetimes above 100 ns (3 ns). Constraints are also placed on the pMSSM parameter space, see Fig. 3. ¹³ KHACHATRYAN 15w searched in up to 20.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for
- evidence of long-lived neutralinos produced through \widetilde{q} -pair production, with \widetilde{q} ightarrow $q\,\widetilde{\chi}^0$ and $\bar{\chi}^0 \rightarrow \ell^+ \ell^- \nu$ (RPV: λ_{121} , $\lambda_{122} \neq 0$). 95% C.L. exclusion limits on cross section times branching ratio are set as a function of mean proper decay length of the neutralino, ee Figs. 6 and 9.
- see Figs. 6 and 9. ¹⁴ AAD 13BD searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events containing tracks with no associated hits in the outer region of the tracking system resulting from the decay of charginos that are nearly mass degenerate with the lightest neutralino, as is often the case in AMSB scenarios. No significant excess above the background expectation is observed for candidate tracks with large transverse momentum. Constraints on chargino properties are obtained and in the minimal AMSB model, a chargino mass below 270 GeV is excluded at 96% C L see their Fig. 7
- properties are obtained and in the minimal AMSB model, a charging mass below 270 GeV is excluded at 95% C.L., see their Fig. 7. ¹⁵ ABAZOV 13B looked in 6.3 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV for charged massive long-lived particles in events with muon-like particles that have both speed and ionization energy loss inconsistent with muons produced in beam collisions. In the absence of an excess, limits are set at 95% C.L. on gaugino- and higgsino-like charginos, see their Table 00 and the 23 20 and Fig. 23.

$\tilde{\nu}$ (Sneutrino) mass limit

The limits may depend on the number, $\mathit{N}(\widetilde{
u})$, of sneutrinos assumed to be degenerate in mass. Only $\widetilde{\nu}_L$ (not $\widetilde{\nu}_R)$ is assumed to exist. It is possible that $\widetilde{\nu}$ could be the lightest supersymmetric particle (LSP)

We report here, but do not include in the Listings, the limits obtained from the fit of the final results obtained by the LEP Collaborations on the invisible width of the Z boson $(\Delta\Gamma_{\rm inv}<2.0$ MeV, LEP-SLC 06): $m_{\widetilde{\nu}}>43.7$ GeV $(N(\widetilde{\nu}){=}1)$ and $m_{\widetilde{\nu}}>44.7$ GeV $(N(\widetilde{\nu}){=}3)$.

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>3400	95	¹ AABOUD	18CM	ATLS	RPV, $\tilde{\nu}_{\tau} \rightarrow e\mu$, $\lambda_{312} = \lambda_{321} =$ 0.07 $\lambda'_{\tau} = -0.11$
>2900	95	² AABOUD	18CM	ATLS	$RPV, \tilde{\nu}_{\tau} \rightarrow e\tau, \lambda_{313} = \lambda_{331} = 1$
>2600	95	³ AABOUD	18CM	ATLS	$\begin{array}{c} 0.07, \lambda_{311} = 0.11 \\ \text{RPV}, \widetilde{\nu}_{\tau} \rightarrow \mu \tau, \lambda_{323} = \lambda_{332} = \end{array}$
>1060	95	⁴ AABOUD	18z	ATLS	$0.07, \lambda'_{311} = 0.11$ RPV, $\ge 4\ell, \lambda_{12k} \neq 0, m_{\tilde{\chi}_{1}^{0}} =$
> 780	95	⁴ AABOUD	187	ATLS	600 GeV (mass-degenerate left- handed sleptons and sneutrinos of all 3 generations) RPV. $> 4\ell$, $\lambda_{122} \neq 0$, $m_{220} =$
,					300 GeV (mass-degenerate left- handed sleptons and sneutrinos of all 3 generations)
>1700	95	⁵ SIRU NYA N	18AT	CMS	RPV, $\tilde{\nu}_{\tau} \rightarrow e \mu$, $\lambda_{132} = \lambda_{231} = \lambda_{231} = \lambda_{231} = \lambda_{231}$
>3800	95	⁵ SIRU NYA N	18AT	CMS	$\begin{array}{ccc} {}^{311} \\ RPV, \tilde{\nu}_{\tau} \to e\mu, \lambda_{132} = \lambda_{231} = \\ \lambda_{011}' = 0.1 \end{array}$
>2300	95	⁶ AABOUD	16P	ATLS	RPV, $\tilde{\nu} \rightarrow e \mu$, $\lambda'_{art} = 0.11$
>2200	95	⁶ AABOUD	16P	ATLS	RPV, $\tilde{\nu}_{-} \rightarrow e\tau$, $\lambda'_{-11} = 0.11$
>1900	95	⁶ AABOUD	16P	ATLS	RPV. $\tilde{\nu}_{-} \rightarrow \mu \tau$. $\lambda'_{211} = 0.11$
> 400	95	⁷ AAD	14×	ATLS	$RPV, \geq 4\ell^{\pm}, \widetilde{\nu} \to \nu \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \to$
		8 440	117	ΔΤΙ S	$\ell^{\pm}\ell^{+}\nu$ RPV $\tilde{\nu} \rightarrow e\mu$
> 94	95	⁹ ABDALLAH	03M	DLPH	$\begin{array}{rcl} 1 & \leq & \tan\beta \\ 1 & \leq & \tan\beta \\ m_{\widetilde{e}_R}^2 - m_{\widetilde{\chi}_1^0}^0 > 10 \text{ GeV} \end{array}$
> 84	95	¹⁰ HEISTER	02N	ALEP	$\widetilde{\nu}_{a}$, any Δm
> 41	95	¹¹ DECAMP	92	ALEP	$\Gamma(Z \rightarrow \text{ invisible}); N(\widetilde{\nu})=3, \text{ model}$ independent
● ● ● We do	not use t	he following data 1	for ave	erages, fi	its, limits, etc. 🔹 🔹 🔹
		¹² SIRU NYA N	19AC)	$\begin{array}{c} RPV, \ \mu^{\pm} \mu^{\pm} + \geq 2jets, \\ \lambda'_{211} \neq 0, \ \tilde{\nu}_{\mu} \rightarrow \mu \tilde{\chi}_{1}^{\pm}, \\ \gamma^{\pm} = -\overline{\gamma} = \overline{\gamma} \end{array}$
>1280	95	¹³ KHACHATRY	16BE	CMS	$\chi_1 \rightarrow \mu q q q q$ RPV, $\tilde{\nu}_{\tau} \rightarrow e \mu, \lambda_{132} = \lambda_{231} =$
>2300	95	¹³ KHACHATRY	16BE	CMS	$\lambda_{311}^{*} = 0.01$ RPV, $\tilde{\nu}_{\tau} \rightarrow e\mu$, $\lambda_{132} = \lambda_{231} = 0.07$
>2000	95	¹⁴ AAD	15 0	ATLS	RPV $(e \mu)$, $\tilde{\nu}_{\tau\tau}$, $\lambda'_{311} = 0.11$,
>1700	95	¹⁴ AAD	150	ATLS	$\lambda_{i3k} = 0.07$ RPV $(\tau \mu, e \tau), \tilde{\nu}_{\tau}, \lambda'_{311} = 0.11,$
		¹⁵ AAD	13AI	ATLS	$\lambda_{i3k} = 0.07$ RPV, $\tilde{\nu}_{\tau} \rightarrow e\mu, e\tau, \mu\tau$
		17 AALTONEN	11H 107	ATLS CDE	$RPV \widetilde{\nu}_{\tau} \to e\mu e\tau \mu\tau$
		¹⁸ ABAZOV	10Z	D0	RPV, $\tilde{\nu}_{\tau} \rightarrow e\mu$
> 95	95	¹⁹ ABDALLAH	04H	DLPH	AMSB, $\mu > 0$
> 37.1	95	²⁰ ADRIANI	93M	L3	$\Gamma(Z \rightarrow \text{ invisible}); N(\widetilde{\nu}) = 1$
> 36	95	ABREU 21 ALEXANDED	91F	DLPH	$\Gamma(Z \rightarrow \text{ invisible}); N(\tilde{\nu}) = 1$
> 31.2	95	ALEXANDER	91F	OPAL	$I(\angle \rightarrow INVISIDIE); IV(\nu)=1$

- ¹AABOUD 18cm searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 1.3$ TeV for heavy particles decaying into an e_{μ} , e_{τ} , μ_{τ} final state. No significant deviation from the expected SM background is observed. Limits are set on the mass of a stau neutrino with R-parity-violating couplings. For $\bar{\nu}_{\tau} \rightarrow e_{\mu}$, masses below 3.4 TeV are excluded at 95% CL, see their Figure 4(b). Upper limits on the RPV couplings $|\lambda_{312}|$ versus $|\lambda_{311}'|$ are
- also performed, see their Figure 8(a-b). ²AABOUD 18cm searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for heavy particles decaying into an $e\mu$, $e\tau$, $\mu\tau$ final state. No significant deviation from the expected SM background is observed. Limits are set on the mass of a stau neutrino with R-parity-violating couplings. For $\tilde{\nu}_{\tau} \rightarrow e\tau$, masses below 2.9 TeV are excluded at 95% CL, see their Figure 5(b). Upper limits on the RPV couplings $|\lambda_{313}|$ versus $|\lambda_{311}'|$ are also performed, see their Figure 8(c).
- also performed, see their Figure 8(c). ³ AABOUD 18cM searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for heavy particles decaying into an e_{μ} , e_{τ} , μ_{τ} final state. No significant deviation from the expected SM background is observed. Limits are set on the mass of a stau neutrino with R-parity-violating couplings. For $\tilde{\nu}_{\tau} \rightarrow \mu \tau$, masses below 2.6 TeV are excluded at 95% CL, see their Figure 6(b). Upper limits on the RPV couplings $|\lambda_{323}|$ versus $|\lambda_{311}'|$ are also performed, see their Figure 8(d).

- ⁴ AABOUD 18z searched in 36.1 fb⁻¹ of pp collisions at √s = 13 TeV for events containing four or more charged leptons (electrons, muons and up to two hadronically decaying taus). No significant deviation from the expected SM background is observed. Limits are est on the Higgsino mass in simplified models of general gauge mediated supersymmetry Tn1n1A/Tn1n1B/Tn1n1C, see their Figure 9. Limits are also set on the wino, slepton, sneutrino and gluino mass in a simplified model of NLSP pair production with R-parity violating decays of the LSP via J_{10,10} of J_{10,20} to Arage to charged leptons. see their Figure 7. 8.
- violating decays of the LSP via λ_{12k} or λ_{i33} to charged leptons, see their Figures 7, 8. ⁵ SIRUNYAN 18AT searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for heavy resonances decaying into e_{μ} final states. No significant excess above the Standard Model expectation is observed and 95% C.L. exclusions are placed on the cross section times branching ratio for the R-parity-violating production and decay of a supersymmetric tau sneutrino, see their Fig. 3.
- ⁶AABOUD 16p searched in 3.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with different flavour dilepton pairs $(e\mu, e\tau, \mu\tau)$ from the production of $\tilde{\nu}_{\tau}$ via an RPV λ'_{311} coupling and followed by a decay via $\lambda_{312} = \lambda_{321} = 0.07$ for $e + \mu$, via $\lambda_{313} = \lambda_{331} = 0.07$ for $e + \tau$ and via $\lambda_{323} = \lambda_{332} = 0.07$ for $\mu + \tau$. No evidence for a dilepton resonance over the SM expectation is observed, and limits are derived on $m_{\widetilde{\nu}}$ at 95% CL, see their Figs. 2(b), 3(b), 4(b), and Table 3.
- CL, see their Figs. 2(b), 3(b), 4(b), and Table 3. ⁷ AAD 14x searched in 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the sneutrino mass in an R-parity violating simplified model where the decay $\tilde{\nu} \to \nu \tilde{\chi}_1^0$, with $\tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\mp} \nu$, takes place with a branching ratio of 100%, see Fig. 9.
- takes place with a branching ratio of 100%, see Fig. 9. ¹ AD 112 looked in 1.07 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events with one electron and one muon of opposite charge from the production of $\tilde{\nu}_{\tau}$ via an RPV λ'_{311} coupling and followed by a decay via λ_{312} into $e + \mu$. No evidence for an (e, μ) resonance over the SM expectation is observed, and a limit is derived in the plane of λ'_{311} versus $m_{\widetilde{\nu}}$ for three values of λ_{312} , see their Fig. 2. Masses $m_{\widetilde{\nu}} < 1.32$ (1.45) TeV are excluded for $\lambda'_{211} = 0.10$ and $\lambda_{312} = 0.05$ ($\lambda'_{211} = 0.11$ and $\lambda_{312} = 0.07$).
- for $\lambda'_{311} = 0.10$ and $\lambda_{312} = 0.05$ ($\lambda'_{311} = 0.11$ and $\lambda_{312} = 0.07$). ⁹ ABDALLAH 03M uses data from $\sqrt{s} = 192$ -208 GeV to obtain limits in the framework of the MSSM with gaugino and sfermion mass universality at the GUT scale. An indirect limit on the mass is derived by constraining the MSSM parameter space by the results from direct searches for neutralinos (including cascade decays) and for sleptons. These limits are valid for values of $M_2 < 1$ TeV, $|\mu| \leq 1$ TeV with the $\tilde{\chi}_1^0$ as LSP. The quoted limit is obtained when there is no mixing in the third family. See Fig. 43 for the mass limits as a function of $\tan \beta$. These limits update the results of ABREU 00w.
- $^{10}\,\rm HEISTER~02N$ derives a bound on $m_{\widetilde{\nu}_e}$ by exploiting the mass relation between the $\widetilde{\nu}_e$ and \widetilde{e} , based on the assumption of universal GUT scale gaugino and scalar masses $m_{1/2}$ and m_0 and the search described in the \widetilde{e} section. In the MSUGRA framework with radiative electroweak symmetry breaking, the limit improves to $m_{\widetilde{\nu}_e}$ ->130 GeV, assuming a trilinear coupling $A_0{=}0$ at the GUT scale. See Figs. 5 and 7 for the dependence of the limits on $\tan\beta$.
- ¹¹ DECA MP 92 limit is from $\Gamma(\text{invisible})/\Gamma(\ell\ell) = 5.91 \pm 0.15$ ($N_{\nu} = 2.97 \pm 0.07$).
- 12 SIRUNYAN 19A0 searched in 35.9 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 13 TeV for events containing two same-sign muons and at last two jets, originating from resonant production of second-generation sleptons ($\tilde{\mu}_L, \tilde{\nu}_\mu$) via the R-parity violating coupling λ'_{211} to quarks. No significant excess above the Standard Model expectations is observed. Upper limits on cross sections are derived in the context of two simplified models, see their Figure 4. The cross section limits are translated into limits on λ'_{211} for a modified CMSSM, see their Figure 5.
- Then Figure 3. A set of the production of an R-parity-violating supersymmetric tau sneutrino, see their Fig. 3.
- tau sneutrino, see their Fig. 3. 14 AAD 150 searched in 20.3 fb $^{-1}$ of pp collisions at $\sqrt{s}=8$ TeV for evidence of heavy particles decaying into $e\mu$, $e\,r\,o\,\mu\,r$ final states. No significant excess above the Standard Model expectation is observed, and 95% C.L. exclusions are placed on the cross section times branching ratio for the production of an R-parity-violating supersymmetric tau sneutrino, applicable to any sneutrino flavour, see their Fig. 2.
- Site of the second sec
- ¹⁶AAD 11H looked in 35 pb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events with one electron and one muon of opposite charge from the production of $\tilde{\nu}_{\tau}$ via an RPV λ'_{311} coupling and followed by a decay via λ_{312} into $e + \mu$. No evidence for an excess over the SM expectation is observed, and a limit is derived in the plane of λ'_{311} versus $m_{\widetilde{\nu}}$ for several values of λ_{312} , see their Fig. 2. Superseded by AAD 11z.
- Values of λ_{312} , see then righ 2. Superscale by race 11. ¹⁷ AALTONEN 102 searched in 1 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV for events from the production $d\overline{d} \rightarrow \tilde{\nu}_{\tau}$ with the subsequent decays $\tilde{\nu}_{\tau} \rightarrow e\mu$, $\mu\tau$, $e\tau$ in the MSSM framework with RPV. Two isolated leptons of different flavor and opposite charges are required, with τs identified by their hadronic decay. No statistically significant excesses are observed over the SM background. Upper limits on λ_{311}^{\prime} times the branching ratio are listed in their Table III for various $\tilde{\nu}_{\tau}$ masses. Limits on the cross section times branching ratio for $\lambda_{311}^{\prime} = 0.10$ and $\lambda_{i3k} = 0.05$, displayed in Fig. 2, are used to set limits on the $\tilde{\nu}_{\tau}$ mass of 558 GeV for the $e\mu$, 441 GeV for the $\mu\tau$ and 442 GeV for the $e\tau$ channels.
- e τ channels. 18 ABAZOV 10M looked in 5.3 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV for events with exactly one pair of high p_T isolated $e\,\mu$ and a veto against hard jets. No evidence for an excess over the SM expectation is observed, and a limit at 95% C.L. on the cross section times branching ratio is derived, see their Fig. 3. These limits are translated into limits on couplings as a function of $m_{\widetilde{\nu}_T}$ as shown on their Fig. 4. As an example, for $m_{\widetilde{\nu}_T}=100$ GeV and $\lambda_{312}~\leq~0.07,$ couplings $\lambda'_{311}~>~7.7\times10^{-4}$ are excluded.
- ¹⁹ABDALLAH 04I use data from LEP 1 and $\sqrt{s} = 192-208$ GeV. They re-use results or re-analyze the data from ABDALLAH 03M to put limits on the parameter space of anomaly-mediated supersymmetry breaking (AMSB), which is scanned in the region $1 < m_{3/2} < 50$ TeV, $0 < m_0 < 1000$ GeV, $1.5 < tan\beta < 35$, both signs of μ . The constraints

are obtained from the searches for mass degenerate chargino and neutralino, for SM-like and invisible Higgs, for leptonically decaying charginos and from the limit on non-SM Z width of 3.2 MeV. The limit is for $m_t = 174.3$ GeV (see Table 2 for other m_t values). The limit improves to 114 GeV for $\mu < 0$. ²⁰ ADRIANI 93M limit from $\Delta\Gamma(Z)(\text{invisible}) < 16.2$ MeV.

²¹ ALEXANDER 91F limit is for one species of $\tilde{\nu}$ and is derived from $\Gamma(\text{invisible, new})/\Gamma(\ell\ell)$ < 0.38.

Charged sleptons

This section contains limits on charged scalar leptons $(\tilde{\ell}, \text{ with } \ell = e, \mu, \tau)$. Studies of width and decays of the Z boson (use is made here of $\Delta\Gamma_{\text{inv}} < 2.0 \text{ MeV}$, LEP 00) conclusively rule out $m_{\tilde{\ell}_R} < 40 \text{ GeV}$ (41 GeV for $\tilde{\ell}_L$), independently of decay modes, for each individual slepton. The limits improve to 43 GeV (43.5 GeV for $\tilde{\ell}_L$) assuming all 3 flavors to be

The limits improve to 43 GeV (43.5 GeV for t_L) assuming all 5 haves to be degenerate. Limits on higher mass sleptons depend on model assumptions and on the mass splitting $\Delta m = m_{\tilde{\ell}} - m_{\tilde{\chi}_1^0}$. The mass and composition

of $\tilde{\chi}_1^0$ may affect the selectron production rate in e^+e^- collisions through *t*-channel exchange diagrams. Production rates are also affected by the potentially large mixing angle of the lightest mass eigenstate $\tilde{\ell}_1 = \tilde{\ell}_R \sin\theta_\ell + \tilde{\ell}_L \cos\theta_\ell$. It is generally assumed that only $\tilde{\tau}$ may have significant mixing. The coupling to the Z vanishes for $\theta_\ell = 0.82$. In the high-energy limit of e^+e^- collisions the interference between γ and Z exchange leads to a minimal cross section for $\theta_\ell = 0.91$, a value which is sometimes used in the following entries relative to data taken at LEP2. When limits on $m_{\tilde{\ell}_R}$ are quoted, it is understood that limits on $m_{\tilde{\ell}_L}$ are usually at least as strong.

Possibly open decays involving gauginos other than $\tilde{\chi}^0_1$ will affect the detection efficiencies. Unless otherwise stated, the limits presented here result from the study of $\tilde{\ell}^+\tilde{\ell}^-$ production, with production rates and decay properties derived from the MSSM. Limits made obsolete by the recent analyses of e^+e^- collisions at high energies can be found in previous Editions of this Review.

For decays with final state gravitinos (\widetilde{G}), $m_{\widetilde{G}}$ is assumed to be negligible relative to all other masses.

R-parity conserving \tilde{e} (Selectron) mass limit

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, *et al.* (Particle Data Group), Chinese Physics **C38** 070001 (2014) (http://pdg.lbl.gov).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>250	95	¹ SIRUNYAN	19AW	CMS	$\ell^\pm \ell^\mp + ot\!$
>310	95	¹ SIRUNYAN	19AW	CMS	$\ell^{\pm}\ell^{\mp} + \not\!\!\!E_T$, \tilde{e}_L , $m_{\tilde{v}^0}^{\chi_1} = 0$ GeV
>350	95	¹ SIRUNYAN	19AW	CMS	$\ell^{\pm}\ell^{\mp} + \not\!\!\!E_T, \ m_{\widetilde{e}_R} \stackrel{\lambda_1}{=} m_{\widetilde{e}_L}, \ m_{\widetilde{\chi}_1^0}$
>290	95	¹ SIRUNYAN	19av	CMS	$\ell^{\pm}_{\ell^{\mp} + \mathcal{E}_{T}, \tilde{\ell}_{R} \text{ and } \tilde{\ell} = \tilde{e}, \tilde{\mu},} \tilde{m}_{\tilde{\nu}^{0}} = 0 \text{ GeV}$
>400	95	¹ SIRUNYAN	19AW	CMS	$\ell^{\pm}\ell^{\mp}_{\mp}^{\lambda_1} \neq E_T$, $\tilde{\ell}_L$ and $\tilde{\ell} = \tilde{e}$, $\tilde{\mu}$, $m_{\tilde{\chi}_1^0}$
>450	95	¹ SIRUNYAN	19AW	CMS	$\ell^{\pm} \stackrel{=}{\ell^{\mp}} \stackrel{\text{GeV}}{\ell^{\mp}} + \!$
>5 00	95	² AABOUD	18bT	ATLS	$ \begin{split} \ell = e, \ \mu, \ m_{\widetilde{\chi}_1^0} &= 0 \ \text{GeV} \\ 2\ell + \not\!$
>190	95	³ AABOUD	18R	ATLS	$ \begin{array}{l} \chi_{1}^{2} \\ 2\ell \ (\text{soft}) \ + \not \!$
		⁴ CHATRCHYAN	114R	CMS	$\geq 3\ell^{\pm}, \ \tilde{\ell} \to \ \ell^{\pm}\tau^{\mp}\tau^{\mp}\tilde{G} \text{ sim-}$ plified model, GMSB, stau (N)NI SP, scenario
		⁵ AAD	13B	ATLS	$2\ell^{\pm} + E_{T}$, SMS, pMSSM
> 97.5		⁶ ABBIENDI	04	OPAL	$\widetilde{e}_{R}, \Delta m > 11 \text{ GeV}, \mu > 100 \text{ GeV},$
> 94.4		⁷ ACHARD	04	L3	$\widetilde{e}_{R}, \Delta m > 10$ GeV, $ \mu > 200$ GeV, $\tan \beta > 2$
> 71.3		⁷ ACHARD	04	L3	\tilde{e}_{R} , all Δm
none 30-94	95	⁸ ABDALLAH	03M	DLPH	$\Delta m > 15$ GeV, $\tilde{e}_{D}^{+} \tilde{e}_{D}^{-}$
> 94	95	⁹ ABDALLAH	03M	DLPH	$\widetilde{e}_{\mathbf{P}}, 1 < \tan \beta < 40, \ \Delta m > 10 \ \text{GeV}$
> 95	95	¹⁰ HEISTER	02e	ALEP	$\Delta m > 15 \text{ GeV}, \tilde{e}_{D}^{+} \tilde{e}_{D}^{-}$
> 73	95	¹¹ HEISTER	02N	ALEP	\tilde{e}_{D} , any Δm
>107	95	¹¹ HEISTER	02N	ALEP	\widetilde{e}_{I} , any Δm
• • • We do	not use	the following data	for av	erages,	fits, limits, etc. • • •
none 90-325	95	¹² AAD	14G	ATLS	$\tilde{\ell}\tilde{\ell} \rightarrow \ell^+ \tilde{\chi}_1^0 \ell^- \tilde{\chi}_1^0$, simplified
					model, $\vec{m}_{\ell_e} = \vec{m}_{\ell_p}$, $m_{\tilde{\chi}^0} =$
					0 GeV

¹³ KHACHATRY...14 CMS $\tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$, simplified model

¹ SIRUNYAN 19AW searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for direct electroweak pair production of selectrons or smuons in events with two leptons (electrons or muons) of the opposite electric charge and same flavour, no jets and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the selectron mass assuming left-handed, right-handed or both left- and right-handed (mass degenerate) production, see their Figure 6. Similarly, limits are set on the smuon mass, see their Figure 7. Limits are also set on slepton masses under the assumption that the selectron and smuon are mass degenerate, see their Figure 5.

- 2 AABOUD 18bT searched in 36.1 fb $^{-1}$ of $\rho\,\rho$ collisions at \sqrt{s} = 13 TeV for direct electroweak production of charginos, chargino and next-to-lightest neutralinos and sleptons in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the slepton mass up to 500 GeV for massless $\tilde{\chi}_1^0$, assuming
- degeneracy of \tilde{e} , $\tilde{\mu}$, and $\tilde{\tau}$ and exploiting the 2ℓ signature, see their Figure 8(b). ³AABOUD 18R searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for electroweak pro-AABOUD 18R searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for electroweak pro-duction in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum. The data are found to be consistent with the SM prediction. Results are interpreted in slepton pair production models with a fourfold degeneracy assumed in selectron and smuon masses. The \tilde{e} masses are excluded up to 190 GeV for $m_{\tilde{e}} - m_{\tilde{\chi}_1^0} = 5$ GeV. The exclusion limits extend down to mass splittings of 1 GeV, see their Fig. 11. 4 CHATR/CHYAN 14B source as compared in 10.5 fb⁻¹ of the exclusion in the second of the source of t
- of 1 GeV, see their Fig. 11. ⁴ CHATRCHYAN 14R searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with at least three leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the slepton mass in a stau (N)NLSP simplified model (GMSB) where the decay $\tilde{\ell} \to \ell^{\pm} \tau^{\pm} \tau^{\mp} \tilde{\sigma}$ takes place with a branching ratio of 100%, see Fig. 8. ⁵ AAD 13B searched in 4.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = \tau$ TeV for sleptons decaying to a final state with two leptons (e and w) and mission transverse energy. No every
- the Standard Model expectation is observed. Limits are derived in a simplified model of direct left-handed slepton pair production, where left-handed slepton masses between 85 and 195 GeV are excluded at 95% C.L. for $m_{\tilde{\chi}^0_1} = 20$ GeV. See also Fig. 2(a). Exclusion limits are also derived in the phenomenological MSSM, see Fig. 3.
- limits are also derived in the phenomenological massive, see Fig. 6. 6 ABBIENDI 04 search for $\tilde{e}_R \tilde{e}_R$ production in acoplanar di-electron final states in the 183–208 GeV data. See Fig. 13 for the dependence of the limits on $m_{\tilde{\chi}_1^0}$ and for the
- limit at tan β =35 This limit supersedes ABBIENDI 00G.
- ⁷ ACHARD 04 search for \tilde{e}_{R} and $\tilde{e}_{R}\tilde{e}_{R}$ production in single- and acoplanar di-electron final states in the 192–209 GeV data. Absolute limits on $m_{\tilde{e}_{R}}$ are derived from a scan over the MSSM parameter space with universal GUT scale gaugino and scalar masses $m_{1/2}$ and $m_0,\,1\leq aneta\leq 60$ and $-2\leq \mu\leq 2$ TeV. See Fig. 4 for the dependence of the limits on $m_{\widetilde{\chi}_1^0}$. This limit supersedes ACCIARRI 99w.
- ⁸ ABDALLAH 03M looked for acoplanar dielectron $+ \not\!\!\!E$ final states at $\sqrt{s} = 189-208$ GeV. The limit assumes $\mu = -200$ GeV and $\tan\beta = 1.5$ in the calculation of the production cross section and B($\bar{e} \rightarrow e \tilde{\chi}_1^0$). See Fig. 15 for limits in the $(m_{\bar{e}_R}, m_{\bar{\chi}_1^0})$ plane. These limits include and update the results of ABREU 01
- 9 ABDALLAH 03M uses data from $\sqrt{s}=$ 192–208 GeV to obtain limits in the framework of the MSSM with gaugino and sfermion mass universality at the GUT scale. An indirect limit on the mass is derived by constraining the MSSM parameter space by the results from direct searches for neutralinos (including cascade decays) and for sleptons. These limits are valid for values of $M_2 < 1$ TeV, $|\mu| \le 1$ TeV with the $\tilde{\chi}_1^0$ as LSP. The quoted limit is obtained when there is no mixing in the third family. See Fig. 43 for the mass limits as a function of tan β . These limits update the results of ABREU 00w.
- Infinite as a function of range. These infinits update the results of ABRCE over 10^{11} HEISTER 02E looked for acoplanar dielectron + E_T final states from e^+e^- interactions between 183 and 209 GeV. The mass limit assumes $\mu < -200$ GeV and $\tan\beta=2$ for the production cross section and $B(\tilde{e} \to e\chi_1^0)=1$. See their Fig. 4 for the dependence of the limit on Δm . These limits include and update the results of BARATE 01.
- ¹¹ HEISTER 02N search for $\tilde{e}_R \tilde{e}_L$ and $\tilde{e}_R \tilde{e}_R$ production in single- and acoplanar di-electron final states in the 183–208 GeV data. Absolute limits on $m_{\tilde{e}_R}$ are derived from a scan over the MSSM parameter space with universal GUT scale gaugino and scalar masses $m_{1/2}$ and $m_0,~1~\leq$ tan $\beta~\leq$ 50 and $-10~\leq~\mu~\leq$ 10 TeV. The region of small $|\mu|,$ where cascade decays are important, is covered by a search for $\tilde{\chi}^0_1 \tilde{\chi}^0_3$ in final states with leptons and possibly photons. Limits on $m_{\tilde{e}_L}$ are derived by exploiting the mass relation between the \tilde{e}_L and \tilde{e}_R , based on universal m_0 and $m_{1/2}$. When the constraint from the mass limit of the lightest Higgs from HEISTER 02 is included, the bounds improve to $m_{\tilde{e}_R} > 77(75)$ GeV and $m_{\tilde{e}_L} > 115(115)$ GeV for a top mass of 175(180) GeV. In the MSUGRA framework with radiative electroweak symmetry breaking, the limits improve without on $m_{\tilde{e}_R} > 10^{-1}$ Colv and $m_{\tilde{e}_L} > 10^{-1}$ Colv arguments the interval of the symmetry of the symmetry
- MSUGRA framework with radiative electroweak symmetry breaking, the limits improve further to $m_{\widetilde{e}_L} > 95$ GeV and $m_{\widetilde{e}_L} > 152$ GeV, assuming a trilinear coupling $A_0=0$ at the GUT scale. See Figs. 4, 5, 7 for the dependence of the limits on tan β . 12 AAD 14G searched in 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for electroweak production of slepton pairs, decaying to a final sate with two leptons (e and μ) and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models of slepton pair production, see Fig. 8. An interpretation in the pMSSM is also given, see Fig. 10. 13 KHACHATRYAN 141 searched in 19.5 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for electroweak production of slepton pairs decaying to a final state with opposite-sign lepton pairs ($e \text{ or } \mu$) and missing transverse momentum. No excess beyond the Standard Model expectation is observed.

R-partiy violating \tilde{e} (Selectron) mass limit

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

VAL	UE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	
>10	065	95	1 aaboud	18z	ATLS	\geq 4 ℓ , λ_{12k} $ eq$ 0, $m_{\widetilde{\chi}^0_1}=$ 600	
			1			GeV (mass-degenerate left- handed sleptons and sneutrinos of all 3 generations)	
> 7	780	95	- AABOUD	18Z	ATLS	$\geq 4\ell, \lambda_{i33} \neq 0, m_{\widetilde{\chi}_{i}^{0}} = 300$	l
			_			GeV (mass-degenerate left- handed sleptons and sneutrinos of all 3 generations)	
> 4	410	95	² AAD	14X	ATLS	$RPV, \geq 4\ell^{\pm}, \tilde{\ell} \rightarrow I \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow$	
						$\ell^{\pm}\ell^{\mp}\nu$	
••	• We do	not use t	he following data	for av	erages, f	fits, limits, etc. 🔹 🔹 🔹	
>	89	95	³ ABBIENDI	04F	OPAL	RPV, ẽj	
>	92	95	⁴ ABDALLAH	04M	DLPH	RPV, $\tilde{e_R}$, indirect, $\Delta m > 5$ GeV	

Searches Particle Listings Supersymmetric Particle Searches

 1 AABOUD 18z searched in 36.1 fb $^{-1}$ of pp collisions at \sqrt{s} = 13 TeV for events containing four or more charged leptons (electrons, muons and up to two hadronically decaying taus). No significant deviation from the expected SM background is observed. Limits are set on the Higgsino mass in simplified models of general gauge mediated supersymmetry Tn1n1A/Tn1n1B/Tn1n1C, see their Figure 9. Limits are also set on the wino, slepton, sneutrino and gluino mass in a simplified model of NLSP pair production with R-parity

- sheltrino and gluino mass in a simplimed model of NLSP pair production with R-pairly violating decays of the LSP via λ_{12k} or λ_{i33} to charged leptons, see their Figures 7, 8. 2 AAD 14x searched in 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the slepton mass in an R-parity violating simplified model where the decay $\tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$, with $\tilde{\chi}_1^0 \rightarrow \ell^{\pm} \ell^{\mp} \nu$,
- Abbit takes place with a branching ratio of 100%, see Fig. 9. ³ABBIENDI 04F use data from $\sqrt{s} = 189-209$ GeV. They derive limits on sparticle masses under the assumption of RPV with *LLE* or *LQD* couplings. The results are valid for $\tan\beta = 1.5$, $\mu = -200$ GeV, with, in addition, $\Delta m > 5$ GeV for indirect decays via *LQD*. The limit quoted applies to direct decays via *LLE* or *LQD* couplings. For indirect decays, the limits on the \bar{e}_R mass are respectively 99 and 92 GeV for *LLE* and *LQD* couplings and $m_{\widetilde{\chi}^0}~=10~{\rm GeV}$ and degrade slightly for larger $\widetilde{\chi}^0_1$ mass. Supersedes the results of ABBIENDI 00
- results of ABBIEÑDI 00. ⁴ ABDALLAH 04M use data from $\sqrt{s} = 192-208$ GeV to derive limits on sparticle masses under the assumption of RPV with $LL\overline{E}$ or \overline{UDD} couplings. The results are valid for μ = -200 GeV, $\tan\beta = 1.5$, $\Delta m \ge 5$ GeV and assuming a BR of 1 for the given decay. The limit quoted is for indirect \overline{UDD} decays using the neutralino constraint of 39.5 GeV for $LL\overline{E}$ and of 38.0 GeV for \overline{UDD} couplings, also derived in ABDALLAH 04M. For indirect decays via $LL\overline{E}$ the limit improves to 95 GeV if the constraint from the neutralino is used and to 94 GeV if it is not used. For indirect decays via \overline{UDD} couplings is more unchanged when the neutralino constraint is not used. Supersedes the result it remains unchanged when the neutralino constraint is not used. Supersedes the result of ABREU 000.

R-parity conserving \tilde{u} (Smuon) mass limit

reparity cons				
VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>210	95	¹ SIRUNYAN	19AW C MS	$\ell^{\pm}\ell^{\mp}+ ot\!$
>280	95	¹ SIRUNYAN	19AW C MS	$\ell^{\pm}\ell^{\mp} + \not\!$
>290	95	¹ SIRUNYAN	19aw C MS	$\ell^{\pm}\ell^{\mp} + \not\!$
>400	95	¹ SIRUNYAN	19AW C MS	$ \begin{array}{c} \ell^{\pm} \ell^{\mp}_{+} + \not\!$
>450	95	¹ SIRUNYAN	19AW C MS	$\ell^{\pm}\ell^{\mp}_{\mp} + \not\!$
>310	95	¹ sirunyan	19AW C MS	$\ell^{\pm} \ell^{\mp} + \mathcal{F}_{T}, m_{\widetilde{\mu}_{R}} = m_{\widetilde{\mu}_{L}},$ $m_{\simeq 0} = 0 \text{ GeV}$
>190	95	² AABOUD	18r ATLS	$ \begin{array}{c} \chi_1 \\ 2\ell \ (\text{soft}) \ + \not\!$
		³ CHATRCHYAI	N14R CMS	$\geq 3\ell^{\pm}, \tilde{\ell} \rightarrow \ell^{\pm} \tau^{\mp} \tau^{\mp} \tilde{G} \text{ sim-}$ plified model, GMSB, stau (N)NLSP scenario
		⁴ AAD	13B ATLS	$2\ell^{\pm} + E_T$, SMS, pMSSM
> 91.0		⁵ ABBIENDI	04 OPAL	$\Delta m > 3 \text{ GeV}, \tilde{\mu}_R^+ \tilde{\mu}_R^-,$ $ \mu > 100 \text{ GeV}, \tan \beta - 1.5$
> 86.7		⁶ ACHARD	04 L3	$\Delta m > 10 \text{ GeV}, \widetilde{\mu}_R^+ \widetilde{\mu}_R^-,$ $ \mu > 200 \text{ GeV}, \tan \beta > 2$
none 30-88	95	⁷ ABDALLAH	03M DLPH	$\Delta m > 5$ GeV, $\tilde{\mu}_{D}^{+} \tilde{\mu}_{D}^{-}$
> 94	95	⁸ ABDALLAH	03M DLPH	$\widetilde{\mu}_{R}$, $1 \leq \tan\beta \leq 40$, $\Delta m > 10 \text{ GeV}$
> 88	95	⁹ HEISTER	02E ALEP	$\Delta m > 15 \text{ GeV}, \widetilde{\mu}^+_D \widetilde{\mu}^D$
•••We do n	ot use th	e following data fo	or averages, fi	ts, limits, etc. $\bullet \bullet \bullet$
>500	95	¹⁰ AABOUD	18BT ATLS	$\begin{array}{l} 2\ell + \not\!\!\! E_T, \ m_{\widetilde{\ell}_R} = m_{\widetilde{\ell}_L} \ \text{and} \ \widetilde{\ell} = \widetilde{e}, \\ \widetilde{\mu}, \ \widetilde{\tau} \ , \ \text{with} \ m_{\widetilde{\gamma}^0} = 0 \ \text{GeV} \end{array}$
none 90-325	95	¹¹ AAD	14G ATLS	$ \begin{array}{ccc} \widetilde{\ell}\widetilde{\ell} \rightarrow \ \ell^+ \widetilde{\chi}^0_1 \ell^- \widetilde{\widetilde{\chi}}^0_1, \text{simplified} \\ \text{model,} \ m_{\widetilde{\ell}_L} = m_{\widetilde{\ell}_R}, m_{\widetilde{\chi}^0_1} = 0 \end{array} $
		¹² KHACHATRY.	141 CMS	$\widetilde{\ell} ightarrow \ell \widetilde{\chi}_1^0$, simplified model

- ¹³ABREU 00V DLPH $\tilde{\mu}_R \tilde{\mu}_R (\dot{\tilde{\mu}}_R \rightarrow \mu \tilde{G}), m_{\tilde{G}} > 8 \text{ eV}$ > 80 95
- ¹ SIRUNYAN 19AW searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for direct electroweak pair production of selectrons or smuons in events with two leptons (electrons or muons) of the opposite electric charge and same flavour, no jets and large \mathcal{E}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the selectron mass assuming left-handed, right-handed or both left- and right-handed (mass degenerate) production, see their Figure 6. Similarly, limits are set on the samuption that the selectron and smuon are mass degenerate see their Electron the samuption that the selectron and smuon are mass degreated.
- that the selectron and smuon are mass degenerate, see their Figure 5. ²AABOUD 18R searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for electroweak production in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse mass spectra in final states with two low-momentum leptons and missing transverse momentum. The data are found to be consistent with the SM prediction. Results are interpreted in slepton pair production models with a fourfold degeneracy assumed in selectron and smuon masses. The $\tilde{\mu}$ masses are excluded up to 190 GeV for $m_{\tilde{\mu}} - m_{\tilde{\chi}_1^0} = 5$ GeV. The exclusion limits extend down to mass splittings of 1 GeV, see their Fig. 11.
- ³ CHATRCHYAN 14R searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with at least three leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the slepton mass in a stau (N)NLSP simplified model (GMSB) where the decay $\tilde{\ell} \rightarrow \ell^{\pm} \tau^{\pm} \tau^{\mp} \tilde{G}$ takes place with a branching ratio of 100%, see Fig. 8. ⁴ AAD 13B searched in 4.7 fb⁻¹ of ρp collisions at $\sqrt{s} = 7$ TeV for sleptons decaying to a final state with two leptons (e and μ) and missing transverse energy. No excess beyond

the Standard Model expectation is observed. Limits are derived in a simplified model of direct left-handed slepton pair production, where left-handed slepton masses between 85 and 195 GeV are excluded at 95% C.L. for $m_{\tilde{\chi}^0_1} = 20$ GeV. See also Fig. 2(a). Exclusion limits are also derived in the phenomenological MSSM, see Fig. 3.

- ⁵ ABBIENDI 04 search for $\tilde{\mu}_R \tilde{\mu}_R$ production in acoplanar di-muon final states in the 183–208 GeV data. See Fig. 14 for the dependence of the limits on $m_{\tilde{\chi}_1^0}$ and for the limit at tan β =35. Under the assumption of 100% branching ratio for $\mu_R^{\gamma \to \gamma} = \mu \tilde{\chi}_1^0$, the limit improves to 94.0 GeV for $\Delta m > 4$ GeV. See Fig. 11 for the dependence of the limits on $m_{\tilde{\chi}_1^0}$ at several values of the branching ratio. This limit supersedes ABBIENDI 00G.
- ⁶ ACHARD 04 search for $\tilde{\mu}_R \tilde{\mu}_R$ production in acoplanar di-muon final states in the 192–209 GeV data. Limits on $m_{\tilde{\mu}_R}$ are derived from a scan over the MSSM parameter space with universal GUT scale gaugino and scalar masses $m_{1/2}$ and m_0 , $1 \le 10^{-1}$
- $aneta\leq$ 60 and $-2\leq\mu\leq$ 2 TeV. See Fig. 4 for the dependence of the limits on $m_{\widetilde{\chi}_1^0}$ This limit supersedes ACCIARRI 99w.
- The limit assumes $B(\tilde{\mu} \to \mu \tilde{\chi}_1^0) = 100\%$. See Fig. 16 for limits on the $(m_{\tilde{\mu}_R}, m_{\tilde{\chi}_1^0})$ plane. These limits include and update the results of ABREU 01.
- 8 ABDALLAH 03M uses data from $\sqrt{s}=192$ –208 GeV to obtain limits in the framework of the MSSM with gaugino and sfermion mass universality at the GUT scale. An indirect limit on the mass is derived by constraining the MSSM parameter space by the results from direct searches for neutralinos (including cascade decays) and for sleptons. These limits are valid for values of M₂ < 1 TeV, $|\mu| \leq 1$ TeV with the $\tilde{\chi}_1^0$ as LSP. The quoted limit is obtained when there is no mixing in the third family. See Fig. 43 for the mass limits as a function of tan β . These limits update the results of ABREU 00w.
- $^9\,{\sf HEISTER}$ 02E looked for acoplanar dimuon $+ \not\!\!\!E_T$ final states from $e^+ \, e^-$ interactions between 183 and 209 GeV. The mass limit assumes B($\tilde{\mu} \rightarrow \mu \tilde{\chi}_1^0$)=1. See their Fig. 4 for the dependence of the limit on Δm . These limits include and update the results of BARATE 01
- $^{10}AABOUD 18\text{pt}$ searched in 36.1 fb $^{-1}$ of $p\,p$ collisions at $\sqrt{s} = 13$ TeV for direct electroweak production of charginos, chargino and next-to-lightest neutralinos and sleptons in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the slepton mass up to 500 GeV for massless $\widetilde{\chi}^0_1$, assuming
- degeneracy of \tilde{e} , $\tilde{\mu}$, and $\tilde{\tau}$ and exploiting the 2*k* signature, see their Figure 8(b). ¹¹AAD 146 searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for electroweak pro-duction of slepton pairs, decaying to a final sate with two leptons (*e* and μ) and missing transverse momentum. No excess beyond the Standard Model expectation is observed.
- transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models of slepton pair production, see Fig. 8. An interpretation in the pMSSM is also given, see Fig. 10. 1^2 KHACHATRYAN 141 searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for electroweak production of slepton pairs decaying to a final state with opposite-sign lepton pairs (e or μ) and missing transverse momentum. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in simplified models, see Fig. 18. 1^3 ABREU 00v use data from $\sqrt{s} = 130-189$ GeV to search for tracks with large impact pa-trometers or wichle decay untice.
- Traneter or visible decay vertices. Limits are obtained as function of m_{ex} , after combining these results with the search for slepton pair production in the SUGRA framework from ABREU 01 to cover prompt decays and on stable particle searches from ABREU 000. For limits at different $m_{\widetilde{G}}$, see their Fig. 12.

R-parity violating $\tilde{\mu}$ (Smuon) mass limit

r 7		· · ·			
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
> 780	95	¹ AABOUD	18z	ATLS	\geq 4 ℓ , $\lambda_{j33} \neq$ 0, $m_{\widetilde{\chi}^0_1}$ =300 GeV
					(mass-degenerate left-handed sleptons and sneutrinos of all 3 generations)
>1060	95	¹ AABOUD	18z	ATLS	\geq 4 ℓ , $\lambda_{12k} \neq$ 0, $m_{\widetilde{\chi}^0_*}$ =600 GeV
					(mass-degenerate left-handed sleptons and sneutrinos of all
		_			3 generations)
> 410	95	² AAD	14×	ATLS	RPV, $\geq 4\ell^{\pm}$, $\tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$, $\tilde{\chi}_1^0 \rightarrow$
					$\ell^{\pm}\ell^{\mp}\nu$
• • • We do	not use t	he following data f	or ave	rages, fit	is, limits, etc. 🔹 🔹 🔹
		3 SIRLINYA N	1940		$u^{\pm}u^{\pm} \rightarrow 2$ jets $\lambda' \rightarrow 0$

 $\begin{array}{ccc} & \mu^{-}\mu^{-} + & \geq \mbox{lets}, \ \lambda_{211} \neq 0, \\ & \tilde{\mu}_{L} \rightarrow \mu \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \mu q \overline{q} \end{array}$ ⁴ ABDALLAH 04M DLPH RPV, $\tilde{\mu}_{R}$, indirect, $\Delta m > 5$ GeV ⁵ HEISTER 03c ALED DRV ~

87 > 95 ⁵ HEISTER 03G ALEP RPV, $\tilde{\mu}_L$ 95 81 > 1 AABOUD 18z searched in 36.1 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 13 TeV for events contain-

- ¹ AABOUD 18Z searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing four or more charged leptons (electrons, muons and up to two hadronically decaying taus). No significant deviation from the expected SM background is observed. Limits are set on the Higgsino mass in simplified models of general gauge mediated supersymmetry Tn1n1A/Tn1n1B/Tn1n1C, see their Figure 9. Limits are also set on the wino, slepton, sneutrino and gluino mass in a simplified model of NLSP pair production with R-parity violating decays of the LSP via λ_{12k} or λ_{i33} to charged leptons, see their Figures 7, 8. ² AAD 14x searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the slepton mass in a
- the Standard Model expectations is observed. Limits are set on the slepton mass in an R-parity violating simplified model where the decay $\tilde\ell \to \ell \tilde\chi^0_1$, with $\tilde\chi^0_1 \to \ell^\pm \ell^\mp \nu$,
- takes place with a branching ratio of 100%, see Fig. 9. ³ SIRUNYAN 19A0 searched in 35.9 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events con-taining two same-sign muons and at last two jets, originating from resonant production of Second-generation sleptons $(\tilde{\mu}_L, \tilde{\nu}_\mu)$ via the R-parity violating coupling λ'_{211} to quarks. No significant excess above the Standard Model expectations is observed. Upper limits on cross sections are derived in the context of two simplified models, see their Figure 4. The cross section limits are translated into limits on λ'_{211} for a modified CMSSM, see their Figure 5.
- 4 ABDALLAH 04M use data from $\sqrt{s}=$ 192–208 GeV to derive limits on sparticle masses under the assumption of RPV with $LL\overline{E}$ or $\overline{U}\overline{D}\overline{D}$ couplings. The results are valid for μ

= -200 GeV, $\tan\beta = 1.5$, $\Delta m \ge 5$ GeV and assuming a BR of 1 for the given decay. The limit quoted is for indirect \overline{UDD} decays using the neutralino constraint of 39.5 GeV for *LLE* and of 38.0 GeV for \overline{UDD} couplings, also derived in ABDALLAH 04M. For indirect decays via *LLE* the limit improves to 90 GeV if the constraint from the neutralino is used and remains at 87 GeV if it is not used. For indirect decays via \overline{UDD} couplings it degrades to 85 GeV when the neutralino constraint is not used. Supersedes the result of ABREU 000.

HeISTER 036 searches for the production of smuons in the case of RPV prompt decays with LLE, $LQ\overline{D}$ or \overline{UDD} couplings at $\sqrt{s} = 189-209$ GeV. The search is performed of direct and indirect decays, assuming one coupling at a time to be non-zero. The limit holds for direct decays mediated by RPV $LQ\overline{D}$ couplings and improves to 90 GeV for indirect decays (for $\Delta m > 10$ GeV). Limits are also given for $LL\overline{E}$ direct $(m_{\widetilde{\mu}R} > 1)$ 87 GeV) and indirect decays ($m_{\widetilde{\mu}R}$ > 96 GeV for $m(\widetilde{\chi}_1^0)$ > 23 GeV from BARATE 98s) and for \overline{UDD} indirect decays $(m_{\widetilde{\mu}R}~>$ 85 GeV for $\overline{\Delta}m>$ 10 GeV). Supersedes the results from BARATE 01B.

R-parity conserving $\tilde{\tau}$ (Stau) mass limit

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
> 85.2		¹ ABBIENDI	04	OPAL	$\Delta m > 6 \text{ GeV}, \theta_{\tau} = \pi/2, \mu > 100 \text{ GeV}, \tan \theta = 15$
> 78.3		² ACHARD	04	L3	$\Delta m > 15$ GeV, $tan\beta = 1.5$ $\Delta m > 15$ GeV, $\theta_{\tau} = \pi/2$, $ \mu > 200$ GeV $tan\beta > 2$
> 81.9	95	³ ABDALLAH	03м	DLPH	$\Delta m > 15$ GeV, all θ_{π}
> 79	95	⁴ HEISTER	02E	ALEP	$\Delta m > 15$ GeV, $\theta_{\tau} = \pi/2$
> 76	95	⁴ HEISTER	02E	ALEP	$\Delta m > 15$ GeV, $ heta_{ au} = 0.91$
••• We do not	use the	following data for	averag	ges, fits,	limits, etc. • • •
>5 00	95	⁵ AABOUD	18bT	ATLS	$2\ell + \not\!\! E_T, m_{\tilde{\ell}_R} = m_{\tilde{\ell}_L}, \tilde{\ell} = \tilde{e}, \tilde{\mu}, \tilde{\tau},$
					$m_{\widetilde{\chi}_1^0} = 0 \text{ GeV}$
	95	⁶ KHACHATRY.	17L	CMS	2 $\tau + \not\!$
none 109	95	⁷ AAD	16AA	ATLS	0 GeV 2 hadronic $ au+ ot\!$
					$ au \widetilde{\chi}_1^0$, $m_{\widetilde{\chi}_1^0} = 0$ GeV
		⁸ aad	12AF	ATLS	$2\tau + \text{jets} + E_T$, GMSB
		⁹ AAD	12A G	ATLS	$\geq 1\tau_h + \text{jets} + \not\!\!{E}_T$, GMSB
		¹⁰ AAD	12CN	ATLS	$\geq 1\tau$ + jets + $\not\!\!\!E_T$, GMSB
> 87.4	95	¹¹ ABBIENDI	06b	OPAL	$\tilde{\tau}_{R} \rightarrow \tau \tilde{G}$, all $\tau(\tilde{\tilde{\tau}}_{R})$
> 68	95	¹² ABDALLAH	04н	DLPH	AMSB, $\mu > 0$
none $m_{\pi} - 26.3$	95	³ ABDALLAH	03M	DLPH	$\Delta m > m_{\pi}$, all θ_{π}

 $^1\,{\sf ABBIENDI}$ 04 search for $\tilde\tau\tilde\tau$ production in acoplanar di-tau final states in the 183-208 GeV data. See Fig. 15 for the dependence of the limits on $m_{\tilde\chi_1^0}$ and for the limit

at tan $eta{=}35$. Under the assumption of 100% branching ratio for $\widetilde{ au}_R o au \, \widetilde{\chi}_1^0$, the limit supersedes ABBIENDI 00G.

 $^2\,{\rm ACHARD}$ 04 search for $\widetilde{\tau}\widetilde{\tau}$ production in acoplanar di-tau final states in the 192–209 GeV data. Limits on $m_{\widetilde{\tau}_R}$ are derived from a scan over the MSSM parameter space with universal GUT scale gaugino and scalar masses $m_{1/2}$ and m_0 , $1 \leq \tan\beta \leq 60$ and Universal GUT scale gaugino and scalar masses $m_{1/2}$ o. - $-2 \le \mu \le 2$ TeV. See Fig. 4 for the dependence of the limits on $m_{\widetilde{\chi}_1}$

³ABDALLAH 03M looked for acoplanar ditaus +E final states at $\sqrt{s} = 130$ –208 GeV. A dedicated search was made for low mass $\tilde{\tau}s$ decoupling from the Z^0 . The limit assumes $B(\tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0) = 100\%$. See Fig. 20 for limits on the $(m_{\tilde{\tau}}, m_{\tilde{\chi}_1^0})$ plane and as function

of the $\tilde{\chi}^0_1$ mass and of the branching ratio. The limit in the low-mass region improves to 29.6 and 31.1 GeV for $\tilde{\tau}_R$ and $\tilde{\tau}_L$, respectively, at $\Delta m > m_{\tau}$. The limit in the high-mass region improves to 84.7 GeV for $\tilde{\tau}_R$ and $\Delta m > 15$ GeV. These limits include and update the results of ADPLU of the the results of ADPLU of the results of ADPLU

- the results of ABREV 01. ⁴ HEISTER 02E looked for acoplanar ditau + E_T final states from e^+e^- interactions between 183 and 209 GeV. The mass limit assumes B($\tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$)=1. See their Fig. 4 for the dependence of the limit on Δm . These limits include and update the results of BARATE 01
- ⁵ AABOUD 18BT searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for direct electroweak production of charginos, chargino and next-to-lightest neutralinos and sleptons in events with two or three leptons (electrons or muons), with or without jets, and large missing transverse energy. No significant excess above the Standard Model expectations is observed. Limits are set on the slepton mass up to 500 GeV for massless $\widetilde{\chi}^0_1$, assuming
- Is observed. Limits are set on the service mass up to see set i.e. mass, τ_1 , τ_1 , τ_2 , degeneracy of \tilde{e} , $\tilde{\mu}$, and $\tilde{\tau}$ and exploiting the 2ℓ signature, see their Figure 8(b). ⁶ KHACHATRYAN 17L searched in about 19 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events with two τ (at least one decaying hadronically) and \mathcal{P}_T . Results were interpreted to set constraints on the cross section for production of $\tilde{\tau}_L$ pairs for $m_{\tilde{\chi}_1^0}^{-1}$ GeV. No mass constraints are set, see their Fig. 7.
- $^7\,\text{AAD}$ 16AA summarized and extended ATLAS searches for electroweak supersymmetry and plow samples containing several charged leptons, E_T , with or without hadronic jets, in in final states containing several charged leptons, E_T , with or without hadronic jets, in 20 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV. The paper reports 95% C.L. exclusion limits on the cross-section for production of τ_R and τ_L pairs for various $m_{\overline{\chi}_1^0}$ using the 2 hadronic $\tau + \not\!\!\!E_T$ analysis. The $m_{\widetilde{\tau}_R/L} = 109$ GeV is excluded for $m_{\widetilde{\chi}_1^0}^{-1} = 0$ GeV, with the constraints being stronger for $\widetilde{\tau}_R$. See their Fig. 12.

the constraints being stronger for τ_R . See their Fig. 12. ⁸ AAD 12AF searched in 2 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV for events with two tau leptons, jets and large E_T in a GMSB framework. No significant excess above the expected background was found and an upper limit on the visible cross section for new phenomena is set. A 95% C.L. lower limit of 32 TeV on the mGMSB breaking scale Λ is set for M_{mess} = 250 TeV, N_S = 3, μ > 0 and C_{grav} = 1, independent of taneta.

- 9 AAD 12AG searched in 2.05 fb $^{-1}$ of pp collisions at \sqrt{s} = 7 TeV for events with at
- ⁹ AAD 12AG searched in 2.05 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events with at least one hadronically decaying tau lepton, jets, and large E_T in a GMSB framework. No significant excess above the expected background was found and an upper limit on the visible cross section for new phenomena is set. A 95% C.L. lower limit of 30 TeV on the mGMSB breaking scale *A* is set for $M_{mess} = 250$ TeV, $N_S = 3$, $\mu > 0$ and $C_{grav} = 1$, independent of tan β . For large values of tan β , the limit on *A* increases to 43 TeV. ¹⁰ AAD 12CM searched in 4.7 fb⁻¹ of *pp* collisions at $\sqrt{s}=7$ TeV for events with at least one tau lepton, zero or one additional light lepton (e/μ) jets, and large E_T in a GMSB framework. No significant excess above the expected background was found and an upper limit of 54 TeV on the mGMSB breaking scale *A* is set for $M_{mess} = 250$ TeV, $N_S = 3$, $\mu > 0$ and $C_{grav} = 1$, for tan $\beta > 20$. Here the $\tilde{\tau}_1$ is the NLSP.
- ¹¹ABBIENDI 06B use 600 pb $^{-1}$ of data from \sqrt{s} = 189–209 GeV. They look for events from pair-produced status in a GMSB scenario with $\tilde{\tau}$ NLSP including prompt $\tilde{\tau}$ decays to ditaus + \mathcal{F} final states, large impact parameters, kinked tracks and heavy stable charged particles. Limits on the cross-section are computed as a function of $m(\tilde{\tau})$ and the lifetime, see their Fig. 7. The limit is compared to the $\sigma \cdot BR^2$ from a scan over the GMSB parameter space.
- 12 ABDALLAH 04H use data from LEP 1 and \sqrt{s} = 192–208 GeV. They re-use results or re-analyze the data from ABDALAH 03M to put limits on the parameter space of anomaly-mediated supersymmetry breaking (AMSB), which is scanned in the region $1 < m_{3/2} < 50$ TeV, $0 < m_0 < 1000$ GeV, $1.5 < \tan\beta < 35$, both signs of μ . The constraints are obtained from the searches for mass degenerate chargino and neutralino, for SM-like and invisible Higgs, for leptonically decaying charginos and from the limit on non-SM Z width of 3.2 MeV. The limit is for $m_t = 174.3$ GeV (see Table 2 for other m_t values). The limit improves to 75 GeV for $\mu < 0$.

R-parity violating $\tilde{\tau}$ (Stau) mass limit

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>1060	95	¹ AABOUD	18z	ATLS	\geq 4 ℓ , RPV, $\lambda_{12k} eq$ 0, $m_{\widetilde{\chi}^0_1}=$
					600 GeV (mass-degenerate left-handed sleptons and sneutrinos of all 3 genera- tions)
> 780	95	¹ AABOUD	18z	ATLS	\geq 4 ℓ , RPV, $\lambda_{i33} eq$ 0, $m_{\widetilde{\chi}^0_1} =$
					300 GeV (mass-degenerate left-handed sleptons and sneutrinos of all 3 genera- tions)
• • • We do r	not use th	e following data fo	avera	ages, fits	, limits, etc. • • •
		2			

04F OPAL RPV, $\tilde{\tau}_L$ ABBIEND 74 95

³ABDALLAH 04M DLPH RPV, $\tilde{\tau}_R$, indirect, $\Delta m > 5$ GeV 90 > 95

- ¹AABOUD 18z searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events contain-¹ AABOUD 18Z searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events contain-ing four or more charged leptons (electrons, muons and up to two hadronically decaying taus). No significant deviation from the expected SM background is observed. Limits are set on the Higgsino mass in simplified models of general gauge mediated supersymmetry Tn1n1A/Tn1n1B/Tn1n1C, see their Figure 9. Limits are also set on the wino, slepton, sneutrino and gluino mass in a simplified model of NLSP pair production with R-parity violating decays of the LSP via λ_{12k} or λ_{j33} to charged leptons, see their Figures 7, 8. ² ABBIENDI 04F use data from $\sqrt{s} = 189-209$ GeV. They derive limits on sparticle masses under the assumption of RPV with *LLE* or $LQ\overline{D}$ couplings. The results are valid for tan $\beta = 15$. $\mu = -200$ GeV, with μ in addition. $\Delta m > 5$ GeV for indirect decays via
- $Label{eq:Label} Label{eq:Label}$ and the Labeled Lab for $LL\overline{E}$ couplings at $m_{\widetilde{\chi}0}$ = 10 GeV and no exclusion is obtained for $LQ\overline{D}$ couplings. Supersedes the results of ABBIENDI 00.
- 3 ABDALLAH 04M use data from $\sqrt{s}=$ 192–208 GeV to derive limits on sparticle masses ABDALLAR OW use data from $\sqrt{s} = 122-200$ GeV to be the minits on sparticle masses under the assumption of RPV with *LLE* couplings. The results are valid for $\mu = -200$ GeV, $\tan \beta = 1.5$, $\Delta m > 5$ GeV and assuming a BR of 1 for the given decay. The limit quoted is for indirect decays using the neutralino constraint of 39.5 GeV, also derived in ABDALLAH 04M. For indirect decays via *LLE* the limit decreases to 86 GeV if the constraint from the neutralino is not used. Supersedes the result of ABREU 00U.

Long-lived ℓ (Slepton) mass limit

Limits on scalar leptons which leave detector before decaying. Limits from Z decays are independent of lepton flavor. Limits from continuum e^+e^- annihilation are also independent of flavor for smuons and staus. Selectron limits from e^+e^- collisions in the continuum depend on MSSM parameters because of the additional neutralino exchange contribution

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
>430	95	¹ AABOUD	19AT ATLS	long-lived $\tilde{\tau}$, GMSB
>490	95	² KHACHATRY.	16BWCMS	long-lived τ̃ from inclusive pro- duction, mGMSB SPS line 7 scenario
>240	95	² KHACHATRY.	16BWCMS	long-lived $\tilde{\tau}$ from direct pair pro- duction, mGMSB SPS line 7
>440	95	³ AAD	15AE ATLS	mGMSB, $M_{mess} = 250$ TeV, N_5 = 3, μ > 0, $C_{grav} = 5000$,
>385	95	³ AAD	15AE ATLS	mGMSB, $M_{mess} = 250$ TeV, $N_5 = 3, \mu > 0, C_{grav} = 5000,$ tan $\beta = 50$
>286	95	³ AAD	15AF ATLS	direct $\tilde{\tau}$ production
none 124-309	95	⁴ AAIJ	15BD LHCB	long-lived $\tilde{\tau}$, mGMSB, SPS7
> 98	95	⁵ ABBIENDI	03L OPAL	$\tilde{\mu}_R, \tilde{\tau}_R$
none 2-87.5	95	⁶ ABREU	00Q DLPH	$\tilde{\mu}_R$, $\tilde{\tau}_R$
> 81.2	95	7 ACCIARRI	99H L3	$\tilde{\mu}_R$, $\tilde{\tau}_R$
> 81	95	° BARATE	98k ALEP	$\widetilde{\mu}_R$, $\widetilde{ au}_R$

• • •	We do not us	e the following da	ta for aver	ages, fi	ts, limits, etc. 🔹 🔹 🔹
>300	95	⁹ AAD	13AA	ATLS	long-lived $\widetilde{ au}$, GMSB, tan $eta=$ 5–20
		¹⁰ ABAZOV	13B	D0	long-lived $\widetilde{ au}$, 100 $<\!m_{\widetilde{ au}}<\!$ 300 GeV
>339	95	^{11,12} CHATRCH	YAN 13AB	CMS	long-lived $\tilde{\tau}$, direct $\tilde{\tau}_1$ pair prod.,
>5 00	95	^{11,13} CHATRCH	YAN 13AB	CMS	long-lived $\tilde{\tau}, \tilde{\tau}_1$ from direct pair
					ier SUSY particles, minimal
>314	95	¹⁴ CHATRCH	YAN 12L	CMS	long-lived $\tilde{\tau}, \tilde{\tau}_1$ from decay of heavier SUSY particles, mini-
>136	95	¹⁵ aad	11P	ATLS	mal GMSB, SPS line 7 stable $\tilde{\tau}$, GMSB scenario, tan β =5

- 1 AABOUD 19AT searched in 36.1 fb $^{-1}$ of $p\,p$ collisions at \sqrt{s} = 13 TeV for metastable and stable *R*-hadrons. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined. No significant deviations from the expected Standard Model background are observed. Results are interpreted in terms of exclusion limits on long-lived stau in the context of GMSB models. Lower limits on the mass for
- ¹ direct production of staus are set at 30 GeV, see their Fig. 10 (left). ² KHACHATRYAN 16Bw searched in 2.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with heavy stable charged particles, identified by their anomalously high energy deposits in the silicon tracker and/or long time-of-flight measurements by the muon system. No evidence for an excess over the expected background is observed. Limits are derived for pairs of the reduction of the for pair production of tau sleptons as a function of mass, depending on their direct or inclusive production in a minimal GMSB scenario along the Snowmass Points and Slopes (SPS) line 7, see Fig. 4 and Table 7.
- (SPS) line τ , see Fig. 4 and ratio τ . ³ AAD 15AE searched in 19.1 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for heavy long-lived charged particles, measured through their specific ionization energy loss in the ATLAS pixel detector or their time-of-flight in the ALTAS muon system. In the absence of an excess of events above the expected backgrounds, limits are set on stable $\tilde{\tau}$ sleptons in where the specific section τ is a set of the section τ shows the sectin various scenarios, see Figs. 5-7.
- AAIJ 15BD searched in 3.0 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ and 8 TeV for evidence of Drell-Yan pair production of long-lived τ particles. No evidence for such particles is
- sobserved and 95% C.L. upper limits on the cross section of τ pair production are derived, see Fig. 7. In the mGMSB, assuming the SPS7 benchmark scenario τ masses between 124 and 309 GeV are excluded at 95% C.L. 5 ABBIENDI 03L used e^+e^- data at $\sqrt{s} = 130-209$ GeV to select events with two high momentum tracks with anomalous dE/dx. The excluded cross section is compared to the theoretical expectation as a function of the heavy particle mass in their Fig. 3. The limit improves to 925 CoV (607) and τ . The bunder are used for some of the particles of t improves to 98.5 GeV for $\tilde{\mu}_L$ and $\tilde{\tau}_L$. The bounds are valid for colorless spin 0 particles with lifetimes longer than 10^{-6} s. Supersedes the results from ACKERSTAFF 98P.
- ⁶ABREU 00Q searches for the production of pairs of heavy, charged stable particles in e^+e^- annihilation at \sqrt{s} = 130–189 GeV. The upper bound improves to 88 GeV for $\tilde{\mu}_L$, $\tilde{\tau}_l$. These limits include and update the results of ABREU 98P.
- 7 ACCIARRI 99H searched for production of pairs of back-to-back heavy charged particles at \sqrt{s} =130–183 GeV. The upper bound improves to 82.2 GeV for $\widetilde{\mu}_L$, $\widetilde{ au}_L$
- 8 The BARATE 98K mass limit improves to 82 GeV for $\widetilde{\mu}_{L},\widetilde{ au}_{L}$. Data collected at $\sqrt{s} = 161 - 184$ GeV.
- 9 ADD 13As searched in 4.7 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV for events containing long-lived massive particles in a GMSB framework. No significant excess above the expected background was found. A 95% C.L. lower limit of 300 GeV is placed on longlived 7's in the GMSB model with $M_{mess} = 250$ TeV, $N_S = 3$, $\mu > 0$, for tan $\beta = 5-20$. The lower limit on the GMSB model with $M_{mess} = 250$ TeV, $N_S = 3$, $\mu > 0$, for tan $\beta = 5-20$. The lower limit on the GMSB breaking scale Λ was found to be 99-110 TeV, for tan β values between 5 and 40, see Fig. 4 (top). Also, directly produced long-lived sleptons, or sleptons decaying to long-lived ones, are excluded at 95% C.L. up to a $\overline{\tau}$ mass of 278
- GeV for models with slepton splittings smaller than 50 GeV. ¹⁰ABAZOV 13B looked in 6.3 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV for charged massive long-lived particles in events with muon-like particles that have both speed and ionization energy loss inconsistent with muons produced in beam collisions. In the absence of an excess, limits are set at 95% C.L. on the production cross section of stau leptons in the mass range 100–300 GeV, see their Table 20 and Fig. 23. ¹¹ CHATRCHYAN 13AB looked in 5.0 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV and in 18.8
- fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events with heavy stable particles, identified by their anomalous dE/dx in the tracker or additionally requiring that it be identified as muon in the muon chambers, from pair production of $\tilde{\tau}_1$'s. No evidence for an excess over the expected background is observed. Supersedes CHATRCHYAN 12L.
- ¹² CHATRCHYAN 13AB limits are derived for pair production of $\overline{\tau}_1$ as a function of mass in minimal GMSB scenarios along the Snowmass Points and Slopes (SPS) line 7 (see Fig. 8 and Table 7). The limit given here is valid for direct pair $ilde{ au_1}$ production
- ¹³ CHATRCHYAN 13AB limits are derived for the production of $\tilde{\tau}_1$ as a function of mass in minimal GMSB scenarios along the Snowmass Points and Slopes (SPS) line 7 (see Fig. 8 and Table 7). The limit given here is valid for the production of $\tilde{\tau}_1$ from both direct
- is and Table 7). The limit given here is valid for the production of τ_1 from both direct pair production and from the decay of heavier supersymmetric particles. 14 CHATRCHYAN 12L looked in 5.0 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV for events with heavy stable particles, identified by their anomalous dE/dx in the tracker or additionally requiring that it be identified as muon in the muon chambers, from pair production of $\tilde{\tau}_1$'s. No evidence for an excess over the expected background is observed. Limits are derived for the production of $\tilde{\tau}_1$ as a function of mass in minimal GMSB scenarios along the Snowmass Points and Slopes (SPS) line 7 (see Fig. 3). The limit given here is valid for the neduction of $\tilde{\tau}_1$ is the direct of the production of $\tilde{\tau}_2$ is the stable of the production of $\tilde{\tau}_2$ is the stable of the production of $\tilde{\tau}_1$ is not product of $\tilde{\tau}_2$.
- the showing shows an slopes (or 3) the P (see rig. 3). The finite given here is value for the production of $\tilde{\tau}_1$ in the decay of heavier supersymmetric particles. ¹⁵ AAD 11P looked in 37 pb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV for events with two heavy stable particles, reconstructed in the liner tracker and the Muon System and identified by their time of flight in the Muon System. No evidence for an excess over the SM expectation is observed. Limits on the mass are derived, see Fig. 3, for $\tilde{\tau}$ in a GMSB scenario and for sleptons produced by electroweak processes only, in which case the limit degrades to 110 GeV.

\widetilde{q} (Squark) mass limit

For $m_{\widetilde{q}} > 60-70$ GeV, it is expected that squarks would undergo a cascade decay via a number of neutralinos and/or charginos rather than undergo a direct decay to photinos as assumed by some papers. Limits obtained when direct decay is assumed are usually higher than limits when cascade decays are included.

Limits from e^+e^- collisions depend on the mixing angle of the lightest mass eigenstate $\bar{q}_1=\bar{q}_R\sin\theta_q+\bar{q}_L\cos\theta_q$. It is usually assumed that only the sbottom and stop squarks have non-trivial mixing angles (see the stop and sbottom sections). Here, unless otherwise noted, squarks are always taken to be either left/right degenerate, or purely of left or right type. Data from Z decays have set squark mass limits above 40 GeV, in the case of $\bar{q} \to q \bar{\chi}_1$ decays if $\Delta m = m_{\widetilde{q}} - m_{\widetilde{\chi}_1^0}^0 \gtrsim 5$ GeV. For smaller values of Δm , current constraints on the invisible width of the Z ($\Delta\Gamma_{\rm inv} < 2.0$ MeV, LEP 00) exclude $m_{\widetilde{u}_{L,R}}$ <44 GeV, $m_{\widetilde{d}_R} <33$ GeV, $m_{\widetilde{d}_L} <44$ GeV and, assuming all squarks degenerate, $m_{\widetilde{q}} <45$ GeV.

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, *et al.* (Particle Data Group), Chinese Physics **C38** 070001 (2014) (http://pdg.lbl.gov).

R-parity conserving \tilde{q} (Squark) mass limit

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID TECN COMMENT	_
>1590	95	$\begin{array}{ccc} 1 \text{ SIRUNYAN } & 19 \text{Ag CMS } & 2\gamma + \not\!$	
>1130	95	2 SIRUNYAN 19CH CMS jets+ E_T , Tsqk1, 1 light flavour, $m_{\widetilde{\chi}_1^0}=0~{ m GeV}$	
>1630	95	² SIRUNYAN 19CH CMS jets+ E_T , Tsqk1, 8 degenerate light flavours, $m_{\tilde{\chi}_1^0}=0$ GeV	
>1430	95	³ SIRUNYAN 19K CMS $\gamma + \ell + \mathcal{E}_T$, Tsqk4A, $m_{\tilde{\chi}_1^0} =$	
>1200	95	⁴ AABOUD 18BJ ATLS $\ell^{\pm}\ell^{\mp}$ + jets + $\not{\!\! E}_T$, Tsqk2, $m_{\widetilde{\chi}_1^{\pm}}$ = 1 GeV, any $m_{\sim 0}$) L
> 850	95	⁵ AABOUD 18bv ATLS c -jets+ E_T , Tsqk1 (charm only), $m_{\widetilde{\chi}_1^0} = 0 \text{ GeV}$	
> 710	95	⁶ AABOUD 181 ATLS ≥ 1 jets+ E_T , Tsqk1, $m_{\widetilde{q}} \sim m_{\widetilde{\chi}_1^0}$	
>1820	95	⁷ AABOUD 180 ATLS 2 $\gamma + E_T$, GGM, Tsqk4B, any	
>1550	95	${f NLSP}^{m}$ ass ${f aABOUD}$ 18v ATLS jets+ ${ar E}_T$, Tsqk1, $m_{\widetilde{\chi}^0_{\gamma}}=0$ GeV	
>1150	95	⁹ AABOUD 18v ATLS jets+ $ ot\!$	
		$(m_{\widetilde{q}} + m_{\widetilde{\chi}^0_1}), m_{\widetilde{\chi}^0_1} = 0 \text{ GeV}$	
>1650	95	$10 \ { m SIRUNYAN}$ 18AA CMS $\ge 1\gamma + ot\!$	
>1750	95	¹⁰ SIRUNYAN 18AA CMS $\geq 1\gamma + E_T$, Tsqk4B	
> 675	95	SIRUNYAN IBAY CMS jets+ ψ_T , Isqk1, I light flavor state, $m_{\widetilde{\chi}_1^0} = 0$ GeV	
>1320	95	¹¹ SIRUNYAN 18AY CMS jets+ E_T , Tsqk1,8 degenerate ligh flavor states, $m_{\tilde{\chi}_1^0}^0 = 0$ GeV	t
>1220	95	¹² AABOUD 17AR ATLS $1\ell + jets + \not{E}_T$, Tsqk3, $m_{\tilde{\chi}_1^0} = 0$	
>1000	95	¹³ AABOUD 17N ATLS 2 same-flavour, opposite-sign ℓ + jets + E_T , Tsqk2, $m_{\tilde{\chi}_1^0} = 0$	
>1150	95	14 KHACHATRY17P CMS 10 r more jets $+ E_T$, Tsqk1, 4(flavor) x 2(isospin) = 8 mass degenerate states, $m_{\widetilde{\chi}^0_1} = 0$	-
> 575	95	¹⁴ KHACHATRY17P CMS ¹ or more jets $+ \not\!\!\! E_T$, Tsqk1, one light flavor state, $m_{\widetilde{\chi}_1^0} = 0$	
>1370	95	$^{ m GeV}_{ m 15}$ KHACHATRY17v CMS $2~\gamma+ ot\!$	
>1600	95	¹⁶ SIRUNYAN 17AY CMS $\gamma + \text{jets} + \not\!$)
>1370	95	16 SIRUNYAN 17AY CMS γ + jets + E_T , Tsqk4A, $m_{\widetilde{\chi}_1^0}^0 = 0$)
>1050	95	$\begin{array}{c} 17 \text{ SIRUNYAN } 17 \text{Az CMS} & \stackrel{\text{GeV}}{\geq} 1 \text{ jets} + \not\!\!\! E_T, \text{ Tsqk1, single ligh} \\ \text{ flavor state, } m_{\sim 0} = 0 \text{ GeV} \end{array}$	t
>1550	95	¹⁷ SIRUNYAN 17AZ CMS ≥ 1 jets+ $\!$	
>1390	95	¹⁸ SIRUNYAN 17P CMS jets+ E_T , Tsqk1, 4(flavor) x 2(isospin) = 8 degenerate mass states, $m_{\tilde{\chi}_1^0} = 0$ GeV	
> 950	95	¹⁸ SIRUNYAN 17P CMS jets+ E_T , Tsqk1, one light flavor state, $m_{\widetilde{\chi}_1^0} = 0$ GeV	
> 608	95	¹⁹ AABOUD 16D ATLS ≥ 1 jet $+ E_T$, Tsqk1, $m_{\widetilde{q}} - m_{\widetilde{\chi}}$ = 5 GeV) 1

>1030	95	²⁰ AABOUD 16N ATLS	\geq 2 jets $+ ot \!$
> 600	95	²¹ KHACHATRY16BS CMS	GeV jets $+ \not\!$
>1260	95	²¹ KHACHATRY16BS CMS	jets $+ ot\!$
> 850	95	²² AAD 15bv ATLS	jets $+ \not\!\!\!E_T$, $\vec{q} \rightarrow q \vec{\chi}_1^0$, $m_{\vec{\chi}_1^0} =$
> 250	95	23 AAD 15cs ATLS	100 GeV photon + $\not\!$
> 490	95	²⁴ AAD 15κ ATLS	$\widetilde{c} \rightarrow c \widetilde{\chi}_1^0, m_{\widetilde{\chi}_1^0} < 200 \text{ GeV}$
> 875	95	²⁵ KHACHATRY15AF CMS	$\widetilde{q} \rightarrow q \widetilde{\chi}_{1}^{0}$, simplified model, 8 degenerate light \widetilde{q} , $m_{\sim 0} = 0$
> 520	95	²⁵ KHACHATRY15AF CMS	$\widetilde{q} \rightarrow q \widetilde{\chi}_1^0$, simplified model, sin- gle light squark, $m_{\sim 0} = 0$
>1450	95	²⁵ KHACHATRY15AF CMS	CMSSM, $\tan \beta = 30$, $A_0 = -2\max(m_0, m_1, p_0)$, $\mu > 0$
> 850	95	²⁶ AAD 14AE ATLS	jets + E_T , $\tilde{q} \to q \tilde{\chi}_1^0$ simplified model, mass degenerate first and second generation squarks, $m_{\tilde{\chi}_1^0} = 0$ GeV
> 440	95	²⁶ AAD 14AE ATLS	jets + E_T , $\tilde{q} \rightarrow q \tilde{\chi}_1^0$ simpli- fied model, single light-flavour squark, $m_{\chi 0} = 0$ GeV
>1700	95	²⁶ AAD 14AE ATLS	jets + $\not\!\!\!E_T$, mSUGRA/CMSSM, $m_{\widetilde{\alpha}} = m_{\widetilde{\alpha}}$
> 800	95	²⁷ CHATRCHYAN 14AH CMS	$q \hspace{0.2cm} \begin{array}{c} q \hspace{0.2cm} g \hspace{0.2cm} g \hspace{0.2cm} \ g \hspace{0.2cm} \ g \hspace{0.2cm} \ g \hspace{0.2cm} \ \chi_{1}^{0} \hspace{0.2cm} \ simplified \hspace{0.2cm} \ model, \hspace{0.2cm} m_{\widetilde{\chi}_{1}^{0}} \hspace{0.2cm} \ = \hspace{0.2cm} 50 \hspace{0.2cm} ext{GeV}$
> 780	95	²⁸ CHATRCHYAN 141 CMS	$\begin{array}{l} \text{multijets} + \not\!$
>1360	95	²⁹ AAD 13∟ ATLS	GeV jets + $\not\!\!E_T$, CMSSM, $m_{\widetilde{\alpha}} = m_{\widetilde{\alpha}}$
>1200	95	³⁰ AAD 13Q ATLS	$\gamma + b + E_T$, higgsino-like neutralino, $m_{\widetilde{\chi}_1^0} > 220$ GeV, GMSB
>1250	95	³¹ CHATRCHYAN13 CMS ³² CHATRCHYAN136 CMS	$\ell^{\pm}\ell^{\mp}$ + jets + $\not\!$
>1430	95	³³ CHATRCHYAN13H CMS	$2\gamma + \geq 4$ jets + low $\not\!\!E_T$, stealth
> 750	95	³⁴ CHATRCHYAN13⊤ CMS	SUSY model jets + E_T , $\tilde{q} \rightarrow q \tilde{\chi}_1^0$ simplified model, $m_{\tilde{\chi}_1^0} = 0$ GeV
> 820	95	³⁵ AAD 12AX ATLS	ℓ +jets + $\not\!$
> 1200	95	³⁶ AAD 12cJ ATLS	$\ell^{\pm}+ ext{jets}+ ot\!$
> 870	95	³⁷ AAD 12CP ATLS	$2\gamma + ot\!$
> 950	95	³⁸ AAD 12w ATLS	jets + $\not\!$
> 760	95	⁴⁰ CHATRCHYAN12 CMS	$e, \mu, \text{ jets, razor, CMSSM}$ $\text{jets} + E_T, \tilde{q} \rightarrow q \tilde{\chi}_1^0, m_{\tilde{\chi}_1^0} < $
>1110	95	⁴¹ CHATRCHYAN12AT CMS	200 GeV jets + $\not\!\!\!E_T$, CMSSM
>1180	95	⁴¹ CHATRCHYAN12AT CMS	jets + $\not\!$
• • • We d	o not use	the following data for averages, fi	ts, limits, etc. ● ● ●
>1080	95	⁴² AABOUD 18V ATLS	$\begin{array}{c} jets+ {\it E}_T, Tsqk5, (m_{\widetilde{\chi}^0_2} - m_{\widetilde{\chi}^0_1})/\\ (m_{\widetilde{q}} - m_{\widetilde{\chi}^0_1}) < 0.95, m_{\widetilde{\chi}^0_1} = \\ \end{array}$
> 300	95	⁴³ KHACHATRY16BT CMS	60 GeV 19-parameter pMSSM model, global Bayesian analysis, flat prior
>1650	95 95	44 AAD 15AI ATLS 22 AAD 15BV ATLS	ℓ^{\pm} + jets + $\not\!$
> 790	95	²² AAD 15bv ATLS	$ \begin{array}{l} \operatorname{GeV}\\ \operatorname{jets} + \not\!$
> 820	95	²² AAD 15bv ATLS	100 GeV 2 or 3 leptons + jets, \tilde{q} decays via sleptons, $m_{\sim 0} = 100$ GeV
> 850	95	²² AAD 15BV ATLS	$ au_1^{\chi_1^-}$ $ au_{ ilde{\chi}_1^0}=50$ $ ilde{ au}_1^{\chi_1^0}=50$
> 700	95	⁴⁵ KHACHATRY15ar CMS	$ \begin{array}{c} \widetilde{q} \to \widetilde{q} \widetilde{\chi}_{1}^{0}, \ \widetilde{\chi}_{1}^{0} \to \ \widetilde{s} g, \ \widetilde{s} \to \\ \widetilde{G}, \ S \to \ g g, \ m_{\widetilde{S}} = 100 \end{array} $
> 550	95	⁴⁵ KHACHATRY15ar CMS	GeV, $m_S = 90$ GeV ℓ^{\pm} , $\tilde{q} \rightarrow q \tilde{\chi}_1^{\pm}$, $\tilde{\chi}_1^{\pm} \rightarrow \tilde{S} W^{\pm}$, $\tilde{S} \rightarrow S \tilde{G}$, $S \rightarrow g g$, $m_{\tilde{S}} =$ 100 GeV, $m_S = 90$ GeV
>1500	95	⁴⁶ KHACHATRY15Az CMS	\geq 2 γ , \geq 1 jet, (Razor), bino- like NLSP, $m_{\tilde{\gamma}_{1}^{0}}$ = 375 GeV
>1000	95	⁴⁶ KHACHATRY15AZ CMS	$\geq 1 \ \gamma, \ \geq 2 \ ext{jet, wino-like NLSP,} \ m_{\widetilde{\chi}_1^0} = 375 \ ext{GeV}$

> 670	95	⁴⁷ AAD	14E	ATLS	$ \begin{array}{l} \ell^{\pm}\ell^{\pm}(\ell^{\mp}) + \text{jets, } \widetilde{q} \to q' \widetilde{\chi}_{1}^{\pm}, \\ \widetilde{\chi}_{1}^{\pm} \to W^{(*)\pm} \widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{2}^{0} \to \end{array} $
> 780	95	⁴⁷ AAD	14E	ATLS	$Z^{(*)} \widetilde{\chi}_{1}^{0} \text{ simplified model}, m_{\widetilde{\chi}_{1}^{0}} < 300 \text{ GeV} \ell^{\pm} \ell^{\pm} (\ell^{\mp}) + \text{jets}, \widetilde{q} \rightarrow q' \widetilde{\chi}_{1}^{\pm} / \widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{1}^{\pm} \rightarrow \ell^{\pm} \nu \widetilde{\chi}_{1}^{0}, \sim^{0} \cdot \cdot \cdot \epsilon^{\pm} \varepsilon^{-} \cdot \sqrt{-0} \cdot \cdots = \varepsilon^{-}$
> 700	95	⁴⁸ CHATRCHYAN	1 13 AO	CMS	$\chi_2^{\circ} \rightarrow \ell^{\pm} \ell^+ (\nu \nu) \chi_1^{\circ} \text{ simpli-}$ fied model $\ell^{\pm} \ell^{\mp} + \text{jets} + E_T$, CMSSM, $m_0 < 700 \text{ GeV}$
>1350	95	⁴⁹ CHATRCHYAN	13AV	CMS	jets (+ leptons) + $\!$
> 800	95	⁵⁰ CHATRCHYAN	13w	CMS	$m_{\tilde{g}} - m_{\tilde{q}}$ $\geq 1 \text{ photons } + \text{ jets } + \not{\!\!\! E}_T,$ GGM, wino-like NLSP, $m_{\tilde{\chi}_1^0}$
>1000	95	⁵⁰ CHATRCHYAN	13w	CMS	$ \begin{array}{l} = 375 {\rm GeV} \\ \geq 2 {\rm photons} + {\rm jets} + \not \!$
> 340	95	⁵¹ DREINER	12A	THEO	$= 375 \text{ GeV}$ $m_{\widetilde{q}} \sim m_{\widetilde{v}_{1}^{0}}$
> 650	95	⁵² DREINER	12A	THEO	$m_{\widetilde{q}} = m_{\widetilde{g}}^{\chi_1} \sim m_{\widetilde{\chi}_1^0}$
					-

 1 SIRUNYAN 19AG searched in 35.9 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 13 TeV for events with two photons and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4B simplified model and on the squark mass in the Tsqk4B simplified model, see their Figure 3.

 2 SIRUNYAN 19CH searched in 137 fb $^{-1}$ of pp collisions at \sqrt{s} = 13 TeV for events SINGWARN 19th searched in 137 10 \sim of pp consists at $\sqrt{s} = 13$ fev for events containing multiple jets and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified models, see their Figure 13. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbot1, Tstop1 simplified models, see their Figure 14.

- Figure 14. ³ SIRUNYAN 19K searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with a photon, an electron or muon, and large E_T . No significant excess above the Standard Model expectations is observed. In the framework of GMSB, limits are set on the chargino and neutralino mass in the Tchiln1A simplified model, see their Figure 6.
- The charging only neutralino mass in the Territric simplified model, see their Figure 5. Limits are also set on the gluino mass in the TgluA Simplified model, and on the squark mass in the Tsqk4A simplified model, see their Figure 7. ⁴ AABOUD 18B searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV in events with two opposite-sign charged leptons (electrons and muons), jets and missing transverse momentum, with various requirements to be sensitive to signals with different kinematic ordeniat vulner in the dilepton invariant more distribution. The data are found to be indifferentiation, which is the dilepton invariant mass distribution. The data are found to be consistent with the SM expectation. Results are interpreted in the Tsqk2 model in case of $m_{\chi_1^0} = 1$ GeV: for any $m_{\chi_2^0}$, squark masses below 1200 GeV are excluded, see their χ_1^0 Fig. 14(b).
- SABOUD 18bv searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with at least one jet identified as c-jet, large missing transverse energy and no leptons. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in TsqkI models considering only \widetilde{c}_1 . In scenarios with massless neutralinos, scharm masses below 850 GeV are
- schulded. If the differences of the \tilde{c}_1 and $\tilde{\chi}_1^0$ masses is below 100 GeV, scharm masses below 500 GeV are excluded. If the differences of the \tilde{c}_1 and $\tilde{\chi}_1^0$ masses is below 100 GeV, scharm masses below 500 GeV are excluded. See their Fig.6 and Fig.7. **6** AABOUD 18 searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with at least one jet with a transverse momentum above 250 GeV and no leptons. Good agreement is observed between the number of events in data and Standard Model predictions. The conduct are transmitted into acclusion like in TeAL model. The results are translated into exclusion limits in Tsgk1 models. In the compressed scenario with similar squark and neutralino masses, squark masses below 710 GeV are excluded. See their Fig.10(b).
- excluded. See their Fig.10(0). ⁷ AABOUD 180 searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in events with at least one isolated photon, possibly jets and significant transverse momentum targeting generalised models of gauge-mediated SUSY breaking. No significant excess of events is observed above the SM prediction. Results are interpreted in terms of lower limits on the masses of squark in Tsqk4B models. Masses below 1820 GeV are excluded for any NLCD response on the Fig. 0. NLSP mass, see their Fig. 9.
- NLSP mass, see their Fig. 9. ⁸AABOUD 18v searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tsqk1 model: squark masses below 1550 GeV are excluded for massless LSP, see their Fig. 13(a). ⁹AABOUD 18v searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tsqk3 model. Assuming that $m_{\tilde{\chi}_1^\pm} = 0.5 (m_{\tilde{q}}^2 + m_{\tilde{\chi}_1^0})$, squark masses below 1150 GeV are excluded for massless LSP, see their Fig. 14(a). Exclusions are also shown assuming $m_{\tilde{\chi}_1^0} = 60$

GeV, see their Fig. 14(b).

- GeV, see their Fig. 14(b). ¹⁰ SIRUNYAN 18AA searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least one photon and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on wino masses in a general gauge-mediated SUSY breaking (GGM) scenario with bino-like $\tilde{\chi}_1^0$ and wino-like $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$, see Figure 7. Limits are also set on the NLSP mass in the Tchiln1A and Tchilch1A simplified models, see their Figure 8. Finally, limits are set on the gluino mass in the Tglu4A and Tglu4B simplified models, see their Figure 9, and on the squark mass in the Tskq4A and Tsqk4B simplified models, see their Figure 10. ¹¹ SIRUNYAN 18AY searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing one or more lets and significant E_T . No significant excess above the Standard
- containing one or more jets and significant E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified models, see their Figure 3. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbot1, Tstop1 and Tstop4 simplified models, see their Figure 3. Finally, limits are set on long-lived gluino masses in a Tglu1A simplified model where the gluino is metastable or long-lived with proper decay lengths in the range 10^{-3} mm $< c\tau < 10^5$ mm, see their Figure 4.

- ¹²AABOUD 17AR searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one isolated lepton, at least two jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.25 TeV are set on the 1st and 2nd generation squark masses in TsqA3 simplified models, with $x = (m_{\tilde{\chi}_1^\pm} m_{\tilde{\chi}_1^0}) / (m_{\tilde{q}} m_{\tilde{\chi}_1^0}) = 1/2$. Similar limits are obtained for variable x and fixed neutralino mass, $m_{\tilde{\chi}_1^0} = 60$ GeV. See their Figure 13.
- ¹³AABOUD 17N searched in 14.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with 2 same-flavour, opposite-sign leptons (electrons or muons), jets and large missing transverse momentum. The results are interpreted as 95% C.L. limits in Tsqk2 models, assuming $m_{\chi_1^0} = 0$ GeV and $m_{\chi_2^0} = 600$ GeV. See their Fig. 12 for exclusion limits as a function of $m_{\chi_1^0}$ a function of $\tilde{m}_{\widetilde{\chi}^0_2}$.
- $\chi_2^{\prime 2}$ X4 KHACHATRYAN 17P searched in 2.3 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with one or more jets and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A, Tglu3B, Tglu3C and Tglu3D simplified models, see their Figures 7 and 8. Limits are also set on the squark mass in the Tglt1 simplified model, see their Fig. 7, and on the sbottom mass in the Tsbot1 simplified model, see Fig. 8. Finally, limits are set on the stop mass in the Tstop1, Tstop3, Tstop4, Tstop6 and Tstop7 simplified models, see Fig. 8. Fig. 8
- Fig. 8. ¹⁵ KHACHATRYAN 17v searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two photons and large E_T . No significant excess above the Standard Model ex-pectations is observed. Limits are set on the gluino and squark mass in the context of general gauge mediation models Tglu4B and Tsqk4, see their Fig. 4. ¹⁶ SIRUNYAN 17Av searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least one photon, jets and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4A and Tglu4B simplified models, and on the squark mass in the Tskq4A and Tsqk4B simplified models, see their Figure 6. ¹⁷ SIPLINVAN 17ar searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events
- see their Figure 6. ¹⁷ SIRUNYAN 17Az searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one or more jets and large \mathcal{P}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A simplified models, see their Figures 6. Limits are also set on the squark mass in the Tsqk1 simplified model (for single light squark and for 8 degenerate light squarks), on the sbottom mass in the Tsbot1 simplified model and on the stop mass in the Tstop1 simplified model, see their Fig. 7. Finally, limits are set on the stop mass in the Tstop2, Tstop4 and Tstop8 simplified models, see Fig. 8. ¹⁸ SIRUNYAN 17*p* searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with multiple jets and large \mathcal{P}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu1A, Tglu3A and Tglu3D simplified models, see their Fig. 12. Limits are also set on the squark mass in the Tsqb1 simplified model, on the stop mass in the Tstop1 simplified model, and on the sbottom mass in the Tsbot1 simplified model, see Fig. 13. ¹⁹ AABOUD 16D searched in 3.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with an energetic jet and large missing transverse momentum. The results are interpreted as 9% C.L. limits on masses of first and second generation squark decaying into a quark and the lightest neutralino in scenarios with $m_{\widetilde{q}} m_{\widetilde{\lambda}_1^0} < 25$ GeV. See their Fig. 6. ²⁰ AABOUD 16N searched in 3.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing hadronic jets, large \mathcal{E}_T , and no electrons or muons. No significant excess above the Standard Model expectations is observed. First- and second-generation squark masses below 1030 GeV are excluded at the 95% C.L. decaying to quarks and a massless lightest neutralino. See their Fig. 7a. 17 SIRUNYAN 17AZ searched in 35.9 fb $^{-1}$ of pp collisions at \sqrt{s} = 13 TeV for events

- below 1030 GeV are excluded at the 95% C.L. decaying to quarks and a massless lightest neutralino. See their Fig. 7a. ²¹ KHACHATRYAN 168s searched in 2.3 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with at least one energetic jet , no isolated leptons, and significant \mathcal{F}_T , using the transverse mass variable M_T_2 to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the squark mass in the Tskq1 simplified model, both in the assumption of a single light squark and of 8 degenerate squarks, see Fig. 11 and Table 3.
- squark and of 8 degenerate squarks, see Fig. 11 and radie 3. 22 AAD 15BV summarized and extended ATLAS searches for gluinos and first- and second-generation squarks in final states containing jets and missing transverse momentum, with or without leptons or b-jets in the $\sqrt{s}=8$ TeV data set collected in 2012. The paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as new analyses. Exclusion limits at 95% C.L. are set on the squark mass in several R-parity conserving models. See their Figs. 9, 11, 18, 22, 24, 27, 32
- ²⁸. ²³ AAD 15cs searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for evidence of pair production of squarks, decaying into a quark and a neutralino, where a photon was radiated either from an initial-state quark, from an intermediate squark, or form a final-state quark. No evidence was found for an excess above the expected level of Standard Model background and a 95% C.L. exclusion limit was set on the squark mass as a function of the squark neutraline mark difference cose [19].
- Model background and a 95% C.L. exclusion limit was set on the squark mass as a function of the squark-neutralino mass difference, see Fig. 19. 24 AAD 15K searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events containing at least two jets, where the two leading jets are each identified as originating from *c*-quarks, and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95% C.L. are set on the mass of superpartners of charm quarks (\tilde{c}). Assuming that the decay $\tilde{c} \to c \tilde{\chi}_1^0$ takes place 100% of the time, a scalar charm mass below 490 GeV is excluded for $m_{\tilde{\chi}_1^0} < 200$
- GeV. For more details, see their Fig. 2. ²⁵ KHACHATRYAN 15AF searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with at least two energetic jets and significant \mathcal{E}_{T_1} using the transverse mass variable M_{T_2} to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the squark mass in simplified models where the decay $\tilde{q} \rightarrow q \tilde{\chi}_1^0$ takes place with a branching ratio of 100% back for the case of a single light source for a degenerate squarks, see Fig. 12. 100%, both for the case of a single light squark or 8 degenerate squarks, see Fig. 12. See also Table 5. Exclusions in the CMSSM, assuming $\tan\beta = 30$, $A_0 = -2 \max(m_0, m_0)$ $m_{1/2})$ and μ > 0, are also presented, see Fig. 15.
- $^{-1/2}$ (as μ or the the permission of the second sec via $\tilde{q} \to q \tilde{\chi}_1^0$, where either a single light state or two degenerate generations of squarks are assumed, see Fig. 10.
- 27 CHATRCHYAN 14AH searched in 4.7 fb $^{-1}$ of pp collisions at \sqrt{s} = 7 TeV for events

 R^2) to discriminate between signal and background processes. No significant excess To a discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on squark masses in simplified models where the decay $\tilde{q} \rightarrow q \tilde{\chi}_1^0$ takes place with a branching ratio of 100%, see Fig. 28. Exclusions in the CMSSM, assuming $\tan \beta = 10$, $A_0 = 0$ and $\mu > 0$, are also presented, see Fig. 26.

- ²⁸ CHATRCHYAN 14 searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events containing multijets and large E_T . No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing squarks that decay via $\widetilde{q} \rightarrow q \widetilde{\chi}_1^0$, where either a single light state or two degenerate generations of squarks are assumed, see Fig. 7a.
- ²⁹ AAD 13. searched in 4.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for the production of squarks and gluinos in events containing jets, missing transverse momentum and no high-
- ²⁹ AAD 13L searched in 4.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for the production of squarks and gluinos in events containing jets, missing transverse momentum and no high *pT* electrons or muons. No excess over the expected SM background is observed. In mSUGRA/CMSSM models with tanβ = 10, $A_0 = 0$ and $\mu > 0$, squarks and gluinos of equal mass are excluded for masses below 1360 GeV at 95% C.L. In a simplified model containing only squarks of the first two generations, a gluino octet and a masses neutralino, squark masses below 1320 GeV are excluded at 95% C.L. for gluino masses below 2 TeV. See Figures 10-15 for more precise bounds. ³⁰ AAD 13Q searched in 4.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events containing a high-*pT* isolated photon, at least one jet identified as originating from a bottom quark, and high missing transverse momentum. Such signatures may originate from supersymmetric models with gauge-mediated supersymmetry breaking in events in which one of a pair of higgsino-like neutralinos decays into a photon and a gravition. No significant excess above the expected background was found and limits were set on the squark masses a function of the neutralino masses (GMSB model (GGM) with a higgsino-like neutralino MLSP, see their Fig. 4. For neutralino masses greater than 220 GeV, squark masses below 1020 GeV are excluded at 95% C.L. ³¹ CHATRCHYAN 13 looked in 4.98 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events with two opposite-sign leptons (*e*, μ , τ), jets and missing transverse energy. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in the mSUGRA/CMSSM model with tanβ = 10, $A_0 = 0$ and $\mu > 0$, squarks and gluinos in events containing 0,1,2, ≥ 3 b-jets, missing transverse momentum and no electrons or muons. No excess over the expected SM background is observed. In mSUGRA/CMSSM models with tanβ = 10, $A_0 = 0$, and $\mu > 0$, squarks and gluinos of equal mass are excluded for masses below 1250 GeV at 95% C.L. ³

- framework, where the $\tilde{\chi}_1^0$ decays through a singlino (\tilde{S}) intermediate state to $\gamma S \tilde{G}$, with the singlet state S decays through a singlino (\tilde{S}) intermediate state to $\gamma S \tilde{G}$, with the singlet state S decaying to two jets. No significant excess above the expected background was found and limits were set in a particular R-parity conserving stealth SUSY model. The model assumes $m_{\tilde{\chi}_1^0}^0 = 0.5 m_{\tilde{G}}$, $m_{\tilde{S}}^{-} = 100$ GeV and $m_S = 90$ GeV.

Under these assumptions, squark masses less than 1430 GeV were excluded at the 95%

- plified models where the decay $\tilde{q} \rightarrow q \tilde{\chi}_1^0$ takes place with a branching ratio of 100%, assuming an eightfold degeneracy of the masses of the first two generation squarks, see
- piffed models where the decay $\tilde{q} \rightarrow q \tilde{\chi}_1^0$ takes place with a branching ratio of 100%, assuming an eightfold degeneracy of the masses of the first two generation squarks, see Fig. 8 and Table 9. Also limits in the case of a single light squark are given. 35 AAD 12Ax searched in 1.04 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for supersymmetry in events containing jets, missing transverse momentum and one isolated electron or muon. No excess over the expected SM background is observed and model-independent limits are set on the cross section of new physics contributions to the signal regions. In mSUGRA/CMSSM models with $\tan\beta = 10$, $A_0 = 0$ and $\mu > 0$, squarks and gluinos of equal mass are excluded for masses below 820 GeV at 95% C.L. Limits are also set on simplified models for squark production and decay via an intermediate chargino and on supersymmetric models with blinear R-parity violation. Supersedes AAD 116. 36 AAD 12CJ searched in 4.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events containing one or more isolated leptons (electrons or muons), jets and \mathcal{F}_T . The observations are in good agreement with the SM expectations and exclusion limits have been set in number of SUSY models. In the mSUGRA/CMSSM model with $\tan\beta = 10$, $A_0 = 0$, and $\mu > 0$, 95% C.L. exclusion limits have been derived for $m_{\widetilde{q}} < 1200$ GeV, assuming equal squark and gluino masses. In minimal GMSB, values of the effective SUSY breaking scale A < 50 TeV are excluded at 95% C.L. for $\tan\beta < 45$. Also exclusion limits in a number of simplified models have been presented, see Figs. 10 and 12. 37 AAD 12cP searched in 4.8 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events with two photons and large \mathcal{F}_T due to $\bar{\chi}_1^0 \rightarrow \gamma \widetilde{G}$ decays in a GMSB framework. No significant excess above the expected background was found and limits were set on the squark mass as a function of the neutralino mass. In ageneralized GMSB model (GGM) with a bino-like neutralino NLSP. The otherer sparticle masses were decoupled, ta
- c 0.1 mm. Also, in the framework of the SPS8 model, a 95% C.L. lower limit was set on the breaking scale A of 196 TeV.
 38 AAD 12W searched in 1.04 fb⁻¹ of pp collisions at √s = 7 TeV for the production of squarks and gluinos in events containing jets, missing transverse momentum and no electrons or muons. No excess over the expected SM background is observed. In mSUGRA/CMSSM models with tanβ = 10, A₀ = 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 950 GeV at 95% C.L. In a simplified model containing only squarks of the first two generations, a gluino octet and a massless neutratino, squark masses below 875 GeV are excluded at 95% C.L.
 39 CHATRCHYAN 12 looked in 35 pb⁻¹ of pp collisions at √s = 7 TeV for events with e and/or µ and/or jets, a large total transverse energy, and \mathcal{F}_T . The event selection is based on the dimensionless razor variable R, related to the \mathcal{E}_T and M_R , an indicator of the heavy particle mass scale. No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM (m_0 , $m_{1/2}$) plane for tanβ = 3, 10 and 50 (see Fig. 7 and 8). Limits are also obtained for Simplified Model Spectra.
- ⁴⁰ CHATRCHYAN 12AE searched in the children ($m_0, m_{1/2}$) plane for table 2, 10 and 50 (see Fig. 7 and 8). Limits are also obtained for Simplified Model Spectra. ⁴⁰ CHATRCHYAN 12AE searched in 4.98 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV for events with at least three jets and large missing transverse momentum. No significant excesses over the expected SM backgrounds are observed and 95% C.L. limits on the production cross section of squarks in a scenario where $\tilde{q} \rightarrow q \tilde{\chi}_1^0$ with a 100% branching ratio, see Fig. 3. For $m_{\chi_1^0} < 200$ GeV, values of $m_{\tilde{q}}$ below 760 GeV are excluded at 95% C.L. limits on the production cross section of $\chi_1^0 < 200$ GeV, solves of $m_{\tilde{q}}$ below 760 GeV are excluded at 95% C.L. Also limits in the CMSSM are presented, see Fig. 2.

- $^{41}\,{\rm CHATRCHYAN}$ 12AT searched in 4.73 fb $^{-1}$ of $p\,p$ collisions at \sqrt{s} = 7 TeV for the consider a service of the production of squarks and gluinos in events containing jets, missing transverse momentum and no electrons or muons. No excess over the expected SM background is observed. In mSUGRA/CMSSM models with $\tan \beta = 10$, $A_0 = 0$ and $\mu > 0$, squarks with masses below 1110 GeV are excluded at 95% C.L. Squarks and gluinos of equal mass are excluded for masses below 1180 GeV at 95% C.L. Exclusions are also derived in various simplified models, see Fig. 6.
- models, see Fig. b. 4^{2} AABOUD 18V searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tsqk5 model. Squark masses below 1100 GeV are excluded if $(m_{\tilde{\chi}_{2}^{0}}^{2} m_{\tilde{\chi}_{1}^{0}})/(m_{\tilde{q}}^{2} m_{\tilde{\chi}_{1}}^{0}) < 0.95$ and $m_{\tilde{\chi}_{1}^{0}}$ = 60 GeV, see their Fig. 16(a).
- = 60 GeV, see their Fig. 10(a). 4^{3} KHACHATRYAN 16BT performed a global Bayesian analysis of a wide range of CMS results obtained with data samples corresponding to 5.0 fb⁻¹ of pp collisions at \sqrt{s} = 7 TeV and in 19.5 fb⁻¹ of pp collisions at \sqrt{s} = 8 TeV. The set of searches considered, both individually and in combination, includes those with all-hadronic final states, same-both individually and in combination, and more that the fact final states. sign and opposite-sign dileptons, and multi-lepton final states. An interpretation was given in a scan of the 19-parameter pMSSM. No scan points with a gluino mass less than 500 GeV survived and 98% of models with a squark mass less than 300 GeV were
- excluded. 44 AAD 15AI searched in 20 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events contain-ing at least one isolated lepton (electron or muon), jets, and large missing transverse momentum. No excess of events above the expected level of Standard Model back-ground was found. Exclusion limits at 95% C.L. are set on the squark masses in the CMSSM/mSUGRA, see Fig. 15, in the NUHMG, see Fig. 16, and in various simplified
- CMSSM/mSUGRA, see Fig. 15, in the NOTING, see Fig. 10, and in various simplified models, see Figs. 19-21. 45 KHACHATRYAN ISAR searched in 19.7 of b^{-1} of pp collisions at $\sqrt{s} = 8$ TeV for events containing jets, either a charged lepton or a photon, and low missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits are set on the squark mass in a stealth SUSY model where the decays $\widetilde{q}
 ightarrow q \, \widetilde{\chi}_1^\pm$, $\rightarrow \tilde{S} W^{\pm}$. $\tilde{S} \rightarrow S \tilde{G}$ and $S \rightarrow g g$, with $m_{\simeq} = 100$ GeV and $m_{S} = 90$ GeV, take

$$\chi_1 \rightarrow 5 \text{ W}^-, 5 \rightarrow 50 \text{ and } 5 \rightarrow gg, \text{ with } m_{\widetilde{S}}^- = 100 \text{ GeV}$$
 and $m_{\widetilde{S}}^- = 50 \text{ GeV}, \text{ take}$

- $\chi_1^- \to S W^+$, $S \to SG$ and $S \to gg$, with $m_{\widetilde{S}} = 100$ GeV and $m_S = 90$ GeV, take place with a branching ratio of 100%. See Fig. 6 for γ or Fig. 7 for ℓ^{\pm} analyses. ⁴⁶ KHACHATYAN 15AZ searched in 19.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with either at least one photon, hadronic jets and \mathcal{B}_T (single photon channel) or with at least two photons and at least one jet and using the razor variables. No significant excess above the Standard Model expectations is observed. Limits are set on gluino masses in the general gauge-mediated SUSY breaking model (GGM), for both a bino-like and wino-like neutralino NLSP scenario, see Fig. 8 and 9. ⁴⁷ AAD 14E searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for strongly produced supersymmetric particles in events containing jets and two same-sign leptons or three leptons. The search also utilises jets originating from *b*-quarks, missing transverse mo-mentum and other variables. No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing gluinos and squarks, see Fig-ures 5 and 6. In the $\tilde{q} \to q' \chi_1^{\pm}$, $\chi_1^{\pm} \to W(*)^{\pm} \chi_2^0$, $\chi_2^0 \to Z(*) \chi_1^0$ simplified model, the following assumptions have been made: $m_{\chi_1^{\pm}} = 0.5 m_{\chi_1^0} + m_{\widetilde{6}} \cdot m_{\chi_2^0} = 0.5 (m_{\chi_1^0})$ $+ m_{\chi_1}$) In the $\tilde{a} \to q' \chi^{\pm}$ or $\tilde{a} \to q' \chi_2^0$ $\chi_2^{\pm} \to \chi_2^{\pm} \to \chi_2^0 = 0.5 (m_{\chi_1^0})$

$$+ m_{\widetilde{\chi}_1^{\pm}} \text{). In the } \widetilde{q} \rightarrow q' \widetilde{\chi}_1^{\pm} \text{ or } \widetilde{q} \rightarrow q' \widetilde{\chi}_2^0, \widetilde{\chi}_1^{\pm} \rightarrow \ell^{\pm} \nu \widetilde{\chi}_1^0 \text{ or } \widetilde{\chi}_2^0 \rightarrow \ell^{\pm} \ell^{\mp} (\nu \nu) \widetilde{\chi}_1^0$$

simplified model, the following assumptions have been made: $m_{\widetilde{\chi}_1^\pm} = m_{\widetilde{\chi}_2^0} = 0.5$ ($m_{\widetilde{\chi}_1^0}$ + $m_{\widetilde{q}}$), $m_{\widetilde{\chi}^0_1}$ < 460 GeV. Limits are also derived in the mSUGRA/CMSSM, bRPV and

GMSB models, see their Fig. 8.

- GMSB models, see their Fig. 8. ⁴⁸ CHATRCHYAN 13A0 searched in 4.98 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events with two opposite-sign isolated leptons accompanied by hadronic jets and E_T . No signif-icant excesses over the expected SM backgrounds are observed and 95% C.L. exclusion limits are derived in the mSUGRA/CMSSM model with tan $\beta = 10$, $A_0 = 0$ and $\mu > 0$, see Fig. 8.
- ⁴⁹CHATRCHYAN 13AV searched in 4.7 fb⁻¹ of pp collisions at $\sqrt{s} =$ 7 TeV for new heavy particle pairs decaying into jets (possibly b-tagged), leptons and \mathcal{F}_T using the Razor variables. No significant excesses over the expected SM backgrounds are observed and 95% C.L. exclusion limits are derived in the mSUGRA/CMSSM model with $\tan \beta = 10$, $A_0 = 0$ and $\mu > 0$, see Fig. 3. The results are also interpreted in various simplified models, see Fig. 4.
- models, see Fig. 4. 50 CHATRCHYAN 13w searched in 4.93 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events with one or more photons, hadronic jets and E_T . No significant excess above the Standard Model expectations is observed. Limits are set on squark masses in the general gauge-mediated SUSY breaking model (GGM), for both a wino-like and bino-like neutralino NLSP scenario, see Fig. 5. 51 DREINER 12A reassesses constraints from CMS (at 7 TeV, ~ 4.4 fb⁻¹) under the assumption that the fist and second generation squarks and the lightest SUSY particle are quasi-degenerate in mass (compressed spectrum). 52 DREINER 12A reassesses constraints from CMS (at 7 TeV, ~ 4.4 fb⁻¹) under the
- 52 DREINER 12A reassesses constraints from CMS (at 7 TeV, \sim 4.4 fb $^{-1}$) under the substitute that the first and second generation squarks, the gluon, and the lightest SUSY particle are quasi-degenerate in mass (compressed spectrum).

R-parity violating \tilde{a} (Squark) mass limit

		\ 1 /		
VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
none 100-720	95	¹ SIRUNYAN	18EA CMS	2 large jets with four-parton sub- structure, $\widetilde{q} \rightarrow 4q$
>1600	95	² KHACHATRY.	16BX CMS	$\widetilde{q} \rightarrow q \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \ell \ell \nu, \lambda_{121} \text{ or} \lambda_{122} \neq 0, m_{\widetilde{\sigma}} = 2400 \text{ GeV}$
>10 00	95	³ AAD	15св ATLS	jets, $\tilde{q} \rightarrow q \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \ell q q$, $m_{\tilde{\chi}_1^0} = 108 \text{ GeV and } 2.5 < c \tau_{\tilde{\chi}_1^0} < 200 \text{ mm}$
		⁴ AAD	12AX ATLS	ℓ +jets + $\not\!$
		⁵ CHATRCHYAN	12AL CMS	$\geq 3\ell^{\pm}$

 1 SIRUNYAN 18EA searched in 38.2 fb $^{-1}$ of $\rho\,\rho$ collisions at $\sqrt{s}=$ 13 TeV for the pair production of resonances, each decaying to at least four quarks. Reconstructed particles are clustered into two large jets of similar mass, each consistent with four-parton substructure. No statistically significant excess over the Standard Model expectation is observed. Limits are set on the squark and gluino mass in RPV supersymmetry models where squarks (gluinos) decay, through intermediate higgsinos, to four (five) quarks, see their Figure 4.

- containing a leptons coming non-report rotating sector $c_{11} + c_{12} + c_{13}$. O or $\lambda_{122} \neq 0$. No excess over the expected background is observed. Limits are derived on the gluino, squark and stop masses, see Fig. 23. ³AAD 15CB searched for events containing at least one long-lived particle that decays at a significant distance from its production point (displaced vertex, DV) into two leptons or into five or more charged particles in 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV. The dilepton signature is characterised by DV formed from at least two lepton candidates. Four different final states were considered for the multitrack signature, in which the DV must be accompanied by a high-transverse momentum muon or electron candidate that Four dimensional states were considered for the multitrack signature, in which the DV must be accompanied by a high-transverse momentum muon or electron candidate that originates from the DV, jets or missing transverse momentum. No events were observed in any of the signal regions. Results were interpreted in SUSY scenarios involving *R*-parity violation, split supersymmetry, and gauge mediation. See their Fig. 14-20. ⁴ AAD 12Ax searched in 1.04 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for supersymmetry in events constaining the missing transverse momentum and one isolated electron events.
- in events containing jets, missing transverse momentum and one isolated electron or muon. No excess over the expected SM background is observed and model-independent muon. No excess over the expected SM background is observed and model-independent limits are set on the cross section of new physics contributions to the signal regions. In mSUGRA/CMSSM models with $\tan\beta = 10$, $A_0 = 0$ and $\mu > 0$, squarks and gluinos of equal mass are excluded for masses below 820 GeV at 95% C.L. Limits are also set on simplified models for squark production and decay via an intermediate chargino and on supersymmetric models with bilinear R-parity violation. Supersedes AAD 11c. ⁵ CHATRCHYAN 12AL looked in 4.98 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for anomalous production of events with three or more isolated leptons. Limits on squark and gluino masses are set in RPV SUSY models with leptonic *LLE*couplings, $\lambda_{123} > 0.05$, and
- hadronic \overline{UDD} couplings, $\lambda_{112}'' > 0.05$, and hadronic \overline{UDD} couplings, $\lambda_{112}'' > 0.05$, see their Fig. 5. In the \overline{UDD} case the leptons arise from supersymmetric cascade decays. A very specific supersymmetric spectrum is assumed. All decays are prompt.

Long-lived \tilde{q} (Squark) mass limit

The following are bounds on long-lived scalar quarks, assumed to hadronise into hadrons with lifetime long enough to escape the detector prior to a possible decay. Limits may depend on the mixing angle of mass eigenstates: $\tilde{q}_1 = \tilde{q}_L \cos\theta_q + \tilde{q}_R \sin\theta_q$. The coupling to the Z⁰ boson vanishes for up-type squarks when θ_{μ} = 0.98, and for down type squarks when $\theta = 1.17$

	ypc 3quu C1 %		TECN	COMMENT
VALUE (GEV)	05			~ B
>1250	95	TAABOUD	19AT ATES	D R-hadrons
>1340	95	² AABOUD	19AT ATLS	$t R$ -hadrons \sim
>1600	95	° SIRUNYAN	19вн CMS	long-lived t, RPV, $t \rightarrow \overline{dd}$, 10
>1350	95	³ SIRUNYAN	19вн CMS	mm < $c\tau$ < 110 mm long-lived \tilde{t} , RPV, $\tilde{t} \rightarrow b\ell$, 7 mm < $c\tau$ < 110 mm
> 805	95	⁴ AABOUD	16B ATLS	D R-hadrons
> 890	95	⁵ AABOUD	16B ATLS	<i>t̃ R</i> -hadrons
>1040	95	⁶ KHACHATRY	16 BW C MS	\tilde{t} R-hadrons, cloud interaction
>1000	95	⁶ KHACHATRY	16 BW C MS	\tilde{t} R-hadrons, charge-suppressed interaction model
> 845	95	⁷ AAD	15 AE ATLS	\tilde{b} R-hadron, stable, Regge model
> 900	95	⁷ AAD	15 AE ATLS	\tilde{t} R-hadron, stable, Regge model
$>\!1500$	95	⁷ AAD	15 AE ATLS	g decaying to 300 GeV stable sleptons, LeptoSUSY model
> 751	95	⁸ aad	15 BM ATLS	\tilde{b} R-hadron, stable, Regge model
> 766	95	⁸ aad	15 BM ATLS	\tilde{t} R-hadron, stable, Regge model
> 525	95	⁹ KHACHATRY	15 ак СМS	\tilde{t} R-hadrons, 10 μ s < τ <1000 s
> 470	95	⁹ KHACHATRY	15ак СМЅ	\widetilde{t} R-hadrons, 1 μ s $< au$ <1000 s
• • • We do	not use	the following data f	or averages, fit	s, limits, etc. 🔹 🔹 🔹
> 683	95	¹⁰ aad	13AA ATLS	\tilde{t} , <i>R</i> -hadrons, generic interaction
> 612	95	11 AAD	13AA ATLS	\tilde{b} , <i>R</i> -hadrons, generic interaction
> 344	95	¹² AAD	13BC ATLS	R-hadrons, $\tilde{t} \rightarrow b \tilde{\chi}_1^0$, Regge
				model, lifetime between 10^{-5} and 10^3 s, $m_{\widetilde{\chi}^0_1}=100$ GeV
> 379	95	¹³ AAD	13BC ATLS	R-hadrons, $\tilde{t} \rightarrow t \tilde{\chi}_1^0$, Regge
				model, lifetime between 10 ⁻⁵

and 10^3 s, $m_{\widetilde{\chi}^0_1}=100~{
m GeV}$

¹⁴ CHATRCHYAN13AB CMS long-lived \tilde{t} forming R-hadrons, cloud interaction model > 935 95

- ¹AABOUD 19AT searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for metastable and stable *R*-hadrons. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined. No significant deviations from the expected Standard Model background are observed. Sobotom *R*-hadrons are excluded at 95% C.L. for masses below 1250 GeV. Less stringent constraints are achieved with the muon-spectrometer agnostic analysis. See their Figure 9 (bottom-left).
- ²AABOUD 19AT searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for metastable and AABOOD 19A1 searched in 30.110 of pp composing at $\sqrt{s} = 15$ lev to metastable and stable *R*-hadrons. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined. No significant deviations from the expected Standard Model background are observed. Stop *R*-hadrons are excluded at 95% C.L. for masses below 1340 GeV. Similar constraints are achieved with the muon-spectrometer
- agnostic analysis. See their Figure 9 (bottom-right). ³ SIRUNYAN 198H searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for long-lived particles decaying into jets, with each long-lived particle having a decay vertex well displaced from the production vertex. The selected events are found to be consistent with standard model predictions. Limits are set on the gluino mass in a GMSB model where the gluino is decaying via $\tilde{g} \to g \tilde{G}$, see their Figure 4 and in an RPV model of supersymmetry where the gluino is decaying via $\tilde{g} \to g \tilde{G}$, see their Figure 4 and in an RPV model of supersymmetry where the gluino is decaying via $\tilde{g} \to t \tilde{b} \tilde{s}$, see their Figures 5. Limits are also set on the stop mass in two RPV models, see their Figure 6 (for $\tilde{t} \to b \ell$ decays) and Figure 7 (for $\tilde{t} \to d \bar{d} d$ decays). **4** AABOUD 16B searched in 3.2 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for long-lived B bedress using characterization to the stop mass in two RPV models, see the second se
- R-hadrons using observables related to large ionization losses and slow propagation ve-locities, which are signatures of heavy charged particles traveling significantly slower than

the speed of light. Exclusion limits at 95% C.L. are set on the long-lived sbottom masses

- The speed of light. Exclusion limits at 95% C.L. are set on the long-lived solution masses exceeding 805 GeV. See their Fig. 5. ⁵ AABOUD 16B searched in 3.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for long-lived *R*-hadrons using observables related to large ionization losses and slow propagation velocities, which are signatures of heavy charged particles traveling significantly slower than the speed of light. Exclusion limits at 95% C.L. are set on the long-lived stop masses exceeding 890 GeV. See their Fig. 5.
- 6 KHACHATRYAN IGEW searched in 2.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with heavy stable charged particles, identified by their anomalously high energy deposits in the silicon tracker and/or long time-of-flight measurements by the muon system. No evidence for an excess over the expected background is observed. Limits are derived for pair production of top squarks as a function of mass, depending on the interaction model, see Fig. 4 and Table 7.
- ⁷AAD 15AE searched in 19.1 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for heavy long-lived charged particles, measured through their specific ionization energy loss in the $\rm ATLAS$ pixel detector or their time-of-flight in the ALTAS muon system. In the absence of an pixel detector or their time-or-night in the ALIAS muon system. In the absence of an excess of events above the expected backgrounds, limits are set R-hadrons in various scenarios, see Fig. 11. Limits are also set in LeptoSUSY models where the gluino decays to stable 300 GeV leptons, see Fig. 9. ⁸ AAD 15BM searched in 18.4 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for stable and metastable non-relativistic charged particles through their anomalous specific ionization or every lists in 21.4 So bird 4 detection by observed for an excerce of events above the
- energy loss in the ATLAS pixel detector. In absence of an excess of events above the expected backgrounds, limits are set on stable bottom and top squark R-hadrons, see Table 5
- SHALES. WE ALSO THE STREAM ST
- the expected background in a cloud interaction model is observed. Assuming the decay $\tilde{t} \rightarrow t \tilde{\chi}_1^0$ and lifetimes between 1 μ s and 1000 s, limits are derived on \tilde{t} production as a function of $m_{\overline{Q}_1}$, see Figs. 4 and 7. The exclusions require that $m_{\tilde{\chi}_1^0}$ is kinematically consistent with the minimum values of the jet energy thresholds used. ¹⁰AAD 13AA searched in 4.7 fb⁻¹ of ρp collisions at $\sqrt{s} = 7$ TeV for events containing colored long-lived particles that hadronize forming *R*-hadrons. No significant excess above the expected background was found. Long-lived *R*-hadrons containing a \tilde{t} are excluded for masses up to 683 GeV at 95% C.L in a general interaction model. Also, limits independent of the fraction of *R*-hadrons that arrive charged in the muon system were derived see Fig. 6 were derived, see Fig. 6.
- We derived, see Fig. 0. ¹¹ AAD 13AA searched in 4.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events containing colored long-lived particles that hadronize forming *R*-hadrons. No significant excess above the expected background was found. Long-lived R-hadrons containing a \tilde{b} are excluded for masses up to 612 GeV at 95% C.L in a general interaction model. Also, limits independent of the fraction of R-hadrons that arrive charged in the muon system were derived, see Fig. 6.
- 22 ADD 136 searched in 5.0 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV and in 22.9 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for bottom squark R-hadrons that have come to rest within the ATLAS calorimeter and decay at some later time to hadronic jets and a neutralino. In absence of an excess of events above the expected backgrounds, limits are set on sbottom masses for the decay $\tilde{b} \rightarrow b \tilde{\chi}_1^0$, for different lifetimes, and for a neutralino
- subtraction masses for the decay $b \rightarrow b_X^{eq}$, for different lifetimes, and for a neutralino mass of 100 GeV, see their Table 6 and Fig 10. ¹³ AAD 13BC searched in 5.0 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV and in 22.9 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for bottom squark R-hadrons that have come to rest within the ATLAS calorimeter and decay at some later time to hadronic jets and a neutralino. In absence of an excess of events above the expected backgrounds, limits are set on stop masses for the decay $\tilde{t} \rightarrow t \tilde{\chi}_1^0$, for different lifetimes, and for a neutralino mass of 100 GeV, see their Table 6 and Fig 10.
- $^{14}\,{\rm CHATRCHYAN}$ 13AB looked in 5.0 fb $^{-1}$ of pp collisions at \sqrt{s} = 7 TeV and in 18.8 $\rm fb^{-1}$ of $p\,p$ collisions at \sqrt{s} = 8 TeV for events with heavy stable particles, identified by their anomalous dE/dx in the tracker or additionally requiring that it be identified as muon in the muon chambers, from pair production of \tilde{t}_1 's. No evidence for an excess over the expected background is observed. Limits are derived for pair production of stops as a function of mass in the cloud interaction model (see Fig. 8 and Table 6). In the charge-suppressed model, the limit decreases to 818 GeV.

b (Sbottom) mass limit

Limits in $e^+\,e^-$ depend on the mixing angle of the mass eigenstate $\widetilde{\it b}_1$ $= \tilde{b}_L \cos\theta_b + \tilde{b}_R \sin\theta_b$. Coupling to the Z vanishes for $\theta_b \sim 1.17$. As a consequence, no absolute constraint in the mass region \lesssim 40 GeV is available in the literature at this time from e^+e^- collisions. In the Listings below, we use $\Delta m = m_{\widetilde{b}_1} - m_{\widetilde{\chi}_1^0}$.

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, *et al.* (Particle Data Group), Chinese Physics **C38** 070001 (2014) (http://pdg.lbl.gov).

R-parity conserving \tilde{b} (Sbottom) mass limit

r 7		• • •		
VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>1500	95	¹ AAD	19н ATLS	\geq 3 <i>b</i> -jets_+ $ ot\!$
				$h(ightarrow b \overline{b}), m_{\widetilde{\chi}^0_1} = 60 { m GeV}$
$> \! 1 300$	95	² AAD	19н ATLS	\geq 3 <i>b</i> -jets+ $ ot\!$
				bb), $m_{\widetilde{\chi}^0_2} = m_{\widetilde{\chi}^0_1}$ +130 GeV
>1220	95	³ SIRUNYAN	19сн C MS	jets+ $ ot\!$
> 530	95	⁴ SIRUNYAN	19ci CMS	$\geq 1 H (\rightarrow \gamma \gamma) + jets + E_T$, Ts-
				bot4, $m_{\widetilde{\chi}^0_2} = m_{\widetilde{\chi}^0_1} + 130$ GeV,
				$m_{\widetilde{\chi}_1^0} = 1 \text{ GeV}$
> 430	95	⁵ AABOUD	181 ATLS	\geq 1 jets+ $ ot\!$
				$m_{\tilde{\chi}_1^0} \sim m_b$

> 840	95	⁶ SIRUNYAN	18AL CMS	\geq 3 ℓ^{\pm} + jets + $ ot\!$
> 975	95	⁷ SIRUNYAN	18AR CMS	$\ell^{\pm}_{\ell^{\mp} + \text{jets} + \!$
>1060	95	⁸ SIRUNYAN	18AY CMS	jets+ $\not\!$
>1230	95	⁹ SIRUNYAN	18B CMS	jets+ $\not\!\!\!E_T$, Tsbot1, $m_{\sim 0} = 0$ GeV
> 420	95	¹⁰ sirunyan	18x CMS	$ \begin{array}{l} \chi_{\widetilde{1}} \\ \geq 1 \ H \ (\rightarrow \gamma \gamma) + \text{jets} + \not\!$
> 700	95	¹¹ AABOUD	17AJ ATLS	same-sign $\ell^{\pm} \ell^{\pm}$ / 3 ℓ + jets + $\!$
> 950	95	¹² AABOUD	17AX ATLS	2 <i>b</i> -jets+ $\not\!\!\!E_T$, Tsbot1, $m_{\widetilde{\chi}^0_1} = 0$
> 880	95	¹³ AABOUD	17AX ATLS	GeV 2 <i>b</i> -jets + $\not\!$
> 315	95	¹⁴ KHACHATRY	17A CMS	2 VBF jets $+ \not\!$
> 450	95	¹⁵ KHACHATRY	17AW C MS	$\geq 3\ell^{-1}$, 2 jets, Tsbot2, $m_{\widetilde{\chi}^0_1} = 50$ GeV, $m_{\sim+} = 200$ GeV
> 800	95	¹⁶ KHACHATRY	17p CMS	1 or more jets+ $\not\!$
>1175	95	¹⁷ SIRUNYAN	17AZ CMS	= 0 GeV \geq 1 jets+ $ ot\!$
> 890	95	¹⁸ SIRUNYAN	17K CMS	GeV iets+ E_T . Tsbot1. $m_{\sim 0} = 0$ GeV
> 810	95	¹⁹ sirunyan	17s CMS	same-sign $\ell^{\pm}\ell^{\pm}$ + jets + $\not\!$
> 323	95	²⁰ AABOUD	16D ATLS	$ \begin{array}{c} 100 \text{ GeV} \\ \geq 1 \text{ jet } + \not \!$
> 840	95	²¹ AABOUD	16Q ATLS	= 5 GeV 2 <i>b</i> -jets + $\not\!$
> 540	95	²² AAD	16BB ATLS	GeV 2 same-sign /3 ℓ + jets + $\not\!\!\!E_T$, Ts- bot2, $m_{\widetilde{\chi}^0}$ < 55 GeV
> 680	95	²³ KHACHATRY	16BJ CMS	same-sign $\ell^{\pm}_{\pm} \ell^{\pm}$, Tsbot2, $m_{\tilde{\chi}_{1}^{\pm}} < 550$ GeV, $m_{\sim 0} = 50$ GeV
> 500	95	²³ KHACHATRY.	16вј СМЅ	same-sign $\ell^{\pm} \ell^{\chi_1}_{\pm}$, Tsbot2, $m_{\widetilde{b}} - m_{\widetilde{\chi}^{\pm}} < 100$ GeV, $m_{\widetilde{\chi}^0} = 50$ GeV
> 880	95	²⁴ KHACHATRY		jets + E_T , Tsbot1, $m_{\sim 0} = 0$ GeV
> 550	95	²⁵ KHACHATRY.	16вү СМЅ	opposite-sign $\ell^{\pm}\ell^{\pm}$, Tsbot3, $m_{\tilde{\chi}^0_1}$
> 600	95	²⁶ AAD	15cJ ATLS	$ \begin{array}{l} = 100 \\ \widetilde{b} \rightarrow b \widetilde{\chi}_1^0, \ m_{\widetilde{\chi}_1^0} \ < 250 \ {\rm GeV} \end{array} $
> 440	95	²⁶ AAD	15cJ ATLS	$\tilde{b} \rightarrow t \tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow W^{(*)} \tilde{\chi}_{1}^{0}, m_{\tilde{\chi}_{1}^{0}}$
none 300-650	95	²⁶ AAD	15cJ ATLS	$ \widetilde{b} \to \widetilde{b} b \widetilde{\chi}_2^0, \widetilde{\chi}_2^0 \to h \widetilde{\chi}_1^0, m_{\widetilde{\chi}_1^0} = $
> 640	05	27 KHACHATRY	15AF CMS	$\tilde{b} \sim b\tilde{\omega}^0 m = 0$
> 650	05	28 KHACHATEN		$\tilde{\lambda}_{1}, \tilde{\lambda}_{1}^{0} = 0$
> 650	95	-* KHACHATKY	ISAH CIVIS	$b \rightarrow b \chi_1^{\circ}, m_{\widetilde{\chi}_1^0} = 0$
> 250	95	²⁰ KHACHATRY	15ан СМЅ	$b \rightarrow b \widetilde{\chi}_{1}^{0}, m_{\widetilde{b}} - m_{\widetilde{\chi}_{1}^{0}} < 10 \text{ GeV}$
> 570	95	²⁹ KHACHATRY	151 CMS	$ \begin{split} \widetilde{b} &\to t \widetilde{\chi}_1^{\pm}, \widetilde{\chi}_1^{\pm} \to W^{\pm} \widetilde{\chi}_1^0, m_{\widetilde{\chi}_1^0} \\ &= 50 \text{ GeV}, 150 < m_{\widetilde{\chi}^{\pm}} < 300 \text{ GeV} \end{split} $
> 255	95	³⁰ AAD	14⊤ ATLS	$\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0, m_{\tilde{h}} - m_{\tilde{\chi}_1^0} \approx m_h$
> 400	95	³¹ CHATRCHYAN	I 14AH CMS	jets + $\not\!$
		³² CHATRCHYAN	I14r CMS	$ \geq 3\ell^{\pm}, \ \tilde{b} \rightarrow t \ \tilde{\chi}_{1}^{\pm}, \ \tilde{\chi}_{1}^{\pm} \rightarrow \\ W^{\pm} \tilde{\chi}_{1}^{0} \ \text{simplified model}, \ m_{\tilde{\chi}_{1}^{0}} $
● ● ● We do	not use	the following data ³³ KHACHATRY	for averages, 15AD CMS	= 50 GeV fits, limits, etc. • • • $\ell^{\pm}\ell^{\mp} + jets + \!$
none 340-600	95	³⁴ AAD	14AX ATLS	$\begin{array}{l} b\ell^{\pm}\ell^{+}\widetilde{\chi}_{1}^{\mathrm{U}}\\ \geq 3 b\text{-jets}+\mathcal{F}_{T},\widetilde{b}\rightarrowb\widetilde{\chi}_{2}^{0}\text{sim-}\\ \text{plified model with}\widetilde{\chi}_{2}^{0}\rightarrowh\widetilde{\chi}_{1}^{0}, \end{array}$
> 440	95	³⁵ AAD	14e ATLS	$m_{\tilde{\chi}_1^0} = 60 \text{ GeV}, \ m_{\tilde{\chi}_2^0} = 300 \text{ GeV}$ $\ell^{\pm} \ell^{\pm} (\ell^{\mp}) + \text{jets}, \ \tilde{b}_1 \to t \tilde{\chi}_1^{\pm}$ with $\tilde{z}^{\pm} \to w(*) \pm -0 \to \infty$
				plified model, $m_{\tilde{\chi}_1^{\pm}} = 2 m_{\tilde{\chi}_1^{0}}$

> 500	95	³⁶ CHATRCHYAN14H CMS	same-sign $\ell^{\pm}\ell^{\pm}$, $\widetilde{b} \rightarrow t \widetilde{\chi}_{1}^{\pm}$,
			${\widetilde \chi}_1^\pm o \ {\it W}^\pm {\widetilde \chi}_1^0$ simplified
			model, $m_{\widetilde{\chi}_1^\pm}=2$ GeV, $m_{\widetilde{\chi}_1^0}=$
> 620	95	³⁷ AAD 13AU ATLS	$\begin{array}{rcl} 100 \; {\rm GeV} \\ 2 \; b\text{-jets} \; + \; {\not\!\! E}_T, \; { \vec b}_1 \; \to \; b \; { \vec \chi}_1^0, \; m_{{ \vec \chi}_1^0} < \end{array}$
> 550	95	³⁸ CHATRCHYAN13AT CMS	120 GeV jets $+ \not\!$
> 600	95	³⁹ CHATRCHYAN13T CMS	jets + E_T , $\widetilde{b} \rightarrow b \widetilde{\chi}_1^0$ simplified model, $m_{\widetilde{\chi}^0} = 0$ GeV
> 450	95	⁴⁰ CHATRCHYAN13V CMS	same-sign $\ell^{\pm} \ell^{\pm} + \geq 2$ b-jets, $\widetilde{b} \to t \widetilde{\chi}_{1}^{\pm}, \widetilde{\chi}_{1}^{\pm} \to W^{\pm} \widetilde{\chi}_{1}^{0}$ sim-
			plified model, $m_{\widetilde{\chi}^0_1} = 50 \text{ GeV}$
> 390		⁴¹ AAD 12AN ATLS	$\widetilde{b}_1 ightarrow b \widetilde{\chi}^0_1$, simplified model, $m_{\widetilde{\chi}^0} < 60 { m GeV}$
		42 CHATRCHYAN12AL CMS	$\ell^{\pm} \ell^{\pm}_{\pm} + b$ -jets + E_T
> 410	95	⁴³ CHATRCHYAN 12B0 CMS	$\widetilde{b}_1 \rightarrow b \widetilde{\chi}_1^0$, simplified model, $m_{\widetilde{\chi}_1^0}$
> 294	95	44 AAD 11K ATLS	= 50 GeV stable \tilde{b}
		⁴⁵ AAD 110 ATLS	$\widetilde{g} \rightarrow \widetilde{b}_1 b, \widetilde{b}_1 \rightarrow b \widetilde{\chi}_1^0, m_{\widetilde{\chi}_1^0} = 60$
		⁴⁶ CHATRCHYAN11D CMS	$\widetilde{b} \widetilde{f} \rightarrow b$
> 230	95	⁴⁷ AALTONEN 10R CDF	$\widetilde{b}_1 ightarrow b \widetilde{\chi}_1^0$, $m_{\widetilde{\chi}_1^0} <$ 70 GeV
> 247	95	⁴⁸ ABAZOV 10L D0	$\widetilde{b}_1 \rightarrow b \widetilde{\chi}_1^0$, $m_{\widetilde{\chi}_1^0}^{\chi_1} = 0$ GeV
¹ aad 19⊦	I searcl	hed in 139 fb $^{-1}$ of pp collisions	at $\sqrt{s} = 13$ TeV for events with no

A AD 19H searched in 159 to - of pp conisions at $\sqrt{s} = 15$ TeV for events with no charged leptons, three or more b-jets, and large E_T . Higgs boson candidates are reconstructed as b-jet pairs. No significant excess above the Standard Model expectations is observed. Limits up to 1500 GeV are set on the sbottom mass in the Tsbot4 simplified model, see Figure 8(a), for fixed $m_{\chi_1^0} = 60$ GeV and for $m_{\chi_2^0}$ up to 1200 GeV.

²AAD 19H searched in 139 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with no charged leptons, three or more *b*-jets, and large E_T . Higgs boson candidates are reconstructed as *b*-jet pairs. No significant excess above the Standard Model expectations is observed. Limits up to 1300 GeV are set on the sbottom mass in the Tsbot4 simplified model, see Figure 8(b), for $m_{\overline{\chi}_{2}^{0}} = m_{\overline{\chi}_{1}^{0}} + 130$ GeV and $m_{\overline{\chi}_{2}^{0}}$ from 200 to 750 GeV.

- observed. Limits up to 1300 GeV are set on the sbottom mass in the 1sbottA simplified model, see Figure 8(b), for $m_{\tilde{\chi}_2^0} = m_{\tilde{\chi}_1^0} + 130$ GeV and $m_{\tilde{\chi}_2^0}$ from 200 to 750 GeV. **3** SIRUNYAN 19CH searched in 137 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing multiple jets and large \mathcal{I}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu1C, Tglu2A and Tglu3A simplified models, see their Figure 13. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbot1, Tstop1 simplified models, see their Figure 14.
- Figure 14. 4 SIRUNYAN 19cl searched in 77.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one or more high-momentum Higgs bosons, decaying to pairs of photons, jets and E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in the Tsbot4 simplified model, see Figure 3, and on the wino mass in the Tchiln2E simplified model, see their Figure 4. Limits are also set on the higgsino mass in the Tn1n1A and Tn1n1B simplified models, see their Figure 5.
- ⁵ AABOUD 18 searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least one jet with a transverse momentum above 250 GeV and no leptons. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in Tsbot1 models. In the compressed scenario with sbottom and neutralino masses differing by *m_b*, sbottom masses below 430 GeV are excluded. For $m_{\chi_1^0} = 0$ they exclude sbottom masses up to 610 GeV. See

their Fig.10(a). **6** SIRUNYAN 18AL searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least three charged leptons, in any combination of electrons and muons, jets and significant E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu1C simplified model, see their Figure 5. Limits are also set on the sbottom mass in the Tsbot2 simplified model, see their Figure 6, and on the stop mass in the Tstop7 simplified model, see their Figure 7. **7** SIRUNYAN 18AR searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing two opposite-charge, same-flavour leptons (electrons or muons), jets and E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4C simplified model, see their Figure 7. And on the neutralino mass in the Tn1n1B and Tn1n1C simplified models, see their Figure 9. Finally, limits are set on the sbottom mass in the Tsbot3 simplified model, see their Figure 10.

their Figure 10. ⁸ SIRUNYAN 18AY searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing one or more jets and significant E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the TgluIA, Tglu2A and Tglu3A simplified models, see their Figure 3. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbo11, Tstop1 and Tstop4 simplified models, see their Figure 3. Finally, limits are set on long-lived gluino masses in a TgluIA simplified model where the gluino is metastable or long-lived with proper decay lengths in the range 10^{-3} $mm < c\tau < 10^5$ mm, see their Figure 4.

where the grain is inclusible of long-lives with proper decay lengths in the large 10 mm < cr < 10⁵ mm, see their Figure 4. 9 SIRUNYAN 18b searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for the pair production of third-generation squarks in events with jets and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in the Tsbot1 simplified model, see their Figure 5, and on the stop mass in the Tstop4 simplified model, see their Figure 6.

Tstop4 simplified model, see their Figure 6. 10 SIRUNYAN 18x searched in 35.9 fb $^{-1}$ of pp collisions at $\sqrt{s}=13$ TeV for events with one or more high-momentum Higgs bosons, decaying to pairs of photons, jets and \mathcal{B}_T . The razor variables (M_P and R^2) are used to categorise the events. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in the Tsbot4 simplified model, see their Figure 5. Limits are also set on the higgsino mass in the Tn1n1A and Tn1n1B simplified models, see their Figure 6.

¹¹AABOUD 17AJ searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 700 GeV are set on the bottom squark mass in Tsbot2 simplified models assuming $m_{\widetilde{\chi}_1^0} = 0$ GeV.

- See their Figure 4(q). $1^{12}AABOUD 17Ax$ searched in 36 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing two jets identified as originating from *b*-quarks and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95% C.L. are set on the masses of bottom squarks. In the Tsbot1 simplified model, a \tilde{b}_1 mass below 950 GeV is excluded for $m_{\widetilde{\chi}_1^0} = 0$ (<420) GeV. See their Fig. 7(a)
- their Fig. $t_{(a)}$. ¹³AABOUD 17AX searched in 36 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing two jets identified as originating from *b*-quarks and large missing transverse momentum, with or without leptons. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95% C.L. are set on the masses of bottom squarks. Assuming 50% BR for Tsbot1 and Tsbot2 simplified models, a \widetilde{b}_1 mass below 880 (860) GeV is excluded for $m_{\widetilde{\chi}_1^0}^0 = 0$ (<250) GeV. See their Fig. 7(b).
- χ_1^{-1} term χ_1^{-1} term χ_2^{-1} term χ_3^{-1} = 8 TeV for events with two forward jets, produced through vector boson fusion, and missing transverse momentum. No significant excess above the Standard Model expectations is observed. A limit is set on sbottom masses in the Tsbot1 simplified model, see Fig. 3. ¹⁵ KHACHATRYAN 17Aw searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least three charged leptons, in any combination of electrons and muons, and significant E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tgiu2A and Tgiu1C simplified models, and on the sbottom mass in the Tsbot2 simplified model, see their Figure 4. ¹⁶ KHACHATRYAN 17P searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one or more lets and large E_T . No significant excess above the Standard Model was the Standard Model was the Standard Model was the Tsbot2 simplified model, see their Figure 4.
- KHACHAFRYAN ITP searched in 2.3 to \rightarrow or pp conisions at $\sqrt{s} = 13$ fee to even is with one or more jets and large E_{T} . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A, Tglu3B, Tglu3C and Tglu3D simplified models, see their Figures 7 and 8. Limits are also set on the squark mass in the Tsqk1 simplified model, see their Fig. 7, and on the sbottom mass in the Tstop1, Tstop3, Tstop4, Tstop6 and Tstop7 simplified models, see Fig. 8. Fig. 8.
- Fig. 8. 17 SIRUNYAN 17AZ searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one or more jets and large E_{T} . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A simplified models, see their Figures 6. Limits are also set on the squark mass in the Tsqk1 simplified model (for single light squark and for 8 degenerate light squarks), on the sbottom mass in the Tsbot1 simplified model and on the stop mass in the Tstop1 simplified model, see their Fig. 7. Finally, limits are set on the stop mass in the Tstop2, Tstop4 and Tstop8 simplified models, see Fig. 8.
- ¹⁸ SIRUNYAN 17K searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for direct production of stop or sbottom pairs in events with multiple jets and significant \mathcal{P}_T . A second search also requires an isolated lepton and is combined with the all-hadronic search. No search also requires an isolated repton and is combined with the an-induction search. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1, Tstop8 and Tstop4 simplified models, see their Figures 7, 8 and 9 (for the Tstop4 limits, only the results of the all-hadronic search are used). Limits are also set on the sbottom mass in the Tsbot1 simplified model, see Fig. 10 (also here,
- are also set on the sbottom mass in the Tsbot1 simplified model, see Fig. 10 (also here, only the results of the all-hadronic search are used). ¹⁹ SIRUNYAN 17s searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two isolated same-sign leptons, jets, and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the mass of the gluono mass in the Tglu3A, Tglu3B, Tglu3C, Tglu3D and Tglu1B simplified model, see their Figures 5 and 6, and on the sbottom mass in the Tsbot2 simplified model, see their Figure 6. ²⁰ AABOUD 16D searched in 3.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with an energetic jet and large missing transverse momentum. The results are interpreted as 95%C.L. limits on mass of sbottom decaying into a *b*-quark and the lightest neutralino in scenarios with $m_{\tilde{b}_1} m_{\tilde{\chi}_1^0}$ between 5 and 20 GeV. See their Fig. 6. ²¹ AABOUD 16D searched in 3.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing
- 21 AABOUD 16Q searched in 3.2 fb $^{-1}$ of $p\,p$ collisions at $\sqrt{s}=$ 13 TeV for events containing AABOUD 16Q searched in 3.2 tb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing two jets identified as originating from *b*-quarks and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95% C.L. are set on the masses of third-generation squarks. Assuming that the decay $\tilde{b}_1 \rightarrow b \bar{x}_1^0$ (Tsbot1) takes place 100% of the time, a \tilde{b}_1 mass below 840 (800) GeV is excluded for $m \chi_1^0 = 100$ (360) GeV. Differences in mass above 100 GeV
- between the \widetilde{b}_1 and the $\widetilde{\chi}_1^0$ are excluded up to a \widetilde{b}_1 mass of 500 GeV. For more details, see their Fig. 4.
- see their Fig. 4. 22 AAD 16BB searched in 3.2 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 13 TeV for events with exactly two same-sign leptons or at least three leptons, multiple hadronic jets, b-jets, and E_{Tr} . No significant excess over the Standard Model expectation is found. Exclusion limits at 95% C.L. are set on the sbottom mass for the Tsbot2 model, assuming $m_{\widetilde{\chi}_1^\pm}=m_{\widetilde{\chi}_1^0}^-$
- $100\ GeV.$ See their Fig. 4c.
- 23 KHACHATRYAN I dell searched in 2.3 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in the Tsbot2 simplified model, see Fig. 6.
- in the Tsbot2 simplified model, see Fig. 6. 24 KHACHATRYAN 16Bs searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least one energetic jet , no isolated leptons, and significant E_T , using the transverse mass variable M_{T2} to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in the Tsbot1 simplified model, see Fig. 11 and Table 3. 25 KHACHATRYAN 16By searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two opposite-sign, same-flavour leptons, jets, and missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4C simplified model, see Fig. 4. and on sbottom masses
- No significant excess above the standard model expectations is observed. Limits are set on the gluino mass in the Tglu4C simplified model, see Fig. 4, and on sbottom masses in the Tsbot3 simplified model, see Fig. 5. ²⁶ AAD 15CJ searched in 20 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for evidence of third generation squarks by combining a large number of searches covering various final states. Limits on the sbottom mass are shown, either assuming the $\tilde{b} \rightarrow b \tilde{\chi}_1^0$ decay, see Fig.

11, or assuming the $\tilde{b} \to t \tilde{\chi}_1^{\pm}$ decay, with $\tilde{\chi}_1^{\pm} \to W^{(*)} \tilde{\chi}_1^0$, see Fig. 12a, or assuming the $\tilde{b} \to b \tilde{\chi}_2^0$ decay, with $\tilde{\chi}_2^0 \to h \tilde{\chi}_1^0$, see Fig. 12b. Interpretations in the pMSSM are also discussed, see Figures 13-15.

- ²⁷ KHACHATRYAN 15AF searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with at least two energetic jets and significant $\not E_{T_1}$ using the transverse mass variable M_{T_2} to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in simplified models where the decay $\vec{b} \rightarrow b \vec{\chi}_1^0$ takes place with a branching ratio of 100%, see Fig. 12. See also Table 5. Exclusions in the CMSSM, assuming $\tan\beta = 30$, $A_0 = -2 \max(m_0, m_{1/2})$ and $\mu > 0$, are also presented, see Fig. 15.
- 28 KHACHATRYAN 15AH searched in 19.4 or 19.7 fb $^{-1}$ of pp collisions at \sqrt{s} = 8 TeV for events containing either a fully reconstructed top quark, or events containing dijets requiring one or both jets to originate from *b*-quarks, or events containing a mono-jet. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in simplified models where the decay $\widetilde{b} o b \widetilde{\chi}_1^0$ takes place with a branching ratio of 100%, see Fig. 12. Limits are also set in a simplified model where the decay $\tilde{b} \rightarrow c \tilde{\chi}_1^0$ takes place with a branching ratio of 100%, see Fig. 12.
- ²⁹ KHACHATRYAN 151 searched in 19.5 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events in which *b*-jets and four *W*-bosons are produced. Five individual search channels are combined (fully hadronic, single lepton, same-sign dilepton, opposite-sign dilepton, multilepton). No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in a simplified model where the decay $\tilde{b} \rightarrow t \tilde{\chi}_1^{\pm}$, with $\widetilde{\chi}^\pm_1 o W^\pm \widetilde{\chi}^0_1$, takes place with a branching ratio of 100%, see Fig. 7.
- With $\chi_1 = 7$, χ_1 , such that $\chi_2 = 30$ and $\chi_3 = 8$ TeV for monojet-like events. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95% C.L. are set on the masses of third-generation squarks in simplified models which assume that the decay $\widetilde{b}_1 \to b \widetilde{\chi}_1^0$ takes place 100% of the time, see Fig.
- ¹² CHATRCHYAN 14AH searched in 4.7 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV for events with at least two energetic jets and significant E_T , using the razor variables (M_R and R^2) to discriminate between signal and background processes. A second analysis requires at least one of the jets to be originating from a *b*-quark. No significant excess above the Standard Model expectations is observed. Limits are set on sbottom masses in simplified models where the decay $\tilde{b} \rightarrow b \tilde{\chi}_1^0$ takes place with a branching ratio of 100%, see Figs. 28 and 29. Exclusions in the CMSSM, assuming $\tan\beta = 10$, $A_0 = 0$ and $\mu > 0$, are also excepted. presented, see Fig. 26.
- ²² CHATRCHYAN 14R searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with at least three leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in a simplified model where the decay $\tilde{b} \to t \tilde{\chi}_1^{\pm}$, with $\tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$, takes place with a branching ratio of 100%, see Fig. 11.
- 33 KHACHATRYAN 15AD searched in 19.4 fb $^{-1}$ of pp collisions at \sqrt{s} = 8 TeV for events with two opposite-sign same flavor isolated leptons featuring either a kinematic edge, or a peak at the Z-boson mass, in the invariant mass spectrum. No evidence for a The statistically significant excess over the expected SM backgrounds is observed and 95% C.L. exclusion limits are derived in a simplified model of sbottom pair production where the sbottom decays into a *b*-quark, two opposite-sign dileptons and a neutralino LSP, through an intermediate state containing either an off-shell Z-boson or a slepton, see Fig. 8
- ^{rg}, o. 34 AAD 14Ax searched in 20.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for the strong production of supersymmetric particles in events containing either zero or at last one high high-*p*_T lepton, large missing transverse momentum, high jet multiplicity and at least three jets identified as originating from *b*-quarks. No excess over the expected SM background is observed. Limits are derived in mSUGRA/CMSSM models with tan $\beta = 30$, $A_0 = -2 m_0$ and $\mu > 0$, see their Fig. 14. Also, exclusion limits are set in simplified models containing scalar bottom quarks, where the decay $\tilde{b} \to b \tilde{\chi}_2^0$ and $\tilde{\chi}_2^0 \to h \tilde{\chi}_1^0$ takes place
- with a branching ratio of 100%, see their Figures 11. 35 AAD 14E searched in 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for strongly produced
- ³³ AAD 14E searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for strongly produced supersymmetric particles in events containing jets and two same-sign leptons or three leptons. The search also utilises jets originating from *b*-quarks, missing transverse mo-mentum and other variables. No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing bottom, see Fig. 7. Limits are also derived in the mSUGRA/CMSSM, bRPV and GMSB models, see their Fig. 8. ³⁶ CHATRCHYAN 14H searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the sbottom mass in a simplified models where the decay $\tilde{b} \to t \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$ takes place with a branching ratio of 100% with varying mass of the \tilde{x}^{\pm} for m = 0. GeV see Fig. 6. branching ratio of 100%, with varying mass of the $\tilde{\chi}_1^\pm$, for $m_{\widetilde{\chi}_1^0}=$ 50 GeV, see Fig. 6.
- ³⁷ AAD 13AU searched in 20.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events containing two jets identified as originating from *b*-quarks and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95% C.L. are set on the masses of third-generation squarks. Assuming that the decay $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ takes place 100% of the time, a \tilde{b}_1 mass below 620 GeV is excluded for $m_{\tilde{\chi}_1^0} < 120$ GeV. For more details, see their Fig. 5.
- ³⁸ CHATRCHYAN 13AT provides interpretations of various searches for supersymmetry by the CMS experiment based on 4.73–4.98 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV in the framework of simplified models. Limits are set on the sbottom mass in a simplified models where sbottom quarks are pair-produced and the decay $\widetilde{b}
 ightarrow b \widetilde{\chi}_1^0$ takes place
- with a branching ratio of 100%, see Fig. 4. ³⁹ CHATRCHYAN 13T searched in 11.7 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events With at least two energetic jets and significant \mathcal{V}_T , using the α_T variable to discriminate between processes with genuine and misreconstructed \mathcal{V}_T . No significant excess above the Standard Model expectations is observed. Limits are set on sbottom masses in simplified models where the decay $\tilde{b} \rightarrow b\tilde{\chi}_1^0$ takes place with a branching ratio of 100%, see Fig. 8 and Table 9.
- 100%, see Fig. 8 and Table 9. 40 CHATRCHYAN 13v searched in 10.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with two isolated same-sign dileptons and at least two *b*-jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the bottom mass in a simplified models where the decay $\tilde{b} \rightarrow t \tilde{\chi}_1^{\pm}$, $\tilde{\chi}_1^{\pm} \rightarrow W^{\pm} \tilde{\chi}_1^0$ takes place with a branching ratio of 100%, with varying mass of the $\tilde{\chi}_1^{\pm}$, for $m_{\tilde{\chi}_1^0} = 50$ GeV, see

See their Figure 4(d).

- 41 AAD 12AN searched in 2.05 fb $^{-1}$ of $ho\,
 ho$ collisions at $\sqrt{s}=$ 7 TeV for scalar bottom quarks in events with large missing transverse momentum and two *b*-jets in the final state. The data are found to be consistent with the Standard Model expectations. Limits are set in an R-parity conserving minimal supersymmetric scenario, assuming B(${ ilde b}_1 o b { ilde \chi}_1^0) =$ 100%, see their Fig. 2.
- 100%, see their Fig. 2. ⁴² CHATRCHYAN 12Al looked in 4.98 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events with two same-sign leptons (*e*, μ), but not necessarily same flavor, at least 2 *b*-jets and missing transverse energy. No excess beyond the Standard Model expectation is observed. Exclusion limits are derived in a simplified model for sbottom pair production, where the sbottom decays through $\tilde{b}_1 \rightarrow t \bar{\chi}_1 W$, see Fig. 8. ⁴³ CHATRCHYAN 12B0 searched in 4.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for scalar bottom quarks in events with large missing transverse momentum and two *b*-jets in the final state. The data are found to be consistent with the Standard Model expectations.
- final state. The data are found to be consistent with the Standard Model expectations. Limits are set in an R-parity conserving minimal supersymmetric scenario, assuming ${\sf B}(\widetilde{b}_1 \to b\,\widetilde{\chi}_1^0) = 100\%$, see their Fig. 2.
- 44 AAD 11K looked in 34 pb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV for events with heavy stable particles, identified by their anomalous dE/dx in the tracker or time of flight in the tile calorimeter, from pair production of \tilde{b} . No evidence for an excess over the SM expectation is observed and limits on the mass are derived for pair production of sbottom, see Fig. 4.
- see Fig. 4. ⁴⁵ AAD 110 looked in 35 pb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events with jets, of which at least one is a *b*-jet, and E_T . No excess above the Standard Model was found. Limits are derived in the $(m_{\widetilde{g}}, m_{\widetilde{b}_1})$ plane (see Fig. 2) under the assumption of 100%
- branching ratios and \widetilde{b}_1 being the İghtest squark. The quoted limit is valid for $m_{\widetilde{b}_1}$ <500 GeV. A similar approach for \tilde{t}_1 as the lightest squark with $\tilde{g} \to \tilde{t}_1 t$ and $\tilde{t}_1 \to b \tilde{\chi}_1^{\pm}$ with 100% branching ratios leads to a gluino mass limit of 520 GeV for 130 $< m_{\tilde{t}_1} < b \tilde{t}_1 < b$ 300 GeV. Limits are also derived in the CMSSM ($m_0, m_{1/2}$) plane for tan $\beta = 40$, see
- Fig. 4, and in scenarios based on the gauge group SO(10). ⁴⁶ CHATRCHYAN 11D looked in 35 pb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 2 jets, at least one of which is b-tagged, and E_T , where the *b*-jets are decay products of \tilde{t} or \tilde{b} . No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM $(m_0, m_{1/2})$ plane for $\tan\beta = 50$ (see Fig. 2).
- ⁴⁷ AALTONEN 10R searched in 2.65 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV for events with \mathcal{E}_T and exactly two jets, at least one of which is *b*-tagged. The results are in agreement with the SM prediction, and a limit on the cross section of 0.1 pb is obtained for the range of masses $80 < m_{\widetilde{p}_1} < 280$ GeV assuming that the sbottom decays exclusively to $b\overline{x}^0$. The excluded mass ratios is the formula of the formula of the solution of 0.1 pc of the solution of $b\overline{x}^0$. $b\tilde{\chi}_1^0$. The excluded mass region in the framework of conserved R_p is shown in a plane
- of $(m_{\widetilde{b}_1}, m_{\widetilde{\chi}^0_1})$, see their Fig.2.
- $^{48}\rm ABAZOV$ 10L looked in 5.2 fb $^{-1}$ of $p\overline{p}$ collisions at \sqrt{s} = 1.96 TeV for events with The least 2 b-jets and E_T from the production of $\widetilde{p}_1 \widetilde{p}_1$. No evidence for an excess over the SM expectation is observed, and a limit on the cross section is derived under the assumption of 100% branching ratio. The excluded mass region in the framework of conserved R_p is shown in a plane of $(m_{\widetilde{b}_1}, m_{\widetilde{\chi}_1^0})$, see their Fig. 3b. The exclusion also extends to $m_{\widetilde{\chi}_1^0} = 110$ GeV for $160 < m_{\widetilde{b}_1} < 200$ GeV.

R-parity violating \tilde{b} (Sbottom) mass limit

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>307	95	¹ KHACHATRY.	16 BX	CMS	$\begin{array}{ccc} RPV,\widetilde{b}\rightarrow & td\; \mathrm{or}\;ts,\lambda_{332}''\;\mathrm{or}\;\lambda_{331}''\\ \mathrm{coupling} \end{array}$
• • • We do	not use t	he following data	for a	verages,	fits, limits, etc. 🔹 🔹 🔹
		² AAD	14E	ATLS	$\ell^{\pm}\ell^{\pm}(\ell^{\mp})$ + jets, $\tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$
					with $\tilde{\chi}_1^{\pm} \rightarrow W^{(*)\pm} \tilde{\chi}_1^0$ sim-
					plified model, $m_{\widetilde{\chi}_1^\pm}=2~m_{\widetilde{\chi}_1^0}$

- χ_1 χ_1 KHACHATRYAN 16BX searched in 19.5 fb⁻¹ of pp collisions at \sqrt{s} = 8 TeV for events containing 2 leptons coming from R-parity-violating decays of supersymmetric particles. No excess over the expected background is observed. Limits are derived on the sbottom mass, assuming the RPV $\tilde{b} \rightarrow t d$ or $\tilde{b} \rightarrow t s \, decay,$ see Fig. 15. 2 AAD 14E searched in 20.3 fb⁻¹ of pp collisions at \sqrt{s} = 8 TeV for strongly produced supersymmetric particles in events containing jets and two same-sign leptons or three leptons. The search also utilises jets originating from b-quarks, missing transverse momentum and other variables. No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing bottom, see Fig. 7. Limits are also derived in the mSUGRA/CMSSM, bRPV and GMSB models, see their Fig. 8.

\tilde{t} (Stop) mass limit

Limits depend on the decay mode. In e^+e^- collisions they also depend on the mixing angle of the mass eigenstate $\tilde{t}_1 = \tilde{t}_1 \cos \theta_t + \tilde{t}_R \sin \theta_t$. The coupling to the Z vanishes when $\theta_t = 0.98$. In the Listings below, we use $\Delta m \equiv m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0}$ or $\Delta m \equiv m_{\tilde{t}_1} - m_{\tilde{\nu}}$, depending on relevant decay mode. See also bounds in " \widetilde{q} (Squark) MASS LIMIT."

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

R-parity conserving \tilde{t} (Stop) mass limit

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>1110	95	¹ SIRUNYAN	19AU CMS	γ + jets + <i>b</i> -jets + $\not\!\!\!E_T$,
				Tstop13, $m_{\widetilde{\chi}_{i}^{0}} = 1$ GeV
>1230	95	¹ SIRUNYAN	19AU CMS	γ + jets + <i>b</i> -jets + E_T ,
				Tstop13, $m_{\chi 0} = 800$ GeV

>1190	95	² sirunyan	19CH CMS	jets+ $ ot\!$
>1140	95	³ SIRUNYAN	19s CMS	1 or 2 ℓ + jets + $\not\!$
> 208	95	⁴ SIRUNYAN	19∪ CMS	$e^{\pm}\mu^{\mp}_{t_1} + \geq 1b$ -jet, Tstop1, $m_{\widetilde{t}_1} - m_{\widetilde{\chi}_1^0} = 175$ GeV
> 235	95	⁴ SIRUNYAN	19∪ CMS	$e^{\pm}\mu^{\mp}_{\widetilde{t}_1} + \geq 1b$ -jet, Tstop1, $m_{\widetilde{t}_1} - m_{\widetilde{\chi}_1^0} = 182.5$ GeV
> 242	95	⁴ SIRUNYAN	19∪ CMS	$e^{\pm}\mu^{\mp}_{t_1} + \geq 1b$ -jet, Tstop1, $m_{\widetilde{t}_1} - m_{\widetilde{\chi}_1^0} = 167.5$ GeV
> 940	95	⁵ AABOUD	18AQ ATLS	$1\ell + \text{jets} + \not\!$
> 270	95	⁶ AABOUD	18AQ ATLS	1ℓ +jets+ $\not\!$
> 840	95	⁷ AABOUD	18AQ ATLS	$\mathcal{M}_{1}^{\lambda_{1}}$ $1\ell+ ext{jets}+ ot\!$
> 500	95	⁸ AABOUD	18bv ATLS	c -jets+ $ ot\!$
> 850	95	⁹ AABOUD	18bv ATLS	c -jets+ E_T , Tstop4, $m_{\tilde{\chi}^0_1} = 0$
> 390	95	¹⁰ AABOUD	18I ATLS	≥ 1 jets+ $\not\!$
> 430	95	¹¹ AABOUD	18I ATLS	$\gtrsim 1 ext{ jets} + ot\!$
>1160	95	¹² AABOUD	18Y ATLS	$2\ell (\geq 1 \text{ hadronic } \tau) + b \text{-jets } +$
> 450	95	¹³ sirunyan	18AJ CMS	
				$= (m_{\widetilde{t}} + m_{\widetilde{\chi}_1^0})/2, m_{\widetilde{t}_1} - m_{\widetilde{\chi}_2^0} = 40 \text{ GeV}$
> 720	95	¹⁴ SIRUNYAN	18al CMS	$\geq 3\ell^{\pm} + \text{jets} + \not{E}_T, \text{Tstop7}, \\ m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} = 175 \text{ GeV}, m_{\tilde{t}_1} \\ = 200 \text{ GeV}, \text{BR}(\tilde{t}_2 \rightarrow \tilde{t}_1 H)$
> 780	95	¹⁴ SIRUNYAN	18al CMS	$= 100\%$ $\geq 3\ell^{\pm} + \text{jets} + \not{E}_T, \text{Tstop7},$ $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} = 175 \text{ GeV}, m_{\tilde{t}_1}$ $= 200 \text{ GeV}, \text{ BP}(\tilde{t}_1 \rightarrow \tilde{t}_1, \tilde{t}_2)$
> 710	95	¹⁴ SIRUNYAN	18AL CMS	$= 100\%$ $= 100\%$ $\geq 3\ell^{\pm} + \text{ jets } + \not\!$
				$= 200 \text{ GeV}, \text{ BR}(t_2 \rightarrow t_1 Z)$ $= \text{BR}(\tilde{t}_2 \rightarrow \tilde{t}_1 H) = 50\%$
> 730	95	¹⁵ SIRUNYAN	18AN CMS	1 or 2 $\gamma + \ell$ + jets, GGM, Tstop12, $m_{\widetilde{\chi}_1^0} = 150$ GeV
> 650	95	¹⁵ SIRUNYAN	18AN CMS	1 or 2 $\gamma + \ell$ + jets, GGM, Tstop12, $m_{\widetilde{\chi}_*^0} = 500$ GeV
>1000	95	¹⁶ SIRUNYAN	18AY CMS	jets+ $\not\!$
> 500	95	¹⁶ SIRUNYAN	18AY CMS	jets + $\not\!$
> 510	95	¹⁷ SIRUNYAN	18B CMS	jets+ $\not\!$
> 800	95	¹⁸ SIRUNYAN	18c CMS	$10 \text{ GeV} \ \ell^\pm \ell^\mp + b$ -jets $+ ot \!$
> 750	95	¹⁸ SIRUNYAN	18c CMS	$\ell^{\pm}\ell^{\mp} + b\text{-jets} + \not\!\!\!E_T, \text{Tstop2}, m_{\widetilde{\chi}_1^{\pm}} = (m_{\widetilde{t}} + m_{\widetilde{\chi}_1^0})/2, m_{\widetilde{\tau}_1^0} = 0$
>1050	95	¹⁸ SIRUNYAN	18c CMS	χ_1° Combination of all-hadronic, 1 ℓ^{\pm} and $\ell^{\pm}\ell^{\mp}$ searches, Tstop1, $m_{\gamma 0} = 0$
>1000	95	¹⁸ SIRUNYAN	18c CMS	Combination of all-hadronic, $1 \ell^{\pm}$ and $\ell^{\pm}\ell^{\mp}$ searches, Tstop2, $m_{\widetilde{\chi}_{1}^{\pm}} = (m_{\widetilde{\ell}} + m_{\widetilde{\ell}})^{2} m_{\widetilde{\chi}_{1}^{\pm}} = 0$
>1200	95	¹⁸ SIRUNYAN	18c CMS	$ \begin{split} & m_{\widetilde{\chi}_{1}^{0}}^{1/2}, m_{\widetilde{\chi}_{1}^{0}}^{1} = 0 \\ \ell^{\pm} \ell^{\mp} + b \text{-jets} + \mathcal{E}_{T}, \text{Tstop11}, \\ & m_{\widetilde{\chi}_{1}^{\pm}}^{\pm} = 0.5 \ (m_{\widetilde{t}}^{-} + m_{\widetilde{\chi}_{1}^{0}}^{0}), \\ & m_{\widetilde{\chi}_{1}^{\pm}}^{\pm} = 0.5 \ m_{\sim^{+}}, m_{\sim^{0}}^{-} = 0 \end{split} $
>1300	95	¹⁸ SIRUNYAN	18c CMS	$ \begin{array}{l} \ell & \chi_{1}^{-} & \chi_{1}^{-} \\ \ell^{\pm} \ell^{\mp} + b \text{-jets} + E_{T}, \text{Tstop11}, \\ m_{\tilde{\chi}_{1}^{\pm}} = 0.5 (m_{\tilde{t}}^{-} + m_{\tilde{\chi}_{1}^{0}}), \\ m_{\tilde{\ell}}^{-} = 0.95 m_{\tilde{\chi}_{2}^{\pm}}, m_{\tilde{\chi}_{0}^{0}} = 0 \end{array} $
none 460-1060	95	¹⁸ SIRUNYAN	18c CMS	$\ell^{\pm} \ell^{\mp} + b \text{-jets} + \mathcal{F}_{T}, \text{ Tstop11},$ $m_{\widetilde{\chi}_{1}^{\pm}} = 0.5 (m_{\widetilde{t}} + m_{\widetilde{\chi}_{1}^{0}}),$ $m^{\sim} = 0.05 m + m_{\widetilde{\chi}_{1}^{-0}} = 0.05 m + m_{\widetilde{\chi}_{1}^{-0}}$
>1020	95	¹⁹ SIRUNYAN	18D CMS	$ \begin{array}{l} \underset{\ell}{}{} = 0 & \underset{\tilde{\chi}_{1}^{\pm}}{}, \\ \underset{\tilde{\chi}_{1}^{0}}{} = 0 \\ top quark (hadronically decay-ing) + jets + \not\!$

See key on page 999

> 420	95	²⁰ sirunyan	18di CMS	ℓ^{\pm} + jet + $\not\!\!E_T$, Tstop3, $m_{\gamma} - m_{\gamma} = 10$ GeV	I	>1000	95	³⁹ SIRUNYAN	17AS CMS	1ℓ +jets+ $\not\!$
> 560	95	²⁰ sirunyan	18di CMS	$m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} = 10 \text{ GeV}$ $\ell^{\pm} + \text{jet} + \not{E}_T, \text{ Tstop3},$ $m_{\tilde{\tau}} - m_{\tilde{\tau}_1^0} = 80 \text{ GeV}$	I	> 980	95	³⁹ SIRUNYAN	17AS CMS	$ \begin{array}{c} (m_t + m_{\widetilde{\chi}_1^0}) = 0 \\ \text{GeV} \\ 1\ell + \text{jets} + \not \!$
> 540	95	²⁰ SIRUNYAN	18DI CMS	ℓ^{\pm} , Tstop10, $m_{\widetilde{\chi}_{1}^{\pm}} = (m_{\widetilde{t}} + m_{\widetilde{t}})^{\pm}$	I					$m_{\widetilde{\chi}_{1}^{\pm}} - m_{\widetilde{\chi}_{1}^{0}} = 5 \text{ GeV}, m_{\widetilde{\chi}_{1}^{0}} = 0 \text{ GeV}$
				$m_{\widetilde{\chi}_1^0})/2, \ m_{\widetilde{t}_1} - m_{\widetilde{\chi}_1^0} = 40$		>1040	95	⁴⁰ SIRUNYAN	17AT CMS	jets+ $\not\!$
> 590	95	²⁰ sirunyan	18DI CMS	GeV f Combination of all-hadronic and 1 ℓ^{\pm} searches, Tstop3,	I	> 750	95	⁴⁰ SIRUNYAN	17AT CMS	$jets + \not{E}_T$, Tstop2, $m_{\widetilde{\chi}_1^{\pm}} = (m_{\widetilde{t}} + m_{\widetilde{\tau}^0})/2$, $m_{\widetilde{\tau}^0} = 0$ GeV
> 670	95	²⁰ sirunyan	18DI CMS	Combination of all-hadronic and $1 \ell^{\pm}$ searches, Tstop10,	I	> 940	95	⁴⁰ SIRUNYAN	17AT CMS	$\begin{array}{l} \overset{\chi_1}{\underset{j \neq t s + \not \! E_T}{\overset{\chi_1}{,}} \text{Tstop8, } m_{\widetilde{\chi}_1^\pm} - m_{\widetilde{\chi}_1^0} \\ = \text{5 GeV, } m_{\sim 0} = 100 \text{ GeV} \end{array}$
				$m_{\widetilde{\chi}_1^{\pm}} = (m_{\widetilde{t}} + m_{\widetilde{\chi}_1^0})/2,$ $m_{\widetilde{t}_1} - m_{\widetilde{\chi}_1^0} = 60 \text{ GeV}$		> 540	95	⁴⁰ SIRUNYAN	17AT CMS	jets+ E_T , Tstop3, 10 GeV $< m_{\widetilde{t}_1} - m_{\widetilde{\chi}_1^0} <$ 80 GeV
> 450	95	²¹ SIRUNYAN	18DN CMS	$\ell^{\pm}\ell^{+}$, Tstop1, $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} = m_{W}$		> 480	95	⁴⁰ SIRUNYAN	17AT CMS	jets $+ ot\!$
none 225-325	95	²¹ SIRUNYAN	18DN CMS	$\ell^{\pm}\ell^{\mp}$, Tstop2, $m_{\widetilde{\chi}_{1}^{\pm}} = (m_{\widetilde{t}} + m_{\widetilde{\chi}_{1}^{0}})/2, m_{\widetilde{t}} - m_{\widetilde{\chi}_{1}^{0}} = 2$	I	> 530	95	⁴⁰ SIRUNYAN	17AT CMS	$jets + \not\!\!\!E_T, \ Tstop10, \ m_{\widetilde{\chi}_1^{\pm}} = (m_{\widetilde{t}} + m_{\widetilde{\chi}_1^0})/2, \ 10 \ GeV < 10$
none 210-690	95	²¹ SIRUNYAN	18DN CMS	$\ell^{\pm}\ell^{\mp}$, Tstop1, $m_{\tilde{\chi}_1^0} = 0$ GeV		> 1.070	05	41 SIDUNYAN	1747 CMS	$m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} < 80 \text{ GeV}$
none 250-600	95	²¹ SIRUNYAN	18DN CMS	$\ell^{\pm}\ell^{\mp}$, Tstop2, $m_{\widetilde{\chi}_{1}^{\pm}}^{-1}=(m_{\widetilde{t}}^{-1}+m_{\widetilde{t}}^{-1})$	I	>1070	95	JIKUNTAN	TAZ CIVIS	\geq 1 Jets+ $\!$
> 700	95	²² AABOUD	17AJ ATLS	$m_{\tilde{\chi}_1^0})/2, m_{\tilde{\chi}_1^0} = \hat{0} \text{ GeV}$ same-sign $\ell^{\pm} \ell^{\pm} / 3 \ell + \text{jets} + R_{-}$		> 900	95	⁴¹ SIRUNYAN	17AZ CMS	$ \geq 1 \text{ jets} + \not\!$
> 880	95	²³ AABOUD	17AX ATLS	\mathcal{F}_T , Tstopii, $m_{\tilde{\chi}_2^0} = m_{\tilde{\chi}_1^0}$ + 100 GeV <i>b</i> -jets+ \mathcal{F}_T , mixture Tstop1 and		>1020	95	⁴¹ SIRUNYAN	17AZ CMS	$ \begin{array}{l} \operatorname{GeV} \\ \geq \\ \operatorname{1jets} + \not\!$
				$ = 0 \text{ GeV, } m_{\widetilde{\chi}_1^{\pm}} - m_{\widetilde{\chi}_1^{0}} = 1 $		> 540	95	⁴¹ SIRUNYAN	17az CMS	= 100 GeV $\geq 1 \text{ jets} + \not\!\!\!E_T, \text{ Tstop4, 10 GeV}$ $< m_{\tau} - m_{\tau 0} < 80 \text{ GeV}$
none 250-1000	95	²⁴ aaboud	17AY ATLS	GeV jets+ E_T , Tstop1, $m_{\tilde{\chi}_1^0} = 0$		none 280-830	95	⁴² SIRUNYAN	17к CMS	$\begin{array}{c} & t_1 & t_1 \\ 0, 1 \ \ell^{\pm} + \text{jets} + \not{E}_T \ (\text{combina-tion}), \ \text{Tstop1}, \ m_{\simeq 0} = 0 \ \text{GeV} \end{array}$
none 450-850	95	²⁵ AABOUD	17AY ATLS	jets $+ \not\!$		> 700	95	⁴² SIRUNYAN	17к CMS	0, 1 ℓ^{\pm} +jets+ $\not\!$
> 720	95	²⁶ AABOUD	17be ATLS	$\ell^{\pm}\ell^{\mp}_{\mp} + \not\!$		> 160	95	⁴² SIRUNYAN	17к CMS	= 5 GeV, $m_{\widetilde{\chi}^0_1}$ = 100 GeV jets+ $ ot\!$
> 400	95	²⁷ AABOUD	17BE ATLS	$\ell^{\pm}\ell^{\mp}_{\ell^{\mp}} + \not\!$		none 230-960	95	43 SIRUNYAN	17P CMS	$m_{\tilde{t}} - m_{\tilde{\chi}_1^0} < 80 \text{ GeV}$
> 430	95	²⁸ AABOUD	17BE ATLS	$\ell^{\pm}\ell^{\mp} + \not\!$		> 990	95	⁴³ SIRUNYAN	17P CMS	$ \begin{array}{l} \operatorname{GeV} \\ \operatorname{GeV} \\ \operatorname{jets} + \!$
> 700	95	²⁹ AABOUD	17BE ATLS	$\ell^{\pm}\ell^{\mp} + \mathcal{E}_{T}, \operatorname{Tstop2}, \\ m_{\tilde{t}_{1}} - m_{\tilde{\chi}_{1}^{\pm}} = 10 \text{ GeV}, m_{\tilde{\chi}_{1}^{0}}$		> 323	95	⁴⁴ AABOUD	16D ATLS	$ \begin{array}{l} \operatorname{GeV} \\ \geq 1 \hspace{0.1cm} \text{jet} \hspace{0.1cm} + \hspace{0.1cm} {\not \!\!\! E_T}, \hspace{0.1cm} \text{Tstop4}, \\ m_{\widetilde{t}_1} \hspace{0.1cm} - \hspace{0.1cm} m_{\widetilde{\chi}_1^0} \hspace{0.1cm} = \hspace{0.1cm} 5 \hspace{0.1cm} \text{GeV} \end{array} $
> 750	95	³⁰ KHACHATRY	17 CMS	= 0 GeV jets+ $\not\!$		none, 745-780	95	⁴⁵ AABOUD	16J ATLS	$1 \ell^{\pm} + \geq 4 \text{ jets} + \not{E}_T,$ Tstop1, $m_{=0} = 0 \text{ GeV}$
none 250-740	95	³¹ KHACHATRY	17AD C MS	jets+ <i>b</i> -jets+ $\not\!$		> 490-650	95	⁴⁶ AAD	16AY ATLS	χ_1° 2 ℓ (including hadronic τ) + E_T , Totop5 27 GoV < $m_{\rm eff}$ < $m_{\rm eff}$
> 610	95	³² KHACHATRY	17AD CMS	jets+ <i>b</i> -jets+ E_T , mixture Tstop1 and Tstop2 with BR=50%, $m_{\sim 0} = 60$ GeV		> 700	95	⁴⁷ KHACHATRY	16AV CMS	1 or 2 ℓ^{\pm} +jets+ <i>b</i> -jets+ E_T , Tstop1, $m_{\tilde{\chi}_1^0}$ < 250 GeV
> 590	95	³³ KHACHATRY	17p CMS	1 or more jets+ \mathcal{E}_T , Tstop8, $m_{\widetilde{\chi}_1^{\pm}} - m_{\widetilde{\chi}_1^{0}} = 5$ GeV, $m_{\widetilde{\chi}_1^{0}}$ = 100 GeV		> 700	95	⁴⁷ KHACHATRY	16AV CMS	1 or $2 \ell^{\pm}$ +jets+b-jets E_T , Tstop2, $m_{\tilde{\chi}_1^0} = 0$ GeV, $m_{\tilde{\chi}_1^{\pm}}$ = 0.75 $m_{\tilde{\chi}_1^0} + 0.25 m_{\tilde{\chi}_1^0}$
none 280-640	95	³³ KHACHATRY	17p CMS	1 or more jets+ $\not\!\!\!E_T$, Tstop1, $m_{z0} = 0$ GeV		> 775	95	⁴⁸ KHACHATRY	′16вк CMS	t_1 $\tilde{\chi}_1^0$ jets+ E_T ,Tstop1, $m_{\tilde{\chi}_1^0}$ <200GeV
> 350	95	³³ KHACHATRY	17P CMS	1 or more jets+ $\not\!\!\!E_T$, Tstop4, 10		> 620	95	⁴⁸ KHACHATRY	′16вк CMS	jets+ $\not\!$
				$\text{GeV} < m_{\widetilde{t}_1} - m_{\widetilde{\chi}_1^0} < 80$ GeV		> 800	95	⁴⁹ KHACHATRY	16BS CMS	jets+ $ ot\!$
> 280	95	³³ KHACHATRY	17P CMS	1 or more jets+ E_T , Tstop3, 10 GeV $< m_{\widetilde{t}_1} - m_{\widetilde{\chi}_1^0} < 80$		> 316	95	⁵⁰ KHACHATRY	16Y CMS	1 or 2 soft ℓ^{\pm} + jets + E_T , Tstop3, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 25$ GeV
> 320	95	³³ KHACHATRY	17P CMS	$ \begin{array}{l} \operatorname{GeV} & 1 \\ 1 \text{ or more jets} + \not\!$		> 250	95	⁵¹ AAD	15cj ATLS	$B(\tilde{t} \to c \tilde{\chi}_1^0) + B(\tilde{t} \to b f f' \tilde{\chi}_1^0)$ = 1, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 10 \text{ GeV}$
> 240	95	³⁴ KHACHATRY	17s CMS	GeV jets+ $\not\!$		> 270	95 05	⁵¹ AAD	15cJ ATLS	$\tilde{t} \rightarrow c \tilde{\chi}_1^0, m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 80 \text{ GeV}$
> 225	95	³⁵ KHACHATRY	17s CMS	10 GeV jets+ \mathcal{E}_T , Tstop3, $m_{\gamma} - m_{\gamma 0} =$		500	95 95	51 AAD		$ \begin{array}{l} l \rightarrow l \chi_{1}^{\circ}, m_{\widetilde{\chi}_{1}^{0}} = 0 \\ B(\widetilde{t} \rightarrow l \widetilde{\chi}_{1}^{0}) + B(\widetilde{t} \rightarrow l \widetilde{\chi}_{1}^{\pm}) \end{array} $
> 325	95	³⁶ KHACHATRY	17s CMS	$\begin{array}{ccc} & t & \chi_1^{\circ} \\ 10 \text{ GeV} \\ \text{jets} + \not\!\!\!\! E_T, \text{ Tstop2, } m_{\chi^{\pm}} = 0.25 \end{array}$		> 000	55	1010	100 ///20	$= 1, \tilde{\chi}_{1}^{\pm} \rightarrow W^{(*)} \tilde{\chi}_{1}^{0}, m_{\tilde{\chi}_{1}^{\pm}}^{\pm}$
> 400	95	³⁷ KHACHATRY	17s CMS	$\begin{split} m_{\widetilde{t}} + 0.75 \ m_{\widetilde{\chi}_1^0}, & m_{\widetilde{\chi}_1^0}^{\Lambda_1} = 225 \\ \text{GeV} \\ \text{jets} + \not\!$		> 600	95	⁵¹ AAD	15cJ ATLS	$ \begin{array}{l} = 2m_{\widetilde{\chi}_{1}^{0}}, m_{\widetilde{\chi}_{1}^{0}} < 160 \ \text{GeV} \\ \widetilde{t}_{2} \rightarrow Z \widetilde{t}_{1}, m_{\widetilde{t}_{1}} - m_{\widetilde{\chi}_{1}^{0}} = 180 \\ \text{GeV}, m_{\widetilde{\chi}_{1}^{0}} = 0 \end{array} $
> 500	OF	38 1014 2114 751	170 0140	$m_{\tilde{t}} + 0.25 \ m_{\tilde{\chi}_1^0}, \ \tilde{m}_{\tilde{\chi}_1^0} = 0$ GeV GeV $Teter 1 = 0$		> 600	95	⁵¹ aad	15cJ ATLS	$\widetilde{t}_2 \rightarrow h \widetilde{t}_1, \widetilde{m}_{\widetilde{t}_1} - m_{\widetilde{\chi}_1^0} = 180$ GeV, $m_{\sim 0} = 0$
> 500	70	- KHACHATRY	1/5 CM/5	$\chi_1^{\text{gets}+\#_T}$, istopi, $m_{\widetilde{\chi}_1^0} = 0$ GeV		none, 172.5-191	95	⁵² AAD	15」 ATLS	$\widetilde{t} ightarrow t \widetilde{\chi}_1^0$, ${m_{\widetilde{arphi}^0}} = 1 \; { m GeV}$
>1120	95	³⁹ SIRUNYAN	17AS CMS	$1\ell + ext{jets} + ot\!$						A1

	95	SS KHACHATRY	.15AF CMS	$t \rightarrow t \tilde{\chi}_1^0, \ m_{\tilde{\chi}_1^0} = 0, \ m_{\tilde{t}} > m_t$ + $m_{\tilde{\tau}_1^0}$
> 560	95	⁵⁴ KHACHATRY	.15ah CMS	$\widetilde{t} \rightarrow t \widetilde{\chi}_{1}^{0}, m_{\widetilde{\chi}_{1}^{0}} = 0, m_{\widetilde{t}} > m_{t}$
> 250	95	⁵⁵ KHACHATRY	.15ан CMS	$\widetilde{t} \rightarrow c \widetilde{\chi}_{1}^{0}, m_{\widetilde{t}} - m_{\widetilde{\chi}_{1}^{0}} < 10 \text{ GeV}$
none, 200-350	95	⁵⁶ KHACHATRY	.15L CMS	$\tilde{t} \rightarrow q q$, RPV, $\lambda_{312}'' \neq 0$
none, 200-385	95	⁵⁶ KHACHATRY	.15L CMS	$\tilde{t} \rightarrow qb$, RPV, $\lambda_{222}^{\eta^{12}} \neq 0$
> 730	95	⁵⁷ KHACHATRY	.15x CMS	$\tilde{t} \rightarrow t \tilde{\chi}_1^0, \ m_{\tilde{\chi}_1^0} = 100 \text{ GeV},$
				$m_{\tilde{t}} > m_t^{\Lambda_1} + m_{\tilde{\chi}_1^0}$
none 400-645	95	⁵⁷ KHACHATRY	.15x CMS	$ \begin{array}{l} \widetilde{t} \rightarrow t \widetilde{\chi}_1^0 \ \text{or} \ \widetilde{t} \rightarrow b \widetilde{\chi}_1^{\pm}, m_{\widetilde{\chi}_1^0} \\ = 100 \ \text{GeV}, m_{\widetilde{\chi}_2^{\pm}} - m_{\widetilde{\chi}_1^0} = \end{array} $
none 270-645	95	⁵⁸ AAD	14AJ ATLS	$ \begin{array}{rcl} 5 & \mathrm{GeV} \\ \geq 4 & \mathrm{jets} + \not\!$
none 250-550	95	⁵⁸ AAD	14AJ ATLS	$ \geq 4 \text{ jets} + \not\!\!\!E_T, \ B(\tilde{t}_1 \to b \tilde{\chi}_1^{\pm}) \\ = 50 \ \%, \ m_{\tilde{\chi}_1^{\pm}} = 2 \ m_{\tilde{\chi}_1^0}, $
				$m_{\widetilde{\chi}^0_1}$ < 60 GeV
none 210-640	95	⁵⁹ AAD	14bd ATLS	$ \begin{array}{rcl} \ell^{\pm} + \mathrm{jets} + \not\!\!\! E_T, \ & \widetilde{t}_1 \rightarrow t \widetilde{\chi}_1^0, \\ & m_{\widetilde{\chi}_1^0} = 0 \ \mathrm{GeV} \end{array} $
> 500	95	⁵⁹ AAD	14bd ATLS	$ \begin{array}{l} \ell^{\pm} + \text{jets} + \not\!$
none 150-445	95	⁶⁰ AAD	14F ATLS	$ \begin{array}{l} \ell^{\pm} \ell^{\mp} \text{ final state, } \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}, \\ m_{\tilde{t}_1} - m_{\tilde{\chi}_1^{\pm}} = 10 \text{ GeV, } m_{\tilde{\chi}_1^0} \end{array} $
none 215-530	95	⁶⁰ AAD	14F ATLS	$ \begin{array}{c} \overset{=}{\ell^{\pm}} 1 \mathrm{GeV}^{-1} \\ \ell^{\pm} \widetilde{\ell^{\mp}} \mathrm{final \ state,} \widetilde{t}_1 \rightarrow t \widetilde{\chi}_1^0, \\ m_{\widetilde{\chi}^0} = 1 \mathrm{GeV} \end{array} $
> 270	95	⁶¹ AAD	14T ATLS	$\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0, m_{\tilde{\chi}_1^0} = 200 \text{ GeV}$
> 240	95	⁶¹ AAD	14⊤ ATLS	$\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0, m_{\tilde{\tau}} - m_{\tilde{\tau}_1^0} < 85 \text{ GeV}$
> 255	95	⁶¹ AAD	14T ATLS	$\tilde{t}_1 \rightarrow bff'\tilde{\chi}_1^0, m_{\tilde{\tau}} - m_{\sim 0} \approx$
				m_b $m_1 \chi_1 \chi_1$
> 400	95	⁶² CHATRCHYAN	14AH CMS	iets + E_T , $\tilde{t} \rightarrow t \tilde{\chi}_1^0$ simplified
				model, $m_{\widetilde{\chi}^0_1} = 50~{ m GeV}$
		⁶³ CHATRCHYAN	14r CMS	model, $m_{\tilde{\chi}_1^0} = 50 \text{ GeV}$ $\geq 3\ell^{\pm}, \tilde{t} \rightarrow (b\tilde{\chi}_1^{\pm}/t\tilde{\chi}_1^0), \tilde{\chi}_1^{\pm} \rightarrow (qq'/\ell\nu)\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow (H/Z)\tilde{G}$. GMSB, natural
> 740	95	⁶³ CHATRCHYAN ⁶⁴ KHACHATRY	14R CMS 14T CMS	$ \begin{array}{l} \operatorname{model}_{1}, m_{\widetilde{\chi}_{1}^{0}} = 5^{\circ} \operatorname{GeV} \\ \geq 3\ell^{\pm}, \widetilde{\iota} \rightarrow (b\widetilde{\chi}_{1}^{\pm}/t\widetilde{\chi}_{1}^{0}), \\ \widetilde{\chi}_{1}^{\pm} \rightarrow (qq'/\ell\nu)\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \\ (H/Z)\widetilde{G}, \operatorname{GMSB} \operatorname{natural} \\ \operatorname{higgsino} \operatorname{NLSP} \operatorname{scenario} \\ \tau + b \operatorname{jets}, \operatorname{RPV}, LQ\overline{D}, \lambda'_{33} \neq \\ 0, \widetilde{\iota} \rightarrow b \operatorname{jets} \operatorname{dender} \operatorname{dender} \end{array} $
> 740 > 580	95	⁶³ CHATRCHYAN ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY	14R CMS 14T CMS 14T CMS	$ \begin{array}{l} \begin{array}{l} \underset{\chi_{1}^{0}}{\operatorname{model}}, m_{\chi_{1}^{0}} = 50 \; \mathrm{GeV} \\ \geq 3\ell^{\pm}, \tilde{t} \rightarrow (b\tilde{\chi}_{1}^{\pm}/t\tilde{\chi}_{1}^{0}), \\ \tilde{\chi}_{1}^{\pm} \rightarrow (qq'/\nu)\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \\ (H/Z)\tilde{G}, \; GMSB, \; natural \\ higgsino \; NLSP \; scenario \\ \tau + b jets, \; RPV, \; LQ\overline{D}, \; \lambda'_{33} \neq \\ 0, \; \tilde{t} \rightarrow \; \tau \; b \; simplified \; model \\ \tau + b jets, \; RPV, \; LQ\overline{D}, \; \lambda'_{3jk} \neq \end{array} $
> 740 > 580	95 95	⁶³ CHATRCHYAN ⁶⁴ KHACHATRY. ⁶⁴ KHACHATRY.	14R CMS .14T CMS .14T CMS	$ \begin{array}{l} \begin{array}{l} \max {\rm obs}(I,m_{\widetilde{\chi}_{1}^{0}}=5^{\circ}{\rm GeV} \\ \geq 3\ell^{\pm}, \ \widetilde{t} \rightarrow (b \ \widetilde{\chi}_{1}^{\pm}/t \ \widetilde{\chi}_{1}^{0}), \\ \widetilde{\chi}_{1}^{\pm} \rightarrow (q \ q'/\ell \nu) \ \widetilde{\chi}_{1}^{1}, \ \widetilde{\chi}_{1}^{0} \rightarrow \\ (H/Z) \ \widetilde{G}, \ {\rm GMSB}, \ {\rm natural} \\ {\rm higgsino} \ {\rm NLSP} \ {\rm scenario} \\ \tau + b \ {\rm sites}, \ {\rm RPV}, \ L \ Q\overline{D}, \ \lambda'_{333} \neq \\ 0, \ \widetilde{t} \rightarrow \tau \ b \ {\rm simplified} \\ model \\ \tau + b \ {\rm sites}, \ {\rm RPV}, \ L \ Q\overline{D}, \ \lambda'_{3jk} \neq \\ 0 \ (j \neq =3), \ \widetilde{t} \rightarrow \ \widetilde{\chi}^{\pm} \ b, \\ \widetilde{\chi}^{\pm} \rightarrow \ q \ q \ \tau^{\pm} \ {\rm simplified} \\ \\ \end{array} $
> 740 > 580	95 95 t use the	 ⁶³ CHATRCHYAN ⁶⁴ KHACHATRY. ⁶⁴ KHACHATRY. ⁶⁴ KHACHATRY. 	14R CMS .14T CMS .14T CMS averages, fits	$ \begin{array}{l} \operatorname{model}_{i}, m_{\widetilde{\chi}_{1}^{0}} = 5^{\circ} \operatorname{GeV} \\ \geq 3\ell^{\pm}, \widetilde{\iota} \rightarrow (b\widetilde{\chi}_{1}^{\pm}/t\widetilde{\chi}_{1}^{0}), \\ \widetilde{\chi}_{1}^{\pm} \rightarrow (q q'/\ell \nu)\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \\ (H/Z) \widetilde{G}, \operatorname{GMSB}, \operatorname{natural} \\ \operatorname{higgsino} \operatorname{NLSP} \operatorname{scenario} \\ \tau + b \operatorname{jets}, \operatorname{RPV}, LQ\overline{D}, \lambda'_{33} \neq \\ 0, \widetilde{\iota} \rightarrow \tau b \operatorname{simplified} \operatorname{model} \\ \tau + b \operatorname{jets}, \operatorname{RPV}, LQ\overline{D}, \lambda'_{3jk} \neq \\ 0 (j \neq = 3), \widetilde{\iota} \rightarrow \widetilde{\chi}^{\pm} b, \\ \widetilde{\chi}^{\pm} \rightarrow q q \tau^{\pm} \operatorname{simplified} \\ \operatorname{model} \\ \operatorname{initis, etc.} \bullet \bullet \end{array} $
> 740 > 580 • • • We do no > 850	95 95 t use the 95	 ⁶³ CHATRCHYAN ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁵ AABOUD ⁶⁵ AABOUD 	14R CMS .14T CMS .14T CMS averages, fits 17AF ATLS	$ \begin{array}{l} \begin{array}{l} & \operatorname{model}_{i}, m_{\widetilde{\chi}_{1}^{0}} = 5^{\circ} \operatorname{GeV} \\ \geq 3\ell^{\pm}, \widetilde{t} \rightarrow (b\widetilde{\chi}_{1}^{\pm}/t\widetilde{\chi}_{1}^{0}), \\ \widetilde{\chi}_{1}^{\pm} \rightarrow (qq'/\ell\nu)\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \\ (H/Z) \widetilde{G}, \mathrm{GMSB}, \mathrm{natural} \\ \mathrm{higgsino} \mathrm{NLSP} \mathrm{scenario} \\ \tau + b \mathrm{jets}, \mathrm{RPV}, LQ\overline{D}, \lambda'_{33} \neq \\ 0, \widetilde{t} \rightarrow \tau b \mathrm{simplified} \mathrm{model} \\ \tau + b \mathrm{jets}, \mathrm{RPV}, LQ\overline{D}, \lambda'_{3jk} \neq \\ 0 (j \neq 3), \widetilde{t} \rightarrow \widetilde{\chi}^{\pm} b, \\ \widetilde{\chi}^{\pm} \rightarrow q q \tau^{\pm} \mathrm{simplified} \\ \mathrm{model} \\ \mathrm{limits}, \mathrm{etc} \cdot \bullet \bullet \\ 2\ell + \mathrm{jets} + b \mathrm{-jets} + E_T, \mathrm{Tstop6}, \\ m\widetilde{\chi}_{1}^{0} = 0 \end{array} $
> 740 > 580 • • • We do no > 850 > 800	95 95 t use the 95 95	 ⁶³ CHATRCHYAN ⁶⁴ KHACHATRY. ⁶⁴ KHACHATRY. ⁶⁴ KHACHATRY. ⁶⁵ AABOUD ⁶⁶ AABOUD 	14R CMS 14T CMS 14T CMS averages, fits 17AF ATLS 17AF ATLS	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$
<pre>> 740 > 580 • • • We do not > 850 > 800 > 880</pre>	95 95 t use the 95 95 95	 ⁶³ CHATRCHYAN ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁵ AABOUD ⁶⁶ AABOUD ⁶⁷ AABOUD 	14R CMS .14T CMS .14T CMS averages, fits 17AF ATLS 17AF ATLS 17AF ATLS	$ \begin{array}{l} \operatorname{model}_{\chi_{1}^{0}} = 50 \ \mathrm{GeV} \\ \geq 3\ell^{\pm}, \overline{t} \rightarrow (b \widetilde{\chi}_{1}^{\pm} / t \widetilde{\chi}_{1}^{0}), \\ \widetilde{\chi}_{1}^{\pm} \rightarrow (q q' / \ell \nu) \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow (H/2) \widetilde{G}, \ \mathrm{GMSB} \text{ natural} \\ \operatorname{higgsino} \ \mathrm{NLSP} \ \mathrm{scenario} \\ \tau + b \operatorname{jets}, \ \mathrm{RPV}, L Q \overline{D}, \lambda'_{333} \neq \\ 0, \ \widetilde{t} \rightarrow \tau b \ \mathrm{simplified} \ \mathrm{model} \\ \tau + b \operatorname{jets}, \ \mathrm{RPV}, L Q \overline{D}, \lambda'_{3jk} \neq \\ 0 \ (j \neq 3), \ \widetilde{t} \rightarrow \widetilde{\chi}^{\pm} b, \\ \widetilde{\chi}^{\pm} \rightarrow q q \tau^{\pm} \ \mathrm{simplified} \\ \operatorname{model} \\ , \ \mathrm{imits}, \ \mathrm{etc}. \bullet \bullet \\ 2\ell + \operatorname{jets} + b \operatorname{jets} + E_T, \ \mathrm{Tstop6}, \\ m_{\widetilde{\chi}_{1}^{0}} = 0 \\ 2\ell + \operatorname{jets} + b \operatorname{jets} + E_T, \ \mathrm{Tstop7} \\ \mathrm{with} \ 100\% \ \mathrm{decays} \ \mathrm{via} \ Z, \\ m_{\widetilde{\chi}_{1}^{0}} = 50 \ \mathrm{GeV} \\ \end{array} $
<pre>> 740 > 580 • • • We do not > 850 > 800 > 880</pre>	95 95 1 use the 95 95 95	 ⁶³ CHATRCHYAN ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁵ AABOUD ⁶⁶ AABOUD ⁶⁷ AABOUD ⁶⁸ AABOUD 	14R CMS .14T CMS .14T CMS averages, fits 17AF ATLS 17AF ATLS 17AF ATLS 17AY ATLS	$ \begin{array}{l} \operatorname{model}_{1}, \operatorname{m}_{\chi_{1}^{0}}_{1} = 50 \ \mathrm{GeV} \\ \geq 3\ell^{\pm}, \ \overline{t} \rightarrow (b \ \overline{\chi}_{1}^{\pm} / t \ \overline{\chi}_{1}^{0}), \\ \overline{\chi}_{1}^{\pm} \rightarrow (q \ q' / \ell \nu) \ \overline{\chi}_{1}^{0}, \ \overline{\chi}_{1}^{0} \rightarrow \\ (H / Z) \ \overline{G}, \ \mathrm{GMSB} \text{ natural} \\ \operatorname{higgsino} \ \mathrm{NLSP} \ \mathrm{scenario} \\ \tau + b \ \mathrm{jets}, \ \mathrm{RPV}, \ L \ Q\overline{D}, \ \chi'_{333} \neq \\ 0, \ \overline{t} \rightarrow \tau \ b \ \mathrm{simplified} \\ \operatorname{model} \\ \tau + b \ \mathrm{jets}, \ \mathrm{RPV}, \ L \ Q\overline{D}, \ \chi'_{3jk} \neq \\ 0 \ (j \neq = 3), \ \overline{t} \rightarrow \ \overline{\chi}^{\pm} \ b, \\ \overline{\chi}^{\pm} \rightarrow q \ q \ \tau^{\pm} \ \mathrm{simplified} \\ \\ \operatorname{model} \\ \mathrm{limits}, \ \mathrm{etc}. \bullet \bullet \\ 2\ell + \mathrm{jets} + b \ \mathrm{jets} + E_T, \ \mathrm{Tstop6}, \\ \operatorname{m}_{\overline{\chi}_{1}^{0}} = 0 \\ 2\ell + \mathrm{jets} + b \ \mathrm{jets} + E_T, \ \mathrm{Tstop7} \\ \text{with} \ 100\% \ \mathrm{decays} \ \mathrm{via} \ \mathrm{higgs}, \\ \operatorname{m}_{\overline{\chi}_{1}^{0}} = 50 \ \mathrm{GeV} \\ 2\ell + \mathrm{jets} + E_T, \ \mathrm{pMSSM-inspired} \\ \end{array} $
<pre>> 740 > 580 • • • We do not > 850 > 800 > 880 > 230</pre>	95 95 95 95 95 95	 ⁶³ CHATRCHYAN ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁶ AABOUD ⁶⁶ AABOUD ⁶⁷ AABOUD ⁶⁸ AABOUD ⁶⁸ ROLBIECKI 	 14R CMS 14T CMS 14T CMS averages, fits 17AF ATLS 17AF ATLS 17AF ATLS 15 THEO 	$ \begin{array}{l} \operatorname{model}_{i}, m_{\widetilde{\chi}_{1}^{0}} = 5^{\circ} \operatorname{GeV} \\ \geq 3\ell^{\pm}, \widetilde{\iota} \rightarrow (b\widetilde{\chi}_{1}^{\pm}/t\widetilde{\chi}_{1}^{0}), \\ \widetilde{\chi}_{1}^{\pm} \rightarrow (q q'/\ell \nu) \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \\ (H/Z) \widetilde{G}, \operatorname{GMSB}, \operatorname{natural} \\ \operatorname{higgsino} \operatorname{NLSP} \operatorname{scenario} \\ \tau + b \cdot \operatorname{jets}, \operatorname{RPV}, L Q\overline{D}, \lambda'_{33} \neq \\ 0, \widetilde{\iota} \rightarrow \tau b \operatorname{simplified} \operatorname{model} \\ \tau + b \cdot \operatorname{jets}, \operatorname{RPV}, L Q\overline{D}, \lambda'_{3jk} \neq \\ 0 (j \neq = 3), \widetilde{\iota} \rightarrow \widetilde{\chi}^{\pm} b, \\ \widetilde{\chi}^{\pm} \rightarrow q q \tau^{\pm} \operatorname{simplified} \\ \operatorname{model} \\ , \operatorname{imits}, \operatorname{etc} \cdot \bullet \bullet \\ 2\ell + \operatorname{jets} + b \cdot \operatorname{jets} + \mathcal{E}_{T}, \operatorname{Tstop7}, \\ \operatorname{with} 100\% \operatorname{decays} \operatorname{via} hZ, \\ m_{\widetilde{\chi}_{1}^{0}} = 5^{\circ} \operatorname{GeV} \\ 2\ell + \operatorname{jets} + b \cdot \operatorname{jets} + \mathcal{E}_{T}, \operatorname{Tstop7} \\ \operatorname{with} 100\% \operatorname{decays} \operatorname{via} \operatorname{higgs}, \\ m_{\widetilde{\chi}_{1}^{0}} = 5^{\circ} \operatorname{GeV} \\ 2\ell + \operatorname{jets} + \mathcal{E}_{T}, \operatorname{pMSSM-inspired} \\ WW \operatorname{xsection}, \widetilde{\iota}_{1} \rightarrow b W \widetilde{\chi}_{1}^{0}, \\ m_{\widetilde{\iota}_{1}} \simeq m_{b} + m_{W} + m_{\widetilde{\chi}_{1}^{0}} \end{array} $
<pre>> 740 > 580 • • • We do no > 850 > 800 > 880 > 230 > 600</pre>	95 95 95 95 95 95 95	 ⁶³ CHATRCHYAN ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁶ AABOUD ⁶⁶ AABOUD ⁶⁷ AABOUD ⁶⁸ AABOUD ⁶⁹ AAD ⁶⁹ AAD ⁶⁰ AAD 	 14R CMS 14T CMS 14T CMS averages, fits 17AF ATLS 17AF ATLS 17AF ATLS 17AY ATLS 15 THEO 14B ATLS 	$ \begin{array}{l} \operatorname{model}_{i}, m_{\widetilde{\chi}_{1}^{0}} = 5^{\circ} \operatorname{GeV} \\ \geq 3\ell^{\pm}, \widetilde{\iota} \rightarrow (b\widetilde{\chi}_{1}^{\pm}/t\widetilde{\chi}_{1}^{0}), \\ \widetilde{\chi}_{1}^{\pm} \rightarrow (q q'/\ell \nu) \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \\ (H/Z) \widetilde{G}, \operatorname{GMSB}, \operatorname{natural} \\ \operatorname{higgsino} \operatorname{NLSP} \operatorname{scenario} \\ \tau + b \operatorname{jets}, \operatorname{RPV}, LQ\overline{D}, \lambda'_{33} \neq \\ 0, \widetilde{\iota} \rightarrow \tau b \operatorname{simplified} \operatorname{model} \\ \tau + b \operatorname{jets}, \operatorname{RPV}, LQ\overline{D}, \lambda'_{3jk} \neq \\ 0 (j \neq = 3), \widetilde{\iota} \rightarrow \widetilde{\chi}^{\pm} b, \\ \widetilde{\chi}^{\pm} \rightarrow q q \tau^{\pm} \operatorname{simplified} \\ \operatorname{model} \\ \operatorname{model} \\ \operatorname{limits}, \operatorname{etc.} \bullet \bullet \\ 2\ell + \operatorname{jets} + b \operatorname{-jets} + \mathcal{E}_{T}, \operatorname{Tstop7} \\ \operatorname{with} 100\% \operatorname{decays} \operatorname{via} Z, \\ m_{\widetilde{\chi}_{1}^{0}} = 5^{\circ} \operatorname{GeV} \\ 2\ell + \operatorname{jets} + b \operatorname{-jets} + \mathcal{E}_{T}, \operatorname{Tstop7} \\ \operatorname{with} 100\% \operatorname{decays} \operatorname{via} Z, \\ m_{\widetilde{\chi}_{1}^{0}} = 5^{\circ} \operatorname{GeV} \\ 2\ell + \operatorname{jets} + b \operatorname{-jets} + \mathcal{E}_{T}, \operatorname{Tstop7} \\ \operatorname{with} 100\% \operatorname{decays} \operatorname{via} Z, \\ m_{\widetilde{\chi}_{1}^{0}} = 5^{\circ} \operatorname{GeV} \\ 2\ell + \operatorname{jets} + \mathcal{E}_{T}, \operatorname{pMSSM-inspired} \\ WW x \operatorname{section}, \widetilde{\iota}_{1} \rightarrow b W_{\widetilde{\chi}_{1}^{0}}, \\ m_{\widetilde{\iota}_{1}} \simeq m_{b} + m_{W} + m_{\widetilde{\chi}_{1}^{0}} \\ Z + b \mathcal{E}_{T}, \widetilde{\iota}_{2} \rightarrow Z \widetilde{\iota}_{1}, \widetilde{\iota}_{1} \rightarrow \\ \operatorname{t} \widetilde{\chi}_{1}^{0}, m_{\widetilde{\chi}_{1}^{0}} < 200 \operatorname{GeV} \\ \end{array} $
<pre>> 740 > 580 • • • We do no > 850 > 800 > 880 > 230 > 600 > 540</pre>	95 95 95 95 95 95 95	 ⁶³ CHATRCHYAN ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁵ AABOUD ⁶⁶ AABOUD ⁶⁷ AABOUD ⁶⁸ AABOUD ⁶⁸ AABOUD ⁶⁹ AAD ⁶⁹ AAD 	 14R CMS .14T CMS .14T CMS averages, fits 17AF ATLS 17AF ATLS 17AF ATLS 17AY ATLS 15 THEO 14B ATLS 14B ATLS 	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$
<pre>> 740 > 580 • • • We do not > 850 > 800 > 880 > 230 > 600 > 540 > 360</pre>	95 95 95 95 95 95 95 95 95	 ⁶³ CHATRCHYAN ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁵ AABOUD ⁶⁶ AABOUD ⁶⁷ AABOUD ⁶⁸ AABOUD ⁶⁹ AAD ⁶⁹ AAD ⁷⁰ CHATRCHYAN 	 14R CMS .14T CMS .14T CMS .14T CMS averages, fits 17aF ATLS 17aF ATLS 17aF ATLS 17aF ATLS 17aF ATLS 14B ATLS 14B ATLS 14U CMS 	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$
<pre>> 740 > 580 • • • We do no > 850 > 800 > 880 > 230 > 600 > 540 > 360 > 215</pre>	95 95 95 95 95 95 95 95 95 95	 ⁶³ CHATRCHYAN ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁴ KHACHATRY ⁶⁵ AABOUD ⁶⁶ AABOUD ⁶⁷ AABOUD ⁶⁸ AABOUD ⁶⁹ AAD ⁶⁹ AAD ⁶⁹ AAD ⁷⁰ CHATRCHYAN CZAKON 	 14R CMS .14T CMS .14T CMS .14T CMS averages, fits 17aF ATLS 17aF ATLS 17aF ATLS 17aF ATLS 17aF ATLS 14B ATLS 14B ATLS 14U CMS 14 	$ \begin{array}{l} \operatorname{model}_{i}, \operatorname{m}_{\chi_{1}^{0}}_{i} = 50 \ \mathrm{GeV} \\ \geq 3\ell^{\pm}, \ \widetilde{t} \rightarrow (b \ \widetilde{\chi}_{1}^{\pm} / t \ \widetilde{\chi}_{1}^{0}), \\ \widetilde{\chi}_{1}^{\pm} \rightarrow (q \ d' / \ell \nu) \ \widetilde{\chi}_{1}^{0}, \ \widetilde{\chi}_{1}^{0} \rightarrow \\ (H \ Z) \ \widetilde{G}, \ \mathrm{GMSB}, \ \mathrm{natural} \\ \mathrm{higgsino} \ \mathrm{NLSP} \ \mathrm{scenario} \\ \tau + b \ \mathrm{jets}, \ \mathrm{RPV}, \ L \ Q \overline{D}, \ \chi'_{33} \neq \\ 0, \ \widetilde{t} \rightarrow \tau \ b \ \mathrm{simplified} \ \mathrm{model} \\ \tau + b \ \mathrm{jets}, \ \mathrm{RPV}, \ L \ Q \overline{D}, \ \chi'_{33} \neq \\ 0, \ \widetilde{t} \rightarrow \tau \ b \ \mathrm{simplified} \ \mathrm{model} \\ \tau + b \ \mathrm{jets}, \ \mathrm{RPV}, \ L \ Q \overline{D}, \ \chi'_{3jk} \neq \\ 0 \ (j \neq = 3), \ \widetilde{t} \rightarrow \ \widetilde{\chi}^{\pm} \ b, \\ \ \widetilde{\chi}^{\pm} \rightarrow \ q \ q \ \tau^{\pm} \ \mathrm{simplified} \\ \mathrm{model} \\ \mathrm{limits}, \ \mathrm{sc.} \bullet \bullet \\ 2\ell + \ \mathrm{jets} + b \ \mathrm{jets} + \ E_{T}, \ \mathrm{Tstop7} \\ \mathrm{with} \ 100\% \ \mathrm{decays} \ \mathrm{via} \ Z, \\ \ m_{\chi_{1}^{0}} = 50 \ \mathrm{GeV} \\ 2\ell + \ \mathrm{jets} + b \ \mathrm{jets} + \ E_{T}, \ \mathrm{Tstop7} \\ \mathrm{with} \ 100\% \ \mathrm{decays} \ \mathrm{via} \ Z, \\ \ m_{\chi_{1}^{0}} = 50 \ \mathrm{GeV} \\ 2\ell + \ \mathrm{jets} + b \ \mathrm{jets} + \ E_{T}, \ \mathrm{Tstop7} \\ \mathrm{with} \ 100\% \ \mathrm{decays} \ \mathrm{via} \ \mathrm{J}, \\ \ m_{\chi_{1}^{0}} = 50 \ \mathrm{GeV} \\ 2\ell + \ \mathrm{jets} + \ \mathrm{bector}, \ \widetilde{t}_{1} \rightarrow \ \mathrm{bW} \ \mathrm{k}_{1}^{0}, \\ \ m_{\chi_{1}^{0}} = 50 \ \mathrm{GeV} \\ 2\ell + \ \mathrm{jets} + \ \mathrm{bector}, \ \widetilde{t}_{1} \rightarrow \ \mathrm{bW} \ \mathrm{k}_{1}^{0}, \\ \ m_{\chi_{1}^{0}} = \ \mathrm{coc} \ \mathrm{GeV} \\ 2\ell + \ \mathrm{bE} \ E_{T}, \ \widetilde{t}_{1} \rightarrow \ \mathrm{t} \ \mathrm{t}_{1}^{0}, \ \widetilde{\chi}_{1}^{0} \rightarrow \\ \ Z \ \widetilde{t}, \ m_{\chi_{1}^{0}} \ \mathrm{coc}

 1 SIRUNYAN 19Au searched in 35.9 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 13 TeV for events with at last one photon, jets, some of which are identified as originating from *b*-quarks, and There \mathcal{F}_T . No significant excess above the Standard Model expectations is observed. In the framework of GMSB, limits are set on the gluino mass in the Tglu4C, Tglu4D and Tglu4E simplified models, and on the top squark mass in the Tstop13 simplified model, see their Figure 5.

² SIRUNYAN 19CH searched in 137 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing multiple jets and large \mathcal{P}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu1C, Tglu2A and Tglu3A simplified models, see their Figure 13. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbot1, Tstop1 simplified models, see their Figure 14.

³ SIRUNYAN 19s searched in 35.9 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with zero or one charged leptons, jets and E_T . The razor variables (M_R and R^2) are used to categorize the events. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu3C simplified models, see Figures 22 and 23, and on the stop mass in the Tstop1 simplified model, see their Figure 24.

 4 SIRUNYAN 19U searched in 35.9 fb $^{-1}$ of pp collisions at \sqrt{s} = 13 TeV for events containing one electron-muon pair with opposite charge. The search targets a region of parameter space where the kinematics of top squark pair production and top quark pair production is very similar, due to the mass difference between the top squark and the neutralino being close to the top quark mass. No excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1 model, with $m_{\widetilde{t}_1} - m_{\widetilde{\chi}_1^0}$ close to m_t , see Figure 5.

 $\tau_1 = \chi_1$ 5 AABOUD 18AQ searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for top squark pair production in final states with one isolated electron or muon, several energetic jets, and missing transverse momentum. No significant excess over the Standard Model prediction is observed. In case of Tstop1 models, top squark masses up to 940 GeV are excluded assuming $m_{\chi_1^0} = 0$ GeV, see their Fig. 20. If the top quark is not on-shell (3-body) decay, exclusions up to 500 GeV are obtained for $m_{\chi_1^0} = 300$ GeV. Exclusions as a function of $m_{\chi_1^0} = m_{\chi_1^0}$ are given in their Fig. 21.

function of $m_{\widetilde{t}_1}-m_{\widetilde{\chi}_1^0}$ are given in their Fig. 21.

⁶ AABOUD 18AQ searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for top squark pair production in final states with one isolated electron or muon, several energetic jets, and missing transverse momentum. No significant excess over the Standard Model prediction is observed. In case of Tstop3 models (4-body), top squark masses up to 370 GeV are excluded for $m_{\tilde{t}} - m_{\tilde{t}_{1}0}^{-0}$ as low as 20 GeV. Top squark masses below 195 GeV are excluded for all $m_{\widetilde{\chi}_1^0}$, see their Fig. 20 and Fig. 21.

⁷ AABOUD 18AQ searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for top squark pair production in final states with one isolated electron or muon, several energetic jets, and missing transverse momentum. No significant excess over the Standard Model prediction is observed. In case of Tstop2 models, top squark masses up to 840 GeV are excluded for $m_{\tilde{t}} - m_{\tilde{\chi}_1^\pm} = 10$ GeV. See their Fig. 23. Exclusion limits for this decay mode are presented also in the context of Higgsino-LSP phenomenological MSSM models, where

 $m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^0} = 5$ GeV, see their Fig 26.

^{A1} ^{A1} ^{A1} AABOUD 188V searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with at least one jet identified as c-jet, large missing transverse energy and no leptons. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in Tstop4 models. In scenarios

with differences of the stop and neutralino masses below 100 GeV, stop masses below 500 GeV are excluded. See their Fig.6 and Fig.7. ⁹AABOUD 18BV searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least one jet identified as *c*-jet, large missing transverse energy and no leptons. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in Tstop1 models. In scenarios with massless neutralinos, top squark masses below 850 GeV are excluded. See their Fig. 6.

¹⁰AABOUD 18I searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with at least one jet with a transverse momentum above 250 GeV and no leptons. Good agree-ment is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in Tstop3 models. Stop masses below 390 GeV are excluded for $m_{\widetilde{t}} - m_{\widetilde{\chi}_1^0} = m_b$. See their Fig.9(b).

¹¹AABOUD 181 searched in 36.1 fb⁻¹ of ρp collisions at $\sqrt{s} = 13$ TeV for events with at least one jet with a transverse momentum above 250 GeV and no leptons. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in Tstop4 models. In scenarios with differences of the stop and neutralino masses around 5 GeV, stop masses below 430

with differences of the stop and neutralino masses around 5 GeV, stop masses below 430 GeV are excluded. See their Fig.9(a). ¹² AABOUD 18Y searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for direct pair production of top squarks in final states with two tau leptons, *b*-jets, and missing transverse momentum. At least one hadronic τ is required. No significant deviation from the SM predictions is observed in the data. The analysis results are interpreted in Tstop5 models with a nearly massless gravitino. Top squark masses up to 1.16 TeV and tau slepton masses up to 1 TeV are excluded, see their Fig 7. ¹³ SIRUNYAN 18AJ searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing two low-momentum, oppositely charged leptons (electrons or muons) and \not{p}_T . No excess over the expected background is observed. Limits are derived on the stop mass in the Tstop10 simplified model, see their Figure 6. Finally, limits are set on the Higgsino mass in the Tchi1n2S simplified model, see Figure 8 and in the pMSSM, see Figure 7. see Figure

 $^{14}\,{\sf SIRUNYAN}$ 18AL searched in 35.9 fb $^{-1}$ of $p\,p$ collisions at \sqrt{s} = 13 TeV for events Limits are set on the gluino mass in the Tglu3A and Tglu1C simplified models, see their Figure 5. Limits are also set on the sbottom mass in the Tsbot2 simplified model, see their Figure 6, and on the stop mass in the Tstop7 simplified model, see their Figure 7.

their Figure 6, and on the stop mass in the 1stop r simplified model, see their Figure 7. ¹⁵ SIRUNYAN 18AN searched in 19.7 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events containing one or two photons and a pair of top quarks from the decay of a pair of top squark in a natural gauge-mediated scenario. The final state consists of a lepton (electron or muon), jets and one or two photons. No significant excess above the Standard Model unstation of the state expectations is observed. Limits are set on the stop mass in the Tstop12 simplified model, see their Figure 6.

2047

- ¹⁶ SIRUNYAN 18AY searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing one or more jets and significant \mathcal{P}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified models, see their Figure 3. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbo11, Tstop1 and Tstop4 simplified models, see their Figure 3. Finally, limits are set on long-lived gluino masses in a Tglu1A simplified model. where the gluino is metastable or long-lived with proper decay lengths in the range 10^{-3}
- Tstop 4 simplified model, see their Figure 6. ¹⁸ SIRUNYAN 18c searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for the pair production of top squarks in events with two oppositely charged leptons (electrons or production of the solution of
- Tstop1 and Tstop2 results are combined with complementary searches in the all-hadronic and single lepton channels, see their Figures 13 and 14. ¹⁹ SIRUNYAN 18D searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events con-taining identified hadronically decaying top quarks, no leptons, and \mathcal{P}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1 simplified model, see their Figure 8, and on the gluino mass in the Tglu 3A, Tglu 3B, Tglu 3C and Tglu 3E simplified models, see their Figure 9. ²⁰ SIRUNYAN 18DI searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for pair pro-duction of top squarks in events with a low transverse momentum lepton (electron or muon). a birb-momentum iet and significant missing transverse momentum.
- muon), a high-momentum jet and significant missing transverse momentum. No signifi-cant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop3 and Tstop10 simplified models, see their Figures 7 and 8. A combination of this search with the all-hadronic search is presented in Figure 9.
- combination of this search with the an-addonc search is presented in Figure 3. ²¹ SIRUNYAN 1BDN searched in 35.9 fb⁻¹ of pc collisions at $\sqrt{s} = 13$ TeV for direct electroweak production of charginos and for pair production of top squarks in events with two leptons (electrons or muons) of the opposite electric charge. No significant excess above the Standard Model expectations is observed. Limits are set on the chargino mass in the TchilchilC and TchilchilE simplified models, see their Figure 8. Limits are also
- set on the stop mass in the Tstop1 and Tstop2 simplified models, see their Figure 9. ²²AABOUD 17AJ searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 700 GeV are set on the top squark mass in Tstop11 simplified models, assuming $m_{\widetilde{\chi}_1^0} = m_{\widetilde{t}} 275$

GeV and $m_{\widetilde{\chi}^0_2}=m_{\widetilde{\chi}^0_1}$ + 100 GeV. See their Figure 4(e).

- χ_2^2 χ_1^2 χ_1^2 AABOUD 17AX searched in 36 fb⁻¹ of pp collisions at \sqrt{s} = 13 TeV for events containing two jets identified as originating from b-quarks and large missing transverse momentum, with or without leptons. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95 % C.L. are set on the masses of top squarks. Assuming 50% BR for Tstop1 and Tstop2 simplified models, a \tilde{t}_1 mass below 880 (860) GeV is excluded for $m_{\tilde{\chi}_1^0} = 0$ (<250) GeV. See their Fig. 7(b).
- ²⁴ AABOUD 17AY searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least four jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits in the range 250-1000 GeV are set on the top squark mass in Tstop1 simplified models. For the first time, additional constraints are set for the region $m_{\tilde{t}_1} \sim m_t + m_{\tilde{\chi}_1}^0$, with exclusion of the \tilde{t}_1 mass range 255 500 GeV see their formula. range 235–590 GeV. See their Figure 8.
- range 235-590 GeV. See their Figure 8. ²⁵ AABOUD 17Av searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least four jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits in the range 450-850 GeV are set on the top squark mass in a mixture of Tstop1 and Tstop2 simplified models with BR=50% and assuming $m_{\chi_1^\pm} m_{\chi_1^0} = 1$ GeV and $m_{\chi_1^0} < 240$ GeV. Constraints are given for various values of the BR. See their Figure 9. ²⁶ AABOUD 17BE searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two opposite-charge leptons (electrons and muons) and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to
- No significant excess above the Standard Model expectations is observed. Limits up to 720 GeV are set on the top squark mass in Tstop1 simplified models, assuming massless neutralinos. See their Figure 9 (2-body area).
- neutralinos. See their Figure 9 (2-boay area). ²⁷AABOUD 17BE searched in 36.1 fb⁻¹ of *p c* ollisions at $\sqrt{s} = 13$ TeV for events with two opposite-charge leptons (electrons and muons) and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 400 GeV are set on the top squark mass in Tstop3 simplified models, assuming $m_{\widetilde{t}_1} m_{\widetilde{\chi}_1^0}$
- = 40 GeV. See their Figure 9 (4-body area). ²⁸ AABOUD 17BE searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two opposite-charge leptons (electrons and muons) and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 430 GeV are set on the top squark mass in Tstop1 simplified models where top quarks are offshell, assuming $m_{\tilde{t}_1} m_{\tilde{\chi}_1^0}^0$ close to the *W* mass. See their Figure 9 (3-body area).
- (3-body area). ²⁹AABOUD 17BE searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two opposite-charge leptons (electrons and muons) and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 700 GeV are set on the top squark mass in Tstop2 simplified models, assuming $m_{\widetilde{t}_1} m_{\widetilde{\chi}_1^\pm} = 10$ GeV and massless neutralinos. See their Figure 10.
- 1 $^{X_{1}}$ $^{X_{1}}$ 30 KHACHATRYAN 17 searched in 2.3 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 13 TeV for events containing four or more jets, no more than one lepton, and missing transverse momentum, using the razor variables (M_{R} and R^{2}) to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits
- processes. No evidence for an excess over the expected background is observed. Limits are derived on the stop mass in the Tstop1 simplified model, see Fig. 17. ³¹ KHACHATRYAN 17AD searched in 2.3 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events containing at least four jets (including b_{-} jets), missing transverse momentum and tagged top quarks. No evidence for an excess over the expected background is observed. Top squark masses in the range 250-740 GeV and neutralino masses up to 240 GeV are excluded at 95% C.L. See Fig. 12.

 32 KHACHATRYAN 17AD searched in 2.3 fb $^{-1}$ of $p\,p$ collisions at $\sqrt{s}=$ 13 TeV for events containing at least four jets (including *b*-jets), missing transverse momentum and tagged top quarks. No evidence for an excess over the expected background is observed. Limits are derived on the \tilde{t} mass in simplified models that are a mixture of Tstop1 and Tstop2 with branching fractions 50% for each of the two decay modes: top squark masses of up to 610 GeV and neutralino masses up to 190 GeV are excluded at 95% C.L. The $\tilde{\chi}_1^\pm$ and the $\widetilde{\chi}^0_1$ are assumed to be nearly degenerate in mass, with a 5 GeV difference between

their masses. See Fig. 12.

- their masses, see Fig. 12. ³³ KHACHATRYAN 17P searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one or more jets and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A, Tglu3B, Tglu3C and Tglu3D simplified models, see their Figures 7 and 8. Limits are also set on the squark mass in the Tsqlt1 simplified model, see their Fig. 7, and on the sbottom mass in the Tsbot1 simplified model, see Fig. 8. Finally, limits are set on the store mass in the Tsbot1 simplified model, see Fig. 8. Finally, limits are set on the stop mass in the Tstop1, Tstop3, Tstop4, Tstop6 and Tstop7 simplified models, see Fig. 8.
- ³⁴ KHACHATRYAN 17s searched in 18.5 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 8 TeV for events KHACHAIRYAN ITS searched in 10.5 to 2 of pp consisting at $\sqrt{s} = 8$ fee to even is containing multiple jets and missing transverse momentum, using the α_T variable to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits are derived on the stop mass in the Tstop4 model: for $\Delta m = m_{\widetilde{t}} - m_{\widetilde{\chi}_1^0}$ equal to 10 and 80 GeV, masses of stop below 240 and 260 GeV are excluded, respectively. See their Fig. 3.
- 35 KHACHATRYAN 17s searched in 18.5 fb $^{-1}$ of pp collisions at \sqrt{s} = 8 TeV for events ⁵³ KHACHATRYAN 17s searched in 18.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events containing multiple jets and missing transverse momentum, using the α_T variable to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits are derived on the stop mass in the Tstop3 model: for $\Delta m = m_{\widetilde{t}} - m_{\widetilde{\chi}_1^0}^0$ equal to 10 and 80 GeV, masses of stop below 225 and 130 GeV are excluded, respectively. See their Fig.3. ³⁶ KHACHATRYAN 17s searched in 18.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events containing multiple ists and missing transverse momentum using the α_{-} variable to
- So KHACHATRYAN 1/s searched in 18.5 tb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events containing multiple jets and missing transverse momentum, using the α_T variable to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits are derived on the stop mass in the Tstop2 model: assuming $m_{\tilde{\chi}_1^\pm} = 0.25 \ m_{\tilde{t}} + 0.75 \ m_{\tilde{\chi}_1^0}^{-1}$, masses of stop up to 325 GeV and masses of the neutralino up to 225 GeV are excluded. See their Fig.3. 37 KHACHATRYAN 1/s searched in 18.5 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events containing multiple to an excess over the second masses of the operation of the second masses of the second masses of the neutralino up to 225 GeV are excluded. See their Fig.3.
- KHACHAFRYAN ITS searched in 10.5 to 20 pp consisting at $\sqrt{s} = 8$ fee to revents containing multiple jets and missing transverse momentum, using the α_T variable to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits are derived on the stop mass in the Tstop2 model: assuming $m_{\chi_1^+} = 0.75 m_{\tilde{t}} + 0.25 m_{\chi_1^0}$, masses of stop up to 400 GeV are worked for large static stop in the transverse stop of the stop mass in the Tstop2 model.
- excluded for low neutralino masses. See their Fig.3. ³⁸ KHACHATRYAN ITS searched in 18.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events containing multiple jets and missing transverse momentum, using the α_T variable to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits are derived on the stop mass in the Tstop1 model: assuming masses of stop up to 500 GeV and masses of the neutralino up to 105 GeV are excluded. See their Fig.3.
- ³⁹ SIRUNYAN 17As searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with a single lepton (electron or muon), jets, and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1,
- Tstop2 and Tstop8 simplified models, see their Figures 5, 6 and 7. ⁴⁰ SIRUNYAN 17AT searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for direct production of top squarks in events with jets and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1, Tstop2 , Tstop3, Tstop4, Tstop8 and Tstop10 simplified models, see their Figures 9 to 14.
- Figures 9 to 14. ⁴¹ SIRUNYAN 17Az searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one or more jets and large \mathcal{F}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A simplified models, see their Figures 6. Limits are also set on the squark mass in the Tsqk1 simplified model (for single light squark and for 8 degenerate light squarks), on the sbottom mass in the Tsbot1 simplified model and on the stop mass in the Tstop1 simplified model, see their Fig. 7. Finally, limits are set on the stop mass in the Tstop2, Tstop4 and Tstop8 simplified models, see Fig. 8. ⁴² SIRUNYAN 17k searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for direct produc-tion of stop or sbottom pairs in events with multiple jets and significant \mathcal{F}_T . A second search also requires an isolated lepton and is combined with the all-hadronic search. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1, Tstop8 and Tstop4 simplified models, see their Figures 7, 8
- Significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1. Tstop8 and Tstop4 simplified models, see their Figures 7, 8 and 9 (for the Tstop4 limits, only the results of the all-hadronic search are used). Limits are also set on the sbottom mass in the Tsbot1 simplified model, see Fig. 10 (also here, only the results of the all-hadronic search are used).
- only the results of the an-inauronic search are used). 4^3 SIRUNYAN 17P searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with multiple jets and large \mathcal{P}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu1C, Tglu2A, Tglu3A and Tglu3D simplified models, see their Fig. 12. Limits are also set on the squark mass in the Tsql1 simplified model, on the stop mass in the Tstop1 simplified model, and on the schedule result is the Tshert is complified model are also.
- in the IsqAI simplified model, on the stop mass in the IstopI simplified model, and on the sbottom mass in the Tsbot1 simplified model, see Fig. 13. 44 AABOUD 16b searched in 3.2 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV in events with an energetic jet and large missing transverse momentum. The results are interpreted as 95% C.L. limits on mass of stop decaying into a charm-quark and the lightest neutralino in scenarios with $m_{\tilde{t}_1} m_{\tilde{\chi}_1^0}$ between 5 and 20 GeV. See their Fig. 5.
- ⁴⁵ AABOUD 16J searched in 3.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in final states with one isolated electron or muon, jets, and missing transverse momentum. For the direct stop pair production model where the stop decays via top and lightest neutralino, the results exclude at 95% C.L. stop masses between 745 GeV and 780 GeV for a massless $\widetilde{\chi}_1^0$. See their Fig. 8.
- χ_1 . See their rig. 0. 46 AAD 16Ay searched in 20 fb $^{-1}$ of pp collisions at $\sqrt{s}=8$ TeV for events with either two hadronically decaying tau leptons, one hadronically decaying tau and one light lepton, or two light leptons. No significant excess over the Standard Model expectation is found. Exclusion limits at 95% C.L. on the mass of top squarks decaying via $\tilde{\tau}$ to a nearly massless gravitino are placed depending on $m_{\widetilde{\tau}}$ which is ranging from the 87 GeV LEP limit to $m_{\widetilde{t}_1}$. See their Figs. 9 and 10.

- 47 KHACHATRYAN 16AV searched in 19.7 fb $^{-1}$ of $p\,p$ collisions at $\sqrt{s}=$ 8 TeV for events with one or two isolated leptons, hadronic jets, p_{F} jets and E_{T} . No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in
- see Fig. 16.
- see Fig. 16. ⁴⁹ KHACHATRYAN 16BS searched in 2.3 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with at least one energetic jet , no isolated leptons, and significant \mathcal{U}_T , using the trans-verse mass variable M_{T2} to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1 simplified model, see Fig. 11 and Table 3. ⁵⁰ KHACHATRYAN 16Y searched in 19.7 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events with one of two coff isolated labels.
- with one or two soft isolated leptons, hadronic jets, and E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the
- the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop3 simplified model, see Fig. 3. ⁵¹ AAD 15c1 searched in 20 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for evidence of third generation squarks by combining a large number of searches covering various final states. Stop decays with and without charginos in the decay chain are considered and summaries of all ATLAS Run 1 searches for direct stop production can be found in Fig. 4 (no intermediate charginos) and Fig. 7 (intermediate charginos). Limits are set on stop masses in compressed mass regions regions, with $B(\tilde{t} \to c \tilde{\chi}_1^0) + B(\tilde{t} \to bff'\tilde{\chi}_1^0) =$ 1, see Fig. 5. Limits are also set on stop masses assuming that both the decay $\tilde{t} \rightarrow$ $t\,\widetilde{\chi}^0_1$ and \widetilde{t} o $b\,\widetilde{\chi}^\pm_1$ are possible, with both their branching rations summing up to 1, assuming $\tilde{\chi}_1^{\pm} \rightarrow W^{(*)} \tilde{\chi}_1^0$ and $m_{\tilde{\chi}_1^{\pm}} = 2 m_{\tilde{\chi}_1^0}$, see Fig. 6. Limits on the mass of the

next-to-lightest stop \tilde{t}_2 , decaying either to $Z \tilde{t}_1$, $h \tilde{t}_1$ or $t \tilde{\chi}_1^0$, are also presented, see Figs. 9 and 10.Interpretations in the pMSSM are also discussed, see Figs 13–15.

- ⁵²AAD 15J interpreted the measurement of spin correlations in $t\bar{t}$ production using 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV in exclusion limits on the pair production of light \tilde{t}_1 squarks with masses similar to the top quark mass. The \widetilde{t}_1 is assumed to decay through ${\widetilde t}_1 o t {\widetilde \chi}_1^0$ with predominantly right-handed top and a 100% branching ratio. The data are found to be consistent with the Standard Model expectations and masses between
- are found to be consistent with the Standard Model expectations and masks between the top duark mass and 191 GeV are excluded, see their Fig. 2 53 KHACHATRYAN 15AF searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with at least two energetic jets and significant \mathcal{E}_{T_1} using the transverse mass variable M_{T_2} to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in simplified models where the decay $\tilde{t} \rightarrow t \tilde{\chi}_1^0$ takes place with a branching ratio of 100%, see Fig. 12. See also Table 5. Exclusions in the CMSSM, assuming $\tan\beta = 30$, $A_0 = -2 \max(m_0, m_{1/2})$ and $\mu > 0$, are also presented, see Fig. 15.
- ⁵⁴ KHACHATRYAN 15AH searched in 19.4 or 19.7 fb $^{-1}$ of pp collisions at \sqrt{s} = 8 TeV for events containing either a fully reconstructed top quark, or events containing dijets requiring one or both jets to originate from *b*-quarks, or events containing a mono-jet. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in simplified models where the decay $\tilde{t} \rightarrow t \tilde{\chi}_1^0$ takes place with a branching ratio of 100%, see Fig. 9. Limits are also set in simplified models where the decays $\tilde{t} \rightarrow t \tilde{\chi}_1^0$ and $\tilde{t} \rightarrow b \tilde{\chi}_1^{\pm}$, with $m_{\chi_1^{\pm}} - m_{\chi_1^0} = 5$ GeV, each take place with a branching ratio of 50%, see Fig. 10, or with other fractions, see Fig. 11. Finally, limits are set in a simplified model where the decay $\tilde{t} \rightarrow c \tilde{\chi}_1^0$ takes place with a branching ratio of 50%, see Fig. 9.10 and 11. ratio of 100%, see Figs. 9, 10 and 11.
- 55 KHACHATRYAN 15AH searched in 19.4 or 19.7 fb $^{-1}$ of pp collisions at \sqrt{s} = 8 TeV for events containing either a fully reconstructed top quark, or events containing dijets requiring one or both jets to originate from *b*-quarks, or events containing a mono-jet. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in simplified models where the decay $\widetilde{t} \to ~t \, \widetilde{\chi}_1^0$ takes place with a branching ratio of 100%, see Fig. 9. Limits are also set in simplified models where the decays $\tilde{t} \to t \tilde{\chi}_1^0$ and $\tilde{t} \to b \tilde{\chi}_1^{\pm}$, with $m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^0} = 5$ GeV, each take place with a branching ratio of 50%, see Fig. 10, or with other fractions, see Fig. 11. Finally, limits are set in a simplified model where the decay ${ ilde t} o c\, { ilde \chi}_1^0$ takes place with a branching
- ratio of 100%, see Figs. 9, 10, and 11. $^{56}\,\rm KHACHATRYAN$ 15L searched in 19.4 fb $^{-1}$ of $p\,p$ collisions at \sqrt{s} = 8 TeV for pair production of heavy resonances decaying to pairs of jets in four jet events. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in *R*-parity-violating supersymmetry models where $\tilde{t} \rightarrow q q \; (\lambda_{312}'' \neq 0)$, see Fig.
- 6 (top) and $\tilde{t} \rightarrow qb$ ($\lambda_{323}^{''} \neq 0$), see Fig. 6 (bottom). 57 KHACHATRYAN 15x searched in 19.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events with at least two energetic jets, at least one of which is required to originate from a bquark, possibly a lepton, and significant E_T , using the razor variables (M_R and R^2) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in simplified models where the decay $\tilde{t} \rightarrow t \tilde{\chi}_1^0$ and the decay $\tilde{t} \rightarrow b \tilde{\chi}_1^\pm$, with $m_{\tilde{\chi}_1^\pm} - m_{\tilde{\chi}_1^0} = 5$ GeV, take place with branching ratios varying between 0 and 100%, see Figs. 15, 16 and
- ⁵⁸ ÅAD 14AJ searched in 20.1 fb $^{-1}$ of pp collisions at \sqrt{s} = 8 TeV for events containing Four or more jets and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95% C.L. are set on the masses of third-generation squarks in simplified models which either assume that the decay $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ takes place 100% of the time, see Fig. 8, or that this decay takes place 50% of the time, while the decay ${ ilde t}_1 o b { ilde \chi}_1^\pm$ takes place the other 50% of the time, see Fig. 9.
- 59 AAD 148D searched in 20 http://searchedin.com/s

the decay $\tilde{t}_1 \to b \tilde{\chi}_1^\pm$ takes place 100% of the time, see Fig. 16–22. For the mixed decay scenario, see Fig. 23.

- 60 AAD 14F searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events containing two leptons (e or μ), and possibly jets and missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95% C.L. are set on the masses of third-generation squarks in simplified models which either assume that the decay $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ takes place 100% of the time, see Figs. 14-17 and 20, or that the decay $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ takes place 100% of the time, see Figs. 18
- and 19. ⁶¹ AAD 14T searched in 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for monojet-like and c-tagged events. No excess of events above the expected level of Standard Model back-Cragged events. No excess of events above the capture to the masses of third-generation squarks in simplified models which assume that the decay $\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ takes place 100% of the time, see Fig. 9 and 10. The results of the monojet-like analysis are also interpreted in terms of stop pair production in the four-body decay $\tilde{t}_1 \rightarrow b f f' \tilde{\chi}_1^0$, see Fig. 11.
- R^2) to discriminate between signal and background processes. A second analysis requires at least one of the jets to be originating from a b-quark. No significant excess above the Standard Model expectations is observed. Limits are set on sbottom masses in simplified models where the decay $\tilde{t} \rightarrow t \tilde{\chi}_1^0$ takes place with a branching ratio of 100%, see Figs. 28 and 29. Exclusions in the CMSSM, assuming $\tan\beta=10$, $A_0=0$ and $\mu>0$, are also presented, see Fig. 26.
- ⁶³ CHATRCHYAN 14R searched in 19.5 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events with at least three leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in a natural higgsino NLSP simplified model (GMSB) where the decay $\tilde{t} \rightarrow b \tilde{\chi}_1^{\pm}$, with $\tilde{\chi}_1^{\pm} \rightarrow (q q' / \ell \nu) H$, $Z \tilde{G}$, takes place with a branching ratio of 100% (the particles
- between brackets have a soft $p_{\rm T}$ spectrum), see Figs. 4–6. ⁶⁴ KHACHATRYAN 14T searched in 19.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with τ -leptons and *b*-quark jets, possibly with extra light-flavour jets. No excess above the Standard Model expectations is observed. Limits are set on stop masses in RPV SUSY models with LQD couplings, in two simplified models. In the first model, the decay $\tilde{t} \to \tau b$ is considered, with $\lambda'_{333} \neq 0$, see Fig. 3. In the second model, the decay $\tilde{t} \rightarrow \tilde{\chi}^{\pm} b$, with the subsequent decay $\tilde{\chi}^{\pm} \rightarrow q q \tau^{\pm}$ is considered, with $\lambda'_{3jk} \neq 0$ and the mass splitting between the top squark and the charging chosen to be $100~{\rm GeV}$, see Fig. 4.
- 6 AABOUD 17AF searched in 36 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for evidence of top squarks in events containing 2 leptons, jets, *b*-jets and \mathcal{P}_T . In Tstop6 model, assuming $m_{\widetilde{\chi}_1^0} = 0$ GeV, \tilde{t}_1 masses up to 850 GeV are excluded for $m_{\widetilde{\chi}_2^0} > 200$ GeV.
- χ_1^{-} χ_2^{-} 66 AABOUD 17AF searched in 36 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for evidence of \widetilde{t}_2^{-} in events containing 2 leptons, jets, *b*-jets and $\not\!\!\!E_T$. In Tstop7 model, assuming $m_{\widetilde{\chi}_1^0} =$ 50 GeV and 100% decays via Z boson, \tilde{t}_2 masses up to 800 GeV are excluded. Exclusion
- limits are also shown as a function of the \tilde{t}_2 branching ratios in their Figure 7. ⁶⁷AABOUD 17AF searched in 36 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for evidence of \tilde{t}_2 in events containing 2 leptons, jets, *b*-jets and E_T . In Tstop7 model, assuming $m_{\tilde{\chi}_1^0}$

= 50 GeV and 100% decays via higgs boson, \widetilde{t}_2 masses up to 880 GeV are excluded. Exclusion limits are also shown as a function of the \tilde{t}_2 branching ratios in their Figure 7.

- 68 AABOUD 17AY searched in 36.1 fb $^{-1}$ of pp collisions at \sqrt{s} = 13 TeV for events with AABOUD 17AY searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ feV for events with at least four jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits are set on the top squark mass assuming three pMSSM-inspired models. The first one, referred to as Higgsino LSP model, assumes $m_{\tilde{\chi}_1^\pm} - m_{\tilde{\chi}_1^0} = 5$ GeV and $m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} = 10$ GeV, with a mixture of decay modes as in Tstop1, Tstop2 and Tstop6. See their Figure 10. The second and third models are referred to as Wino NLSP and well-tempered pMSSM models, respectively. See their Figure 11 and Figure 12, and text for details on assumptions.
- ⁶⁹AAD 14B searched in 20.3 fb⁻¹ of pp collisions at $\sqrt{s} =$ 8 TeV for events containing a Z boson, with or without additional leptons, plus jets originating from *b*-quarks and significant missing transverse momentum. No excess over the expected SM background is observed. Limits are derived in simplified models featuring \tilde{t}_2 production, with \tilde{t}_2 $Z \, { ilde t}_1$, ${ ilde t}_1 o t \, { ilde \chi}_1^0$ with a 100% branching ratio, see Fig. 4, and in the framework of natural GMSB, see Fig. 6.
- ⁷⁰ CHATRCHYAN 14U searched in 19.7 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for evidence of direct pair production of top squarks, with Higgs bosons in the decay chain. The search is performed using a selection of events containing two Higgs bosons, each decaying to a photon pair, missing transverse energy and possibly 0-quark jets. No significant excesses over the expected SM backgrounds are observed. The results are interpreted in the context of a "natural SUSY" simplified model where the decays $\widetilde{t}_1 o b \, \widetilde{\chi}_1^\pm$, with $\tilde{\chi}_1^\pm \to f f' \tilde{\chi}_1^0$, and $\tilde{\chi}_1^0 \to H \widetilde{G}$, all happen with 100% branching ratio, see Fig. 4.
- $\chi_{\overline{1}} \rightarrow tr \chi_{\overline{1}}$, and $\chi_{\overline{1}} \rightarrow HG$, all happen with 100% branching ratio, see Fig. 4. ⁷¹ KHACHATRYAN 14c searched in 19.5 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for evidence of direct pair production of top squarks, with Higgs or Z-bosons in the decay chain. The search is performed using a selection of events containing leptons and *b*-quark jets. No significant excesses over the expected SM backgrounds are observed. The results are interpreted in the context of a simplified model with pair production of a heavier top-squark mass eigenstate \overline{t}_2 decaying to a lighter top-squark eigenstate \overline{t}_1 via either $\overline{t}_2 \rightarrow$ $H\overline{t}_6 \alpha \overline{t}_6 \rightarrow T\overline{t}_6$ followed in both cores hy $\overline{t}_6 \rightarrow t\overline{t}_6^{-0}$. The interpret $H\tilde{t}_1$ or $\tilde{t}_2 \rightarrow Z\tilde{t}_1$, followed in both cases by $\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$. The interpretation is performed in the region where the mass difference between the ${ar t}_1$ and ${ar \chi}_1^0$ is approximately equal to the top-quark mass, which is not probed by searches for direct $\tilde{t}_1 = -\chi_1 = -\chi_1$ to the top-quark mass, which is not probed by searches for direct \tilde{t}_1 pair production, see Figs. 5 and 6. The analysis excludes top squarks with masses $m_{\tilde{t}_2} < 575$ GeV and $m_{\widetilde{t}_1} <$ 400 GeV at 95% C.L.

R-parity violating \tilde{t} (Stop) mass limit

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>1150	95	¹ SIRUNYAN	19BI ATLS	$\tilde{t} \rightarrow b\mu$, long-lived, Tston 2 RPV $c\tau = 0.1$ cm
>1100	95	² sirunyan	19BJ CMS	$\tilde{t} \rightarrow be$, Tstop2RPV, prompt
none 100-410	95	³ AABOUD	18bb ATLS	4 jets, Tstop1RPV with $\tilde{t} \rightarrow ds$, λ_{312}'' coupling
none 100-470, 480-610	95	⁴ AABOUD	18bb ATLS	4 jets, Tstop1RPV, λ_{323}'' coupling
\geq 600-1500	95	⁵ AABOUD	18P ATLS	$2\ell + b$ -jets, Tstop2RPV, de- pending on λ'_{i33} coupling (<i>i</i> = 1, 2, 3)
>1130	95	⁶ SIRUNYAN	18AD CMS	$\tilde{t} \rightarrow b\ell$, long-lived, $c\tau = 70,100$ mm
> 550	95	⁶ SIRUNYAN	18AD CMS	$\tilde{t} \rightarrow b\ell$, long-lived, $c\tau = 1-100$ mm
>1400	95	⁷ SIRUNYAN	18DV CMS	long-lived \tilde{t} , RPV, $\tilde{t} \rightarrow \overline{d}\overline{d}$, 0.6 mm < $c\tau$ < 80 mm
none 80-520	95	⁸ SIRUNYAN	18DY CMS	2, 4 jets, Tstop3RPV, λ_{312}'' coupling
none 80-270, 285-340,	95	⁸ SIRUNYAN	18DY CMS	2, 4 jets, Tstop1RPV, λ_{323}'' coupling
400-525 >1200	95	⁹ AABOUD	17AI ATLS	$ \begin{array}{l} \geq 1\ell+ \ \geq \text{8 jets, Tstop1 with} \\ \widetilde{\chi}^0_1 \rightarrow \ t b s, \chi''_{323} \ \text{coupling,} \\ m_{\widetilde{\chi}^0_1} = \!$
none, 100-315	95	¹⁰ AAD	16AMATLS	2 large-radius jets, Tstop1RPV

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

> 890	95	¹¹ KHACHATRY16AC CMS	$e^+ e^- + \ge 5$ jets; $t \to b \tilde{\chi}_1^{\pm}$
			$\tilde{\chi}_1^{\pm} \rightarrow \ell^{\pm} j j, \lambda'_{ijk}$
>1000	95	¹¹ KHACHATRY16AC CMS	$\mu^+ \mu^- + \ge 5$ jets; $\tilde{t} \rightarrow b \tilde{\chi}_1^{\pm}$
			$\tilde{\chi}_1^{\pm} \rightarrow \ell^{\pm} j j, \lambda'_{ijk}$
> 950	95	¹² KHACHATRY16BX CMS	$\tilde{t} \rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \ell \ell \nu, \lambda_{121} \phi$
	05		$\lambda_{122} \neq 0$
> 790	95	** KHACHAIRY15E CMS	$t_1 \rightarrow D\ell, c\tau = 2 \text{ cm}$

 $^1\,{\rm SIRU}\,{\rm NYA}\,{\rm N}$ 19BI searched in 35.9 fb $^{-1}$ of $p\,p$ collisions at \sqrt{s} = 13 TeV in final states with two muons and two jets, or with one muon, two jets, and missing transverse momen-tum. Limits are set in a model of pair-produced, prompt or long-lived top squarks with R-parity violating decays to a *b*-quark and a lepton (Tstop2RPV), branching fraction of To be used to 1/3 and c τ between 0.1 cm and 10 cm in the case of long-lived top squarks. See their Fig. 10.

- 2 SIRUNYAN 19BJ searched in 35.9 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 13 TeV in final states with two electrons and two jets, or with one electron, two jets, and missing transverse momentum. Limits are set in a model of pair-produced, prompt top squarks with R-parity violating decays to a *b*-quark and a lepton (Tstop2RPV), assuming branching fraction of $\tilde{t} \rightarrow be$ equal to 1/3 and $c\tau = 0$ cm. See their Fig.10.
- of $I \rightarrow De$ equal to 1/3 and $c\tau = 0$ cm. see then reg. 10. ³ AABOUD 18BB searched in 36.7 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for massive colored resonances which are pair-produced and decay into two jets. No significant deviation from the background prediction is observed. Results are interpreted in a SUSY simplified model as TstopIRPV with $\tilde{t} \rightarrow ds$. Top squarks with masses in the range Simplete model as fistopire with $T \rightarrow 0$'s. Top squarks with masses in the range 100-410 GeV are excluded, see their Figure 9(a). The λ''_{312} coupling is assumed to be sufficiently large for the decays to be prompt, but small enough to neglect the single-top-squark resonant production through RPV couplings. **4** AABOUD 18BB searched in 36.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for massive
- AABOOD 1688 searched in 36.7 to -6 to pp consists at $\sqrt{s} = 15$ tev for massive coloured resonances which are pair-produced and decay into two jets. No significant deviation from the background prediction is observed. Results are interpreted in Tstop1RPV. Top squarks with masses in the range 100-470 GeV or 480-610 GeV are excluded, see Their Figure 9(b). The $\lambda_{223}^{\prime\prime}$ coupling is assumed to be sufficiently large for the decays to be prompt, but small enough to neglect the single-top-squark resonant production through RPV couplings.
- 5 AABOUD 18P searched in 36.1 fb $^{-1}$ of $p\,p$ collisions at $\sqrt{s}=$ 13 TeV for pair-produced AABOOD 189 searched in 36.1 fb $^{-}$ of pp collisions at $\sqrt{s} = 13$ feV for pain-produced top squarks that decay through RPV λ'_{133} (i = 1, 2, 3) couplings to a final state with two leptons and two jets, at least one of which is identified as a *b*-jet. No significant excess is observed over the SM background. In the Tstop2RPV model, lower limits on the top squark masses between 600 and 1500 GeV are set depending on the branching fraction to *be*, *b*, *a*, and *b* τ final states. See their Figs 6 and 7. 6 SIRUNYAN 18AD searched in 2.6 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for long-lived particles by exploiting the multiplicity of displaced jets to search for the presence of signal decays occurring at distances between 1 and 1000 mm. Limits are set in a model of pair polyced lower lived too scuarks with R pairty wildeling decays to a *b* quark and
- of pair-produced, long-lived top squarks with R-parity violating decays to a *b*-quark and a lepton, see their Figure 3.
- 7 SIRUNYAN 18DV searched in 38.5 fb $^{-1}$ of $p\,p$ collisions at \sqrt{s} = 13 TeV for long-lived particles in events with multiple jets and two displaced vertices composed of many tracks. No events with two well-separated high-track-multiplicity vertices were observed. Limits are set on the stop and the gluino mass in RPV models of supersymmetry where the stop (gluino) is decaying solely into dijet (multijet) final states, see their Figures 6 and 7.
- (glimbo) is used with solver (multiple) must states, see their rightes band 7. 8 SIRUNYAN 180v searched in 35,9 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for the pair production of resonances, each decaying to two quarks. The search is conducted separately in a boosted (two-jet) and resolved (four-jet) jet topology. The mass spectra are found to be consistent with the Standard Model expectations. Limits are set on the stop mass in the Tstop3RPV and Tstop1RPV simplified models, see their Figure 11.

⁹AABOUD 17AI searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with one or more isolated lepton, at least eight jets, either zero or many *b*-jets, for evidence of R-parity violating decays of the top squark. No significant excess above the Standard Model expectations is observed. Limits up to 1.25 (1.10) TeV are set on the top squark mass in R-parity-violating supersymmetry models where \widetilde{t}_1 decays for a bino LSP as: $\tilde{t} \rightarrow t \tilde{\chi}_1^0$ and for a higgsino LSP as $\tilde{t} \rightarrow t \tilde{\chi}_{1,2}^0 / b \tilde{\chi}_1^+$. These is followed by the decays through the non-zero λ_{323}'' coupling $\tilde{\chi}_{1,2}^0$ \rightarrow $\textit{tbs},~\tilde{\chi}_1^\pm$ \rightarrow bbs. See their Figure 10 and text for details on model assumption

- 10 AAD 16AM searched in 17.4 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 8 TeV for events containing two large-radius hadronic jets. No deviation from the background prediction is observed. Top squarks with masses between 100 and 315 GeV are excluded at 95% C.L. in the hypothesis that they both decay via *R*-parity violating coupling λ''_{323} to *b*- and *s*-quarks. See their Fig. 10.
- See their Fig. 10. ¹¹ KHACHATRYAN 16AC searched in 19.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with low missing transverse momentum, two oppositely charged electrons or muons, and at least five jets, at least one of which is a *b*-jet, for evidence of R-parity violating, charging-mediated decays of the top squark. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in R-parity-violating supersymmetry models where $\tilde{t} \rightarrow b \tilde{\chi}_1^{\pm}$ with $\tilde{\chi}_1^{\pm} \rightarrow \ell^{\pm} jj$, $\lambda'_{ijk} \neq 0$ (*i*, *j*, *k* ≤ 2), and with $m_{\tilde{t}} m_{\tilde{\chi}_1^{\pm}} = 100$ GeV, see Fig. 3. ¹² KHACHATRYAN LOW exceeded in 19.5 fb⁻¹ of an collisions at $\sqrt{s} = 8$ TeV for events
- ¹² KHACHATRYAN 16BX searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events containing 4 leptons coming from R-parity-violating decays of $\tilde{\chi}^0_1 \rightarrow \ell\ell\nu$ with $\lambda_{121} \neq \ell\ell\nu$ 0 or $\lambda_{122} \neq 0$. No excess over the expected background is observed. Limits are derived on the gluino, squark and stop masses, see Fig. 23.
- on the gluino, squark and stop masses, see Fig. 23. ¹³ KHACHATRYAN 15E searched for long-lived particles decaying to leptons in 19.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV. Events were selected with an electron and muon with opposite charges and each with transverse impact parameter values between 0.02 and 2 cm. Limits are set on SUSY benchmark models with pair production of top squarks decaying into an $e\,\mu$ final state via RPV interactions. See their Fig. 2

Heavy \tilde{g} (Gluino) mass limit

For $m_{\widetilde{g}}$ > 60–70 GeV, it is expected that gluinos would undergo a cascade decay via a number of neutralinos and/or charginos rather than undergo a direct decay to photinos as assumed by some papers. Limits obtained when direct decay is assumed are usually higher than limits when cascade decays are included.

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

R-parity conserving heavy \tilde{g} (Gluino) mass limit

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>1975	95	¹ SIRUNYAN	20B CMS	$\geq 1\gamma + ot\!$
				$qq\widetilde{\chi}_1^{\pm})=$ 0.5, $m_{\widetilde{\chi}_1^0} \simeq m_{\widetilde{g}}$
>2000	95	² AABOUD	191 ATL	\geq 2 jets + 1 or 2 $ au$ + $ ot\!$
>1860	95	³ SIRUNYAN	19AG CMS	$2\gamma + \not\!$
>1920	95	⁴ SIRUNYAN	19AU CMS	γ +jets + <i>b</i> -jets + $ ot\!$
>1950	95	⁴ SIRUNYAN	19AU CMS	$\gamma + ext{jets} + ext{b-jets} + ot\!$
>1800	95	⁴ SIRUNYAN	19AU CMS	$\gamma + ext{jets} + ext{b-jets} + ot\!$
>2090	95	⁴ SIRUNYAN	19AU CMS	$\gamma + ext{jets} + ext{b-jets} + ot\!$
>2120	95	⁴ SIRUNYAN	19AU CMS	$\gamma + ext{jets} + ext{b-jets} + ot\!$
>1970	95	⁴ SIRUNYAN	19AU CMS	$\gamma + ext{jets} + ext{b-jets} + ot\!$
>1700	95	⁵ SIRUNYAN	19ce CMS	2 jets, Stealth SUSY, Tglu1A and $\widetilde{\chi}_{1}^{0} \rightarrow \widetilde{S} \gamma (\widetilde{S} \rightarrow S \widetilde{G}), m_{\widetilde{V}_{1}^{0}}$
>2000	95	⁶ sirunyan	19сн CMS	= 200 GeV iets+ E_T , Tglu1A, $m_{\sim 0} = 0 \text{ GeV}$
>2030	95	⁶ SIRUNYAN	19сн CMS	χ_1^{i} iets+ E_T , Tglu1C, $m_{rel} = m_{rel} =$
				$\begin{array}{c} \sum_{\chi_{1}^{\pm}} \chi_{2}^{\pm} \\ 0.5(m_{\widetilde{g}} + m_{\widetilde{\chi}_{1}^{0}}), m_{\widetilde{\chi}_{2}^{0}} = 0 \text{ GeV} \end{array}$
>2270	95	⁶ sirunyan	19сн CMS	jets+ $\not\!$
>2180	95	⁶ SIRUNYAN	19сн CMS	jets+ $\not\!$
>1750	95	⁷ SIRUNYAN	19к CMS	$\gamma + \ell + \not\!$
>2000	95	⁸ SIRUNYAN	19s CMS	GeV 1 or 2 ℓ + jets + $\not\!\!E_T$, Tglu3A, $m_{\gtrsim 0}$ < 700 GeV
>1900	95	⁸ SIRUNYAN	19s CMS	1 or 2 ℓ + jets + $\not\!\!\!E_T$, Tglu3C, 150 GeV < $m_{\widetilde{\chi}0}$ < 950 GeV
>1970	95	⁹ AABOUD	18AR ATLS	$egin{array}{llllllllllllllllllllllllllllllllllll$
>1920	95	¹⁰ AABOUD	18AR ATLS	$egin{array}{l} \lambda_1 \ ext{jets}+ \geq 3b ext{-jets}+ ot\!$
>1650	95	¹¹ AABOUD	18AS ATLS	\geq 4 jets and disappearing tracks from $\widetilde{\chi}^{\pm} ightarrow \widetilde{\chi}_{1}^{0} \pi^{\pm}$, modified
		10		Tglu1A or Tglu1B, $\widetilde{\chi}^\pm$ life- time 0.2 ns, $m_{\widetilde{\chi}^\pm}=$ 460 GeV
>1850	95	¹² AABOUD	18bj ATLS	$\ell^{\pm}\ell^{\mp}$ + jets + E_T , Tglu1G, $m_{\widetilde{\chi}^0_1} = 100 \; { m GeV}$

>1650	95	¹³ aaboud	18bj ATLS	$\ell^{\pm}\ell^{\mp}$ + jets + $\not\!$	I	>1700	95	³⁶ aaboud	17N ATLS	$\begin{array}{l} \text{2 same-flavor, opposite-sign }\ell + \\ \text{jets} + \not\!$
>2150	95	¹⁴ AABOUD	180 ATLS	$\tilde{\chi}_1^0$ 2 $\gamma + E_T$, GGM, Tglu4B, any	I	>1400	95	³⁷ KHACHATR	Y17 CMS	1 GeV jets+ $\not\!$
>1600	95	¹⁵ aaboud	18∪ ATLS	NLSP [*] mass $\gamma + \text{jets} + \not\!$	Ī	>1650	95	³⁷ KHACHATR	Y17 CMS	jets+ $\not\!$
				bino, mix of Tglu4B and Tglu4C, any NLSP mass	_	>1600	95	³⁷ KHACHATR	Y17 CMS	jets+ $\not\!$
>2030	95	¹⁶ AABOUD	18V ATLS	jets+ $ ot\!$		>1550	95	³⁸ KHACHATR	Y17AD CMS	jets+b-jets+ $\not\!$
>1980	95	17 AABOUD	18v ATLS	jets+ \mathcal{E}_T , Tglu1B, $m_{\widetilde{\chi}_1^{\pm}}=0.5(m_{\widetilde{g}}+m_{\widetilde{\chi}_1^0}), m_{\widetilde{\chi}_1^0}$		>1450	95	³⁹ KHACHATR	Y17AD CMS	0 GeV jets+ b -jets+ $ ot\!$
>1750	95	¹⁸ AABOUD	18v ATLS	jets+ E_T , Tglu1C, $m_{\tilde{\chi}_1^0} = 1$ GeV,	I	>1570	95	⁴⁰ KHACHATR	Y17AS CMS	1 ℓ , Tglu3A, $m_{\tilde{\chi}_{*}^{0}}$ < 600 GeV
		10		any $m_{\widetilde{\chi}^0_2}^{}~>100$ GeV		>1500	95	⁴⁰ KHACHATR	Y17AS CMS	1 ℓ , Tglu3A, $m_{\widetilde{\chi}^0_1}^{\chi_1} <$ 775 GeV
>2000 >2100	95 95	¹⁹ SIRUNYAN ¹⁹ SIRUNYAN	18AA CMS 18AA CMS	$\geq 1\gamma + E_T$, Tglu4A $\geq 1\gamma + E_T$. Tglu4B		>1400	95	⁴⁰ KHACHATR	Y17AS CMS	1 ℓ , Tglu1B, $m_{\widetilde{\chi}_1^\pm} = (m_{\widetilde{g}} +$
>1800	95	²⁰ SIRUNYAN	18AC CMS	1ℓ +jets, Tglu3A, $m_{\tilde{\chi}_1^0}$ <650 GeV						$m_{\widetilde{\chi}^0_1})/2$, $m_{\widetilde{\chi}^0_1}^2$ $<$ 725 GeV
>1700	95	²⁰ SIRUNYAN	18AC CMS	1ℓ +jets, Tglu3A, $m_{\widetilde{\chi}_1^0}$ <1040 GeV	I	none 1050-1350	95	⁴⁰ KHACHATR	Y17AS CMS	14, Tglu1B, $m_{\widetilde{\chi}^\pm_1} = (m_{\widetilde{g}}+$
>1900	95	²⁰ sirunyan	18AC CMS	1ℓ + jets, Tglu1B, $\hat{m}_{\widetilde{\chi}^{\pm}_1} = (m_{\widetilde{g}})$				41		$m_{\widetilde{\chi}_1^0})/2$, $m_{\widetilde{\chi}_1^0}$ $<$ 850 GeV
		20		$+$ $m_{\widetilde{\chi}^0_1})/2$, $m_{\widetilde{\chi}^0_1}$ $<$ 300 GeV		>1175	95	⁴¹ KHACHATR	Y17AW C MS	$\geq 3\ell^{\pm}$, 2 jets, Tglu3A, $m_{\widetilde{\chi}_1^0} = 0$
>1250	95	²⁰ SIRUNYAN	18AC CMS	1ℓ + jets, Tglu1B, $m_{\tilde{\chi}_1^{\pm}} = (m_{\tilde{g}})$		> 825	95	⁴¹ KHACHATR	Y17AW C MS	$\geq 3\ell^{\pm}$, 2 jets, Tglu1C, $m_{\chi^{\pm}}$
. 1(10	0.5	21 страника м	10	$+ m_{\tilde{\chi}_1^0}/2, m_{\tilde{\chi}_1^0} < 950 \text{ GeV}$						$= (m_{\widetilde{g}} + m_{\widetilde{\chi}_1^0})/2, \ m_{\widetilde{\chi}_1^0} = 0$
>1610	95	SIRUNYAN	18AL CMS	$\geq 3\ell^{\perp}$ + Jets + $\not\!$	1	>1 35 0	95	⁴² KHACHATR	Y17P CMS	GeV 1 or more jets+ $\not{\!\! E_T}$, Tglu1A,
>1160	95	²¹ SIRUNYAN	18AL CMS	$\geq 3\ell^{\pm}$ + jets + $\not\!$	I			40		$m_{\widetilde{\chi}^0_1}=0~{ m GeV}^2$
				$m_{\widetilde{\chi}_2^0} = m_{\widetilde{\chi}_1^\pm} = (m_{\widetilde{g}} + m_{\widetilde{g}})^{1/2} + m_{\widetilde{\chi}_1^\pm} = (m_{\widetilde{g}} + m_{\widetilde{g}})^{1/2} + m_{\widetilde{\chi}_2^\pm} = (m_{\widetilde{g}} + m_{\widetilde{\chi}_2^\pm})^{1/2} + m_{\widetilde{\chi}_2^\pm} = (m_{\widetilde{\chi}_2^\pm})^{1/2} + m_{\widetilde{\chi}_2^\pm} = $		>1545	95	⁴² KHACHATR	Y17P CMS	1 or more jets $+ \not\!$
<1500	95	22 SIRLINVAN	18AP CMS	$\widetilde{\chi}_1^0$ // 2, $\widetilde{\chi}_1^0 = 0$ GeV $\ell^{\pm} \ell^{\mp}$ + jets + $E_{\rm TT}$ GMSB	1	>1120	95	⁴² KHACHATR	Y17P CMS	1 or more jets $+ \not\!$
/1000	55	SINONIAN	TOAK CIVIS	Tglu4C, $m_{\tilde{\chi}_1^0} = 100 \text{ GeV}$	•	> 1 200	05	42 кнаснатр	V 175 CMS	$m_{\tilde{\chi}_1^0} = 0 \text{ GeV}$
>1770	95	²² SIRUNYAN	18AR CMS	$\ell^{\pm}\ell^{\mp}$ + jets + E_T , GMSB, Tglu4C, $m_{\widetilde{\chi}^0_1}$ = 1400 GeV	I	>1300	95	- KHACHAIK	TIP CM3	$m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5 \text{ GeV}, m_{\tilde{\chi}_1^0}$ - 100 GeV
>1625	95	²³ SIRUNYAN	18AY CMS	jets+ $ ot\!$	I	> 780	95	⁴² KHACHATR	Y17P CMS	1 or more jets $+ \not\!\!\!E_T$, Tglu 3B, $m_{\gamma} - m_{\tau 0} = 175$ GeV, $m_{\tau 0}$
>1825	95	²³ SIRUNYAN	18AY CMS	jets+ $ ot\!$	1			40		$ \begin{array}{ccc} t_1 & \tilde{\chi}_1^0 & & \tilde{\chi}_1^0 \\ = 50 \text{ GeV} \end{array} $
>1625	95	²³ SIRUNYAN	18AY CMS	jets+ $ ot\!$		> 790	95	⁴² KHACHATR	Y17P CMS	1 or more jets $+ \not\!$
>2040	95	²⁴ SIRUNYAN	18D CMS	top quark (hadronically decaying) + jets + $\not{\!\! E}_T$, Tglu3A, $m_{\simeq 0}$ =		> 1650	05	43 кнаснатр	V 179 CMS	= 0 GeV
> 1020	05	24 CIDUNNAN	195 CM6	0 GeV		>1000	95		1745 CMS	$2\gamma + p_T$, GGW, Tglu4B, any NLSP mass 1ℓ Liets + b lets + E_T Tglu3A
>1930	95	- SIRUNYAN	18D CMS	ing) + jets + E_T , Tglu3B, $m_{\tilde{t}_{\star}} - m_{\tilde{\tau}_{0}} = 175$ GeV, $m_{\tilde{\tau}_{0}}$		>1,000	55		174F CMS	$m_{\tilde{\chi}_1^0} = 0 \text{ GeV}$
>1690	95	24 ςιβιινγάν	18D CMS	= 200 GeV		>1000	95	SIKUNTAN	TAF CIVIS	$m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} = 175 \text{ GeV}, m_{\tilde{\chi}_1^0}$
21030	,,,	Sincentration	100 0003	$\begin{array}{l} \text{ing}) + \text{jets} + \not\!$		>1800	95	⁴⁵ sirunyan	17AY CMS	$= 50 \text{ GeV}^{1}$ $\gamma + \text{jets} + \not{E}_{T}, \text{ Tglu4B, } m_{\widetilde{\chi}_{1}^{0}} = 0$
>1990	95	²⁴ sirunyan	18D CMS	0 GeV top quark (hadronically decaying)		>1600	95	⁴⁵ SIRUNYAN	17AY CMS	$\gamma + \text{jets} + \not\!$
				+ jets + $\not\!$		>1860	95	⁴⁶ sirunyan	17AZ CMS	GeV ≥ 1 jets $+ E_T$, Tglu1A, $m_{\sim 0} =$
		05		$= m_{\widetilde{\chi}_1^0} + 3 \operatorname{GeV}, m_{\widetilde{\chi}_1^0} = 100$ GeV		> 2025	05	46 CIDUNNAN	17.7 CMC	0 GeV
>2010 >1825	95 95	²⁵ SIRUNYAN ²⁵ SIRUNYAN	18M CMS 18M CMS	$\geq 1 H (\rightarrow bb) + E_T$, Tglull $\geq 1 H (\rightarrow bb) + E_T$, TglulJ		>2025	95	** SIRUNYAN	TAZ CIMS	\geq 1 jets+ μ_T , 1 glu2A, $m_{\tilde{\chi}_1^0} = 0$
>1750	95	²⁶ AABOUD	17AJ ATLS	same-sign $\ell^{\pm}\ell^{\pm}$ / 3 ℓ + jets + E_T , Tglu3A, $m_{\sim 0}$ = 100 GeV	•	>1900	95	⁴⁶ SIRUNYAN	17AZ CMS	≥ 1 jets+ $\not\!$
>1570	95	²⁷ AABOUD	17AJ ATLS	same-sign $\ell^{\pm}\ell^{\pm}$ / 3 ℓ + jets +		>1825	95	⁴⁷ SIRUNYAN	17P CMS	jets+ $\not\!$
				$ ot\!$		> 1950	95	⁴⁷ sirunyan	17P CMS	jets+ $ ot\!$
>1860	95	²⁸ AABOUD	17AJ ATLS	same-sign ℓ [±] ℓ [±] / 3ℓ + jets + 𝔅 _T , Tglu1G, m _{~0} = 200 GeV		>1960	95	⁴⁷ SIRUNYAN	17P CMS	jets+ $\not\!$
>2100	95	²⁹ AABOUD	17AR ATLS	$\chi_1^{\ell} = 0$ $1\ell + \text{jets} + \not\!\!\!E_T$, Tglu1B, $m_{\chi_1^0} = 0$		>1800	95	⁴⁷ sirunyan	17p CMS	jets+ $\not\!\!E_T$, Tglu1C, $m_{\widetilde{\chi}_1^{\pm}} = m_{\widetilde{\chi}_2^0}$ = $(m_{\widetilde{\alpha}} + m_{\sim 0})/2, m_{\sim 0} = 0$
>1740	95	³⁰ AABOUD	17AR ATLS	$1\ell + \text{jets} + \not\!\!\! E_T$, Tglu1E, $m_{\tilde{\chi}_1^0} = 0$		> 1.970	05	47 CIDUNNAN	175 CMS	GeV
>1800	95	³¹ AABOUD	17AY ATLS	GeV jets+ \mathcal{E}_T , Tglu3A, $m_{\widetilde{\lambda}} - m_{\sim 0} =$		>1070	55	SINUMIAN	ITP CIVIS	$\chi_1^{\pm} = m_{\tilde{\chi}_1^0} = 1000 \text{ GeV}$ + 5 GeV. $m_{\pi^0} = 1000 \text{ GeV}$
. 1000	0.5	32 4 4 5 6 4 5	17 47	5 GeV		>1520	95	⁴⁸ SIRUNYAN	17s CMS	same-sign $\ell^{\pm} \ell^{\pm} + \text{ jets} + E_T$.
>1800	95	32 AABOOD	I/AZ AILS	\geq 7 jets+ $\!$		>1200	95	⁴⁸ sirunyan	17s CMS	Tglu3A, $m_{\tilde{\chi}_1^0} = 0$ GeV T , same-sign $\ell^{\pm} \ell^{\pm}$ + jets + E_T .
>1540	95	³³ AABOUD	17AZ ATLS	\geq 7 jets+ E_T , large R-jets and/or <i>b</i> -jets, Tglu3A, $m_{\widetilde{\chi}_1^0}$					-	Tglu'3D, $m_{\widetilde{\chi}_1^\pm} = m_{\widetilde{\chi}_1^0} + 5$ GeV, $m_{\widetilde{\chi}_1^0} = 100$ GeV
>1340	95	³⁴ aaboud	17N ATLS	$= 0 \text{ GeV}$ 2 same-flavor, opposite-sign ℓ +		>1370	95	⁴⁸ SIRUNYAN	17s CMS	same-sign ℓ^{χ_1} Tg u3B, $m \sim -m \sim -175$
				Jets $+ \not \!$						GeV, $m_{z^0} = 50$ GeV
>1310	95	³⁵ AABOUD	17N ATLS	2 same-flavor, opposite-sign ℓ + jets + E_T , Tglu1H, m_{-0} -		>1180	95	⁴⁸ SIRUNYAN	17s CMS	same-sign $\ell^{\chi_{\widetilde{1}}} \ell^{\pm} \ell^{\pm}$ + jets + $ ot\!$
				$(m_{\widetilde{g}} + m_{\widetilde{\chi}^0})/2, m_{\widetilde{\chi}^0} < 400$						Tglu3C, $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} = 20$ GeV
				GeV X1 X1						$\widetilde{\chi}_1^0 = 0$ dev
See key on page 999

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

>1280

>1300

>1570

>1460

>1650

 $> 15\,10$

 $> 15\,00$

>1780

>1760

>1300

>1100

>1200

>1600

>1400

>1400

>1100

> 700

>1050

>1300

>1140

> 850

> 950

>1100

> 830

>1300

> 1050

>1725

>1750

>1550

>1280

> 1030

>1440

> 1600

>1550

>1450

> 820

Searches Particle Listings Supersymmetric Particle Searches

⁴⁸ SIRUNYAN	17s CMS	same-sign $\ell^{\pm}\ell^{\pm}$ + jets + $\not\!$	> 850	95	⁶⁴ AAD	15BG ATLS	$egin{array}{lll} { m GGM}, \widetilde{g} ightarrow q \widetilde{q} Z \widetilde{G}$, ${ m tan}eta=1.5$, $\mu\ >450{ m GeV}$
		$\widetilde{\chi}_1^{\pm}$ g $m_{\sim 0}$)/2, $m_{\sim 0}$ = 0 GeV	>1150	95	⁶⁵ AAD	15bv ATLS	general RPC \widetilde{g} decays, $m_{\widetilde{\chi}^0_1}$ <
⁴⁸ SIRUNYAN	17s CMS	same-sign $\ell^{\pm}\ell^{\pm}$ + jets + E_T ,	> 700	95	66 AAD	15bx ATLS	$\widetilde{g} o X \widetilde{\chi}_1^0$, independent of $m_{\widetilde{\chi}_1^0}$
		Tglu1B, $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} = 20$ GeV, $m_{-} = 100$ GeV	>1290	95	⁶⁷ AAD	15ca ATLS	$\geq 2 \gamma + ot\!$
⁴⁹ AABOUD	16AC ATLS	$\mathcal{M}_{\widetilde{\chi}_1^0} = 100 \text{ GeV}$ $\geq 2 \text{ jets } + 1 \text{ or } 2 \tau + \not{\!\!\! E_T},$ TolulE $m_{-0} = 100 \text{ GeV}$	>1260	95	67 _{AAD}	15ca ATLS	NLSP, dry NLSP, mass $\geq 1 \gamma + b$ -jets + E_T , GGM, higgsino-bino admix. NLSP $= 5 \dots < 5 \dots $ (MISP)>450 GeV
⁵⁰ AABOUD	16J ATLS	$\widetilde{\chi}_1^{\rm p}$ $\ell^{\pm} + \ge 4$ jets $+ \not\!$	>1140	95	⁶⁷ AAD	15ca ATLS	and $\mu < v$, in the product of the second s
⁵¹ AABOUD	16M ATLS	$\begin{array}{ccc} & t_1 & \chi_1^{\circ} \\ 2 & \gamma + ot\!$	>1225	95	⁶⁸ KHACHATR	Y15AF CMS	$ \widetilde{g} \xrightarrow{\text{all } \mu > 0} q \overline{q} \widetilde{\chi}_1^0, \ m_{\widetilde{\chi}_{\gamma}^0} = 0 $
⁵² AABOUD	16N ATLS	mass \geq 4 jets + $\not\!$	>1300	95	⁶⁸ KHACHATR	Y15AF CMS	$\widetilde{g} \rightarrow b \overline{b} \widetilde{\chi}_{1}^{0}, \ m_{\widetilde{\chi}_{*}^{0}}^{\sim_{1}} = 0$
²³ · · · · · · · · · · · · · · · · · · ·	··· • • T IS		>1225	95	⁶⁸ KHACHATR	Y15AF CMS	$\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_1^0, m_{\widetilde{\chi}_1^0}^{\sim_1} = 0$
22 AABOOD	16N AILS	\geq 4 jets + $\not\!$	>1550	95	⁶⁸ KHACHATR	Y15AF CMS	CMSSM, $\tan\beta = 30$, $m_{\widetilde{g}} = m_{\widetilde{q}}$,
⁵⁴ AAD	16AD ATLS	$\begin{array}{l} (^{\prime\prime\prime\prime}\widetilde{g}^{+\prime\prime\prime}\widetilde{\chi}_{1}^{0\prime\prime},,\widetilde{\chi}_{1}^{\circ}\\ 0\ell,\geq3b; \text{pts}+\not\!$	>1150	95	⁶⁸ KHACHATR	Y15af CMS	$A_0 = -2 \max(m_0, m_{1/2}), \mu > 0$ CMSSM, $\tan \beta = 30, 42 \max(m_0, m_{1/2}), \mu > 0$
⁵⁵ AAD	16AD ATLS	$\stackrel{\chi_1^\circ}{\geq}$ 3 <i>b</i> -jets $+ ot\!$	>1280	95	⁶⁹ KHACHATR	(Y15) CMS	$\widetilde{g} \rightarrow t \widetilde{t} \widetilde{\chi}_1^0, \ m_{\widetilde{\chi}_1^0} = 0$
	ידוכ	$m_{\widetilde{\chi}_1^0}^-$ < 700 GeV	>1310	95	⁷⁰ KHACHATR	⟨Y15× CMS	$\tilde{g} \rightarrow b \overline{b} \tilde{\chi}_1^0, m_{\tilde{\chi}_1^0} = 100 \text{ GeV}$
⁵⁶ AAD	16bb Ails	2 same-sign/3 ℓ + jets + $\not\!$	>1175	95	⁷⁰ KHACHATR	⟨Y15x CMS	$\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_1^0, \ m_{\widetilde{\chi}_1^0}^{\chi_1} = 100 \text{ GeV}$
⁵⁶ AAD	16BB ATLS	$\begin{array}{c} & \chi_1 \\ \text{2 same-sign}/3\ell + \text{jets} + \not\!\!\! E_T, \\ \text{Tglu1E, } m_{\widetilde{\chi}_1^0} < 300 \text{ GeV} \end{array}$	>1330	95	⁷¹ AAD	14AE ATLS	jets $+ \not\!$
⁵⁶ AAD	16bb ATLS	2 same-sign $/3\ell$ + jets + $\not\!\!E_T$,	>1700	95	⁷¹ AAD	14AE ATLS	$rac{\chi_1^{}}{\chi_1^{}}$ jets $+ ot\!$
57 AAD	16RG ATLS	Igiusa, $\widetilde{\chi}_1^0 > \infty = 0$. 14 > 4 iets E_{T} . Tglu1B,	>1090	95	⁷² AAD	14AG ATLS	$m_{\widetilde{q}} = m_{\widetilde{g}}$ $ au = ext{iets} + E_{T}$, natural Gauge
	1003	$m_{\widetilde{\chi}_1^\pm} = (m_{\widetilde{g}} + m_{\widetilde{\chi}_1^0})/2,$ $m_{\widetilde{\chi}_1^0} = 100 \text{ GeV}$	>1600	95	⁷² AAD	14AG ATLS	$\begin{array}{l} \text{Mediation} \\ \tau + \text{jets} + \not\!$
⁵⁸ AAD	16v ATLS	$ \geq \begin{array}{l} \chi_1 \\ \geq 7 \text{ to } \\ m_{\widetilde{\chi}^0_1} \geq 10 \text{ jets } + \not\!$	> 640	95	⁷³ AAD	14x ATLS	$C_{grav} = 1$ $\geq 4\ell^{\pm}, \tilde{g} \to q \overline{q} \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \to$ $\ell^{\pm} \ell^{\mp} \tilde{G} \tan \beta = 30. \text{GGM}$
⁵⁸ AAD	16V ATLS	$ \begin{array}{l} & \overbrace{T}^{\prime} \text{to} & \geq 10 \text{ jets} + E_T, \\ \text{pMSSM } M_1 & = 60 \text{ GeV}, M_2 \\ & = 3 \text{ TeV, } \tan\beta = 10, \ \mu & < 0 \end{array} $	>1000	95	⁷⁴ CHATRCHY/	AN 14AH CMS	$\begin{array}{c} \varepsilon - \varepsilon + \overline{\sigma}, \ \overline{canp} = \overline{\sigma}, \ \overline{\chi}_1^{o} \\ \text{jets} + \overline{E}_T, \ \overline{g} \rightarrow q \overline{q} \widetilde{\chi}_1^{o} \\ \text{model}, \ m_{\widetilde{\chi}_1^{o}} = 50 \ \text{GeV} \end{array}$
⁵⁹ KHACHATRY.	16АМ СМЅ	boosted $W+b$, Tglu3C, $m_{\tilde{t}_1}$ –	>1 35 0	95	⁷⁴ CHATRCHY/	AN14AH CMS	jets + E_T , CMSSM, $m_{\widetilde{g}} = m_{\widetilde{q}}$
⁵⁹ KHACHATRY	16ам СМЅ	$m_{\widetilde{\chi}^0_1}$ <80GeV, $m_{\widetilde{\chi}^0_1}$ <400GeV boosted W+b, Tglu3B, $m_{\widetilde{t}_1}$ $-$	>1000	95	⁷⁵ CHATRCHYA	AN 14AH CMS	jets $+ \not\!\!\!E_T$, $\Tilde{g} o b \overline{b} \widetilde{\chi}_1^0$ simplified model, $m_{\widetilde{\chi}_1^0} =$ 50 GeV
⁶⁰ KHACHATRY	16BJ CMS	$\begin{array}{l} m_{\widetilde{\chi}_1^0} {=} 175 {\rm GeV}, m_{\widetilde{\chi}_1^0} {=} 0 {\rm GeV} \\ {\rm same-sign} \ell^\pm \ell^\pm, {\rm Tglu3A}, \end{array}$	>1000	95	⁷⁶ CHATRCHY/	AN 14AH CMS	jets + E_T , $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$ simplified model, $m_{\tilde{\chi}_1^0} = 50$ GeV
		$m_{\widetilde{\chi}_1^0} < 800 \text{ GeV}$	>1160	95	77 CHATRCHY	AN14I CMS	jets + $\not\!$
W KHACHAINI.	16BJ CIVIS	same-sign $\ell^{\perp} \ell^{\perp}$, I giu 3A, $m_{\tilde{\chi}_1^0} = v$	>1130	95	77 CHATRCHY	″™14⊨ CMS	$\widetilde{\chi}_1^0 t \overline{t} \widetilde{\chi}_1^0 \text{ sim-}$
W KHACHATAT	16BJ Civij	same-sign $\ell^+ \ell^+$, Igiuse, $m_{\tilde{t}}^ m_{\tilde{\chi}^0_1} = 20$ GeV, $m_{\tilde{\chi}^0_1} = 0$	/	50	C1	ΑΝΙ Ι Τ.	plified model, $m_{\tilde{\chi}_1^0} < 100$
⁶⁰ KHACHATRY.	16BJ CMS	same-sign $\ell^{\pm}\ell^{\pm}$, Tglu3B, $m_{\widetilde{t}}-m_{\widetilde{\chi}_1^0}=$ 20 GeV, $m_{\widetilde{\chi}_1^0}<$ 700 GeV	>1210	95	⁷⁷ CHATRCHY	AN 14I CMS	$\begin{array}{c} \operatorname{GeV} \\ \operatorname{multijets} + E_T, \ \widetilde{g} \rightarrow \\ q \overline{q} W / Z \widetilde{\chi}_1^0 \ \operatorname{simplified} \ \operatorname{model}, \\ \end{array}$
⁶⁰ КНАСНАТКҮ.	16вј СМЅ	same-sign $\ell^\pm \ell^\pm$, Tglu3D, $m_{\widetilde{\chi}_1^\pm}$	~ 1 260	05	78 CHATRCHY	·····	$m_{\widetilde{\chi}_1^0} < 100 \text{ GeV}$
⁶⁰ KHACHATRY	16BJ CMS	$=m_{\widetilde{\chi}^0_1}$ + 5 GeV same-sign $\ell^\pm \ell^\pm$,Tglu1B, $m_{\widetilde{\chi}^\pm_1}$ =	>1200	95	¹⁰ CHATNGTT	AN14N CIVIC	$\begin{array}{l} 1\ell^{\pm} + \; \mathrm{jets} \; + \; \geq \; 2\nu \cdot \mathrm{jets}, \; \mathrm{g} \; - \\ t \; \overline{t} \; \chi_1^0 \; \mathrm{simplified \; model}, \\ m_{_0} = 0 \; \mathrm{GeV}, \; m_{\;\widetilde{t}} > \; m_{\;\widetilde{g}} \end{array}$
		$0.5(m_{\widetilde{g}}+m_{\widetilde{\chi}_1^0}),m_{\widetilde{\chi}_1^0}<400$ GeV			⁷⁹ CHATRCHY/	AN14R CMS	$\geq \frac{\chi_1}{3\ell^{\pm}}, (\tilde{g}/\tilde{q}) \rightarrow \frac{q}{6}\ell^{\pm}\ell^{\mp}\tilde{G}$
⁶⁰ KHACHATRY.	16вј СМЅ	same-sign $\ell^{\pm}\ell^{\pm}$, Tglu1B, $m_{\tilde{\chi}_{1}^{\pm}}$			80 CHATECHY	CMS	simplified model, Givisb, Step ton co-NLSP scenario
		0.5 ($m_{\widetilde{g}} + m_{\widetilde{\chi}_1^0}$), $m_{\widetilde{\chi}_1^0} <$ 700 GeV	107. J.		OV CHAIRCIII	AN14R CIVIS	$\geq 3\ell^{\perp}$, $g ightarrow t t \chi_{ ilde{1}}$ simplified model
⁶⁰ KHACHATRY.	16BJ CMS	same-sign $\ell^{\pm}\ell^{\pm}$, Tglu3B, $m_{\tilde{t}} - m_{\tilde{t}} - m_{\tilde{t}} = 0$	● ● ● We uo	not use i	R1 AAROUD	for averages, m	ts, limits, etc. ● ● <u>+ + + + + + + + + + + + + + + + + + + </u>
⁶⁰ KHACHATRY.	16вј СМЅ	$m_{\widetilde{\chi}_{1}^{0}} = m_{t}, m_{\widetilde{\chi}_{1}^{0}} - same-sign \ \ell^{\pm} \ell^{\pm}, Tglu3B, m_{\widetilde{t}} - Tglu3B, m_{\widetilde{t}} - Tglu3B, m_{\widetilde{t}} - Tglu3B, $	>1000	95 95	⁸² AABOUD	1883 ATLS	$\ell^{\pm}\ell^{+} + \text{jets} + \psi_{T}, \text{ ignitus},$ $m_{\widetilde{\chi}_{1}^{0}} = 1 \text{ GeV, any } m_{\widetilde{\chi}_{2}^{0}}$ $\lim_{\lambda \to \infty} 1^{-1} \text{ GeV, any } m_{\lambda}^{-1}$
61 KHACHATRY	16RS CMS	$m_{\widetilde{\chi}_1^0} = m_t, m_{\widetilde{\chi}_1^0} > \cdots = 0$	~-	~	111.2	10.	BR per decay mode, any $m_{-} - m_{-} - m_{-} = 60 \text{ GeV}$
61 KHACHATRY	16RS CMS	lets $\pm E_{co}$ Tolu2A, $m_{\sim 0} = 0$	>1600	95	⁸³ aaboud	17AZ ATLS	$\widetilde{\chi}_2^0$ $\widetilde{\chi}_1^0$, $\widetilde{\chi}_1^0$ > 7 lets + E_T , large R-jets
⁶¹ KHACHATRY	16BS CMS	$\int \frac{d}{dr} \frac{dr}{dr} d$			· · · ·	±	and/or <i>b</i> -jets, pMSSM, $m_{\tilde{\chi}_1^{\pm}}$
⁶² KHACHATRY.	16BY CMS	opposite-sign $\ell^{\pm} \ell^{\pm}$, Tglu4C, $m_{\simeq 0} = 1000 \text{ GeV}$	>1600	95	⁸⁴ KHACHATR	Y16AY CMS	$ \begin{array}{l} = & 200 \; \mathrm{GeV} \\ 1\ell^{\pm} + \; \mathrm{jets} + \; b \mathrm{-jets} \; + \; \not\!\!\! E_T, \\ \mathrm{Tg} \mathrm{u} \mathrm{3A}, \; m_{\bigtriangledown 0} \; = \; 0 \; \mathrm{GeV} \end{array} $
⁶² KHACHATRY.	16вү СМЅ	$\chi_{1}^{ imes}$ opposite-sign $\ell^{\pm}\ell^{\pm}$, Tglu4C, $m_{\widetilde{\chi}_{1}^{0}}=$ 0 GeV	> 500	95	⁸⁵ KHACHATR'	.Y16BT CMS	χ_1 19-parameter pMSSM model, global Bayesian analysis, flat
⁶³ KHACHATRY.	16v CMS	jets $\stackrel{\scriptstyle \Lambda_1}{+} ot\!$		95	⁸⁶ AAD	15ab ATLS	$\widetilde{g} \rightarrow \widetilde{S}\widetilde{g}, c\tau = 1 \text{ m}, \widetilde{S} \rightarrow S\widetilde{G}$
⁶³ KHACHATRY.	16v CMS	jets + $ ot\!$		95	⁸⁷ aad	15AL ATLS	and S $ ightarrow$ gg, GR = 100/0 ℓ^{\pm} + jets + $\not\!$
⁶³ KHACHATRY.	16v CMS	jets + $ ot\!$	>1600	95	⁶⁵ AAD	15bv ATLS	pMSSM, $M_1 = 60$ GeV, $m_{\widetilde{q}} < 1500$ GeV,
⁶³ KHACHATRY.	16v CMS	jets + $ ot\!$	>1280	95	65 AAD	15BV ATLS	mSUGRA, $m_0 > 2 \text{ TeV}$
⁶⁴ AAD	15BG ATLS	$\begin{array}{rcl} GGM, \ \widetilde{g} \rightarrow & q \ \widetilde{q} \ Z \ \widetilde{G}, \ \mathrm{tan} \ \beta = 30, \\ & \mu & > 600 \ \mathrm{GeV} \end{array}$	>1100 >1330	95 95	⁶⁵ AAD	15BV AILS 15BV ATLS	via $\tilde{\tau}$, natural GMSB, all $m_{\tilde{\tau}}$ iets + E_{T} . $\tilde{g} \rightarrow q \overline{q} \tilde{\chi}_{1}^{0}, m_{\simeq 0} =$
		μ > 000 01.	-				1 GeV χ_1

2051

2052 Searches Particle Listings Supersymmetric Particle Searches

>1500	95	⁶⁵ AAD	15bv ATLS	jets $+ \not\!$
>1650	95	⁶⁵ AAD	15bv ATLS	jets $+ \not\!$
> 850	95	⁶⁵ AAD	15bv ATLS	$ \begin{array}{l} {}_{\operatorname{geV}} \\ {}_{\operatorname{jets}} + \not\!$
>1270	95	⁶⁵ AAD	15bv ATLS	$\begin{array}{rcl} & 550 \text{ GeV} \\ \text{jets} + \not \!$
>1150	95	⁶⁵ AAD	15bv ATLS	$ = 100 \text{ GeV} $ $ \text{jets} + \ell^{\pm} \ell^{\pm}, \tilde{g} \rightarrow q \overline{q} W Z \tilde{\chi}_{1}^{0}, $ $ m_{e} = 100 \text{ GeV} $
>1320	95	⁶⁵ AAD	15bv ATLS	$\begin{array}{l} \lim_{\widetilde{\chi}_1^0} = 100 \ {\rm GeV} \\ {\rm jets} + \ell^\pm \ell^\pm, \widetilde{g} \ {\rm decays} \ {\rm via} \ {\rm slep-} \\ {\rm tons}, \ m_{\widetilde{\chi}^0} = 100 \ {\rm GeV} \end{array}$
>1220	95	⁶⁵ AAD	15bv ATLS	$ au$, \widetilde{q} decays via staus, $m_{\widetilde{\chi}^0_1} = 100$
>1310	95	65 AAD	15bv ATLS	$b\text{-jets}, \tilde{g} \rightarrow t \overline{t} \tilde{\chi}_1^0, m_{\tilde{\chi}_1^0} < 400$
>1220	95	⁶⁵ AAD	15bv ATLS	b-jets, $\tilde{g} \rightarrow \tilde{t}_1 t$ and $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$, $m_{\tau} < 1000 \text{ GeV}$
>1180	95	⁶⁵ AAD	15bv ATLS	b -jets, $\tilde{g} \rightarrow \tilde{t}_1 t$ and $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$, $m \tau_1 < 1000$ GeV, $m \tilde{\chi}_1^0 = 60$ GeV
>1260 >1200	95 95	⁶⁵ AAD ⁶⁵ AAD	15bv ATLS 15bv ATLS	$\begin{array}{l} b\text{-jets}, \widetilde{g} \to \widetilde{t}_1 \ t \ \text{and} \ \widetilde{g} \to c \ \widetilde{\chi}_1^0 \\ b\text{-jets}, \widetilde{g} \to \widetilde{b}_1 \ b \ \text{and} \ \widetilde{b}_1 \to \\ b \ \widetilde{\chi}_1^0, \ m_{\widetilde{b}_1} < 1000 \ \text{GeV} \end{array}$
>1250	95	⁶⁵ AAD	15bv ATLS	<i>b</i> -jets, $\tilde{g} \to b \bar{b} \bar{\chi}_1^0$, $m_{\tilde{\chi}_1^0} < 400$
none, 750–1250	95	⁶⁵ AAD	15bv ATLS	b-jets, \widetilde{g} decay via offshell \widetilde{t}_1 and \widetilde{b}_1 , $m_{\widetilde{\chi}^0}$ < 500 GeV
>1100	95	⁸⁸ AAD	15св ATLS	jets, $\widetilde{g} \rightarrow q q \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow Z \widetilde{G},$ GGM, $m_{\widetilde{\chi}_{1}^{0}} = 400$ GeV and 3 $< c\tau_{\widetilde{\tau}_{1}^{0}} < 500$ mm
>1400	95	⁸⁸ AAD	15cb ATLS	jets or $ ot\!$
>15.00	95	⁸⁸ AAD	15св ATLS	$15 < \mathrm{c} au \stackrel{\sim}{<} 300$ mm $ ot\!$
,				$m_{\widetilde{\chi}^0_1} =$ 100 ĠeV and 20 $<$
,		⁸⁹ KHACHATRY	15ad CMS	$m_{\widetilde{\chi}_1^0} = 100 \text{ ĜeV and } 20 < c_{\tau} < 250 \text{ mm}$ $\ell^{\pm}\ell^{\mp} + \text{ jets } + \not{\!\!\!E}_T, \text{ GMSB, } \widetilde{g} \rightarrow c_{\tau} = 7 \widetilde{c}$
>1300	95	⁸⁹ khachatry ⁹⁰ khachatry	15ad CMS 15az CMS	$\begin{array}{l} m_{\widetilde{\chi}_1^0} = 100 \; \mathrm{\acute{deV}} \; \mathrm{and} \; 20 < \\ \mathrm{c}_T < 250 \; \mathrm{mm} \\ \ell^{\pm}\ell^{\mp} + \mathrm{jets} + \not{E}_T, \; \mathrm{GMSB}, \; \widecheck{g} \rightarrow \\ q \overline{q} \; \widecheck{Z} \; \widecheck{G} \\ \geq 2 \; \gamma, \; \geq 1 \; \mathrm{jet}, \; (\mathrm{Razor}), \; \mathrm{bino-like} \; \mathrm{NLSP}, \; m_{\gamma^0} = 375 \; \mathrm{GeV} \end{array}$
>1300 > 800	95 95	⁸⁹ KHACHATRY ⁹⁰ KHACHATRY ⁹⁰ KHACHATRY	15ad CMS 15az CMS 15az CMS	$\begin{array}{l} m_{\widetilde{\chi}_1^0} = 100 \; \mathrm{\acute{e}V} \; \mathrm{and} \; 20 < \\ c_T < 250 \; \mathrm{mm} \\ \ell^{\pm}\ell^{\mp} + \mathrm{jets} + \!$
>1300 > 800 >1280 >1250	95 95 95 95	⁸⁹ KHACHATRY ⁹⁰ KHACHATRY ⁹⁰ KHACHATRY ⁹¹ AAD ⁹¹ AAD	15AD CMS 15AZ CMS 15AZ CMS 14AX ATLS 14AX ATLS	$\begin{array}{l} m_{\widetilde{\chi}_{1}^{0}}=100 \text{ ĜeV and } 20 < \\ c_{T}^{\tau} < 250 \text{ mm} \\ \ell^{\pm}\ell^{\mp} + \text{ jets } + \ell_{T}^{\tau}, \text{ GMSB}, \widetilde{g} \rightarrow \\ q \overline{q} \overline{Z} \widetilde{G} \\ \geq 2 \gamma, \geq 1 \text{ jet, (Razor), bino-} \\ \text{like NLSP, } m_{\widetilde{\chi}_{1}^{0}}=375 \text{ GeV} \\ \geq 1 \gamma, \geq 2 \text{ jet, wino-like NLSP,} \\ m_{\widetilde{\chi}_{1}^{0}}=375 \text{ GeV} \\ \approx 3 \text{ b-jets } + \ell_{T}^{\tau}, \text{ CMSSM} \\ \geq 3 \text{ b-jets } + k_{T}^{\tau}, \text{ CMSSM} \end{array}$
>1300 > 800 >1280 >1250	95 95 95 95	89 KHACHATRY 90 KHACHATRY 90 KHACHATRY 91 AAD 91 AAD	15AD CMS 15AZ CMS 15AZ CMS 14AX ATLS 14AX ATLS	$\begin{array}{l} m_{\widetilde{\chi}_1^0} = 100 \; {\rm \acute{e}eV} \; {\rm and} \; 20 < \\ c_T < 250 \; {\rm mm} \\ \ell^{\pm}\ell^{\mp} + {\rm jets} + \ell_T , \; {\rm GMSB}, \; \widetilde{g} \rightarrow \\ q \overline{q} \; \widetilde{Z} \; \widetilde{G} \\ \geq 2 \; \gamma, \; \geq 1 \; {\rm jet}, \; ({\rm Razor}), \; {\rm bino-like} \; {\rm NLSP}, \; m_{\widetilde{\chi}_1^0} = 375 \; {\rm GeV} \\ \geq 1 \; \gamma, \; \geq 2 \; {\rm jet}, \; {\rm wino-like} \; {\rm NLSP}, \\ m_{\widetilde{\chi}_1^0} = 375 \; {\rm GeV} \\ \geq 3 \; b {\rm .jets} + \not E_T, \; {\rm CMSSM} \\ \geq 3 \; b {\rm .jets} + \not E_T, \; \widetilde{g} \rightarrow \; \widetilde{L}_1 \; b \widetilde{\chi}_1^0 \\ {\rm simplified} \; {\rm model}, \; \widetilde{b}_1 \rightarrow b \widetilde{\chi}_1^0, \\ m_{\widetilde{\chi}_1^0} = 60 \; {\rm GeV}, \; m_{\widetilde{b}_1} < 900 \\ {\rm GeV} \end{array}$
>1300 > 800 >1280 >1250 >1190	95 95 95 95 95	89 KHACHATRY 90 KHACHATRY 90 KHACHATRY 91 AAD 91 AAD 91 AAD	15AD CMS 15AZ CMS 15AZ CMS 14AX ATLS 14AX ATLS 14AX ATLS	$\begin{array}{l} m_{\widetilde{\chi}_{1}^{0}}=100 \text{ ĜeV and } 20 < \\ c_{T}^{c} < 250 \text{ mm} \\ \ell^{\pm}\ell^{\mp} + \text{jets} + \mathcal{V}_{T}, \text{ GMSB}, \widetilde{g} \rightarrow \\ q \overline{q} \overline{Z} \widetilde{G} \\ \geq 2 \gamma, \geq 1 \text{ jet, (Razor), bino-like NLSP, } \\ m_{\widetilde{\chi}_{1}^{0}}=375 \text{ GeV} \\ \geq 1 \gamma, \geq 2 \text{ jet, wino-like NLSP, } \\ m_{\widetilde{\chi}_{1}^{0}}=375 \text{ GeV} \\ \geq 3 \text{ b-jets} + \mathcal{E}_{T}, \text{ CMSSM} \\ \geq 3 \text{ b-jets} + \mathcal{E}_{T}, \widetilde{g} \rightarrow \widetilde{h}_{1} \text{ b} \widetilde{\chi}_{1}^{0} \\ \text{simplified model, } \widetilde{h}_{1} \rightarrow b \widetilde{\chi}_{1}^{0}, \\ m_{\widetilde{\chi}_{1}^{0}}=60 \text{ GeV}, m_{\widetilde{h}_{1}} < 900 \\ \text{GeV} \\ \geq 3 \text{ b-jets} + \mathcal{E}_{T}, \widetilde{g} \rightarrow \widetilde{t}_{1} \text{ t} \widetilde{\chi}_{1}^{0} \\ \text{simplified model, } \widetilde{t}_{1} \rightarrow t \widetilde{\chi}_{1}^{0}, \\ m_{\widetilde{\chi}_{1}^{0}} = 60 \text{ GeV}, m_{\widetilde{t}_{1}} < 1000 \\ \alpha \widetilde{\chi}_{1}^{3} \end{array}$
>1300 > 800 >1280 >1250 >1190 >1180	95 95 95 95 95	89 KHACHATRY 90 KHACHATRY 90 KHACHATRY 91 AAD 91 AAD 91 AAD	15AD CMS 15AZ CMS 14AX ATLS 14AX ATLS 14AX ATLS 14AX ATLS	$\begin{array}{l} m_{\widetilde{\chi}_{1}^{0}}=100 \text{ ĜeV and }20 <\\ e_{T}^{c_{T}}<250 \text{ mm}\\ \ell^{\pm}\ell^{\mp}+\text{ jets}+\ell_{T}^{c_{T}}, \text{GMSB}, \widetilde{g}\rightarrow\\ q\overline{q} \overline{Z} \widetilde{G}\\ \geq 2 \gamma, \geq 1 \text{ jet, (Razor), bino-like NLSP, }m_{\widetilde{\chi}_{1}^{0}}=375 \text{ GeV}\\ \geq 1 \gamma, \geq 2 \text{ jet, wino-like NLSP, }m_{\widetilde{\chi}_{1}^{0}}=375 \text{ GeV}\\ \geq 3 b\text{ -jets}+ \mathcal{E}_{T}, \text{ CMSSM}\\ \geq 3 b\text{ -jets}+ \mathcal{E}_{T}, \widetilde{g}\rightarrow \widetilde{h}_{1} b\widetilde{\chi}_{1}^{0}\\ \text{ simplified model, }\widetilde{h}_{1}\rightarrow b\widetilde{\chi}_{1}^{0},\\ m_{\widetilde{\chi}_{1}^{0}}=60 \text{ GeV}, m_{\widetilde{h}_{1}}<900\\ \text{ GeV}\\ \geq 3 b\text{ -jets}+ \mathcal{E}_{T}, \widetilde{g}\rightarrow \widetilde{l}_{1} t\widetilde{\chi}_{1}^{0}\\ \text{ simplified model, }\widetilde{t}_{1}\rightarrow t\widetilde{\chi}_{1}^{0},\\ m_{\widetilde{\chi}_{1}^{0}}=60 \text{ GeV}, m_{\widetilde{h}_{1}}<1000\\ \text{ GeV}\\ \geq 3 b\text{ -jets}+ \mathcal{E}_{T}, \widetilde{g}\rightarrow \widetilde{l}_{1} t\widetilde{\chi}_{1}^{0}\\ \text{ simplified model, }\widetilde{t}_{1}\rightarrow b\widetilde{\chi}_{1}^{1},\\ m_{\widetilde{\chi}_{1}^{0}}=2m_{\widetilde{\chi}_{1}^{0}}, m_{\widetilde{\chi}_{1}^{0}}=60 \text{ GeV},\\ m_{\widetilde{\chi}_{1}}=2m_{\widetilde{\chi}_{1}^{0}}, m_{\widetilde{\chi}_{1}^{0}}=60 \text{ GeV},\\ m_{\widetilde{\tau}_{1}}<21000 \text{ GeV}\\ \end{array}$
>1300 > 800 >1280 >1250 >1190 >1180 >1250	95 95 95 95 95 95	89 KHACHATRY 90 KHACHATRY 90 KHACHATRY 91 AAD 91 AAD 91 AAD 91 AAD	15AD CMS 15AZ CMS 14AX ATLS 14AX ATLS 14AX ATLS 14AX ATLS 14AX ATLS	$\begin{array}{l} m_{\widetilde{\chi}_{1}^{0}}=100 \text{ ĜeV and }20 <\\ e_{T}^{c_{T}}<250 \text{ mm} \\ e^{\pm}\ell^{\pm}+\text{ jets}+\ell_{T}^{c_{T}}, \text{GMSB}, \widetilde{g} \rightarrow\\ q\overline{q} Z \widetilde{G} \\ \geq 2 \gamma, \geq 1 \text{ jet, (Razor), bino-like NLSP, } \\ m_{\widetilde{\chi}_{1}^{0}}=375 \text{ GeV} \\ \geq 1 \gamma, \geq 2 \text{ jet, wino-like NLSP, } \\ m_{\widetilde{\chi}_{1}^{0}}=375 \text{ GeV} \\ \geq 3 b\text{ -jets}+\ell_{T}, \text{ GMSSM} \\ \geq 3 b\text{ -jets}+\ell_{T}, \widetilde{g} \rightarrow \widetilde{b}_{1} b\widetilde{\chi}_{1}^{0} \\ \text{simplified model, } \widetilde{b}_{1} \rightarrow b\widetilde{\chi}_{1}^{0}, \\ m_{\widetilde{\chi}_{1}^{0}}=60 \text{ GeV, } m_{\widetilde{b}_{1}}<900 \\ \text{GeV} \\ \geq 3 b\text{ -jets}+\ell_{T}, \widetilde{g} \rightarrow \widetilde{t}_{1} t\widetilde{\chi}_{1}^{0} \\ \text{simplified model, } \widetilde{t}_{1} \rightarrow t\widetilde{\chi}_{1}^{0}, \\ m_{\widetilde{\chi}_{1}^{0}}=60 \text{ GeV, } m_{\widetilde{t}_{1}}<1000 \\ \text{GeV} \\ \geq 3 b\text{ -jets}+\ell_{T}, \widetilde{g} \rightarrow \widetilde{t}_{1} t\widetilde{\chi}_{1}^{0} \\ \text{simplified model, } \widetilde{t}_{1} \rightarrow b\widetilde{\chi}_{1}^{1}, \\ m_{\widetilde{\chi}_{1}^{\pm}}=2m_{\widetilde{\chi}_{1}^{0}}, m_{\widetilde{\chi}_{1}}=60 \text{ GeV}, \\ m_{\widetilde{t}_{1}}<1000 \text{ GeV} \\ \geq 3 b\text{ -jets}+\ell_{T}, \widetilde{g} \rightarrow b\overline{b}\widetilde{\chi}_{1}^{0} \\ \text{simplified model, } m_{\widetilde{\chi}_{1}^{0}}<60 \text{ GeV}, \\ m_{\widetilde{t}_{1}}<1000 \text{ GeV} \\ \geq 3 b\text{ -jets}+\ell_{T}, \widetilde{g} \rightarrow b\overline{b}\widetilde{\chi}_{1}^{0} \\ \text{simplified model, } m_{\widetilde{\chi}_{1}^{0}}<400 \\ \end{array}$
>1300 > 800 >1280 >1250 >1190 >1180 >1250 >1340	95 95 95 95 95 95 95	89 KHACHATRY 90 KHACHATRY 90 KHACHATRY 91 AAD 91 AAD 91 AAD 91 AAD 91 AAD	15AD CMS 15AZ CMS 14AX ATLS 14AX ATLS 14AX ATLS 14AX ATLS 14AX ATLS 14AX ATLS 14AX ATLS	$\begin{array}{l} m_{\widetilde{\chi}_{1}^{0}}=100 \ \text{\acute{e}eV} \ \text{and} \ 20 < \\ c_{T}^{\tau}<250 \ \text{mm} \\ \ell^{\pm}\ell^{\mp} + \text{jets} + \mathcal{U}_{T}, \ \text{GMSB}, \ \widetilde{g} \rightarrow \\ q \overline{q} \ Z \ \widetilde{G} \\ \geq 2 \ \gamma, \ \geq 1 \ \text{jets}, \ (\text{Razor}), \ \text{binolike} \ \text{NLSP}, \ m_{\widetilde{\chi}_{1}^{0}}=375 \ \text{GeV} \\ \geq 1 \ \gamma, \ \geq 2 \ \text{jet}, \ \text{winolike} \ \text{NLSP}, \ m_{\widetilde{\chi}_{1}^{0}}=375 \ \text{GeV} \\ \geq 3 \ b \ \text{jets} + \mathcal{U}_{T}, \ \text{GMSSM} \\ \geq 3 \ b \ \text{jets} + \mathcal{U}_{T}, \ \text{GMSSM} \\ \geq 3 \ b \ \text{jets} + \mathcal{U}_{T}, \ \text{GMSSM} \\ \geq 3 \ b \ \text{jets} + \mathcal{U}_{T}, \ \widetilde{g} \rightarrow \ \widetilde{h}_{1} \ b \ \widetilde{\chi}_{1}^{0} \\ \text{simplified model}, \ \widetilde{h}_{1} \rightarrow b \ \widetilde{\chi}_{1}^{0}, \\ m_{\widetilde{\chi}_{1}^{0}}=60 \ \text{GeV}, \ m_{\widetilde{h}_{1}}<900 \\ \text{GeV} \\ \geq 3 \ b \ \text{jets} + \mathcal{U}_{T}, \ \widetilde{g} \rightarrow \ \widetilde{h}_{1} \ t \ \widetilde{\chi}_{1}^{0} \\ \text{simplified model}, \ \widetilde{h}_{1} \rightarrow b \ \widetilde{\chi}_{1}^{1}, \\ m_{\widetilde{\chi}_{1}^{1}}=20 \ \text{Go} \ \text{GeV}, \ m_{\widetilde{h}_{1}}=1000 \\ \text{GeV} \\ \geq 3 \ b \ \text{jets} + \mathcal{U}_{T}, \ \widetilde{g} \rightarrow \ \widetilde{h}_{1} \ t \ \widetilde{\chi}_{1}^{0} \\ \text{simplified model}, \ \widetilde{h}_{1} \rightarrow b \ \widetilde{\chi}_{1}^{1}, \\ m_{\widetilde{\chi}_{1}^{\pm}=2m_{\widetilde{\chi}_{1}^{0}}, \ m_{\widetilde{\chi}_{1}^{0}=60 \ \text{GeV}, \\ m_{\widetilde{t}_{1}}<1000 \ \text{GeV} \\ \geq 3 \ b \ \text{jets} + \mathcal{U}_{T}, \ \widetilde{g} \rightarrow \ b \ \widetilde{h}_{1}^{0} \\ \text{simplified model}, \ m_{\widetilde{\chi}_{1}^{0}} \neq 400 \\ \text{GeV} \\ \geq 3 \ b \ \text{jets} + \mathcal{U}_{T}, \ \widetilde{g} \rightarrow \ t \ \widetilde{\tau}_{1}^{0} \\ \text{simplified model}, \ m_{\widetilde{\chi}_{1}^{0}} < 400 \\ \text{GeV} \\ \geq 3 \ b \ \text{jets} + \mathcal{U}_{T}, \ \widetilde{g} \rightarrow \ t \ \widetilde{\tau}_{1}^{0} \\ \text{simplified model}, \ m_{\widetilde{\chi}_{1}^{0}} < 400 \\ \end{array}$
>1300 > 800 >1280 >1250 >1190 >1180 >1250 >1340 >1300	95 95 95 95 95 95 95	89 KHACHATRY 90 KHACHATRY 90 KHACHATRY 91 AAD 91 AAD 91 AAD 91 AAD 91 AAD 91 AAD	15AD CMS 15AZ CMS 14AX ATLS 14AX ATLS 14AX ATLS 14AX ATLS 14AX ATLS 14AX ATLS 14AX ATLS 14AX ATLS	$\begin{array}{l} m_{\widetilde{\chi}_{1}^{0}}=100 \ \mbox{bev} \ \mbox{and} \ 20 < \\ c_{T} < 250 \ \mbox{mm} \\ \ell^{\pm}\ell^{\mp} + j \mbox{est} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
>1300 > 800 >1280 >1250 >1190 >1180 >1250 >1140 >1300 > 950	95 95 95 95 95 95 95 95	 ⁸⁹ KHACHATRY ⁹⁰ KHACHATRY ⁹⁰ KHACHATRY ⁹¹ AAD ⁹¹	15AD CMS 15AZ CMS 15AZ CMS .14AX ATLS .14AX ATLS	$\begin{array}{l} m_{\widetilde{\chi}_{1}^{0}}=100 \ \text{\acute{e}eV} \ \text{and} \ 20 <\\ e_{T}^{c_{T}}<250 \ \text{mm}}\\ \ell^{\pm}\ell^{\mp}+\text{jets}+\ell_{T}, \ \text{GMSB}, \ \widetilde{g}\rightarrow q\overline{q} \ \widetilde{c}\\ \geq 2 \ \gamma, \ \geq 1 \ \text{jets}, \ (\text{Razor}), \ \text{bino-like} \ \text{NLSP}, \ m_{\widetilde{\chi}_{1}^{0}}=375 \ \text{GeV}\\ \geq 1 \ \gamma, \ \geq 2 \ \text{jet}, \ \text{wino-like} \ \text{NLSP}, \ m_{\widetilde{\chi}_{1}^{0}}=375 \ \text{GeV}\\ \geq 3 \ b\text{-jets}+\ell_{T}, \ \overline{G}\rightarrow \overline{b}_{1} \ b_{\widetilde{\chi}_{1}^{0}}\\ \text{simplified model}, \ \widetilde{b}_{1}\rightarrow b_{\widetilde{\chi}_{1}^{0}}\\ \text{simplified model}, \ \widetilde{b}_{1}\rightarrow b_{\widetilde{\chi}_{1}^{0}}\\ \text{simplified model}, \ \widetilde{t}_{1}\rightarrow t_{\widetilde{\chi}_{1}^{0}}\\ \text{simplified model}, \ m_{\widetilde{\chi}_{1}^{0}}=60 \ \text{GeV}\\ \geq 3 \ b\text{-jets}+\ell_{T}, \ \widetilde{g}\rightarrow t_{\widetilde{\chi}_{1}^{0}} < 400\\ \text{GeV}\\ \geq 3 \ b\text{-jets}+\ell_{T}, \ \widetilde{g}\rightarrow t_{\widetilde{\chi}_{1}^{0}} < 400\\ \text{GeV}\\ \geq 3 \ b\text{-jets}+\ell_{T}, \ \widetilde{g}\rightarrow t_{\widetilde{\chi}_{1}^{0}} < 400\\ \text{GeV}\\ \geq 3 \ b\text{-jets}+\ell_{T}, \ \widetilde{g}\rightarrow t_{\widetilde{\chi}_{1}^{0}} < 400\\ \text{GeV}\\ \geq 3 \ b\text{-jets}+\ell_{T}, \ \widetilde{g}\rightarrow t_{\widetilde{\chi}_{1}^{0}} < 400\\ \text{GeV}\\ \geq 3 \ b\text{-jets}+\ell_{T}, \ \widetilde{g}\rightarrow t_{\widetilde{\chi}_{1}^{0}} < 400\\ \text{GeV}\\ \geq 3 \ b\text{-jets}+\ell_{T}, \ \widetilde{g}\rightarrow t_{\widetilde{\chi}_{1}^{0}} < 400\\ \text{GeV}\\ \geq 3 \ b\text{-jets}+\ell_{T}, \ \widetilde{g}\rightarrow t_{\widetilde{\chi}_{1}^{0}} < 2 \ \text{GeV}, \\ m_{\widetilde{\chi}_{1}^{0}} < 30\ \text{GeV}\\ \ell^{\pm}\ell^{\pm}\ell^{\pm}\ell^{\pm}\ell^{\pm}\ell^{\pm}\ell^{\pm}\ell^{\pm}$
>1300 > 800 >1280 >1250 >1190 >1190 >1180 >1250 >1340 >1300 > 950 >1000	95 95 95 95 95 95 95 95 95	 89 KHACHATRY 90 KHACHATRY 90 KHACHATRY 90 KHACHATRY 91 AAD 92 AAD 92 AAD 92 AAD 	15AD CMS 15AZ CMS 14AX ATLS 14AX ATLS	$\begin{array}{l} m_{\widetilde{\chi}_{1}^{0}}=100 \ \mbox{GeV} \ \mbox{and} \ 20 < \\ c_{T}^{\tau}<250 \ \mbox{mm} \\ \ell^{\pm}\ell^{\mp} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

> 640	95	⁹² AAD 14e	ATLS	$\ell^{\pm}\ell^{\pm}(\ell^{\mp}) + \text{jets}, \ \widetilde{g} \to t \widetilde{t}_1$ with $\widetilde{t}_1 \to c \widetilde{z}^0$ simplified
> 860	95	⁹² AAD 14e	ATLS	model, $m_{\tilde{t}_1} \rightarrow c_{\chi_1}$ simplified with $t_1 \rightarrow c_{\chi_1}$ simplified with $m_{\tilde{t}_1} = m_{\tilde{\chi}_1^0} + 20 \text{ GeV}$ $\ell^{\pm} \ell^{\pm}(\ell^{\mp}) + \text{ jets, } \tilde{g} \rightarrow q q' \tilde{\chi}_1^{\pm}, $ $\tilde{\chi}_1^{\pm} \rightarrow W^{(*)\pm} \tilde{\chi}_1^0 \text{ simplified model, } m_{\gamma^{\pm}} = 2 m_{\gamma^0},$
>1040	95	⁹² AAD 14e	ATLS	$\begin{array}{l} \chi_1^- & \chi_1^- \\ m_{\widetilde{\chi}_1^0} < 400 \text{ GeV} \\ \ell^{\pm} \ell^{\pm} (\ell^{\mp}) + \text{ jets, } \widetilde{g} \rightarrow q q' \widetilde{\chi}_1^{\pm}, \\ \widetilde{\chi}_1^{\pm} \rightarrow W^{(*)\pm} \widetilde{\chi}_2^0, \widetilde{\chi}_2^0 \rightarrow \\ Z^{(*)} \widetilde{\chi}^0 \text{ simplified model} \end{array}$
>1200	95	⁹² AAD 14e	ATLS	$\begin{array}{l} 2 \leftarrow \chi_1 \text{ simplified model,} \\ m_{\chi_1^0} < 520 \text{ GeV} \\ \ell^{\pm} \ell^{\pm} (\ell^{\mp}) + \text{jets,} \tilde{g} \rightarrow \\ q q' \tilde{\chi}_1^{\pm} / \tilde{\chi}_2^0, \tilde{\chi}_1^{\pm} \rightarrow \ell^{\pm} \nu \tilde{\chi}_1^0, \\ \tilde{\chi}_2^0 \rightarrow \ell^{\pm} \ell^{\mp} (\nu \nu) \tilde{\chi}_1^0 \text{ simpli-} \end{array}$
>1050	95	⁹³ CHATRCHYAN14⊦	CMS	fied model same-sign $\ell^{\pm}\ell^{\pm}$, $\tilde{g} \rightarrow t t \tilde{t} \tilde{\chi}_{1}^{0}$
> 900	95	⁹⁴ CHATRCHYAN14⊦	CMS	simplified model, massless $\tilde{\chi}_1^{\circ}$ same-sign $\ell^{\pm}\ell^{\pm}$, $\tilde{g} \rightarrow q q' \tilde{\chi}_1^{\pm}$, $\tilde{\chi}_1^{\pm} \rightarrow W^{\pm} \tilde{\chi}_1^{0}$ simplified model, $m_{\pm} = 0.5 m_{\Xi}$, mass-
>1 05 0	95	⁹⁵ CHATRCHYAN14⊧	CMS	$ \begin{array}{ccc} \chi_1^- & g^* \\ \text{less } \tilde{\chi}_1^0 \\ \text{same-sign } \ell^\pm \ell^\pm, \tilde{g} \to b \overline{\imath} \tilde{\chi}_1^\pm, \\ \tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0 \text{ simplified} \\ \text{model, } m_{\tilde{\chi}_1^\pm} = 300 \text{ GeV, } m_{\tilde{\chi}_1^0} \end{array} $

 $= 50 \text{ GeV} \widetilde{\chi}_1^{\pm}$ 1 SIRUNYAN 20B searched in 35.9 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 13 TeV for events with

¹ SIRUNYAN 20B searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least one photon and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on chargino masses in a general gauge-mediated SUSY breaking (GGM) scenario Tchiln12-GGM, see Figure 4. Limits are also set on the NLSP mass in the TchilchilF and TchilchilG simplified models, see Figure 6. ² AABOUD 19 searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in final states with hadronic jets, 1 or two hadronically decaying τ and E_T . In Tglu1F, gluino masses are excluded at 95% C.L. up to 2000 GeV for neutralino masses of 100 GeV below. Neutralino masses up to 1000 GeV are excluded for all gluino masses below 1400 GeV. See their Fig. 9. Limits are also presented in the context of Gauge-Mediated Symmetry Breaking models: in this case, values of Λ below 110 TeV are excluded at the 95% CL for all values of tan β in the range $2 < \tan{\delta} < 60$, see their Fig. 10.

breaking models. In this case, values of A below 10 feV are excluded at this 5.6 CL for all values of tan β in the range $2 < \tan \beta < 60$, see their Fig 10. ³ SIRUNYAN 19AG searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two photons and large \mathbb{Z}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4B simplified model and on the squark mass in the Tsqk4B simplified model, see their Figure 3.

⁴ SIRUNYAN 19AU searched in 35.9 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with at last one photon, jets, some of which are identified as originating from *b*-quarks, and large \mathcal{E}_T . No significant excess above the Standard Model expectations is observed. In the framework of GMSB, limits are set on the gluino mass in the Tglu4C, Tglu4D and Tglu4E simplified models, and on the top squark mass in the Tstop13 simplified model, see their Figure 5.

 5 SIRUNYAN 19CE searched in 35.9 fb $^{-1}$ of pp collisions at $\sqrt{s}=13$ TeV for new particles decaying to a photon and two gluons in events with at least three large-radius jets of which two have substructure and are composed of a photon and two gluons. No statistically significant excess is observed above the SM background expectation. Upper limits at 95% confidence level on the cross section for gluino pair production are set, using a simplified Tglu1A-like stealth SUSY model. Gluino masses up to 1500-1700 GeV using a simplified regulation sector boost more all the highest exclusion set for $m_{\widetilde{\chi}_1^0}$

= 200 GeV. See their Fig 4. ⁶ SIRUNYAN 19CH searched in 137 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events Since the standard models, see their Figure 13. Limits are also set on squark, Tglu2A and Tglu3A simplified models, see their Figure 13. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbot1, Tstop1 simplified models, see their Figure 14

7 SIRUNYAN 19K searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with a photon, an electron or muon, and large E_T . No significant excess above the Standard Model expectations is observed. In the framework of GMSB, limits are set on the chargino and neutralino mass in the Tchin1A simplified model, see their Figure 6. Limits are also set on the gluino mass in the TgluAA simplified model, set that mass in the Tsqk4A simplified model, see their Figure 7. ⁸ SIRUNYAN 19s searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with

zero or one charged leptons, jets and E_T . The razor variables (M_R and R^2) are used to categorize the events. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu3C simplified models, see Figures 22 and 23, and on the stop mass in the Tstop1 simplified model, see their Figure 24

¹ Pigure 24. ⁹ AABOUD 18AR searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for gluino pair production in events containing large missing transverse momentum and several energetic jets, at least three of which must be identified as originating from *b*-quarks. No excess is found above the predicted background. In Tglu3A models, gluino masses of less than 1.97 TeV are excluded for $m_{\sqrt{0}}$ below 300 GeV, see their Fig. 10(a). Interpretations are also provided for comparing white Tglu3A modes mix with Telu3A and Tglu3D, so their

also provided for scenarios where Tglu3A modes mix with Tglu2A and Tglu3D, see their Fig 11.

2053

- ¹⁰ AABOUD 18AR searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for gluino pair production in events containing large missing transverse momentum and several energetic jets, at least three of which must be identified as originating from *b*-quarks. No excess is found above the predicted background. In Tglu2A models, gluino masses of less than 1.92 TeV are excluded for $m_{\widetilde{\chi}_1^0}$ below 600 GeV, see their Fig. 10(b). Interpretations are also provided for scenarios where Tglu2A modes mix with Tglu3A and Tglu3D, see their Fig 11.
- Fig 11. ¹¹ AABOUD 18AS searched for in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for gluino pair production in the context of AMSB or phenomenological MSSM scenarios with wino-like LSP and long-lived charginos. Events with a disappearing track due to a low-momentum pion accompanied by at least four jets are considered. No significant excess above the Standard Model expectations is observed. Exclusion limits are set at 95% confidence level on the mass of gluinos for different chargino lifetimes. Gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns, corresponding to a mass-solititing between the charged and neutral wino of around 160 MeV. See their to a mass-splitting between the charged and neutral wino of around 160 MeV. See their Fig. 9.
- Fig. 9. ¹²AABOUD 18BJ searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in events with two opposite-sign charged leptons (electrons and muons), jets and missing transverse momentum, with various requirements to be sensitive to signals with different kinematic endpoint values in the dilepton invariant mass distribution. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1G model: gluino masses below 1850 GeV are excluded for $m_{\tilde{\chi}_1^0}^0 = 100$ GeV, see their Fig. 12(a).
- ¹¹³AABOUD 18BJ searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in events with two opposite-sign charged leptons (electrons and muons), jets and missing transverse momentum, with various requirements to be sensitive to signals with different kinematic endpoint values in the dilepton invariant mass distribution. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1H model: gluino masses below 1650 GeV are excluded for $m_{\tilde{\chi}_1^0} = 100$ GeV, see their Fig. 13(a).
- ¹⁴AABOUD 180 searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in events with at least one isolated photon, possibly jets and significant transverse momentum targeting generalised models of gauge-mediated SUSY breaking. No significant excess of events is observed above the SM prediction. Results for the di-photon channel are interpreted in terms of lower limits on the masses of gluinos in Tglu4B models, which reach as high as 2.3 TeV. Gluinos with masses below 2.15 TeV are excluded for any NLSP mass, see their first sectors. their Fig. 8.
- their Fig. 8. ¹⁵ AABOUD 180 searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in events with at least one isolated photon, possibly jets and significant transverse momentum targeting generalised models of gauge-mediated SUSY breaking. No significant excess of events is observed above the SM prediction. Results of the γ + jets + \mathcal{L}_T channel are interpreted in terms of lower limits on the masses of gluinos in GGM higgsino-bino models (mix of Tglu4B and Tglu4C), which reach as high as 2050 GeV. Gluino masses below 1600 GeV are excluded for any NLSP mass provided that $m_{\overline{g}} m_{\widetilde{\chi}_1^0} > 50$ GeV. See their Fig. 11.
- 16 AABOUD 18V searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1A model: gluino masses below 2030 GeV are excluded for massless LSP, see their Fig. 13(b). 17 AABOUD 18V searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1B model. Assuming that $m_{\tilde{\chi}_1^+} = 0.5$ ($m_{\tilde{g}}^- + m_{\tilde{\chi}_1^0}$), gluino masses below 1980 GeV are excluded for massless LSP, see their Fig. 14(c). Exclusions are also shown assuming $m_{\tilde{\chi}_1^0} = 60$

GeV, see their Fig. 14(d).

- GeV, see their Fig. 14(a). ¹⁸ AABOUD 18v searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1E model: gluino masses below 1750 GeV are excluded for $m_{\widetilde{\chi}_1^0} = 1$ GeV and any $m_{\widetilde{\chi}_2^0}$ above 100 GeV, see their Fig. 15. Gluino mass exclusion up to 2 TeV is found for $m_{\widetilde{\chi}_2^0} = 1$ TeV.
- ¹⁹ SIRUNYAN 18AA searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least one photon and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on wino masses in a general gauge-mediated $\frac{1}{2}$ with a feast one photon and large p_T . No significant excess above the Standard Model expectations is observed. Limits are set on wino masses in a general gauge-mediated SUSY breaking (GGM) scenario with bino-like $\tilde{\chi}_1^0$ and wino-like $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$, see Figure 7. Limits are also set on the NLSP mass in the Tchiln1A and TchilchifA simplified models, see their Figure 8. Finally, limits are set on the gluino mass in the Tglu4A and Tglu4B simplified models, see their Figure 9, and on the squark mass in the Tskq4A and Tsqk4B simplified models, see their Figure 10. ²⁰ SIRUNYAN 18AC searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with a single electron or muon and multiple jets. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu1B simplified models, see their Figure 5. ²¹ SIRUNYAN 18AL searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least three charged leptons, in any combination of electrons and muons, jets and significant E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu1C simplified models, see their Figure 5. Limits are also set on the sbottom mass in the Tsbot2 simplified models, the Figure 6, and on the stop mass in the Tsbot2 simplified models, see their containing two opposite-charge, same-flavour leptons (electrons or muons), jets and *Pp* collisions at $\sqrt{s} = 13$ TeV for events containing two opposite-charge, same-flavour leptons (electrons or muons), parts and E_T .

- DIKUNYAN 18AK searched in 35.9 tb⁻⁴ of pp collisions at $\sqrt{s} = 13$ TeV for events containing two opposite-charge, same-flavour leptons (electrons or muons), jets and \mathcal{B}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4C simplified model, see their Figure 7. Limits are also set on the chargino/neutralino mass in the Tchi1n2F simplified models, see their Figure 8, and on the higgsino mass in the Tn1n1B and Tn1n1C simplified model, see their Figure 9. Finally, limits are set on the sbottom mass in the Tsbot3 simplified model, see their Figure 10
- Figure 10. 23 SIRU NYAN 18AY searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing one or more jets and significant \mathcal{L}_{T} . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified model, see their Figure 3. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbot1, Tstop1 and Tstop4 simplified models, see their Figure 3. Limits are also set on squark, sbottom under the relative function of the relative function. where the gluino is metastable or long-lived with proper decay lengths in the range 10^{-3} mm $< c\tau < 10^5$ mm, see their Figure 4.

- 24 SIRUNYAN 18D searched in 35.9 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 13 TeV for events con-
- ²⁴ SIRUNYAN 18D searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing identified hadronically decaying top quarks, no leptons, and E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1 simplified model, see their Figure 8, and on the gluino mass in the Tglu3A, Tglu3B, Tglu3C and Tglu3E simplified models, see their Figure 9.
 ²⁵ SIRUNYAN 18M searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one or more high-momentum Higgs bosons, decaying to pairs of *b*-quarks, and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1 and Tglu11 simplified models, see their Figure 3.
 ²⁶ AABOUD 17AJ searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.75 TeV are set on the gluino mass in Tglu3A simplified models in case of off-shell top squarks and for $m_{\chi_1^0} = 100$ GeV. See their Figure 4(a).
 ²⁷ AABOUD 17AJ searched in 36.1 fb⁻¹ of *pn* collisions at $\sqrt{s} = 13$ TeV for events with two same.
- 27 AABOUD 17AJ searched in 36.1 fb $^{-1}$ of pp collisions at $\sqrt{s} =$ 13 TeV for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.57 TeV are set on the gluino mass in Tglu1E simplified models (2-step models) for $m_{\tilde{\chi}_1^0} = 100$ GeV. See their Figure 4(b)
- See their Figure 4(b). ²⁸ AABOUD 17AJ searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.86 TeV are set on the gluino mass in Tglu1G simplified models for $m_{\widetilde{\chi}_1^0} = 200$ GeV. See their Figure 4(c).
- 4(c). 29 AABOUD 17AR searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one isolated lepton, at least two jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 2.1 TeV are set on the gluino mass in Tglu1B simplified models, with $x = (m_{\widetilde{\chi}_1^\pm} m_{\widetilde{\chi}_1})/(m_{\widetilde{\chi}_1^\pm} m_{\widetilde{\chi}_1^\pm} m_{\widetilde{\chi}_1})/(m_{\widetilde{\chi}_1^\pm} m_{\widetilde{\chi}_1^\pm} m_{\widetilde{\chi}_1})/(m_{\widetilde{\chi}_1^\pm} m_{\widetilde{\chi}_1^\pm} m_{\widetilde{\chi}_1})/(m_{\widetilde{\chi}_1^\pm} m_{\widetilde{\chi}_1^\pm} m_{\widetilde{\chi}_1})/(m_{\widetilde{\chi}_1^\pm} m_{\widetilde{\chi}_1^\pm} -$

 $(m_{\widetilde{g}} - m_{\widetilde{\chi}_1^0}) = 1/2.$ Similar limits are obtained for variable x and fixed neutralino mass, $m_{\widetilde{\chi}_1^0} = 60$ GeV. See their Figure 13.

- $^{\chi_1}$ 30 AABOUD 17AR searched in 36.1 fb⁻¹ of pp collisions at \sqrt{s} = 13 TeV for events with one isolated lepton, at least two jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.74 TeV are set on the gluino mass in Tglu1E simplified model. Limits up to 1.7 TeV are also set on pMSSM models leading to similar signal event topologies. See their Figure 12
- 31 AABOUD 17Ay searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least four jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.8 TeV are set on the gluino 1.5×10^{-1} so that Figure 12 mass in Tglu3A simplified models assuming $m_{\widetilde{t}_1} - m_{\widetilde{\chi}_1^0} = 5$ GeV. See their Figure 13.
- ³²AABOUD 17AZ searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least seven jets and large missing transverse momentum. Selected events are further classified based on the presence of large R-jets or *b*-jets and no leptons. No significant
- classified based on the presence of large R-jets of object and no reprose. No significant excess above the Standard Model expectations is observed. Limits up to 1.8 TeV are set on the gluino mass in Tglu1E simplified models. See their Figure 6b. 33ABOUD 17AZ searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least seven jets and large missing transverse momentum. Selected events are further classified based on the presence of large R-jets or *b*-jets and no leptons. No significant events above the Standard Model coverticities is observed. Limits up to 1.54 TeV are
- classified based on the presence of large R-jets or *D*-jets and no leptons. No significant excess above the Standard Model expectations is observed. Limits up to 1.54 TeV are set on the gluino mass in Tglu3A simplified models. See their Figure 7a. ³⁴ AABOUD 17N searched in 14.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in final states with 2 same-flavor, opposite-sign leptons (electrons or muons), jets and large missing transverse momentum. In Tglu1J models, gluino masses are excluded at 95% C.L. up to 1300 GeV for $m_{\chi_1^0} = 0$ GeV and $m_{\chi_2^0} = 1100$ GeV. See their Fig. 12 for exclusion limits as a function of $m_{\chi_2^0}$. Limits are also presented assuming $m_{\chi_2^0} = m_{\chi_1^0} + 100$ GeV, see their Fig. 13
- their Fig. 13.
- their Fig. 13. ³⁵ AABOUD 17N searched in 14.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in final states with 2 same-flavor, opposite-sign leptons (electrons or muons), jets and large missing transverse momentum. In TgluIH models, gluino masses are excluded at 95% C.L. up to 1310 GeV for $m_{\tilde{\chi}_1^0} < 400$ GeV and assuming $m_{\tilde{\chi}_2^0} = (m_{\tilde{g}}^2 + m_{\tilde{\chi}_1^0})/2$. See their Fig.
- ^{15.} ^{15.} ^{16.} - $\begin{array}{l} m_{\chi_1^0} = (m_{\chi}^- m_{\chi_1^0})/2 = \text{so GeV}. \text{ see then Fig. 14.} \\ 37 \text{ KHACHATRYAN 17 searched in 2.3 fb^{-1} of pp collisions at <math>\sqrt{s} = 13 \text{ TeV}$ for events containing four or more jets, no more than one lepton, and missing transverse momentum, using the razor variables $(M_R \text{ and } R^2)$ to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits are derived on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified models, see Figs. 16 and 17. Also, assuming gluinos decay only via three-body processes involving third-generation quarks plus a neutralino/chargino, and assuming $m_{\chi_1^+} = m_{\chi_1^0} + 5 \text{ GeV}$, a branching ratio-independent limit on the gluino mass is given, see Fig. 16. 38 KHACHATRYAN 17AD searched in 2.3 fb^{-1} of pp collisions at $\sqrt{s} = 13 \text{ TeV}$ for events containing at least four jets (including *b*-jets), missing transverse momentum and tagged top quarks. No evidence for an excess over the expected background is observed. Gluino masses up to 1550 GeV and neutralino masses up to 900 GeV are excluded at 95% C.L. See Fig. 13. 39 KHACHATRYAN 17AD searched in 2.3 fb^{-1} of pp collisions at $\sqrt{s} = 13 \text{ TeV}$ for events
- 39 KHACHATRYAN 17AD searched in 2.3 fb $^{-1}$ of $p\,p$ collisions at $\sqrt{s}=$ 13 TeV for events containing at least four jets (including *b*-jets), missing transverse momentum and tagged top quarks. No evidence for an excess over the expected background is observed. Gluino masses up to 1450 GeV and neutralino masses up to 820 GeV are excluded at 95% C.L. See Fig 13.
- See Fig. 13. 40 KHACHATRYAN 17AS searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with a single electron or muon and multiple jets. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu1B simplified models, see their Fig. 7. ⁴¹ KHACHATRYAN 17AW searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events
- with at least three charged leptons, in any combination of electrons and muons, and

significant $E_{T}.$ No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu1C simplified models, and on the sbottom mass in the Tsbot2 simplified model, see their Figure 4.

- 42 KHACHATRYAN 17P searched in 2.3 fb $^{-1}$ of $p\,p$ collisions at $\sqrt{s}=$ 13 TeV for events KHACHATRYAN 17P searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one or more jets and large \mathbb{E}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A, Tglu3A, Tglu3A, Tglu3A, Tglu3A, Tglu3C and Tglu3D simplified models, see their Figures 7 and 8. Limits are also set on the squark mass in the Tsqk1 simplified model, see their Fig. 7, and on the sbottom mass in the Tsbot1 simplified model, see Fig. 8. Finally, limits are set on the stop mass in the Tstop1, Tstop3, Tstop4, Tstop6 and Tstop7 simplified models, see Fig. 8. Fig. 8.
- Fig. 8. ⁴³ KHACHATRYAN 17v searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two photons and large E_T . No significant excess above the Standard Model ex-pectations is observed. Limits are set on the gluino and squark mass in the context of general gauge mediation models Tglu4B and Tsqk4, see their Fig. 4. ⁴⁴ SIRUNYAN 17AF searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with a single lepton (electron or muon), jets, including at least one jet originating from a *b*-quark, and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu3B simplified models, see their Figure 2. ee their Figure 2.
- 45 SIRUNYAN 17AY searched in 35.9 fb $^{-1}$ of $p\,p$ collisions at $\sqrt{s}=$ 13 TeV for events with at least one photon, jets and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4A and Tglu4B simplified models, and on the squark mass in the Tskq4A and Tsqk4B simplified models, see their Figure 6.
- simplified models, and on the squark mass in the Tskq4A and Tsqk4B simplified models, see their Figure 6. 46 SIRUNYAN 17Az searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one or more jets and large \mathcal{B}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu2A simplified models, see their Figure 6. Limits are also set on the squark mass in the Tsql1A, Tglu2A, trglu2A, the Tsop1 simplified model, see their Figure 6. Limits are set on the stop mass in the Tstop1 simplified model, see their Figure 5. Limits are set on the stop mass in the Tstop2, trstop4 and Tstop8 simplified models, see Fig. 8. 47 SIRUNYAN 17P searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with multiple jets and large \mathcal{B}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tstop1 simplified model, and trglu3D simplified models, see their Fig. 12. Limits are also set on the squark mass in the Tstop1 simplified model, on the stop mass in the Tstop1 simplified model, and on the sbottom mass in the Tstop1 simplified model, see their Sigure 13. 48 SIRUNYAN 17s searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two isolated same-sign leptons, jets, and large \mathcal{B}_T . No significant excess above the Standard Model expectations is observed. Limits are set on the mass of the gluino mass in the Tglu3A, Tglu3B, Tglu3C, Tglu3D and Tglu3B simplified models, see their Figure 6. 49 AABOUD 16Ac searched in 3.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in final states with hadronic jets, 1 or two hadronically decaying τ and \mathcal{B}_T . In Tglu1F, gluino masses are excluded at 95% C.L. up to 1570 GeV for neutralino masses of 100 G

- and 1500 GeV, while the strongest neutralino-mass exclusion of 750 GeV is achieved for gluino masses around 1400 GeV. See their Fig. 8. Limits are also presented in the context of Gauge-Mediated Symmetry Breaking models: in this case, values of A below 92 TeV are excluded at the 95% CL, corresponding to gluino masses below 2000 GeV. See their Fig. 9.
- See their Fig. 9. 50 AABOUD 16J searched in 3.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in final states with one isolated electron or muon, hadronic jets, and E_T . Gluino-mediated pair production of stops with a nearly mass-degenerate stop and neutralino are targeted and gluino masses are excluded at 95% C.L. up to 1460 GeV. A 100% of stops decaying via charm - neutralino is assumed. The results are also valid in case of 4-body decays $\widetilde{t}_1 o$ $f f' b \tilde{\chi}_1^0$. See their Fig. 8.
- ⁵¹AABOUD 16M searched in 3.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two photons, hadronic jets and \mathcal{P}_T . No significant excess above the Standard Model expectations is observed. Exclusion limits at 95% C.L. are set on gluino masses in the general gauge-mediated SUSY breaking model (GGM), for bino-like NLSP. See their Fig. 3.
- 52 AAB OUD 16N searched in 3.2 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events containing hadronic jets, large E_T , and no electrons or muons. No significant excess above the Standard Model expectations is observed. Gluino masses below 1510 GeV are excluded at the 95% C.L. in a simplified model with only gluinos and the lightest neutralino. See
- at the 30% c.t. in a simplified in 3.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing hadronic jets, large E_{T} , and no electrons or muons. No significant excess above the Standard Model expectations is observed. Gluino masses below 1500 GeV are excluded with chains decaying via an intermediate \tilde{x}_{+}^{+} to at the 95% C.L. in a simplified model with gluinos decaying via an intermediate $\widetilde{\chi}_1^\pm$ to two quarks, a W boson and a $\widetilde{\chi}^0_1$, for $m_{\widetilde{\chi}^0_1}$ = 200 GeV. See their Fig 8.
- ⁵⁴ AAD 16AD searched in 3.2 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events containing several energetic jets, of which at least three must be identified as *b*-jets, large \mathbb{Z}_T and no electrons or muons. No significant excess above the Standard Model expectations is
- no electrons or muons. No significant excess above the standard model expectations is observed. For $\tilde{\chi}_1^0$ below 800 GeV, gluino masses below 1780 GeV are excluded at 95% C.L. for gluinos decaying via bottom squarks. See their Fig. 7a. ⁵⁵ AAD 16AD searched in 3.2 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events containing several energetic jets, of which at least three must be identified as *b*-jets, large E_T and one electron or muon. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No significant excess above the Standard Model expectations is obscured. Eq. (20) below 200 GeV gluino prosee helpw 1760 GeV are excluded at 95% (20) for the standard Model expectations is obscured.
- boosted top quarks. No significant excess above the Standard Model expectations is observed. For $\tilde{\chi}_1^0$ below 700 GeV, gluino masses below 1760 GeV are excluded at 95% C.L. for gluinos decaying via top squarks. See their Fig. 7b. 56 AAD 168B searched in 3.2 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with exactly two same-sign leptons or at least three leptons, multiple hadronic jets, b-jets, and \mathcal{B}_{T} . No significant excess over the Standard Model expectation is found. Exclusion limits at 95% C.L. are set on the gluino mass in various simplified models (Tglu1D, Tglu1E, Tglu3A). See their Figs. 4.a, 4.b, and 4.d. 57 AAD 16BG searched in 3.2 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV in final states with one isolated electron or muon, hadronic jets, and \mathcal{L}_T . The data agree with the SM background expectation in the six signal selections defined in the search, and the largest deviation is a 2.1 standard deviation excess. Gluinos are excluded at 95% C.L. up to 1600

GeV assuming they decay via the lightest chargino to the lightest neutralino as in the model Tglu1B for $m_{\widetilde{\chi}_1^0}=100$ GeV, assuming $m_{\widetilde{\chi}_1^\pm}=(m_{\widetilde{g}}+m_{\widetilde{\chi}_1^0})/2$. See their Fig. 6.

- ⁵⁸ AAD 16v searched in 3.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with E_T various hadronic jet multiplicities from \geq 7 to \geq 10 and with various *b*-jet multiplicity requirements. No significant excess over the Standard Model expectation is found. Exclusion limits at 95% C.L. are set on the gluino mass in one simplified model (Tglu1E) and a pMSSM-inspired model. See their Fig. 5. ⁵⁹ KHACHATRYAN 16AM searched in 19.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events
- ³² KHACHATRYAN 16AM searched in 19.7 fb⁻¹ of *pp* collisions at √s = 8 TeV for events with highly boosted W-bosons and *b*-jets, using the razor variables (M_R and R^2) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3C and Tglu3B simplified models, see Fig. 12. ⁶⁰ KHACHATRYAN 16BJ searched in 2.3 fb⁻¹ of *pp* collisions at √s = 13 TeV for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the following simplified models: Tglu3A and Tglu3D, see Fig. 4, Tglu3B and Tglu3C, see Fig. 5, and Tglu1B, see Fig. 7. ⁶¹ KHACHATRYAN 16B searched in 2.3 fb⁻¹ of *pp* collisions at √s = 13 TeV for events
- ⁶¹ KHACHATRYAN 16BS searched in 2.3 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events KHACHAIKYAN 1965 Searched in 2.3 th⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with at least one energetic jet, no isolated leptons, and significant E_T , using the transverse mass variable M_T to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified models, see Fig. 10 and Table 2. Table 3.
- Table 3. ⁶² KHACHATRYAN 16BY searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two opposite-sign, same-flavour leptons, jets, and missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4C simplified model, see Fig. 4, and on sbottom masses in the Tsbot3 simplified model, see Fig. 5. ⁶³ KHACHATRYAN 16v searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least four energetic jets and significant \not{E}_T , no identified isolated electron or muon or charged track. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu1C, Tglu2A, and Tglu3A simplified models, see Fig. 8.
- simplified models, see Fig. 8.
- simplified models, see Fig. 8. 64 AAD 15BG searched in 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events with jets, missing E_T , and two opposite-sign same flavor isolated leptons featuring either a kinematic edge, or a peak at the Z-boson mass, in the invariant mass spectrum. No evidence for a statistically significant excess over the expected SM backgrounds are observed and 95% C.L. exclusion limits are derived in a GGM simplified model of gluino pair production where the gluino decays into quarks, a Z-boson, and a massless gravitino LSP, see Fig. 12. Also, limits are set in simplified models with slepton/sneutrino intermediate states, see Fig. 13.
- intermediate states, see Fig. 13. 65 AAD 15BV summarized and extended ATLAS searches for gluinos and first- and second-generation squarks in final states containing jets and missing transverse momentum, with or without leptons or *b*-jets in the $\sqrt{s} = 8$ TeV data set collected in 2012. The paper reports the results of new interpretations and statistical combinations of previously with the state state state scale of the state state state state state states are stated as the state state state state state states are state states and statistical combinations of previously the state state state state state states are state states and statistical combinations of previously the state state state state state states are state states are states are states are states are states are states and states are state paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as new analyses. Exclusion limits at 95 % C.L. are set on the gluino mass in several R-parity conserving models, leading to a generalized constraint on gluino masses exceeding 1150 GeV for lightest supersymmetric particle masses below 100 GeV. See their Figs. 10, 19, 20, 21, 23, 25, 26, 29-37. ⁶⁶ AAD 158x interpreted the results of a wide range of ATLAS direct searches for supersymmetry, during the first run of the LHC using the $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV data set collected in 2012, within the wider framework of the phenomenological MSSM (1997).
- (pMSSM). The integrated luminosity was up to 20.3 fb $^{-1}$. From an initial random sampling of 500 million pMSSM points, generated from the 19-parameter pMSSM, a total of 310,327 model points with $\tilde{\chi}_1^0$ LSP were selected each of which satisfies constraints of 310,327 model points with $\tilde{\chi}_1^0$ LSP were selected each of which satisfies constraints from previous collider searches, precision measurements, cold dark matter energy den-sity measurements and direct dark matter searches. The impact of the ATLAS Run 1 searches on this space was presented, considering the fraction of model points surviving, after projection into two-dimensional spaces of sparticle masses. Good complementarity is observed between different ATLAS analyses, with almost all showing regions of unique sensitivity. ATLAS searches have good sensitivity at LSP mass below 800 GeV. 67 AAD 15CA searched in 20.3 fb⁻¹ of *p* collisions at $\sqrt{s} = 8$ TeV for events with one or more photons, hadronic jets or *b*-jets and \mathbb{Z}_T . No significant excess above the Standard Model expectations is observed. Limits are set on gluino masses in the general gauge-mediated SUSY breaking model (GGM), for bino-like or higgsino-bino admixtures NLSP, see Fir. 8.10.11
- see Fig. 8, 10, 11
- see Fig. 8, 10, 11 68 KHACHATRYAN 15AF searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with at least two energetic jets and significant E_T , using the transverse mass variable M_T2 to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the decay $\widetilde{g}
 ightarrow q \overline{q} \, \widetilde{\chi}_1^0$ takes place with a branching ratio of 100%, see Fig. 13(a), or where the decay $\tilde{g} \to b \bar{b} \tilde{\chi}_1^0$ takes place with a branching ratio of 100%, see Fig. 13(b), or where the decay $\tilde{g} \to t\bar{t} \tilde{\chi}_1^0$ takes place with a branching ratio of 100%, see Fig. 13(c). See also Table 5. Exclusions in the CMSSM, assuming tan $\beta = 30, A_0 = -2 \max(m_0, m_{1/2})$ and $\mu > 0$, are also presented, see Fig. 15.
- 69 KHACHATRYAN 151 searched in 19.5 fb $^{-1}$ of pp collisions at $\sqrt{s}=$ 8 TeV for events in which *b*-jets and four *W*-bosons are produced. Five individual search channels are combined (fully hadronic, single lepton, same-sign dilepton, opposite-sign dilepton, multilepton). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in a simplified model where the decay $\widetilde{g} \to t \, \overline{t} \widetilde{\chi}_1^0$ takes
- Limits are set on the gluino mass in a simplified model where the decay $g \to t_1\chi_1^-$ takes place with a branching ratio of 100%, see Fig. 5. Also a simplified model with gluinos decaying into on-shell top squarks is considered, see Fig. 6. ⁷⁰ KHACHATRYAN 15x searched in 19.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events with at least two energetic jets, at least one of which is required to originate from a b quark, and significant E_T , using the razor variables (M_R) and R^2) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the decay $\tilde{g} \to b \tilde{\Sigma}_{1}^{0}$ and the decay $\tilde{g} \to t \tilde{\tau}_{1}^{0}$ take place with branching ratios varying between 0.50 and 100%, see Figs. 13 and 14. ⁷¹ AAD 14AE searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for strongly pro-
- duced supersymmetric particles in events containing jets and large missing transverse momentum, and no electrons or muons. No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing gluinos and squarks, see Figures 5, 6 and 7. Limits are also derived in the mSUGRA/CMSSM with parameters $\tan\beta$ = 30, $A_0 = -2 m_0$ and μ > 0, see their Fig. 8.

- ⁷² AAD 14AG searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events containing one hadronically decaying τ -lepton, zero or one additional light leptons (electrons or muons), jets and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95% C.L. are set in several SUSY scenarios. For an interpretation in the minimal GMSB model, see their Fig. 8. For an interpretation in the mSUGRA/CMSSM with parameters tan β = 30, $A_0 = -2 m_0$ and $\mu > 0$, see their Fig. 9. For an interpretation in the framework of natural Gauge Mediation, see Fig. 10. For an interpretation in the BRPV scenario, see their Fig. 11. ⁷³ AAD 14x searched in 20.3 fb⁻¹ of no collisions at $\sqrt{s} = 8$ TeV for events with at least
- See then right and 73 ADD 14X searched in 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in a general mass in a general $-\infty^{-1}$ and $-\infty^{-1}$ and $-\infty^{-1}$ and $-\infty^{-1}$ gauge-mediation model (GGM) where the decay $\tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$, with $\tilde{\chi}_1^0 \rightarrow \ell^\pm \ell^\mp \tilde{c}$, takes place with a branching ratio of 100%, for two choices of tan $\beta = 1.5$ and 30, see
- Fig. 11. Also some constraints on the higgsino mass parameter μ are discussed. ⁷⁴ CHATRCHYAN 14AH searched in 4.7 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV for events with at least two energetic jets and significant E_T , using the razor variables (M_R and $R^2)$ to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on sbottom masses in simplified models where the decay $\widetilde{g} o q \overline{q} \, \widetilde{\chi}_1^0$ takes place with a branching ratio of 100%, see Fig. 28. Exclusions in the CMSSM, assuming taneta = 10, A_0 = 0 and μ >
- 0, are also presented, see Fig. 26. ⁷⁵ CHATRCHYAN 14AH searched in 4.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events with at least two energetic jets and significant \mathcal{F}_T , using the razor variables (M_R and R^2) to discriminate between signal and background processes. A second analysis requires at least one of the jets to be originating from a *b*-quark. No significant excess above the Standard Model expectations is observed. Limits are set on sbottom masses in simplified Standard whole expectations is observed. Limits are set on solution masses in sampling models where the decay $\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$ takes place with a branching ratio of 100%, see Figs. 28 and 29. Exclusions in the CMSSM, assuming $\tan\beta = 10$, $A_0 = 0$ and $\mu > 0$, are also presented, see Fig. 26. ⁷⁶ CHATRCHYAN 14AH searched in 4.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events
- with at least two energetic jets and significant E_T , using the razor variables (M_R and R^2) to discriminate between signal and background processes. A second analysis requires at least one of the jets to be originating from a *b*-quark. No significant excess above the Standard Model expectations is observed. Limits are set on sbottom masses in simplified models where the decay $\bar{g} \rightarrow t\bar{t}\bar{\chi}_1^0$ takes place with a branching ratio of 100%, see Figs. 28 and 29. Exclusions in the CMSSM, assuming $\tan\beta = 10$, $A_0 = 0$ and $\mu > 0$,
- Figs. 20 and 29. Exclusions in the constant assuming tang $= 167.50 \pm 0.500$ are also presented, see Fig. 26. 77 CHATRCHYAN 141 searched in 19.5 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events containing multijets and large E_T . No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing gluinos that decay via $\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$ with a 100% branching ratio, see Fig. 7b, or via $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$ with a
- Via $g \rightarrow q q \chi_1^{\circ}$ with a 100% branching ratio, see Fig. 10, or via $g \rightarrow r r \chi_1$ with a 100% branching ratio, see Fig. 7c, or via $\tilde{g} \rightarrow q \bar{q} W/Z \chi_1^0$, see Fig. 7d. 78 CHATRCHYAN 14N searched in 19.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events containing a single isolated electron or muon and multiple jets, at least two of which are identified as originating from a *b*-quark. No significant excesses over the expected SM backgrounds are observed. The results are interpreted in three simplified models of gluino pair production with subsequent decay into virtual or on-shell top squarks, where each of the top squarks decays in turn into a top quark and a χ_1^0 , see Fig. 4. The models differ in which macres are allowed to vary
- differ in which masses are allowed to vary. ⁷⁹ CHATRCHYAN 14R searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with at least three leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino
- excess above the Standard Model expectations is observed. Limits are set on the gluino mass in a slepton co-NLSP simplified model (GMSB) where the decay $\tilde{g} \rightarrow q \ell^{\pm} \ell^{\mp} \tilde{G}$ takes place with a branching ratio of 100%, see Fig. 8. ⁸⁰ CHATRCHYAN 14R searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with at least three leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in a simplified model where the decay $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$ takes place with a branching match 100% coe Fig. 11 ratio of 100%, see Fig. 11.
- Fig. 14(a).
- Fig. 14(a). ⁸² AABOUD 18v searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in a Tglu1C-like model, assuming 50% BR for each gluino decay mode. Gluino masses below 1770 GeV are excluded for any $m_{\tilde{\chi}_2^0} m_{\tilde{\chi}_1^0}$ and $m_{\tilde{\chi}_1^0} = 60$ GeV, see their Fig. 16(b). ⁸³ AABOUD 17Az searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with at least seven jets and large missing transverse momentum. Selected events are further classified based on the presence of large R-jets or *b*-jets and no leptons. No significant excess above the Standard Model expectations is observed. Limits are set for pMSSM models with $M_1 = 60$ GeV, $\tan(\beta) = 10, \mu < 0$ varying the soft-breaking parameters M_3 and μ . Gluino masses up to 1600 GeV are excluded for $m_{\chi_1^\pm} = 200$ GeV. See their Figure 6a and text for details on the model.

- Figure 6a and text for details on the model. ⁸⁴ KHACHATRYAN 16AY searched in 2.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one isolated high transverse momentum lepton (*e* or μ), hadronic jets of which at least one is identified as coming from a *b*-quark, and large E_T . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A simplified model, see Fig. 10, and in the Tglu3B model, see Fig. 11.
- In the registry simplifies model, see rightly and in the registry building of CMS fixed HATRYAN 16BT performed a global Bayesian analysis of a wide range of CMS results obtained with data samples corresponding to 5.0 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV and in 19.5 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV. The set of searches considered, both individually and in combination, includes those with all-hadronic final states, same-sign and opposite-sign dileptons, and multi-lepton final states. An interpretation was given in a scan of the 19-parameter pMSSM. No scan points with a gluino mass less than 500 GeV survived and 98% of models with a squark mass less than 300 GeV survived. excluded.

Searches Particle Listings Supersymmetric Particle Searches

- $^{86}\mathrm{AAD}$ 15AB searched for the decay of neutral, weakly interacting, long-lived particles in ²AAD 15AB searched for the decay of neutral, weakly interacting, long-lived particles in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV. Signal events require at least two reconstructed vertices possibly originating from long-lived particles decaying to jets in the inner tracking detector and muon spectrometer. No significant excess of events over the expected background was found. Results were interpreted in Stealth SUSY benchmark models where a pair of gluinos decay to long-lived singlinos, \tilde{S} , which in turn each decay to a low-mass gravitino and a pair of jets. The 95% confidence-level limits are set on the cross section × branching ratio for the decay $\tilde{g} \rightarrow \tilde{S}g$, as a function of the singlino proper lifetime (cr). See their Fig. 10(f) A = 0 15a. searched in 20 fb⁻¹ of *pn* collisions at $\sqrt{s} = 8$ TeV for events containing at
- ⁸⁷ AAD 15AI searched in 20 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events containing at least one isolated lepton (electron or muon), jets, and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95% C.L. are set on the gluino mass in the CMSSM/mSUGRA, see Fig. 15, in the NUHMG, see Fig. 16, and in various simplified models, see Figs. 18–22.
- ¹⁸⁻²². ⁸⁸AAD 15CB searched for events containing at least one long-lived particle that decays at a significant distance from its production point (displaced vertex, DV) into two leptons or into five or more charged particles in 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV. The dilepton signature is characterised by DV formed from at least two lepton candidates. Four different final states were considered for the multitrak signature, in which the DV must be accompanied by a high-transverse momentum muon or electron candidate that
- must be accompanied by a high-transverse momentum muon or electron candidate that originates from the DV, jets or missing transverse momentum. No events were observed in any of the signal regions. Results were interpreted in SUSY scenarios involving *R*-parity violation, split supersymmetry, and gauge mediation. See their Fig. 12-20. ⁸⁹ KHACHATRYAN 15AD searched in 19.4 fb^{-1} of *pp* collisions at $\sqrt{s} = 8$ TeV for events with two opposite-sign same flavor isolated leptons featuring either a kinematic edge, or a peak at the Z-boson mass, in the invariant mass spectrum. No evidence for a statistically significant excess over the expected SM backgrounds is observed and 95% CL exclusion limits are derived in a significant order of gluipo pair production where C.L. exclusion limits are derived in a simplified model of gluino pair production where the gluino decays into quarks, a Z-boson, and a massless gravitino LSP, see Fig. 9. 90 KHACHATRYAN 15AZ searched in 19.7 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events
- ⁹⁰ KHACHATRYAN 15AZ searched in 19.7 fb⁻¹ of *pp* collisions at \sqrt{s} = 8 TeV for events with either at least one photon, hadronic jets and $μ_T$ (single photon channel) or with at least two photons and at least one jet and using the razor variables. No significant excess above the Standard Model expectations is observed. Limits are set on gluino masses in the general gauge-mediated SUSY breaking model (GGM), for both a bino-like and wino-like neutralino NLSP scenario, see Fig. 8 and 9. ⁹¹ AAD 14AX searched in 20.1 fb⁻¹ of *pp* collisions at \sqrt{s} = 8 TeV for the strong production of supersymmetric particles in events containing either zero or at last one high high-*p_T* lepton, large missing transverse momentum, high jet multiplicity and at least three jets identified as originating from *b*-quarks. No excess over the expected SM background is observed. Limits are derived in mSUGRA/CMSSM models with tanβ = 30, A₀ = -2m₀ and μ > 0, see their Fig. 14. Also, exclusion limits in simplified models containing gluinos and scalar too and botom quarks are set. see their Figures 12.13.
- and scalar top and bottom quarks are set, see their Figures 12, 13. ⁹²AAD 14E searched in 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for strongly produced supersymmetric particles in events containing jets and two same-sign leptons or three Supersymmetric particles in events containing jets and two samesing neptons of three leptons. The search also utilises jets originating from *b*-quarks, missing transverse momentum and other variables. No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing gluinos and squarks, see Figures 5 and 6. In the $\tilde{g} \rightarrow qq' \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \rightarrow W^{(*)\pm} \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z^{(*)} \tilde{\chi}_1^0$ simplified models (in the $\tilde{\chi}_1^{\pm} = 0.5 m \tilde{\chi}_1^0 + m \tilde{g}, m \tilde{\chi}_2^0 = 0.5 (m - 1) m - 5.5 (m - 1)$
- 0.5 $(m_{\tilde{\chi}_{1}^{0}} + m_{\tilde{\chi}_{1}^{\pm}}), m_{\tilde{\chi}_{1}^{0}} < 520$ GeV. In the $\tilde{g} \rightarrow qq'\tilde{\chi}_{1}^{1}, \tilde{\chi}_{1}^{\pm} \rightarrow \ell^{\pm}\nu\tilde{\chi}_{1}^{0}$ or $\tilde{g} \rightarrow qq'\tilde{\chi}_{2}^{0}, \tilde{\chi}_{2}^{0} \rightarrow \ell^{\pm}\ell^{\mp}(\nu\nu)\tilde{\chi}_{1}^{0}$ simplified model, the following assumptions have been made: $m_{\tilde{\chi}_{1}^{\pm}} = m_{\tilde{\chi}_{2}^{0}} = 0.5$ $(m_{\tilde{\chi}_{1}^{0}} + m_{\tilde{g}}), m_{\tilde{\chi}_{1}^{0}} < 660$ GeV. Limits are also derived in the SUGRA/CMSSM, bRPV and GMSB models, see their Fig. 8.
- ²³ CHATRCHYAN 14H searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass above the Standard induce expectations is observed. Limits are set on the gluino mass in simplified models where the decay $\tilde{g} \to t\bar{t}\tilde{\chi}_1^0$ takes place with a branching ratio of 100%, or where the decay $\tilde{g} \to \tilde{t}t$, $\tilde{t} \to t\tilde{\chi}_1^0$ takes place with a branching ratio of 100%, with varying mass of the $\tilde{\chi}_1^0$, or where the decay $\tilde{g} \to \tilde{b}b$, $\tilde{b} \to t\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{\pm} \to t\tilde{\chi}_1^{\pm}$
- $W^{\pm} \tilde{\chi}^0_1$ takes place with a branching ratio of 100%, with varying mass of the $\tilde{\chi}^{\pm}_1$, see Fig. 5.
- 94 CHATRCHYAN 14H searched in 19.5 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the decay $\tilde{g} \rightarrow q q' \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \rightarrow W^{\pm} \tilde{\chi}_1^0$ takes place with a branching ratio of 100%, with varying mass of the $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$, see Fig. 7.
- ⁹⁵ CHATRCHYAN 14H searched in 19.5 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the decay $\tilde{g} \rightarrow b\bar{t}\chi_1^{\pm}, \chi_1^{\pm} \rightarrow W^{\pm}\chi_1^0$ takes place with a branching ratio of 100%, for two choices of $m_{\chi_1^{\pm}}$ and fixed $m_{\chi_1^0}$, see Fig. 6.

R-parity violating heavy \tilde{g} (Gluino) mass limit

	~ ~			TECH	COMMENT
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>1500	95	¹ SIRUNYAN	19F	CMS	$\widetilde{g} \rightarrow j j j$
>2260	95	² AABOUD	18z	ATLS	\geq 4 ℓ , $\lambda_{12k}~ eq$ 0, $m_{\widetilde{\chi}^0_1}~>$ 1000
>1650	95	² AABOUD	18z	ATLS	$ \overset{\text{GeV}}{\geq} 4\ell, \ \lambda_{j33} \neq 0, \ m_{\widetilde{\chi}_1^0} > 500 $
>1610	95	³ sirunyan	18ak	CMS	$\widetilde{g} \rightarrow tbs, \lambda_{332}''$ coupling
>1690	95	⁴ SIRUNYAN	18D	CMS	top quark (hadronically decay- ing) + jets + $\not{\!\! E}_T$, Tglu3C,
					$m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} = 20$ GeV, $m_{\tilde{\chi}_1^0} =$

2056 Searches Particle Listings Supersymmetric Particle Searches

none 100-1410	95	⁵ SIRUNYAN	18EA (смѕ	2 large jets with four-parton sub-
>2100	95	⁶ AABOUD	17ai /	ATLS	structure, $\tilde{g} \rightarrow 5q$ $\geq 1\ell + \geq 8$ jets, Tglu3A and $\tilde{\chi}_1^0 \rightarrow u ds, \chi_{112}''$ coupling,
>1650	95	7 AABOUD	17ai /	ATLS	$\begin{array}{l} \underset{\widetilde{\chi}_{1}^{0}}{\overset{=}1000 \text{ GeV}} \\ \geq 1\ell + \geq 8 \text{ jets, } \widetilde{g} \rightarrow t \widetilde{t}, \widetilde{t} \rightarrow \\ b s, \lambda_{323}'' \text{ coupling, } m_{\widetilde{t}} = 1000 \end{array}$
>1800	95	⁸ AABOUD	17ai /	ATLS	GeV $\geq 1\ell_+ \geq 8$ jets, Tglu1A and $\tilde{\chi}_1^0 \rightarrow qql$, λ' coupling, m = 1000 GeV
>1800	95	⁹ AABOUD	17aj /	ATLS	same-sign $\ell^{\pm}\ell^{\pm}$ / 3 ℓ + jets + \mathcal{E}_T , Tglu3A, λ_{112}'' coupling,
>1750	95	¹⁰ aaboud	17aj /	ATLS	$\begin{split} m_{\widetilde{\chi}_{1}^{0}} &= 50 \text{ GeV} \\ \text{same-sign } \ell^{\pm} \ell^{\pm} / 3 \ell + \text{jets} + \\ \mathbb{E}_{T}, \text{ Tglu1A and } \widetilde{\chi}_{1}^{0} \to q q \ell, \end{split}$
>1450	95	¹¹ AABOUD	17aj /	ATLS	$\begin{array}{c} \lambda^{\prime} \text{ coupling} \\ \text{same-sign } \ell^{\pm} \ell^{\pm} \ / \ 3 \ \ell \ + \ \text{jets} \ + \\ E_T, \ \widetilde{g} \ \rightarrow \ t \ \widetilde{t}_1 \ \text{and} \ \widetilde{t}_1 \ \rightarrow \ sd, \end{array}$
>1450	95	¹² AABOUD	17aj /	ATLS	$ \begin{array}{l} \lambda_{321}^{\prime\prime} \mbox{ coupling} \\ \mbox{same-sign } \ell^{\pm} \ell^{\pm} \ / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
> 400	95	¹³ AABOUD	17aj /	ATLS	$\begin{array}{l} \lambda_{313}^{\prime\prime} \text{ coupling} \\ \text{same-sign } \ell^{\pm} \ell^{\pm} \ / \ 3 \ \ell + \text{ jets } + \\ \overline{E}_T, \ \widetilde{d}_R \rightarrow t \ b (t \ s), \ \lambda_{313}^{\prime\prime} \end{array}$
none 625-1375	95	¹⁴ AABOUD	17az /	ATLS	(λ_{321}'') coupling $\geq 7 \text{ jets} + ot\!$
none 600-650	95	¹⁵ KHACHATRY	.17y (CMS	$\widetilde{t}_1 \rightarrow b s, \lambda_{323}''$ coupling $\widetilde{g} \rightarrow q q q q q, \lambda_{212}''$ coupling, $m_{\widetilde{\alpha}} = 100 \text{ GeV}$
none 600-1030	95	¹⁵ KHACHATRY	.17y (CMS	$\widetilde{g} \rightarrow q q q q q, \lambda_{212}''$ coupling, $m_{\pi} = 900 \text{ GeV}$
none 600-650	95	¹⁵ KHACHATRY	.17y (смѕ	$\widetilde{g} \rightarrow q q q q b, \lambda_{213}''$ coupling,
none 600-1080	95	¹⁵ KHACHATRY	.17y (смѕ	$\widetilde{g} \rightarrow q q q q b, \lambda_{213}''$ coupling,
none 600-680	95	¹⁵ KHACHATRY	.17y (смѕ	$m_{\widetilde{q}} = 900 \text{ GeV}$ $\widetilde{g} \rightarrow q q q b b, \lambda_{212}'' \text{ coupling,}$
none 600-1080	95	¹⁵ KHACHATRY	.17y (CMS	$m_{\widetilde{q}} = 100 \text{ GeV}$ $\widetilde{g} \rightarrow q q q b b, \lambda_{212}''$ coupling,
none 600-650	95	¹⁵ KHACHATRY	.17y (смѕ	$m_{\widetilde{q}} = 900 \text{ GeV}^{-1}$ $\widetilde{g} \rightarrow q q b b b, \lambda_{213}''$ coupling,
none 600-1100	95	¹⁵ KHACHATRY	.17y (смѕ	$m_{\widetilde{q}} = 100 \text{ GeV}^{\widetilde{v}}$ $\widetilde{g} \rightarrow q q b b b, \lambda_{213}''$ coupling,
>1050	95	¹⁶ KHACHATRY	.16вј (смѕ	$m_{\widetilde{q}}=900~{ m GeV}$ same-sign $\ell^\pm\ell^\pm$, Tglu3A,
>1140	95	¹⁶ кнаснатву	16BL (CMS	$m_{\tilde{\chi}_1^0} < 800 \text{ GeV}$ same-sign $\ell^{\pm} \ell^{\pm}$ Tolu3B m_{\sim} -
21110		17	11005		$m_{\widetilde{\chi}^0_1} = 20$ GeV, $m_{\widetilde{\chi}^0_1} = 0$
>1030	95 or	¹⁷ KHACHATRY	.16BX (CMS	$\widetilde{g} \rightarrow tbs, \lambda_{332}''$ coupling
>1150	95	AAD	1284 1	4115	general RPC g decays, $m_{\tilde{\chi}_1^0} < 100 \text{ GeV}$
>1350	95	¹⁹ AAD	14x /	ATLS	$\geq 4\ell^{\pm}, \tilde{g} \to q \overline{q} \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \to \ell^{\pm} \ell^{\mp} \mu$
> 650	95	²⁰ CHATRCHYAN	14p (CMS	$\widetilde{g} \rightarrow \widetilde{j} \widetilde{j} \widetilde{j} \widetilde{j}$
none 200-835	95	²⁰ CHATRCHYAN	14P (CMS	$\widetilde{g} \rightarrow b j j$
• • • • we do ii	orusein		r avera	iges, iii	
>1875	95	21 AABOUD	18CF /	ATLS	jets and large R-jets, Tglu2RPV and $\tilde{\chi}_1^0 \rightarrow q q q$, λ'' coupling, $m_{\tilde{\chi}_1^0} = 1000 \text{ GeV}$
>1400	95	²² KHACHATRY	.16bx (CMS	$\widetilde{g} \to q q \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \to \ell \ell \nu, \lambda_{121}$ or $\lambda_{122} \neq 0, m_{\gtrsim 0} > 400 \text{ GeV}$
>1600	95	¹⁸ AAD	15bv /	ATLS	pMSSM, $M_1 = 60$ GeV, $m_{\widetilde{q}} <$
>1280	95	¹⁸ AAD	15bv /	ATLS	mSUGRA, $m_0 > 2 \text{ TeV}$
>1100	95	¹⁸ AAD	15bv /	ATLS	via $\tilde{\tau}$, natural GMSB, all $m_{\tilde{\tau}}$
>1220	95	¹⁸ AAD	15bv /	ATLS	b-jets, $\widetilde{g} \rightarrow \widetilde{t}_1 t$ and $\widetilde{t}_1 \rightarrow t \widetilde{\chi}_1^0$, $m_{T_1} < 1000 \text{ GeV}$
>1180	95	¹⁸ AAD	15bv /	ATLS	<i>b</i> -jets, $\tilde{\tilde{g}} \rightarrow \tilde{t}_1 t$ and $\tilde{t}_1 \rightarrow \tilde{t}_2 \rightarrow \tilde{t}_1 t$ and $\tilde{t}_1 \rightarrow \tilde{t}_2 \rightarrow \tilde{t}_$
					$m_{\simeq 0} = 60 \text{ GeV}$
> 880	95	¹⁸ AAD	15bv /	ATLS	jets, $\tilde{g} \rightarrow \tilde{t}_1 t$ and $\tilde{t}_1 \rightarrow sb$, $400 < m_{\tilde{t}} < 1000 \text{ GeV}$
		²³ AAD	15св /	ATLS	$t_1 = t_1$ $\ell, \tilde{g} \rightarrow (e/\mu) q q$, benchmark gluino, neutralino masses

> 600	95	²³ AAD	15cb ATLS	$\ell\ell/Z$, $\widetilde{g} ightarrow (e e / \mu \mu / e \mu) q q$, $m_{\widetilde{\chi}^0_1} = 400 { m GeV}$ and $0.7 < 100 { m CeV}$
>1000	95	²⁴ AAD	15x ATLS	$\begin{array}{l} \mathrm{c}\tau_{\widetilde{\chi}_{1}^{0}} < 3 \times 10^{5} \mathrm{~mm} \\ \geq 10 \mathrm{~jets}, \widetilde{g} \rightarrow q \overline{q} \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \\ q q q, m_{-0} = 500 \mathrm{~GeV} \end{array}$
> 917	95	²⁴ AAD	15x ATLS	\geq 6,7 jets, $\widetilde{g} \rightarrow q q q$, (light-
> 929	95	²⁴ AAD	15x ATLS	quark, λ couplings) $\geq 6,7 \text{ jets}, \tilde{g} \rightarrow q q q$, (b-quark,
>1180	95	²⁵ AAD	14AX ATLS	$ \geq 3 \text{ b-jets} + \!$
				$\begin{array}{l} \text{simplified model, } \widetilde{t}_1 \rightarrow \ b \widetilde{\chi}_1^{\pm}, \\ m_{\widetilde{\chi}_1^{\pm}} = 2m_{\widetilde{\chi}_1^0}, \ m_{\widetilde{\chi}_1^0} = 60 \ \text{GeV}, \\ m_{\widetilde{t}_*} < 1000 \ \text{GeV} \end{array}$
> 850	95	²⁶ AAD	14E ATLS	$\ell^{\pm}\ell^{\pm}(\ell^{\mp}) + \text{jets}, \ \widetilde{g} \to t \ \widetilde{t}_1$
> 900	95	²⁷ CHATRCHYA	N14H CMS	same-sign $\ell^{\pm}\ell^{\pm}$, $\tilde{g} \rightarrow tbs$ simplified model

I

I

¹ SIRUNYAN 19F searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for three-jet resonances produced in the decay of a gluino in R-parity violating supersymmetric models. The mass range from 200 to 2000GeV is explored in four separate mass regions. The observations show agreement with standard model expectations. The results are interpreted within the framework of R-parity violating SUSY, where pair-produced gluinos decay to a six quark final state. Gluino masses below 1500GeV are excluded at 95% C.L. See their Erg 5. See their Fig.5.

- ²AABOUD 18z searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} =$ 13 TeV for events containing four or more charged leptons (electrons, muons and up to two hadronically decaying taus). No significant deviation from the expected SM background is observed. Limits are In the second s
- cles are clustered into two large jets of similar mass, each consistent with four-parton substructure. No statistically significant excess over the Standard Model expectation is observed. Limits are set on the squark and gluino mass in RPV supersymmetry models where squarks (gluinos) decay, through intermediate higgsinos, to four (five) quarks, see their Figure 4.
- 6 AABOUD 17AI searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with one or more isolated lepton, at least eight jets, either zero or many b-jets, for evidence of R-parity violating decays of the gluino. No significant excess above the Standard Model expectations is observed. Limits up to 2.1 TeV are set on the gluino mass in R-parityviolating supersymmetry models as Tglu3A with LSP decay through the non-zero $\lambda_{112}^{\prime\prime}$ coupling as $\widetilde{\chi}_1^0 \rightarrow u \, d \, s$. See their Figure 9.
- AABOUD 11 TAI searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with one or more isolated lepton, at least eight jets, either zero or many *b*-jets, for evidence of R-parity violating decays of the gluino. No significant excess above the Standard Model expectations is observed. Limits up to 1.65 TeV are set on the gluino mass in R-parity-violating supersymmetry models with $\tilde{g} \rightarrow t\tilde{t}, \tilde{t} \rightarrow b$ sthrough the non-zero λ_{323}'' coupling. See their Figure 9.
- ⁸ AABOUD 17AI searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with one or more isolated lepton, at least eight jets, either zero or many *b*-jets, for evidence of R-parity violating decays of the gluino. No significant excess above the Standard Model expectations is observed. Limits up to 1.8 TeV are set on the gluino mass in R-parity violating supersymmetry models as Tglu1A with the LSP decay through the non-zero λ' coupling as $\widetilde{\chi}_1^0 \rightarrow q q \ell$. See their Figure 9.
- ⁹AABOUD 17ÅJ searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.8 TeV are
- excess above the Standard Model expectations is observed. Limits up to 1.8 TeV are set on the gluino mass in R-parity-violating supersymmetry models as Tglu3A with LSP decaying through the non-zero λ''_{112} coupling as $\tilde{\chi}_1^0 \rightarrow uds$. See their Figure 5(d). ¹⁰ AABOUD 17AJ searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.75 TeV are set on the gluino mass in R-parity-violating supersymmetry models as Tglu1A with LSP decaying through the one prov λ''_{0} explaines $\tilde{\chi}_{0}^{0}$. decaying through the non-zero λ' coupling as $\tilde{\chi}_1^0 \rightarrow q q \ell$. See their Figure 5(c)
- ¹¹AABOUD 17AJ searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.45 TeV are set on the gluino mass in R-parity-violating supersymmetry models where $\tilde{g} \rightarrow t \tilde{t}_1$ and
- $\bar{t}_1 \rightarrow sd$ through the on-zero λ''_{321} coupling. See their Figure 5(b). ¹² AABOUD 17AJ searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.45 TeV are set on the gluino mass in R-parity-violating supersymmetry models where $\bar{g} \rightarrow t \bar{t}_1$ and \bar{t}_1
- $\tilde{t}_1 \rightarrow bd$ through the non-zero λ''_{313} coupling. See their Figure 5(a). ¹³AABOUD 17AJ searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant

excess above the Standard Model expectations is observed. Limits up to 400 GeV are set on the down type squark (\widetilde{d}_R mass in R-parity-violating supersymmetry models where $\widetilde{d}_R \to t b$ through the non-zero λ''_{313} coupling or $\widetilde{d}_R \to t s$ through the non-zero λ''_{321} . See their Figure 5(e) and 5(f).

- See their Figure 3(e) and 3(1). 14 AABOUD 17Az searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with at least seven jets and large missing transverse momentum. Selected events are further classified based on the presence of large R-jets or b-jets and no leptons. No significant excess above the Standard Model expectations is observed. Limits are set for R-parity violating decays of the gluino assuming $\tilde{g} \to t \tilde{t}_1$ and $\tilde{t}_1 \to bs$ through the non-zero $\lambda_{323}^{\prime\prime}$ couplings. The range 625–1375 GeV is excluded for $m_{\widetilde{t}_1}$ = 400 GeV. See their Figure 7b.
- ¹⁵ KHACHATRYAN 17Y searched in 19.7 fb⁻¹ of pp collisions at $\sqrt{s} =$ 8 TeV for events containing at least 8 or 10 jets, possibly *b*-tagged, coming from R-parity-violating decays of supersymmetric particles. No excess over the expected background is observed. Limits
- To supersymmetric particles. No excess over the expected background is observed. Limits are derived on the gluino mass, assuming various RPV decay modes, see Fig. 7. ¹⁶ KHACHATRYAN 16BJ searched in 2.3 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the following simplified models: Tglu3A and Tglu3D, see Fig. 4, Tglu3B and Tglu3C, see Fig. 5, and Tglu1B, see Fig. 7.
- 17 KHACHATRYAN 166x searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events containing 0 or 1 leptons and *b*-tagged jets, coming from R-parity-violating decays of supersymmetric particles. No excess over the expected background is observed. Limits are derived on the gluino mass, assuming the RPV $\tilde{g} \rightarrow tbs$ decay, see Fig. 7 and 10.
- ¹⁸AAD 15 BV summarized and extended ATLAS searches for gluinos and first- and secondgeneration squarks in final states containing jets and missing transverse momentum, with or without leptons or *b*-jets in the \sqrt{s} =8 TeV data set collected in 2012. The paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as new analyses. Exclusion limits at 95% C.L. are set on the
- published analyses, as well as new analyses. Exclusion limits at 95% C.L. are set on the gluino mass in several R-parity conserving models, leading to a generalized constraint on gluino masses exceeding 1150 GeV for lightest supersymmetric particle masses below 100 GeV. See their Figs. 10, 19, 20, 21, 23, 25, 26, 29-37. ¹⁹ AAD 14x searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in an R-parity violating simplified model where the decay $\tilde{g} \to q \bar{q} \bar{\chi}_1^0$, with $\tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\mp} \nu$, takes place with a branching ratio of 100%, see Fig. 8. ²⁰ CHATRCHYAN 14P searched in 19.4 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for three-jet resonances produced in the decay of a gluino in R-parity violating supersymmetric models. No excess over the expected SM background is observed. Assuming a 100% branching ratio for the gluino masses below 650 GeV are excluded at 95% C.L. Assuming a 100% branching ratio for the gluino masses below 650 GeV are excluded at 95% C.L. Assuming a 100% branching ratio for the gluino decaying to one b-quark jet and two light-flavour jets, gluino masses below 650 GeV are excluded at 95% C.L. Assuming a 100% branching ratio for the gluino decaying to one b-quark jet and two light-flavour jets, gluino masses between 200 GeV and 835 GeV are excluded at 95% C.L.
- 21 AABOUD 18CF searched in 36.1 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for events with several jets, possibly b-jets, and large-radius jets for evidence of R-parity violating decays of the gluino. No significant excess above the Standard Model expectations is observed. Limits between 1000 and 1875 GeV are set on the gluino mass in R-parity-violating supersymmetry models as Tglu 2RPV with the LSP decay through the non-zero λ'' coupling as $\tilde{\chi}_1^0 \to q q q$. The most stringent limit is obtained for $m_{\tilde{\chi}_1^0} = 1000$ GeV, the weakest for $m_{\widetilde{\chi}^0_1}=$ 50 GeV. See their Figure 7(b). Figure 7(a) presents results for

- gluinos directly decaying into 3 quarks, TgluIRPV. ²² KHACHATRYAN 16ax searched in 19.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events containing 4 leptons coming from R-parity-violating decays of $\tilde{\chi}_1^0 \rightarrow \ell \ell \nu$ with $\lambda_{121} \neq 0$ or $\lambda_{122} \neq 0$. No excess over the expected background is observed. Limits are derived on the gluino, squark and stop masses, see Fig. 23.
- on the gluino, squark and stop masses, see Fig. 23. ²³ AAD 15C8 searched for events containing at least one long-lived particle that decays at a significant distance from its production point (displaced vertex, DV) into two leptons or into five or more charged particles in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ FeV. The dilepton signature is characterised by DV formed from at least two lepton candidates. Four different final states were considered for the multitrak signature, in which the DV must be accompanied by a high-transverse momentum muon or electron candidate that ariticize from the DV lets or missing transverse momentum. No events were observed originates from the DV, jets or missing transverse momentum. No events were observed in any of the signal regions. Results were interpreted in SUSY scenarios involving *R*-parity
- violation, split supersymmetry, and gauge mediation. See their Fig. 12–20. ²⁴ AAD 15x searched in 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for events containing large number of jets, no requirements on missing transverse momentum and no isolated electrons or muons. The sensitivity of the search is enhanced by considering the number of *b*-tagged jets and the scalar sum of masses of large-radius jets in an event. No evidence was found for excesses above the expected level of Standard Model background. Exclusion limits at 95% C.L. are set on the gluino mass assuming the gluino decays to
- Exclusion limits at 95% C.L. are set on the gluino mass assuming the gluino decays to various quark flavors, and for various neutralino masses. See their Fig. 11-16. 25 AAD 14Ax searched in 20.1 fb⁻¹ of *p* collisions at $\sqrt{s} = 8$ TeV for the strong production of supersymmetric particles in events containing either zero or at last one high high-*p*_T lepton, large missing transverse momentum, high jet multiplicity and at least three jets identified as originating from *b*-quarks. No excess over the expected SM background is observed. Limits are derived in mSUGRA/CMSSM models with tan $\beta = 30$, $A_0 = -2m_0$ and $\mu > 0$, see their Fig. 14. Also, exclusion limits in simplified models containing gluinos and scalar top and bottom quarks are set, see their Figures 12, 13. 26 AAD 14E searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for strongly produced supersymmetric particles in events containing jets and two same-sign leptons or three leptons. The search also utilises jets originating from *b*-quarks, mos set, see Set SM background is observed. Exclusion limits in simplified models containing gluinos are their Figures 12, 13. 26 AAD 14E searched in 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for strongly produced supersymmetric particles in events containing jets and two same-sign leptons or three leptons. The search also utilises jets originating from *b*-quarks, missing transverse momentum and other variables. No excess over the expected SM background is sobserved. Exclusion limits are derived in simplified models containing gluinos and squarks, see Figures 5 and 6. In the $\vec{g} \rightarrow qq' \vec{\chi}_1^+, \vec{\chi}_1^+ \rightarrow W^{(s)\pm} \vec{\chi}_2^0, \vec{\chi}_2^0 \rightarrow Z^{(s)} \vec{\chi}_1^0$ mignified model, the following assumptions have been made: $m_{\vec{\chi}_1^\pm} = 0.5 m_{\vec{\chi}_1^0} + m_{\vec{g}'}, m_{\vec{\chi}_2^0} = 0.5 (m_{-0} + m_{-+}), m_{-0} < 520$ GeV. In the $\vec{g} \rightarrow qq' \vec{\chi}_1^+, \vec{\chi}_1^+ \rightarrow U^{(s)} \vec{\chi}_1^+, \vec{\chi}_2^+ \rightarrow U^{(s)} \vec{\chi}_1^0 = U^{(s)} \vec{\chi}_1^0 + m_{\vec{\chi}_2^0} = 0.5 (m_{-0} + m_{-+}), m_{-0} < 520$ GeV. In the $\vec{g} \rightarrow q$

0.5 $(m_{\tilde{\chi}_1^0} + m_{\tilde{\chi}_1^\pm}), m_{\tilde{\chi}_1^0} < 520 \text{ GeV. In the } \tilde{g} \rightarrow q q' \tilde{\chi}_1^\pm, \tilde{\chi}_1^\pm \rightarrow \ell^\pm \nu \tilde{\chi}_1^0 \text{ or } \tilde{g} \rightarrow q q' \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow \ell^\pm \ell^\pm (\nu \nu) \tilde{\chi}_1^0 \text{ simplified model, the following assumptions have been made: } m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_2^0} = 0.5 (m_{\tilde{\chi}_1^0} + m_{\tilde{g}}^0), m_{\tilde{\chi}_1^0} < 660 \text{ GeV. Limits are also derived in the second state of the mSUGRA/CMSSM, bRPV and GMSB models, see their Fig. 8.

 27 CHATRCHYAN 14H searched in 19.5 fb $^{-1}$ of pp collisions at \sqrt{s} = 8 TeV for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the R-parity violating decay $\widetilde{g} o t b s$ takes place with a branching ratio of 100%, see Fig. 8.

Long-lived \tilde{g} (Gluino) mass limit

Limits on light gluinos ($m_{\widetilde{g}} < 5$ GeV) were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics **C38** 070001 (2014) (http://pdg.lbl.gov).

,				
VALUE (GeV) >1980	<u>CL%</u> 95	1 AABOUD	19AT ATLS	<u>COMMENT</u> R-hadrons, Tglu1A,
>2060	95	² AABOUD	19c ATLS	metastable R-hadrons, Tglu1A, $ au \geq 10$ ns, $m_{{ m v}0}=100~{ m GeV}$
>1890	95	² AABOUD	19c ATLS	R-hadrons, Tglu1A, stable
>2400	95	³ SIRUNYAN	19вн C MS	long-lived \widetilde{g} , RPV, $\widetilde{g} \rightarrow \overline{t} \overline{b} \overline{s}$,
>2300	95	³ SIRUNYAN	19вн СМS	lo mm $< c\tau < 250$ mm long-lived \tilde{g} , GMSB, $\tilde{g} \rightarrow g \tilde{G}$, 20 mm $< c\tau < 110$
>2100	95	⁴ SIRUNYAN	19bt CMS	$ \begin{array}{c} \text{mm} \\ \text{long-lived} \ \widetilde{g}, \ \text{GMSB}, \ \widetilde{g} \rightarrow \\ g \ \widetilde{G} 0.3 \ \text{m} < c\tau < 30 \ \text{m} \end{array} $
>2500	95	⁴ SIRUNYAN	19BT CMS	long-lived \tilde{g} , GMSB, $\tilde{g} \rightarrow \tilde{g}$
>1900	95	⁴ SIRUNYAN	19BT CMS	$g G, c\tau = 1 \text{ m}$ long-lived $\tilde{g}, \text{GMSB}, \tilde{g} \rightarrow \tilde{G}$ $c\pi = 100 \text{ m}$
>2370	95	⁵ AABOUD	18s ATLS	displaced vertex + E_T , long- lived Tglu1A, $m_{\tilde{\chi}_1^0} = 100$
>1600	95	⁶ SIRUNYAN	18AY CMS	GeV, and τ =0.17 ns jets+ $\not\!$
>1750	95	⁶ SIRUNYAN	18AY CMS	jets+ E_T , Tglu1A, c $ au = 1$ mm, $m_{\chi 0} = 100$ GeV
>1640	95	⁶ SIRUNYAN	18AY CMS	jets+ $ ot\!$
>1490	95	⁶ SIRUNYAN	18AY CMS	jets+ $\not\!$
>1300	95	⁶ SIRUNYAN	18AY CMS	jets+ $ ot\!$
> 960	95	⁶ SIRUNYAN	18AY CMS	jets+ $\not\!$
> 900	95	⁶ SIRUNYAN	18AY CMS	jets+ $\not\!$
>2200	95	⁷ SIRUNYAN	18DV CMS	long-lived \tilde{g} , RPV, $\tilde{g} \rightarrow \overline{t} \overline{b} \overline{s}$,
>1000	95	⁸ KHACHATRY.	17ar CMS	long-lived \tilde{g} , RPV, $\tilde{g} \rightarrow t \overline{bs}$,
>1300	95	⁸ KHACHATRY.	17ar CMS	$c\tau = 0.5 \text{ mm}$ long-lived \tilde{g} , RPV, $\tilde{g} \to t \overline{bs}$,
>1400	95	⁸ KHACHATRY.	17ar CMS	$c\tau = 1.0 \text{ mm}$ long-lived \tilde{g} , RPV, $\tilde{g} \rightarrow t \overline{bs}$,
>1580	95	⁹ AABOUD	16B ATLS	$2 \text{ mm} < c\tau < 30 \text{ mm}$ long-lived <i>R</i> -hadrons
> 740-1590	95	¹⁰ AABOUD	16c ATLS	$R ext{-hadrons, Tglu1A, } au\geq0.4$ ns, $m_{\widetilde{\chi}^0_1}=100$ GeV
>1570	95 05	¹⁰ AABOUD	16C ATLS	R-hadrons, Tglu1A, stable
>1610	95	** KHACHATRY.	16BWCMS	long-lived g forming R- hadrons, $f = 0.1$, cloud interaction model
>1580	95	¹¹ KHACHATRY.	16 BW C MS	long-lived \widetilde{g} forming R-hadrons, f = 0.1, charge-suppressed interaction
>1520	95	¹¹ KHACHATRY.	16 BW C MS	model long-lived \tilde{g} forming R- hadrons, f = 0.5, cloud
>1540	95	¹¹ KHACHATRY.	16BWCMS	interaction model long-lived \tilde{g} forming R- hadrons, f = 0.5, charge- suppressed interaction
>1270	95	¹² AAD	15AE ATLS	g R-hadron, generic R-hadron
>1360	95	¹² AAD	15 AE ATLS	g decaying to 300 GeV stable sleptons, LeptoSUSY model
>1115	95	¹³ AAD	15 BM ATLS	\widetilde{g} R-hadron, stable
>1185	95	13 AAD	15 BM ATLS	$g \rightarrow (g/q \overline{q}) \chi_1^\circ$, lifetime 10 ns, $m_{\chi_1^0} = 100 \text{ GeV}$
>1099	95	13 AAD	15 BM ATLS	$\widetilde{g} \rightarrow (g/q \overline{q}) \widetilde{\chi}_{1}^{0}$, lifetime 10 ns, $m_{\widetilde{g}} - m_{\widetilde{\chi}_{1}^{0}} = 100 \text{ GeV}$
>1182	95	¹³ AAD	15 BM ATLS	$\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_1^0$, lifetime 10 ns, $m_{\widetilde{\chi}_1^0} = 100 { m GeV}$
>1157	95	¹³ AAD	15 BM ATLS	$\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0}$, lifetime 10 ns, $m_{\widetilde{g}} - m_{\widetilde{\chi}_{1}^{0}} = 480 \text{ GeV}$
> 869	95	¹³ AAD	15 BM ATLS	$\widetilde{g} \rightarrow (g/q\overline{q})\widetilde{\chi}_{1}^{0}$, lifetime 1 ns, $m_{\widetilde{\chi}_{1}^{0}} = 100 \text{ GeV}$
> 821	95	¹³ AAD	15 вм ATLS	$\widetilde{g} \rightarrow (g/q\overline{q})\widetilde{\chi}_{1}^{0}$, lifetime 1 ns, $m_{\widetilde{g}} - m_{\widetilde{\chi}_{1}^{0}} = 100$
				GeV

2058 Searches Particle Listings Supersymmetric Particle Searches

¹³ AAD	15 BM ATLS	$\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0}$, lifetime 1 ns,
¹³ aad	15 BM ATLS	$\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0}$, lifetime 10 ns, $m_{\widetilde{g}} - m_{\widetilde{\tau}_{0}} = 480 \text{ GeV}$
¹⁴ KHACHAT	RY15AK CMS	\widetilde{g} R-hadrons, 10 μ s< τ <1000
¹⁴ KHACHAT	RY15AK CMS	\widetilde{g} R-hadrons, 1 μ s $< au$ <1000 s
ne tollowing data ti	or averages, fits,	limits, etc. • • •
¹⁵ aad	13AA ATLS	<i>g̃</i> , <i>R</i> -hadrons, generic interac-
¹⁶ AAD	13BC ATLS	R-hadrons, $\tilde{g} \rightarrow g/q \overline{q} \tilde{\chi}_1^0$,
17		generic R-hadron model, lifetime between 10^{-5} and 10^3 s, $m_{\widetilde{\chi}^0_1}=100~{ m GeV}$
¹⁷ CHATRCH	YAN13AB CMS	long-lived \tilde{g} forming R- hadrons, f = 0.1, cloud
¹⁸ AAD	12P ATLS	long-lived $\tilde{g} \rightarrow g \tilde{\chi}_1^0$, $m_{\tilde{\chi}_1^0} =$
		100 GeV
¹⁹ CHATRCH	YAN12AN CMS	long-lived $\widetilde{g} \rightarrow g \widetilde{\chi}_1^0$
²⁰ CHATRCH	YAN12L CMS	long-lived \tilde{g} forming R - hadrons, $f = 0.1$
²¹ AAD	11K ATLS	stable \tilde{e}
²² AAD	11P ATLS	stable $\widetilde{\widetilde{\varrho}}$. GMSB scenario.
	///20	$\tan\beta = 5$
23 KHACHATI	RY11 CMS	long lived g
²⁴ КНАСНАТІ	RY11C CMS	stable g
	 13 AAD 13 AAD 14 KHACHATI 14 KHACHATI 14 KHACHATI 15 AAD 16 AAD 16 AAD 17 CHATRCH 18 AAD 19 CHATRCH 20 CHATRCH 21 AAD 22 AAD 23 KHACHATI 24 KHACHATI 	 ¹³ AAD ¹³ BAAD ¹⁵ BM ATLS ¹⁴ KHACHATRY15AK CMS ¹⁴ KHACHATRY15AK CMS ¹⁴ KHACHATRY15AK CMS ¹⁵ AAD ¹⁵ AAD ¹⁶ AAD ¹⁷ CHATRCHYAN13AB CMS ¹⁸ AAD ¹⁹ CHATRCHYAN12AN CMS ²⁰ CHATRCHYAN12L CMS ²¹ AAD ²¹ AAD ²¹ AAD ²¹ AAD ²¹ AAD ²¹ AAD ²² KHACHATRY11 CMS ²³ KHACHATRY11 CMS ²⁴ KHACHATRY11 CMS

¹AABOUD 19AT searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for metastable and stable *R*-hadrons. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined. No significant deviations from the expected Standard Model background are observed. Gluino *R*-hadrons with lifetimes of the order of 50 ns are excluded at 95% C.L. for masses below 1980 GeV using the muon-spectrometer agnostic analysis. Using the full-detector search, the observed lower limits on the mass are 2000 GeV. See their Figure 9 (top).

- are 2000 GeV. See their Figure 9 (top). ² AABOUD 19C searched in 36.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for metastable and stable *R*-hadrons arising as excesses in the mass distribution of reconstructed tracks with high transverse momentum and large dE/dx. Gluino *R*-hadrons with lifetimes above 10 ns are excluded at 95% C.L. with lower mass limit range between 1000 GeV and 2060 GeV, see their Figure 5(a). Masses smaller than 1290 GeV are excluded for a lifetime of 1 ns, see their Figure 5(b). 3CHDLENKL tables as the 25.6.5.
- 3 SIRU NYAN 19BH searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for long-lived particles decaying into jets, with each long-lived particle having a decay vertex well displaced from the production vertex. The selected events are found to be consistent with standard model predictions. Limits are set on the gluino mass in a GMSB model where the gluino is decaying via $\overline{g} \rightarrow g \overline{G}$, see their Figure 4 and in an RPV model of supersymmetry where the gluino is decaying via $\overline{g} \rightarrow \overline{t} \overline{b} \overline{s}$, see their Figures 5. Limits are also set on the stop mass in two RPV models, see their Figure 6 (for $t \rightarrow b \ell$ decays) and Figure 7 (for $\overline{t} \rightarrow \overline{d} \overline{d}$ decays).
- and Figure 7 (for $t \to aa$ decays). 4 SIRUNYAN 19BT searched in 137 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for long-lived particles decaying to displaced, nonprompt jets and missing transverse momentum. Candidate signal events are identified using the timing capabilities of the CMS electro-magnetic calorimeter. The results of the search are found to be consistent with the background predictions. Limits are set on the gluino mass in a GMSB model where local bind gluings are pair produced and decaying via $\vec{x} \to \vec{a}$. long-lived gluinos are pair produced and decaying via $\widetilde{g} \to g \, \widetilde{G}$, see their Figures 4 and
- 5 AABOUD 18s searched in 32.8 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV for long-lived gluinos in final states with large missing transverse momentum and at least one highmass displaced vertex with five or more tracks. The observed yield is consistent with the expected background. Exclusion limits are derived for Tglu1A models predicting the existence of long-lived gluinos reaching roughly $m(\tilde{g}) = 2000 \text{ GeV}$ to 2370 GeV for $m(\tilde{\chi}_1^0)$ = 100 GeV and gluino lifetimes between 0.02 and 10 ns, see their Fig. 8. Limits are presented also as a function of the lifetime (for a fixed gluino-neutralino mass difference of 100 GeV) and of the gluino and neutralino masses (for a fixed lifetime of 1 ns). See their Fig. 9 and 10 respectively.
- their Fig. 9 and 10 respectively. **6** SIRUNYAN 18AY searched in 35.9 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events containing one or more jets and significant E_{T} . No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified models, see their Figure 3. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbot1, Tstop1 and Tstop4 simplified models, see their Figure 3. Finally, limits are set on long-lived gluino masses in a Tglu1A simplified model where the gluino is metastable or long-lived with proper decay lengths in the range 10^{-3}
- where the gluino is metastable or long-lived with proper decay lengths in the range 10^{-3} mm $< c_7 < 10^5$ mm, see their Figure 4. ⁷ SIRUNYAN 18bv searched in 38.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for long-lived particles in events with multiple jets and two displaced vertices composed of many tracks. No events with two well-separated high-track-multiplicity vertices were observed. Limits are set on the stop and the gluino mass in RPV models of supersymmetry where the stop (gluino) is decaying solely into dijet (multijet) final states, see their Figures 6 and 7. ⁸ KHACHATRYAN 17AR searched in 17.6 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for R-parity-violating SUSY in which long-lived neutralinos or gluinos decay into multijet final states. No significant excess above the Standard Model expectations is observed. Limits are set on the fullion mass for a range of mean proper decay lengths (c_7), see their Fig.
- are set on the gluino mass for a range of mean proper decay lengths ($c\tau$), see their Fig. 7. The upper limits on the production cross section times branching ratio squared (Fig.
- 7. The upper limits on the production cross section times branching ratio squared (Fig. 7) are also applicable to long-lived neutralinos. 9 AABOUD 16B searched in 3.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for long-lived *R*-hadrons using observables related to large ionization losses and slow propagation velocities, which are signatures of heavy charged particles traveling significantly slower than the speed of light. Exclusion limits at 95% C.L. are set on the long-lived gluino masses exceeding 1580 GeV. See their Fig. 5. 10 AABOUD 16C searched in 3.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for long-lived and stable *R*-hadrons identified by anomalous specific ionization energy loss in the ATLAS Pixel detector. Gluino *R*-hadrons with lifetimes above 0.4 ns are excluded at 95% C.L. with lower mass limit is 1570 GeV. See their Fig. 5.
- R-hadrons, the lower mass limit is 1570 GeV. See their Figs. 5 and 6.

- ¹¹ KHACHATRYAN 16BW searched in 2.5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV for events with heavy stable charged particles, identified by their anomalously high energy deposits in the silicon tracker and/or long time-of-flight measurements by the muon system. No evidence for an excess over the expected background is observed. Limits are derived for pair production of gluinos as a function of mass, depending on the interaction model and on the fraction f, of produced gluinos hadronizing into a \tilde{g} gluon state, see Fig. 4 and Table 2. Table 7.
- 12^{+300} r, 130 r, 130 r, 131 fb $^{-1}$ of $p\,p$ collisions at $\sqrt{s}=$ 8 TeV for heavy long-lived charged particles, measured through their specific ionization energy loss in the ATLAS pixel detector or their time-of-flight in the ALTAS muon system. In the absence of an excess of events above the expected backgrounds, limits are set R-hadrons in various
- excess of events above the expected backgrounds, limits are set R-hadrons in various scenarios, see Fig. 11. Limits are also set in LeptoSUSY models where the gluino decays to stable 300 GeV leptons, see Fig. 9. ¹³AAD 15BM searched in 18.4 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for stable and metastable non-relativistic charged particles through their anomalous specific ionization energy loss in the ATLAS pixel detector. In absence of an excess of events above the expected backgrounds, limits are set within a generic R-hadron model, on stable gluino R-hadrons (see Table 5) and on metastable gluino R-hadrons decaying to $(g/q\overline{q})$ plus where the fourth of the set o a light $\tilde{\chi}_1^0$ (see Fig. 7) and decaying to $t\bar{t}$ plus a light $\tilde{\chi}_1^0$ (see Fig. 9).
- ¹⁴ KHACHATRYAN 15AK looked in a data set corresponding to 18.6 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV, and a search interval corresponding to 281 h of trigger lifetime, for longlived particles that have stopped in the CMS detector. No evidence for an excess over the expected background in a cloud interaction model is observed. Assuming the decay $\tilde{g} \to g \tilde{\chi}_1^0$ and lifetimes between 1 μ s and 1000 s, limits are derived on \tilde{g} production as a function of $m_{\tilde{\chi}_1^0}$, see Figs. 4 and 6. The exclusions require that $m_{\tilde{\chi}_1^0}$ is kinematically
- χ_1^{-1} χ_1^{-1} consistent with the minimum values of the jet energy thresholds used. ¹⁵ AAD 13AA searched in 4.7 fb⁻¹ of ρp collisions at $\sqrt{s} = 7$ TeV for events containing colored long-lived particles that hadronize forming *R*-hadrons. No significant excess above the expected background was found. Long-lived *R*-hadrons containing a \tilde{g} are excluded for masses up to 985 GeV at 95% C.L in a general interaction model. Also, limits independent of the fraction of *R*-hadrons that arrive charged in the muon system were derived see Eir 6. were derived, see Fig. 6.
- 16 AAD 13BC searched in 5.0 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV and in 22.9 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for bottom squark R-hadrons that have come to rest within the ATLAS calorimeter and decay at some later time to hadronic jets and a neutralino. In absence of an excess of events above the expected backgrounds, limits are set on gluino masses for different decays, lifetimes, and neutralino masses, see their Table 6 and Fig.
- ¹⁷CHATRCHYAN 13AB looked in 5.0 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV and in 18.8 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV for events with heavy stable particles, identified by their anomalous dE/dx in the tracker or additionally requiring that it be identified as muon in the muon chambers, from pair production of \tilde{g} 's. No evidence for an excess over the expected background is observed. Limits are derived for pair production of, for formation of $\tilde{g} g$ (R-gluonball) states. The quoted limit is for f = 0.1, while for f = 0.5 it degrades to 1276 GeV. In the conservative scenario where every hadronic interaction causes it to become neutral, the limit decreases to 928 GeV for f = 0.1. 17 CHATRCHYAN 13AB looked in 5.0 fb $^{-1}$ of pp collisions at \sqrt{s} = 7 TeV and in 18.8
- which may approximate the detector and net detects in a $r_{\rm exp}$ is $g_{\rm exp}$ is $g_{\rm exp}$ approximate the detector and net detector in a counting experiment, a limit at 95% C.L. on the cross section as a function of $m_{\widetilde{g}}$ is derived for $m_{\tilde{\chi}_1^0} = 100$ GeV, see Fig. 4. The limit is valid for lifetimes between 10^{-5}
- and 10^3 seconds and assumes the *Generic* matter interaction model for the production
- cross section. ¹⁹ CHATRCHYAN 12AN looked in 4.0 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events with pair production of long-lived gluinos. The hadronization of the gluinos leads to R-hadrons which may stop inside the detector and later decay via $\widetilde{g} \to g \, \widetilde{\chi}^0_1$ during gaps between the proton bunches. No significant excess over the expected background is observed. From a counting experiment, a limit at 95% C.L. on the cross section as a function of $m_{\widetilde{g}}$ is derived, see Fig. 3. The mass limit is valid for lifetimes between 10^{-5}
- and 10³ seconds, for what they call "the daughter gluon energy E_g >" 100 GeV and assuming the *cloud* interaction model for *R*-hadrons. Supersedes KHACHATRYAN 11. ²⁰ CHATRCHYAN 12L looked in 5.0 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events with heavy stable particles, identified by their anomalous dE/dx in the tracker or additionally requiring that it be identified as muon in the muon chambers, from pair production of \tilde{g} 's. No evidence for an excess over the expected background is observed. Limits are derived for pair production of gluinos as a function of mass (see Fig. 3), depending on the fraction, f, of formation of $\tilde{g} - g$ (*R*-glueball) states. The quoted limit is for f = 0.1, while for f = 0.5 it degrades to 1046 GeV. In the conservative scenario where every hadronic interaction causes it to become neutral, the limit decreases to 928 GeV for f=0.1. Supersedes KHACHATRYAN 11c.
- In the set of the set a triple-Regge model or a bag-model is used, the limit degrades to 566 and 562 GeV, respectively.
- ²²AAD 11P looked in 37 pb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events with heavy stable particles, reconstructed and identified by their time of flight in the Muon System. There is no requirement on their observation in the tracker to increase the sensitivity to cases where gluinos have a large fraction, f, of formation of neutral $\tilde{g} - g$ (R-gluonball). No evidence for an excess over the SM expectation is observed. Limits are derived as a function of mass (see Fig. 4), for f=0.1. For fractions f = 0.5 and 1.0 the limit degrades to 537 and 530 GeV, respectively.
- 23 KHACHATRYAN 11 looked in 10 pb $^{-1}$ of pp collisions at \sqrt{s} = 7 TeV for events with pair production of long-lived gluinos. The hadronization of the gluinos leads to R-hadrons which may stop inside the detector and later decay via $\tilde{g} \to g \tilde{\chi}_1^0$ during gaps between the proton bunches. No significant excess over the expected background is observed. From a counting experiment, a limit at 95% C.L. on the cross section times branching ratio is derived for $m_{\tilde{g}} - m_{\tilde{\chi}_1^0} > 100$ GeV, see their Fig. 2. Assuming 100% branching

ratio, lifetimes between 75 ns and 3×10^5 s are excluded for $m_{\widetilde{g}}=300$ GeV. The \widetilde{g} mass exclusion is obtained with the same assumptions for lifetimes between 10 μs and mass exclusion is obtained with the same assumptions for lifetimes between 10 μ s and 1000 s, but shows some dependence on the model for R-hadron interactions with matter, illustrated in Fig. 3. From a time-profile analysis, the mass exclusion is 382 GeV for a lifetime of 10 μ s under the same assumptions as above. ²⁴ KHACHATRYAN 11C looked in 3.1 pb⁻¹ of ρ collisions at $\sqrt{s} = 7$ TeV for events with heavy stable particles, identified by their anomalous dE/dx in the tracker or additionally exclusive that the back detailed on the runs of butter for events with a stable particles.

requiring that it be identified as muon in the muon chambers, from pair production of \tilde{g} . No evidence for an excess over the expected background is observed. Limits are derived for pair production of gluinos as a function of mass (see Fig. 3), depending on the fraction, f, of formation of $\vec{g} = g$ (R-gluonball). The quoted limit is for f=0.1, while for f=0.5 it degrades to 357 GeV. In the conservative scenario where every hadronic interaction causes it to become neutral, the limit decreases to 311 GeV for f=0.1.

Light G (Gravitino) mass limits from collider experiments

The following are bounds on light ($\ll 1\, ext{eV})$ gravitino indirectly inferred from its coupling to matter suppressed by the gravitino decay constant.

Unless otherwise stated, all limits assume that other supersymmetric particles besides the gravitino are too heavy to be produced. The gravitino is assumed to be undetected and to give rise to a missing energy $(\not\!\!E)$ signature.

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

VALUE (eV)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not	use the	following data for	averages, fits,	limits, etc. • • •
$>$ 3.5 $\times 10^{-4}$	95	¹ AAD	15 BH ATLS	jet $+ \not\!\!E_T$, $pp \rightarrow (\vec{q} / \vec{g}) \vec{G}$, $m_{\widetilde{\alpha}} = m_{\widetilde{\alpha}} = 500 \text{ GeV}$
$>$ 3 $\times 10^{-4}$	95	¹ AAD	15вн ATLS	$ \begin{array}{c} q & g \\ \text{jet} + \not\!\!\!E_T, \rho p \to (\vec{q} / \vec{g}) \vec{G}, \\ m_{\vec{\alpha}} = m_{\vec{\alpha}} = 1000 \text{GeV} \end{array} $
$> 2 \times 10^{-4}$	95	¹ AAD	15вн ATLS	$ \begin{array}{l} \operatorname{jet} & \stackrel{q}{+} \not \!$
$>$ 1.09 \times 10 ⁻⁵	95	² abdallah	05в DLPH	$e^+e^- \rightarrow \tilde{\tilde{G}} \tilde{G} \gamma$
$> 1.35 \times 10^{-5}$	95	³ achard	04E L3	$e^+e^- \rightarrow \tilde{G} \tilde{G} \gamma$
$>$ 1.3 $ imes 10^{-5}$		⁴ HEISTER	03c ALEP	$e^+e^- \rightarrow \tilde{G} \tilde{G} \gamma$
$>11.7 \times 10^{-6}$	95	⁵ acosta	02H CDF	$p \overline{p} \rightarrow \widetilde{G} \widetilde{G} \gamma$
$> 8.7 \times 10^{-6}$	95	⁶ ABBIENDI,G	00D OPAL	$e^+e^- \rightarrow \tilde{G} \tilde{G} \gamma$

¹ AAD 15BH searched in 20.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV for associated production of a light gravitino and a squark or gluino. The squark (gluino) is assumed to decay exclusively to a quark (gluon) and a gravitino. No evidence was found for an excess above the expected level of Standard Model background and 95% C.L. lower limits were set on the gravitino mass as a function of the squark/gluino mass, both in the case of degenerate and non-degenerate squark/gluino masses, see Figs. 14 and 15.

degenerate and non-degenerate squark/gluino masses, see Figs. 14 and 15. ² ABDALLAH 05B use data from $\sqrt{s} = 180-208$ GeV. They look for events with a single photon + E final states from which a cross section limit of $\sigma < 0.18 \ pb$ at 208 GeV is obtained, allowing a limit on the mass to be set. Supersedes the results of ABREU 002. ³ ACHARD 04E use data from $\sqrt{s} = 189-209$ GeV. They look for events with a single photon + E final states from which a limit on the Gravitino mass is set corresponding to $\sqrt{F} > 238$ GeV. Supersedes the results of ACCIARRI 99R. ⁴ HEISTED 03C use the data from $\sqrt{s} = 189-209$ GeV to search for $\sqrt{E_{FT}}$ final states

⁴ HEISTER 03c use the data from $\sqrt{s} = 189-209$ GeV to search for γE_T final states. ⁵ ACOSTA 02H looked in 87 pb^{-1} of $p\overline{p}$ collisions at $\sqrt{s}=1.8$ TeV for events with a high- E_T photon and E_T . They compared the data with a GMSB model where the final state could arise from $\overline{q}\overline{q} \to \widetilde{G}\,\widetilde{G}\,\gamma$. Since the cross section for this process scales as $1/|F|^4$, a limit at 95% CL is derived on $|F|^{1/2} > 221$ GeV. A model independent limit for the above topology is also given in the paper.

Supersymmetry miscellaneous results

Results that do not appear under other headings or that make nonminimal assumptions.

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Particle Data Group), Chinese Physics C38070001 (2014) (http://pdg.lbl.gov).

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not use	the follow	ing data for avera	nges, f	its, limit	s, etc. ● ● ●
		¹ AAD	20c	ATLS	habemus MSSM, m_{Δ} —tan β plane
>65	95	² AABOUD	16AF	ATLS	selected ATLAS searches on EWK sector
none 0-2	95	³ AAD	16AG	ATLS	dark photon, γ_d , in SUSY- and Higgs-portal models
		⁴ AAD ⁵ AALTONEN	13р 12ав	ATLS CDF	dark γ , hidden valley hidden-valley Higgs
none 100-185	95	⁰ AAD ⁷ CHATRCHYAN ⁸ ABAZOV	11AA 111E 10N	ATLS CMS D0	scalar gluons $\mu\mu$ resonances γ_D , hidden valley

¹AAD 20c uses a statistical combination of six final states $b\overline{b}b\overline{b}$, $b\overline{b}WW$, $b\overline{b}\tau\tau$, WWWW, $b\overline{b}\gamma\gamma$, and $WW\gamma\gamma$ to search for non-resonant and resonant production of Higgs boson pairs. The search uses 36.1 fb⁻¹ of pp collisions data at $\sqrt{s} = 13$ TeV.

Higgs boson pairs. The search uses 36.1 fb⁻¹ of *pp* collisions data at $\sqrt{s} = 13$ TeV. Constraints in the habemus Minimal Supersymmetric Standard Model in the (m_A , tang) parameter space are placed, see their Figure 7(b). ²AABOUD 16AF uses a selection of searches by ATLAS for the electroweak production of SUSY particles studying resulting constraints on dark matter candidates. They use 20 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV. A likelihood-driven scan of an effective model focusing on the gaugino-higgsino and Higgs sector of the pMSSM is performed. The ATLAS searches impact models where $m_{\chi_1^0} < 65$ GeV, excluding 86% of them. See their figure 2.4 and f their Figs. 2, 4, and 6.

³AAD 16AG searches for prompt lepton-jets using 20 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV collected with the ATLAS detector. Lepton-jets are expected from decays of low-mass dark photons in SUSY-portal and Higgs-portal models. No significant excess of events is observed and 95% CL upper limits are computed on the production cross section times branching ratio for two prompt lepton-jets in models predicting 2 or 4 γ_{d} via SUSY-portal avalues between 0 and 2 GeV. See their Figs 9 and 10. The results are also interpreted in terms of a 90% CL exclusion region in kinetic mixing and dark-photon mass parameter space. See their Fig. 13. ⁴AAD 13P searched in 5 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for single lepton-jets with at least four muons; pairs of lepton-jets, each with two or more muons; and pairs of lepton-jets with two or more electrons. All of these could be signatures of Hidden Valley supersymmetric models. No statiscially significant deviations from the Standard Model expectations are found. 95% C.L. limits are placed on the production cross section times branching ratio of dark photons for several parameter sets of a Hidden Valley model. ⁵ AALTONEN 12AB looked in 5.1 fb⁻¹ of *pp* collisions at $\sqrt{s} = 1.9$ TeV for anomalous production of multiple low-energy leptons in association with a *W* or Z boson. Such events may occur in hidden valley models in which a supersymmetric Higgs boson is produced in association with a *W* or Z boson, with $H \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$ pair and with the $\tilde{\chi}_{1}^{0}$ 3 AAD 16AG searches for prompt lepton-jets using 20 fb $^{-1}$ of $p\,p$ collisions at $\sqrt{s}=$ 8 TeV

produced in association with a W or Z boson, with $H \to \tilde{\chi}_1^0 \tilde{\chi}_1^0$ pair and with the $\tilde{\chi}_1^0$ further decaying into a dark photon (γ_D) and the unobservable lightest SUSY particle of the hidden sector. As the γ_D is expected to be light, it may decay into a lepton pair. No significant excess over the SM expectation is observed and a limit at 95% C.L. is set on the cross section for a benchmark model of supersymmetric hidden-valley Higgs production.

- production. 6 AAD 11AA looked in 34 pb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 4 jets originating from pair production of scalar gluons, each decaying to two gluons. No two-jet resonances are observed over the SM background. Limits are derived on the cross section times branching ratio (see Fig. 3). Assuming 100% branching ratio for the decay to two gluons, the quoted exclusion range is obtained, except for a 5 GeV mass window around 140 GeV.
- around 140 GeV. ⁷ CHATRCHYAN 11E looked in 35 pb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV for events with collimated μ pairs (leptonic jets) from the decay of hidden sector states. No evidence for new resonance production is found. Limits are derived and compared to various SUSY models (see Fig. 4) where the LSP, either the $\tilde{\chi}_1^0$ or a \tilde{q} , decays to dark sector particles.
- ⁸ABAZOV 10N looked in 5.8 fb $^{-1}$ of $p\overline{p}$ collisions at \sqrt{s} = 1.96 TeV for events from ABA2OV 10N looked in 5.8 to γ of pp collisions at $\sqrt{s} = 1.96$ feV for events from hidden valley models in which a $\tilde{\chi}_1^0$ decays into a dark photon, γ_D , and the unobservable lightest SUSY particle of the hidden sector. As the γ_D is expected to be light, it may decay into a tightly collimated lepton pair, called lepton jet. They searched for events with \mathcal{P}_T and two isolated lepton jets observable by an opposite charged lepton pair e_e , $e \mu or \mu\mu$. No significant excess over the SM expectation is observed, and a limit at 95% of the exception time to be provide the provide the provided of the provided t C.L. on the cross section times branching ratio is derived, see their Table I. They also examined the invariant mass of the lepton jets for a narrow resonance, see their Fig. 4, but found no evidence for a signal.

REFERENCES FOR Supersymmetric Particle Searches

AAD	20 C	PL B800 135103	G And et al	(ATLAS Collab
SIRUNYAN	20 C	PL B801 135183	A.M. Sirunvan et al.	(CMS Collab.
AABOUD	19AT	PR D99 092007	M. Aaboud et al.	(ATLAS Collab.
AABOUD	19AU	PR D100 012006	M. Aaboud et al.	(ATLAS Collab.
AABOUD	19 C	PL B788 96	M. Aaboud et al.	(ATLAS Collab.
AABOUD	19G	PR D99 012001	M. Aaboud et al.	(ATLAS Collab.
AABOUD	191	PR D99 012009	M. Aaboud et al.	(ATLAS Collab.
AAD	19H	JHEP 1912 060	G. Aad et al.	(ALLAS Collab.
ABE	19	PL B/69 45	K. Abe et al.	(DEAD 2600 Collab.
AMOLE	19	PR D100 022004	R. Ajaj et al. C. Amole et al	(PICO Collab.
APRILE	19.4	PRI 122 141301	E Anrile et al	(XENON1T Collab
DI-MAURO	19	PR D 99 123027	M Di Mauro et al	(XENONIT COND.
JOHNSON	19	PR D99 103007	C. Johnson et al.	
LI	19D	PR D99 123519	S. Li et al.	
SIRUNYAN	19AG	JHEP 1906 143	A.M. Sirunyan et al.	(CMS Collab.
SIRUNYAN	19AO	EPJ C79 305	A.M. Sirunyan et al.	(CMS Collab.
SIRUNYAN	19AU	EPJ C79 444	A.M. Sirunyan et al.	(CMS Collab.
SIRUNYAN	19AW	PL B790 140	A.M. Sirunyan et al.	(CMS Collab.
SIRUNYAN	19BH	PR D 99 032011	A.M. Sirunyan et al.	(CMS Collab.
SIRUNYAN	10 D I	PR D 99 032014	A.M. Sirunyan et al.	(CMS Collab.
SIRUNYAN	19BJ	PK D99 052002 DI D707 124976	A.M. Sirunyan et al.	CMS Collab.
SIRTINVAN	1981	IHEP 1908 150	A.M. Sirunyan et al.	(CMS Collab.
SIRUNYAN	19 CA	PR D100 112003	A.M. Sirunyan et al.	CMS Collab.
SIRUNYAN	19CE	PRL 123 241801	A.M. Sirunyan et al.	CMS Collab.
SIRUNYAN	19 C H	JHEP 1910 244	A.M. Sirunýan et al.	(CMS Collab.
SIRUNYAN	19 CI	JHEP 1911 109	A.M. Sirunyan et al.	(CMS Collab.
SIRUNYAN	19F	PR D99 012010	A.M. Sirunyan et al.	(CMS Collab.
SIRUNYAN	19K	JHEP 1901 154	A.M. Sirunyan et al.	(CMS Collab.
SIRUNYAN	195	JHEP 1903 031	A.M. Sirunyan et al.	(CMS Collab.
SIRUNYAN	190	JHEP 1903 101	A.M. Sirunyan et al.	(CMS Collab.
	19A 19AO	PL B792 193	J. Ald et al. M. Ashoud at sl	(ATLAS Collab.
AABOUD	18 A R	THEP 1806 107	M Ashoud et al.	(ATLAS Collab.
AABOUD	18AS	JHEP 1806 022	M Aaboud et al	ATLAS Collab.
AABOUD	18AY	EPJ C78 154	M. Aaboud et al.	ATLAS Collab.
AABOUD	18 B B	EPJ C78 250	M. Aaboud et al.	ATLAS Collab.
AABOUD	18 B J	EPJ C78 625	M. Aaboud et al.	(ATLAS Collab.
AABOUD	18 B T	EPJ C78 995	M. Aaboud et al.	(ATLAS Collab.
AABOUD	18 B V	JHEP 1809 050	M. Aaboud et al.	(ATLAS Collab.
AABOUD	18 CF	PL B785 136	M. Aaboud et al.	(ATLAS Collab.
AABOUD	18 CK	PR D 98 0 92002	M. Aaboud et al.	(ATLAS Collab.
AABOUD	18 CM	PR D 98 0 92008	M. Aaboud et al.	ATLAS Collab.
AABOUD	181	IHEP 1801 126	M Aaboud et al.	(ATLAS Collab.
AABOUD	18 P	PR D 97 032003	M Aaboud et al	ATLAS Collab.
AABOUD	18 R	PR D 97 052010	M. Aaboud et al.	ATLAS Collab.
AABOUD	18 S	PR D97 052012	M. Aaboud et al.	(ATLAS Collab.
AABOUD	18 U	PR D97 092006	M. Aaboud et al.	(ATLAS Collab.
AABOUD	18 V	PR D97 112001	M. Aaboud et al.	(ATLAS Collab.
AABOUD	18 Y	PR D 98 032008	M. Aaboud et al.	(ATLAS Collab.
AABOUD	18 Z	PR D 98 032009	M. Aaboud et al.	(ATLAS Collab.
ABDALLAH	18	PRL 120 201101	H. Abdallah et al.	(H.E.S.S. Collab.
ADHIKARI	10 19 A	NAI 564 63 DD D 09 102006	G. Addikati et al. D. Agnos at al	(COSINE-100 Collab.
AGNESE	18.4	PRI 120 061802	R Agnese et al	(SuperCDMS_Collab.
AHNEN	18	JCAP 1803 009	MI Ahnen et al	(MAGIC Collab.
ALBERT	18 B	JCAP 1806 043	A. Albert et al.	(HAWC Collab.
ALBERT	18 C	PR D98 123012	A. Albert et al.	(HAWC Collab.
AMAUDRUZ	18	PRL 121 071801	P.A. Amaudruz et al.	(DEAP-3600 Collab.
APRILE	18	PRL 121 111302	E. Aprile et al.	(XENON1T Collab.
SIRUNYAN	18AA	PL B780 118	A.M. Sirunyan et al.	(CMS Collab.
SIRUNYAN	18AC	PL B780 384	A.M. Sirunvan et al.	(CMS Collab.

2060 Searches Particle Listings Supersymmetric Particle Searches

SIR UN YA N	18AD	PL B780 432 PL B782 440	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS CMS	Gollab.)	AA D Also	15BG EPJ C75 318 EPI C75 463	G. Aad et al. G. Aad et al	(ATLAS Collab.)
SIRUNYAN	18AK	PL B783 114	A.M. Sirunyan et al.	(CMS	Collab.)	AAD	15BH EPJ C75 299	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN SIRUNYAN	18 A L 18 A N	JHEP 1802 067 JHEP 1803 167	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS (CMS	6 Collab.) 6 Collab.)	A Iso AA D	EPJ C75 408 (errat.) 15BM EPJ C75 407	G. Aad et al. G. Aad et al.	(ALLAS Collab.) (ATLAS Collab.)
SIR UN YA N	18AO 18AP	JHEP 1803 166 IHEP 1803 160	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS (CMS	6 Collab.) 6 Collab.)	AAD AAD	15BV JHEP 1510 054 15BX JHEP 1510 134	G. Aad et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
SIRUNYAN	18AR	JHEP 1803 076	A.M. Sirunyan et al.	(CMS	Collab.)	AAD	15CA PR D 92 072001	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN SIRUNYAN	18AT 18AY	JHEP 1804 073 JHEP 1805 025	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS (CMS	6 Collab.) 6 Collab.)	AA D AA D	15CB PR D 92 072004 15CJ EPJ C75 510	G. Aad et al. G. Aad	(ALLAS Collab.) (ATLAS Collab.)
SIRUNYAN	18 B	PL B778 263	A.M. Sirunyan et al.	(CMS	Collab.	AAD	15CS PR D 91 012008	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN	18 B K	PR D97 032009	A.M. Sirunyan et al.	(CMS	6 Collab.) 6 Collab.)	AISO	15J PRL 114 142001	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN SIRUNYAN	18 D 18 DI	PR D 97 012007 IHEP 1809 065	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS (CMS	6 Collab.) 6 Collab.)	AAD AAD	15K PRL 114 161801 150 PRL 115 031801	G. Aad et al. G. Aad et al	(ATLAS Collab.) (ATLAS Collab.)
SIRUNYAN	18 D N	JHEP 1811 079	A.M. Sirunyan et al.	(CMS	Gollab.)	AAD	15X PR D91 112016	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN SIRUNYAN	18 D P 18 D V	JHEP 1811 151 PR D98 092011	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS (CMS	5 Collab.) 5 Collab.)	AA IJ AA RT S EN	15BD EPJ C75 595 15C EPJ C75 20	R. Aaijetal. M.G. Aartsen etal.	(LHCb Collab.) (IceCube Collab.)
SIRUNYAN	18 DY	PR D 98 112014	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS	Gollab.)	AARTSEN	15E EPJ C75 492	M.G. Aartsen et al. A. Abramowski et al.	(IceCube Collab.)
SIRUNYAN	18 M	PRL 120 241801	A.M. Sirunyan et al.	(CMS	6 Collab.)	ACKERMANN	15 PR D 91 122002	M. Ackermann et al.	(Fermi-LAT Collab.)
S IR UN YA N S IR UN YA N	18 O 18 X	PR D97 032007 PL B779 166	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS (CMS	6 Collab.) 6 Collab.)	ACKERMANN	15A JCAP 1509 008 15B PRI 115 231301	M. Ackermann <i>et al.</i> M. Ackermann <i>et al</i>	(Fermi-LAT Collab.) (Fermi-LAT Collab.)
AABOUD	17AF	JHEP 1708 006	M. Aaboud et al.	ATLAS	Gollab.	ADRIAN-MAR	15 JCAP 1510 068	S. Adrian-Martinez et al.	(ANTARES Collab.)
AABOUD	17 AI 17 AJ	JHEP 1709 088 JHEP 1709 084	M. Aaboud et al.	(ATLAS	5 Collab.) 5 Collab.)	AGNESE	15 PL B743 456 15B PR D92 072003	P. Agnese et al. R. Agnese et al.	(SuperCDMS Collab.)
Also	17 A R	JHEP 1908 121 (errat.) PR D96 112010	M. Aaboud et al. M. Aaboud et al.	(ATLAS	5 Collab.) 5 Collab.)	BUCKLEY	15 PR D 91 102001 15 PRI 114 141301	M.R. Buckley et al. K. Choi et al. (Si	(ner-Kamiokande Collab.)
AABOUD	17 A X	JHEP 1711 195	M. Aaboud et al.	ATLAS	Gollab.)	KHACHATRY	15AB JHEP 1501 096	V. Khachatryan et al.	(CMS Collab.)
AABOUD	17 AY 17 AZ	JHEP 1712 085 JHEP 1712 034	M. Aaboud et al. M. Aaboud et al.	(ATLAS (ATLAS	5 Collab.) 5 Collab.)	KHACHATRY KHACHATRY	15AD JHEP 1504 124 15AF JHEP 1505 078	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
AABOUD	17 BE 17 N	EPJ C77 898 EPI C77 144	M. Aaboud et al. M. Aaboud et al.	(ATLAS	5 Collab.)	KHACHATRY	15AH JHEP 1506 116 15AK EPI C75 151	V. Khachatryan et al. V. Khachatryan et al.	(CMS Collab.)
AAIJ	17 Z	EPJ C77 224	R. Aaij et al.	(LHCI	o Collab.)	KHACHATRY	15AO EPJ C75 325	V. Khachatryan et al.	(CMS Collab.)
AARTSEN AARTSEN	17 17 A	EPJ C77 82 EPJ C77 146	M.G. Aartsen et al. M.G. Aartsen et al.	(Ice Cub (Ice Cub	e Collab.) e Collab.)	KHACHATRY KHACHATRY	15AR PL B743 503 15AZ PR D92 072006	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
Also	17.0	EPJ C79 214 (errat.)	M.G. Aartsen et al.	(Ice Cub	e Collab.)	KHACHATRY	15E PRL 114 061801	V. Khachatryan et al.	(CMS Collab.)
AKERIB	170	PRL 118 021303	D.S. Akerib et al.	(LU)	e Collab.) (Collab.)	KHACHATRY	151 PL B745 5 15L PL B747 98	V. Khachatryan et al. V. Khachatryan et al.	(CMS Collab.)
AKERIB	17 A 17 A	PRL 118 251302 PL 8769 249	D.S. Akerib et al. A Albert et al	(LU) (ANTARE	(Collab.) 5 Collab.)	KHACHATRY	150 PL B748 255 15W PR D91 052012	V. Khachatryan et al. V. Khachatryan et al.	(CMS Collab.) (CMS Collab.)
Also		PL B796 253 (errat.)	A. Albert et al.	(ANTARES	6 Collab.)	KHACHATRY	15X PR D91 052018	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AMOLE	17 17 G	PRL 118 251301 PRL 119 181301	C. Amole et al. E. Aprile et al.	(PICC (XENON) Collab.) I Collab.)	AAD	15 PL B750 247 14AE JHEP 1409 176	K. Rolbiecki, J. Lattersall G. Aad <i>et al.</i>	(MADE, HEID) (ATLAS Collab.)
ARCHAMBAU.	17	PR D 95 082001	S. Archambault et al.	(VERITAS	5 Collab.)	AAD	14AG JHEP 1409 103	G. Aad et al. G. Aad et al.	(ATLAS Collab.)
BEHNKE	17	ASP 90 85	E. Behnke et al.	(PICASSO) Collab.)	AAD	14AV JHEP 1410 096	G. Aad et al.	(ATLAS Collab.)
CUI FU	17 A 17	PRL 119 181302 PRL 118 071301	X. Cui et al. C. Fu et al.	(PandaX-I (PandaX-I	I Collab.) I Collab.)	AAD AAD	14AX JHEP 1410 024 14B EPJ C74 2883	G. Aad et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
Also	17	PRL 120 049902 (errat.)	C. Fu et al.	(PandaX-I	I Collab.)	AAD	14BD JHEP 1411 118	G. Aad et al.	(ATLAS Collab.)
KHACHATRY.	17 17A	PRL 118 021802	V. Khachatryan et al.	(CMS	6 Collab.) 6 Collab.)	AAD	14 BH PR D90 112005 14 E JHEP 1406 035	G. Aad et al.	(ATLAS Collab.)
KHACHATRY	17AD 17AR	PR D96 012004 PR D95 012009	V. Khachatryan et al. V. Khachatryan et al.	(CMS (CMS	6 Collab.) 6 Collab.)	AAD AAD	14F JHEP 1406 124 14G JHEP 1405 071	G. Aad et al. G. Aad et al	(ATLAS Collab.) (ATLAS Collab.)
KHACHATRY.	. 17AS	PR D95 012011	V. Khachatryan et al.	(CMS	Collab.)	AAD	14H JHEP 1404 169	G. Aad et al.	(ATLAS Collab.)
KHACHATRY	17 AVV 17 L	JHEP 1704 018	V. Khachatryan et al. V. Khachatryan et al.	(CMS	6 Collab.) 6 Collab.)	AAD	14K PR D 90 012004 14T PR D 90 052008	G. Aad et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
KHACHATRY.	17 P	EPJ C77 294	V. Khachatryan et al.	(CMS (CMS	Gollab.)	AAD	14X PR D 90 052001	G. Aad et al. T. Aaltonen et al.	(ATLAS Collab.)
KHACHATRY.	17V	PL B769 391	V. Khachatryan et al.	(CMS	6 Collab.)	ACKERMANN	14 PR D89 042001	M. Ackermann et al.	(Fermi-LAT Collab.)
KHACHATRY SIRUNYAN	17Y 17AF	PL B770 257 PRI 119 151802	V. Khachatryan et al. A M. Sirunyan et al.	(CMS (CMS	6 Collab.) 6 Collab.)	AKERIB ALEKSIC	14 PRL 112 091303 14 JCAP 1402 008	D.S. Akerib <i>et al.</i> J. Aleksic <i>et al</i>	(LUX Collab.) (MAGIC Collab.)
SIRUNYAN	17 AS	JHEP 1710 019	A.M. Sirunyan et al.	CMS	Collab.)	AVRORIN	14 ASP 62 12	A.D. Avrorin et al.	(BAIKAL Collab.)
SIRUNYAN	17 AT 17 AW	JHEP 1710 005 JHEP 1711 029	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS	5 Collab.) 5 Collab.)	BUCHMUEL	14 EPJ C74 2809 14A EPJ C74 2922	O. Buchmueller et al. O. Buchmueller et al.	
SIR UNYAN SIR UNYAN	17 AY	JHEP 1712 142 EPI C77 710	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS (CMS	G Collab.)	CHATR CHYAN CHATR CHYAN	14AH PR D90 112001 14H JHEP 1401 163	S. Chatrchyan et al. S. Chatrchyan et al.	(CMS Collab.) (CMS Collab.)
SIRUNYAN	17 K	EPJ C77 327	A.M. Sirunyan et al.	(CMS	6 Collab.)	CHATRCHYAN	141 JHEP 1406 055	S. Chatrchyan et al.	(CMS Collab.)
SIRUNYAN SIRUNYAN	17 P 17 S	PR D96 032003 EPJ C77 578	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS (CMS	6 Collab.) 6 Collab.)	CHATRCHYAN CHATRCHYAN	14N PL B733 328 14P PL B730 193	S. Chatrchyan <i>et al.</i> S. Chatrchyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
AABOUD	16AC	EPJ C76 683	M. Aaboud et al. M. Aaboud et al.	(ATLAS	5 Collab.)	CHATRCHYAN	14R PR D 90 032006	S. Chatrchyan et al. S. Chatrchyan et al.	(CMS_Collab.)
AABOUD	16B	PL B760 647	M. Aaboud et al.	(ATLAS	5 Collab.) 5 Collab.)	CZAKON	14 PRL 113 201803	M. Czakon et al. (AAC	H, CAMB, UCB, LBL+)
AABOUD AABOUD	16 C 16 D	PR D93 112015 PR D94 032005	M. Aaboud et al. M. Aaboud et al.	(ATLAS (ATLAS	5 Collab.) 5 Collab.)	FELIZARDO KHACHATRY	14 PR D89 072013 14C PL B736 371	M. Felizardo <i>et al.</i> V. Khachatrvan <i>et al.</i>	(SIMPLE Collab.) (CMS Collab.)
AABOUD	16 J	PR D 94 052009	M. Aaboud et al.	ATLAS	5 Collab.)	KHACHATRY	141 EPJ C74 3036	V. Khachatrýan et al.	(CMS_Collab.)
AABOUD	16 N	EPJ C76 392	M. Aaboud et al.	(ATLAS	5 Collab.) 5 Collab.)	KHACHATRY	14T PL B739 229	V. Khachatryan et al.	(CMS Collab.)
AABOUD	16 P 16 Q	EPJ C76 541 FPJ C76 547	M. Aaboud et al. M. Aaboud et al.	(ATLAS (ATLAS	5 Collab.) 5 Collab.)	PDG ROSZKOWSKI	14 CP C38 070001 14 JHEP 1408 067	K. Olive et al. I Roszkowski E.M. Sessolo A.	(PDG Collab.) I Williams (WINR)
AAD	16 A A	PR D 93 052002	G. Aad et al.	ATLAS	Collab.)	AAD	13 PL B718 841	G. Aad et al.	(ATLAS Collab.)
AAD	16AD 16AG	JHEP 1602 062	G. Aad et al. G. Aad et al.	(AT LAS	5 Collab.) 5 Collab.)	AAD	13AA PL B720 277 13AI PL B723 15	G. Aad et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
AAD AAD	16AM 16AY	JHEP 1606 067 EPI C76 81	G. Aad et al. G. Aad et al.	(ATLAS	5 Collab.) 5 Collab.)	AAD AAD	13AP PR D88 012001 13AU JHEP 1310 189	G. Aad et al. G. Aad et al	(ATLAS Collab.) (ATLAS Collab.)
AAD	16 B B	EPJ C76 259	G. Aad et al.	ATLAS	Gollab.)	AAD	13B PL B718 879	G. Aad et al.	(ATLAS Collab.)
AAD	16BG 16V	EPJ C76 565 PL B757 334	G. Aad et al. G. Aad et al.	(ATLAS (ATLAS	5 Collab.) 5 Collab.)	AA D AA D	13BC PR D88 112003 13BD PR D88 112006	G. Aad et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
AARTSEN	16 C 16 D	JCAP 1604 022 EPI C76 531	M.G. Aartsen et al. M.G. Aartsen et al.	(İce Cub (İce Cub	e Collab.) e Collab.)	AAD AAD	13H JHEP 1301 131 13I PR D87 012008	G. Aad et al. G. Aad et al	(ATLAS Collab.) (ATLAS Collab.)
ABDALLAH	16	PRL 117 111301	H. Abdallah et al.	(H.E.S.S	. Collab.)	AAD	13P PL B719 299	G. Aad et al.	(ATLAS Collab.)
ABDALLAH ADRIAN-MAR.	16A 16	PRL 117 151302 PL B759 69	H. Abdallah <i>et al.</i> S. Adrian-Martinez <i>et al.</i>	(H.E.S.S (ANTARES	. Collab.) 5 Collab.)	AAD AAD	13Q PL B719 261 13R PL B719 280	G. Aad et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
AHNEN	16	JCAP 1602 039	M.L. Ahnen et al. (MAG	IC and Fermi-LAT	Collab.	AALTONEN	131 PR D88 031103	T. Aaltonen et al. T. Aaltonen et al.	CDF Collab.
AKERIB	16A	PRL 116 161301	D.S. Akerib et al.	(LU)	(Collab.)	AARTSEN	13C PR D88 122001	M.G. Aartsen <i>et al.</i>	(IceCube Collab.)
AMOLE	16 16 B	PR D 93 052014 PR D 94 122001	C. Amole et al. E. Anrile et al.	(PICC (XENON10)) Collab.)) Collab.)	ABAZOV	13B PR D87 052011 13 PRI 110 041301	V.M. Abazov et al. A. Abramowski et al.	(D0 Collab.) (HESS Collab.)
AVRORIN	16	ASP 81 12	A.D. Avrorin et al.	(BAIKAI	L Collab.)	ACKERMANN	13A PR D88 082002	M. Ackermann et al.	(Fermi-LAT Collab.)
KHACHATRY	1644	PL B759 479	V. Khachatryan <i>et al.</i>	(LPNHE (CMS	, MADE) 5 Collab.)	AGNESE	13 PR D88 031104	S. Adrian-Martinez et al. R. Agnese et al.	(CDMS Collab.)
KHACHATRY.		PL B760 178	V. Khachatryan et al.	(CMS (CMS	Gollab.)	AGNESE	13A PRL 111 251301	R. Agnese et al.	(CDMS_Collab.)
KHACHATRY.	16AC	PR D93 092009	V Khachatrvan et al			AT NEL	15 111 021501	E. Aprile et al.	(//E14014100 COIIDD.)
KHACHATRY	16AC 16AM 16AV	PR D93 092009 JHEP 1607 027	V. Khachatryan et al. V. Khachatryan et al.	CMS	Collab.)	BERGSTROM	13 PRL 111 171101	L. Bergstrom et al.	
KHACHATRY	16AC 16AM 16AV 16AY 16BE	PR D93 092009 JHEP 1607 027 JHEP 1608 122 EPJ C76 317	V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al.	(CMS (CMS (CMS (CMS	6 Collab.) 6 Collab.) 6 Collab.)	BERGSTROM BOLIEV CABRERA	13 PRL 111 171101 13 JCAP 1309 019 13 JHEP 1307 182	L. Bergstrom <i>et al.</i> M. Boliev <i>et al.</i> M. Cabrera, J. Casas, R. de Au:	stri
KHACHATRY KHACHATRY KHACHATRY	16AC 16AM 16AV 16AY 16BE 16BJ 16BK	PR D 93 0 9200 9 JHEP 1607 027 JHEP 1608 122 EPJ C76 317 EPJ C76 450	V. Khachatryan et al. V. Khachatryan et al.	(CMS (CMS (CMS (CMS (CMS	Gollab.) Gollab.) Gollab.) Gollab.) Gollab.)	BERGSTROM BOLIEV CABRERA CHATRCHYAN CHATRCHYAN	13 PRL 111 171101 13 JCAP 1309 019 13 JHEP 1307 182 13 PL B718 815 13AB IHEP 1307 122	L. Bergstrom <i>et al.</i> M. Boliev <i>et al.</i> M. Cabrera, J. Casas, R. de Au: S. Chatrchyan <i>et al.</i> S. Chatrchyan <i>et al.</i>	stri (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY	16AC 16AM 16AV 16AY 16BE 16BJ 16BK 16BS	PR D93 092009 JHEP 1607 027 JHEP 1608 122 EPJ C76 317 EPJ C76 439 EPJ C76 460 JHEP 1610 006	 V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. 	(CM3 (CM3 (CM3 (CM3 (CM3 (CM3 (CM3 (CM3)	Gollab.) Gollab.) Gollab.) Gollab.) Gollab.) Gollab.)	BERGSTROM BOLIEV CABRERA CHATRCHYAN CHATRCHYAN CHATRCHYAN	13 PRL 111 171101 13 JCAP 1309 019 13 JHEP 1307 182 13 PL B718 815 13AB JHEP 1307 122 13AH PL B722 273	L. Bergstrom et al. M. Boliev et al. M. Cabrera, J. Casas, R. de Au: S. Chatrchyan et al. S. Chatrchyan et al. S. Chatrchyan et al.	stri (CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY.	16AC 16AM 16AV 16AY 16BE 16BJ 16BK 16BS 16BT 16BW	PR D93 092009 JHEP 1607 027 JHEP 1608 122 EPJ C76 317 EPJ C76 439 EPJ C76 460 JHEP 1610 006 JHEP 1610 129 PR D94 112004	 V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. 	(CMS (CMS) (CMS) (CMS) (CMS) (CMS) (CMS) (CMS) (CMS)	Gollab.) Gollab.) Gollab.) Gollab.) Gollab.) Gollab.) Gollab.) Gollab.)	BERGSTROM BOLIEV CABRERA CHATRCHYAN CHATRCHYAN CHATRCHYAN CHATRCHYAN CHATRCHYAN	13 PRL 111 171101 13 JCAP 1309 019 13 JHEP 1307 182 13 PL 8718 815 13AB JHEP 1307 122 13AH PL B722 273 13AO PR D87 072001 13AT PR D88 052017	 L. Bergstrom et al. M. Boliev et al. M. Cabrera, J. Casas, R. de Au: S. Chatrchyan et al. 	stri (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY	16AC 16AM 16AV 16AY 16BE 16BJ 16BK 16BT 16BW 16BX	PR D93 022009 JHEP 1607 027 JHEP 1608 122 EPJ C76 317 EPJ C76 439 EPJ C76 440 JHEP 1610 006 JHEP 1610 006 JHEP 1610 129 PR D94 112004 PR D94 112004	 V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. 	(CMS (CMS (CMS (CMS (CMS (CMS (CMS (CMS	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)	BERGSTROM BOLIEV CABRERA CHATRCHYAN CHATRCHYAN CHATRCHYAN CHATRCHYAN CHATRCHYAN CHATRCHYAN	13 PRL 111 171101 13 JCAP 1309 019 13 JHEP 1307 182 13 PL B718 815 13AB JHEP 1307 122 13AH PL B710 712 13AB JHEP 1307 122 13AH PL B722 273 13AO PR D87 072001 13AT PR B8 052017 13AV PRL 111 081802 13A JHEP 1201 077	 L. Bergstrom et al. M. Boliev et al. M. Cabrera, J. Casas, R. de Au: S. Chatrchyan et al. 	stri (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY	16AC 16AM 16AW 16AV 16BE 16BJ 16BK 16BS 16BT 16BW 16BW 16BY 16R	PR 033 052009 JHEP 1607 027 JHEP 1608 122 EPJ C76 317 EPJ C76 439 EPJ C76 439 JHEP 1610 006 JHEP 1610 129 PR D94 112004 PR D94 112004 PR D94 112003 JHEP 1612 013 PH B257 6	 V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. 	(CMS (CMS (CMS (CMS (CMS (CMS (CMS (CMS	5 Collab.) 5 Collab.) 5 Collab.) 5 Collab.) 5 Collab.) 5 Collab.) 5 Collab.) 5 Collab.) 5 Collab.) 5 Collab.)	BERGSTROM BOLIEV CABRERA CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN	13 PRL 111 171101 JCAP 1309 019 13 13 PL B718 815 13AB JHEP 1307 112 13AB HE 1722 973 13AO PR D87 072001 13AT PR D88 052017 13AV PRL 111 081802 13AV PRL 111 081802 136 JHEP 1301 077 136 JHEP 1304 42	L. Bergstrom et al. M. Boliev et al. M. Gohrera, J. Casas, R. de Au: S. Chatrchyan et al. S. Chatrchyan et al.	stri (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY	. 16AC 16AM 16AW 16AV 16BE 16BJ 16BS 16BS 16BS 16BW 16BW 16BW 16BY 16Y	PR D93 03009 JHEP 1607 027 JHEP 1608 122 EPJ C76 317 EPJ C76 439 EPJ C76 439 JHEP 1610 006 JHEP 1610 129 PR D94 112004 PR D94 112009 JHEP 1612 013 PL B757 6 PL B758 152 PL B759 9	 V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. 	(CMS (CMS (CMS (CMS (CMS (CMS (CMS (CMS	 Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) 	BERGSTROM BOLIEV CABRERA CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN	13 PRL 111 171101 JCAP 1309 019 13 JBHEP 1307 182 13 PL B718 815 134 I3AD PL B722 273 13AH PL B722 273 I3AO PR D87 072001 13AT PR D86 052017 I3AV PR 111 081802 136 I3AV PR 111 081802 136 I3AF PL B719 42 137 I3T EPJ C73 2568 133 JHEP 1303 037 7	L. Bergstrom et al. M. Boliev et al. M. Cabrera, J. Casas, R. de Aus S. Chatrchyan et al. S. Chatrchyan et al.	stri (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY LEITE TAN		PR D93 002009 JHEP 1607 027 JHEP 1607 027 JHEP 1608 122 EPJ C76 317 EPJ C76 439 EPJ C76 449 JHEP 1610 006 JHEP 1610 006 JHEP 1610 009 JHEP 1612 013 PR D94 112004 PR D94 112004 PR D94 112004 PR D94 112004 PR D958 152 PL B758 152 PL B758 152 PL B759 9 JCAP 1611 021 DPL 112 0000	 V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. 	(CMS (CMS (CMS (CMS (CMS (CMS (CMS (CMS	 Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) 	BERGSTROM BOLIEV CABRERA CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN	13 PRL 111 171101 J CAP 1309 019 13 JLAP 1309 019 13 PL B718 015 13A JAB JHEP 1307 122 13AH PL B722 273 I3AO PR D87 072001 13AT PR D88 052017 I3AV PRL 111 081802 13A PL P1 301 077 I3AF PL B719 42 13T EPJ C73 2568 I3M JHEP 1303 037 - 041 (erral.) 14P 1207 041 (erral.)	L. Bergstrom et al. M. Boliev et al. M. Cabrera, J. Casas, R. de Aus S. Chatrchyan et al. S. Chatrchyan et al.	stri (CMS Collab.) (CMS Collab.)
KHACHATRY. KHACHATRY. KHACHATRY. KHACHATRY. KHACHATRY. KHACHATRY. KHACHATRY. KHACHATRY. KHACHATRY. LEITE TAN AAD		PR D93 002009 JHEP 1607 027 JHEP 1607 027 JHEP 1608 122 EPJ C76 317 EPJ C76 439 EPJ C76 439 JHEP 1610 006 JHEP 1610 006 JHEP 1610 004 PR D94 112004 PR D94 112004 PR D94 112004 PR D958 152 PL B758 152 PL B758 512 PL B759 9 JCAP 1611 021 PR 192 102010	 V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. C. Khachatryan et al. C. Khachatryan et al. C. Khachatryan et al. C. Khachatryan et al. C. G. Ad et al. 	(CM (CM (CM (CM (CM (CM (CM (CM (CM (CM	Collab.) Collab.)	BERGSTROM BOLIEV CABRERA CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN AIso CHATR CHYAN ELLIS	13 PRL 111 171101 JCAP 1309 019 13 JLEP 1307 1182 13 PL B718 615 13AB JHEP 1307 122 13AH PL B722 273 13AF PR D88 052017 13AV PR 111 081802 13A 13AV PR 111 081802 13G 13AV PR 111 081802 13G 13AV PR 111 081802 13G 13AV PR 110 301 037 13H PL B719 42 13T EPJ C73 2568 130J 041 (errat.) 13W JHEP 1303 037 041 (errat.) 13W JHEP 1303 031 13W JHEP 1303 031 11 13B EPJ C73 2403 11	L. Bergstrom et al. M. Boliev et al. M. Cabrera, J. Casas, R. de Au: S. Chatrchyan et al. S. Ellis et al.	stri (CMS Collab.) (CMS Collab.)
КНАСНАТКУ. КНАСНАТКУ. КНАСНАТКҮ. КНАСНАТКҮ. КНАСНАТКҮ. КНАСНАТКҮ. КНАСНАТКҮ. КНАСНАТКҮ. КНАСНАТКҮ. КНАСНАТКҮ. LEITE TAN AAD AAD AAD		PR 033 052009 JHEP 1607 027 JHEP 1608 122 EPJ C76 437 EPJ C76 443 EPJ C76 460 JHEP 1610 026 JHEP 1610 129 PR D94 112004 PR D94 112004 JHEP 1612 013 PL B757 6 PL B758 152 PL B758 152 PL B758 152 PL B759 9 JGAP 1611 021 PR 192 012010 JHEP 1501 068 JHEP 1501 168	 V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. Q. Khachatryan et al. Q. Khachatryan et al. Q. Khachatryan et al. Q. Khachatryan et al. Q. Khachatryan et al. Q. Ad. et al. G. Aad et al. G. Aad et al. 	(CM (CM (CM (CM (CM (CM (CM (CM (CM (CM	 Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) 	BERGSTROM BOLIEV CABRERA CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN CHATR CHYAN Also CHATR CHYAN ELLIS JIN KOPP	13 PRL 111 171101 JCAP 1309 019 13 JFAP 1307 112 13AB JHEP 1307 122 13AB JHEP 1307 122 13AF PL B722 273 13AO PR D87 072001 13AT PR D88 052017 13AV PRL 111 081802 13G 13AV PRL 111 081802 13G 13H PL B719 42 13T EPI 073 2568 13V JHEP 1303 037 041 (errat.) 13B EPJ 073 2403 13B EPJ 073 2403 111 13B EPJ 073 2403 131 13B EPJ 073 2403 13 13F BE 80 76013 12	L. Bergstrom et al. M. Boliev et al. M. Boliev et al. S. Chatrchyan et a	stri (CMS Collab.) (CMS Collab.)

2061 Searches Particle Listings Supersymmetric Particle Searches

AAD AAD	12AF 12AG	PL B714 180 PL B714 197		G. Aad et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
AAD AAD	12 A N 12 A S	PRL 108 181802 PRL 108 261804		G. Aad et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
AAD Also	12AX	PR D85 012006 PR D87 099903	(errat)	G. Aad et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
AAD	12 BJ	EPJ C72 1993	(enu.)	G. Aad et al.	(ATLAS Collab.)
AAD	12 CJ 12 CM	EPJ C72 2215		G. Aad et al.	(ATLAS Collab.)
AAD AAD	12 CP 12 CT	PL B718 411 JHEP 1212 124		G. Aad et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
AAD AAD	12 P 12 R	EPJ C72 1965 PL B707 478		G. Aad et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
AAD	12T	PL B709 137		G. Aad et al.	(ATLAS Collab.)
AALTONEN	12 VV 12 AB	PR D85 092001		T. Aaltonen et al.	(CDF Collab.)
ABA ZOV ABBAS I	12AD 12	PR D86 071701 PR D85 042002		V.M. Abazov et al. R. Abbasi et al.	(DO Collab.) (IceCube Collab.)
AKIMOV AKULA	12 12	PL B709 14 PR D85 075001		D.Yu. Akimov et al. S. Akula et al.	(ZEPLIN-III Collab.) (NEAS_MICH)
ANGLOHER	12	EPJ C72 1971		G. Angloher et al.	(CRESST-II Collab.)
ARBEY	12A	PL B708 162		A. Arbey et al.	(XENONIOU CONAD.)
ARCHAMBAU BAER	. 12 12	PL B/11 153 JHEP 1205 091		S. Archambault et al. H. Baer, V. Barger, A.	(PICASSO Collab.) Mustafayev (OKLA, WISC+)
BALAZS BECHTLE	12 12	EPJ C73 2563 JHEP 1206 098		C. Balazs et al. P. Bechtle et al.	
BEHNKE	12	PR D86 052001 PR D90 079902	(errat)	E. Behnke et al. E. Behnke et al.	(COUPP Collab.) (COUPP Collab.)
BESKIDT	12	EPJ C72 2166	(enu.)	C. Beskidt et al.	(KARLE, JINR, ITEP)
BUCHMUEL	12	EPJ C72 2020		O. Buchmueller et al.	0, 5. SCOPEI (IOKI, SUGA)
CAO CHATRCHYAN	12A 12	PL B/10 665 PR D85 012004		J. Cao et al. S. Chatrchyan et al.	(CMS Collab.)
CHAT R CHYAN CHAT R CHYAN	12AE 12AI	PRL 109 171803 JHEP 1208 110		S. Chatrchyan et al. S. Chatrchyan et al.	(CMS Collab.) (CMS Collab.)
CHATRCHYAN	12AL	JHEP 1206 169		S. Chatrohyan et al.	(CMS_Collab.)
CHATRCHYAN	12 AT	JHEP 1210 018		S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	12BJ 12BK	JHEP 1211 147 JHEP 1211 172		S. Chatronyan et al. S. Chatrohyan et al.	(CMS Collab.)
CHATRCHYAN	12BO 12L	JHEP 1212 055 PL B713 408		S. Chatrchyan et al. S. Chatrchyan et al.	(CMS Collab.) (CMS Collab.)
DAW	12 12 A	ASP 35 397 EPL 99 61001		E. Daw et al. HK Dreiner M Kram	(DRIFT-IId Collab.) er I Tattersall (BONN+)
ELLIS	12B	EPJ C72 2005		J. Ellis, K. Olive M. Felizardo, et al.	(SIMPLE Collab.)
FENG	12 B	PR D85 075007		J. Feng, K. Matchev, E	D. Sanford
KA DA STIK KIM	12 12	JHEP 1205 061 PRL 108 181301		M. Kadastik et al. S.C. Kim et al.	(KIMS Collab.)
STREGE AAD	12 11AA	JCAP 1203 030 EPJ C71 1828		C. Strege et al. G. Aad et al.	(LOIC, AMST, MADU, GRAN+) (ATLAS Collab.)
AAD AAD	11G 11H	PRL 106 131802 PRI 106 251801		G. Aad et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
AAD	11K	PL B701 1		G. Aad et al. G. Aad et al.	(ATLAS Collab.)
AAD	11P	PL B701 550		G. Aad et al.	(ATLAS Collab.)
AAD ABRAMOWSKI	11 Z 11	PRL 106 161301		G. Aad et al. A. Abramowski et al.	(ALLAS COND.) (H.E.S.S. Collab.)
AHMED ARMENGAUD	11A 11	PR D84 011102 PL B702 329		Z. Ahmed et al. E. Armengaud et al.	(CDMS and EDELWEISS Collabs.) (EDELWEISS-II Collab.)
BUCHMUEL	11 11B	EPJ C71 1583 EPI C71 1722		O. Buchmueller et al. O. Buchmueller et al.	,
CHATRCHYAN	11B	JHEP 1106 093		S. Chatrohyan et al.	(CMS_Collab.)
CHATRCHYAN	11E	JHEP 1107 098		S. Chatrchyan et al.	(CMS Collab.)
KHACHATRY	11 V 11	PRL 106 011801		V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY ROSZKOWSKI	11 C 11	JHEP 1103 024 PR D83 015014		V. Khachatryan et al. L. Roszkowski et al.	(CMS Collab.)
AALT ON EN AALT ON EN	10 10 R	PRL 104 011801 PRL 105 081802		T. Aaltonen et al. T. Aaltonen et al.	(CDF Collab.) (CDF Collab.)
AALT ON EN ABAZOV	10 Z 10 I	PRL 105 191801 PL 8693 95		T. Aaltonen et al. V.M. Abazov et al.	(CDF Collab.) (D0 Collab.)
ABAZOV	10 M	PRL 105 191802 PRL 105 211802		V.M. Abazov et al.	(D0 Collab.) (D0 Collab.)
ABAZOV	10 P	PRL 105 221802		V.M. Abazov et al.	(D0 Collab.)
ACKERMANN	10 10	JCAP 1004 014 JCAP 1005 025		M. Ackermann	(Fermi-LAT Collab.)
ARMENGAUD ELLIS	10 10	PL B687 294 EPJ C69 201		E. Armengaud et al. J. Ellis, A. Mustafayev,	(EDELWEISS-II Collab.) K. Olive
ABA ZOV ABBAS I	09M 09B	PRL 102 161802 PRL 102 201302		V.M. Abazov et al. R. Abbasi et al.	(DO Collab.) (IceCube Collab.)
AHMED	09	PRL 102 011301		Z. Ahmed et al. G. Anglober et al.	(CDMS_Collab.)
BUCHMUEL	09	EPJ C64 391		O. Buchmueller et al.	(LOIC, FNAL, CERN+)
LEBEDENKO	09	PR D80 052010		V.N. Lebedenko et al.	(ZEPLIN-III Collab.)
SORENSEN	09A	NIM A601 339		P. Sorensen et al.	(XENON10 Collab.)
ANGLE	08F 08	PL 8659 856 PRL 100 021303		J. Angle et al.	(DU CONAD.) (XENON10 Collab.)
ANGLE BEDN YAKOV	08A 08	PRL 101 091301 PAN 71 111	v	J. Angle <i>et al.</i> A. Bednyakov, H.P. Kla	(XENON10 Collab.) pdor-Kleingrothaus, I.V. Krivosheina
BEHNKE	08	Translated from ` SCI 319 933	YAF 71 :	112. E. Behnke	(COUPP Collab.)
BENETTI BUCHMUEL	08 08	ASP 28 495 JHEP 0809 117		P. Benetti et al. O. Buchmueller et al.	(WARP Collab.)
ELLIS ABULENCIA	08 07 H	PR D78 075012 PRI 98 131804		J. Ellis, K. Olive, P. S. A Abulencia et al	andick (CERN, MINN) (CDE Collab.)
ALNER	07A	ASP 28 287		G.J. Alner et al.	(ZEPLIN-II Collab.)
ELLIS	07	JHEP 0706 079		J. Ellis, K. Olive, P. S.	andick (CERN, MINN)
ABBIENDI	07A 06B	EPJ C46 307		G. Abbiendi et al.	(CPAL Collab.)
ACHTERBERG ACKERMANN	06 06	ASP 26 129 ASP 24 459		A. Achterberg et al. M. Ackermann et al.	(AMANDA Collab.) (AMANDA Collab.)
AKERIB AKERIB	06 06 A	PR D73 011102 PRL 96 011302		D.S. Akerib et al. D.S. Akerib et al.	CDMS_Collab.
ALLANACH	06	PR D73 015013		B.C. Allanach et al.	(como como.)
DE-AUSTRI	06	JHEP 0605 002		R.R. de Austri, R. Trot	ta, L. Roszkowski
DEBOER	06	PL B636 13		w. de Boer et al.	OPAL SLD and working groups
LEP-SLC	06	PRPL 427 257		ALEPH, DELPHI, L3, 1	OPAL, SED and working groups
LEP-SLC SHIMIZU SMITH	06 06A 06	PRPL 427 257 PL B633 195 PL B642 567		Y. Shimizu et al. N.J.T. Smith, A.S. Mu	rphy, T.J. Summer
LEP-SLC SHIMIZU SMITH ABAZOV ABDALLAH	06 06 A 06 05 A 05 B	PRPL 427 257 PL B633 195 PL B642 567 PRL 94 041801 EPJ C38 395		Y. Shimizu et al. N.J.T. Smith, A.S. Mu V.M. Abazov et al. J. Abdallah et al	rphy, T.J. Summer (D0 Collab.) (DELPHI Collab.)
LEP-SLC SHIMIZU SMITH ABAZOV ABDALLAH AKERIB ALNER	06 06A 05A 05B 05 05 05	PRPL 427 257 PL B633 195 PL B642 567 PRL 94 041801 EPJ C38 395 PR D72 052009 PL B616 17		ALEPH, DELPHI, LS, Y Y. Shimizu et al. N.J.T. Smith, A.S. Mu V.M. Abazov et al. J. Abdallah et al. D.S. Akerib et al. G.J. Alner et al.	rphy, T.J. Summer (D0 Collab.) (DELPHI Collab.) (UK Dark Matter Collab.)

5 PL B624	186	M. Barnab
5 PR D71	095007	J. Ellis et
5 PR D71	122002	V. Sanglar
4 EPJ C32	453	G. Abbient
4F EPJ C33 4H EPI C35	14.9	G. Abbiend
4H EFJ C33 4N DI D403	167	G. Abbient
4H FPLC34	145	I Abdalla
4M EPJ C36	1	J. Abdalla
EPJ C37	129 (errat.)	J. Abdalla
4 PL B580	37 ` ′	P. Achard
4E PL B587	16	P. Achard
4 PRL 93 :	211301	D.S. Akeri
4 JHEP 04	10 052	E. Baltz, F
4 JHEP 04	03 012	G. Belange
4 PR D 69	037302	A. Bottino
4 PR D70	083523	5. Desai e
4 PR D09	015005	J. Ellis et
4 PI B583	247	A Heister
4A PR D70	075006	A Pierce
3L PL B572	8	G. Abbieno
3M EPJ C31	421	J. Abdalla
3 ASP 19	691	B. Ahmed
3 PR D 68	082002	D.S. Akeri
3 JCAP 03	05 006	H. Baer, C
3A JCAP 03	09 007	H. Baer ei
3 PR D68	043506	A. Bottino
3A PR D67	032005	A. Bollino
3 ASP 18	295	I Flis K
3B NP B652	25.9	L Ellis et
3C PI B565	176	J Ellis et
3D PL B573	162	J. Ellis et
3E PR D 67	123502	J. Ellis et
3C EPJ C28	1	A. Heister
3G EPJ C31	1	A. Heister
3 ASP 18 :	525	H.V. Klapo
3 PL B568	55	A. Lahana
3 PL B5/2	145	A. Takeda
2 PR D66	122003	D. Abrams
2H PRE 69. 2 ASD 19.	281801	G Anglobe
2 ASP 10 - 2 hen-nh/0	45 911417	R Arnowit
2B PI B532	318	J Ellis A
2 PL B526	191	A. Heister
2E PL B526	206	A. Heister
2J PL B533	223	A. Heister
2N PL B544	73	A. Heister
2 PL B527	18	H.B. Kim
2B JHEP 02	12 034	Y.G. Kim
2 EPJ C23	185	A. Lahana
2B ASP 16 -	525	A. Morales
2 C PL B532	0	A. Morales
1 EPJ C19 1B EPI C19	29	P. Abreu e
1 PRI 86 1	5004	F Baltz F
1 PL B499	67	R. Barate
1B EPJ C19	415	R. Barate
1C PL B518	117	V. Barger,
1 PR D63	022001	L. Baudis
1 PL B509	197	R. Bernab
1 PR D 63	125003	A. Bottino
1 PR D64	125010	A. Corsett
16 PL B510	236	J. Ellis et
1 DI DE10	005010	J. EIIIS, A. M.E. Com
1 PL D312 1 PL B518	232	A Labana
0 EPI C12	1	G Abbienr
0G EPJ C14	51	G. Abbiend
OH EPJ C14	187	G. Abbiend
EPJ C16	707 (errat.)	G. Abbiend
0D EPJ C18	253	G. Abbiend
0J PL B479	129	P. Abreu e
0Q PL B478 0T DI D495	65 95	P. Abreu e
01 PL B405 011 PL B487	36	P. Abreu e
0V EPI C16	211	P Ahren e
0W PL B489	38	P. Abreu e
0Z EPJ C17	53	P. Abreu e
0 PRL 84 !	5699	R Abusaid
0D PL B472	420	
	420	M. Acciarr
0 NP B565	124	M. Acciarr E. Accoma
0 PL B480	124 23 282	M. Acciarr E. Accoma R. Bernab
0 NP 8585 0 PL 8480 0C EPJ C18 0D NIP 2 1	124 23 283	M. Acciarr E. Accoma R. Bernab R. Bernab R. Bernab
0 NP 8585 0 PL 8480 0C EPJ C18 0D NJP 2 1 0B PR D62	124 23 283 5 035012	M. Acciarr E. Accoma R. Bernab R. Bernab R. Bernab C. Boehm.
0 NP B383 0 PL B480 0C EPJ C18 0D NJP 2 19 0B PR D62 0 PR D62	124 23 283 5 035012 075010	M. Acciarr E. Accoma R. Bernab R. Bernab R. Bernab C. Boehm, J. Ellis et
0 NP B383 0 PL B480 0C EPJ C18 0D NJP 2 1 0B PR D62 0 PR D62 0 PL B482	124 23 283 5 035012 075010 388	M. Acciarr E. Accoma R. Bernab R. Bernab R. Bernab C. Boehm, J. Ellis <i>et</i> J.L. Feng,
0 NP B383 0 PL B480 0C EPJ C18 0D NJP 2 1! 0B PR D62 0 PR D62 0 PL B482 0 CERN-EF	124 23 283 5 035012 075010 388 -2000-016	M. Acciarr E. Accoma R. Bernabi R. Bernabi C. Boehm, J. Ellis et J.L. Feng, LEP Collal
0 NP 8383 0 PL 8480 0C EPJ C18 0D NJP 2 1 0B PR D62 0 PR D62 0 PL 8482 0 CERN-EF 0 PL 8482	124 23 283 5 035012 075010 388 2000-016 268	M. Acciarr E. Accoma R. Bernabi R. Bernabi C. Boehm, J. Ellis et J.L. Feng, LEP Collal A. Morales
0 NP B363 0 PL B480 0C EPJ C18 0D NJP 2 19 0B PR D62 0 PL B482 0 CERN-EF 0 PL B489 0 EPJ C15 0 PL B489	124 23 283 55 0055012 075010 388 -2000-016 268 1 220	M. Acciarr E. Accoma R. Bernabi R. Bernabi C. Boehm, J. Ellis <i>et</i> J.L. Feng, LEP Collal A. Morales D.E. Groot
0 NP B363 0 PL B480 0C EPJ C18 0D NJP 2 19 0B PR D62 0 PL B482 0 CERN-EF 0 PL B482 0 EPJ C15 0 PL B473	124 23 283 5 005012 075010 388 -2000-016 268 1 330 992	M. Acciarr E. Accoma R. Bernabi R. Bernabi C. Boehm, J. Ellis <i>et</i> J.L. Feng, LEP Collal A. Morales D.E. Groot N.J.C. Spo
0 NP B363 0 PL B480 0C EPJ C18 0D NJP 2 11 0B PR D62 0 PL B482 0 CERN-EF 0 PL B489 0 EPJ C15 0 PL B473 9H PL B456	124 23 283 55 035012 075010 388 -2000-016 268 1 330 283 268	M. Acciarr E. Accoma R. Bernabi R. Bernabi C. Boehm, J. Ellis et J.L. Feng, LEP Collal A. Morales D.E. Groot N.J.C. Spo M. Acciarr
0 PL B480 0C EPJ C18 0D NJP 2 1: 0B PR D62 0 PR D62 0 PL B482 0 CERN-EF 0 PL B482 0 EPJ C15 0 PL B473 9H PL B456 9R PL B470 9W PI B471	124 23 283 5 035012 075010 388 -2000-016 268 1 330 283 268 283 268 283	M. Acciarr E. Accoma R. Bernabi R. Bernabi C. Boehm, J. Ellis et J.L. Feng, LEP Collal A. Morales D.E. Groot N.J.C. Spo M. Acciarr M. Acciarr
0 NP B363 00 PL B480 00 PL B480 00 PL 542 00 PR D62 00 PL B482 00 PL B483 00 PL B483 00 PL B453 91 PL B456 91 PL B470 91 PL B470 91 PL D60	124 23 035012 075010 388 -2000-016 268 1 330 283 283 283 283 283 280 082002	M. Acciarr E. Accoma R. Bernabi R. Bernabi C. Boehm, J. Ellis et J.L. Feng, LEP Collal A. Morales D.E. Groot M. Acciarr M. Acciarr M. Acciarr
0 PL B480 0C PL B480 0D PL B480 0D NJP 2 18 0B PR D62 0 PL B482 0 CERN-EF 0 PL B482 0 EPJ C15 0 PL B473 9H PL B450 9W PL B471 9 PR D59 9 PR D59	124 23 283 5 5 035012 075010 388 1 22000-016 268 1 330 283 330 283 268 280 082002 0022001	M. Acciarr E. Accoma R. Bernabu R. Bernabu C. Boehm, J. Ellis et J.L. Feng, LEP Collal A. Morales D.E. Grooi N.J.C. Spc M. Acciarr M. Acciarr M. Acciarr M. Acciarr M. Acciarr M. Acciarr
0 PL B480 0C PL B480 0D PL B480 0D PL D52 0D PR D62 00 PL B482 00 CERN-EF 00 PL B482 00 PL B482 00 PL B482 00 PL B473 9H PL B470 9W PL B471 9 PR D59 9C NP B563 9C PL B456 9C PL B471 9 PR D59 9C NP B563 9C PL B456 9C PL B471 9 PR D59 9C NP B563 9C PL B457 9C	124 23 283 5 035012 075010 388 -2000-016 268 1 330 283 283 268 280 082002 022001 97	M. Acciarr E. Accoma R. Bernabu R. Bernabu R. Bernabu C. Boehm, J. Ellis et J.L. Feng, LEP Collal A. Morales D.E. Groo N.J.C. Spc M. Acciarr M. Acciarr M. Acciarr M. Acciarr M. Acciarr M. Acciarr M. Acciarr M. Acciarr
0 PL B480 0C PJ CLB B480 0D NJP 218 0B PR D62 0 PL B482 0 CERN-EF 0 PL B482 0 CERN-EF 0 PL B482 0 EPJ CL5 0 PL B470 9W PL B471 9W PL B471 9 PR D50 9 PL B461 0 PL B461	124 23 283 5 005012 005010 388 2-2000-016 268 283 283 283 283 286 280 22001 97 371	M. Acciarr E. Accoma R. Bernabu R. Bernabu C. Boehm, J. Ellis et J.L. Feng, LEP Collad A. Morales D.E. Groon M. Acciarr M. Acciar M. Acciar M.
0 NP B363 0 PL B480 0C EPJ C18 0B PR D62 0 PL B482 0 PL B482 0 PL B482 0 PL B482 0 PL B483 0 PL B473 9 PL B471 9 PR D60 9 PR D59 9 PL B461 8 P PL B461 9 PL B461	124 23 305012 075010 388 -2000-016 268 1 330 283 283 283 280 082002 022001 97 371 491	M. Acciarr E. Accoma R. Bernabu R. Bernabu C. Boehm, J. Ellis et J.L. Feng, LEP Collal A. Morales D.E. Groon N.J.C. Spc M. Acciarr M.
0 NP B363 00 PL B480 00 PL B480 00 NJP 2 1 00 PL PR D62 00 PL B482 00 PL B482 00 PL B482 00 PL B489 00 PL B489 00 PL B473 91 PL B456 91 PL B471 99 PR D50 99 PR D59 99 PL B444 85 PL B444	124 22 28 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	M. Acciarr E. Accoma R. Bernabu R. Bernabu C. Boehm, J. Ellis et J.L. Feng, LEP Collal A. Morales D.E. Groon M. Acciarr M. Acciarr M. Acciarr M. Acciarr M. Acciarr P. Belli et W. Ootani P. Abreu e Acciarr
0 NP B363 00 PL B480 00 PL B480 00 NJP 2 1: 00 PR D62 00 PL B482 00 PL B482 00 PL B483 00 PL B483 91 PL B450 91 PL B451 99 PR D59 90 PL B451 89 PL B461 89 PL B461 89 PL B461 89 PL B461 89 PL B461 89 PL B461 80 PL B461 90 PL B461 90 PL B461 90 PL B461 90 PL B462 90	124 124 23 305012 075010 388 1 330 2268 268 280 280 082002 022001 97 371 491 207 175 175	M. Acciarr E. Accoma R. Bernabu R. Bernabu C. Boehm, J. Ellis <i>et</i> J.J. Feng, LEP Collal A. Morales D.E. Groov N.J.C. Spc M. Acciarr M. Acciarr
0 NP B363 00 PL B480 00 PL B480 00 NJP 2 1: 00 PR D62 00 PL B482 00 PL B482 00 PL B482 00 PL B487 90 PL B470 90 PL B470 90 PL B470 90 PR D59 90 PL B474 87 PL B484 87 PJ C433 88 PL B483 88 FPL C433	124 124 23 5 035012 075010 388 *2000-016 268 283 283 283 280 082002 022001 97 371 491 207 195 175 175 133	M. Acciarr E. Accoma R. Bernabu R. Bernabu C. Boehm, J. Ellis <i>et</i> J.L. Feng, LEP Collal A. Morales D.E. Groov N.J.C. Spc M. Acciarr M. Acciarr M. Acciarr M. Acciarr M. Acciarr M. Acciarr M. Acciarr M. Acciarr K. Ackerst R. Barate R. Barate
NP B355 OP F4800 OC FPJ OD NJP DD NJP DB PR D4 PK D5 PR D6 PR D6 PR D7 PL D8 PR D8 PR D9 PR D9 PR D9 PR D9 PR D8 PR D9 PR D9 PR D9 PR D9 PR D8 PL D9 PR D8 PL D9 PR D88 PL D9 PL D88 PL D9 C D88 PL D9 C D88 PL D9 C D88	124 124 23 263 1055012 0755010 388 -2000-016 268 1 330 283 268 280 082002 0022001 97 371 491 195 175 175 133 379	M. Acciarr E. Accoma R. Bernabu R. Bernabu R. Bernabu C. Boehm, J. Ellis <i>et</i> J.J. Feng, LEP Collal A. Morales D.E. Grooj N.J.C. Spc M. Acciarr M. Barta e Barta e Barta e
0 NP B368 0 NP B480 0 NP 241 0 PR D62 0 PR D63 0 PR D64 0 PR D63 0 PR D64 0 PR D63 0 PR D64 0 PR	124 124 23 263 105012 075010 388 -2000-016 268 1 330 283 283 283 283 283 283 283 283	M. Acciarr E. Accoma R. Bernabu R. Bernabu C. Boehm, J. Elis J. Elis et J. L. Feng, LEP Collal A. Morales D.E. Grooi N.J.C. Spc M. Acciarr M. Acciar M. A
0 NP B355 0 NP B480 0 P D480 0 NP D420 0 NP D420 0 P D430 0 P D433 0 P D430 0 P D433 0 P D433 0 P D433 0 P D433 0 P D433 </td <td>124 124 23 263 5 5 5 5 5 5 5 5 5 5 5 5 5</td> <td>M. Acciarr E. Accoma R. Bernabu R. Bernabu R. Bernabu C. Boehm, J. Ellis <i>et</i> J.J. Feng, LEP Collal A. Morales D.E. Groon M. Acciarr M. J. C. Specific Acciarr M. Acciarr M. J. C. Specific Acciarr M. Acciarr M. J. C. Specific Acciarr M. J. C. Specific Acciarr M. Acciarr M. J. C. Specific Acciarr M. J. C. Specific Acciarr M. J. J. J. J. J. J. J. J. J. J. J. J. J.</td>	124 124 23 263 5 5 5 5 5 5 5 5 5 5 5 5 5	M. Acciarr E. Accoma R. Bernabu R. Bernabu R. Bernabu C. Boehm, J. Ellis <i>et</i> J.J. Feng, LEP Collal A. Morales D.E. Groon M. Acciarr M. J. C. Specific Acciarr M. Acciarr M. J. C. Specific Acciarr M. Acciarr M. J. C. Specific Acciarr M. J. C. Specific Acciarr M. Acciarr M. J. C. Specific Acciarr M. J. C. Specific Acciarr M. J. J. J. J. J. J. J. J. J. J. J. J. J.
0 NP B363 0 NP B480 0 P D480 0 P D480 0 NP D420 0 P D620 0 P D620 0 P D620 0 CRN-LE D 0 P D620 0 CRN-LE D 0 P D620 0 CRN-LE D 0 P D620 0 P D630 9 P D843 9 P D843 8 P D433 8 P D433 8 P D444 8 P D434 8 P D434 8 P D444	124 124 23 30 305012 075010 388 1 268 1 268 268 280 082002 0022001 97 371 491 207 175 433 379 305002 367 1	M. Acciar E. Accoma R. Bernabl R. Bernabl C. Boehm, J. Ellis et J. L. Feng, LEP Collal LEP Collal LEP Collal R. A. Morales D.E. Groot M. Acciar M.
0 NP B365 0 PIC 4830 PIC 4840 0 PIC 10 PIC 10 0 PIC 10 PIC	124 124 23 35 35 35 35 35 35 35 35 35 3	M. Acciarr M. Acciarr R. Bernabi R. Bernabi C. Boehm, J. Ellis et J.L. Feng, LEP Collat A. Morales D.E. Grooven M. Acciarr M. Acciar M. Ac
0 P PA80 0 P PA80 0 P PA80 0 P PA80 0 P PA20 0 P PA30 0 P PA20 0 P PA30 0 P PA50 9 P PA50	124 124 23 263 1055012 0755010 388 2000-016 268 1 330 283 268 280 022001 97 371 491 195 175 133 379 095002 367 1 567 3	M. Acciart R. Bernabi R. Bernabi R. Bernabi C. Boehm, J. Ellis et J.L. Feng, LEP Collal A. Morales D.E. Groop M. Acciart M. Barte M. B
0 NP B368 00 PF B480 00 PF PF C18 00 PF D C18 00 PF D C2 00 PF D C	124 124 23 305012 075010 388 -2000-016 268 1 330 2283 283 283 283 283 283 283 28	M. Acciarr R. Bernabi R. Bernabi R. Bernabi C. Boehm, J. Ellis et LEP Collal A. Morales D.E. Groon N.J.C. Spc M. Acciarr M. Colari M. Acciarr M. Acciar M. Acciar M. Acciarr M. Acciarr M. Acciar M. Acciar M. Ac
0 NP B365 0 PIC 4830 PIC 4840 0 PIC 10 PIC 10 0 PIC 10 PIC	228 228 505012 2075010 388 -2000-016 268 1 330 283 268 280 022001 283 268 280 022001 97 371 491 1075 175 133 379 095002 367 1 567 3 1879 2374 597	M. Acciarr E. Accoma R. Bernabi R. Bernabi R. Bernabi C. Boehm, J. Ellis et J.L. Feng, LEP Collal A. Morales D.E. Grooon N.J.C. Spp M. Acciarr M. Acciar M. Acciarr M. Acciar M.
0 NP B335 0 NP B430 0 P D4840 0 NP D420 0 P D420 0 C CRN-E 0 P D420 0 C RN-E 0 P D430 9 P D430 9 P D433 9 P D434 9 P D434 9 P D433<	124 124 23 30 5 035012 075010 388 1 22080 268 268 268 268 268 268 268 268 268 268	M. Acciarr R. Bernabi R. Bernabi R. Bernabi C. Boehm, J. Ellis et LEP Collal A. Morales D.E. Groov N.J.C. Spc M. Acciarr M. Barth M. Barth
0 NP B365 0 NP B480 0 P D4840 0 P D480 0 P D462 0 P D420 0 P D430 0 P D430 9 P D441 85 P D443 85 P D443 85 P D433 85 P D443 86 P D433 87 7 ASP 7.7 7 P <t< td=""><td>124 224 235 355 355 355 355 355 355 365 268 268 268 280 2268 280 283 268 280 283 268 280 283 268 280 297 371 491 207 195 175 195 175 195 195 175 367 297 367 195 195 195 195 195 195 195 195</td><td>M. Acciarr M. Acciarr R. Bernabi R. Bernabi R. Bernabi C. Boehm, J. Ellis et LEP Collal A. Morales D.E. Groov N.J.C. Spc M. Acciarr M. Acciar M</td></t<>	124 224 235 355 355 355 355 355 355 365 268 268 268 280 2268 280 283 268 280 283 268 280 283 268 280 297 371 491 207 195 175 195 175 195 195 175 367 297 367 195 195 195 195 195 195 195 195	M. Acciarr M. Acciarr R. Bernabi R. Bernabi R. Bernabi C. Boehm, J. Ellis et LEP Collal A. Morales D.E. Groov N.J.C. Spc M. Acciarr M. Acciar M
0 P PA80 0 P PA80	124 124 23 263 5 035012 075010 388 1 22000-016 268 268 268 280 022001 97 371 491 297 195 175 175 133 379 9095002 367 1 155 547 3 367 1 1579 2374 557 537	M. Acciarr E. Accom R. Bernable R. Bernable R. Bernable R. Bernable J. Ellis et J.L. Feng, LEP Collal A. Morales D.E. Groot N.J.C. Spc M. Acciarr M. Acciar M. Acci
0 NP B368 0 NP B480 0 NP 248 0 NP 248 0 PR D62 0 PR D63 0	124 124 23 30 205012 075010 388 -2000-016 268 1 283 268 280 082002 0022001 97 371 491 176 493 379 3079 367 175 175 175 175 175 175 175 17	M. Acciart M. Acciart R. Bernabi R. Bernabi R. Bernabi C. Boehm, J. Ellis et LEP Collal A. Morales D.E. Groov N.J.C. Spc M. Acciart M. Bartis M.
0 NP B365 0 NP B480 0 P D4840 0 P D480 0 P D480 0 P D420 0 P D430 0 P D441 0 P D430 0 P D430 0 P D441 0 P D430 0 P D430 0 P D441 0 P D430 0 P D430 0 P D430 <td>124 124 23 263 105012 075010 388 -2000-016 268 1 330 283 268 280 022001 283 268 280 022001 022001 97 371 175 137 195 567 3 367 1 1579 2374 557 597 63 7 99 392</td> <td>M. Acciarr M. Acciarr R. Bernabi R. Bernabi R. Bernabi C. Boehm, J. Ellis et J.L. Feng, LEP Collat A. Morales D.E. Grooven M. Acciarr M. Badel, N. Baer, N. L. Bergstr J.D. Lewin V. Brezin H. Baer, N. L. Bergstr J.D. Lewin M. Acciarr</td>	124 124 23 263 105012 075010 388 -2000-016 268 1 330 283 268 280 022001 283 268 280 022001 022001 97 371 175 137 195 567 3 367 1 1579 2374 557 597 63 7 99 392	M. Acciarr M. Acciarr R. Bernabi R. Bernabi R. Bernabi C. Boehm, J. Ellis et J.L. Feng, LEP Collat A. Morales D.E. Grooven M. Acciarr M. Badel, N. Baer, N. L. Bergstr J.D. Lewin V. Brezin H. Baer, N. L. Bergstr J.D. Lewin M. Acciarr
0 NP B363 0 NP B484 0 NP 248 0 NP 248 0 NP 248 0 PR D62 0 PR D63 0 PR D54 0 PR	124 124 23 30 035012 075010 388 -2000-016 268 1 330 283 268 268 2268 2268 2268 2268 2268 22	M. Acciarr R. Bernabi R. Bernabi R. Bernabi C. Boehm, J. Ellis et LEP Collal A. Morales D.E. Grooo N.J.C. Spc M. Acciarr M. Acciarr M. Acciarr M. Acciarr M. Acciarl M. Acciarl
0 NP B365 0 NP B480 0 P D4840 0 P D480 0 P D462 0 P D420 0 P D420 0 P D420 0 P D420 0 CEN-LE D 0 P D420 0 CEN-LE D 0 P D430 9 P D400 9 P D401 9 P D404 9 P D40	124 22 28 5 5 5 5 5 5 5 5 5 5 5 5 5	M. Acciarr M. Acciarr R. Bernabi R. Bernabi R. Bernabi C. Boehm, J. Ellis et LEP Collal A. Morales D.E. Groov N.J.C. Spc M. Acciarr M. Acciarr
	5 PL B624 5 PR D71 5 PR D71 4 FPI C32 44 PPI C32 44 PPI C33 44 PR D70 45 PR D70 46 PR D70 47 PR D70 48 PR D70 49 PR D70 40 PR D70 30 ASP 10 31 JCAP 03 32 PR D66 33 PR D67 33 PR D67 34 PR D67 35 PR D67 36 PR D87 37 PR D87 38 PR D87 39 PR D67 30	5 PL B624 186 5 PR D71 095007 5 PR D71 122002 4 PJ C32 453 4F EPJ C32 143 4H EPJ C35 1 4H EPJ C36 1 4H EPJ C37 129 4PL PL B560 37 4 PL PC 037 4 PL PC 037 4 PL PC 037 4 PR PC 037 5 PR 070 055065 4 PR PC 035 4 PR PC 0305 060

s et al	(PICASSO	Collab.)
glard et al	(EDELWEISS	Collab)
biendi <i>et al.</i>	(OPAL	Collab.)
biendi <i>et al.</i> biendi <i>et al.</i>	(OPAL (OPAL	Collab.) Collab.)
biendi <i>et al.</i>	(OPAL	Collab.)
lallah et al.	(DELPHI	Collab.)
lallah <i>et al.</i> hard e <i>t al.</i>	(DELPHI (L3	Collab.) Collab.)
hard et al.	L3	Collab.)
tz, P. Gondolo	(CDMS II	conab.j
anger et al. Itino et al.		
saietal.	(Super-Kamiokande	Collab.)
s et al.		
ister <i>et al.</i> rce	(ALEPH	Collab.)
biendi <i>et al.</i> Lallah <i>et al</i>	(OPAL (DELPHI	Collab.) Collab.)
med et al.	(UK Dark Matter	Collab.)
er, C. Balazs	(CDM3	conab.j
eretal. Itino etal		
ttino, N. Fornengo, S. S	Scopel D Nath	
s, K.A. Olive, Y. Santo	so	
s et al. s et al.		
et al.		
ister et al.	(ALEPH	Collab.)
ister <i>et al.</i> Klapdor-Kleingrothaus e	(ALEPH t al.	Collab.)
nanas, D. Nanopoulos		
rams et al.	(CDMS	Collab.)
osta <i>et al.</i> gloher <i>et al.</i>	(CDF (CRESST	Collab.)
10witt, B. Dutta 5. A. Ferstl. K.A. Olive		
ister et al.	(ALEPH	Collab.)
ister et al.	(ALEPH	Collab.)
ister et al. Kim et al.	(ALEPH	Collab.)
Kim <i>et al.</i> Nanas. V.C. Spanos		
rales et al. rales et al	(COSME (LGEX	Collab.)
eu et al.	(DELPHI	Collab.)
tz, P. Gondolo	(DELPHI	Conab.)
rate et al. rate et al.	(ALEPH (ALEPH	Collab.) Collab.)
rger, C. Kao Idis <i>et al</i>	(Heidelberg-Moscow	Collab)
mabei <i>et al.</i> Hino <i>et al</i>	(DAMA	Collab.)
rsetti, P. Nath		
s et al. 5, A. Ferstl, K.A. Olive		
Gomez, J.D. Vergados vanas, D.V. Nanopoulos	, V. Spanos	
biendi <i>et al.</i> biendi <i>et al</i>	(OPAL	Collab.)
biendi <i>et al.</i>	(OPAL	Collab.)
biendi et al. biendi et al. biendi et al.	(OPAL (OPAL (OPAL	Collab.) Collab.) Collab.)
biendi et al. biendi et al. biendi et al. eu et al. eu et al.	(OPAL (OPAL (OPAL (OPAL (DELPHI (DELPHI	Collab.) Collab.) Collab.) Collab.) Collab.)
biendi et al. biendi et al. biendi et al. eu et al. eu et al. eu et al.	(OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI)	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
biendi et al. biendi et al. biendi et al. eu et al. eu et al. eu et al. eu et al. eu et al.	(OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
biendi et al. biendi et al. biendi et al. eu et al. eu et al. eu et al. eu et al. eu et al. eu et al.	(OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
biendi et al biendi et al eu et al. eu idi et al.	(OPAL (OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (CDMS) (CDMS) (CMS) (CMS) (CMS)	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
biendi et al biendi et al biendi et al eu et al eu et al eu et al eu et al eu et al usaidi et al ciarri et al.	(OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (CDMS (CDMS	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
biendi et al biendi et al biendi et al eu et al, eu et al, eu et al, eu et al, eu et al, eu et al, eu et al, ciarri et al, ciarri et al, mabei et al, mabei et al,	(OPAL (OPAL (OPAL (OPAL (DELPHI) (DELPHI) (DELPHI) (DELPHI) (OELPHI) (CDMS (CDMS (DAMA	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
biendi et al biendi et al biendi et al eu et al, eu et al, eu et al, eu et al, eu et al, eu et al, ciarri et al, ciarri et al, mabei et al, mabei et al, mabei et al, mabei et al,	(OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DAMA (DAMA (DAMA RES	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
biendi et al biendi et al biendi et al eu et al, eu et al, eu et al, eu et al, eu et al, eu et al, savidi et al. ciarri et al. nabei et al, mabei et	(OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DAMA (DAMA (DAMA (DAMA	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
biendi et al biendi et al biendi et al eu et al, eu et al, eu et al, eu et al, eu et al, eu et al, eu et al, sadi et al, ciarri et al, mabei et al, eng, K.T. Matchev, F.	(OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DAMA (DAMA (DAMA (DAMA (DAMA)	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
biendi et al biendi et al biendi et al biendi et al eu et al, eu et al, eu et al, eu et al, eu et al, eu et al, ciarri et al, ciarri et al, mabei et al,	(OPAL (OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA) (DAMA) (DAMA) (DAMA) (PDG	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
biendi et al biendi et al biendi et al eu et al. eu rri et al. ciarri et al. mabei et al. mabei et al. hm, A. Djouadi, M. D et al. rabei, T. Matchev, F. oliabs. Glabs. Spooner et al. Spooner et al. Spooner et al.	(OPAL (OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (IGEX (IGEX (UK Dark Mat (L3))))))))))))))))))))))))))))))))))))	Collab.) Collab.)
biendi et al biendi et al biendi et al eu et al. eu et al. eu et al. eu et al. eu et al. eu et al. eu et al. ciarri et al. ciarri et al. mabei et al. mabei et al. hm, A. Djouadi, M. D et al. hm, A. Djouadi, M. D irales et al. Spooner et al. Spooner et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al.	(OPAL (OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI) (DEMA (LAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (IGEX (IGEX (IGEX (IGEX)	Collab.) Collab.)
biendi et al biendi et al biendi et al eu et al. eu ando et al. mabei et al. mabei et al. mabei et al. hm, A. Djouadi, M. D et al. A. Djouadi, M. D iotabs. (ALEPH, rates et al. Spooner et al. Ciarri et al. Ciarri et al. Ciarri et al. Ciarri et al. Ciarri et al. Ciarri et al.	(OPAL (OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DEMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA) (IGEX (IGEX (IGEX (UK Dark Mat (L3 (L3 (Macro	Collab.) Collab.)
biendi et al biendi et al biendi et al eu et al. eu idi et al. ciarri et al. mabei et al. mabei et al. mabei et al. hm, A. Djouadi, M. Djouadi, M. Djouadi, M. Djouadi, M. Djouadi, M. Diouadi, M. Charley, F. forom et al. Spooner et al. Spooner et al. Ciarri et al. Ciarri et al. Ciarri et al. Ciarri et al. Ciarri et al. Ciarri et al. Ciarri et al. Ciarri et al. Ciarri et al. Ciarri et al. Ciarri et al. Ciarri et al. Ciarri et al. Ciarri et al.	(OPAL (OPAL (OPAL (OPAL (DELPHI) (DELPHI (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (L3) (DAMA (L3) (DAMA (L3) (L3) (DAMA (L3) (DAMA (L3) (DAMA (L3) (DAMA (L3) (DAMA (L3) (DAMA (L3) (DAMA (L3) (DAMA (L3) (DAMA (L3) (DAMA (L3) (DAMA (L3) (DAMA (L3) (DAMA (L3) (DAMA (D	Collab.) Collab.)
biendi et al biendi et al biendi et al eu et al. eu ando et al. mabei et al. mabei et al. mabei et al. anbei et al. hm, A. Djouadi, M. Djouadi, M. Djouadi, M. Djouadi, M. Djouadi, M. Djouadi, M. Djouadi, M. Djouadi, M. Djouadi, et al. ciarri et al. Spooner et al. Spooner et al. Ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. di set al. torsio et al. di set al. torsio et al. di set al. di set al. di set al. di set al. di set al. di set al.	(OPAL (OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI) (DELPHI (DELPHI) (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (CDAMA) (IGEX (IGEX (IGEX (IGEX) (IGEX) (IGEX) (IGEX) (IGEX) (DAMA (DACA) (DAMA	Collab.) Collab.)
biendi et al biendi et al biendi et al eu et al. eu dii et al. ciarri et al. mabei et al. mabei et al. mabei et al. nabei et al. Abeinet al. Ciarri et al. Spooner et al. Spooner et al. Spooner et al. Ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al.	(OPAL (OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (IGEX (IGEX (IGEX (IGEX (IGEX) (IGEX) (IGAC) (DAMA (DAMA) (DAMA (DAMA) (DAMA (DAMA) (DAMA	Collab.) Collab.)
biendi et al biendi et al biendi et al eu et al, eu rri et al, orando et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, i et al, ciarri et al, cia	(OPAL (OPAL (OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DEMA (L3) (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (L3) (L3) (L3) (L3) (L3) (L3) (L3) (L3)	Collab.) Collab.)
biendi et al biendi et al biendi et al eu et al, eu rri et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, room et al, Spooner et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, dis et al, ti et al	(OPAL (OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DAMA (DAMA (DAMA (DAMA (IGEX (FDG (UK Dark Mati (L3 (L3) (Macro (Macro (Macro (Macro (DAMA (L3) (L3) (L3) (Macro (DAMA (L3) (L3) (L3) (Macro (DAMA (L3) (L3) (Macro (DAMA (L3) (L3) (Macro (DAMA (L3) (L3) (Macro (DAMA (L2) (Macro (DAMA)	Collab.) Collab.)
biendi et al biendi et al biendi et al biendi et al eu et al, eu rri et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, ricom et al, Spooner et al, Spooner et al, ciarri et al, si et al,	(OPAL (OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DAMA (DAMA (DAMA (DAMA (L3) (L3) (L3) (L3) (L3) (L3) (L3) (L4) (L4) (L4) (L4) (DAMA (DAMA (DAMA (DAMA (DAMA) (DAMA (DAMA)	Collab.) Collab.)
biendi et al biendi et al biendi et al eu et al, eu rri et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, functione et al, functione et al, functione et al, functione et al, functione et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, ciarri et al, eu et al, set	(OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DAMA (DAMA (DAMA (DAMA (DAMA (L3) (L3) (L3) (L3) (L3) (L3) (L3) (L4) (L4) (L4) (DAMA (DAMA) (DAMA (DAMA) (Collab.) Collab.)
biendi et al biendi et al biendi et al biendi et al eu et al, eu rri et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, mabei et al, fundas, (ALEPH, rates et al, set al, set al, set al, set al, set al, set al, ciarri et al, set a	(OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DAMA (DAMA (DAMA (DAMA (DAMA (L3) (L3) (L3) (L3) (L3) (L3) (L3) (L3)	Collab.) Collab.)
biendi et al biendi et al biendi et al biendi et al eu et al. eu et al. eu et al. eu et al. eu et al. eu et al. eu et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. Spoone et al. Spoone et al. Spoone et al. Spoone et al. Spoone et al. ciarri e	(OPAL (OPAL (OPAL (OPAL (OPAL (DELPHI (DAMA (DAMA (DAMA (DAMA) (DELPHI (L3 (DAMA) (DAMA) (DELPHI (L3 (OPAL (ALEPH (ALEPH (DAMA) (DAMA) (DAMA)	Collab.) Collab.)
biendi et al biendi et al biendi et al biendi et al eu et al. eu rri et al. mabei et al. mabei et al. mabei et al. mabei et al. mabei et al. mabei et al. Altor et al. Spooner et al. Spooner et al. Spooner et al. Spooner et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. eu et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. eu et al. ate et al. bits et al	(OPAL (OPAL (OPAL (OPAL (OPAL (DELPHI (L3) (DAMA (DAMA (DELPHI (L3) (DAMA (DELPHI (L3) (DAMA (DAMA (DAMA (DAMA	Collab.) Collab.)
biendi et al biendi et al biendi et al biendi et al eu et al. eu rri et al. ciarri et al. arabei et al mabei et al mabei et al. ALEPH, T. Matchev, F. oliabs. (ALEPH, raies et al. Spooner et al. Spooner et al. Spooner et al. Ciarri et al. ciarri et al. ciarri et al. ciarri et al. ti et al	(OPAL (OPAL (OPAL (OPAL (OPAL (DELPHI (L3) (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA	Collab.) Collab.)
biendi et al biendi et al biendi et al biendi et al biendi et al eu et al. eu et al. eu et al. eu et al. eu et al. eu et al. eu et al. ciarri et al. mabei et al. mabei et al. mabei et al. hm, A. Djouadi, M. D et al. et al. hm, A. Djouadi, M. D et al. Spooner et al. Spooner et al. Spooner et al. Ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ti et al	(OPAL (OPAL (OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DELPHI (DAMA (DAMA (DAMA (DAMA (L3) (I3) (I3) (I4) (I4) (I4) (I4) (I4) (I4) (I4) (I4	Collab.) Collab.)
biendi et al biendi et al biendi et al biendi et al eu et al. eu rri et al. mabei et al. mabei et al. mabei et al. mabei et al. http://www.communication.communication pathetication.communication pathetication.communication pathetication.communication pathetication.communication pathetication.communication pathetication.communication pathetication.communication pathetication.communication pathetication.communication.communication pathetication.communication.communication pathetication.communication.communication pathetication.communication.communication pathetication.communication.communication pathetication.communication.communication pathetication.communication.communication pathetication.communication.communication pathetication.communication.communication pathetication.communication.communication pathetication.communication.communication pathetication.communication.communication pathetication.communication.communication pathetication.communication.communication pathetication.communication.communication.communication pathetication.communication.comm	(OPAL (OPAL (OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI) (DELPHI (DELPHI) (DELPHI) (DELPHI) (DAMA (DAMA (DAMA (DAMA (IGEX (UK Dark Mat (IS (Matro (Matro (Matro (DAMA (DAMA (DAMA (DAMA (ALEPH (ALEPH (ALEPH (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA (DAMA) (DAMA (DAMA) (DAMA (DAMA) (DAMA	Collab.) Collab.)
biendi et al biendi et al biendi et al biendi et al eu et al. eu rri et al. mabei et al. mabei et al. mabei et al. mabei et al. mabei et al. hm, A. Djouadi, M. D et al. eng, K.T. Matchev, F. oliabs. (ALEPH, raies et al. Spooner et al. Spooner et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ciarri et al. ti et	(OPAL (OPAL (OPAL (OPAL (OPAL (DELPHI (DELPHI (DELPHI (DELPHI) (DELPHI) (DELPHI) (DELPHI) (DELPHI) (DAMA (DAMA (DAMA (DAMA (IGEX) (UK Dark Mat (IS (IS) (Matro (Matro (Matro (Matro (Matro (Matro (Matro (Matro (Matro (Matro (CAMA) (DELPHI) (IS) (OPAL (IS) (IS) (OPAL (IS) (IS) (IS) (IS) (IS) (IS) (IS) (IS)	Collab.) Collab.)

2062 Searches Particle Listings Supersymmetric Particle Searches, Technicolor

FALK	93	PL B318 354	T. Falk et al. (UCB, UCSB, MINN)
KELLEY	93	PR D47 2461	S. Kelley et al.	(TAMU, ALAH)
MIZUTA	93	PL B298 120	S. Mizuta, M. Yamaguchi	(T OH O)
MORI	93	PR D48 5505	M. Morietal. (KEK, NII	G, TOKY, TOKA+)
BOTTINO	92	MPL A7 733	A. Bottino et al.	(TORI, ZARA)
A Iso		PL B265 57	A. Bottino et al.	(TORI, INFN)
DECAMP	92	PRPL 216 253	D. Decamp et al.	(ALEPH Collab.)
LOPEZ	92	NP B370 445	J.L. Lopez, D.V. Nanopoulos, K.J. Y	′uan (TAMU)
MCDONALD	92	PL B283 80	J. McDonald, K.A. Olive, M. Srednic	∶ki (LISB+)
ABREU	91 F	NP B367 511	P. Abreu et al.	(DELPHI Collab.)
ALEXANDER	91 F	ZPHY C52 175	G. Alexander et al.	(OPAL Collab.)
BOTTINO	91	PL B265 57	A. Bottino et al.	(TORI, INFN)
GELMINI	91	NP B351 623	G.B. Gelmini, P. Gondolo, E. Roulet	(ÙCLA, TRST)
GRIEST	91	PR D43 3191	K. Griest, D. Seckel	
KAMIONKOW.	91	PR D44 3021	M. Kamionkowski	(CHIC, FNAL)
MORI	91 B	PL B270 89	M. Morietal. (Kamiokande Collab.)
NOJIRI	91	PL B261 76	M.M. Nojiri	(KEK)
OLIVE	91	NP B355 208	K.A. Olive, M. Srednicki	(MINN, ÙCSB)
ROSZKOWSKI	91	PL B262 59	L. Roszkowski	CERN)
GRIEST	90	PR D41 3565	K. Griest, M. Kamionkowski, M.S. T	urner (ÙCB+)
BARBIERI	89 C	NP B313 725	R. Barbieri, M. Frigeni, G. Giudice	
OLIVE	89	PL B230 78	K.A. Olive, M. Srednicki	(MINN, UCSB)
ELLIS	88 D	NP B307 883	J. Ellis, R. Flores	
GRIEST	88 B	PR D38 2357	K. Griest	
OLIVE	88	PL B205 553	K.A. Olive, M. Srednicki	(MINN, UCSB)
SREDNICKI	88	NP B310 693	M. Srednicki, R. Watkins, K.A. Olive	e (MINN, UCSB)
ELLIS	84	NP B238 453	J. Ellis et al.	(CERN)
GOLDBERG	83	PRL 50 1419	H. Goldberg	(NEAS)
KRAUSS	83	NP B227 556	L.M. Krauss	(HARV)
VYSOTSKII	83	SJNP 37 948	M.I. Vysotsky	(ITEP)
		Translated from YAF 37	1597.	()

Technicolor

See the related review(s):

Dynamical Electroweak Symmetry Breaking: Implications of the H^0

The latest unpublished results are described in "Dynamical Electroweak Symmetry Breaking" review

MASS LIMITS for Resonances in Models of Dynamical Electroweak Symmetry Breaking

VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
• • • We do not use	the follo	owi	ng data for aver	ages,	fits, limi	ts, etc. • • •
		1	AAD	16W	ATLS	color octet vector resonance
>2400	95	2	KHACHATRY	.16E	CMS	top-color Z'
		3	AAD	15 A B	ATLS	$h \rightarrow \pi_V \pi_V$
>1800	95	4	AAD	15 a o	ATLS	top-color Z'
		5	AAD	15 bb	ATLS	$p p \xrightarrow{P} \rho_T / a_{1T} \rightarrow W h \text{ or}$
		6	AAD	15 Q	ATLS	$h \rightarrow \pi_{\nu} \pi_{\nu}$
		7	AAIJ	15 A N	LHCB	$h \rightarrow \pi_V \pi_V$
>1140	95	8	KHACHATRY	.15 C	CMS	$\rho_T \rightarrow WZ$
		9	KHACHATRY	.15 W	CMS	$H \rightarrow \pi_V \pi_V$
none 200-700,	95	10	AAD	14 AT	ATLS	$pp \rightarrow \omega_T \rightarrow Z\gamma$
none 275-960	95	10	AAD	14 AT	ATLS	$pp \rightarrow a_T \rightarrow W\gamma$
		11	AAD	14v	ATLS	color singlet techni-vector
> 703		12	AAD	13AN	ATLS	$pp \rightarrow a_T \rightarrow W\gamma$
> 494		13	AAD	13AN	ATLS	$pp \rightarrow \omega_T \rightarrow Z\gamma$
none 500-1740	95	14	AAD	13A0	ATLS	top-color Z'
>1300	95	15	CHATRCHYAN	13AP	CMS	top-color Z'
>21.00	95	14	CHATRCHYAN	13 _{BM}	CMS	top-color Z'
		16	BAAK	12	RVUE	QCD-like technicolor
none 167-687	95	17	CHATRCHYAN	12AF	CMS	$\rho_T \rightarrow WZ$
> 805	95	14	AALTONEN	11 A D	CDE	top-color Z'
> 805	95	14	AALTONEN	11 AF	CDE	top-color Z'
> 000		18	CHIVUKULA	11	RVUE	top-Higgs
		19	CHIVUKULA	11A	RVUE	techini-π
		20	AALTONEN	10	CDE	$p\overline{p} \rightarrow a\pi/\omega \tau \rightarrow W\pi\tau$
none 208-408	95	21	ABAZOV	10A	D0	$\rho_T \rightarrow WZ$
		22	ABAZOV	071	D0	$p \overline{p} \rightarrow \rho \tau / \omega \tau \rightarrow W \pi \tau$
> 280	95	23	ABULENCIA	05 A	CDE	$am \rightarrow e^+e^- \mu^+\mu^-$
200	,,,	24	CHEKANOV	02B	ZEUS	color octet techni- π
> 207	95	25	ABAZOV	01 B	D0	$am \rightarrow e^+e^-$
none 90-206 7	95	26		01	DI PH	$p_T \rightarrow am$
Home 50 200.7	55	27	AFFOLDER	00F	CDF	color-singlet techni- ρ ,
						$ ho_T ightarrow W \pi_T$, $2\pi_T$
> 600	95	28	AFFOLDER	00K	CDF	color-octet techni- ρ ,
nono 250 440	05	29	ADE	00-	CDE	$PT8$ $Z^{n}LQ$
10110 330-440	J		ADE	79F	CDF	$\rho_{T8} \rightarrow \overline{b}b$
		30	ABE	99 N	CDF	techni- ω , $\omega_T \rightarrow \gamma \overline{b} b$
none 260-480	95	31	ABE	97G	CDF	color-octet techni- $ ho$, $ ho_{T8} ightarrow 2 { m jets}$

¹AAD 16w search for color octet vector resonance decaying to bB in pp collisions at \sqrt{s} = 8 TeV. The vector like quark B is assumed to decay to bH. See their Fig.3 and Fig.4 for limits on $\sigma \cdot B$.

² KHACHATRYAN 16E search for top-color Z' decaying to $t \bar{t}$. The quoted limit is for $\Gamma_{Z'/m} Z' = 0.012$. Also exclude $m_{Z'} < 2.9$ TeV for wider topcolor Z' with $\Gamma_{Z'/m} Z' = 0.1$.

- ³AAD 15AB search for long-lived hidden valley π_V particles which are produced in pairs by the decay of a scalar boson. π_V is assumed to decay into dijets. See their Fig. 10 for the limit on σB .
- ⁴AAD 15Ao search for top-color Z' decaying to $t\bar{t}$. The quoted limit is for $\Gamma_{Z'}/m_{Z'} =$ 0.012.
- 0.012. 5 AAD 15BB search for minimal walking technicolor (MWT) isotriplet vector and axial-vector resonances decaying to Wh or Z h. See their Fig. 3 for the exclusion limit in the MWT parameter space
- $\pi_{\rm V}$ parameter space. 6 AAD 150 search for long-lived hidden valley $\pi_{\rm V}$ particles which are produced in pairs by the decay of scalar boson. $\pi_{\rm V}$ is assumed to decay into dijets. See their Fig. 5 and Fig. 6 for the limit on σB .
- AAJ 15AN search for long-lived hidden valley π_V particles which are produced in pairs by the decay of scalar boson with a mass of 120GeV. π_V is assumed to decay into dijets. See their Fig. 4 for the limit on σB .
- 3 6 KHACHARTXAN 15 c search for a vector techni-resonance decaying to WZ. The limit assumes $M_{\pi_T} = (3/4)~M_{\rho_T} 25~$ GeV. See their Fig.3 for the limit in $M_{\pi_T} M_{\rho_T}$ plane of the low scale technicolor model.
- 9 KHACHATRYAN 15w search for long-lived hidden valley π_V particles which are produced in pairs in the decay of heavy higgs boson H. π_V is assumed to decay into $\ell^+\,\ell^-$. See their Fig. 7 and Fig. 8 for the limits on σB .
- ^{10}AAD 14AT search for techni- ω and techni-a resonances decaying to $V\gamma$ with $V = W(\rightarrow$ $\ell \nu$) or $Z(\rightarrow \ell^+ \ell^-)$.
- $1 \text{ ADD } 14 \text{ Vs earch for vector techni-resonances decaying into electron or muon pairs in <math>pp$ collisions at $\sqrt{s} = 8$ TeV. See their table IX for exclusion limits with various assumptions. 12 AAD 13AN search for vector techni-resonance a_{T} decaying into $W\gamma$.
- $^{13}\,{\rm AAD}$ 13AN search for vector techni-resonance $\omega_{\,{\cal T}}$ decaying into $Z\,\gamma$
- ¹⁴ Search for top-color Z' decaying to $t \bar{t}$. The quoted limit is for $\Gamma_{Z'}/m_{Z'} = 0.012$.
- ¹⁵ CHATRCHYAN 13AP search for top-color leptophobic Z' decaying to $t \bar{t}$. The quoted
- limit is for $\Gamma_{Z'}/m_{Z'} = 0.012$. ¹⁶BAAK 12 give electroweak oblique parameter constraints on the QCD-like technicolor models. See their Fig. 28.
- TO CHATRACHYAN 12AF search for a vector techni-resonance decaying to WZ. The limit assumes $M_{\pi_T} = (3/4) M_{\rho_T} 25$ GeV. See their Fig. 3 for the limit in $M_{\pi_T} M_{\rho_T}$ plane of the low scale technicolor model.
- 18 Using the LHC limit on the Higgs boson production cross section, CHIVUKULA 11 obtain
- a limit on the top-Higgs mass > 300 GeV at 95% CL assuming 150 GeV top-pion mass. ¹⁹ Using the LHC limit on the Higgs boson production cross section, CHIVUKULA 11A obtain a limit on the technipion mass ruling out the region 110 GeV $< m_P < 2m_t$. Existence of color techni-fermions, top-color mechanism, and $N_{TC} \ge 3$ are assumed.
- 20 AALTONEN 101 search for the vector techni-resonances (ho_T , $\tilde{w_T}$) decaying into $W\pi_T$ with $W \to \ell \nu$ and $\pi_T \to b\overline{b}$, $b\overline{c}$, or $b\overline{u}$. See their Fig. 3 for the exclusion plot in $M_{\pi_T} - M_{\rho_T}$ plane.
- 21 ABAZOV 10A search for a vector techni-resonance decaying into WZ. The limit assumes $M_{\rho_T} < M_{\pi_T} + M_W$
- ²²ABAZOV 071 search for the vector techni-resonances (ρ_T , ω_T) decaying into $W\pi_T$ with $W \rightarrow ~e\,\nu$ and $\pi_{\,T} \rightarrow ~b\,\overline{b}$ or $b\,\overline{c}$. See their Fig. 2 for the exclusion plot in $M_{\pi_{\,T}} - M_{
 ho_{\,T}}$
- plane. ²³ABULENCIA 05A search for resonances decaying to electron or muon pairs in $p\overline{p}$ collisions. at $\sqrt{s} = 1.96$ TeV. The limit assumes Technicolor-scale mass parameters $M_V = M_A = 500$ GeV.
- 24 CHEKANOV 02B search for color octet techni- π P decaying into dijets in ep collisions. See their Fig.5 for the limit on $\sigma(ep \rightarrow ePX)$ ·B(P $\rightarrow 2j$). 25 ABAZOV 01B searches for vector techni-resonances (ρ_T, ω_T) decaying to e^+e^- . The
- limit assumes $M_{
 ho_T} = M_{\omega_T} < M_{\pi_T} + M_W.$
- ²⁶ The limit is independent of the π_T mass. See their Fig. 9 and Fig. 10 for the exclusion plot in the $M_{\rho_T} M_{\pi_T}$ plane. ABDALLAH 01 limit on the techni-pion mass is $M_{\pi_T} > 79.8$ GeV for $N_D = 2$, assuming its point-like coupling to gauge bosons.
- ²² AFFOLDER OF search for ρ_T decaying into $W \pi_T$ or $\pi_T \pi_T$ with $W \to \ell \nu$ and $\pi_T \to \overline{b}$, $\overline{b}c$. See Fig. 1 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the exclusion plot in the $M \rho_T M \pi_T$ plane.
- ²⁸ AFFOLDER 00k search for the $\rho_{TB} = \pi_T^{-1} \pi_T^{-1}$ ²⁸ AFFOLDER 00k search for the ρ_{TB} decaying into $\pi_{LQ}\pi_{LQ}$ with $\pi_{LQ} \rightarrow b\nu$. For $\pi_{LQ} \rightarrow c\nu$, the limit is $M_{\rho_{TB}} > 510$ GeV. See their Fig. 2 and Fig. 3 for the exclusion plot in the $M_{\rho_{TB}} M_{\pi_{LQ}}$ plane.
- ²⁹ ABE 99F search for a new particle X decaying into $b\overline{b}$ in $p\overline{p}$ collisions at $E_{\rm cm} = 1.8$ TeV. See Fig. 7 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the upper limit on $\sigma(p\overline{p} \to X) \times B(X \to b\overline{b})$. ABE 99F also exclude top gluons of width $\Gamma = 0.5M$ in the mass interval 280 < M < 670 GeV, of width $\Gamma = 0.5M$ in the mass interval 340 < M < 640 GeV, and of width $\Gamma = 0.7M$ in the mass interval 375 < M < 560 GeV. ³⁰ ADE 0.011 exact bet the topchick decaying into σm . The technipion is assumed to
- $^{30}ABE [90]$ where h or the technical decaying into $\gamma \pi_T$. The technicion is assumed to decay $\pi_T \rightarrow b\overline{b}$. See Fig. 2 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the exclusion plot in the $M_{\omega_T} M_{\pi_T}$ plane.
- ³¹ ABE 97c search for a new particle X decaying into dijets in $p\overline{p}$ collisions at $E_{\rm cm} = 1.8$ TeV. See Fig. 5 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the upper limit on $\sigma(p\overline{p} \rightarrow X) \times B(X \rightarrow 2j)$.

REFERENCES FOR Technicolor

AAD 16W KHACHATRY 16E AAD 15AB	PL B758 249 PR D93 012001 PR D92 012010	G. Aad et al. V. Khachatryan et al. G. Aad et al.	(ATLAS Collab.) (CMS Collab.) (ATLAS Collab.)
AAD 15AO	JHEP 1508 148	G. Aad et al.	(ATLAS Collab.)
AAD 15BB	EPJ C75 263	G. Aad et al.	(ATLAS Collab.)
AAD 15Q	PL B743 15	G. Aad et al.	(ATLAS Collab.)
AAIJ 15AN	EPJ C75 152	R. Aaij et al.	(LHCb Collab.)
KHACHATRY 15 C	PL B740 83	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY 15W	PR D91 052012	V. Khachatryan et al.	(CMS Collab.)
AAD 14AT	PL B738 428	G. Aad et al.	(ATLAS Collab.)
AAD 14V	PR D90 052005	G. Aad et al.	(ATLAS Collab.)
AAD 13AN	PR D87 112003	G. Aad et al.	(ATLAS Collab.)
A Iso	PR D91 119901 (errat.)	G. Aad et al.	(ATLAS Collab.)
AAD 13AQ	PR D88 012004	G. Aad et al.	(ATLAS Collab.)
CHATRCHYAN 13AP	PR D87 072002	S. Chatrohyan et al.	(CMS Collab.)
CHATRCHYAN 13BM	PRL 111 211804	S. Chatrohyan et al.	(CMS Collab.)
A Iso	PRL 112 119903 (errat.)	S. Chatrchyan et al.	(CMS Collab.)

BAAK CHATRCHYAN AALTONEN AALTONEN CHIVUKULA CHIVUKULA	12 12AF 11AD 11AE 11 11A	EPJ C72 2003 PRL 109 141801 PR D84 072003 PR D84 072004 PR D84 095022 PR D84 115025	M. Baak et al. S. Chatrchyan et al. T. Aatlonen et al. T. Aatlonen et al. R.S. Chivukula et al. R. S. Chivukula et al.	(Gfitter Group) (CMS Collab.) (CDF Collab.) (CDF Collab.)
AALTONEN ABAZOV ABAZOV ABULENCIA CHEKANOV ABAZOV ABDALLAH AFFOLDER ABE ABE	101 10A 071 05A 02B 01B 01 00F 00K 99F 99N	PRL 104 111802 PRL 104 061801 PRL 98 221801 PRL 95 252001 PL 85 19 PRL 87 061802 EPJ C22 17 PRL 84 1110 PRL 85 2056 PRL 82 2038 PRL 83 3124	T. Aaltonen et al. V.M. Abazov et al. V.M. Abazov et al. V.M. Abazov et al. S. Chekanov et al. J. Abdallah et al. T. Affolder et al. T. Affolder et al. F. Abe et al.	(CDF Collab.) (D0 Collab.) (D0 Collab.) (CDF Collab.) (D0 Collab.) (D0 Collab.) (DDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)

Quark and Lepton Compositeness, Searches for

The latest unpublished results are described in the "Quark and Lepton Compositeness" review.

See the related review(s): Searches for Quark and Lepton Compositeness

CONTENTS:

S	cale Limits for Contact Interactions: $\Lambda(eeee)$
S	cale Limits for Contact Interactions: $\Lambda(e e \mu \mu)$
S	cale Limits for Contact Interactions: $\Lambda(ee au au)$
S	cale Limits for Contact Interactions: $\Lambda(\ell\ell\ell\ell)$
S	cale Limits for Contact Interactions: Λ(eeqq)
S	cale Limits for Contact Interactions: $\Lambda(\mu\mu q q)$
S	cale Limits for Contact Interactions: $\Lambda(\ell u \ell u)$
S	cale Limits for Contact Interactions: $\Lambda(e \nu q q)$
S	cale Limits for Contact Interactions: Λ(qqqq)
S	cale Limits for Contact Interactions: $\Lambda(\nu \nu q q)$
Ν	lass Limits for Excited e (e*)
	 Limits for Excited e (e[*]) from Pair Production
	 Limits for Excited e (e[*]) from Single Production
	$-$ Limits for Excited $e~(e^*)$ from $e^+e^- o~\gamma\gamma$
	— Indirect Limits for Excited $e(e^*)$
Ν	lass Limits for Excited μ (μ^*)
	– Limits for Excited μ (μ^*) from Pair Production
	- Limits for Excited μ (μ^*) from Single Production
	- Indirect Limits for Excited $\mu(\mu^*)$
Ν	lass Limits for Excited τ (τ^*)
	– Limits for Excited $ au$ ($ au^*$) from Pair Production
	– Limits for Excited τ (τ^*) from Single Production
Ν	lass Limits for Excited Neutrino (ν^*)
	– Limits for Excited ν (ν^*) from Pair Production
	- Limits for Excited ν (ν^*) from Single Production
Ν	lass Limits for Excited $a(a^*)$
	- Limits for Excited $a(a^*)$ from Pair Production
	- Limits for Excited $q(q^*)$ from Single Production
Ν	ass Limits for Color Sextet Quarks (a_c)
N	lass Limits for Color Octet Charged Leptons (Po)
N	lass Limits for Color Octet Neutrinos (ν_0)
N	lass Limits for W_0 (Color Octet W Boson)

SCALE LIMITS for Contact Interactions: A(eeee)

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

$\Lambda_{LL}^+(\text{TeV})$	$\Lambda^{LL}({\rm TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>8.3	>10.3	95	¹ BOURILKOV	01	RVUE	$E_{\rm cm} = 192 - 208 {\rm GeV}$
• • • We	do not use	the follo	wing data for ave	rages	, fits, lin	nits, etc. • • •
>4.5	>7.0	95	² schael	07A	ALEP	E _{cm} = 189-209 GeV
>5.3	>6.8	95	ABDALLAH	06C	DLPH	$E_{\rm cm} = 130-207 {\rm GeV}$
>4.7	>6.1	95	³ ABBIENDI	04G	OPAL	$E_{\rm cm} = 130-207 {\rm GeV}$
>4.3	>4.9	95	ACCIARRI	00p	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$
¹ A combined analysis of the data from ALEPH, DELPHI, L3, and OPAL.						
² SCHA	EL 07A lim	its are fro	m R $_c$, ${\it Q}_{FB}^{depl}$, an	d had	ronic cro	oss section measurements.

³ABBIENDI 04G limits are from $e^+e^- \rightarrow e^+e^-$ cross section at $\sqrt{s} = 130-207$ GeV.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\mu\mu)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

$\Lambda_{LL}^+(\text{TeV})$	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>6.6	>9.5	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 {\rm GeV}$
> 8.5	>3.8	95	ACCIARRI	00p	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$
• • • We	e do notus	e the fol	lowing data for ave	rages	, fits, lin	nits, etc. 🔹 🔹 🔹
>7.3	>7.6	95	ABDALLAH	06c	DLPH	$E_{\rm cm} = 130-207 {\rm GeV}$
>8.1	>7.3	95	² ABBIENDI	04G	OPAL	$E_{\rm cm} = 130 - 207 {\rm GeV}$

Searches Particle Listings Technicolor, Quark and Lepton Compositeness

 1 SCHAEL 07A limits are from $R_c,~Q_{FB}^{depl}$, and hadronic cross section measurements. 2 ABBIENDI 04G limits are from $e^+\,e^- \to~\mu\mu$ cross section at \sqrt{s} = 130–207 GeV.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\tau\tau)$

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ ⁺ _{LL} (TeV)	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT	
>7.9	>5.8	95 1	SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 {\rm GeV}$	
>7.9	>4.6	95	ABDALLAH	06C	DLPH	$E_{\rm cm} = 130 - 207 {\rm GeV}$	
>4.9	>7.2	95 2	ABBIENDI	04G	OPAL	$E_{\rm cm} = 130 - 207 {\rm GeV}$	
• • • We	do not use	the follow	/ing data for ave	rages,	fits, lim	its, etc. 🔹 🔹 🔹	
>5.4	>4.7	95	ACCIARRI	00p	L3	E _{cm} = 130-189 GeV	
1 SCHAEL 07A limits are from ${\it R}_c,~{\it Q}_{EB}^{depl}$, and hadronic cross section measurements.							
² ABBIENDI 04G limits are from $e^+ e^- \rightarrow \tau \tau$ cross section at $\sqrt{s} = 130$ –207 GeV.							

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\ell\ell\ell)$

Lepton universality assumed. Limits are for Λ_{LL}^{\pm} only. For other cases, see each

1616	cience.						
$\Lambda_{LL}^+(\text{TeV})$	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT	
>7.9	> 10.3	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 {\rm GeV}$	
>9.1	>8.2	95	ABDALLAH	06c	DLPH	$E_{\rm cm} = 130-207 {\rm GeV}$	
• • • We	e do not use	e the fol	owing data for ave	erages	, fits, lin	nits, etc. 🔹 🔹 🔹	
>7.7	>9.5	95	² ABBIENDI ³ BABICH	04G 03	OPAL RVUE	$E_{\rm cm}=$ 130-207 GeV	
>9.0	>5.2	95	ACCIARRI	00p	L3	E _{cm} = 130-189 GeV	
1 SCHAEL 07A limits are from R_c, Q_{FB}^{depl} , and hadronic cross section measurements.							
² abbi	ENDI04GI	imits are	from $e^+ \: e^- \to \: 4$	$\ell^+\ell^-$	cross se	ection at $\sqrt{s} = 130-207$ GeV.	
³ babi	CH 03 obta	ain a bo	und -0.175 TeV-	^{·2} <1	$1/\Lambda_{11}^2 <$	< 0.095 TeV ⁻² (95%CL) in a	
mode	lindepende	nt analy	sis allowing all of /	/ , , /	N_{IR}, N_{R}	Λ_{RR} to coexist.	

SCALE LIMITS for Contact Interactions: $\Lambda(eeqq)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

		~ ~					
$\Lambda_{LL}^+(\text{TeV})$	$\Lambda_{LL}^{-}(TeV)$	CL%		DO CUMENT ID		TECN	COMMENT
> 4.5	>12.8	95	1	ABRAMOWICZ	219	ZEUS	(e e q q)
>23.9	>16.8	95	2	SIR U NYA N	19AC	CMS	(eeqq)
>24	>37	95	3	AABOUD	17at	ATLS	(eeqq)
> 8.4	>10.2	95	4	ABDALLAH	09	DLPH	(eebb)
> 9.4	>5.6	95	5	SCHAEL	07A	ALEP	(eecc)
> 9.4	>4.9	95	4	SCHAEL	07A	ALEP	(eebb)
>23.3	>12.5	95	6	CHEUNG	01в	RVUE	(eeuu)
>11.1	>26.4	95	6	CHEUNG	01в	RVUE	(eedd)
• • • We	do not use	e the fo	llov	ving data for av	erages	s, fits, li	mits, etc. 🔹 🔹 🔹
>15.5	>19.5	95	7	AABOUD	160	ATLS	(eeqq)
>13.5	>18.3	95	8	KHACHATRY	.15ae	CMS	(eeqq)
>16.4	>20.7	95	9	AAD	14be	ATLS	(eeqq)
> 9.5	>12.1	95	10	AAD	13E	ATLS	(eeqq)
>10.1	>9.4	95	11	AAD	12AB	ATLS	(eeqq)
> 4.2	>4.0	95	12	AARON	11c	H1	(eeqq)
> 3.8	>3.8	95	13	ABDALLAH	11	DLPH	(eetc)
>12.9	>7.2	95	14	SCHAEL	07A	ALEP	(eeqq)
> 3.7	>5.9	95	15	ABULENCIA	06L	CDF	(eeqq)

 1 ABRAMOWICZ 19 limits are from Q 2 spectrum measurements of $e^{\pm} p
ightarrow e^{\pm} X$. 2 SIRUNYAN 19AC limits are from e^+e^- mass distribution in pp collisions at $\sqrt{s}=13$ TeV.

AABOUD 17AT limits are from pp collisions at $\sqrt{s} = 13$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

⁴ABDALLAH 09 and SCHAEL 07A limits are from R_b , A_{FB}^b .

 5 SCHAEL 07A limits are from $R_c, \, Q_{FB}^{depl}$, and hadronic cross section measurements.

⁶ CHEUNG 01B is an update of BARGER 98E.

7 AABOUD 160 limits are from pp collisions at $\sqrt{s} = 13$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

 $^{8}\,\rm KHACHATRYAN$ 15AE limit is from $e^{+}\,e^{-}$ mass distribution in pp collisions at $E_{\rm cm}$ = 9 AAD 14BE limits are from *pp* collisions at $\sqrt{s} = 8$ TeV. The quoted limit uses a uniform

positive prior in $1/\Lambda^2$.

 10 AAD 13E limis are from e^+e^- mass distribution in pp collisions at $E_{\rm cm}=$ 7 TeV.

¹¹ AAD 12AB limits are from e^+e^- mass distribution in *pp* collisions at $E_{\rm cm} = 7$ TeV. ¹² AARON 11c limits are from Q^2 spectrum measurements of $e^\pm p \rightarrow e^\pm X$. ¹³ ABDALLAH 11 limit is from $e^+e^- \rightarrow t\overline{c}$ cross section. $\Lambda_{LL} = \Lambda_{LR} = \Lambda_{RR}$ The second seco

SCALE LIMITS for Contact Interactions: $\Lambda(\mu\mu q q)$

$\Lambda_{LL}^+(\text{TeV})$	$\Lambda^{LL}({\rm TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
> 30.4	>20.4	95	¹ SIRUNYAN	19AC	CMS	(µµqq)
>20	> 30	95	² AABOUD	17AT	ATLS	(µµqq)

• •	٠	We do	not	use th	e following	data	for	averages,	fits,	limits,	etc.	٠	٠	٠	
-----	---	-------	-----	--------	-------------	------	-----	-----------	-------	---------	------	---	---	---	--

>15.8	>21.8	95	³ AABOUD	16∪ ATLS	$(\mu\mu q q)$
12.0	<15.2 <	05		15 AF CMS	$(\dots \dots a a)$

>12.0	>15.2	95	· KHACHAI	RTISAE CIVIS	$(\mu\mu q q)$
>12.5	>16.7	95	5 4 4 5	14 BE ATLS	(uuaa)

	/ 10.1			1100		([[[[[[[[[[[[[[[[[[[
> 9.6	>12.9	95	⁶ AAD	13E	ATLS	(µµqq) (isosinglet)	
0 5	\$ 10.1	OF.	7 снатьси	VA NI 1 2 V	CIAC	() (!===!===!==!	

CHATRCHYAN13K CMS $(\mu \mu q q)$ (isosinglet) AAD 12AB ATLS $(\mu \mu q q)$ (isosinglet) >13.1⁸ AAD > 8.0 >7.0 95

 $^1\,{\sf SIRUNYAN}$ 19AC limits are from $\mu^+\,\mu^-$ mass distribution in $p\,p$ collisions at \sqrt{s} = 13 TeV AABOUD 17AT limits are from pp collisions at $\sqrt{s}=$ 13 TeV. The quoted limit uses a

uniform positive prior in $1/\Lambda^2$ 3 AABOUD 160 limits are from $p\,p$ collisions at \sqrt{s} = 13 TeV. The quoted limit uses a

uniform positive prior in $1/\Lambda^2$

 4 KHACHATRYAN 15AE limit is from $\mu^+\,\mu^-$ mass distribution in pp collisions at ${\it E}_{\rm CM}$ =

⁵ AAD 14BE limits are from pp collisions at $\sqrt{s} = 8$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

⁶AAD 13E limis are from $\mu^+\mu^-$ mass distribution in *pp* collisions at $E_{\rm cm}$ = 7 TeV.

 $^7\,{\rm CHATRCHYAN}$ 13K limis are from $\mu^+\,\mu^-$ mass distribution in $p\,p$ collisions at ${\it E}_{\rm CM}$ = 7 TeV

AAD 12AB limis are from $\mu^+\mu^-$ mass distribution in *pp* collisions at $E_{\rm cm}=$ 7 TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell \nu \ell \nu)$

VALUE (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>3.10	90		86	SPEC	$\Lambda_{LR}^{\pm}(\nu_{\mu}\nu_{e}\mu e)$
••• We do not use the	following	data for averages	, fits,	limits, e	tc. ● ● ●
>3.8		² DIAZCRUZ	94	RVUE	$\Lambda_{LL}^+(\tau \nu_\tau e \nu_e)$
>8.1		² DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{-}(\tau \nu_{\tau} e \nu_{e})$
>4.1		³ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{+}(\tau\nu_{\tau}\mu\nu_{\mu})$
>6.5		³ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{-}(\tau\nu_{\tau}\mu\nu_{\mu})$
					_

 1 JODIDIO 86 limit is from $\mu^+ o \, \overline{
u}_\mu e^+ \,
u_e$. Chirality invariant interactions $L = (g^2/\Lambda^2)$ $\left[\eta_{LL} \ (\overline{\nu}_{\mu L} \gamma^{\alpha} \mu_L) \ (\overline{e}_L \gamma_{\alpha} \nu_{e\,L}) \ + \ \eta_{LR} \ (\overline{\nu}_{\mu L} \gamma^{\alpha} \nu_{e\,L} \ (\overline{e}_R \gamma_{\alpha} \mu_R))\right] \text{ with } g^2/4\pi = 1 \text{ and } g^2/4\pi = 1$ $(\eta_{LL}, \eta_{LR}) = (0, \pm 1)$ are taken. No limits are given for Λ_{LL}^{\pm} with $(\eta_{LL}, \eta_{LR}) = (\pm 1, 0)$. For more general constraints with right-handed neutrinos and chirality nonconserving contact interactions, see their text. ²DIAZCRUZ 94 limits are from $\Gamma(\tau \rightarrow e\nu\nu)$ and assume flavor-dependent contact in-

teractions with $\Lambda(\tau \nu_{\tau} e \nu_{e}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e}).$

 $^3\,{\sf D}{\sf IAZCRUZ}$ 94 limits are from $\Gamma(\tau \ \rightarrow \ \mu \nu \, \nu)$ and assume flavor-dependent contact interactions with $\Lambda(\tau \nu_{\tau} \mu \nu_{\mu}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$.

SCALE LIMITS for Contact Interactions: $\Lambda(e\nu q q)$

VALUE (TeV)	CL%	DOCUMENT ID		TECN
>2.81	95	¹ AFFOLDER	011	CDF
¹ AFFOLDER	001 bound is for a	a scalar interaction	a _R aı	$\overline{\nu}e_1$

SCALE LIMITS for Contact Interactions: $\Lambda(qqqq)$

$\Lambda_{LL}^+(TeV)$	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>13.1 none 17.4-29.5	>21.8	95	¹ AABOUD	17ak /	ATLS	pp dijet angl.
 • • We do not use t 	he following	data for	averages, fits, lim	its, etc		•
			² AABOUD	18AV /	ATLS	$pp \rightarrow t\overline{t}t\overline{t}$
>12.8	>17.5	95	³ SIRUNYA N	18DD (CMS	pp dijet angl.
>11.5	>14.7	95	⁴ SIRUNYA N	17F (CMS	pp dijet angl.
>12.0	>17.5	95	⁵ AAD	16s /	ATLS	pp dijet angl.
			⁶ AAD	15AR /	ATLS	$pp \rightarrow t \overline{t} t \overline{\overline{t}}$
			⁷ AAD	15BY /	ATLS	$pp \rightarrow t\overline{t}t\overline{t}$
> 8.1	>12.0	95	⁸ aad	15L /	ATLS	pp dijet angl.
> 9.0	>11.7	95	⁹ KHACHATRY.	.15) (CMS	pp dijet angl.
> 5		95	¹⁰ FABBRICHESI	14 H	RVUE	$q \overline{q} t \overline{t}$

 1 AABOUD 17AK limit is from dijet angular distribution in $p\,p$ collisions at $\sqrt{s}=$ 13 TeV. $u,\,d,$ and s quarks are assumed to be composite.

²AABOUD 18av obtain limit on t_R compositeness $2\pi/\Lambda_{RR}^2 < 1.6 \text{ TeV}^{-2}$ at 95% CL from $t\bar{t}t\bar{t}$ production in the pp collisions at $E_{\rm cm} = 13$ TeV.

³ SIRUNYAN 18DD limit is from dijet angular distribution in pp collisions at $\sqrt{s} = 13$ TeV. 4 SIRUNYA 17F limit is from dijet angular cross sections in pp collisions at $E_{\rm cm} = 13$ TeV. All quarks are assumed to be composite.

 $^5\,{\rm AAD}$ 16s limit is from dijet angular selections in $\it pp$ collisions at $\it E_{\rm CM}$ = 13 TeV. u, d, and s quarks are assumed to be composite.

⁶AAD 15AR obtain limit on the t_R compositeness $2\pi/\Lambda_{RR}^2 < 6.6 \text{ TeV}^{-2}$ at 95% CL from the $t\bar{t}t\bar{t}$ production in the pp collisions at $E_{\rm cm} = 8$ TeV.

 7 AAD 15BY obtain limit on the t_R compositeness $2\pi/\Lambda_{RR}^2 < 15.1~{\rm TeV}^{-2}$ at 95% CL from the $t\bar{t}t\bar{t}$ production in the pp collisions at ${\rm E_{CM}}=$ 8 TeV.

⁸AAD 15L limit is from dijet angular distribution in pp collisions at $E_{\rm cm}$ = 8 TeV. u, d, and s quarks are assumed to be composite.

 9 KHACHATRYAN 15J limit is from dijet angular distribution in pp collisions at $E_{\rm cm}$ = 8 TeV. u, d, s, c, and b quarks are assumed to be composite. ¹⁰ FABBRICHESI 14 obtain bounds on chromoelectric and chromomagnetic form factors

of the top-quark using $pp \to t\bar{t}$ and $p\bar{p} \to t\bar{t}$ cross sections. The quoted limit on the $q\bar{q}t\bar{t}$ contact interaction is derived from their bound on the chromoelectric form factor.

SCALE LIMITS for Contact Interactions: $\Lambda(\nu \nu q q)$

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

 $\Lambda_{LL}^{+}(TeV) = \Lambda_{LL}^{-}(TeV) - CL\%$ DOCUMENT ID TECN COMMENT

>5.0	>5.4	95	¹ MCFARLAND	98	CCFR	νN scattering
¹ MCFA	RLAND 98	assumed	a flavor universal	intera	ction. N	leutrinos were mostly of muor

type.

MASS LIMITS for Excited e (e*)

Most e^+e^- experiments assume one-photon or Z exchange. The limits from some e^+e^- experiments which depend on λ have assumed transition couplings which are chirality violating $(\eta_L = \eta_R)$. However they can be interpreted as limits for chirality-conserving interactions after multiplying the coupling value λ by $\sqrt{2}$; see Note.

Excited leptons have the same quantum numbers as other ortholeptons. See also the searches for ortholeptons in the "Searches for Heavy Leptons' section.

Limits for Excited e (e*) from Pair Production

These limits are obtained from $e^+ e^- \rightarrow e^{*+} e^{*-}$ and thus rely only on the (electroweak) charge of e^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the e^* coupling is assumed to be of sequential type. Possible tchannel contribution from transition magnetic coupling is neglected. All limits assume a dominant $e^* \rightarrow e\gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

V	NL UE	E (Ge	V)	CL%	_	DOCUMENT	ID		TECN	CON	1MEN T						
>	>103	3.2		95	1	ABBIEND		02G	OPAL	e^+	$e^- \rightarrow$	$e^* \epsilon$	*	Homo	odou	blet	type
•	• •	• W	e do	not	use the	e following	data	for	averages,	fits,	limits,	etc.	٠	••			
					2			~ ~			_	-	-				

>102.8 95 ² ACHARD 03B L3 $e^+e^- \rightarrow e^*e^*$ Homodoublet type ¹ From e^+e^- collisions at $\sqrt{s} = 183$ –209 GeV. f = f' is assumed.

² From e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. f = f' is assumed. ACHARD 03B also obtain limit for f = -f': $m_{e^*} > 96.6$ GeV.

Limits for Excited e (e*) from Single Production

These limits are from $e^+e^- \to e^*e, W \to e^*\nu$, or $ep \to e^*X$ and depend on transition magnetic coupling between e and e^* . All limits assume $e^* \to e\gamma$ decay except as noted. Limits from LEP, UA2, and H1 are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{e^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Ph	hysical Review D45 S1 (1992)).
--	---------------------------------------

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
>4800	95	¹ AABOUD 19	z ATLS	$p p \rightarrow e e^* X$
\bullet \bullet \bullet We do not use the	following	data for averages, fit	s, limits,	etc. • • •
>3900	95	² SIRUNYAN 19	CMS	$p p \rightarrow e e^* X$
>2450	95	³ KHACHATRY16	Q CMS	$p p \rightarrow e e^* X$
>3000	95	⁴ AAD 15/	P ATLS	$p p \rightarrow e^{(*)} e^* X$
>2200	95	⁵ AAD 13	BB ATLS	$p p \rightarrow e e^* X$
>1900	95	⁶ CHATRCHYAN13,	E CMS	$p p \rightarrow e e^* X$
>1870	95	⁷ AAD 12	z ATLS	$p p \rightarrow e^{(*)} e^* X$

 $^1\,{\sf AABOUD}$ 19Az search for single e^* production in pp collisions at \sqrt{s} = 13 TeV. The limit quoted above is from $e^*
ightarrow \ e \, q \, \overline{q}$ and $e^*
ightarrow \
u \, W$ decays assuming f = f' = 1 and $m_{e^*} = \Lambda$. The contact interaction is included in e^* production and decay amplitudes. See their Fig.6 for exclusion limits in $m_{e^*} - \Lambda$ plane.

 2 SIRUNYAN 19Z search for e* production in $\ell\ell\gamma$ final states in $p\,p$ collisions at \sqrt{s} = 13 TeV. The quoted limit assumes $\Lambda = m_{e^*}$, f = f' = 1. The contact interaction is included in the e* production and decay amplitudes.

 3 KHACHATRYAN 16AQ search for single e^* production in $p\,p$ collisions at \sqrt{s} = 8 TeV. The limit above is from the $e^* \to e_7$ search channel assuming f = f' = 1, $m_{e^*} = \Lambda$. See their Table 7 for limits in other search channels or with different assumptions.

 4 AAD 15AP search for e^* production in evens with three or more charged leptons in ppcollisions at $\sqrt{s}=$ 8 TeV. The quoted limit assumes $\Lambda=m_{e^*}$, f=f'= 1. The contact interaction is included in the e^* production and decay amplitudes.

 5 AAD 13BB search for single e^* production in $p\,p$ collisions with $e^* \rightarrow ~e\,\gamma$ decay. f=f'=1, and e^* production via contact interaction with $\Lambda=m_{e^*}$ are assumed.

 6 CHATRCHYAN 13AE search for single e^* production in pp collisions with $e^*
ightarrow e \gamma$ decay. f = f' = 1, and e^* production via contact interaction with $\Lambda = m_{e^*}$ are assumed.

⁷AAD 12AZ search for e^* production via four-fermion contact interaction in pp collisions with $e^*
ightarrow e \gamma$ decay. The quoted limit assumes $\Lambda \,=\, m_{\,e^*}^{}$. See their Fig. 8 for the exclusion plot in the mass-coupling plane.

Limits for Excited $e(e^*)$ from $e^+e^- \rightarrow \gamma\gamma$

These limits are derived from indirect effects due to e^* exchange in the t channel and depend on transition magnetic coupling between e and e^* . All limits are for $\lambda_\gamma=1$. All limits except ABE 891 and ACHARD 02D are for nonchiral coupling with $\eta_L=\eta_R=1$. We choose the chiral coupling limit as the best limit and list it in the Summary Table.

For limits prior to 1987, see our 1992 edition	(Physical Review D45 S1 (19	3 92))
--	-----------------------------	-------------------

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>356	95 1	^l abdallah	04N	DLPH	\sqrt{s} = 161–208 GeV
\bullet \bullet \bullet We do not use the	following (data for averages	, fits,	limits, e	tc. • • •
>310	95	ACHARD	02D	L3	\sqrt{s} = 192-209 GeV

>510 95 ACHARD 020 L5 VS= 192-209 GeV

 $^1\,\rm ABDALLAH$ 04N also obtain a limit on the excited electron mass with $e\,e^*$ chiral coupling, $m_{e^*}>$ 295 GeV at 95% CL.

Indirect Limits for Excited e (e*)

.

 These limits make use of loop effects involving e* and are therefore subject to theoretical uncertainty.

 VALUE (GeV)
 DOCUMENT ID
 TECN
 COMMENT

LUE	(GeV)	DOCUMENTID		TECN	COMMEN	1	
••	We do not use the fo	lowing data for aver	ages,	fits, limi	ts, etc. •	••	
		¹ DORENBOS	89	CHRM	$\overline{\nu}_{\mu} e \rightarrow$	$\overline{\nu}_{\mu} e, \nu_{\mu} e \rightarrow$	$\nu_{\mu} e$
		² GRIFOLS	86	THEO	$\nu_{\mu} e \rightarrow$	ν _μ e	
		³ RENARD	82	THEO	\dot{g} - 2 of ϵ	electron	

- ¹ DORENBOSCH 89 obtain the limit $\lambda_{\gamma}^2 \Lambda_{cut}^2 / m_{e^*}^2 < 2.6$ (95% CL), where Λ_{cut} is the cutoff scale, based on the one-loop calculation by GRIFOLS 86. If one assumes that $\Lambda_{cut} = 1$ TeV and $\lambda_{\gamma} = 1$, one obtains $m_{e^*} > 620$ GeV. However, one generally expects $\lambda_{\gamma} \approx m_{e^*} / \Lambda_{cut}$ in composite models.
- ² GRIFCLS 86 uses $\nu_{\mu}e \rightarrow \nu_{\mu}e$ and $\overline{\nu}_{\mu}e \rightarrow \overline{\nu}_{\mu}e$ data from CHARM Collaboration to derive mass limits which depend on the scale of compositeness.
- 3 RENARD 82 derived from g-2 data limits on mass and couplings of e^* and $\mu^*.$ See figures 2 and 3 of the paper.

MASS LIMITS for Excited μ (μ^*)

Limits for Excited μ (μ^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \mu^{*+}\mu^{*-}$ and thus rely only on the (electroweak) charge of μ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the μ^* coupling is assumed to be of sequential type. All limits assume a dominant $\mu^* \rightarrow \mu\gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DO CUMENT ID		TECN	COMMENT			
>103.2	95	¹ ABBIENDI	02G	OPAL	$e^+e^- \rightarrow$	$\mu^* \mu^*$	Homodoublet 1	уре
• • • We do	o not	use the following data	for a	averages,	fits, limits,	etc. •	••	
		0						

>102.8 95 ² ACHARD 03B L3 $e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type ¹ From e^+e^- collisions at \sqrt{s} = 183-209 GeV. f = f' is assumed.

 2 From e^+e^- collisions at $\sqrt{s}=$ 189–209 GeV. f=f' is assumed. ACHARD 03B also obtain limit for $f=-f'\colon$ $m_{\mu^*}>$ 96.6 GeV.

Limits for Excited μ (μ^*) from Single Production

These limits are from $e^+e^- \rightarrow \mu^*\mu$ and depend on transition magnetic coupling between μ and μ^* . All limits assume $\mu^* \rightarrow \mu\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\mu^*}$ plane. See the original papers.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>3800	95	¹ SIRU NYA N	19z	CMS	$pp \rightarrow \mu \mu^* X$
 • • We do not use the 	following	data for averages	, fits,	limits, e	etc. • • •
>2800	95	² AAD	16BM	ATLS	$pp \rightarrow \mu \mu^* X$
>2470	95	³ KHACHATRY	.16AQ	CMS	$pp \rightarrow \mu \mu^* X$
>3000	95	⁴ AAD	15ap	ATLS	$p p \rightarrow \mu^{(*)} \mu^* X$
>2200	95	⁵ AAD	13bb	ATLS	$p p \rightarrow \mu \mu^* X$
>1900	95	⁶ CHATRCHYAN	13AE	CMS	$pp \rightarrow \mu \mu^* X$
>1750	95	⁷ AAD	12A Z	ATLS	$pp \rightarrow \mu^{(*)} \mu^* X$
¹ SIRUNYAN 19z searc	h for μ^*	production in $\ell\ell\gamma$	final	states	in pp collisions at $\sqrt{s}=$

- 13 TeV. The quoted limit assumes $\Lambda = m_{\mu^*}$, f = f' = 1. The contact interaction is included in the μ^* production and decay amplitudes.
- 2AAD 16BM search for μ^* production in $\mu\mu jj$ events in pp collisions at $\sqrt{s} = 8$ TeV. Both the production and decay are assumed to occur via a contact interaction with $\Lambda = m_{\mu^*}$.
- ³ KHACHATRYAN 16AQ search for single μ^* production in pp collisions at $\sqrt{s} = 8$ TeV. The limit above is from the $\mu^* \to \mu\gamma$ search channel assuming f = f' = 1, $m_{\mu^*} = \Lambda$. See their Table 7 for limits in other search channels or with different assumptions.
- ⁴ AAD 15AP search for μ^* production in evens with three or more charged leptons in pp collisions at $\sqrt{s} = 8$ TeV. The quoted limit assumes $\Lambda = m_{\mu^*}$, f = f' = 1. The contact

_ interaction is included in the μ^* production and decay amplitudes.

⁵ AAD 13BB search for single μ^* production in pp collisions with $\mu^* \to \mu\gamma$ decay. f = f' = 1, and μ^* production via contact interaction with $\Lambda = m_{\mu^*}$ are assumed.

⁶ CHATRCHYAN 13AE search for single μ* production in *pp* collisions with μ* → μγ decay. *f* = *f'* = 1, and μ* production via contact interaction with Λ = m_{μ*} are assumed. ⁷ AAD 12AZ search for μ* production via four-fermion contact interaction in *pp* collisions with μ* → μγ decay. The quoted limit assumes Λ = m_{μ*}. See their Fig. 8 for the exclusion plot in the mass-coupling plane. **Indirect Limits for Excited μ (μ*)** These limits make use of loop effects involving μ* and are therefore subject to theoretical uncertainty. *VALUE* (GeV) <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

¹ RENARD 82 THEO g-2 of muon

 $^1\,\rm RENARD$ 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

MASS LIMITS for Excited τ (τ^*)

Limits for Excited τ (τ^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \tau^{*+}\tau^{*-}$ and thus rely only on the (electroweak) charge of τ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the τ^* coupling is assumed to be of sequential type. All limits assume a dominant $\tau^* \rightarrow \tau \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

/ALUE	(GeV)	CL%	DO CUMENT ID		TECN	COMMENT	
>103.	2	95	¹ ABBIENDI	020	OPAL	$e^+ \: e^- \to$	$ au^* au^*$ Homodoublet type
• • •	We do	not u	se the following data	for	averages,	fits, limits,	etc. • • •
<102	0	05		030	1.2	a^+a^-	-*-* Homodoublet type

>102.8 95 ² ACHARD 03B L3 $e^+e^- \rightarrow \tau^*\tau^*$ Homodoublet type ¹ From e^+e^- collisions at \sqrt{s} = 183-209 GeV. f = f' is assumed.

 $^2\,{\rm From}~e^+\,e^-$ collisions at \sqrt{s} = 189–209 GeV. f=f' is assumed. ACHARD 03B also obtain limit for $f=-f':~m_{\tau^*}>$ 96.6 GeV.

Limits for Excited au (au^*) from Single Production

These limits are from $e^+e^- \rightarrow \tau^* \tau$ and depend on transition magnetic coupling between τ and τ^* . All limits assume $\tau^* \rightarrow \tau \gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\tau^*}$ plane. See the original papers.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>2500	95	AAD	15ap	ATLS	$pp \rightarrow \tau^{(*)} \tau^* X$
• • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •
> 180 > 185	95 95	² ACHARD ³ ABBIENDI	03в 02g	L3 OPAL	$e^+e^- \rightarrow \tau \tau^*$ $e^+e^- \rightarrow \tau \tau^*$

- ¹AAD 15AP search for τ^* production in events with three or more charged leptons in pp collisions at $\sqrt{s} = 8$ TeV. The quoted limit assumes $\Lambda = m_{\tau^*}$, f = f' = 1. The contact interaction is included in the τ^* production and decay amplitudes.
- interaction is included in the τ^* production and decay amplitudes. $^2 \rm ACHARD$ 03B result is from $e^+ \ e^-$ collisions at $\sqrt{s} = 189-209$ GeV. $f = f' = \Lambda/m_{\tau^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.
- ³ABBIENDI 02G result is from e^+e^- collisions at $\sqrt{s} = 183-209$ GeV. $f = f' = \Lambda/m_{\tau^*}$ is assumed for τ^* coupling. See their Fig. 4c for the exclusion limit in the mass-coupling plane.

MASS LIMITS for Excited Neutrino (ν^*)

Limits for Excited ν (ν^*) from Pair Production

I

These limits are obtained from $e^+e^- \rightarrow \nu^*\nu^*$ and thus rely only on the (electroweak) charge of ν^* . Form factor effects are ignored unless noted. The ν^* coupling is assumed to be of sequential type unless otherwise noted. All limits assume a dominant $\nu^* \rightarrow \nu_{\gamma}$ decay except the limits from $\Gamma(Z)$.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>1600	95	¹ AAD	15 AP	ATLS	$pp \rightarrow \nu^* \nu^* X$
• • • We do	not use t	he following data	for a	verages,	fits, limits, etc. • • •
		² ABBIENDI	04 N	OPAL	
> 102.6	95	³ ACHARD	03в	L3	$e^+e^- ightarrow u^* u^*$ Homodoublet type
¹ aad 15a	P search fo	or ν^* pair produc	tion i	n evens	with three or more charged leptons ir

- pp collisions at $\sqrt{s} = 8$ TeV. The quoted limit assumes $\Lambda = m_{\nu^*}$, f = f' = 1. The contact interaction is included in the ν^* production and decay amplitudes.
- ² From e⁺e⁻ collisions at $\sqrt{s} = 192-209$ GeV, ABIENDI 04N obtain limit on $\sigma(e^+e^- \rightarrow \nu^*\nu^*)$ B²($\nu^* \rightarrow \nu\gamma$). See their Fig.2. The limit ranges from 20 to 45 fb for $m_{\nu^*} > 45$ GeV.
- 3 From $e^+\,e^-$ collisions at $\sqrt{s}=$ 189–209 GeV. f=-f' is assumed. ACHARD 03B also obtain limit for $f=f'\colon m_{\nu_e^*}>$ 101.7 GeV, $m_{\nu_\mu^*}>$ 101.8 GeV, and $m_{\nu_\tau^*}>$ 92.9 GeV. See their Fig. 4 for the exclusion plot in the mass-coupling plane.

Limits for Excited ν (ν^*) from Single Production

These limits are from $e^+e^-
ightarrow
u
u^*$, $Z
ightarrow
u
u^*$, or $ep
ightarrow
u^* X$ and depend on transition magnetic coupling between ν/e and $\nu^*.$ Assumptions about ν^* decay mode are given in footnotes. ____

VALUE (GeV)	CL%	DOCUMENTID		TECN	COMMENT
>213 • • • We do	95 not use	¹ AARON the following data	08 for a	H1 verages.	$e p \rightarrow \nu^* X$ fits, limits, etc. • • •
>190	95	² ACHARD	03в	L3	$e^+e^- \rightarrow \nu \nu^*$
none 50-150	95	³ ADLOFF	02	H1	$e p \rightarrow \nu^* X$
>158	95	⁴ CHEKANOV	02d	ZEUS	$e p \rightarrow \nu^* X$
1					

¹AARON 08 search for single ν^* production in $e\rho$ collisions with the decays $\nu^* \rightarrow \nu \gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 3 and Fig. 4 for the exclusion plots in the mass-coupling plane. ²ACHARD 03B result is from e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. The quoted limit

- is for ν_e^* . $f=-f'=\Lambda/m_{\nu^*}$ is assumed. See their Fig.4 for the exclusion plot in the mass-coupling plane.
- ³ ADLOFF 02 search for single ν^* production in ep collisions with the decays $\nu^* \rightarrow \nu\gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\mu^*}$. See their Fig. 1 for the exclusion plots in the mass-coupling plane.

^{plots} in the mass-coupling plane. ⁴ CHEKANOV 02D search for single ν^* production in *ep* collisions with the decays $\nu^* \rightarrow \frac{1}{2}$ $\nu \gamma$, νZ , eW. $f = -f' = \Lambda / m_{\nu^*}$ is assumed for the e^* coupling. CHEKANOV 02D also obtain limit for $f = f' = \Lambda/m_{p^*}$: $m_{p^*} > 135$ GeV. See their Fig. 5c and Fig. 5d for the exclusion plot in the mass-coupling plane.

MASS LIMITS for Excited $q(q^*)$

Limits for Excited $q(q^*)$ from Pair Production

These limits are mostly obtained from $e^+\,e^ightarrow\,q^*\,\overline{q}^*$ and thus rely only on the (electroweak) charge of the q^* . Form factor effects are ignored unless noted. Assumptions about the q^* decay are given in the comments and footnotes.

VALUE (GeV)	<u>CL /0</u>	DOCUMENTID		TECN	COMMENT	
>338	95	¹ AALTONEN	10н	CDF	$q^* \rightarrow t W^-$	
• • • We do not u	use the followi	ng data for average	es, fit:	s, limits,	, etc. • • •	
none 700-1200	95	² SIRUNYAN	18v	CMS	$pp \rightarrow t^*_{3/2} \overline{t}^*_{3/2} \rightarrow$	I
					tīgg	
		³ barate	98U	ALEP	$Z \rightarrow q^* q^*$	
> 45.6	95	⁴ ADRIANI	93 M	L3	u or d type, $Z o q^* q^*$	
> 41.7	95	⁵ BARDADIN	92	RVUE	u -type, $\Gamma(Z)$	
> 44.7	95	⁵ BARDADIN	92	RVUE	d -type, $\Gamma(Z)$	
> 40.6	95	⁶ DECA MP	92	ALEP	u -type, $\Gamma(Z)$	
> 44.2	95	⁶ DECA MP	92	ALEP	d -type, $\Gamma(Z)$	
> 45	95	⁷ DECA MP	92	ALEP	$u \text{ or } d \text{ type, } Z \rightarrow q^* q^*$	
> 45	95	⁶ ABREU	91 F	DLPH	u -type, $\Gamma(Z)$	
> 45	95	⁶ ABREU	91 F	DLPH	d -type, $\Gamma(Z)$	

¹AALTONEN 10H obtain limits on the $q^* q^*$ production cross section in $p\overline{p}$ collisions. See their Fig. 3.

 2 SIRUNYAN 18v search for pair production of spin 3/2 excited top quarks. B($t^*_{3/2} \rightarrow$ tg) = 1 is assumed.

 3 BARATE 980 obtain limits on the form factor. See their Fig. 16 for limits in mass-form factor plane

⁴ ADRIANI 93M limit is valid for $B(q^* \rightarrow qg) > 0.25$ (0.17) for up (down) type

⁵ BARDADIN-OTWINOWSKA 92 limit based on $\Delta\Gamma(Z)$ <36 MeV.

⁶ These limits are independent of decay modes. ⁷ Limit is for $B(q^* \rightarrow qg) + B(q^* \rightarrow q\gamma) = 1$.

Limits for Excited $q(q^*)$ from Single Production

These limits are from $e^+ e^- \rightarrow q^* \overline{q}$, $p\overline{p} \rightarrow q^* X$, or $pp \rightarrow q^* X$ and depend on transition magnetic couplings between q and q^* . Assumptions about q^* decay mode are given in the footnotes and comments.

VALUE (GeV)	CL%	DOCUMENT ID TECN COMMENT
none 1500-2600	95	¹ AABOUD 18AB ATLS $pp \rightarrow b^* X, b^* \rightarrow bg$
none 1500-5300	95	² AABOUD 18BA ATLS $pp \rightarrow q^*X, q^* \rightarrow q\gamma$
none 1000-5500	95	3 SIRUNYAN 18AG CMS $pp ightarrow q^* X, q^* ightarrow q\gamma$
none 1000-1800	95	⁴ SIRUNYAN 18AG CMS $pp \rightarrow b^*X$, $b^* \rightarrow b\gamma$
none 600-6000	95	5 SIRUNYAN 18B0 CMS $pp \rightarrow q^*X, q^* \rightarrow qg$
none 1200-5000	95	⁶ SIRUNYAN 18P CMS $pp \rightarrow q^*X, q^* \rightarrow qW$
none 1200-4700	95	⁶ SIRUNYAN 18P CMS $pp \rightarrow q^*X$, $q^* \rightarrow qZ$
>6000	95	7 AABOUD 17AK ATLS $pp ightarrow q^* X, \; q^* ightarrow qg$
\bullet \bullet \bullet We do not	use the	following data for averages, fits, limits, etc. 🔹 🔹 🔹
none 600-5400	95	8 KHACHATRY17w CMS $pp ightarrow q^*X, \; q^* ightarrow qg$
none 1100-2100	95	⁹ AABOUD 16 ATLS $pp \rightarrow b^* X$, $b^* \rightarrow bg$
>1500	95	¹⁰ AAD 16AH ATLS $pp \rightarrow b^* X, b^* \rightarrow t W$
>4400	95	¹¹ AAD 16AI ATLS $pp \rightarrow q^*X, q^* \rightarrow q\gamma$
		¹² AAD 16AV ATLS $pp \rightarrow q^*X, q^* \rightarrow Wb$
>5200	95	¹³ AAD 16s ATLS $pp \rightarrow q^*X, q^* \rightarrow qg$
>1390	95	¹⁴ KHACHATRY161 CMS $pp \rightarrow b^*X$, $b^* \rightarrow tW$
>5000	95	15 KHACHATRY16K CMS $pp ightarrow q^*X, \; q^* ightarrow qg$
none 500–1600	95	¹⁶ KHACHATRY16L CMS $pp \rightarrow q^*X, q^* \rightarrow qg$
>4060	95	¹⁷ AAD 15V ATLS $pp \rightarrow q^*X, q^* \rightarrow qg$
>35 00	95	18 KHACHATRY15 \vee CMS $ ho p ho ightarrow q^* X, \; q^* ightarrow \; qg$
>35 00	95	19 AAD 14A ATLS $pp ightarrow q^* X, \; q^* ightarrow q\gamma$
>3200	95	20 KHACHATRY14 CMS $pp ightarrow q^*X, q^* ightarrow qW$
>2900	95	21 KHACHATRY14 CMS $pp ightarrow q^* X, \ q^* ightarrow q Z$
none 700-3500	95	22 KHACHATRY14」 CMS $pp ightarrow q^* X, \; q^* ightarrow q \gamma$
>2380	95	23 CHATRCHYAN13AJ CMS $pp ightarrow q^*X, \; q^* ightarrow qW$
>2150	95	²⁴ CHATRCHYAN13AJ CMS $pp \rightarrow q^*X, q^* \rightarrow qZ$

- ¹AABOUD 18AB assume $\Lambda = m_{b^*}$, $f_s = f = f' = 1$. The contact interactions are not included in b^* production and decay amplitudes.
- $^2\,{\sf AABOUD}$ 18BA search for first-generation excited quarks $(u^*$ and $d^*)$ with degenerate mass, assuming $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes.
- $^3\,{\rm SIRUNYAN}$ 18AG search for first-generation excited quarks $(u^*$ and $d^*)$ with degenerate mass, assuming $\Lambda = m_{q^*}$, $f_S = f = f' = 1$.
- ⁴ SIRUNYAN 18AG search for excited *b* quark assuming $\Lambda = m_{q^*}$, $f_s = f = f' = 1$.
- 5 SIRUNYAN 1880 assume $\Lambda=m_{q^*}$, $f_{
 m S}=f=f'=1$. The contact interactions are not included in q^* production and decay amplitudes.
- ⁶ SIRUNYAN 18P use the hadronic decay of W or Z, assuming $\Lambda = m_{q^*}$, $f_s = f = f' = 1$.
- ⁷AABOUD 17AK assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes. Only the decay of $q^* \to g u$ and $q^* \to g d$ is simulated as the benchmark signals in the analysis.
- ⁸ KHACHATRYAN 17W assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are
- not included in q^* production and decay amplitudes. ⁹AABOUD 16 assume $\Lambda = m_{b^*}$, $f_s = f = f' = 1$. The contact interactions are not included in the b^* production and decay amplitudes.
- $^{10}\,{\rm AAD}$ 16AH search for b^* decaying to $t\,W$ in $p\,p$ collisions at \sqrt{s} = 8 TeV. f_g = f_L = $f_R = 1$ are assumed. See their Fig. 12b for limits on $\sigma \cdot B$.
- ¹¹AAD 16AI assume $\Lambda = m_{q^*}$, $f_S = f = f' = 1$.
- 12 AAD 16AV search for single production of vector-like quarks decaying to Wb in ppcollisions. See their Fig. 8 for the limits on couplings and mixings.
- ¹³AAD 16s assume $\Lambda = m_{q^*}$, $f_S = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes.
- 14 KHACHATRYAN 16I search for b^* decaying to t W in $p\,p$ collisions at $\sqrt{s}=$ 8 TeV. κ_L^b $=g_L=1$, $\kappa_R^b=g_R=0$ are assumed. See their Fig. 8 for limits on $\sigma \cdot B$.
- 15 KHACHATRYAN 16K assume Λ = $m_{q^*},\,f_{\rm S}$ = f = f' = 1. The contact interactions are not included in q^* production and decay amplitudes.
- ¹⁶ KHACHATRYAN 16L search for resonances decaying to dijets in *pp* collisions at $\sqrt{s} = 8$ TeV using the data scouting technique which increases the sensitivity to the low mass resonances
- 17 AAD 15v assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes.
- 18 KHACHATRYAN 15v assume $\Lambda=m_{q^*},\,f_{\rm S}=f=f'=1.$ The contact interactions are not included in q^* production and decay amplitudes.
- ¹⁹AAD 14A assume $\Lambda = m_{q^*}$, $f_S = f = f' = 1$.

 20 KHACHATRYAN 14 use the hadronic decay of W, assuming $\Lambda=m_{q^*}$, $f_{\rm S}{=}f{=}f'=1.$

 21 KHACHATRYAN 14 use the hadronic decay of Z, assuming Λ = $m_{a^*},\,f_{\rm S}{=}\,f{=}\,f'$ = 1.

 $^{22}\,\rm KHACHATRYAN$ 14J assume f_{S} = f = f' = Λ / $m_{q^{*}}.$

 23 CHATRCHYAN 13AJ use the hadronic decay of W.

 24 CHATRCHYAN 13AJ use the hadronic decay of Z.

MASS LIMITS for Color Sextet Quarks (q_6)

VALUE (GeV)	CL%	DOCUMENT	ID .	TECN	COMMENT	
>84	95	¹ ABE	89D	CDF	$p\overline{p} \rightarrow q_6\overline{q}_6$	
¹ ABE 89D look for	pair proc	duction of unit-c	harged p	articles	which leave the d	etector

unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. A limit of 121 GeV is obtained for a color decuplet.

MASS LIMITS for Color Octet Charged Leptons (ℓ_8)

$\lambda \equiv m_{\ell_8}/\Lambda$					
VALUE (GeV)	CL%	DO CUMENT ID		TECN	COMMENT
>86	95	¹ ABE	89D	CDF	Stable $\ell_8: p\overline{p} \rightarrow \ell_8\overline{\ell}_8$
\bullet \bullet \bullet We do not us	e the follo	wing data for avera	ges, fi	ts, limit	ts, etc. • • •
		² ABT	93	H1	$e_8: e_p \rightarrow e_8 X$
1 ABE 89D look f	for pair pr	oduction of unit-ch	n ar øed	nartic	es which leave the detector

before decaying. In the above limit the color octet lepton is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. The limit improves to 99 GeV if it always fragments into a unit-charged hadron.

²ABT 93 search for eg production via e-gluon fusion in ep collisions with $e_8 \rightarrow eg$. See their Fig. 3 for exclusion plot in the m_{e_8} -A plane for m_{e_8} = 35-220 GeV.

MASS LIMITS for Color Octet Neutrinos (ν_8)

 $\lambda \equiv m_{\ell_8}/\Lambda$

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>110	90	¹ BARGER	89	RVUE	$\nu_8: p \overline{p} \rightarrow \nu_8 \overline{\nu}_8$
• • • We do not	use the	following data for av	erages	, fits, lin	nits, etc. 🔹 🔹 🔹
none 3.8-29.8	95	² KI M	90	AMY	$\nu_8: e^+e^- ightarrow$ acoplanar jets
none 9-21.9	95	³ BARTEL	87B	JADE	$\nu_8: e^+e^- ightarrow$ acoplanar jets

Searches Particle Listings

2067

Quark and Lepton Compositeness, Extra Dimensions

 1 BARGER 89 used ABE 89B limit for events with large missing transverse momentum. Two-body decay $\nu_8 \to \nu g$ is assumed.

 2 KIM 90 is at $E_{\rm cm}=50\text{-}60.8$ GeV. The same assumptions as in BARTEL 87B are used. 3 BARTEL 87B is at $E_{\rm cm}=46.3\text{-}46.78$ GeV. The limit assumes the ν_8 pair production cross section to be eight times larger than that of the corresponding heavy neutrino pair production. This assumption is not valid in general for the weak couplings, and the limit can be sensitive to its SU(2)_L ×U(1)_Y quantum numbers.

MASS LIMITS for W8 (Color Octet W Boson)

 $\label{eq:linear_state} \begin{array}{c|c} \underline{POCUMENT\ ID} & \underline{TECN} & \underline{COMMENT} \\ \hline \bullet \bullet & We \ do \ not \ use \ the \ following \ data \ for \ averages, \ fits, \ limits, \ etc. \ \bullet \ \bullet \\ \hline & 1 \ ALBA \ JAR & 89 & UA1 & p\overline{p} \rightarrow \ W_8 \ X, \ W_8 \rightarrow \ Wg \\ \hline & 1 \ ALBA \ JAR \ 89 \ give \ \sigma(W_8 \rightarrow \ W+\ jet)/\sigma(W) < 0.019 \ (90\% \ CL) \ for \ m_{\ W_8} > 220 \ GeV. \end{array}$

REFERENCES FOR Searches for Quark and Lepton Compositeness

	1047	ED1 678 002	M. Ashand as at	(ATLAC C-U-L)
ARBOUD	19AZ	EPJ C/9 803	M. Addoud et al.	(ALLAS COURD.)
	10 0 C	PR D 99 0 92006	A M. Sirupuon et al.	(ZEUS CONAD.)
SIRUNYAN	19AC	JHEP 1904 114	A.M. Sirunyan et al.	(CMS_Collab.)
SIRUNYAN	192	JHEP 1904 015	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	18 AB	PR D 98 032016	M. Aaboud et al.	(ATLAS COURD.)
AABOUD	10 PA	JHEP 1007 009	M. Aaboud et al.	(ATLAS COND.)
AABOUD	10 BA	EPJ C/8 102	M. Aaboud et al.	(AT LAS CONAD.)
SIRUNYAN	1000	PL B/81 390	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	1880	JHEP 1808 130	A.M. Sirunyan et al.	(CMS_Collab.)
SIRUNYAN	1800	EPJ C/8 /89	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18 P	PK D97 072006	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18 V	PL B778 349	A.M. Sirunyan et al.	(CMS_Collab.)
AABOUD	17AK	PR D96 052004	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	TAL	JHEP 1710 182	M. A aboud et al.	(ALLAS COLLAD.)
KHACHATRY	17 W	PL B/69 520	v. Knachatryan <i>et al</i>	(CMS Collab.)
SIRUNYAN	1/1-	JHEP 1/0/ 013	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	16	PL B759 229	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	160	PL B/61 3/2	M. Aaboud et al.	(ATLAS Collab.)
AAD	16AH	JHEP 1602 110	G. Aad et al.	(ATLAS Collab.)
AAD	10AI	JHEP 1603 041	G. Aad et al.	(ATLAS COND.)
AAD	16AV	EPJ C/6 442	G. Aad et al.	(ATLAS Collab.)
AAD	10 BIVI	NJP 18 073021	G. Aad et al.	(ATLAS COND.)
AAD	105	PL B/54 302	G. Add et al.	(AT LAS CONAD.)
KHACHATRY	16AQ	JHEP 1603 125	V. Knachatryan et al.	(CMS Collab.)
KHACHATRY	. 161	JHEP 1601 166	V. Knachatryan <i>et al</i> .	(CMS Collab.)
KHACHATRY	. 16K	PRL 115 071801	V. Knachatryan et al.	(CMS_Collab.)
KHACHATRY	15 A D	PRL 117 031802	V. Knachatryan et al.	(CMS Collab.)
AAD	15AP	JHEP 1508 138	G. Aad et al.	(ATLAS COND.)
AAD	15AR	JHEP 1508 105	G. Aad et al.	(ATLAS Collab.)
AAD	15 B Y	JHEP 1510 150	G. Aad et al.	(ALLAS Collab.)
AAD	15 L	PRL 114 221802	G. Aad et al.	(ATLAS Collab.)
AAD	15 V	PR D91 052007	G. Aad et al.	(ALLAS Collab.)
KHACHATRY	15 AE	JHEP 1504 025	V. Khachatryan et al.	(CMS_Collab.)
KHACHATRY	15 J	PL B746 79	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY	15 V	PR D91 052009	V. Khachatryan <i>et al.</i>	(CMS_Collab.)
AAD	14 A	PL B728 562	G. Aad et al.	(ALLAS Collab.)
AAD	14 BE	EPJ C74 3134	G. Aad et al.	(ATLAS Collab.)
FABBRICHEST	14	PR D89 074028	M. Fabbrichesi, M. Pinamonti, A	lonero
KHACHATRY	. 14	JHEP 1408 173	V. Khachatryan <i>et al.</i>	(CMS_Collab.)
KHACHATRY	. 14 J	PL B738 274	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD	13BB	NJP 15 093011	G. Aad et al.	(ATLAS Collab.)
AAD	13 E	PR D87 015010	G. Aad et al.	(ALLAS Collab.)
CHAIRCHYAN	13 A E	PL B720 309	S. Chatrchyan <i>et al</i> .	(CMS Collab.)
CHATRCHYAN	13AJ	PL B723 280	S. Chatrchyan et al.	(CMS_Collab.)
CHAIRCHYAN	13 K	PR D87 032001	S. Chatrchyan <i>et al</i> .	(CMS Collab.)
AAD	12AB	PL B712 40	G. Aad et al.	(ATLAS Collab.)
AAD	12AZ	PR D85 072003	G. Aad et al.	(ALLAS Collab.)
AARON	11 C	PL B705 52	F. D. Aaron et al.	(H1 Collab.)
ABDALLAH	11	EPJ C/1 1555	J. Abdallan et al.	(DELPHI Collab.)
AALIONEN	10 H	PRL 104 091801	I Aaltonen et al.	(CDF Collab.)
ABDALLAH	09	EPJ C60 I	J. Abdallan <i>et al.</i>	(DELPHI Collab.)
AARON	08	PL B663 382	F.D. Alaron et al.	(HI Collab.)
SCHAEL	07 A	EPJ C49 411	S. Schael et al.	(ALEPH Collab.)
ABDALLAH	060	EPJ C45 589	J. Abdanan et al.	(DELPHI Collab.)
ABULENCIA	06L	PRL 96 211801	A. Abulencia et al.	(CDF Collab.)
ABBIENDI	04 G	EPJ C33 1/3	G. Abblendi et al.	(OPAL Collab.)
ABBIENDI	04 N	PL B602 167	G. Abbiendi et al.	(DELDUL CHIAD.)
ADDALLAR	04 N	EFJ C37 405	D. Abuanan et al.	(DELPHI Collab.)
BARICU	03 B	PL B368 23	P. Achard et al.	(L3 Collab.)
	03	EFJ C29 103	A.A. Dablendi et al.	(OBAL Callab.)
	020	PL D344 57	G. Abbiellul et al.	(UPAL Collab.)
ACHARD	02.0	PL B031 20	P. Achard et al.	(L3 Collab.)
CUEKANOV	02	PL 0525 7	C. Auton et al.	(TEUS Collab.)
AFEOLDER	011	PE 0349 32 DDI 07 321002	T Affolder at al	(CDE Collab.)
BOURILKOV	01	PR D64 071701	D Bourilkov	(CDI COND.)
CHEUNG	01B	PL B517 167	K Cheung	
ACCIARRI	00.0	PI 8489 81	M Acciarri et al	(L3 Collab.)
ACCIANT	001	PP D42 012004	T Affolder at al	(CDE Collab.)
DADATE	001	EDI C/ 571	P. Parate et al.	(ALERH Collab.)
DARATE	09 E	DD D57 201	V Parger et al.	(ALLEFTI COND.)
MCEARLAND	90 L 98	EPI C1 509	KS McFarland at al	(CCER/NuTeV Collab.)
	0.0	DD D40 2140	LL Diaz Cruz O.A. Samaawa	(CINV)
ART	03	NP B396 3	I Abt et al	(H1 Collab.)
ADRIANI	93 M	PRPL 236 1	O Adriani et al	(13 Collab.)
BARDADIN-	92 92	ZPHY C55 163	M Bardadin-Otwinowska	(CLER)
DECAMP	92	PRPL 216 253	D Decamp et al	(ALEPH Collab.)
PDG	92	PR D45 S1	K Hikasa et al	(KEK LBL BOST+)
ABREU	91 F	NP B367 511	P Abreu et al	(DELPHI Collab)
KIM	90	PL B240 243	G N Kim et al	(AMY Collab.)
ABE	89B	PRL 62 1825	F. Abe et al.	(CDF Collab.)
ABE	890	PRI 63 1447	F Abe et al	(CDE Collab.)
ABE	891	ZPHY C45 175	K. Abe et al.	(VENUS Collab
ALBAJAR	89	ZPHY C44 15	C. Albaiar et al	(UA1 Collab)
BARGER	89	PL B220 464	V. Barger et al.	WISC KEK
DORENBOS	89	ZPHY C41 567	J. Dorenbosch et al.	(CHÀRM Collab.)
BARTEI	87 B	ZPHY C36 15	W. Bartel et al.	(JADE Collab.)
GRIFOLS	86	PL 168B 264	J.A. Grifols, S. Peris	(BARC)
JODIDIO	86	PR D34 1967	A. Jodidio et al.	(LBL, NWES, TRIU)
Also		PR D37 237 (erratum)	A. Jodidio et al.	(LBL, NWES, TRIU)
RENARD	82	PL 116B 264	F.M. Renard	(CERN)
				× /

Extra Dimensions

For explanation of terms used and discussion of significant model dependence of following limits, see the "Extra Dimensions" review. Footnotes describe originally quoted limit. δ indicates the number of extra dimensions.

Limits not encoded here are summarized in the "Extra Dimensions" review, where the latest unpublished results are also described.

See the related review(s):

Extra Dimensions

CONTENTS:

Limits on R from Deviations in Gravitational Force Law Limits on R from On-Shell Production of Gravitons: $\delta = 2$ Mass Limits on M_{TT} Limits on $1/R = M_C$ Limits on Kaluza-Klein Gravitons in Warped Extra Dimensions Limits on Kaluza-Klein Gluons in Warped Extra Dimensions Black Hole Production Limits – Semiclassical Black Holes – Quantum Black Holes

Limits on R from Deviations in Gravitational Force Law

This section includes limits on the size of extra dimensions from deviations in the Newtonian $(1/r^2)$ gravitational force law at short distances. Deviations are parametrized by a gravitational potential of the form $V = -(G \ m \ m'/r) \ [1 + \alpha \exp(-r/R)]$. For δ toroidal extra dimensions of equal size, $\alpha = 8\delta/3$. Quoted bounds are for $\delta = 2$ unless otherwise noted.

VALUE(µm)	CL%	DOCUMENT ID		TECN	COMMENT
< 30	95	¹ KAPNER	07		Torsion pendulum
• • • We do not us	e the follow	ing data for average	es, fits,	limits,	etc. • • •
		² BERGE	18	MICR	Space accelerometer
		⁴ HADDOCK	18A 18	MICR	Space accelerometer Neutron scattering
		⁵ KLIMCHITSK	17A		Torsion oscillator
		⁶ XU	13		Nuclei properties
		⁷ BEZERRA	11		Torsion oscillator
		⁸ SUSHKOV	11		Torsion pendulum
		⁹ BEZERRA	10		Microcantilever
		¹⁰ MASUDA	09		Torsion pendulum
		¹¹ GERACI	08		Microcantilever
		¹² TRENKEL	08		Newton's constant
		¹³ DECCA	07A		Torsion oscillator
< 47	95	¹⁴ TU	07		Torsion pendulum
		¹⁵ SMULLIN	05		Microcantilever
<130	95	¹⁶ HOYLE	04		Torsion pendulum
		¹⁷ CHIAVERINI	03		Microcantilever
≤ 200	95	¹⁸ LONG	03		Microcantilever
<190	95	¹⁹ HOYLE	01		Torsion pendulum
		²⁰ HOSKINS	85		Torsion pendulum

 1 KAP NER 07 search for new forces, probing a range of $\alpha\simeq 10^{-3}-10^5$ and length scales $R\simeq 10-1000~\mu{\rm m}.$ For $\delta=1$ the bound on R is 44 $\mu{\rm m}.$ For $\delta=2$, the bound is expressed in terms of $M_*,$ here translated to a bound on the radius. See their Fig. 6 for details on the bound.

- details on the bound. ²BERGE 18 uses results from the MICROSCOPE experiment to obtain constraints on non-Newtonian forces with strengths $10^{-11} \leq |\alpha| \leq 10^{-7}$ and length scales $R \gtrsim 10^5$ m. See their Figure 1 for more details. These constraints do not place limits on the size of extra flat dimensions.
- ³ FAYET 18A uses results from the MICROSCOPE experiment to obtain constraints on an EP-violating force possibly arising from a new U(1) gauge boson. For $R \gtrsim 10^7$ m the limits are $|\alpha| \lesssim a$ few 10^{-13} to a few 10^{-11} depending on the coupling, corresponding to $|\epsilon| \lesssim 10^{-24}$ for the coupling of the new spin-1 or spin-0 mediator. These constraints do not place limits on the size of extra flat dimensions. This extends the results of FAYET 18.
- ⁴ HADDOCK 18 obtain constraints on non-Newtonian forces with strengths $10^{22} \lesssim |\alpha| \lesssim 10^{24}$ and length scales $R \simeq 0.01$ –10 nm. See their Figure 8 for more details. These constraints do not place limits on the size of extra flat dimensions.

KLIMCHITSKAYA ITA uses an experiment that measures the difference of Casimir forces to obtain bounds on non-Newtonian forces with strengths $|\alpha| \simeq 10^5 - 10^{17}$ and length scales $R = 0.03 - 10 \ \mu\text{m}$. See their Fig. 3. These constraints do not place limits on the size of extra flat dimensions.

size of extra flat dimensions. ⁶ XU 13 obtain constraints on non-Newtonian forces with strengths $|\alpha| \simeq 10^{34}$ -10³⁶ and length scales $R \simeq 1$ -10 fm. See their Fig. 4 for more details. These constraints do not place limits on the size of extra flat dimensions.

 7 BEZERRA 11 obtain constraints on non-Newtonian forces with strengths $10^{11}\lesssim |\alpha|\lesssim 10^{18}$ and length scales R=30--1260 nm. See their Fig. 2 for more details. These constraints do not place limits on the size of extra flat dimensions.

 8 SUSHKOV 11 obtain improved limits on non-Newtonian forces with strengths $10^7 \lesssim |\alpha| \lesssim 10^{11}$ and length scales 0.4 $\mu m < R < 4 \ \mu m$ (95% CL). See their Fig. 2. These bounds do not place limits on the size of extra flat dimensions. However, a model dependent bound of $M_* > 70$ TeV is obtained assuming gauge bosons that couple to baryon number also propagate in $(4 + \delta)$ dimensions.

 9 BEZERRA 10 obtain improved constraints on non-Newtonian forces with strengths $10^{19} \lesssim |\alpha| \lesssim 10^{29}$ and length scales R= 1.6–14 nm (95% CL). See their Fig. 1. This bound does not place limits on the size of extra flat dimensions.

2068 Searches Particle Listings

Extra Dimensions

- 10 MASUDA 09 obtain improved constraints on non-Newtonian forces with strengths 10 9 \lesssim $|\alpha|\lesssim 10^{11}$ and length scales $R=1.0\text{--}2.9~\mu\text{m}$ (95% CL). See their Fig. 3. This bound does not place limits on the size of extra flat dimensions.
- 10 GERACI 08 obtain improved constraints on non-Newtonian forces with strengths $|\alpha| > 14,000$ and length scales R = 5-15 μ m. See their Fig. 9. This bound does not place
- Initial of extra flat dimensions. ¹² TRENKEL 08 uses two independent measurements of Newton's constant *G* to constrain new forces with strength $|\alpha| \simeq 10^{-4}$ and length scales R = 0.02-1 m. See their Fig. 1. This bound does not place limits on the size of extra flat dimensions
- $^{13}\mathsf{DECCA}$ 07A search for new forces and obtain bounds in the region with strengths $|lpha|\,\simeq\,$ 10^{13} - 10^{18} and length scales R = 20-86 nm. See their Fig. 6. This bound does not place limits on the size of extra flat dimensions.
- $^{14}\mathrm{TU}$ 07 search for new forces probing a range of $|lpha|~\simeq~10^{-1}$ –10 5 and length scales R $\simeq~$ 20–1000 μ m. For $\delta=1$ the bound on $m ilde{R}$ is 53 μ m. See their Fig. 3 for details on the bound
- bound. ¹⁵ SMULLIN 05 search for new forces, and obtain bounds in the region with strengths $\alpha \simeq 10^3 10^8$ and length scales $R = 6-20 \ \mu\text{m}$. See their Figs. 1 and 16 for details on the bound. This work does not place limits on the size of extra flat dimensions. ¹⁶ HOYLE 04 search for new forces, probing α down to 10^{-2} and distances down to $10 \ \mu\text{m}$.
- Quoted bound on R is for $\delta = 2$. For $\delta = 1$, bound goes to 160 μ m. See their Fig. 34 or details on the bound.
- To details on the bound. 17 CHIAVERINI 03 search for new forces, probing α above 10⁴ and λ down to 3 μ m, finding no signal. See their Fig. 4 for details on the bound. This bound does not place limits on the size of extra flat dimensions.
- 10 LONG 03 search for new forces, probing α down to 3, and distances down to about 10μ m. See their Fig. 4 for details on the bound.
- ¹⁹HOYLE 01 search for new forces, probing α down to 10^{-2} and distances down to 20μ m. See their Fig. 4 for details on the bound. The quoted bound is for $lpha\,\geq\,$ 3.
- $^{20}\text{HOSK}$ NR 85 search for new forces, probing distances down to 4 mm. See their Fig.13 for details on the bound. This bound does not place limits on the size of extra flat dimensions

Limits on R from On-Shell Production of Gravitons: $\delta = 2$

This section includes limits on on-shell production of gravitons in collider and astrophysical processes. Bounds quoted are on R, the assumed common radius of the flat extra dimensions, for $\delta=2$ extra dimensions. Studies often quote bounds in terms of derived parameter; experiments are actually sensitive to the masses of the KK gravitons: $m_{\vec{n}} = |\vec{n}|/R$. See the Review on "Extra Dimensions" for details. Bounds are given in μm for $\delta = 2$.

VALUE (µm)	<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
< 4.8		95	1	SIRU NYA N	18s	CMS	$p p \rightarrow j G$
< 0.00	016	95	2	HANNESTAD	03		Neutron star heating
• • • We	do not use the	following	g d	ata for averages	, fits,	limits, e	tc. • • •
< 8.0		95	3	AABOUD	18	ATLS	$p p \rightarrow j G$
< 89		95	4	SIRU NYA N	18BV	CMS	$p p \rightarrow Z G$
			5	SIRU NYA N	17aq	CMS	$p p \rightarrow \gamma G$
< 90		95	6	AABOUD	16F	ATLS	$p p \rightarrow \gamma G$
			7	KHACHATRY	.16N	CMS	$p p \rightarrow \gamma G$
			8	AAD	15 cs	ATLS	$p p \rightarrow \gamma G$
< 127		95	9	AAD	13c	ATLS	$p p \rightarrow \gamma G$
< 34.4		95	10	AAD	13d	ATLS	$p p \rightarrow j j$
< 0.00	87	95	11	AJELLO	12	FLAT	Neutron star γ sources
< 245		95	12	AALTONEN	08AC	CDF	$p \overline{p} \rightarrow \gamma G, j G$
< 615		95	13	ABAZOV	08s	D0	$p \overline{p} \rightarrow \gamma G$
< 0.91	6	95	14	DAS	80		Supernova cooling
< 350		95	15	ABULENCIA,A	06	CDF	$p \overline{p} \rightarrow j G$
< 270		95	16	ABDALLAH	05в	DLPH	$e^+ e^- \rightarrow \gamma G$
< 210		95	17	ACHARD	04e	L3	$e^+ e^- \rightarrow \gamma G$
< 480		95	18	ACOSTA	04c	CDF	$\overline{p}p \rightarrow jG$
< 0.00	038	95	19	CASSE	04		Neutron star γ sources
< 610		95	20	ABAZOV	03	D0	$\overline{p} p \rightarrow j G$
< 0.96		95	21	HANNESTAD	03		Supernova cooling
< 0.09	6	95	22	HANNESTAD	03		Diffuse γ background
< 0.05	1	95	23	HANNESTAD	03		Neutron star γ sources
< 300		95	24	HEISTER	03c	ALEP	$e^+ e^- \rightarrow \gamma G$
			25	FAIRBAIRN	01		Cosmology
< 0.66		95	26	HANHART	01		Supernova cooling
			27	CASSISI	00		Red giants
<1300		95	28	ACCIARRI	99s	L3	$e^+ e^- \rightarrow Z G$

¹ SIRUNYAN 18s search for $pp \rightarrow jG$, using 35.9 fb⁻¹ of data at $\sqrt{s} = 13$ TeV to place lower limits on M_D for two to six extra dimensions (see their Table VII), from which this bound on R is derived. This limit supersedes that in KHACHATRYAN 15AL.

- bound on *R* is defined. This limit superseues that in KHACHAIR (AN 19AL) 2HANNESTAD 03 obtain a limit on *R* from the heating of old neutron stars by the surrounding cloud of trapped KK gravitons. Limits for all $\delta \le 7$ are given in their Tables V and VI. These limits supersede those in HANNESTAD 02. 3AABOUD 181 search for $pp \to 16$, using 36.1 b⁻¹ of data at $\sqrt{s} = 13$ TeV to place lower limits on M_D for two to six extra dimensions (see their Table 7), from which this bound on *R* is derived. This limit supersedes that in AABOUD 160.
- bound on *K* is derived. This limit supersedes that in AABOUD 16D. ⁴ SIRUNYAN 188v search for $pp \rightarrow ZG$, using 35.9 fb⁻¹ of data at $\sqrt{s} = 13$ TeV to place lower limits on M_D for two to seven extra dimensions (see their Figure 11), from which this bound on R is derived. ⁵ SIRUNYAN 17AQ search for $pp \rightarrow \gamma G$, using 12.9 fb⁻¹ of data at $\sqrt{s} = 13$ TeV to the place lower the two for the two the interval dimensions (see their TeV).
- place limits on M_D for three to six extra dimensions (see their Table 3). **6**AABOUD 16F search for $pp \rightarrow \gamma G$, using 3.2 fb⁻¹ of data at $\sqrt{s} = 13$ TeV to place limits on M_D for two to six extra dimensions (see their Figure 9), from which this bound on R is derived.
- To his derived of the search for $pp \rightarrow \gamma G$, using 19.6 fb⁻¹ of data at $\sqrt{s} = 8$ TeV to place limits on M_D for three to six extra dimensions (see their Table 5).
- ⁸ AAD 15cs search for $pp \rightarrow \gamma G$, using 20.3 fb⁻¹ of data at $\sqrt{s} = 8$ TeV to place lower limits on M_D for two to six extra dimensions (see their Fig. 18).

- 9 AAD 13C search for $p\,p
 ightarrow \, \gamma$ G, using 4.6 fb $^{-1}$ of data at \sqrt{s} = 7 TeV to place bounds on M_D for two to six extra dimensions, from which this bound on R is derived.
- on m_D for two to six extra dimensions, from which this bound on R is derived. ¹⁰AAD 13D search for the dijet decay of quantum black holes in 4.8 fb⁻¹ of data produced in *pp* collisions at $\sqrt{s} = 7$ TeV to place bounds on M_D for two to seven extra dimensions, from which these bounds on R are derived. Limits on M_D for all $\delta \leq 7$ are given in their Table 3.
- ¹¹AJELLO 12 obtain a limit on R from the gamma-ray emission of point γ sources that arise from the photon decay of KK gravitons which are gravitationally bound around neutron stars. Limits for all $\delta~\leq~$ 7 are given in their Table 7. _
- neutron stars. Limits for all $\delta \leq 7$ are given in their Table 7. ¹²AALTONEN 08AC search for $p\overline{p} \rightarrow \gamma G$ and $p\overline{p} \rightarrow j G$ at $\sqrt{s} = 1.96$ TeV with 2.0 fb⁻¹ and 1.1 fb⁻¹ respectively, in order to place bounds on the fundamental scale and size of the extra dimensions. See their Table III for limits on all $\delta \leq 6$. ¹³ABAZOV 08s search for $p\overline{p} \rightarrow \gamma G$, using 1 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV to place bounds on M_D for two to eight extra dimensions, from which these bounds on R are derived. See their paper for intermediate values of δ . ¹⁴ABC 0.6 See their paper for more Kalma Vian and the second of the second
- $^{14}\,{
 m DAS}$ 08 obtain a limit on R from Kaluza-Klein graviton cooling of SN1987A due to plasmon-plasmon annihilation
- plasmon-plasmon annihilation. ¹⁵ ABULENCIA, A 06 search for $p\overline{p} \rightarrow jG$ using 368 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. See their Table II for bounds for all $\delta \leq 6$. ¹⁶ ABDALLAH 05B search for $e^+e^- \rightarrow \gamma G$ at $\sqrt{s} = 180-209$ GeV to place bounds on the size of extra dimensions and the fundamental scale. Limits for all $\delta \leq 6$ are given in their Table 6. These limits supersede those in ABREU 002.
- ¹⁷ACHARD 04E search for $e^+e^- \rightarrow \gamma G$ at $\sqrt{s} = 189-209$ GeV to place bounds on the size of extra dimensions and the fundamental scale. See their Table 8 for limits with
- size of extra dimensions and the fundamental scale. See their radie of the minis with $\delta \leq 8$. These limits supersede those in ACCIARRI 99R. 18 ACOSTA 04c search for $\overline{p}p \rightarrow jG$ at $\sqrt{s} = 1.8$ TeV to place bounds on the size of extra dimensions and the fundamental scale. See their paper for bounds on $\delta = 4$, 6.
- 19 CASSE 04 obtain a limit on R from the gamma-ray emission of point γ sources that arises from the photon decay of gravitons around newly born neutron stars, applying the technique of HANNESTAD 03 to neutron stars in the galactic bulge. Limits for all $\delta \leq$ 7 are given in their Table I.
- ²⁰ÅBAZOV 03 search for $p\overline{p} \rightarrow jG$ at \sqrt{s} =1.8 TeV to place bounds on M_D for 2 to 7 extra dimensions, from which these bounds on R are derived. See their paper by 0 extra dimensions are derived. on intermediate values of δ . We quote results without the approximate NLO scaling ntroduced in the paper.
- ²¹ HANNESTAD 03 obtain a limit on *R* from graviton cooling of supernova SN1987a. Limits for all $\delta \leq 7$ are given in their Tables V and VI.
- ²²HANNESTAD 03 obtain a limit on *R* from gravitons emitted in supernovae and which subsequently decay, contaminating the diffuse cosmic γ background. Limits for all $\delta \leq 7$ are given in their Tables V and VI. These limits supersede those in HANNESTAD 02.
- ²³HANNESTAD 03 obtain a limit on R from gravitons emitted in two recent supernovae and which subsequently decay, creating point γ sources. Limits for all $\delta\leq$ 7 are given in their Tables V and VI. These limits are corrected in the published erratum.
- $^{24}\,{\rm HEISTER}$ 03C use the process $e^+\,e^-\,\rightarrow\,\,\gamma\,G$ at $\sqrt{s}\,=\,$ 189–209 GeV to place bounds on the size of extra dimensions and the scale of gravity. See their Table 4 for limits with $\delta \leq 6$ for derived limits on M_D .
- ²⁵ FAIRBAIRN 01 obtains bounds on R from over production of KK gravitons in the early FAIRDARK 01 Obtains bounds on A non-over production of KK gravitors in techny universe. Bounds are quoted in paper in terms of fundamental scale of gravity. Bounds depend strongly on temperature of QCD phase transition and range from $R<0.13~\mu{\rm m}$ to 0.001 μ m for $\delta{=}2$; bounds for $\delta{=}3$,4 can be derived from Table 1 in the papel
- ²⁶HANHART 01 obtain bounds of *R* from limits on graviton cooling of supernova SN 1987a using numerical simulations of proto-neutron star neutrino emission.
- ²⁷ CASSISI 00 obtain rough bounds on M_D (and thus R) from red giant cooling for δ =2,3. See their paper for details.
- ²⁸ACCIARRI 99s search for e⁺ e⁻ \rightarrow Z G at \sqrt{s} =189 GeV. Limits on the gravity scale are found in their Table 2, for $\delta \leq 4$.

Mass Limits on M_{TT} This section includes limits on the cut-off mass scale, M_{TT}, of dimension-8 operators from KK graviton exchange in models of large extra dimensions. Ambiguities in the extra dimensions. Ambiguities in the operators is the second problem of the second problem. UV-divergent summation are absorbed into the parameter λ , which is taken to be $\lambda =$ ± 1 in the following analyses. Bounds for $\lambda=-1$ are shown in parenthesis after the bound for $\lambda=+1,$ if appropriate. Different papers use slightly different definitions of the mass scale. The definition used here is related to another popular convention by $M_{TT}^4 = (2/\pi) \Lambda_T^4$, as discussed in the above Review on "Extra Dimensions."

ALUE (TeV)		CL%	DOCUMENT ID		TECN	COMMENT
> 9.02		95	¹ SIRU NYA N	18dd	CMS	pp ightarrow dijet, ang. distrib.
>20.6	(>15.7)	95	² GIUDICE	03	RVUE	Dim-6 operators
•••Wed	o not use t	he follow	ing data for averag	es, fit	s, limits	, etc. • • •
> 6.9		95	³ SIRU NYA N	19ac	CMS	$p p \rightarrow e^+ e^-, \mu^+ \mu^-, \gamma \gamma$
> 7.0	(>5.6)	95	⁴ SIRU NYA N	18DU	CMS	$pp \rightarrow \gamma\gamma$
> 6.5		95	⁵ AABOUD	17ap	ATLS	$p p \rightarrow \gamma \gamma$
> 3.8		95	⁶ AAD	14be	ATLS	$p p \rightarrow e^+ e^-, \mu^+ \mu^-$
> 3.2		95	⁷ AAD	13E	ATLS	$p p \rightarrow e^+ e^-, \mu^+ \mu^-, \gamma \gamma$
			⁸ baak	12	RVUE	Electroweak
> 0.90	(>0.92)	95	⁹ AARON	11C	H1	$e^{\pm}p \rightarrow e^{\pm}X$
> 1.48		95	¹⁰ ABAZOV	09A E	D0	$p \overline{p} ightarrow$ dijet, ang. distrib.
> 1.45		95	11 ABAZOV	09d	D0	$p \overline{p} \rightarrow e^+ e^-, \gamma \gamma$
> 1.1	(> 1.0)	95	¹² SCHAEL	07a	ALEP	$e^+e^- \rightarrow e^+e^-$
> 0.898	(> 0.998)	95	¹³ ABDALLAH	06c	DLPH	$e^+e^- \rightarrow \ell^+\ell^-$
> 0.853	(> 0.939)	95	¹⁴ GERDES	06		$p \overline{p} \rightarrow e^+ e^-, \gamma \gamma$
> 0.96	(> 0.93)	95	¹⁵ ABAZOV	05v	D0	$\rho \overline{\rho} \rightarrow \mu^+ \mu^-$
> 0.78	(> 0.79)	95	¹⁶ CHEKA NOV	04в	ZEUS	$e^{\pm}p \rightarrow e^{\pm}X$
> 0.805	(> 0.956)	95	¹⁷ ABBIENDI	03d	OPAL	$e^+e^- \rightarrow \gamma \gamma$
> 0.7	(> 0.7)	95	¹⁸ ACHARD	03d	L3	$e^+e^- \rightarrow ZZ$
> 0.82	(> 0.78)	95	¹⁹ ADLOFF	03	H1	$e^{\pm}p \rightarrow e^{\pm}X$
> 1.28	(> 1.25)	95	²⁰ GIUDICE	03	RVUE	
> 0.80	(> 0.85)	95	²¹ HEISTER	03c	ALEP	$e^+e^- \rightarrow \gamma \gamma$

> 0.84	(> 0.99)	95	²² ACHARD	02D	L3	$e^+ e^- \rightarrow \gamma \gamma$
> 1.2	(>1.1)	95	²³ ABBOTT	01	D0	$p \overline{p} \rightarrow e^+ e^-, \gamma \gamma$
> 0.60	(> 0.63)	95	²⁴ ABBIENDI	00r	OPAL	$e^+e^- \rightarrow \mu^+\mu^-$
> 0.63	(> 0.50)	95	²⁴ ABBIENDI	00r	OPAL	$e^+ e^- \rightarrow \tau^+ \tau^-$
> 0.68	(> 0.61)	95	²⁴ ABBIENDI	00r	OPAL	$e^+e^- \rightarrow \mu^+\mu^-, \tau^+\tau^-$
	()		²⁵ ABREU	00A	DLPH	$e^+e^- \rightarrow \gamma\gamma$
> 0.680	(> 0.542)	95	²⁶ ABREU	00s	DLPH	$e^+e^- \rightarrow \mu^+\mu^-, \tau^+\tau^-$
> 15-28	· · ·	99.7	²⁷ CHANG	00в	RVUE	Electroweak
> 0.98		95	²⁸ CHEUNG	00	RVUE	$e^+ e^- \rightarrow \gamma \gamma$
> 0.29-0.38	3	95	²⁹ GRAESSER	00	RVUE	$(g-2)_{\mu}$
> 0.50 - 1.1		95	³⁰ ha n	00	RVUE	Electroweak
> 2.0	(> 2.0)	95	³¹ MATHEWS	00	RVUE	$\overline{p}p \rightarrow jj$
> 1.0	(>1.1)	95	³² MELE	00	RVUE	$e^+ e^- \rightarrow V V$
			33 ABBIENDI	99P	OPAL	
			³⁴ ACCIARRI	99M	L3	
			35 ACCIARRI	99s	L3	
> 1.412	(> 1.077)	95	36 BOURILKOV	99		$e^+ e^- \rightarrow e^+ e^-$

 $^1\,{\rm SIRUNYAN}\,18{\rm DD}$ use dijet angular distributions in 35.9 fb $^{-1}$ of data from pp collisions at $\sqrt{s} = 13$ TeV to place a lower bound on A $_T$, here converted to M_{TT} . This updates the results of SIRUNYAN 17F.

- Client Statistics in the product of the coefficient of the gravitationally-induced dimension-6 operator $(2\pi\lambda/\Lambda_6^2)(\sum T\gamma_{\mu}\gamma^5 f)(\sum T\gamma^{\mu}\gamma^5 f)$, using data from a variety of experiments. Results are quoted for $\lambda = \pm 1$ and are independent of δ .
- ³ SIRUNYAN 19AC use 35.9 (36.3) fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV in SIRUNYAN 19AC use 35.9 (56.3) to \sim of data from *pp* consistent at $\sqrt{s} = 13$ leV in the delectron (dimuon) channels to place a lower limit on Λ_T , here converted to M_{TT} . The dielectron and dimuon channels are combined with previous results in the diphoton channel to set the best limit. Bounds on individual channels and different priors can be found in their Table 2. This updates the results in KHACHATRYAN 15Ac.
- limits on M_{TT} (equivalent to their M_S). This updates the results of CHATRCHYAN 12R. ⁵ AABOUD 17AP use 36.7 fb $^{-1}$ of data from pp collisions at $\sqrt{s} = 13$ TeV to place lower
- limits on M_{TT} (equivalent to their $M_{\mathcal{S}}$). This updates the results of AAD 13As.
- 6 AAD 14BE use 20 fb $^{-1}$ of data from *pp* collisions at $\sqrt{s}=$ 8 TeV in the dilepton channel
- AAD 14BE use 10 to 10 and a from pp consists at $\sqrt{s} = 0$ fev in the divide channel to place lower limits on M_{TT} (equivalent to their M_S). ⁷ AAD 13E use 4.9 and 5.0 fb⁻¹ of data from pp collisions at $\sqrt{s} = 7$ TeV in the dielectron and dimuon channels, respectively, to place lower limits on M_{TT} (equivalent to their M_S). The dielectron and dimuon channels are combined with previous results in the diphoton channel to set the best limit. Bounds on individual channels and different priors can be found in their Table VIII.
- β BAAK 12 use electroweak precision observables to place bounds on the ratio Λ_T/M_D as a function of M_D . See their Fig. 22 for constraints with a Higgs mass of 120 GeV.
- ⁹AARON 11c search for deviations in the differential cross section of $e^{\pm} p \rightarrow e^{\pm} X$ in 446 pb $^{-1}$ of data taken at \sqrt{s} = 301 and 319 GeV to place a bound on M_{TT} .
- ¹⁰ ABAZOV 09AE use dijet angular distributions in 0.7 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place lower bounds on Λ_T (equivalent to their M_S), here converted to M_{TT} .
- ¹¹ABAZOV 09D use 1.05 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place lower bounds on Λ_T (equivalent to their M_s), here converted to M_{TT} .
- ¹²SCHAEL 07A use e^+e^- collisions at $\sqrt{s} = 189-209$ GeV to place lower limits on Λ_T , here converted to limits on M_{TT} .
- ¹³ABDALLAH OGC use e^+e^- collisions at $\sqrt{s} \sim 130-207$ GeV to place lower limits on M_{TTP} , which is equivalent to their definition of M_s . Bound shown includes all possible final state leptons, $\ell = e, \mu, \tau$. Bounds on individual leptonic final states can be found in their Table 31.
- 14 GERDES 06 use 100 to 110 pb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.8$ TeV, as recorded by the CDF Collaboration during Run I of the Tevatron. Bound shown includes a K-factor of 1.3. Bounds on individual e^+e^- and $\gamma\gamma$ final states are found in their Table I
- 15 ABAZOV 05v use 246 pb $^{-1}$ of data from $p\overline{p}$ collisions at $\sqrt{s}=$ 1.96 TeV to search for deviations in the differential cross section to $\mu^+ \mu^-$ from graviton exchange.
- ¹⁶ CHEKA NOV 04B search for deviations in the differential cross section of $e^{\pm}p
 ightarrow e^{\pm}X$ with 130 pb^{-1} of combined data and Q^2 values up to 40,000 GeV 2 to place a bound on M_{TT}
- $^{17}{\rm ABBIENDI}$ 03D use $e^+\,e^-$ collisions at $\sqrt{s}{=}181{-}209$ GeV to place bounds on the ultraviolet scale M_{TT} , which is equivalent to their definition of \dot{M}_s .
- $^{18}{\sf ACHARD}$ 03D look for deviations in the cross section for $e^+\,e^-$ ightarrow ZZ from \sqrt{s} = 200–209 GeV to place a bound on M_{TT} .
- ¹⁹ADLOFF 03 search for deviations in the differential cross section of $e^{\pm}p \rightarrow e^{\pm}X$ at \sqrt{s} =301 and 319 GeV to place bounds on M_{TT} .
- 20 GIUDICE 03 review existing experimental bounds on M_{TT} and derive a combined limit. $^{21}\,{\rm HEISTER}$ 03c use $e^+\,e^-$ collisions at $\sqrt{s}=$ 189–209 GeV to place bounds on the scale
- of dim-8 gravitational interactions. Their M_s^{\pm} is equivalent to our M_{TT} with $\lambda = \pm 1$. 22 ACHARD 02 search for s-channel graviton exchange effects in $e^+\,e^ightarrow\,\gamma\gamma$ at $E_{
 m cm}=$
- 192–209 GeV. ²³ABBOTT 01 search for variations in differential cross sections to $e^+ e^-$ and $\gamma\gamma$ final
- states at the Tevatron. ²⁴ABBIENDI 00R uses e^+e^- collisions at $\sqrt{s}=$ 189 GeV.
- 25 ABREU 00A search for s-channel graviton exchange effects in $e^+\,e^- o ~\gamma\gamma$ at $E_{
 m cm}=$ 189-202 GeV.
- ²⁶ABREU 00s uses $e^+ e^-$ collisions at \sqrt{s} =183 and 189 GeV. Bounds on μ and τ individual final states given in paper.
- 27 CHANG 00B derive 3σ limit on M_{TT} of (28,19,15) TeV for δ =(2,4,6) respectively assuming the presence of a torsional coupling in the gravitational action. Highly model dependent.
- 28 CHEUNG 00 obtains limits from anomalous diphoton production at OPAL due to graviton exchange. Original limit for δ =4. However, unknown *UV* theory renders δ dependence unreliable. Original paper works in HLZ convention.
- ²⁹ GRAESSER 00 obtains a bound from graviton contributions to g-2 of the muon through loops of 0.29 TeV for δ =2 and 0.38 TeV for δ =4,6. Limits scale as $\lambda^{1/2}$. However

calculational scheme not well-defined without specification of high-scale theory. See the

- The state of the second state of the state
- 31 MATHEWS 00 search for evidence of graviton exchange in CDF and DØ dijet production data. See their Table 2 for slightly stronger δ -dependent bounds. Limits expressed in terms of $\widetilde{M}_{S}^{4} = M_{TT}^{4}/8$.
- 32 MELE 00 obtains bound from KK graviton contributions to $e^+ e^- \rightarrow ~V V ~(V=\gamma,W,Z)$
- at LEP. Authors use Hervett convertions control to a converting to the (r + r) + r + (r + r) = r³³ABBIENDI 99P search for s-channel graviton exchange effects in $e^+e^- \rightarrow \gamma\gamma$ at $E_{\rm cm}$ =189 GeV. The limits $G_+ > 660$ GeV and $G_- > 634$ GeV are obtained from combined $E_{\rm cm}$ =183 and 189 GeV data, where G_{\pm} is a scale related to the fundamental gravitor craft gravity scale
- $^{34}\mathrm{ACCIARRI}$ 99M search for the reaction $e^+\,e^-$ ightarrow γ G and s-channel graviton exchange effects in $e^+e^- \rightarrow \gamma\gamma$, W^+W^- , ZZ, e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $q\overline{q}$ at $E_{\rm cm}$ =183 GeV. Limits on the gravity scale are listed in their Tables 1 and 2.
- 35 ACCIARRI 995 search for the reaction $e^+\,e^ightarrow\,$ Z G and s-channel graviton exchange effects in $e^+ e^- \rightarrow \gamma\gamma$, $W^+ W^-$, ZZ, $e^+ e^-$, $\mu^+ \mu^-$, $\tau^+ \tau^-$, $q\overline{q}$ at $E_{\rm cm} = 189$ GeV. Limits on the gravity scale are listed in their Tables 1 and 2.

 36 BOURLKOV 99 performs global analysis of LEP data on e^+e^- collisions at $\sqrt{s}{=}183$ and 189 GeV. Bound is on Λ_T .

Limits on $1/R = M_c$

This section includes limits on $1/R = M_c$, the compactification scale in models with one TeV-sized extra dimension, due to exchange of Standard Model KK excitations. Bounds assume fermions are not in the bulk, unless stated otherwise. See the "Extra Dimensions" review for discussion of model dependence.

VALUE (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>4.16	95	¹ AAD	12cc	ATLS	$\rho \rho \rightarrow \ell \overline{\ell}$
>6.1		² barbieri	04	RVUE	Electroweak
\bullet \bullet \bullet We do not	use the f	ollowing data for av	erage	s, fits, li	mits, etc. 🔹 🔹 🔹
		³ AABOUD	18AV	ATLS	$pp \rightarrow t \overline{t} t \overline{t}$
		⁴ AABOUD	18CE	ATLS	$pp \rightarrow t\bar{t}t\bar{t}$
>3.8	95	⁵ ACCOMANDO	15	RVUE	Electroweak
>3.40	95	⁶ KHACHATRY	.15T	CMS	$pp \rightarrow \ell X$
		⁷ CHATRCHYAN	13AQ	CMS	$pp \rightarrow \ell X$
>1.38	95	⁸ CHATRCHYAN	13w	CMS	$pp \rightarrow \gamma \gamma$, $\delta = 6$, $M_D = 5$ TeV
>0.715	95	⁹ EDELHAUSER	13	RVUE	$pp \rightarrow \ell \overline{\ell} + X$
>1.40	95	¹⁰ AAD	12CP	ATLS	$pp \rightarrow \gamma \gamma$, $\delta = 6$, $M_D = 5$ TeV
>1.23	95	¹¹ AAD	12X	ATLS	$pp \rightarrow \gamma \gamma, \delta = 6, M_D = 5 \text{ TeV}$
>0.26	95	¹² ABAZOV	12M	D0	$p\overline{p} \rightarrow \mu\mu$
>0.75	95	¹³ BAAK	12	RVUE	Electroweak
		¹⁴ FLACKE	12	RVUE	Electroweak
>0.43	95	¹⁵ NISHIWA KI	12	RVUE	$H \rightarrow WW, \gamma \gamma$
>0.729	95	¹⁶ AAD	11F	ATLS	$pp \rightarrow \gamma \gamma$, $\delta = 6$, $M_D = 5$ TeV
>0.961	95	¹⁷ AAD	11x	ATLS	$pp \rightarrow \gamma \gamma, \delta = 6, M_D = 5 \text{ TeV}$
>0.477	95	¹⁸ ABAZOV	10p	D0	$p\overline{p} \rightarrow \gamma\gamma, \delta=6, M_D=5 \text{ TeV}$
>1.59	95	¹⁹ ABAZOV	09AE	D0	$p\overline{p} \rightarrow dijet$, angular dist.
>0.6	95	²⁰ HAISCH	07	RVUE	$\overline{B} \rightarrow X_{S} \gamma$
>0.6	90	²¹ gogoladze	06	RVUE	Electroweak
>3.3	95	²² CORNET	00	RVUE	Electroweak
> 3.3-3.8	95	²³ RIZZO	00	RVUE	Electroweak

- $^1\,{\rm AAD}$ 12CC use 4.9 and 5.0 fb $^{-1}$ of data from $p\,p$ collisions at \sqrt{s} = 7 TeV in the And fact use 4.5 and 3.6 b) for data from PD consists at $\sqrt{s} = 7$ feet in the dielectron and dimuon channels, respectively, to place a lower bound on the mass of the lightest KK Z/γ boson (equivalent to $1/R = M_c$). The limit quoted here assumes a flat prior corresponding to when the pure Z/γ KK cross section term dominates. See their Section 15 for more details.
- ²BARBIERI 04 use electroweak precision observables to place a lower bound on the compactification scale 1/R. Both the gauge bosons and the Higgs boson are assumed to propagate in the bulk.
- 3 AABOUD 18AV use 36.1 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=$ 13 TeV in final states with multiple b-jets, to place a lower bound on the compactification scale in a model with two universal extra dimensions. Assuming the radii of the two extra dimensions are equal, a lower limit of 1.8 TeV for the Kaluza-Klein mass is obtained.
- ⁴ AABOUD 18ct use 36.1 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV in final states with same-charge leptons and b-jets, to place a lower bound on the compactification scale in a model with two universal extra dimensions. Assuming the radii of the two extra dimensions are equal, a lower limit of 1.45 TeV for the Kaluza-Klein mass is obtained.
- ⁵ ACCOMANDO 15 use electroweak precision observables to place a lower bound on the compactification scale 1/R. See their Fig. 2 for the bound as a function of $\sin\beta$, which parametrizes the VEV contribution from brane and bulk Higgs fields. The quoted value is for the minimum bound which occurs at $\sin\beta = 0.45$.
- 6 KHACHATRYAN 15T use 19.7 fb $^{-1}$ of data from pp collisions at \sqrt{s} = 8 TeV to place a lower bound on the compactification scale 1/R.
- $^7\,{\rm CHATRCHYAN}$ 13AQ use 5.0 fb $^{-1}$ of data from pp collisions at \sqrt{s} = 7 TeV and a further 3.7 fb⁻¹ of data at $\sqrt{s} = 8$ TeV to place a lower bound on the compactification scale 1/R, in models with universal extra dimensions and Standard Model fields propagating in the bulk. See their Fig. 5 for the bound as a function of the universal bulk fermion mass parameter μ .
- ⁸ CHATRCHYAN 13w use diphoton events with large missing transverse momentum in CHARCHYAN 13W use diploton events with large masing transverse momentum m 4.93 fb⁻¹ of data produced from pp collisions at $\sqrt{s} = 7$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_c = 20$. The model parameters are chosen such that
- the decay $\gamma^* \rightarrow G \gamma$ occurs with an appreciable branching fraction. 9 EDELHAUSER 13 use 19.6 and 20.6 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 8$ TeV analyzed by the CMS Collaboration in the dielectron and dimuon channels, respectively,

2070 Searches Particle Listings

Extra Dimensions

to place a lower bound on the mass of the second lightest Kaluza-Klein Z/γ boson (converted to a limit on $1/R = M_C$). The bound assumes Standard Model fields propagating in the bulk and that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda / M_C = 20$.

- ¹⁰AAD 12CP use diphoton events with large missing transverse momentum in 4.8 fb⁻¹ of data produced from pp collisions at $\sqrt{s} = 7$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale A, for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_C = 20$. The model parameters are chosen such that the decay $\gamma^* \rightarrow G\gamma$ occurs with an appreciable branching fraction.
- decay $\gamma^{-} \rightarrow 6 \gamma$ occurs with an appreciable branching fraction. ¹¹ AAD 12X use diphoton events with large missing transverse momentum in 1.07 fb⁻¹ of data produced from pp collisions at $\sqrt{s}=7$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale A, for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_C=20$. The model parameters are chosen such that the decay $\gamma^* \rightarrow G \gamma$ occurs with an appreciable branching fraction.

 12 ABAZOV 12M use same-sign dimuon events in 7.3 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place a lower bound on the compactification scale 1/R, in models with universal extra dimensions where all Standard Model fields propagate in the bulk.

- 13 BAAK 12 use electroweak precision observables to place a lower bound on the compactffication scale 1/R, in models with universal extra dimensions and Standard Model fields propagating in the bulk. Bound assumes a 125 GeV Higgs mass. See their Fig. 25 for the bound as a function of the Higgs mass.
- the bound as a function of the riggs mass. 14 FLACKE 12 use electroweak precision observables to place a lower bound on the com-pactification scale 1/R, in models with universal extra dimensions and Standard Model fields propagating in the bulk. See their Fig. 1 for the bound as a function of the universal bulk fermion mass parameter μ .
- 15 NISHIWAKI 12 use up to 2 fb $^{-1}$ of data from the ATLAS and CMS experiments that constrains the production cross section of a Higgs-like particle to place a lower bound on the compactification scale 1/R in universal extra dimension models. The quoted bound assumes Standard Model fields propagating in the bulk and a 125 GeV Higgs mass. See their Fig. 1 for the bound as a function of the Higgs mass.
- ¹⁶ AAD 11F use diphoton events with large missing transverse energy in 3.1 pb⁻¹ of data produced from *pp* collisions at $\sqrt{s} = 7$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, assume that the decay $\gamma^* \to G\gamma$ occurs with an appreciable branching fraction.
- ¹⁷AAD 11x use diphoton events with large missing transverse energy in 36 pb⁻¹ of data produced from *pp* collisions at $\sqrt{s} = 7$ TeV to place a lower bound on the compactifi-cation scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_c = 20$. The model parameters are chosen such that the decay $\gamma^* \rightarrow G\gamma$ occurs with an appreciable branching fraction.
- occurs with an appreciable branching machine fraction. $^{18}ABAZOV$ 10P use diphoton events with large missing transverse energy in 6.3 fb $^{-1}$ of data produced from $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale A, for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_c{=}20$. The model parameters are chosen such that the decay
- $\gamma^* \rightarrow G\gamma$ occurs with an appreciable branching fraction. ¹⁹ABAZOV 09AE use dijet angular distributions in 0.7 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place a lower bound on the compactification scale.
- $^{20}\,\rm HAISCH$ 07 use inclusive \overline{B} -meson decays to place a Higgs mass independent bound on the compactification scale 1/R in the minimal universal extra dimension model.
- ²¹ GOGOLADZE 06 use electroweak precision observables to place a lower bound on the compactification scale in models with universal extra dimensions. Bound assumes a 115 GeV Higgs mass. See their Fig. 3 for the bound as a function of the Higgs mass
- ²²CORNET 00 translates a bound on the coefficient of the 4-fermion operator $(\bar{\ell}\gamma_{\mu}\tau^{a}\ell)(\bar{\ell}\gamma^{\mu}\tau^{a}\ell)$ derived by Hagiwara and Matsumoto into a limit on the mass scale

 (a) provide the second s (3.8 TeV) or on the standard brane (3.3 TeV).

Limits on Kaluza-Klein Gravitons in Warped Extra Dimensions

This section places limits on the mass of the first Kaluza-Klein (KK) excitation of the graviton in the warped extra dimension model of Randall and Sundrum. Bounds in parenthesis assume Standard Model fields propagate in the bulk. Experimental bounds depend strongly on the warp parameter, k. See the "Extra Dimensions" review for a full discussion

Here we list limits for the value of the warp parameter k/\overline{M}_P = 0.1.

VALUE (TeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
>4.25	95 1	SIRU NYA N	18BB CMS	$pp \rightarrow G \rightarrow e^+e^-, \mu^+\mu^-$
•••We do no	t use the follov	ving data for ave	erages, fits, lir	nits, etc. • • •
	2	AAD	20c ATLS	$pp \rightarrow G \rightarrow HH$
	3	AABOUD	19A ATLS	$pp \rightarrow G \rightarrow HH$
	4	AABOUD	190 ATLS	$pp \rightarrow G \rightarrow HH$
	5	AAD	19D ATLS	$pp \rightarrow G \rightarrow WW, ZZ$
	6	SIRUNYAN	19 CMS	$pp \rightarrow G \rightarrow HH$
	7	SIRU NYA N	19BE CMS	$p p \rightarrow G \rightarrow H H$
	8	SIR U NYA N	19cf CMS	$p p \rightarrow G \rightarrow H H$
	9	AABOUD	18AK ATLS	$p p \rightarrow G \rightarrow W W$
	10	AABOUD	18AL ATLS	$p p \rightarrow G \rightarrow Z Z$
	11	AABOUD	18bf ATLS	$p p \rightarrow G \rightarrow Z Z$
	12	AABOUD	18BI ATLS	$p p \rightarrow G \rightarrow t \overline{t}$
	13	AABOUD	18cj ATLS	$p p \rightarrow G \rightarrow V V, V H, \ell \overline{\ell}$
	14	AABOUD	18cq ATLS	$p p \rightarrow G \rightarrow H H$
	15	AABOUD	18cw ATLS	$p p \rightarrow G \rightarrow H H$
	16	SIRU NYA N	18AF CMS	$p p \rightarrow G \rightarrow H H$
	17	SIRU NYA N	18AS CMS	$p p \rightarrow G \rightarrow Z Z$
	18	SIRUNYAN	18AX CMS	$pp \rightarrow G \rightarrow WW$

		¹⁹ SIRU NYA N	18BK CMS	$p p \rightarrow G \rightarrow Z Z$
>1.8	95	²⁰ SIRU NYA N	18B0 CMS	$p p \rightarrow G \rightarrow j j$
		²¹ SIRUNYAN	18cw CMS	$pp \rightarrow G \rightarrow HH$
		²² SIRU NYA N	18DJ CMS	$pp \rightarrow G \rightarrow ZZ$
>4.1	95	²³ SIRU NYA N	18DU CMS	$pp \rightarrow G \rightarrow \gamma\gamma$
		²⁴ SIRUNYAN	18F CMS	$pp \rightarrow G \rightarrow HH$
		²⁵ SIRU NYA N	181 CMS	$pp \rightarrow G \rightarrow b\overline{b}$
		²⁶ SIRU NYA N	18P CMS	$pp \rightarrow G \rightarrow WW, ZZ$
>4.1	95	²⁷ AABOUD	17AP ATLS	$pp \rightarrow G \rightarrow \gamma\gamma$
		²⁸ aad	16R ATLS	$pp \rightarrow G \rightarrow WW, ZZ$
		²⁹ aad	15AU ATLS	$pp \rightarrow G \rightarrow ZZ$
		³⁰ aad	15AZ ATLS	$pp \rightarrow G \rightarrow WW$
		³¹ aad	15ct ATLS	$pp \rightarrow G \rightarrow WW, ZZ$
>2.68	95	³² aad	14v ATLS	$pp \rightarrow G \rightarrow e^+e^-, \mu^+\mu^-$
>1.23 (>0.84)	95	³³ aad	13A ATLS	$pp \rightarrow G \rightarrow WW$
>0.94 (>0.71)	95	³⁴ aad	13A0 ATLS	$pp \rightarrow G \rightarrow WW$
>2.23	95	³⁵ aad	13AS ATLS	$pp \rightarrow \gamma\gamma, e^+e^-, \mu^+\mu^-$
>0.845	95	³⁶ aad	12AD ATLS	$pp \rightarrow G \rightarrow ZZ$
		³⁷ AALTONEN	12v CDF	$p \overline{p} \rightarrow G \rightarrow Z Z$
		³⁸ baak	12 RVUE	Electroweak
		³⁹ AALTONEN	116 CDF	$p \overline{p} \rightarrow G \rightarrow Z Z$
>1.058	95	⁴⁰ AALTONEN	11r CDF	$p \overline{p} \rightarrow G \rightarrow e^+ e^-, \gamma \gamma$
>0.754	95	⁴¹ ABAZOV	11H D0	$p \overline{p} \rightarrow G \rightarrow W W$
>0.607		42 AALTONEN	10N CDF	$p \overline{p} \rightarrow G \rightarrow W W$
>1.05		⁴³ ABAZOV	10F D0	$p \overline{p} \rightarrow G \rightarrow e^+ e^-, \gamma \gamma$
		⁴⁴ AALTONEN	08s CDF	$p \overline{p} \rightarrow G \rightarrow Z Z$
>0.90		⁴⁵ ABAZOV	08J D0	$p \overline{p} \rightarrow G \rightarrow e^+ e^-, \gamma \gamma$
		⁴⁶ AALTONEN	07G CDF	$p \overline{p} \rightarrow G \rightarrow \gamma \gamma$
>0.889		47 AALTONEN	07H CDF	$p \overline{p} \rightarrow G \rightarrow e \overline{e}$
>0.785		⁴⁸ ABAZOV	05 N D 0	$p \overline{p} \rightarrow G \rightarrow \ell \ell, \gamma \gamma$
>0.71		⁴⁹ ABULENCIA	05A CDE	$n\overline{n} \rightarrow G \rightarrow \ell\overline{\ell}$

- 1 SIRUNYAN 18BB use 35.9 (36.3) fb $^{-1}$ of data from $\rho\,p$ collisions at \sqrt{s} = 13 TeV to search for dilepton resonances in the dielectron (dimuon) channel. See their paper for other limits with warp parameter values $k/\overline{M}_P = 0.01$ and 0.05. This updates the results
- of KHACHATRYAN 17T. ² AAD 20C use 36.1 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for Higgs ² AAD 20c use 36.1 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ tev to search for miggs boson pair production in the $b\overline{b}b\overline{b}$, $b\overline{b}W^+W^-$, and $b\overline{b}\tau^+\tau^-$ final states. See their Figure 5(b)(c) for limits on the cross section as a function of the KK graviton mass. In the case of k/Mp = 1 and 2, gravitons are excluded in the mass range 260-3000 GeV and 260-1760 GeV, respectively. **3**AABOUD 19A use 36.1 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $b\overline{b}b\overline{b}$ final state. See their Figure 9 for limits on the cross section times branching fraction as a function of the KK graviton mass. Assuming
- riggs boson pair production in the *DDD* marstate. See then right *P* to marstate in the cross section of the KK graviton times branching fraction as a function of the KK graviton mass. Assuming $k/M_P = 1$, gravitons in the mass range 313–1362 GeV are excluded. This updates the results of AABOUD 16.
- results of AABOUD 161. ⁴ AABOUD 190 use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $b\overline{b}WW$ final state. See their Figure 12 for limits
- Higgs boson pair production in the $b\overline{b}WW$ final state. See their Figure 12 for limits on the cross section times branching fraction as a function of the KK graviton mass for $k/\overline{M}_P = 1$ and $k/\overline{M}_P = 2$. ⁵ AAD 190 use 139 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for diboson resonances in the all-hadronic final state. See their Figure 9(b) for the limit on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $k/\overline{M}_P = 1$. This updates the results of AABOUD 18F. ⁶ SIRUNYAN 19 use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $\gamma\gamma b\overline{b}$ final state. See their Figure 9 for limits on the cross section times branching fraction as a function of the KK graviton mass. Assuming $k/\overline{M}_P = 1$, gravitons in the mass range 290-810 GeV are excluded. This updates the result of KHACHATRYAN 16BQ. ⁷ SIRUNYAN 19BE use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production by combining the results from four final states: $b\overline{b}\gamma\gamma$.
- for Higgs boson pair production by combining the results from four final states: $b \overline{b} \gamma \gamma$, 10 Tiggs Josen par production by combining the focus to the rate of the
- for Higgs boson pair production in the $b \overline{b} q \overline{q'} \ell \nu$ final state. See their Figure 7 for limits The maps of the production in the second second second region of the KK graviton mass, including theoretical values for $k/M_P = 0.1$ and 0.3.
- including theoretical values for $k/M_P = 0.1$ and 0.3. ⁹AABOUD 18Ak use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for *WW* resonances in $\ell p q q$ final states ($\ell = e, \mu$). See their Figure 7(d) for the limit on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $k/\overline{M}_P = 1$. This updates the results of AABOUD 16At. ¹⁰AABOUD 18AL use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for diboson resonances in the $\ell \ell q \overline{q}$ and $\nu \overline{\nu} q \overline{q}$ final states. See their Figure 14 for the limit on cross section times branching fraction as a function of the the KK graviton mass, including theoretical values for $k/\overline{M}_P = 0.5$ and 1. This updates the results of AABOUD 16At. AABOUD 16AE.
- ABBOUD 10AL. 11 AABOUD 18BF use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for ZZ resonances in the $\ell\ell\ell\ell\ell$ and $\ell\ell\nu\overline{\nu}$ final states ($\ell=e, \mu$). See their Figure 10 for the limit on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $k/\overline{M}_P = 1$.
- ¹²AABOUD 18^{III} use 36.1 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for top-quark pairs decaying into the lepton-plus jets topology. See their Figure 16 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $k/\overline{M}_P=1$.
- $^{13}\operatorname{AABOUD}$ 18cJ combine the searches for heavy resonances decaying into bosonic and leptonic final states from 36.1 fb⁻¹ of pp collision data at $\sqrt{s} = 13$ TeV. The lower limit on the KK graviton mass, with $k/\overline{M}_P = 1$, is 2.3 TeV.
- ¹⁴AABOUD 18cg use 36.1 fb⁻¹ of data from ρp collisions at $\sqrt{s} =$ 13 TeV to search for Higgs boson pair production in the $b\overline{b}\tau^+\tau^-$ final state. See their Figure 2 for limits section times branching fraction as a function of the KK graviton mass. on the cross Assuming $k/\overline{M}_P = 1$, gravitons in the mass range 325–885 GeV are excluded.

- ¹⁵ AABOUD 18cw use 36.1 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $\gamma\gamma b\overline{b}$ final state. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass. ¹⁶ SIRUNYAN 18AF use 35.9 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $b\overline{b}\overline{b}$ final state. See their Figure 9 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for k/Mp = 0.5. This updates the results of KHACHATRYAN 15R. ¹⁷ SIRUNYAN 18As use 35.9 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for *ZZ* resonances in the $\ell\ell\nu\overline{\nu}$ final state ($\ell=e, \mu$). See their Figure 5 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for k/Mp = 0.1, 0.5, and 1.0. ¹⁸ SIRUNYAN 18Ax use 35.9 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for WW resonances in $\ell\nu qq$ final state ($\ell=e, \mu$). See their Figure 6 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for k/Mp = 0.5. This updates the results of KHACHATRYAN 14A. ¹⁹ SIRUNYAN 188K use 35.9 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for WW resonances in $\ell\nu qq$ final states ($\ell=e, \mu$).

- ¹⁹ SIRUNYAN 188K use 35.9 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for ZZ resonances in the $\nu \overline{\nu} q \overline{q}$ final state. See their Figure 4 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $k/\overline{M}_{m{P}}\,=\,0.5$.
- 20 SIRU NYAN 18B0 use up to 36 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for dijet resonances. Besides the quoted bound, KK graviton masses between 1.9 TeV and 2.5 TeV are also excluded. See their Figure 11 for the limit on the product of the cross section, branching fraction and acceptance as a function of the KK graviton mass. This updates the results of KHACHATRYAN 17W.
- 21 SIRUNYAN 18cw use 35.9 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=$ 13 TeV to search For NAM 180W use 35.9 to for data from pp collisions at $\sqrt{s} = 13$ fee to search for Higgs boson pair production in the $b\overline{b}b\overline{b}$ final state. See their Figure 8 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for k/Mp = 0.5. ²² SIRUNYAN 18DJ use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search
- for ZZ resonances in $2\ell 2q$ final states ($\ell = e, \mu$). See their Figure 6 for the limit on the KK graviton mass as a function of the cross section times branching fraction. Assuming $k/M_P = 0.5$, a graviton mass is excluded below 925 GeV.
- k/Mp = 0.5, a graviton mass is excluded below 925 GeV. ²³ SIRUNYAN 18DU use 35.9 fb^{-1} of data from *pp* collisions at $\sqrt{s} = 13$ TeV, in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. See their paper for limits with other warp parameter values k/Mp = 0.01 and 0.2. This updates the results of KHACHATRYAN 16M. ²⁴ SIRUNYAN 18F use 35.9 fb^{-1} of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $b\overline{b}\ell\nu\ell\nu$ final state. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for k/Mp = 0.1. ²⁵ SIRUNYAN 181 use 19.7 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = .8$ TeV to search for
- including theoretical values for $k/\overline{M_P} = 0.1$. ²⁵ SIRUNYAN 18i use 19.7 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 8$ TeV to search for narrow resonances decaying to bottom quark pairs. See their Figure 3 for the limit on the KK graviton mass as a function of the cross section times branching fraction in the mass range of 325-1200 GeV. ²⁶ SIRUNYAN 18P use 35.9 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for diboson resonances with dijet final states. See their Figure 6 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $k/\overline{M_P} = 0.5$. This updates the results of SIRUNYAN 17AK. ²⁷ AABOUD 17AP use 36.7 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. This updates the results of AABOUD 16H.
- results of AABOUD 16H. ²⁸AAD 16R use 20.3 fb⁻¹ of data from pp collisions at $\sqrt{s} = 8$ TeV to place a lower
- AND for use 20.5 to the lightest KK graviton. See their Figure 4 for the limit on the KK graviton mass as a function of the cross section times branching fraction. ²⁹ AAD 15Au use 20 fb⁻¹ of data from pp collisions at $\sqrt{s} = 8$ TeV to pactor for KK gravitons in a warped extra dimension decaying to ZZ dibosons. See their Figure 2 for limits on the KK graviton mass as a function of the cross section times branching fraction. raction
- fraction. ³⁰ AAD 15AZ use 20.3 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 8$ TeV to place a lower bound on the mass of the lightest KK graviton. See their Figure 2 for limits on the KK graviton mass as a function of the cross section times branching ratio. ³¹ AAD 15CT use 20.3 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 8$ TeV to place a lower bound on the mass of the lightest KK graviton. See their Figures 6 ban 6c for the limit on the KK graviton mass as a function of the cross section times branching fraction. ³² AAD 14V use 20.3 (20.5) fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 8$ TeV in the dielectron (dimuon) channels to place a lower hound on the mass of the lightest KK graviton. This
- (dimuon) channels to place a lower bound on the mass of the lightest KK graviton. This updates the results of AAD 12cc .
- ³³ AAD 13A use 4.7 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 7$ TeV in the $\ell \nu \ell \nu$ channel, to place a lower bound on the mass of the lightest KK graviton. ³⁴ AAD 13A0 use 4.7 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 7$ TeV in the $\ell \nu jj$ channel, to place a lower bound on the mass of the lightest KK graviton.
- to place a lower bound on the mass of the lightest KK graviton. 35 AAD 13As use 4.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 7$ TeV in the diphoton channel to place lower limits on the mass of the lightest KK graviton. The diphoton channel is combined with previous results in the dielectron and dimuon channels to set the best limit. See their Table 2 for warp parameter values k/M_p between 0.01 and 0.1. The underse the results of AAD 122
- This updates the results of AAD 12v. ³⁶AAD 12AD use 1.02 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 7$ TeV to search for KK gravitons in a warped extra dimension decaying to ZZ dibosons in the *l1jj* and *l111*
- gravitons in a warped extra dimension decaying to ZZ dibosons in the IIIj and IIII channels ($\ell = e, \mu$). The limit is quoted for the combined II jj + IIII channels. See their Figure 5 for limits on the cross section $\sigma(G \rightarrow ZZ)$ as a function of the graviton mass. 37 AALTONEN 12v use 6 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in a warped extra dimension decaying to ZZ dibosons in the IIIj and IIII channels ($\ell = e, \mu$). It provides improved limits over the previous analysis in AALTONEN 116. See their Figure 16 for limits from all channels combined on the cross certient times hereafting table($\sigma\overline{z} = C$, $\overline{z} = Z$) are a function of the graviton magnetic section times branching ratio $\sigma(p\,\overline{p}
 ightarrow~G^*
 ightarrow~Z\,Z)$ as a function of the graviton mass.
- section times branching ratio $\sigma(p\overline{p} \to G^* \to ZZ)$ as a function of the graviton mass. ³⁸ BAAK 12 use electroweak precision observables to place a lower bound on the compact-ification scale $k e^{-\pi kR}$, assuming Standard Model fields propagate in the bulk and the Higgs is confined to the IR brane. See their Fig. 27 for more details. ³⁹ AALTONEN 11G use 2.5-2.9 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in a warped extra dimension decaying to ZZ dibosons via the $e e e e, e e \mu \mu, \mu \mu \mu, e e j j$, and $\mu \mu j$ channels. See their Fig. 20 for limits on the cross section $\sigma(G \to ZZ)$ as a function of the graviton mass. ⁴⁰ AALTONEN 11R uses 5.7 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to the dielectron channel to place a lower bound on the mass of the lightest graviton. It
- dielectron channel to place a lower bound on the mass of the lightest graviton. It provides combined limits with the diphoton channel analysis of AALTONEN 11 \cup . For

- warp parameter values k/\overline{M}_P between 0.01 to 0.1 the lower limit on the mass of the lightest graviton is between 612 and 1058 GeV. See their Table I for more details. ⁴¹ABAZOV 11H use 5.4 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place a lower bound on the mass of the lightest graviton. Their 95% C.L. exclusion limit does not include masses less than 300 GeV. ⁴²AALTONEN 10N use 2.9 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place a lower bound on the mass of the lightest graviton.
- AALTONENTION use 2.9 ID of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place a lower bound on the mass of the lightest graviton. ⁴³ABAZOV 10F use 5.4 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place a lower bound on the mass of the lightest graviton. For warp parameter values of k/M_P between 0.01 and 0.11 the lower limit on the mass of the lightest graviton is between 560 and 1050 GeV. See their Fig. 3 for more details.
- and 1050 GeV. See their Fig. 5 for more details. 44 AALTONEN 08s use $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to four electrons via two Z bosons using 1.1 fb⁻¹ of data. See their Fig. 8 for limits on $\sigma \cdot B(G \rightarrow ZZ)$ versus the graviton mass.
- Versus the graviton mass. 45 ABAZOV 080 use $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to electrons and photons using 1 fb⁻¹ of data. For warp parameter values of k/\overline{M}_p between 0.01 and 0.1 the lower limit on the mass of the lightest excitation is between 300 and 900 GeV. See their Eig. 4 for more details Fig. 4 for more details.
- Fig. 4 for more details. ⁴⁶ AALTONEN 07G use $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to photons using 1.2 fb^{-1} of data. For warp parameter values of $k/\overline{M}_P = 0.1, 0.05$, and 0.01 the bounds on the graviton mass are 850, 694, and 230 GeV, respectively. See their Fig. 3 for more details. See also AALTONEN 07H. ⁴⁷ AALTONEN 07H use $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to electrons using 1.3 fb⁻¹ of data. For a warp parameter value of $k/\overline{M}_P = 0.1$ the bound on the graviton mass is 807 GeV. See their Fig. 4 for more details. A combined analysis with the diphoton data of AALTONEN 07G yields for $k/\overline{M}_P = 0.1$ a graviton mass lower bound of 889 GeV. ⁴⁸ ABAZOV 05N use $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in warped
- 46 ABAZOV 05N use $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to muons, electrons or photons, using 260 pb⁻¹ of data. For warp parameter values of k/Mp = 0.1, 0.05, and 0.01, the bounds on the graviton mass are 785, 650 and 250 GeV respectively. See their Fig. 3 for more details.
- 49 ABULENCIA 05A use $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to muons or electrons, using 200 pb $^{-1}$ of data. For warp parameter values of $k/\overline{M}_P=0.1,\,0.05,\,$ and 0.01, the bounds on the graviton mass are 710, 510 and 170 GeV respectively.

Limits on Kaluza-Klein Gluons in Warped Extra Dimensions

This section places limits on the mass of the first Kaluza-Klein (KK) excitation of the gluon in warped extra dimension models with Standard Model fields propagating in the bulk. Bounds are given for a specific benchmark model with $\Gamma/m = 15.3\%$ where Γ is the width and m the mass of the KK gluon. See the "Extra Dimensions" review for more discussion

VALUE (TeV)	<u>CL%</u>	DOCUMENT ID TECN COMMENT
>3.8	95	1 AABOUD 18BI ATLS $g_{KK} ightarrow t \overline{t} ightarrow \ell j$
\bullet \bullet \bullet We do not use t	he followi	ng data for averages, fits, limits, etc. 🔹 🔹
		2 AABOUD 19AS ATLS $g_{KK} \rightarrow t \bar{t} \rightarrow j j$ 3 SIRUNYAN 19AL CMS $g_{KK} \rightarrow t T$
>2.5	95	⁴ CHATRCHYAN13BM CMS $\frac{g_{KK}}{B} \rightarrow t \overline{t}$ ⁵ CHEN 13A $\frac{g_{KK}}{B} \rightarrow X_{-} \gamma$
>1.5	95	⁶ AAD 12BV ATLS $g_{KK} \rightarrow t \overline{t} \rightarrow \ell j$
¹ AABOUD 18BI use updates AAD 13AQ ² AABOUD 1046 use	26.1 fb ⁻	¹ of data from <i>pp</i> collisions at $\sqrt{s} = 13$ TeV. This result

bound of 3.4 TeV is placed on the KK gluon mass for $\Gamma/m = 30\%$.

³ SIRUNYAN 19AL use 35.9 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to place limits on a KK gluon decaying to a top quark and a heavy vector-like fermion, T. KK gluon masses between 1.5 and 2.3 TeV and between 2.0 and 2.4 TeV are excluded for T

gluon masses between 1.5 and 2.3 TeV and between 2.0 and 2.4 TeV are excluded for T masses of 1.2 and 1.5 TeV, respectively. 4 CHATRCHYAN 138M use 19.7 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 8$ TeV. Bound is for a width of approximately 15–20% of the KK gluon mass. 5 CHEN 13A place limits on the KK mass scale for a specific warped model with custodial

symmetry and bulk fermions. See their Figures 4 and 5. ⁶AAD 128v use 2.05 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 7$ TeV.

Black Hole Production Limits

Semiclassical Black Holes

DOCUMENT ID TECN COMMENT VALUE (GeV) • • • We do not use the following data for

or use the following data for a	averages, mis, m	nits, etc. • • •
¹ SIRU NYA N	18DA CMS	$p p \rightarrow multijet$
² aad	16N ATLS	$pp \rightarrow multijet$
³ AAD	160 ATLS	$pp \rightarrow \ell + (\ell \ell / \ell j / j j)$
⁴ AAD	13AW ATLS	$pp \rightarrow \mu\mu$

¹ SIRUNYAN 18DA use 35.9 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for semiclassical black holes decaying to multijet final states. No excess of events above the expected level of standard model background was observed. Exclusions at 95% CL are set on the mass threshold for black hole production as a function of the higher-dimensional Planck scale for rotating and nonrotating black holes under several model assumptions (ADD, 2, 4, 6 extra dimensions model) in the 7.1-10.3 TeV range. These

limits supersede those in SIRUNYAN 17cP. ²AAD 16N use 3.6 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for semiclassical black hole decays to multijet final states. No excess of events above the expected level of Standard Model background was observed. Exclusion contours at 95% C.L. are set on the mass threshold for black hole production versus higher-dimensional Planck scale for rotating black holes (ADD, 6 extra dimensions model)

2072 Searches Particle Listings Extra Dimensions

³AAD 160 use 3.2 fb⁻¹ of data from *pp* collisions at \sqrt{s} = 13 TeV to search for semi-classical black hole decays to high-mass final states with leptons and jets. No excess of events above the expected level of Standard Model background was observed. Exclusion contours at 95% C.L. are set on the mass threshold for black hole production versus higher-dimensional Planck scale for rotating black holes (ADD, 2 to 6 extra dimensions). Apple 1 mensional Planck scale for fortaing black holes (ADD, 2 to be an apple of the holes). 4 AAD 13AW use 20.3 fb⁻¹ of data from pp collisions at $\sqrt{s} = 8$ TeV to search for semi-classical black hole decays to like-sign dimuon final states using large track multiplicity.

No excess of events above the expected level of Standard Model background was ob-served. Exclusion contours at 95% C.L. are set on the mass threshold for black hole production versus higher-dimensional Planck scale in various extra dimensions, rotating and non-rotating models

Quantum Black Holes VALUE (GeV)

DOCUMENT ID TECN COMMENT • • • We do not use the follo

зw	ing data for ave	rages,	fits, lim	its, etc	••	•	
1	AABOUD	18ba	ATLS	$p p \rightarrow$	γj		
2	AABOUD	18cm	ATLS	$p p \rightarrow$	еμ,	eτ, μ	$u\tau$
3	SIRUNYAN	18AT	CMS	$p p \rightarrow$	eμ		
4	SIR U NYA N	18dd	CMS	$p p \rightarrow$	dijet	, ang.	distrib
5	AABOUD	17ak	ATLS	$p p \rightarrow$	jj		
6	SIR U NYA N	17cp	CMS	$p p \rightarrow$	jj		
7	KHACHATRY	.16be	CMS	$p p \rightarrow$	$e\mu$		
8	KHACHATRY	.15v	CMS	$p p \rightarrow$	jj		
9	AAD	14al	ATLS	$p p \rightarrow$	ℓj		
10	AAD	14v	ATLS	$p p \rightarrow$	е е,	$\mu\mu$	
11	CHATRCHYAN	13A	CMS	$p p \rightarrow$	jj		

- $^1\,{\sf AABOUD}$ 18BA use 36.7 fb $^{-1}$ of data from $p\,p$ collisions at \sqrt{s} = 13 TeV to search for quantum black hole decays to final states with a photon and a jet. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in ADD (6 extra dimensions) and RSI models. Assuming the black hole mass threshold is equal to the Planck scale, mass thresholds below 7.1 TeV and 4.4 TeV are excluded for the ADD and RSI models, respectively. These limits supersede those in AAD 16A.
- ²AABOUD 18CM use 36.1 fb⁻¹ of data from pp collisions at \sqrt{s} = 13 TeV to search for quantum black hole decays with different flavor high-mass dilepton final states. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in ADD (6 extra dimensions) and RS1 models. Assuming the black hole mass threshold is equal to the higher-dimensional Planck scale, mass thresholds below 5.6 (3.4), 4.9 (2.9), and to the higher-dimensional Planck scale, mass thresholds below 5.6 (3.4), 4.9 (2.9), and 4.5 (2.6) TeV are excluded in the $e\mu$, $e\tau$ and $\mu\tau$ channels for the ADD (RS1) models, respectively. These limits supersede those in AABOUD 16P. ³ SIRUNYAN 18AT use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for quantum black hole decays to $e\mu$ final states. In Figure 4, lower mass limits of 5.3, 5.5 and 6. TeV are observed in the 4.5 and 6 or the dimensioner remotivisity.
- to quantum black note decays to $e\mu$ mars tates. In Figure 4, lower mass limits of 3.3, 5.5 and 5.6 TeV are placed in a model with 4, 5 and 6 extra dimensions, respectively, and a lower mass limit of 3.6 TeV is found for a single warped dimension. ⁴ SIRUNVAN 18DD use 35.9 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for quantum black hole decays in dijet angular distributions. A lower mass limit of 5.9 (8.2) TeV is placed in the RS (ADD) model with one (six) extra dimension(s).
- ⁵ AABOUD 17AK use 37 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for quantum black hole decays to final states with dijets. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in an ADD (6 extra dimensions) model. Assuming the black hole mass threshold is equal to the higher-dimensional Planck
- scale, mass thresholds below 8.9 TeV are excluded. 6 SIRUNYAN 17CP use 2.3 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for quantum black holes decaying to dijet final states. No excess of events above the expected level of standard model background was observed. Limits on the quantum black hole mass threshold are set as a function of the higher-dimensional Planck scale, under the assumption that the mass threshold must exceed the above Planck scale. Depending
- the assumption that the mass threshold must exceed the above Planck scale. Depending on the model, mass thresholds in the range up to 5.1-9.0 TeV are excluded. ⁷ KHACHATRYAN 16BE use 19.7 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 8$ TeV to search for quantum black holes undergoing lepton flavor violating decay to the $e\mu$ final state. No excess of events above the expected level of standard model background was observed. Exclusion limits at 95% CL are set on mass thresholds for black hole production in the ADD (2–6 flat extra dimensions), RS1 (1 warped extra dimension), and a model with a Planck scale at the TeV scale from a renormalization of the gravitational constant (no extra dimensions). Limits on the black hole mass threshold are set assuming that it is equal to the higher-dimensional Planck scale. Mass thresholds for quantum black holes in the range up to 3.15-3.63 TeV are excluded in the ADD model. In the RS1 model, mass thresholds below 2.81 TeV are excluded in the PDG convention for the Schwarzschild radius. In the model with no extra dimensions, mass thresholds below 1.99 TeV are excluded.
- ^{1.99} FeV are excluded. ⁸ KHACHATRYAN 15v use 19.7 fb⁻¹ of data from *pp* collisions at \sqrt{s} = 8 TeV to search for quantum black holes decaying to dijet final states. No excess of events above the expected level of standard model background was observed. Exclusion limits at 95% CL are set on mass thresholds for black hole production in the ADD (2–6 flat extra dimensions) and RS1 (1 warped extra dimension) model. Limits on the black hole mass threshold are set as a function of the higher-dimensional Planck scale, under the assumption that the mass threshold must exceed the above Planck scale. Depending on the model, mass thresholds in the range up to 5.0-6.3 TeV are excluded. This paper
- supersedes CHATRCHYAN 13AD. 9 AAD 14AL use 20.3 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 8$ TeV to search for AAD 14AL use 20.3 to - of data from *pp* consistions at $\sqrt{s} = 8$ fev to search for quantum black hole decays to final states with high-invariant-mass lepton + jet. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in an ADD (6 extra dimensions) model. Assuming the black hole mass threshold is equal to the higher-dimensional Planck scale, mass thresholds below 5.3 TeV are excluded. ¹⁰ AAD 14v use 20.3 (20.5) fb⁻¹ of data in the dielectron (dimuon) channels from *pp*
- AAD 140 use 20.3 (20.5) to of data in the detection (dimuon) channess from *pp* collisions at $\sqrt{s} = 8$ TeV to search for quantum black hole decays involving high-mass dilepton resonances. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole mass threshold is equal to the higher-dimensional Planck scale, mass threshold is below 3.65 TeV and 2.24 TeV are excluded for the ADD and RS1 models, respectively.

 11 CHATRCHYAN 13A use 5 fb $^{-1}$ of data from pp collisions at \sqrt{s} = 7 TeV to search for quantum black holes decaying to dijet final states. No excess of events above the expected level of standard model background was observed. Exclusion limits at 95% CL are set on mass thresholds for black hole production in the ADD (2–6 flat extra dimensions) and RS (1 warped extra dimension) model. Limits on the black hole mass threshold are set as a function of the higher-dimensional Planck scale, under assumption that the mass threshold must exceed the above Planck scale. Depending on the model, mass thresholds in the range up to 4.0–5.3 TeV are excluded.

REFERENCES FOR Extra Dimensions

AAD	20 C	PL B800 135103	G. Aad et al.	(ATLAS Collab.)
AABOUD	19A 19AS	PR D 99 0 92004	M. Aaboud et al. M. Aaboud et al.	(ATLAS Collab.)
AABOUD	190 19D	JHEP 1904 092	M. Aaboud et al. G. Aad et al.	(ATLAS Collab.)
SIRUNYAN	19	PL B788 7	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN SIRUNYAN	19AC 19AI	JHEP 1904 114 FPJ C79 208	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS Collab.) (CMS Collab.)
SIRUNYAN	19BE	PRL 122 121803	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	19CF 18AK	JHEP 1910 125 JHEP 1803 042	A.M. Sirunyan et al. M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18 A L	JHEP 1803 009 IHEP 1807 089	M. Aaboud et al. M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18 B A	EPJ C78 102	M. Aaboud et al.	(ATLAS Collab.)
AABOUD AABOUD	18BF 18BI	EPJ C78 293 FPJ C78 565	M. Aaboud et al. M. Aaboud et al.	(ATLAS Collab.) (ATLAS Collab.)
AABOUD	18 CE	JHEP 1812 039	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18 CJ 18 CM	PR D98 092008	M. Aaboud et al. M. Aaboud et al.	(ATLAS Collab.) (ATLAS Collab.)
AABOUD	18 CQ	PRL 121 191801	M. Aaboud et al. M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18 F	PL B777 91	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	181 18	JHEP 1801 126 PRI 120 141101	M. Aaboud et al. I Berree et al	(ATLAS Collab.)
FAYET	18	PR D97 055039	P. Fayet	(EPOL)
FAYET HADDOCK	18A 18	PR D 99 055043 PR D 97 062002	P. Fayet C. Haddock <i>et al</i>	(ENSP, EPOL) (NAGO_KEK_OSAK+)
SIRUNYAN	18 A F	PL B781 244	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN SIRUNYAN	18AS 18AT	JHEP 1803 003 JHEP 1804 073	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS Collab.) (CMS Collab.)
SIRUNYAN	18 A X	JHEP 1805 088	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN SIRUNYAN	1888 188K	JHEP 1806 120 JHEP 1807 075	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS Collab.) (CMS Collab.)
SIRUNYAN	18 B O	JHEP 1808 130	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18 CW	JHEP 1808 152	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18 DA	JHEP 1811 042	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18 D J	JHEP 1809 101	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18 D U	PR D 98 0 92001	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	181	PRL 120 201801	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18 P	PR D 97 072006	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	185 17AK	PR D 97 0 92005 PR D 96 0 52004	A.M. Sirunyan et al. M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17AP	PL B775 105	M. Aaboud et al.	(ATLAS Collab.)
KHACHATRY	17 W	PL B769 520	V. Khachatryan et al.	(CMS Collab.)
KLIMCHITSK	17A 17AK	PR D 95 123013	G.L. Klimchitskaya, V.M. I A.M. Sirupyon et al	Wostepanenko (CMS, Collab.)
SIRUNYAN	17AQ	JHEP 1710 073	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	17 CP 17 E	PL B774279 IHEP 1707 013	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	16AE	JHEP 1609 173	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	16D 16E	PR D 94 032005	M. Aaboud et al. M. Aaboud et al.	(ATLAS Collab.)
AABOUD	16H	JHEP 1609 001	M. Aaboud et al.	(ATLAS Collab.)
AABOUD AABOUD	161 16P	PR D 94 052002 FPI C76 541	M. Aaboud et al. M. Aaboud et al.	(ATLAS Collab.) (ATLAS Collab.)
AAD	16A1	JHEP 1603 041	G. Aad et al.	(ATLAS Collab.)
AAD AAD	16 N 16 O	JHEP 1603 026 PL B760 520	G. Aad et al. G. Aad et al.	(ATLAS Collab.)
AAD	16R	PL B755 285	G. Aad et al.	(ATLAS Collab.)
KHACHATRY	16BQ	PR D94 052012	V. Khachatryan et al. V. Khachatryan et al.	(CMS Collab.)
KHACHATRY	16 M	PRL 117 051802	V. Khachatryan et al.	(CMS Collab.)
AAD	15AU	EPJ C75 69	G. Aad et al.	(ATLAS Collab.)
AAD	15 A Z	EPJ C75 209 EPJ C75 270 (errot.)	G. Aad et al. G. Aad et al.	(ATLAS Collab.)
AAD	15 CS	PR D91 012008	G. Aad et al.	(ATLAS Collab.)
Also	15 CT	PR D92 059903 (errat.)	G. Aad et al. G. Aad et al.	(ATLAS Collab.)
ACCOMANDO	15 0.	MPL A30 1540010	E. Accomando	(SHMP)
KHACHATRY KHACHATRY	15AE 15AI	JHEP 1504 025 FPJ C75 235	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al</i>	(CMS Collab.) (CMS Collab.)
KHACHATRY	15 R	PL B749 560	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY	15 I 15 V	PR D91 092005 PR D91 052009	V. Knacnatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
AAD	14 A L	PRL 112 091804	G. Aad et al.	(ATLAS Collab.)
AAD	14 B E 14 V	PR D 90 052005	G. Aad et al. G. Aad et al.	(ATLAS Collab.)
KHACHATRY	14 A	JHEP 1408 174	V. Khachatryan et al. G. Aad et al	(CMS Collab.)
AAD	13A0	PR D87 112006	G. Aad et al.	(ATLAS Collab.)
AAD	13AQ	PR D88 012004	G. Aad et al. G. Aad et al.	(ATLAS Collab.)
AAD	13 AW	PR D88 072001	G. Aad et al.	(ATLAS Collab.)
AAD AAD	13 C 13 D	PRL 110 011802 JHEP 1301 029	G. Aad et al. G. Aad et al	(ATLAS Collab.) (ATLAS Collab.)
AAD	13 E	PR D87 015010	G. Aad et al.	(ATLAS Collab.)
CHATRCHYAN	13A 13AD	JHEP 1301 013 JHEP 1307 178	S. Chatrchyan <i>et al.</i> S. Chatrchyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
CHATRCHYAN	13AQ	PR D87 072005	S. Chatrchyan et al.	(CMS Collab.)
CHAIRCHYAN Also	13 B M	PRE 111 211804 PRE 112 119903 (errat.)	 Chatronyan et al. Chatronyan et al. 	(CMS Collab.) (CMS Collab.)
CHATRCHYAN	13W	JHEP 1303 111	S. Chatrchyan et al.	(CMS Collab.)
EDELHAUSER	13 А 13	JHEP 1308 091	5-5. Chen et al. L. Edelhauser, T. Flacke. I	(DALI) M. Kramer (AACH, KAIST)
XU	13 12 A D	JP G40 035107 PL B712 331	J. Xuetal. G. Andetal	(ATLAS Colles)
AAD	12BV	JHEP 1209 041	G. Aad et al.	(ATLAS Collab.)
AAD AAD	12 C C 12 C P	JHEP 1211 138 PL B718 411	G. Aad et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
AAD	12X	PL B710 519	G. Aad et al.	(ATLAS Collab.)
AA D AA LT ON FN	12Y 12V	PL B710 538 PR D85 012008	G. Aad et al. T. Aaltonen et al	(ATLAS Collab.) (CDF Collab.)
ABAZOV	12 M	PRL 108 131802	V.M. Abazov et al.	(D0 Collab.)

Searches Particle Listings Extra Dimensions, WIMP and Dark Matter Searches

JELLO	12	JCAP 1202 012	M. Ajello et al.	(Fermi-LAT	Collab.)	
AAK	12	EPJ C72 2003	M. Baak et al.	(Gfitter	Group)	
HALKCHYAN	12 K 12	PRL 108 111801 PR D85 126007	S. Chatronyan et al. T. Elacke, C. Pasold	(CMS	Collab.) (WURZ)	
ISHIWAKI	12	PL B707 506	K. Nishiwaki et al.	(KOBE,	OSAK)	
AD	11 F	PRL 106 121803	G. Aad et al.	(ÀT LAS	Collab.)	
AD	11X	EPJ C71 1744	G. Aad et al.	(ATLAS	Collab.)	
ALTONEN	11G 11R	PR D83 112008 PRI 107 051801	T. Aaltonen et al.	CDF	Collab.)	
ALTONEN	110	PR D83 011102	T. Aaltonen et al.	(CDF	Collab.)	
ARON	11 C	PL B705 52	F. D. Aaron et al.) (H1	Collab.)	
BAZOV	11H	PRL 107 011801	V.M. Abazov et al.	(D0	Collab.)	
USHKOV	11	PRI 107 171101	A O Sushkov et al			
ALTONEN	10 N	PRL 104 241801	T. Aaltonen et al.	(CDF	Collab.)	
BAZOV	10 F	PRL 104 241802	V.M. Abazov et al.	(D0	Collab.)	
BAZOV	10 P	PRL 105 221802	V.M. Abazov et al.	(D0	Collab.)	
BAZOV	10 09AE	PRI 103 191803	V.D. Dezenia er al. V.M. Abazov et al.	(D0	Collab.)	
BAZOV	09D	PRL 102 051601	V.M. Abazov et al.	(D0	Collab.)	
IAS UDA	09	PRL 102 171101	M. Masuda, M. Sasaki		(ICRR)	
ALTONEN	08AC	PRL 101 181602	L. Aaltonen et al. T. Aaltonen et al.	(CDF	Collab.)	
BAZOV	081	PRI 100 091802	V M Abazov et al	(D0	Collab.)	
BAZOV	08S	PRL 101 011601	V.M. Abazov et al.	(D0	Collab.)	
AS	80	PR D78 063011	P.K. Das, V.H.S. Kumar, P.K. Suresh	۰ ۱		
ERACI	08	PR D78 022002	A.A. Geraci et al.		(STAN)	
ALTONEN	07 G	PRI 99 171801	T Aaltonen et al	(CDF	Collab)	
ALTONEN	07 H	PRL 99 171802	T. Aaltonen et al.	(CDF	Collab.)	
ECCA	07A	EPJ C51 963	R.S. Decca et al.			
	07	PR D76 034014	U. Haisch, A. Weiler			
CHAFI	07A	FRE 56 021101 FPI C49 411	S Schael et al	(ALEPH	Collab)	
U	07	PRL 98 201101	LC. Tu et al.	`		
BDALLAH	06 C	EPJ C45 589	J. Abdallah <i>et al.</i>	(DELPHI	Collab.)	
BULENCIA,A	06	PRL 97 171802	A. Abulencia <i>et al.</i> D. Gerdes <i>et al.</i>	(CDF	Collab.)	
OGOLADZE	06	PR D74 093012	I. Gogoladze, C. Macesanu			
BAZOV	05 N	PRL 95 091801	V.M. Abazov et al.	(D0	Collab.)	
BAZOV	05 V	PRL 95 161602	V.M. Abazov et al.	(D0	Collab.)	
BULENCIA	05 B	EPJ C38 395 PRI 95 252001	J. Abdallan et al. A Abulancia et al	(DELPHI (CDE	Collab.)	
MULLIN	05	PR D72 122001	S.J. Smullin et al.	(00)	conub.)	
.CHARD	04 E	PL B587 16	P. Achard et al.	(L3	Collab.)	
COSTA	04 C	PRL 92 121802	D. Acosta et al.	(CDF	Collab.)	
ARBIERI	04	NP B703 127 PRI 92 111102	R. Barbieri et al. M. Casse et al			
HEKANOV	04 B	PL B591 23	S. Chekanov et al.	(ZEUS	Collab.)	
IOYLE	04	PR D70 042004	C.D. Hoyle et al.		(WAS H)	
BAZOV	03	PRL 90 251802	V.M. Abazov et al.	(D0	Collab.)	
CHARD	03 D	PL B572 133	P. Achard et al.	(L3	Collab.)	
DLOFF	03	PL B568 35	C. Ad loff et al.	(H1	Collab.)	
HIAVERINI	03	PRL 90 151101	J. Chiaverini et al.			
IUDICE IANNES TAD	03	NP B663 377 PR D67 125008	G.F. GIUDICE, A. STRUMIA S. Hannestad, G.G. Raffelt			
Also	05	PR D69 029901(errat.)	S. Hannestad, G.G. Raffelt			
IEISTER	03 C	EPJ C28 1	A. Heister et al.	(ALEPH	Collab.)	
ONG	03	Nature 421 922	J.C. Long et al.	(1.5	C-11-1-3	
CHARD	02 02 D	PL B524 05 PL B531 28	P. Achard et al. P. Achard et al.	(L3	Collab.)	
IAN NES TAD	02	PRL 88 071301	S. Hannestad, G. Raffelt	(15	conub.)	
BBOTT	01	PRL 86 1156	B. Abbott et al.	(D0	Collab.)	
AIRBAIRN	01	PL B508 335	M. Fairbairn			
IOYLE	01	PRI 86 1418	C. Halliari et al.			
BBIENDI	00 R	EPJ C13 553	G. Abbiendi et al.	(OPAL	Collab.)	
BREU	00 A	PL B491 67	P. Abreu et al.	(DÈLPHI	Collab.)	
BREU	005	PL B485 45	P. Abreu et al. P. Abreu et al.	(DELPHI	Collab.)	
ASSISI	002	PL B481 323	S Cassisi et al	(DELFIII	conab.)	
HANG	00 B	PRL 85 3765	L.N. Chang et al.			
HEUNG	00	PR D61 015005	K. Cheung			
DAESSED	00	PR D61 037701	F. Cornet, M. Relano, J. Rico M.L. Groesser			
IAN	00	PR D62 125018	T. Han, D. Marfatia, RJ. Zhang			
IATHEWS	00	JHEP 0007 008	P. Mathews, S. Raychaudhuri, K. Srid	d har		
1ELE	00	PR D61 117901	S. Mele, E. Sanchez			
BBIENDI	00 99 P	PL B465 303	r.o. ruzzo, J.D. wells G. Abbiendi <i>et al</i>	(OPA1	Collab.)	
CCIARRI	99 M	PL B464 135	M. Acciarri et al.	(L3	Collab.)	
CCIARRI	99 R	PL B470 268	M. Acciarri et al.	(L3	Collab.)	
CURILKOV	995	PL 8470 281	wi, Acciarri et al. D. Bourilkov	(L3	collab.)	
IOSKINS	85	PR D32 3084	J.K. Hoskins et al.			

Spin-Independent Cross Section Limits

WIMP and Dark Matter Searches

We omit papers on CHAMP's, millicharged particles, and other exotic particles.

GALACTIC WIMP SEARCHES

These limits are for weakly-interacting stable particles that may constitute the invisible mass in the galaxy. Unless otherwise noted, a local mass density of 0.3 GeV/cm³ is assumed; see each paper for velocity distribution assumptions. In the papers the limit is given as a function of the X^0 mass. Here we list limits only for typical mass values of sub-GeV, GeV, 20 GeV, 100 GeV, and 1 TeV. Specific limits on supersymmetric dark matter particles may be found in the Supersymmetry section.

LUE (pb)	CL %	A° DOCUMENT ID		TECN	COMMENT
• • We do not	use the fo	lowing data for aver	ages,	fits, limit	is, etc. ● ● ●
1×10^{-2}	90	1 ABDELHAME	194	CRES	CaWO.
5.4×10^{-6}	90		194	SCDM	GeV-scale WIMPs on Ge
1	90	³ AKERIB	19	LUX	light DM on Xe via Migdal/brem effect
1×10^{-6}	90	⁴ AMOLE	19	PICO	C ₃ F ₈
1.6×10^{-3}	90	⁵ APRILE	19c	XE1T	DM on Xe
1×10^{-7}	90	⁶ APRILE	19D	XE1T	DM on Xe
0.1	90	⁷ ARMENGAUE) 19	EDEL	GeV-scale WIMPs on Ge
1.6×10^{3}	90	⁸ kobayashi	19	XMAS	annual modulation Xe
7 × 10 ²	90	⁹ LIU	19B	CDEX	Ge; sub-GeV DM via Migdal
7×10^{-7}	90	¹⁰ AGNES	18	D S5 0	GeV-scale WIMPs on Ar
1.5×10^{-5}	95	11 AGNESE	18	SCDM	GeV-scale WIMPs on Ge
2×10^{-8}	90	¹² APRILE	18	XE1T	Xe, SI
1.5×10^{-3}	90	¹³ ARNAUD	18	NEWS	low mass WIMP, Ne
3×10^{-6}	90	¹⁴ JIANG	18	CDEX	GeV-scale WIMPs on Ge
3×10^{-5}	90	¹⁵ YANG	18	CDEX	WIMPs on Ge
1×10^{-6}	90	16 A KERIB	17	LUX	Xe
1×10^2	90	¹⁷ ANGLOHER	17a	CRES	GeV-scale WIMPs
7×10^{-5}	90	¹⁸ ANGLOHER	16	CRES	CaWO ₄
3×10^{-5}	90	¹⁹ APRILE	16	X100	Xe
1.3×10^{-4}	90	²⁰ ARMENGAUE) 16	EDE3	GeV-scale WIMPs on Ge
7×10^{-5}	90	²¹ HEH N	16	EDE3	SI WIMP on Ge
5×10^{-5}	90	²² zhao	16	CDEX	GeV-scale WIMPs on Ge
1×10^{-4}	90	²³ A MOLE	15	PICO	C ₃ F ₈
3×10^{-5}	90	²⁴ XIAO	15	PNDX	WIMPs on Xe
3×10^{-5}	90	²⁵ AGNESE	14	SCDM	GeV-scale WIMPs
1×10^{-3}	90	²⁶ akerib	14	LUX	WIMP on Xe
9×10^{-4}	90	27 LI	13b	TEXO	WIMPs on Ge
3×10^{-4}	90	²⁸ ARCHAMBAU	J12	PICA	C ₄ F ₁₀
2×10^{-4}	90	²⁹ AALSETH	11	CGNT	GeV WIMPs on Ge
5×10^{-4}	90	³⁰ AHMED	11b	CD M2	GeV-scale WIMPs on Ge
3×10^{-5}	90	³¹ ANGLE	11	XE10	Xe
$\times 10^{-4}$	90	³² AKERIB	10	CD M2	WIMPs on Ge/Si

m(DM) = 1 GeV.²AGNESE 19A search for 1.5-10 GeV WIMP scatter on Ge in CDMSlite dataset. Limits

set in a likelihood analysis. No signal was observed. Limit reported for m($\chi)$ = 5 GeV. ³ A KERIB 19 search for 0.4–5 GeV DM using bremsstrahlung photons and "Migdal" electrons; 1.4 × 10⁴ kg d exposure of liquid Xe; constraint $\sigma^{SI}(\chi N) < 1$ pb for m(χ) = 5 GeV in light scalar mediator model.

 4 A MOLE 19 search for SI WIMP scatter on C₃F₈ in PICO-60 bubble chamber; no signal:

set limit for spin independent coupling $\sigma^{SI}(\chi N) < 1 \times 10^{-6}$ pb for $m(\chi) = 5$ GeV. ⁵APRILE 19c search for light DM scatter on Xe via atomic excitation, ionization (Migdal effect) or bremsstrahlung; no signal, limits placed in σ vs. m(DM) plane for m(DM) $\sim 0.085-2$ GeV. The listed limit is for m(DM) = 1 GeV.

 6 APRILE 19D search for light DM scatter on Xe via ionization to probe SI, SD, and χe cross sections; with 22 t d exposure, limits placed in various σ vs. m(DM) planes. Quoted limit is for m(DM) = 5 GeV.

- ⁷ARMENGAUD 19search for GeV scale WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) \sim 0.045–10 GeV; quoted limit is for m(χ) = 5 GeV
- ⁸ KOBAYASHI 19 search for sub-GeV WIMP annual modulation in Xe via brems; no signal; limits placed in $\sigma^{SI}(\chi$ N) vs. m(χ) plane for m \sim 0.3–1 GeV; quoted limit is for m(χ) = 0.5 GeV.
- ⁹ LIU 19B seach for sub-GeV DM using Migdal effect on Ge at CDEX-IB; no signal, require $\sigma^{SI}(\chi N) < 7 \times 10^2 \text{ pb for } m(\chi) = 0.1 \text{ GeV}.$
- 10 AGNES 18 search for 1.8–20 GeV WIMP SI scatter on Ar; quoted limit is for m($\chi)$ = 5 GeV
- GeV. 11 AGNESE 18 search for GeV scale WIMPs using CDMSlite; limits placed in $\sigma^{SI}(\chi N)$ vs. $m(\chi)$ plane for $m \sim 1.5$ –20 GeV; quoted limit is for $m(\chi) = 5$ GeV.
- ¹²APRILE 18 search for WIMP scatter on 1 t yr Xe; no signal, limits set in $\sigma(\chi N)$ vs. m(χ) plane for m(χ) $\sim\,$ 6–1000 GeV; quoted limit is for m = 6 GeV
- ¹³ARNAUD 18 search for low mass WIMP scatter on Ne via SPC at NEWS-G; limits set
- In $\sigma^{SI}(\chi N)$ vs. $m(\chi)$ plane for $m \sim 0.5$ -20 GeV; quoted limit is for m = 5 GeV. 14 JIANG 18 search for GeV scale WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. $m(\chi)$ plane for $m(\chi) \sim 3$ -10 GeV; quoted limit is for $m(\chi) = 5$ GeV. 15 YANG 18 search for WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. $m(\chi)$ plane for $m(\chi) = 10$ GeV entrol limit is for $m(\chi) = 5$ GeV.
- $m(\chi) \sim 2-10$ GeV; quoted limit is for $m(\chi) = 5$ GeV. 16 AKERIB 17 search for WIMP scatter on Xe; limits placed in $\sigma^{SI}(\chi$ N) vs. m(χ) plane
- for m(χ) \sim 5-1 imes 10⁵ GeV; quoted limit is for m(χ) = 5 GeV. $^{17}\mathrm{ANGLOHER}$ 17A search for GeV scale WIMP scatter on $\mathrm{Al_2O_3}$ crystal; limits placed in
- $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 0.15 –10 GeV; quoted limit is for m(χ) = 5 GeV. ¹⁸ ANGLOHER 16 search for GeV scale WIMP scatter on CaWO₄; limits placed in $\sigma^{ST}(\chi N)$ vs. $m(\chi)$ plane for $m(\chi) \sim 0.5$ -30 GeV; quoted limit is for $m(\chi) = 5$ GeV.
- ¹⁹APRILE 16 search for low mass WIMPs via ionization at XENON100; limits placed in $\sigma^{SI}(\chi$ N) vs m (χ) plane for m $\sim~$ 3.5–20 GeV; quoted limit is for m $(\chi)=$ 5 GeV
- ²⁰ ARMENGAUD 16 search for GeV scale WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. $m(\chi)$ plane for $m(\chi) \sim$ 4-30 GeV; quoted limit is for $m(\chi) = 5$ GeV.
- 14 HEH 16 search for low mass WIMPs via SI scatter on Ge target using profile likelihood analysis; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 4–30 GeV; quoted limit is for m(χ) = 5 GeV.

2074 Searches Particle Listings WIMP and Dark Matter Searches

- 22 ZHAO 16 search for GeV-scale WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi$ N) vs. m(χ) plane for m(χ) \sim 4-30 GeV; quoted limit is for m(χ) = 5 GeV
- plane for $m(\chi) \sim 4-30$ GeV; quoted limit is for $m(\chi) = 3$ GeV. ²³AMOLE 15 search for WIMP scatter on C₃F₈ in PICO-2L; limits placed in $\sigma^{SI}(\chi N)$ vs. $m(\chi)$ plane for $m(\chi) \sim 4-25$ GeV; quoted limit is for $m(\chi) = 5$ GeV. ²⁴XIAO 15 search for WIMP scatter on Xe with PandaX-I; limits placed in $\sigma^{SI}(\chi N)$ vs. $m(\chi)$ plane for $m(\chi) \sim 5-100$ GeV; quoted limit is for $m(\chi) = 5$ GeV.
- ²⁵ AGNESE 14 search for GeV scale WIMPs SI scatter at SuperCDMS; no signal, limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 3.5-30 GeV; quoted limit is for m(χ)
- 5 GeV 26 AKERIB 14 search for WIMP scatter on Xe; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane
- for m(χ) \sim 5–5000 GeV. Limit given for m(χ) = 5 GeV. 27 Ll 13B search for WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi {\it N})$ vs. m(χ) plane for
- $m(\chi) \sim 4-100 \text{ GeV}$; quoted limit is for $m(\chi) = 5 \text{ GeV}$. ²⁸ARCHAMBAULT 12 search for low mass WIMP scatter on C₄F₁₀; limits set in $\sigma^{SI}(\chi N)$ vs. $m(\chi)$ plane for $m \sim 4-12$ GeV; quoted limit is for m = 5 GeV.
- 29 AALSETH 11 search for GeV-scale SI WIMP scatter on Ge; limits placed on $\sigma^{SI}(\chi {\it N})$
- for m(χ) \sim 3.5–100 GeV; quoted limit is for m(χ) = 5 GeV. 30 AHMED 11B search for GeV scale WIMP scatter on Ge in CDMS II; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m \sim 4-12 GeV.
- ³¹ ANGLE 11 search for GeV scale WIMPs in Xenon-10; limits placed in $\sigma^{SI}(\chi$ N) vs. m(χ)
- plane for m(χ) ~ 4–20 GeV; quoted limit is for m(χ) = 5 GeV.
- 32 AKERIB 10 search for WIMP scatter on Ge/Si in CDMS2; limits place in $\sigma^{SI}(\chi N)$ vs. $m(\chi)$ plane for m 3-100 GeV . Limit given for m(DM)=5 GeV

For $m_{X^0} = 20$ GeV

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment

VALUE	(pb)	CL%		DOCUMENT ID		TECN	COMMENT
• • •	We do not use the	followin	g d	lata for averages	, fits,	limits, e	etc. • • •
			1	ANGLOHER	19	CRES	CaWO.
<7	$\times 10^{-5}$	90	2	KIM	194	KIMS	Nal
< 3	$\times 10^{-7}$	90	3	KOBAYASHI	19	XMAS	SI WIMP on Xe
~			4	SEONG	19	BELL	$\Upsilon \rightarrow \gamma A, A \rightarrow \gamma \gamma$
< 3.5	$\times 10^{-5}$	90	5	YANG	19	CDEX	annual modulation Ge
<2	$\times 10^{-7}$	90	6	ABE	18c	XMAS	X^0 - Xe modulation
<1 44	× 10 ⁻⁵	90	7		18	C100	Nal
<1.44	× 10-7	90	8	AGNES	18	DS50	x ⁰ _Ar
~5	× 10 × 10 ⁻⁶	95	9	AGNESE	18	SCDM	6
<1	× 10 × 10 ⁻⁸	90	10	AGNESE	184	SCDM	Ge
<4	× 10 × 10-11	90	11		18	YE1T	Ye SI
<15	× 10 × 10-3	00	12		10		CoV/W/MPc on No
<4.5	× 10 × 10 ⁻⁶	90	13		17		dev whiving on he
~2	× 10 × 10-10	90	14		17		V, Cartin Yo
<2	× 10 × 10-3	50	15		17		Nal
<1 7	× 10 × 10-10	90	16	CUI	174		MIMDs on Yo
<1.7	× 10 × 10-7	90		ACNES	17A 16		
<1.5	× 10 ···	90	17	AGNES	10	CDMC	AI C-
<1	× 10 °	90	18	AGNESE	10	CDIVIS	Ge
<2	× 10 ·	90	19	AGUILAR-AR	16	DMIC	SI CCDS
<4.5	× 10 °	90	20	ANGLOHER	16	CRES	CavvO ₄
<2	× 10 °	90	21	APRILE	16	X100	Xe
< 9.4	× 10 ⁻⁰	90	21	ARMENGAUD	16	EDE3	Ge
< 1.0	× 10 ⁻⁷	90	22	HEHN	16	EDE3	Ge
<5	× 10 ⁻⁰	90	23	ZHAO	16	CDEX	Ge
<1	$\times 10^{-5}$	90	24	AGNES	15	D \$5 0	Ar
< 1.5	$\times 10^{-0}$	90	24	AGNESE	15a	CD M2	Ge
< 1.5	$\times 10^{-7}$	90	20	AGNESE	15b	CD M2	Ge
<2	× 10 ⁻⁶	90	26	AMOLE	15	PICO	C ₃ F ₈
<1.2	$\times 10^{-5}$	90		CHO	15	SKAM	H, solar ν ($b \overline{b}$)
<1.19	$\times 10^{-6}$	90		CHO	15	SKAM	H, solar ν $(\tau^+ \tau^-)$
<2	$\times 10^{-8}$	90	27	XIAO	15	PNDX	Xe
<2.0	$\times 10^{-7}$	90	28	AGNESE	14	SCDM	Ge
<3.7	$\times 10^{-5}$	90	29	AGNESE	14a	SCDM	Ge
<1	$\times 10^{-9}$	90	30	AKERIB	14	LUX	Xe
<2	$\times 10^{-6}$	90	31	ANGLOHER	14	CRES	CaWO4
<5	$\times 10^{-6}$	90		FELIZARDO	14	SMPL	C ₂ CIF ₅
<8	$\times 10^{-6}$	90	32	LEE	14A	KIMS	Csl
<2	$\times 10^{-4}$	90	33	LIU	14A	CDEX	Ge
$<\!\!1$	$\times 10^{-5}$	90	34	YUE	14	CDEX	Ge
<1.08	$\times 10^{-4}$	90	35	AARTSEN	13	ICCB	H, solar ν ($\tau^+ \tau^-$)
<1.5	$\times 10^{-5}$	90	36	ABE	13B	XMAS	Xe
<3.1	$\times 10^{-6}$	90	37	AGNESE	13	CD M2	Si
<3.4	$\times 10^{-6}$	90	38	AGNESE	13A	CD M2	Si
<2.2	$\times 10^{-6}$	90	39	AGNESE	13A	CD M2	Si
			40	BERNABEI	13A	DAMA	Nal modulation
<12	$\times 10^{-4}$	90	41	11	13B	TEXO	Ge
<	× 10		42	ZHAO	13	CDEX	Ge
<12	$\times 10^{-7}$	90		AKIMOV	12	ZEP3	Xe
~1.2	× 10	50	43	ANGLOHER	12	CRES	CaWO.
< 8	× 10-6	90	44	ANGLOHER	12	CRES	CaWO.
~7	× 10-9	90	45		12	X100	Xe
~7	× 10-7	00	46		12	EDE3	60
\sim	~ 10	50	47	BARRETO	12 12		CCD
~1	× 10-6	00		DELINIC	12	COUR	CE-I
<2	× 10 °	90	48		12	COUP	Cr3i
<1	× 10 °			FELIZARDU	12	SIVIPL	C2CIF5
<1.5	× 10 °	90	40	KIM	12	KIMS	CSI
<5	$\times 10^{-3}$	90	-+ 7	AALSETH	11	CGNT	Ge

		50	AALSETH	11A	CGNT	Ge
<5	$\times 10^{-7}$	90 51	AHMED	11	CDM2	Ge, inelastic
<2.7	$\times 10^{-7}$	90 52	AHMED	11a	RVUE	Ge
<3	$\times 10^{-6}$	90 53	ANGLE	11	XE10	Xe
<7	$\times 10^{-8}$	90 54	APRILE	11	X100	Xe
		55	APRILE	11a	X100	Xe, inelastic
<2	$\times 10^{-8}$	90 45	APRILE	11в	X100	Xe
		56	HORN	11	ZEP3	Xe
<2	$\times 10^{-7}$	90	AHMED	10	CDM2	Ge
<1	$\times 10^{-5}$	90 57	AKERIB	10	CD M2	Si, Ge, low threshold
<1	$\times 10^{-7}$	90	APRILE	10	X100	Xe
<2	$\times 10^{-6}$	90	ARMENGAUD	10	EDE2	Ge
<4	$ imes 10^{-5}$	90	FELIZARDO	10	SMPL	C ₂ CIF ₃
< 1.5	$\times 10^{-7}$	90 58	AHMED	09	CDM2	Ge
<2	$ imes 10^{-4}$	90 59	LIN	09	TEXO	Ge
		60	AALSETH	08	CGNT	Ge

 $^1\,\rm ANGLOHER$ 19 search for low mass WIMP scatter on CaWO4; no signal; limits placed on Wilson coefficients for m($\chi)$ = 0.6–60 GeV.

² KIM 19A search for WIMP scatter in Nal KIMS experiment; no signal: require $\sigma^{SI}(\chi n)$ < 7 imes 10 $^{-5}$ pb for m(χ) = 20 GeV.

- ³ KOBAYASHI 19 search for WIMP scatter in XMASS single-phase liquid Xe detector; no signal; require $\sigma^{SI}(\chi N) < 3 \times 10^{-7}$ pb for m(χ) = 20 GeV.
- ⁴ SEONG 19 search for $T \rightarrow \gamma A$, $A \rightarrow \chi \chi$ via CP-odd Higgs; no signal; limits on BF set; model dependent conversion to WIMP-nucleon scattering cross section limits σ^{SI} < 10⁻³⁶ cm² for m(χ) = 0.01-1 GeV.
- 5 YA NG 19 search for low mass wimps via annual modulation in Ge; no signal; require $\sigma^{SI}(\chi\,N)<3.5\times10^{-5}$ pb for m($\chi)=$ 20 GeV.
- ⁶ ABE 18c search for WIMP annual modulation signal for m(WIMP): 6–20 GeV; limits set on SI WIMP-nucleon cross section: see Fig. 6.
- ⁷ ADHIKARI 18 search for WIMP scatter on Nal; no signal; require $\sigma^{SI} < 1.44 imes 10^{-5}$ pb for m(WIMP) = 20 GeV; inconsistent with DAMA/LIBRA result.
- ⁸AGNES 18 search low mass m(WIMP): 1.8-20 GeV scatter on Ar; limits on SI WIMPnucleon cross section set in Fig. 8. ⁹AGNESE 18 give limits for $\sigma^{SI}(\chi N)$ for m(WIMP) between 1.5 and 20 GeV using
- cDMSilte mode data. ¹⁰AGNESE 18A search for WIMP scatter on Ge at SuperCDMS; 1 event, consistent with expected background; set limit in $\sigma^{SI}(\chi N)$ vs. $m(\chi)$ plane for $m \sim 10$ –250 GeV.
- 11 APRILE 18 search for WIMP scatter on 1 t yr Xe; no signal, limits placed in $\sigma^{SI}(\chi$ N)
- vs. m($\chi)$ plane for m($\chi) \sim~$ 6–1000 GeV.
- ¹²ARNAUD 18 search for low mass WIMP scatter on Ne via SPC at NEWS-G; limits set in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m ~ 0.5–20 GeV.
- ¹³AARTSEN 17 obtain $\sigma(SI) < 6 \times 10^{-6}$ pb for m(wimp) = 20 GeV from ν from earth. ¹⁴AKERIB 17 search for WIMP scatter on Xe; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m($\chi) \sim~{\rm 5-1} \times 10^5\,$ GeV.
- ¹⁵ BARBOSA-DE-SOUZA 17 search for annual modulation of WIMP scatter on Nal using an exposure of 61 kg yr of DM-Ice17 for recoil energy in the 4-20 keV range (DAMA found modulation for recoil energy < 5 keV). No modulation seen. Sensitivity insufficient to distinguish DAMA signal from null.
- ¹⁶CUI 17A search for SI WIMP scatter; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m $\sim~10\text{--}1\times10^4$ GeV using 54 ton-day exposure of Xe.
- ¹⁷AGNESE 16 CDMSlite excludes low mass WIMPs 1.6-5.5 GeV and SI scattering cross section depending on m(WIMP); see Fig. 4.
- 18 AGUILAR-AREVALO 16 search low mass 1-10 GeV WIMP scatter on Si CCDs; set limits Fig. 11.
- 19 ANGLOHER 16 search for GeV scale WIMP scatter on CaWO4; limits placed in $\sigma^{SI}(\chi$ N) vs. m(χ) plane for m(χ) \sim 0.5–30 GeV.
- ²⁰ APRILE 16 search for low mass WIMPs via ionization at XENON100; limits placed in $\sigma^{SI}(\chi\,{\it N})$ vs m($\chi)$ plane for m $\sim~$ 3.5–20 GeV.
- ²¹ ARMENGAUD 16 search for GeV scale WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. $m(\chi)$ plane for $m(\chi) \sim$ 4–30 GeV.
- ²²HEHN 16 search for low mass WIMPs via SI scatter on Ge target using profile likelihood analysis; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) \sim 4–30 GeV.
- ²³ ZHAO 16 search for GeV-scale WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for $m(\chi) \sim 4-30$ GeV. ²⁴ AGNESE 15A reanalyse AHMED 11B low threshold data. See their Fig. 12 (left) for
- improved limits extending down to 5 GeV. ²⁵ AGNESE 15B reanalyse AHMED 10 data.
- 26 See their Fig. 7 for limits extending down to 4 GeV.
- 27 XIAO 15 search for WIMP scatter on Xe with PandaX-I; limits placed in $\sigma^{SI}(\chi$ N) vs. m($\chi)$ plane for m($\chi) \sim~$ 5–100 GeV.
- ²⁸ This limit value is provided by the authors. See their Fig. 4 for limits extending down to $m_{\chi^0} = 3.5 \text{ GeV}.$
- ²⁹ This limit value is provided by the authors. AGNESE 14A result is from CDMSlite mode operation with enhanced sensitivity to low mass m_{χ_0} . See their Fig. 3 for limits extending down to m_{χ^0} = 3.5 GeV (see also Fig. 4 in AGNESE 14).
- ³⁰ See their Fig. 5 for limits extending down to $m_{\chi^0} = 5.5$ GeV.
- $^{31}\,{\rm See}$ their Fig. 5 for limits extending down to $m_{\chi^0}\,=\,1\,\,{\rm GeV}.$
- $^{32}\,{\rm See}$ their Fig. 5 for limits extending down to $m_{\chi^0}^{''}$ = 5 GeV.
- ^{33}LIU 14A result is based on prototype CDEX-0 detector. See their Fig. 13 for limits extending down to $m_{\chi^0} = 2$ GeV.
- 34 See their Fig. 4 for limits extending down to m_{χ^0} = 4.5 GeV.
- 35 AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between June 2010 and May 2011.
- 36 See their Fig. 8 for limits extending down to $m_{\chi 0}$ = 7 GeV.
- 37 This limit value is provided by the authors. AGNESE 13 use data taken between Oct. 2006 and July 2007. See their Fig. 4 for limits extending down to m_{χ^0} = 7 GeV.

See key on page 999

- $^{38}\,\text{This}$ limit value is provided by the authors. AGNESE 13A use data taken between July 2007 and Sep. 2008. Three candidate events are seen. Assuming these events are real, the best fit parameters are $m_{\chi0}=$ 8.6 GeV and $\sigma=1.9\times10^{-5}$ pb.
- 39 This limit value is provided by the authors. Limit from combined data of AGNESE 13 and AGNESE 13A. See their Fig. 4 for limits extending down to m_{χ^0} = 5.5 GeV.
- ⁴⁰BERNABEI 13A search for annual modulation of counting rate in the 2-6 keV recoil energy interval, in a 14 yr live time exposure of 1.33 t yr. Find a modulation of 0.0112 ± 0.0012 counts/(day kg keV) with 9.3 sigma C.L. Find period and phase in agreement with expectations from DM particles.
- while expectations from DM particles. ⁴¹ LI 13B search for WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 4-100 GeV.
- ⁴² See their Fig. 5 for limits for $m_{\chi^0} =$ 4-12 GeV.
- ⁴³ANGLOHER 12 observe excess events above the expected background which are consistent with X^0 with mass $\sim 25~{\rm GeV}$ (or 12 GeV) and spin-independent X^0 -nucleon cross section of 2×10^{-6} pb (or 4×10^{-5} pb).
- ⁴⁴ Reanalysis of ANGLOHER 09 data with all three nuclides. See also BROWN 12.
- 45 See also APRILE 14A.
- ⁴⁶ See their Fig. 4 for limits extending down to $m_{\chi^0} = 7$ GeV.
- $^{47}\,{\rm See}$ their Fig. 13 for cross section limits for $m_{X^0}^{-1}$ between 1.2 and 10 GeV.
- ⁴⁸ See also DAHL 12 for a criticism.
- ⁴⁹ See their Fig. 4 for limits extending to $m_{\chi^0} = 3.5$ GeV.
- ⁵⁰ AALSETH 11A find indications of annual modulation of the data, the energy spectrum being compatible with X⁰ mass around 8 GeV. See also AALSETH 13.
 ⁵¹ AHMED 11 search for X⁰ inelastic scattering. See their Fig. 8–10 for limits. The inelastic cross section reduces to the elastic cross section at the limit of zero mass splitting (Fig. 2016). 8, left).
- 52 AHMED 11A combine CDMS II and EDELWEISS data. 53 ANGLE 11 show limits down to $m_{\chi^0}=$ 4 GeV on Fig. 3.
- ⁵⁴ APRILE 11 reanalyze APRILE 10 data.
- $^{55}\,{\sf APRILE}$ 11A search for X^0 inelastic scattering. See their Fig. 2 and 3 for limits. See also APRILE 14A.
- ⁵⁶HORN 11 perform detector calibration by neutrons. Earlier results are only marginally
- affected. $^{57}\,\rm See$ their Fig. 10 and 12 for limits extending to X^0 mass of 1 GeV.
- ⁵⁸ Superseded by AHMED 10.
- ⁵⁹ See their Fig. 6(a) for cross section limits for m_{χ^0} extending down to 2 GeV.
- 60 See their Fig. 2 for cross section limits for m_{χ^0} between 4 and 10 GeV.

For $m_{\chi^0} = 100 \text{ GeV}$

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment. DOCUMENT IN VALUE (nh) CI % TECN COMMENT

MEDE	(90)	CE 70		DOCOMENTID		TECH	COMMENT
• • •	We do not use	the followir	ng d	ata for averages	, fits,	limits, e	etc. • • •
<4	$\times 10^{-8}$	90	1	ABE	19	XMAS	Xe
<3.9	$\times 10^{-9}$	90	2	A JA J	19	DEAP	Ar
<2.3	$\times 10^{-6}$	90	3	ADHIKARI	18	C100	Nal
<1.14	$\times 10^{-8}$	90	4	AGNES	18A	D S5 0	Ar
<2	$\times 10^{-8}$	90	5	AGNESE	18A	CDMS	Ge
<1.2	$\times 10^{-8}$	90	6	AMAUDRUZ	18	DEAP	Ar
< 9.12	$\times 10^{-11}$	90	7	APRILE	18	XE1T	Xe
			8	REN	18	PNDX	SIDM at PDX-II
<1.7	$\times 10^{-10}$	90	9	AKERIB	17	LUX	Xe
<1.2	$\times 10^{-10}$	90	10	APRILE	17G	XE1T	Xe
<1.2	$\times 10^{-10}$	90	11	CUI	17A	PNDX	Xe
<2.0	$\times 10^{-8}$	90		AGNES	16	D S50	Ar
<1	$\times 10^{-9}$	90	12	AKERIB	16	LUX	Xe
<1	$\times 10^{-9}$	90	13	APRILE	16B	X100	Xe
<2	$\times 10^{-8}$	90	14	TAN	16	PNDX	Xe
<4	$\times 10^{-10}$	90	15	TAN	16B	PNDX	Xe
<6	$\times 10^{-8}$	90		AGNES	15	D S5 0	Ar
<4	$\times 10^{-8}$	90	16	AGNESE	15 B	CD M2	Ge
<7.13	$\times 10^{-6}$	90		CHOI	15	SKAM	H, solar ν ($b \overline{b}$)
<6.26	$\times 10^{-7}$	90		CHOI	15	SKAM	H, solar ν (W ⁺ W ⁻)
<2.76	$\times 10^{-7}$	90		CHOI	15	SKAM	H, solar $ u$ $(au^+ au^-)$
< 1.5	$\times 10^{-8}$	90	17	XIAO	15	PNDX	Xe
<1	$\times 10^{-9}$	90		AKERIB	14	LUX	Xe
<4.0	$\times 10^{-6}$	90	18	AVRORIN	14	BAIK	H, solar $ u$ (W^+ W^-)
< 1.0	$\times 10^{-4}$	90	18	AVRORIN	14	BAIK	H, solar ν ($b \overline{b}$)
<1.6	$\times 10^{-6}$	90	18	AVRORIN	14	BAIK	H, solar ν $(\tau^+ \tau^-)$
<5	$\times 10^{-6}$	90		FELIZARDO	14	SMPL	C ₂ CIF ₅
<6.01	$\times 10^{-7}$	90	19	AARTSEN	13	ICCB	H, solar $ u$ (W^+ W^-)
<3.30	$\times 10^{-5}$	90	19	AARTSEN	13	ICCB	H, solar ν ($b \overline{b}$)
<1.9	$\times 10^{-6}$	90	20	ADRIAN-MAR.	.13	ANTR	H, solar $ u$ (W^+ W^-)
<1.2	$\times 10^{-4}$	90	20	ADRIAN-MAR.	.13	ANTR	H, solar ν ($b \overline{b}$)
<7.6	$\times 10^{-7}$	90	20	ADRIAN-MAR.	.13	ANTR	H, solar $ u$ $(au^+ au^-)$
<2	$\times 10^{-6}$	90	21	AGNESE	13	CDM2	Si
<1.6	$\times 10^{-6}$	90	22	BOLIEV	13	BAKS	H, solar $ u$ (W^+ W^-)
<1.9	$\times 10^{-5}$	90	22	BOLIEV	13	BAKS	H, solar ν ($b \overline{b}$)
< 7.1	$\times 10^{-7}$	90	22	BOLIEV	13	BAKS	H, solar $ u \ (au^+ \ au^-)$
<3.2	$\times 10^{-4}$	90	23	LI	13B	TEXO	WIMPs on Ge
<1.67	$\times 10^{-6}$	90	24	ABBASI	12	ICCB	H, solar $ u$ (W^+ W^-)
<1.07	$\times 10^{-4}$	90	24	ABBASI	12	ICCB	H, solar ν ($b \overline{b}$)
<4	$\times 10^{-8}$	90		AKIMOV	12	ZEP3	Xe
$<\!\!1.4$	$\times 10^{-6}$	90	25	ANGLOHER	12	CRES	CaWO ₄

2075 Searches Particle Listings WIMP and Dark Matter Searches

3	$\times 10^{-9}$	90	26	APRILE	12	X100	Xe
3	$\times 10^{-7}$	90		BEHNKE	12	COUP	CF3I
(7	$\times 10^{-6}$			FELIZARDO	12	SMPL	C ₂ CIF ₅
2.5	$\times 10^{-7}$	90	27	KIM	12	KIMS	Csl
2	$\times 10^{-4}$	90		AALSETH	11	CGNT	Ge
	_		28	AHMED	11	CDM2	Ge, inelastic
(3.3	$\times 10^{-8}$	90	29	AHMED	11a	RVUE	Ge
	_		30	AJELLO	11	FLAT	
3	$\times 10^{-8}$	90	31	APRILE	11	X100	Xe
			32	APRILE	11a	X100	Xe, inelastic
(1	$\times 10^{-8}$	90	26	APRILE	11в	X100	Xe
(5	$\times 10^{-8}$	90	33	ARMENGAUD	11	EDE2	Ge
			34	HORN	11	ZEP3	Xe
(4	$\times 10^{-8}$	90		AHMED	10	CD M2	Ge
9	$\times 10^{-6}$	90	~ -	AKERIB	10	CD M2	Si, Ge, low threshold
			35	AKIMOV	10	ZEP3	Xe, inelastic
(5	$\times 10^{-8}$	90		APRILE	10	X100	Xe
(1	$\times 10^{-7}$	90		ARMENGAUD	10	EDE2	Ge
3	$\times 10^{-5}$	90	~ ~	FELIZARDO	10	SMPL	C ₂ CIF ₃
(5	$\times 10^{-8}$	90	36	AHMED	09	CD M2	Ge
			31	ANGLE	09	XE10	Xe, inelastic
3	$\times 10^{-4}$	90	20	LIN	09	TEXO	Ge
			38	GIULIANI	05	RVUE	

¹ABE 19 search for SI DD in single phase Xe; no signal; require $\sigma^{SI}(\chi \rho) < 4 imes 10^{-8}$

pb for $m(\chi) \sim 100$ GeV. ² AJAJ 19 search for SI WIMP-nucleon scatter with 758 tonne day exposure of single phase Figure 3.45 Is search for Si WIMP-nucleon scatter with 756 tonie day exposure of single phase liquid Ar; no signal: require $\sigma^{SI}(\chi N) < 3.9 \times 10^{-9}$ pb for $m(\chi) = 100$ GeV. **3**ADHKARI 18 search for WIMP scatter on Nal; limit set $\sigma^{SI}(\chi p) < 2.3 \times 10^{-6}$ pb for for (1) and (2) and

- $m(\gamma) = 100 \text{ GeV}.$
- 4 AGNES 18A search for WIMP scatter on 46.4 kg Ar; no signal; require $\sigma^{SI}(\chi$ N) <1.14 × 10⁻⁸ pb for m(χ) = 100 GeV. ⁵ AGNESE 18A set limit $\sigma^{SI}(\chi N) < 2 \times 10^{-8}$ pb for m(WIMP) = 100 GeV.
- ⁶AMAUDRUZ 18 search for WIMP scatter on Ar with DEAP-3600; limits set: $\sigma^{SI}(\chi p)$ < 1.2 × 10⁻⁸ pb for m(WIMP) = 100 GeV.
- ⁷APRILE 18 search for WIMP scatter on 1.3 t liquid Xe; no signal; require $\sigma^{SI}(\chi p)$ < 9.12 × 10⁻¹¹ pb for m(χ) = 100 GeV.
- ⁸ REN 18 search for self-interacting DM at Panda-X-II with a total exposure of 54 ton day; limits set in m(DM) vs. m(mediator) plane.
- 9 AKERIB 17 exclude SI cross section $> 1.7 \times 10^{-10}$ pb for m(WIMP) = 100 GeV. Uses
- complete LUX data set. ¹⁰APRILE 176 set limit $\sigma^{SI}(\chi p) < 1.2 \ 10^{-10}$ pb for m(WIMP) = 100 GeV using 1 ton fiducial mass Xe TPC. Exposure is 34.2 live days.
- $^{11}\,{\rm CUI}$ 17A search for SI WIMP scatter; limits placed in $\sigma^{SI}(\chi\,{\it N})$ vs. m($\chi)$ plane for m $10-1 \times 10^4$ GeV using 54 ton-day exposure of Xe.
- 12 AKERIB 16 re-analysis of 2013 data exclude SI cross section $> 1 \times 10^{-9}$ pb for m(WIMP) = 100 GeV on Xe target.
- $^{13}{\sf APRILE}$ 16B combined 447 live days using Xe target exclude $\sigma({\sf SI})~>~1.1\times10^{-9}$ pb for m(WIMP) = 50 GeV.
- $^{14}_{--}$ TAN 16 search for WIMP scatter off Xe target; see SI exclusion plot Fig. 6.
- 15 TAN 16B search for WIMP-p scatter off Xe target; see Fig. 5 for SI exclusion.
- ¹⁶AGNESE 15B reanalyse AHMED 10 data.
- $^{17}{\rm XIAO}$ 15 search for WIMP scatter on Xe with PandaX-I; limits placed in $\sigma^{SI}(\chi N)$ vs. m($\chi)$ plane for m($\chi)\sim$ 5–100 GeV.
- $\mathrm{m}(\chi)$ plant for $\mathrm{m}(\chi) \sim 3^{-100}$ GeV. 18 AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of χ^0 trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
- 19 AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between June 2010 and May 2011.
- ²⁰ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between Jan. 2007 and Dec. 2008. $^{21}\,\mathrm{AGNESE}$ 13 use data taken between Oct. 2006 and July 2007.
- 22 BOLIEV 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for an older analysis of the same data.
- 23 Li 13B search for WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi$ N) vs. m(χ) plane for m($\chi)$ \sim 4–100 GeV.
- $^{24}ABBASI$ 12 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.
- ²⁵ Reanalysis of ANGLOHER 09 data with all three nuclides. See also BROWN 12.
- 26 See also APRILE 14A. 27 See their Fig. 6 for a limit on inelastically scattering X^0 for $m_{X^0}=$ 70 GeV.
- ²⁸AHMED 11 search for X^0 inelastic scattering. See their Fig. 8–10 for limits.
- ²⁹ AH MED 11 search for X⁰ inelastic scattering. See then Fig. 0-10 for minute.
 ²⁹ AH MED 11 A combine CDMS and EDELWEISS data.
 ³⁰ AJELLO 11 search for e[±] flux from X⁰ annihilations in the Sun. Models in which X⁰ annihilates into an intermediate long-lived weakly interacting particles or X⁰ scatters inelastically are constrained. See their Fig. 6-8 for limits.
 ³¹ ADELT 4 ADELT 4 ADELT 4 ADELT
- ³¹ APRILE 11 reanalyze APRILE 10 data.
- 32 APRILE 11A search for X^0 inelastic scattering. See their Fig. 2 and 3 for limits. See also APRILE 14A. ³³ Supersedes ARMENGAUD 10. A limit on inelastic cross section is also given.
- ³⁴HORN 11 perform detector calibration by neutrons. Earlier results are only marginally
- affected $^{35}\,\text{AKIMOV}$ 10 give cross section limits for inelastically scattering dark matter. See their
- Fig. 4.
- ³⁶ Superseded by AHMED 10.

I

37 ANGLE 09 search for X⁰ inelastic scattering. See their Fig. 4 for limits.
 38 GIULIANI 05 analyzes the spin-independent X⁰-nucleon cross section limits with both isoscalar and isovector couplings. See their Fig. 3 and 4 for limits on the couplings.

2076 Searches Particle Listings WIMP and Dark Matter Searches

For $m_{\chi^0} = 1$ TeV

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment. COMMENT

VALUE	[po]	CL 70		DOCUMENTID		TECN	COMMENT
• • •	We do not use the	following	; d	ata for averages	, fits,	limits, e	tc. • • •
<3	$\times 10^{-6}$	90	1	YAGUNA	19		Ar; I-spin viol DM
<3.8	$\times 10^{-8}$	90	2	AGNES	18A	D S5 0	Ar
<8.24	$\times 10^{-10}$	90	3	APRILE	18	XE1T	Xe
<2	$\times 10^{-9}$	90	4	AKERIB	17	LUX	Xe
< 0.3		90	5	CHEN	17e	PNDX	$\chi N \rightarrow \chi^* \rightarrow \chi \gamma$
<1.2	$\times 10^{-9}$	90	6	CUI	17A	PNDX	SIWIMPs on Xe
<8.6	$\times 10^{-8}$	90		AGNES	16	D S5 0	Ar
<2	$\times 10^{-7}$	90		AGNES	15	D S5 0	Ar
<2	$\times 10^{-7}$	90	7	AGNESE	15в	CDM2	Ge
<1	$\times 10^{-8}$	90		AKERIB	14	LUX	Xe
<2.2	$\times 10^{-6}$	90	8	AVRORIN	14	BAIK	H, solar ν (W^+ W^-)
<5.5	$\times 10^{-5}$	90	8	AVRORIN	14	BAIK	Η, solar ν (bb)
<6.8	$\times 10^{-7}$	90	8	AVRORIN	14	BAIK	H, solar ν $(\tau^+ \tau^-)$
< 3.46	$\times 10^{-7}$	90	9	AARTSEN	13	ICCB	H, solar ν (W^+ W^-)
$<\!7.75$	$\times 10^{-6}$	90	9	AARTSEN	13	ICCB	Η, solar ν (bb)
<6.9	$\times 10^{-7}$	90	10	ADRIAN-MAR.	.13	ANTR	H, solar ν (W^+ W^-)
< 1.5	$\times 10^{-5}$	90	10	ADRIAN-MAR.	.13	ANTR	Η, solar ν (bb)
<1.8	$\times 10^{-7}$	90	10	ADRIAN-MAR.	.13	ANTR	H, solar $ u$ $(au^+ au^-)$
<4.3	$\times 10^{-6}$	90	11	BOLIEV	13	BAKS	H, solar ν (W^+ W^-)
<3.4	$\times 10^{-5}$	90	11	BOLIEV	13	BAKS	H, solar ν (bb)
<1.2	$\times 10^{-6}$	90	11	BOLIEV	13	BAKS	H, solar $ u$ $(au^+ au^-)$
<2.12	$\times 10^{-7}$	90	12	ABBASI	12	ICCB	H, solar ν (W ⁺ W ⁻)
<6.56	× 10 ⁻⁶	90	12	ABBASI	12	ICCB	H, solar ν (bb)
<4	$\times 10^{-7}$	90	1.2	AKIMOV	12	ZEP3	Xe
< 1.1	$\times 10^{-5}$	90	13	ANGLOHER	12	CRES	CaWO ₄
<2	$\times 10^{-8}$	90	14	APRILE	12	X100	Xe
<2	$\times 10^{-6}$	90		BEHNKE	12	COUP	CF3I
<4	$\times 10^{-6}$			FELIZARDO	12	SMPL	C ₂ CIF ₅
< 1.5	$\times 10^{-6}$	90	1 6	KIM	12	KIMS	Csl
	7		10	AHMED	11	CD M2	Ge, inelastic
< 1.5	× 10 ⁻⁷	90	17	AHMED	11A	RVUE	Ge
<2	× 10 ⁻⁷	90	1 / 1 /	APRILE	11	X100	Xe
<8	$\times 10^{-5}$	90	19	APRILE	11B	X100	Xe
<2	× 10 '	90	19	ARMENGAUD	11	EDE2	Ge
.0	10-7		.,	HORN	11	ZEP3	Xe
<2	× 10 ·	90		AHMED	10	CDM2	Ge
<4	× 10 ·	90		APRILE	10	X100	Xe C-
<0	× 10 '	90	20	ARMENGAUD	10	EDE2	Ge C-
< 3.5	× 10 .	90 .		AHMED	09	CD M2	Ge

- ¹ YAGUNA 19 recasts DEAP-3600 single-phase liquid argon results in limit for isospin violating DM; for $f_n/f_p = -0.69$, requires $\sigma^{SI}(\chi \rho) < 3 \times 10^{-6}$ pb for m(χ) = 1 TeV.
- 2 AGNES 18A search for WIMP scatter on 46.4 kg Ar; no signal; require $\sigma^{SI}(\chi$ N) < 3.8×10^{-8} pb for m(χ) = 1 TeV. $^3\,{\sf APRILE}$ 18 search for WIMP scatter on 1.3 t Xe; no signal seen; require $\sigma^{SI}(\chi p)$
- < 8.24 imes 10⁻¹⁰ pb for m(χ) = 1 TeV.
- ⁴AKERIB 17 search for WIMP scatter on Xe using complete LUX data set; limits placed in $\sigma^{SI}(\chi\,{\it N})$ vs. m(χ) plane for m(χ) $\sim~$ 5–1 $\times~$ 10⁵ GeV.
- $T_{\rm eff} = 0.000$ s $T_{\rm eff} = 0.000$ s
- ⁶CUI 17A search for WIMP scatter using 54 ton-day exposure of Xe; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m $\sim 10-1 \times 10^4$ GeV.
- ⁷AGNESE 15B reanalyse AHMED 10 data.
- 8 AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of X^{0} trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
- 9 AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between June 2010 and May 2011.
- ¹⁰ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
- Table 14 BOLLEV 13 search for neutrinos from the sun annihilation of X^0 trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for an older analysis of the same data.
- 12 ABBASI 12 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.
- 13 Reanalysis of ANGLOHER 09 data with all three nuclides. See also BROWN 12.
- 14 See also APRILE 14A.
- 15 AHMED 11 search for X^0 inelastic scattering. See their Fig. 8–10 for limits.
- 16 AHMED 11 search for X inelastic scattering. See th 16 AHMED 11A combine CDMS and EDELWEISS data. 17 APRILE 11 reanalyze APRILE 10 data.
- ¹⁸ Supersedes ARMENGAUD 10. A limit on inelastic cross section is also given. ¹⁹ HORN 11 perform detector calibration by neutrons. Earlier results are only marginally
- $^{\rm affected.}_{\rm Superseded}$ by AHMED 10.

Spin-Dependent Cross Section Limits for Dark Matter Particle (X^0) on Proton

For m_{χ^0} in GeV range

	we provide here limits to $m_{\chi^0} < 5$ GeV							
VAL	UE(pb)	CL %	DOCUMENT ID		TECN	COMMENT		
••	• We do not use	e the followi	ing data for avera	ges, f	its, limit	s, etc. ● ● ●		
<	1×10^{6}	95	¹ ABDELHAME	.19	CRES	GeV-scale WIMPs on Li		
<	3×10^{-4}	90	² AMOLE	19	PICO	C ₃ F ₈		
<	$1.7 imes 10^4$	90	³ APRILE	19c	XE1T	light DM on Xe via Migdal/brem effect		
<	8×10^{6}	90	⁴ ARMENGAUD	19	EDEL	GeV-scale WIMPs on Ge		
<	70	90	⁵ XIA	19A	PNDX	SD WIMP on Xe		
<1	00	90	⁶ AGNESE	18	SCDM	GeV-scale WIMPs on Ge		
<	1	90	AKERIB	17a	LUX	Xe		
<	0.6	90	⁸ FU	17	PNDX	SD WIMP on Xe		
<	0.2	90	⁹ AMOLE	15	PICO	C ₃ F ₈		
<	$1.6 imes 10^{-1}$	90 1	⁰ ARCHAMBAU.	.12	PICA	19 _F		
1 2 3 4 5 6 7 8	¹ ABDELHA MEED 19 search for SD WIMP scatter on ⁷ Li; limits placed on $\sigma^{SD}(\chi p)$ for $m(\chi) \sim 0.8-20$ GeV; quoted limit is for $m(\chi) = 1$ GeV. ² AMOLE 19 search for SD WIMP scatter on C_3F_8 in PICO-60 bubble chamber; no signal: set limit for spin dependent coupling $\sigma^{SD}(\chi p) < 2 \times 10^{-4}$ pb for $m(\chi) = 5$ GeV. ³ APRILE 19C search for light DM on Xe via Migdal/brem effect; no signal, require $\sigma^{SD}(\chi p) < 1.7 \times 10^4$ pb for $m(\chi) = 1$ GeV. ⁴ ARMENGAUD 19 search for GeV scale WIMP scatter on Ge; limits placed in $\sigma^{SD}(\chi p)$ vs. $m(\chi)$ plane for $m(\chi) \sim 0.5-10$ GeV; quoted limit is for $m(\chi) = 5$ GeV. ⁵ XIA 19A search for GeV scale WIMP scatter on Xe in PandaX-I; limits placed in $\sigma^{SD}(\chi p)$ vs. $m(\chi)$ plane for $m(\chi) \sim 5-1 \times 10^5$ GeV; quoted limit is for $m(\chi) = 5$ GeV. ⁶ AGNESE 18 search for GeV scale WIMPs with CDMSIIte; limits placed in $\sigma^{SD}(\chi p)$ vs. $m(\chi)$ plane for $m(\chi) \sim 1.5-20$ GeV; quoted limit is for $m(\chi) = 5$ GeV. ⁷ AKERIB 17A search for SD WIMP scatter on Xe using 129.5 kg yr exposure; limits placed in $\sigma^{SD}(\chi p)$ vs. $m(\chi)$ plane for $m(\chi) \sim 6-1 \times 10^5$ GeV.							
9	$m(\chi) \sim 4-1 \times 1$ AMOLE 15 second	u∽ GeV.;qu h for WIM	uoted limit is for i Piscatter on C-E	$m(\chi)$	= 5 GeV PICO_21	· limits placed in $\sigma^{SD}(\sim n)$		
	vc m(w) plano fe	ar nor vivitivii ar ma(au)	4.1×10^4 CoV:	8 8	d limit in	for $m(x) = F GoV$		
10	vs. $m(\chi)$ plane m	$(\chi) \sim$	4-1 X 10 GeV; (. 19 _E .	$\chi(\chi) = 5$ GeV.		
10	$\sigma^{SD}(\chi p)$ vs. m	⊥∠ searcn (χ) plane fo	for SD VVINIP sc orm \sim 4–500 Ge	atter V; qu	oted lim	it is for $m(\chi) = 5$ GeV.		

For $m_{\chi^0} = 20 \text{ GeV}$

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VALUE (DU)	CL%		DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e followin	g d	ata for averages	, fits,	limits, e	tc. • • •
$<$ 3 $\times 10^5$	95	1	ABDELHAME.	.19	CRES	7 _{Li}
$<$ 2.5 $\times 10^{-5}$	90	2	AMOLE	19	PICO	C ₃ F ₈
$<$ 2.5 $\times 10^{-4}$	90	3	APRILE	19A	XE1T	Xe, SD
$< 1 \times 10^{-3}$	90	4	XIA	19A	PNDX	SD WIMP on Xe
< 30	95	5	AGNESE	18	SCDM	Ge
$< 1 \times 10^{-3}$	90	6	AKERIB	17a	LUX	Xe
$< 1.32 \times 10^{-2}$	90	7	BEHNKE	17	PICA	C ₄ F ₁₀
$< 2 \times 10^{-3}$	90	8	FU	17	PNDX	SD WIMP on Xe
$< 5 \times 10^{-4}$	90	9	AMOLE	16A	PICO	C ₃ F ₈
$< 2 \times 10^{-6}$	90	10	KHACHATRY	.16aj	CMS	8 TeV $\rho \rho \rightarrow Z + \not\!\!\! E_T$;
$< 1.2 \times 10^{-3}$	90		AMOLE	15	PICO	$Z \rightarrow \ell \ell$ C ₃ F ₈
$< 1.43 \times 10^{-3}$	90		CHOI	15	SKAM	H, solar ν (b \overline{b})
$< 1.42 \times 10^{-4}$	90		CHOI	15	SKAM	H, solar $\nu (\tau^+ \tau^-)$
$< 5 \times 10^{-3}$	90		FELIZARDO	14	SMPL	C ₂ CIF ₅
$< 1.29 \times 10^{-2}$	90	11	AARTSEN	13	ICCB	H, solar ν (τ^+ τ^-)
$< 3.17 \times 10^{-2}$	90	12	APRILE	13	X100	Xe
$< 3 \times 10^{-2}$	90	13	ARCHAMBAU.	.12	PICA	$F(C_{4}F_{10})$
$< 6 \times 10^{-2}$	90		BEHNKE	12	COUP	CF ₃
< 20	90		DAW	12	DRFT	$F(CF_{4})$
$< 7 \times 10^{-3}$			FELIZARDO	12	SMPL	
< 0.15	90		KIM	12	KIMS	Csl
$< 1 \times 10^{5}$	90	14	AHLEN	11	DMTP	$F(CF_4)$
< 0.1	90	14	BEHNKE	11	COUP	CF3
$< 1.5 \times 10^{-2}$	90	15	TANAKA	11	SKAM	H, solar ν (b \overline{b})
< 0.2	90		ARCHAMBAU.	.09	PICA	F
< 4	90		LEBEDENKO	09A	ZEP3	Xe
< 0.6	90		ANGLE	08A	XE10	Xe
<100	90		ALNER	07	ZEP2	Xe
< 1	90		LEE	07a	KIMS	Csl
< 20	90	16	AKERIB	06	CDMS	⁷³ Ge, ²⁹ Si
< 2	90		SHIMIZU	06A	CNTR	F (CaF ₂)
< 0.5	90		ALNER	05	NAIA	Nal
< 1.5	90		BARNABE-HE.	.05	PICA	F (C ₄ F ₁₀)
< 1.5	90		GIRARD	05	SMPL	F (C ₂ CIF ₅)
< 35	90		MIUCHI	03	BOLO	LiF
< 30	90		TAKEDA	03	BOLO	NaF

 $^1 \, {\rm ABDELHAMEED}$ 19 uses ${\rm Li}_2 \, {\rm MoO}_4$ target to set limit for spin dependent coupling $\sigma^{SD}(\chi p)$ < 3. imes 10⁵ pb for m(χ) = 20 GeV.

 2 AMOLE 19 search for SD WIMP scatter on C $_{3}F_{8}$ in PICO-60 bubble chamber; no signal: set limit for spin dependent coupling $\sigma^{SD}(\chi \rho) < 2.5 \times 10^{-5}$ pb for m(χ) = 20 GeV.

³APRILE 19A search for SD WIMP scatter on 1 t yr Xe; no signal, limits placed in $\sigma^{SD}(\chi \rho)$ vs. m(χ) plane for m \sim 6–1000 GeV. ⁴XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in $\sigma^{SD}(\chi p)$ vs.

- m(χ) plane for m(χ) $\sim~$ 5–1 $imes 10^{5}~{
 m GeV}.$
- In (χ) plane for in(χ) $\sim 5-1 \times 10^{-5}$ GeV. ⁵ AGNESE 18 give limits for $\sigma^{SD}(p\chi)$ for m(WIMP) between 1.5 and 20 GeV using CDMSilte mode data. ⁶ AKERIB 17A search for SD WIMP scatter on Xe using 129.5 kg yr exposure; limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m(χ) $\sim 6-1 \times 10^{5}$ GeV.
- ⁷ BEHNKE 17 show final Picaso results based on 231.4 kg d exposure at SNOLab for WIMP scatter on C4F₁₀ search via superheated droplet; require $\sigma(SD) < 1.32 \times 10^{-2}$ pb for m(WIMP) = 20 GeV.
- ⁸ FU 17 search for SD WIMP scatter on Xe; limits set in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for ${\rm m}(\chi) \sim ~{\rm 4-1} \times 10^3 {\rm ~GeV}.$

 9 AMOLE 16A require SD WIMP-*p* scattering < 5 \times 10⁻⁴ pb for *m*(WIMP) = 20 GeV; bubbles from C_3F_8 target.

 10 KHACHATRYAN 16AJ require SD WIMP- $p < 2 \times 10^{-6}$ pb for m(WIMP) = 20 GeV

 11 AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between June 2010 and May 2011.

 12 The value has been provided by the authors. APRILE 13 note that the proton limits on Xe are highly sensitive to the theoretical model used. See also APRILE 14A

¹³ARCHAMBAULT 12 search for WIMP scatter on C₄F₁₀; limits set in $\sigma^{SD}(\chi p)$ vs. $m(\chi)$ plane for m ~ 4–500 GeV.

¹⁴Use a direction-sensitive detector.

 15 TANAKA 11 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section. $^{16}\,{\rm See}$ also AKERIB 05.

For $m_{\chi^0} = 100 \text{ GeV}$

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VAL	. <i>UE</i> (pb)	<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
• •	• W	e do no	t use the followin	ng d	lata for average	s, fits	, limits, (etc. • • •
<	4	$\times 10^{-9}$	90	1	AMOLE	19	PICO	C ₂ F ₂
<	4	$\times 10^{-4}$	90	2	APRILE	19A	XE1T	Xe, SD
<	8	$\times 10^{-4}$	90	3	XIA	19A	PNDX	SD WIMP on Xe
<	8	$\times 10^{-4}$	F 90	4	AKERIB	17A	LUX	Xe
<	5	$\times 10^{-9}$	90	5	AMOLE	17	PICO	C ₂ F ₂
<	3.3	$\times 10^{-3}$	2 90	6	APRILE	17A	X100	Xe inelastic
<	2.8	$\times 10^{-1}$	90	7	BATTAT	17	DRFT	CS ₂
<	1.5	$\times 10^{-3}$	3 90	8	FU	17	PNDX	Xe
<	0.553-	-0.019	95	9	AABOUD	16D	ATLS	$pp \rightarrow i + E_T$
<	1	$\times 10^{-9}$	90	10	AABOUD	16F	ATLS	$pp \rightarrow \gamma + E_T$
<	1	$\times 10^{-4}$	90	11	AARTSEN	16c	ICCB	solar $\nu (W^+ W^-)$
<	2	×10-4	90	12	ADRIAN-MAR.	.16	ANTR	solar ν (WW. $b\overline{b}$, $\tau\overline{\tau}$)
<	3	$\times 10^{-3}$	3 90	13	AKERIB	16A	LUX	Xe
<	5	$\times 10^{-4}$	F 90	14	AMOLE	16	PICO	CF ₂
2	1.5	× 10 ⁻¹	3 90		AMOLE	15	PICO	Co Fo
2	3.19	× 10 ⁻¹	3 90		CHO	15	SKAM	H. solar ν ($b\overline{b}$)
2	2.80	× 10 ⁻⁴	90		CHO	15	SKAM	H. solar ν (W^+W^-)
2	1.24	× 10 ⁻⁴	90		CHO	15	SKAM	H. solar ν ($\tau^+ \tau^-$)
2	8	$\times 10^2$	90	15	NAKAMURA	15	NAGE	CF.
Ż	17	× 10 ⁻³	3 90	16	AVRORIN	14	BAIK	H solar ν (W ⁺ W ⁻)
2	4.5	× 10 ⁻¹	2 90	16	AVRORIN	14	BAIK	H solar ν ($h\overline{h}$)
2	7 1	× 10	90	16	AVRORIN	14	BAIK	H solar $\nu (\tau^+ \tau^-)$
2	6	× 10 ⁻¹	3 90		FELIZARDO	14	SMPL	CoCIEr
2	2.68	× 10	4 90	17	AARTSEN	13		H solar $u (W^+ W^-)$
2	1 47	× 10-3	2 90	17	AARTSEN	13	ICCB	H solar ν ($b\overline{h}$)
2	8.5	× 10	90	18	ADRIAN-MAR	13	ANTR	H solar ν (W^+ W^-)
2	5.5	× 10 ⁻¹	2 90	18	ADRIAN-MAR	13	ANTR	H solar ν ($h\overline{h}$)
2	3.4	× 10	90	18	ADRIAN-MAR	13	ANTR	H solar ν ($\tau^+ \tau^-$)
2	1 00	× 10 ⁻¹	2 90	19	APRILE	13	X100	Xe
2	7 1	× 10	90	20	BOLIEV	13	BAKS	H solar ν (W^+W^-)
2	8.4	× 10 ⁻³	3 90	20	BOLIEV	13	BAKS	H solar ν ($h\bar{h}$)
2	3.1	× 10	90	20	BOLIEV	13	BAKS	H solar ν (τ^+ τ^-)
2	7.07	× 10	4 90	21		12	ICCB	H solar ν (W^+ W^-)
2	4.53	× 10-3	2 90	21	ABBASI	12	ICCB	H solar ν ($b\overline{h}$)
Ż	7	× 10 ⁻¹	2 90	22	ARCHAMBAU	12	PICA	$E(C_{1}E_{1}a)$
2	1	× 10 ⁻¹	2 90		BEHNKE	12	COUP	CFal
2	1.8	~ 10	90		DAW	12	DRET	E (CE ₄)
2	9	$\times 10^{-3}$	3		FELIZARDO	12	SMPL	CoCIEr
2	2	× 10 ⁻¹	2 90		KIM	12	KIMS	Csl
2	2	Q 103	90	15	AHLEN	11	DMTP	E (CE.)
2	7	×10-3	2 90		BEHNKE	11	COLLE	CEal
Ż	27	× 10 ⁻⁴	90	23	TANAKA	11	SKAM	H solar ν (W ⁺ W ⁻)
2	4.5	×10 ⁻¹	3 90	23	ΤΔΝΔΚΔ	11	SKAM	H solar ν ($b\overline{b}$)
_	4.5	~ 10		24	FELIZARDO	10	SMPI	Co CIE o
<	6	$\times 10^{3}$	90	15	MIUCHI	10	NAGE	-2 3 CF4
Ż	04		90		ARCHAMBAU	<u>09</u>	PICA	4 F
2	0.8		90		LEBEDENKO	09A	ZEP3	Xe
2	1.0		90		ANGLE	08A	XE10	Xe

Searches Particle Listings WIMP and Dark Matter Searches

	15	90	ALNER	07	ZEP2	Xe
	0.2	90	LEE	07A	KIMS	Csl
	1×10^{4}	90	¹⁵ MIUCHI	07	NAGE	F (CF ₄)
	5	90	²⁵ a kerib	06	CDMS	⁷³ Ge, ²⁹ Si
	2	90	SHIMIZU	06A	CNTR	F (CaF ₂)
	0.3	90	ALNER	05	NAIA	Nal
	2	90	BARNABE-HE.	.05	PICA	F (C ₄ F ₁₀)
1	00	90	BENOIT	05	EDEL	⁷³ Ge
	1.5	90	GIRARD	05	SMPL	$F(C_2CIF_5)$
(0.7		²⁶ GIULIA NI	05A	RVUE	
			²⁷ GIULIA NI	04	RVUE	
			²⁸ GIULIA NI	04A	RVUE	
(35	90	MIUCHI	03	BOLO	LiF
	40	90	TAKEDA	03	BOLO	NaF

 1 A MOLE 19 search for SD WIMP scatter on C $_3F_8$ in PICO-60 bubble chamber; no signal: set limit for spin dependent coupling $\sigma^{SD}(\chi p) < 4 \times 10^{-5}$ pb for m(χ) = 100 GeV.

²APRILE 19A search for SD WIMP scatter on 1 t yr Xe; no signal, limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m \sim 6–1000 GeV.

 3 XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m(χ) $\sim 5-1 \times 10^5$ GeV.

⁴ AKERIB 17A search for SD WIMP scatter on Xe using 129.5 kg yr exposure; limits placed

in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m(χ) $\sim 6-1 \times 10^5$ GeV. ⁵ AMOLE 17 require σ (WIMP-p) SD $< 5 \times 10^{-5}$ pb for m(WIMP) = 100 GeV using PICO-60 1167 kg-days exposure at SNOLab.

 6 APRILE 17A require require $\sigma(WIMP-p)(inelastic)^{SD}$ $< 3.3 \times 10^{-2}$ pb for m(WIMP) $_{=}$ 100 GeV, based on 7640 kg day exposure at LNGS.

 7 BATTAT 17 use directional detection of CS₂ ions to require $\sigma({\rm SD})<2.8\times10^{-1}$ pb for 100 GeV WIMP with a 55 days exposure at the Boulby Underground Science Facility. 8 FU 17 from a 33000 kg d exposure at CJPL, PANDAX II derive for m(DM) = 100 GeV, $\sigma^{SD}(\text{WIMP-}\rho) < 2 \times 10^{-3} \text{ pb.}$

 9 AABOUD 160 use ATLAS 13 TeV 3.2 fb $^{-1}$ of data to search for monojet plus missing E_T ; agree with SM rates; present limits on large extra dimensions, compressed SUSY ectra and wimp pair production.

 $^{10}\mathrm{AABOUD}$ 16F search for monophoton plus missing E_T events at ATLAS with 13 Tev and 3.2 fb $^{-1}$; signal agrees with SM background; place limits on SD WIMP-proton scattering vs. mediator mass and large extra dimension models.

¹¹AARTSEN 16c search for high energy ν s from WIMP annihilation in solar core; limits set on SD WIMP-p scattering (Fig. 8)

 $^{12}\text{ADRIAN-MARTINEZ 16 search for WIMP annihilation into <math display="inline">\nu \text{s}$ from solar core; exclude SD cross section < few 10^{-4} depending on m(WIMP).

The boost section \sim term \sim depending on m(r,r,m) , m(r,r,m) , $m(WIMP)=3\times 10^{-3}$ pb for m(WIMP)=100 GeV.

 14 AMOLE 16 use bubble technique on CF₃I target to exclude SD WIMP-p scattering > 5 imes 10⁻⁴ pb for m(WIMP) = 100 GeV.

15 Use a direction-sensitive detector.

 16 Obe a direction-sensitive detector. 16 16 AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of χ^0 trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.

Transmission for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between June 2010 and May 2011.

¹⁸ ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between Jan. 2007 and Dec. 2008.

 19 The value has been provided by the authors. APRILE 13 note that the proton limits on Xe are highly sensitive to the theoretical model used. See also APRILE 14A.

 $^{20}\text{BOLIEV}$ 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for an older analysis of the same data.

 21 ABBASI 12 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.

22 ARCHA MBAULT 12 search for WIMP scatter on C₄F₁₀; limits set in $\sigma^{SD}(\chi p)$ vs. $m(\chi)$ plane for m \sim 4–500 GeV.

 $x_{1}^{(0)}$ plant for in the 4 order store from the Sun arising from the pair annihilation of x^{0} trapped by the Sun. The amount of x^{0} depends on the x^{0} -proton cross section. x_{2}^{4} See their Fig. 3 for limits on spin-dependent proton couplings for x^{0} mass of 50 GeV.

²⁵ See also AKERIB 05.

²⁶ GIULIANI 05A analyze available data and give combined limits.

 27 GIULIANI 04 reanalyze COLLAR 00 data and give limits for spin-dependent X^0 -proton coupling

²⁸ GIULIANI 04A give limits for spin-dependent X^0 -proton couplings from existing data.

For $m_{\chi^0} = 1$ TeV

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VALUE (pb) CL%		<u>CL%</u>	DOCUMENT ID TECN			COMMENT		
••	• W	/e do not	use the follow	ing data for avera	ges, fi	ts, limits	s, etc. • • •	
<	3	$ imes 10^{-4}$	90	¹ AMOLE	19	PICO	C ₃ F ₈	
<	4	$\times 10^{-3}$	90	² APRILE	19A	XE1T	Xe, SD	
<	5	$\times 10^{-3}$	90	³ XIA	19A	P ND X	SD WIMP on Xe	
				⁴ ALBERT	18C	HAWC	DM annihilation in Sun to long-lived mediator	
<	2.05	5×10^{-5}	90	⁵ AARTSEN	17A	ICCB	ν, sun	
<	7	$\times 10^{-3}$	90	⁶ AKERIB	17A	LUX	Xe	

2078 Searches Particle Listings WIMP and Dark Matter Searches

<	2	$\times 10^{-2}$	90	7 8	FU ADRIAN MAR	17 16p		SD WIMP on Xe
<	1	$\times 10^{-2}$	90		A MOLE	15	PICO	
2	15	× 10 ³	90		NAKAMURA	15	NAGE	CE4
2	2.7	210 - 3	90	9		14	BAIK	H solar $w (W^+ W^-)$
2	6.9	$^{10}_{\times 10}^{-2}$	90	9	AVRORIN	14	BAIK	H solar ν ($b\overline{b}$)
2	8.4	$\times 10^{-4}$	90	9	AVRORIN	14	BAIK	H. solar ν (τ^+ τ^-)
2	4.48	$\times 10^{-4}$	90	10	AARTSEN	13	ICCB	H. solar ν (W ⁺ W ⁻)
2	1.00	$\times 10^{-2}$	90	10	AARTSEN	13	ICCB	H. solar ν (bb)
<	8.9	$\times 10^{-4}$	90	11	ADRIAN-MAR.	.13	ANTR	H, solar $\nu (W^+ W^-)$
<	2.0	$\times 10^{-2}$	90	11	ADRIAN-MAR.	.13	ANTR	H, solar ν ($b\overline{b}$)
<	2.3	$\times 10^{-4}$	90	11	ADRIAN-MAR.	.13	ANTR	H, solar $\nu (\tau^+ \tau^-)$
<	7.57	$\times 10^{-2}$	90	12	APRILE	13	X100	Xe
<	5.4	$\times 10^{-3}$	90	13	BOLIEV	13	BAKS	H, solar ν (W^+ W^-)
<	4.2	$\times 10^{-2}$	90	13	BOLIEV	13	BAKS	H, solar ν ($b\overline{b}$)
<	1.5	$\times 10^{-3}$	90	13	BOLIEV	13	BAKS	H, solar ν (τ^+ τ^-)
<	2.50	$\times 10^{-4}$	90	14	ABBASI	12	ICCB	H, solar $\nu (W^+ W^-)$
<	7.86	$\times 10^{-3}$	90	14	ABBASI	12	ICCB	H, solar ν ($b\overline{b}$)
<	8	$\times 10^{-2}$	90		BEHNKE	12	COUP	CF ₃
<	8		90		DAW	12	DRFT	F (CF ₄)
<	6	$\times 10^{-2}$			FELIZARDO	12	SMPL	C ₂ CIF ₅
<	8	$\times 10^{-2}$	90		KIM	12	KIMS	Csl
<	8	$\times 10^{3}$	90	15	AHLEN	11	DMTP	F (CF ₄)
<	0.4		90		BEHNKE	11	COUP	CF ₃ I
<	2	$\times 10^{-3}$	90	16	TANAKA	11	SKAM	H, solar ν ($b\overline{b}$)
<	2	$\times 10^{-2}$	90	16	TANAKA	11	SKAM	H, solar $ u$ (W $^+$ W $^-$)
<	1	$\times 10^{-3}$	90	17	ABBASI	10	ICCB	KK dark matter
<	2	×10 ⁴	90	15	MIUCHI	10	NAGE	CF ₄
<	8.7	$\times 10^{-4}$	90		ABBASI	09в	ICCB	H, solar ν (W ⁺ W ⁻)
<	2.2	$\times 10^{-2}$	90		ABBASI	09в	ICCB	H, solar ν (b b)
<	3		90		ARCHAMBAU.	.09	PICA	F
<	6		90		LEBEDENKO	09A	ZEP3	Xe
<	9		90		ANGLE	08A	XE10	Xe
<10	00		90		ALNER	07	ZEP2	Xe
<	0.8	1 04	90	15	LEE	07A	KIMS	
< ,	4	× 10.	90	18	MIUCHI	07	NAGE	$F(CF_4)$ 73 c 29 c
< 3	30		90	10	AKERIB	06	CDMS	19 Ge, 29 Si
5.	1.5		90			U5 0E		
< 1	10		90		DAKNABE-HE.	.05	FICA	73 co
< 00	0		90			05		
< 1	0		90			03	BOLO	
~20	50		90			03	BOLO	NaF
< 10	0		90		TAKEDA	05	BOLU	INCI

 1 AMOLE 19 search for SD WIMP scatter on C $_3F_8$ in PICO-60 bubble chamber; no signal: set limit for spin dependent coupling $\sigma^{SD}(\chi p) < 3 \times 10^{-4}$ pb for m(χ) = 1000 GeV.

 $^2\,\text{APRILE}$ 19A search for SD WIMP scatter on 1 t yr Xe; no signal, limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m $\sim\,$ 6–1000 GeV.

 3 XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m(χ) \sim 5–1 \times 10⁵ GeV.

⁴ALBERT 18c search for DM annihilation in Sun to long-lived mediator (LLM) which decays outside Sun, for DM masses above 1 TeV; assuming LLM, limits set on $\sigma^{SD}(\chi p)$. 5 AARTSEN 17A search for neutrinos from solar WIMP annihilation into $au^+ au^-$ in 532

days of live time. ⁶AKERIB 17A search for SD WIMP scatter on Xe using 129.5 kg yr exposure; limits placed

in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m(χ) ~ 6-1 × 10⁵ GeV.

⁷ FU 17 search for SD WIMP scatter on Xe; limits set in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for $m(\chi) \sim 4-1 \times 10^3 \text{ GeV}.$

⁸ADRIAN-MARTINEZ 16B search for secluded DM via WIMP annihilation in solar core into light mediator which later decays to μ or us; limits presented in Figures 3 and 4.

⁹ AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.

 10 AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between June 2010 and May 2011.

¹¹ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between Jan. 2007 and Dec. 2008.

 12 The value has been provided by the authors. APRILE 13 note that the proton limits on Xe are highly sensitive to the theoretical model used. See also APRILE 14A.

 $^{13}\text{BOLEV}$ 13 search for neutrinos from the Sun arising from the pair annihilation of χ^0 trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for an older analysis of the same data.

 14 ABBAS1 2 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section. ¹⁵ Use a direction-sensitive detector.

¹⁶ TANAKA 11 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section

 $^{17}\mathrm{ABBASI}$ 10 search for ν_{μ} from annihilations of Kaluza-Klein photon dark matter in the

Sun. ¹⁸ See also AKERIB 05.

Spin-Dependent Cross Section Limits for Dark Matter Particle (X^0) on Neutron

For $m_{\chi 0}$ in GeV range We provide here limits fo m_{χ^0} < 5 GeV DO CUMENT ID VALUE (Db) CL % TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • $< 1 \times 10^{10}$ ¹ ABDELHAME...19 CRES SD low mass DM on Li 95 $2.3 imes 10^2$ ² APRILE < 90 19c XE1T light DM on Xe via Migdal/brem effect 1×10^{-2} ³ APRILE light DM on Xe via ioniza-90 19D XE1T < tion GeV-scale WIMPs on Ge ⁴ ARMENGAUD 19 EDEL 4 $imes 10^4$ 90 < $\times 10^{-2}$ < < < ⁵ XIA ⁶ AGNESE PNDX SD WIMP on Xe SCDM GeV-scale WIMPs on Ge 8 3 90 90 19A 18 90 ⁷ JIANG CDEX GeV-scale WIMPs on Ge 3 18 8 CDEX WIMPs on Ge < 10YANG 90 18 9 AKERIB 10 FU < 1 < 0 < 20 $imes 10^{-1}$ 17A LUX 90 Xe PNDX SD WIMP on Xe 0.1 90 17 11 ZHAO CDEX GeV-scale WIMPs on Ge 90 16 ¹² AHMED < 15090 11B CDM2 GeV-scale WIMPs on Ge ¹ABDELHAMEED 19 search for GeV-scale WIMP SD scatter on ⁷Li crystal; set limit $\sigma^{SD}(\chi n)$ for m(χ) \sim 0.8–20 GeV; quoted limit for m(χ) = 1 GeV. ²APRILE 19C search for light DM on Xe via Migdal/bremsstrahlung effect; no signal, require $\sigma^{SD}(\chi n) < 230 \text{ pb}$ for $m(\chi) = 1 \text{ GeV}$. ³APRILE 19D search for light DM scatter on Xe via ionization; no signal, limits placed in σ vs. m(DM) \sim 3-6 GeV; quoted limit is for m(DM) = 5 GeV. ⁴ ARMENGAUD 19 search for GeV scale WIMP scatter on Ge; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 0.5–10 GeV; quoted limit is for m(χ) = 5 GeV. ⁵ XIA 19A search for WIMP scatter on Xe in PandaX-1; limits placed in $\sigma^{SD}(\chi n)$ vs. $m(\chi)$ plane for $m(\chi) \sim 5-1 \times 10^5$ GeV; quoted limit is for $m(\chi) = 5$ GeV. for χ_{1} plane for $m(\chi)$ is a 174 to 60 quere of quere for $m(\chi)$ is $M(\chi)$ plane for $m(\chi)$ is $M(\chi)$ plane for $m \sim 1.5$ -20 GeV; quoted limit is for $m(\chi) = 5$ GeV. ⁷ JIANG 18 search for GeV scale WIMP scatter on Ge; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 3–10 GeV; quoted limit is for m(χ) = 5 GeV. ⁸ YANG 18 search for WIMP scatter on Ge; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 2–10 GeV; quoted limit is for m(χ) = 5 GeV. ⁹AKERIB 17A search for SD WIMP scatter on Xe with 129.5 kg yr exposure; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) \sim 5-1 \times 10⁵ GeV; quoted limit is for m(χ) = 5 GeV $^{10}{\rm FU}$ 17 search for SD WIMP scatter on Xe; limits set in $\sigma^{SD}(\chi {\it n})$ vs. m($\chi)$ plane for m(χ) \sim 4-1 \times 10³ GeV.; quoted limit is for m(χ) = 5 GeV. ¹¹ ZHAO 16 search for GeV-scale WIMP scatter on Ge; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) \sim 4-30 GeV; quoted limit is for m(χ) = 5 GeV. ¹²AHMED 11B search for GeV scale WIMP scatter on Ge in CDMS II; limits placed in

 $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m \sim 4–12 GeV. Limit given for m(χ) = 5 GeV.

For $m_{\chi^0} = 20$ GeV

VALUE (pb)	CL %	DOCUMENT ID			COMMENT
• • • We do not use	the follo	wing data for avera	ges, fi	its, limit	s, etc. ● ● ●
$<$ 8 $\times 10^{-6}$	90	¹ APRILE	19A	XE1T	Xe, SD
$< 3 \times 10^{-5}$	90	² XIA	19A	PNDX	SD WIMP on Xe
< 1.5	95	³ AGNESE	18	SCDM	Ge
$< 2.5 \times 10^{-5}$	90	⁴ AKERIB	17a	LUX	Xe
$<$ 7 $\times 10^{-5}$	90	5 FU	17	PNDX	SD WIMP on Xe
< 2	90	° ZHAO	16	CDEX	GeV-scale WIMPs on Ge
< 0.09	90	FELIZARDO	14	SMPL	C ₂ CIF ₅
< 8	90	⁷ UCHIDA	14	XMAS	¹²⁹ Xe, inelastic
$< 1.13 \times 10^{-3}$	90	⁸ APRILE	13	X100	Xe
< 0.02	90	AKIMOV	12	ZEP3	Xe
< 0.06	90	AHMED	09	CDM2	Ge
< 0.04	90	LEBEDENKO	09A	ZEP3	Xe
< 50		⁹ LIN	09	TEXO	Ge
$< 6 \times 10^{-3}$	90	ANGLE	08A	XE10	Xe
< 0.5	90	ALNER	07	ZEP2	Xe
< 25	90	LEE	07A	KIMS	Csl
< 0.3	90	¹⁰ AKERIB	06	CDMS	⁷³ Ge, ²⁹ Si
< 30	90	SHIMIZU	06A	CNTR	F (CaF ₂)
< 60	90	ALNER	05	NAIA	Nal
< 20	90	BARNABE-HE.	.05	PICA	F (C ₄ F ₁₀)
< 10	90	BENOIT	05	EDEL	73 _{Ge}
< 4	90	KLAPDOR-K	05	HDMS	⁷³ Ge (enriched)
<600	90	TAKEDA	03	BOLO	NaF
1.0000 5.10.		D 14/110		v	

¹APRILE 19A search for SD WIMP scatter on 1 t yr Xe; no signal: limits placed in $\sigma^{SD}(\chi \textit{n})$ vs. m(χ) plane for m $\sim\,$ 6–1000 GeV.

 2 XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 5-1 × 10⁵ GeV. ³AGNESE 18 give limits for $\sigma^{SD}(n\chi)$ for m(WIMP) between 1.5 and 20 GeV using

CDMSlite mode data. ⁴ AKERIB 17A search for SD WIMP scatter on Xe with 129.5 kg yr exposure; limits placed

in $\sigma^{SD}(\chi \textit{n})$ vs. m($\chi)$ plane for m($\chi) \sim~$ 5–1 $\times\,10^{5}\,$ GeV. ⁵ FU 17 search for SD WIMP scatter on Xe; limits set in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for

 $m(\chi) \sim 4-1 \times 10^3 \text{ GeV}.$ ⁶ ZHAO 16 search for GeV-scale WIMP scatter on Ge; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ)

There is search for between which scatter on definition place in $b^{-1}(\chi)^{0}$ s. $\pi(\chi)$ plane for $\pi(\chi) \sim 4.30$ GeV. 7 Derived limit from search for inelastic scattering $\chi^{0} + 12^{9} \text{Xe} \rightarrow \chi^{0} + 12^{9} \text{Xe}^{*}(39.58)$

keV).

 $^{8\,\mathrm{KeV}_{j,.}}$ 9 The value has been provided by the authors. See also APRILE 14A. 9 See their Fig. 6(b) for cross section limits for m_{X0} extending down to 2 GeV.

¹⁰ See also AKERIB 05.

For $m_{\chi 0} = 100 \text{ GeV}$

VALUE (pb)	CL% DO CUMENT ID			TECN	COMMENT
• • • We do not use the	following	data for averages	, fits,	limits, e	etc. • • •
$<$ 1.5 $\times 10^{-5}$	90 1	APRILE	19A	XE1T	Xe, SD
$< 4 \times 10^{-3}$	90 2	2 SUZUKI	19	XMAS	¹²⁹ Xe, inelastic
$< 2 \times 10^{-5}$	90 3	³ XIA	19A	PNDX	SD WIMP on Xe
$< 2.5 \times 10^{-5}$	90 4	AKERIB	17A	LUX	Xe
$< 7 \times 10^{-5}$	90 5	FU	17	PNDX	SD WIMP on Xe
< 0.1	90	FELIZARDO	14	SMPL	C ₂ CIF ₅
< 0.05	90 6	, UCHIDA	14	XMAS	¹²⁹ Xe, inelastic
$< 4.68 \times 10^{-4}$	90	APRILE	13	X100	Xe
< 0.01	90	AKIMOV	12	ZEP3	Xe
	8	³ FELIZARDO	10	SMPL	C ₂ CIF ₃
< 0.02	90	AHMED	09	CDM2	Ge
< 0.01	90	LEBEDENKO	09A	ZEP3	Xe
<100	90	LIN	09	TEXO	Ge
< 0.01	90	ANGLE	08A	XE10	Xe
< 0.05	90	BEDNYAKOV	08	RVUE	Ge
< 0.08	90	ALNER	07	ZEP2	Xe
< 6	90	LEE	07a	KIMS	Csl
< 0.07	90 10	AKERIB	06	CDMS	⁷³ Ge, ²⁹ Si
< 30	90	SHIMIZU	06A	CNTR	F (CaF ₂)
< 10	90	ALNER	05	NAIA	Nal
< 30	90	BARNABE-HE.	.05	PICA	$F_{2}(C_4F_{10})$
< 0.7	90	BENOIT	05	EDEL	⁷³ Ge
< 0.2	11	GIULIANI	05 A	RVUE	
< 1.5	90	KLAPDOR-K	05	HDMS	⁷³ Ge (enriched)
	12	GIULIANI	04	RVUE	
	13	GIULIANI	04A	RVUE	
	14	• MIUCHI	03	BOLO	LiF
<800	90	TAKEDA	03	BOLO	NaF

¹APRILE 19A search for SD WIMP scatter on 1 t yr Xe; no signal, limits placed in $\sigma^{SD}(\chi {\it n})$ vs. m(χ) plane for m $\sim\,$ 6–1000 GeV.

- ² SUZUK1 is search in single phase liquid xenon detector for inelastic scattering $X^0 + \frac{129}{\text{Xe}} \times X^0 + \frac{129}{\text{Xe}^*}$ (39.58 keV); no signal: require $\sigma(\chi n)^{SD} < 4 \times 10^{-3}$ pb for m(χ) = 100 GeV.
- 3 XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in $\sigma^{SD}(\chi n)$ vs. m($\chi)$ plane for m($\chi) \sim~5\text{--}1 \times 10^5$ GeV.
- ⁴ AKERIB 17A search for SD WIMP scatter on Xe with 129.5 kg yr exposure; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) \sim 5–1 \times 10⁵ GeV.
- ⁵ FU 17 search for SD WIMP scatter on Xe; limits set in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for $m(\chi) \sim 4-1 \times 10^3 {\rm ~GeV}.$
- ⁶UCHIDA 14 derived limit from search for inelastic scattering X^0 + ¹²⁹Xe \rightarrow X^0 + ¹²⁹Xe(39.58 keV).
- $^7\,\text{The}$ value has been provided by the authors. See also APRILE 14A.
- ⁸ See their Fig. 3 for limits on spin-dependent neutron couplings for X^0 mass of 50 GeV. 9 BEDNYAKOV 08 reanalyze KLAPDOR-KLEINGROTHAUS 05 and BAUDIS 01 data.
- ¹⁰ See also AKERIB 05.
- 11 GIULIANI 05A analyze available data and give combined limits.

¹² GIULIANI 04 reanalyze COLLAR 00 data and give limits for spin-dependent X^0 -neutron coupling.

13 GIULIANI 04A give limits for spin-dependent X⁰-neutron couplings from existing data.
 14 MIUCHI 03 give model-independent limit for spin-dependent X⁰-proton and neutron cross sections. See their Fig. 5.

For $m_{\chi^0} = 1$ TeV

VALUE (pb)	CL%	DOCUMENT ID		TECN	COMMENT
•••We do not use the	following	data for averages	, fits,	limits, e	etc. • • •
$<$ 1.2 $\times 10^{-4}$	90	¹ APRILE	19A	XE1T	Xe, SD
$< 2 \times 10^{-4}$	90	² XIA	19A	PNDX	Xe
$< 2.5 \times 10^{-4}$	90	³ AKERIB	17a	LUX	Xe
$< 4 \times 10^{-4}$	90	⁴ FU	17	PNDX	SD WIMP on Xe
< 0.07	90	FELIZARDO	14	SMPL	C ₂ CIF ₅
< 0.2	90	⁵ UCHIDA	14	XMAS	¹²⁹ Xe, inelastic
$< 3.64 \times 10^{-3}$	90	⁶ APRILE	13	X100	Xe
< 0.08	90	AKIMOV	12	ZEP3	Xe
< 0.2	90	AHMED	09	CDM2	Ge
< 0.1	90	LEBEDENKO	09A	ZEP3	Xe
< 0.1	90	ANGLE	08A	XE10	Xe
< 0.25	90	⁷ BEDNYAKOV	80	RVUE	Ge
< 0.6	90	ALNER	07	ZEP2	Xe
< 30	90	LEE	07A	KIMS	Csl
< 0.5	90	⁸ AKERIB	06	CDMS	⁷³ Ge, ²⁹ Si
< 40	90	ALNER	05	NATA	Nal
<200	90	BARNABE-HE	.05	PICA	F (C ₄ F ₁₀)
< 4	90	BENOIT	05	EDEL	⁷³ Ge
< 10	90	KLAPDOR-K	05	HDMS	⁷³ Ge (enriched)
$< 4 \times 10^{3}$	90	TAKEDA	03	BOLO	NaF

 $^1\,{\sf APRILE}$ 19A search for SD WIMP scatter on 1 t yr Xe; no signal, limits placed in $\sigma^{SD}(\chi \textit{n})$ vs. m($\chi)$ plane for m $\sim~$ 6–1000 GeV.

²XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in $\sigma^{SD}(\chi n)$ vs. m($\chi)$ plane for m($\chi) \sim~$ 5–1 $\times\,10^{5}\,$ GeV.

AKERIB 17A search for SD WIMP scatter on Xe with 129.5 kg yr exposure; limits placed in $\sigma^{SD}(\chi {\it n})$ vs. m($\chi)$ plane for m($\chi) \sim~5\text{--}1\times10^5$ GeV.

⁴ FU 17 search for SD WIMP scatter on Xe; limits set in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for ${
m m}(\chi)\sim~4{
m -1} imes 10^3~{
m GeV}.$

⁵ Derived limit from search for inelastic scattering $X^0 + {}^{129}Xe^* \rightarrow X^0 + {}^{129}Xe^*(39.58)$ keV).

⁶ The value has been provided by the authors. See also APRILE 14A.

⁷BEDNYAKOV 08 reanalyze KLAPDOR-KLEINGROTHAUS 05 and BAUDIS 01 data. ⁸See also AKERIB 05.

Cross-Section Limits for Dark Matter Particles (X⁰) on electron

For $m_{\chi 0}$ in GeV range

xu	,						
Ŵe	provide	here	limits	fo	m_{X^0}	< 5	GeV

VALUE (pb)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
●●●Wedon	ot use the fol	lowing data for ave	erages	, fits, lin	nits, etc. 🔹 🔹 🔹
		¹ AKERIB	20	LUX	mirror DM with Xe
$<\!\!2 \times 10^{6}$	90	² ABRAMOFF	19	SENS	WIMP-e scatter on Si
		³ AGUILAR-AR	.19A	DMIC	MeV scale DM scatter on e
$<\!\!1 imes 10^{-4}$	90	⁴ APRILE	19D	XE1T	light DM on Xe via ioniza- tion
$< 9 \times 10^{-3}$	90	⁵ AGNES	18B	D S5 0	Ar
$<1 \times 10^4$	90	⁶ AGNESE	18B	SCDM	$e \chi$ scatter
$<5 \times 10^{3}$	90	⁷ CRISLER	18	SENS	Si CCD
		⁸ APRILE	17	X100	Xe, annual modulation

 $^1\,\rm AKERIB$ 20 search for mirror DM with LUX 95 d \times 118 kg data for mirror e scatter from Xe; no signal, limits placed in kinetic mixing parameter vs. mirror e temperature $T \sim 0.1-0.9$ keV plane.

- ²ABRAMOFF 19 search for MeV-scale WIMP scatter from Si skipper-CCD; limits placed $\sigma(\chi e)$ for m($\chi) \sim 0.5-100$ MeV depending on DM form factors. Limit given for m(DM) = 1 MeV.
- ³AGUILAR-AREVALO 19A search for MeV scale DM scatter from e in Si CCDs at SNO-LAB; no signal, limits placed in $\sigma(e)$ vs. m(DM) plane for m(DM) \sim 0.6–100 MeV.
- ⁴APRILE 19D search for light DM scatter on Xe via ionization; no signal, limits placed in σ on nucleus vs. m(DM) plane for m(DM) ~ 0.02-10 GeV; quoted limit is for m(DM) 0.2 GeV
- = 0.2 GeV. ⁵ AGNES 18B search for MeV scale WIMP scatter from e in Ar; no signal, limits set in σ_e vs. m(χ) plane for m \sim 20-1000 MeV and two choices of form factor F(DM); quoted limit for m(χ) = 100 MeV and F = 1.

 6 AGNESE 188 search for e_χ scatter in SuperCDMS; limits placed in $\sigma(e_\chi)$ vs. $m(\chi)$ plane for m $\sim~0.3{-}1\times10^4$ MeV for two assumed form factors and also in m(dark photon) vs. kinetic mixing plane. Limit given for $m(\chi) = 1$ GeV and F=1.

⁷ CRISLER 18 search for $\chi e \rightarrow \chi e$ scatter in Si CCD; place limits on MeV DM in σ_e vs. m(χ) plane for m \sim 0.5–1000 MeV for different form factors; quoted limit is for F(DM) 1 and $m(\chi) = 10$ MeV.

⁸ APRILE 17 search for WIMP-e annual modulation signal for recoil energy in the 2.0-5.8 keV interval using 4 years data with Xe. No significant effect seen.

Cross-Section Limits for Dark Matter Particles (X^0) on Nuclei -

For $m_{\chi 0}$ in GeV range We provide here limits fo m_{χ^0} < 5 GeV

For $m_{\sim 0} = 20 \text{ GeV}$

VALUE (nb)	CL%	DOCUMENT ID TECN COMMENT
•••We do not use t	he followi	ng data for averages, fits, limits, etc. 🔹 🔹
< 0.03	90	¹ UCHIDA 14 XMAS ¹²⁹ Xe, inelastic
< 0.08	90	² ANGLOHER 02 CRES AI
		³ BENOIT 00 EDEL Ge
< 0.04	95	⁴ KLIMENKO 98 CNTR ⁷³ Ge, inel.
< 0.8		ALESSAND 96 CNTR O
< 6		ALESSAND 96 CNTR Te
< 0.02	90	⁵ BELLI 96 CNTR ¹²⁹ Xe, inel.
		⁶ BELLI 96c CNTR ¹²⁹ Xe
$< 4 \times 10^{-3}$	90	⁷ BERNABEI 96 CNTR Na
< 0.3	90	⁷ BERNABEI 96 CNTR I
< 0.2	95	⁸ SARSA 96 CNTR Na
< 0.015	90	⁹ SMITH 96 CNTR Na
< 0.05	95	¹⁰ GARCIA 95 CNTR Natural Ge
< 0.1	95	QUENBY 95 CNTR Na
<90	90	¹¹ SNOWDEN 95 MICA ¹⁶ O
$<$ 4 $\times 10^3$	90	¹¹ SNOWDEN 95 MICA ³⁹ K
< 0.7	90	BACCI 92 CNTR Na
< 0.12	90	¹² REUSSER 91 CNTR Natural Ge
< 0.06	95	CALDWELL 88 CNTR Natural Ge
1		······································

 1 UCHIDA 14 limit is for inelastic scattering X 0 + $^{129}{\rm Xe}^*$ \rightarrow X 0 + $^{129}{\rm Xe}^*$ (39.58

²ANGLOHER 02 limit is for spin-dependent WIMP-Aluminum cross section.

 $^3\,\text{BENOIT}$ 00 find four event categories in Ge detectors and suggest that low-energy

surface nuclear recoils can explain anomalous events reported by UKDMC and Saclay Nal experiments.

⁴ KLIMENKO 98 limit is for inelastic scattering X^0 ⁷³Ge $\rightarrow X^0$ ⁷³Ge^{*} (13.26 keV). ⁵ BELLI 96 limit for inelastic scattering X^0 ¹²⁹Xe $\rightarrow X^0$ ¹²⁹Xe^{*}(39.58 keV).

⁶BELLI 96C use background subtraction and obtain $\sigma < 150$ pb (< 1.5 fb) (90% CL) for spin-dependent (independent) X^0 -proton cross section. The confidence level is from R. Bernabei, private communication, May 20, 1999.

⁷BERNABEI 96 use pulse shape discrimination to enhance the possible signal. The limit here is from R. Bernabei, private communication, September 19, 1997.

Berte is Holl K. Berlader, private communication (WIMP signal. See SARSA 97 for details of the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.

2080 Searches Particle Listings WIMP and Dark Matter Searches

 $^9\,{
m SMITH}$ 96 use pulse shape discrimination to enhance the possible signal. A dark matter density of 0.4 GeV cm⁻³ is assumed.

 $^{10}\,{
m GARCIA}$ 95 limit is from the event rate. A weaker limit is obtained from searches for diurnal and annual modulation.

alternal and annual modulation. ¹¹ SNOWDEN-IFFT 95 look for recoil tracks in an ancient mica crystal. Similar limits are also given for ²⁷Al and ²⁸Si. See COLLAR 96 and SNOWDEN-IFFT 96 for discussion on potential backgrounds.

 12 REUSSER 91 limit here is changed from published (0.04) after reanalysis by authors. J.L. Vuilleumier, private communication, March 29, 1996.

For $m_{\chi 0} = 100 \text{ GeV}$

VALUE (nb)	CL%	CL% DOCUMENT ID		COMMENT	
••• We do not use th	e followin	ng data for ave	rages, fits, limits	, etc. • • •	
$<$ 3 $\times 10^{-3}$	90	¹ uchida	14 XMA	s ¹²⁹ Xe, inelastic	
< 0.3	90	² ANGLOHE	R 02 CRES	Al	
		³ BELLI	02 RVUE		
		⁴ BERNABE	I 02c DAM	A	
		⁵ GREEN	02 RVUE		
		⁶ ULLIO	01 RVU		
		⁷ BENOIT	00 EDEL	Ge	
$< 4 \times 10^{-3}$	90	⁸ BERNABE	I 00d	¹²⁹ Xe, inel.	
		⁹ AMBROSI	O 99 MCR	0	
		¹⁰ BRHLIK	99 RVUE		
$< 8 \times 10^{-3}$	95	¹¹ KLIMENK	O 98 CNTF	R ⁷³ Ge, inel.	
< 0.08	95	¹² KLIMENK	O 98 CNTF	R ⁷³ Ge, inel.	
< 4		ALESSAN	D 96 CNTF	R 0	
<25		ALESSAN	D 96 CNTF	R Te	
$< 6 \times 10^{-3}$	90	¹³ BELLI	96 CNTE	₹ ¹²⁹ Xe, inel.	
		¹⁴ BELLI	96c CNTF	¹²⁹ Xe	
$< 1 \times 10^{-3}$	90	¹⁵ BERNABE	1 96 CNTF	R Na	
< 0.3	90	¹⁵ BERNABE	1 96 CNTF	R	
< 0.7	95	¹⁶ SARSA	96 CNTE	R Na	
< 0.03	90	¹⁷ SMITH	96 CNTE	R Na	
< 0.8	90	¹⁷ SMITH	96 CNTE	R	
< 0.35	95	¹⁸ GARCIA	95 CNTF	R Natural Ge	
< 0.6	95	QUENBY	95 CNTE	R Na	
< 3	95	QUENBY	95 CNT	₹	
$< 1.5 \times 10^{2}$	90	¹⁹ SNOWDEI	N 95 MICA	¹⁶ O	
$< 4 \times 10^{2}$	90	¹⁹ SNOWDEI	N 95 MICA	³⁹ K	
< 0.08	90	²⁰ BECK	94 CNTE	₹ ⁷⁶ Ge	
< 2.5	90	BACCI	92 CNTE	R Na	
< 3	90	BACCI	92 CNTE	R	
< 0.9	90	²¹ REUSSER	91 CNTF	R Natural Ge	
< 0.7	95	CALDWEL	L 88 CNTF	R Natural Ge	
1			v0 129v v	v0 129v */a	

¹UCHIDA 14 limit is for inelastic scattering $X^0 + {}^{129}Xe^* \rightarrow X^0 + {}^{129}Xe^*$ (39.58) keV).

 2 ANGLOHER 02 limit is for spin-dependent WIMP-Aluminum cross section.

³BELLI 02 discuss dependence of the extracted WIMP cross section on the assumptions of the galactic halo structure.

 $^{\rm 4}$ BERNABEI 02c analyze the DAMA data in the scenario in which X^0 scatters into a slightly heavier state as discussed by SMITH 01.

5 GREEN 02 discusses dependence of extracted WIMP cross section limits on the assumptions of the galactic halo structure.

6 ULLIO 01 disfavor the possibility that the BERNABEI 99 signal is due to spin-dependent WIMP coupling.

⁷BENOIT 00 find four event categories in Ge detectors and suggest that low-energy surface nuclear recoils can explain anomalous events reported by UKDMC and Saclay Nal experiments.

⁸BERNABEI 00D limit is for inelastic scattering $X^{0129}Xe \rightarrow X^{0129}Xe$ (39.58 keV).

⁹AMBROSIO 99 search for upgoing muon events induced by neutrinos originating from WIMP annihilations in the Sun and Earth.

WIMP annihilations in the Sun and Earch. ¹⁰BRHLIK 99 discuss the effect of astrophysical uncertainties on the WIMP interpretation of the BERNABEI 99 signal.

¹¹ KLIMENKO 98 limit is for inelastic scattering X^0 ⁷³ Ge $\rightarrow X^0$ ⁷³ Ge^{*} (13.26 keV).

¹² KLIMENKO 98 limit is for inelastic scattering $X^{0.73}$ Ge $\rightarrow X^{0.73}$ Ge^{*} (66.73 keV). ¹³ BELLI 96 limit for inelastic scattering $X^{0.129}$ Xe $\rightarrow X^{0.129}$ Xe^{*}(39.58 keV).

 $^{14}\,$ BELLI 96C use background subtraction and obtain σ < 0.35 pb (< 0.15 fb) (90% CL) for spin-dependent (independent) X^0 -proton cross section. The confidence level is from R. Bernabei, private communication, May 20, 1999.

 $^{15}\,{\rm BERNABEI}$ 96 use pulse shape discrimination to enhance the possible signal. The limit

¹⁶ SARSA 96 search for annual modulation of WIMP signal. See SARSA 97 for details of the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.

 17 SMITH 96 use pulse shape discrimination to enhance the possible signal. A dark matter density of 0.4 GeV cm $^{-3}$ is assumed.

density of 0.4 dev cm⁻² is assumed.
 ¹⁸ GARCIA 95 limit is from the event rate. A weaker limit is obtained from searches for diurnal and annual modulation.
 ¹⁹ SNOWDEN-IFFT 95 look for recoil tracks in an ancient mica crystal. Similar limits are also given for ²⁷Al and ²⁸Si. See COLLAR 96 and SNOWDEN-IFFT 96 for discussion on potential backgrounds.
 ²⁰ COLV Colvert and ²⁰ Colvert an

²⁰BECK 94 uses enriched ⁷⁶Ge (86% purity).

 $^{21}\,\text{REUSSER}$ 91 limit here is changed from published (0.3) after reanalysis by authors. J.L. Vuilleumier, private communication, March 29, 1996.

For $m_{\chi^0} = 1$ TeV						
VALUE (nb)	CL%		DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	g d	ata for averages	, fits,	limits, e	etc. • • •
< 0.03	90	1	UCHIDA	14	XMAS	¹²⁹ Xe, inelastic
< 3	90	2	ANGLOHER	02	CRES	Al
		3	BENOIT	00	EDEL	Ge
		4	BERNABEI	99D	CNTR	SIMP
		5	DERBIN	99	CNTR	SIMP
< 0.06	95	6	KLIMENKO	98	CNTR	⁷³ Ge, inel.
< 0.4	95	7	KLIMENKO	98	CNTR	⁷³ Ge, inel.
< 40			ALESSAND	96	CNTR	0
<700			ALESSAND	96	CNTR	Te
< 0.05	90	8	BELLI	96	CNTR	¹²⁹ Xe, inel.
< 1.5	90	9	BELLI	96	CNTR	¹²⁹ Xe, inel.
		10	BELLI	96C	CNTR	¹²⁹ Xe
< 0.01	90	11	BERNABEI	96	CNTR	Na
< 9	90	11	BERNABEI	96	CNTR	1
< 7	95	12	SARSA	96	CNTR	Na
< 0.3	90	13	SMITH	96	CNTR	Na
< 6	90	13	SMITH	96	CNTR	1
< 6	95	14	GARCIA	95	CNTR	Natural Ge
< 8	95		QUENBY	95	CNTR	Na
< 50	95		QUENBY	95	CNTR	1
<700	90	15	SNOWDEN	95	MICA	¹⁶ 0
$< 1 \times 10^{3}$	90	15	SNOWDEN	95	MICA	³⁹ K
< 0.8	90	16	BECK	94	CNTR	⁷⁶ Ge
< 30	90		BACCI	92	CNTR	Na
< 30	90		BACCI	92	CNTR	1
< 15	90	17	REUSSER	91	CNTR	Natural Ge
< 6	95		CALDWELL	88	CNTR	Natural Ge

¹UCHIDA 14 limit is for inelastic scattering X^0 + ¹²⁹Xe^{*} \rightarrow X^0 + ¹²⁹Xe^{*} (39.58 keV).

²ANGLOHER 02 limit is for spin-dependent WIMP-Aluminum cross section

SBENOIT 00 find four event categories in Ge detectors and suggest that low-energy surface nuclear recoils can explain anomalous events reported by UKDMC and Saclay Nal experiments

⁴ BERNABEI 99D search for SIMPs (Strongly Interacting Massive Particles) in the mass range 10^3 - 10^{16} GeV. See their Fig. 3 for cross-section limits.

5 DERBIN 99 search for SIMPs (Strongly Interacting Massive Particles) in the mass range $10^2\text{--}10^{14}$ GeV. See their Fig. 3 for cross-section limits.

⁶ KLIMENKO 98 limit is for inelastic scattering X^{0} ⁷³Ge $\rightarrow X^{0}$ ⁷³Ge^{*} (13.26 keV).

⁷ KLIMENKO 98 limit is for inelastic scattering X⁰ ⁷³Ge \rightarrow X⁰ ⁷³Ge^{*} (66.73 keV). ⁸ BELLI 96 limit for inelastic scattering X⁰ ¹²⁹Xe \rightarrow X⁰ ¹²⁹Xe^{*}(39.58 keV).

⁹BELLI 96 limit for inelastic scattering X^{0} ¹²⁹Xe $\rightarrow X^{0}$ ¹²⁹Xe^{*}(236.14 keV).

¹⁰BELLI 96 use background subtraction and obtain $\sigma < 0.7 \text{ pb}$ (<0.7 fb) (90% CL) for spin-dependent (independent) X⁰-proton cross section. The confidence level is from R. Bernabei, private communication, May 20, 1999.

 11 BERNABEI 96 use pulse shape discrimination to enhance the possible signal. The limit here is from R. Bernabei, private communication, September 19, 1997.

¹² SARSA 96 search for annual modulation of WIMP signal. See SARSA 97 for details of the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.

 13 SMITH 96 use pulse shape discrimination to enhance the possible signal. A dark matter density of 0.4 GeV cm⁻³ is assumed. diama of the second of the sec

diurnai and annual modulation. 15 SNOWDEN-IFFT 95 look for recoil tracks in an ancient mica crystal. Similar limits are also given for ²⁷AI and ²⁸SI. See COLLAR 96 and SNOWDEN-IFFT 96 for discussion on potential backgrounds. ¹⁶BECK 94 uses enriched ⁷⁶Ge (86% purity).

17 REUSSER 91 limit here is changed from published (5) after reanalysis by authors. J.L. Vuilleumier, private communication, March 29, 1996

Miscellaneous Results from Underground Dark Matter Searches

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
••• We do not use the	following	g data for averages	, fits,	limits, e	etc. • • •
		¹ ABRAMOFF	19	SENS	MeV DM e-Si; dark
		² adhikari	19	C100	annual modulation Nal
		³ A MARE	19	ANAL	annual modulation Nal
$< 6.4 \times 10^{-10}$	90	⁴ APRILE	19	XE1T	π (Xe)
		⁵ BRINGMANN	19		cosmic ray DM
		⁶ BRUNE	19		Majoran DM
		⁷ CH OI	19	THEO	290 TeV lceCube ν
		⁸ HA	19	C100	inelastic boosted dark γ
		⁹ KLOPF	19		$n \rightarrow \chi e^+ e^-$
		¹⁰ AARTSEN	18D	ICCB	relic WIMP $\chi \rightarrow \nu X$
		¹¹ ABE	18F	XMAS	$A'e \rightarrow A'e$
		¹² AGNES	18B	D S50	Ar
		¹³ AGNESE	18B	SCDM	MeV DM e-Si; dark photon Si absorption
		¹⁴ AKERIB	18A	LUX	Xe
		¹⁵ ARMENGAUD	18	EDE3	Ge

 $imes 10^{-26}$

imes 10 $^{-32}$

 $imes 10^{-28}$

 $imes 10^{-23}$

 $imes 10^{-22}$

 $imes 10^{-26}$

⁶ LI

⁷ NG

⁸ QUEIROZ

¹⁰ AHNEN

¹¹ ALBERT

 12 chang

¹³ LISA NTI

⁹ ABDALLAH

19D FLAT

19

19

18

18

 $\chi \chi \rightarrow \gamma$

sterile ν decay/annihilation

semi-annihilating DM

HESS $X^0 X^0 \rightarrow \gamma X$; galactic halo

MGIC $X^0 X^0 \rightarrow \gamma X$; Ursa Major II

18 HAWC $X^0 X^0 \rightarrow \gamma X$; Andromed a 18 $\chi \chi \rightarrow b \overline{b} \rightarrow \gamma$

18 THEO Fermi, γ ; galaxy groups

95

95

95

95

95

 $<\!2$

< 1

<4

<1

< 1

<1

								-
	10		16 KACH	ULIS	18	SKAM	boosted DM on e	
<1	$\times 10^{-12}$	90	18 ADDU	AR-AR	17	DMIC	γ' on Si	<1.2
			¹⁹ APRIL	E.	17D	X100 X100	Xe	<1.3
			²⁰ APRIL	E	17H	X100	keV bosonic DM search	<7
	2		21 APRIL	E	17ĸ	X100	$\chi N \rightarrow \chi^* \rightarrow \chi \gamma$	<1
<4	$\times 10^{-3}$	90	22 A NGL	OHER	16A	CRES	CaWO ₄	
			24 APRIL	E.	15 15a	X100 X100	Event rate modulation	<0
1,	BRAMOFE 19 9	search for I	vleV scale [DM via	DM-e	scatter	ing and dark photon DM	
Ň	ia absorption in	Si; limits se	et in coupli	ng vs. n	$n(\chi)$ pl	ane and	on dark photon in m(A)	<3
2	s. kinetic mixing	parameter	plane.	tion cir	nal fra		Discottor on Nol with 1.7	<1.9
ý	r exposure; resul	t consistent	with both	DAMA	/LIBR/	A and nu	Ill hypothesis.	<3
3 /	MARE 19 is AN	AIS-112 sea	rch for WI	MP scat	ter ann	ual mod	ulation on Nal; 157.55 kg	<1
)	r exposure; resul t 3σ to DΔ MΔ /I	t compatib	le with null It in 5 vear	hypoth	esis; co	onfirm g	oal of reaching sensitivity	<2
4	PRILE 19 search	for WIMF	-pion scatt	ering in	Xe; no	signal:	require $\sigma(\chi\pi) < 6.4 \times$	<1
_1	0^{-10} pb for m(;	χ) = 30 Ge	V.	-		-		<1
2 6	BRINGMANN 19	derive the	pretically lin	nitson wintera	GeV ar	nd sub-C	GeV mass dark matter, in mic rays: place limits on	<1
ć	r^{SI} and σ^{SD} <	10 ⁵ pb.	generated i	y intera	ction v	with COS	nne rays, prace mints on	
6 E	BRUNE 19 exami	ine possibil	ty of Majo	ron dark	matte	r; limits	placed on Majoron mass	Ī
7	s. coupling from	SN1987a a	and ν -less d	ouble b	eta dec	ay.	$(m(DM) < 5.1 \times 10^{-23}$	-
. (m ² /GeV based o	n 290 TeV	IceCube ne	on nnus Putrino e	event	$\sigma(\nu\chi)$	/III(DIM) < 5.1 × 10	
8	A 19 search for i	nelastic boo	sted MeV	scale dar	k phot	on using	COSINE-100 data; limits	i
٩	laced in m vs. ep	psilon plane	for various	mediat	ors.			
۲ f	(LOPF 19 search raction vs m(#+	n for DM ' ∙a≕) plane	via $n \rightarrow j$	χe⊤e [−]	; no si	gnal: li	mits placed in branching	<2.9
10	ARTSEN 18D se	earch for lo	ng-lived DI	VI partic	les dec	aving χ	$\rightarrow \nu X$; no excess seen;	<1.7
, f	or DM masses at	ove 10 Te	/, excluding	, lifetim	es shor	ter than	10 ²⁸ s.	<4.5
11 /	BE 18F search fo	or keV mass	ALPs and	hidden µ	photons	s (HP) s	catter on electrons; limits	
12	GNES 18B search	h for MeV-s	scale DM sc	atter on	electro	ons in Ar	; no signal; require $\sigma(\chi e)$	i
	$< 9 \times 10^{-3}$ pb f	or DM form	n factor F(I	DM) =	1 and ∙	< 300 p	b for $F(DM)$ proportional	
13.	o $1/q^2$ for m(χ)	= 100 Me	V.					
207	bsorption in Si; l	imits set or	v scale Div 1 MeV DM	in coup	vi-e sca ling vs.	$m(\chi)$	and dark photon Divivia blane and on dark photon	
i	m(A') vs kinet	tic mixing p	olane.					<1
14	KERIB 18A searc	ch for annua	al and diurn	al modu	lation o	of DM so	cattering rate on electrons	<3
15	RMENGAUD 18	search for	ALP from	the Sun	and ga	ilactic b	osonic DM, interacting in	<1
16.	ie; no signal; lim	its set for C	.8–500 keV	′DM pa	rticles.			<1
-~ I S	ACHULIS 18 se pheric neutrino b	arch for ar	in Super-K	elastica : limits r	lly scat placed f	tered el for sim p	ectrons above the atmo- le annihilation or decav in	م 1
17 ^t	he Sun or galacti	ic center pr	oducing "b	oosted"	dark n	natter.	,	1 4
114	GUILAR-AREVA	LO 17 sea	rch for hido -12 for m -	en phot ۱۸م 1	on DN	A scatte	r on Si target CCD; limit	2 4
18	PRILE 17 search	for WIMP	-e annual n	nodulati	on sign	al for re	coil energy in the 2.0–5.8	F 3 c
10	eV interval using	4 years da	ta with Xe.	No sig	nificant	effect s	seen.	
t	INTELLATION INTELLECTION INTELL	225 live da	ŧvviMP-nu vsinthe.6.	cleon di 6-240 k	fferent eV rec	interact oil energ	ion operators. No devia-	4 E
20	PRILE 17H searc	h for keV I	osonic DN	I via $e\chi$	$\rightarrow e$,	looking	for electronic recoils with	a
2	24.6 live days of	data and 3	4 kg of LXe	e. Limits	set on	χ <i>ее</i> сс	oupling for $m(\chi) = 8-125$	ر م
21	PRILE 17K sear	ch for mag	netic inelas	tic DM	via χ	$N \rightarrow \chi$	$\chi^* ightarrow \chi \gamma$. Limits set in	6
] T) M magnetic mo) A MA /I IBRA be	ment vs. m st fit value	ass splitting s	g plane 1	for two	DM ma	sses corresponding to the	c
22	NGLOHER 16A	require q ²	dependent	scatterii	ng < 4	8×10^{-1}	³ pb for asymmetric DM	7 _ľ
1	n(WIMP) = 3	GeV on Ca	WO ₄ targe	t. It us	ies a lo	ocal dar	k matter density of 0.38	s 8 c
23	GeV/cm ³ .	for pariodi	c variation (ofoloctr	onic roc	oil avan	t rate in the data between	v
Í	eb. 2011 and N	far. 2012.	No signific	ant mo	dulatio	n is fou	nd for periods up to 500	م 9
24	ays.	ch for VO	cottoring o	ff alactr	C.	no thoir	Fig. 4 for limits on cross	10 2
s	ection through a:	xial-vector	coupling for	m _{Y0} b	etween	0.6 Ge	/ and 1 TeV. For $m_{\chi 0} =$	'n
2	GeV, $\sigma <$ 60 pt	o (90%CL)	is obtained				<u> </u>	11 _A
		— xº	Annihilati	on Cro	ss Sec	tion –		12 c
	Limits are or	ισν for Y	D nair annii	- ilation	at three	shold		- (
VALU	$E(\text{cm}^3\text{s}^{-1})$ C	L% D0	CUMENT ID	mation	TECN	COMME	NT	13 L
• •	• We do not use	the followi	ng data for	average	es, fits,	limits, e	etc. • • •	3 14 M
		¹ A E	EYSEKAR.	A 19 I	HAWC	DM an	nihilation to γ s within	
~0.	a × 10−22 o	5 2	RERT	100		gala	ctic substructure	s ۱۳
<0.	×10 ⁻²⁶ qi	5 [–] АЦ 5 ³ СН	EUNG	198	AVVC	$\gamma \gamma \rightarrow$	e^+e^- and $b\overline{b}$	15 A a
<7	× 10 ⁻²⁷ 9	5 ⁴ DI-	MAURO	19	FLAT	Fermi-l	LAT M31 and M33	16 Å
		5 JO	HNSON	19	FLAT	P-wave	DM: Fermi-LAT	

				10	FLAT	Fernii-LAT CRE uata
<1.2	$\times 10^{-23}$	95	¹⁵ AARTSEN	17c	ICCB	$\chi \chi \rightarrow$ neutrinos
<1	$\times 10^{-23}$	90	¹⁶ ALBERT	17A	ANTR	ν, DM annihilation
<1.32	$\times 10^{-25}$	95	¹⁷ ARCHAMBAU.	.17	VRTS	γ dwarf galaxies
<7	$\times 10^{-21}$	90	¹⁸ AVRORIN	17	BAIK	cosmic ν
<1	$\times 10^{-28}$		¹⁹ BOUDAUD	17		MeV DM to e^+e^-
			²⁰ AARTSEN	16D	ICCB	ν , galactic center
<6	$\times 10^{-26}$	95	²¹ ABDALLAH	16	HESS	Central Galactic Halo
<1	$\times 10^{-27}$	95	²² ABDALLAH	16A	HESS	WIMP + WIMP $\rightarrow \gamma\gamma$: galactic
~-			00			center
<3	× 10 ⁻²⁰	95	²³ AHNEN	16	MGFL	Satellite galaxy, m(WIMP)=100 GeV
<1.9	$\times 10^{-21}$	90	24 AVRORIN	16	BAIK	ν s from galactic center
<3	$\times 10^{-26}$	95	²⁵ сарито	16	FLAT	small Magellanic cloud
<1	$\times 10^{-25}$	95	²⁶ FOR NA SA	16	FLAT	Fermi-LAT γ -ray anisotropy
<5	$\times 10^{-27}$		²⁷ LEITE	16		WIMP, radio
<2	$\times 10^{-26}$	95	²⁸ LI	16	FLAT	dwarf galaxies
< 1	$\times 10^{-25}$	95	²⁹ LI	16A	FLAT	Fermi-LAT; M31
< 1	$\times 10^{-26}$		³⁰ LIA NG	16	FLAT	Fermi-LAT, gamma line
<1	$\times 10^{-25}$	95	³¹ LU	16	FLAT	Fermi-LAT and AMS-02
< 1	$\times 10^{-23}$	95	³² SHIRASAKI	16	FLAT	extra galactic
			³³ AARTSEN	15 C	ICCB	ν , Galactic halo
			³⁴ AARTSEN	15e	ICCB	ν , Galactic center
			³⁵ ABRAMOWSK	115	HESS	Galactic center
			³⁶ ACKERMANN	15	FLAT	monochromatic γ
			³⁷ ACKERMANN	15a	FLAT	isotropic γ background
			³⁸ ACKERMANN	15 B	FLAT	Satellite galaxy
			³⁹ ADRIAN-MAR.	.15	ANTR	ν , Galactic center
<2.90	$\times 10^{-26}$	95	40,41 ACKERMANN	14	FLAT	Satellite galaxy. $m = 10$ GeV
<1.84	$\times 10^{-25}$	95	40,42 ACKERMANN	14	FLAT	Satellite galaxy, $m = 100$ GeV
<1.75	$\times 10^{-24}$	95	40,42 ACKERMANN	14	FLAT	Satellite galaxy. $m = 1$ TeV
<4.52	$\times 10^{-24}$	95	⁴³ ALEKSIC	14	MGIC	Segue 1. $m = 1.35$ TeV
			⁴⁴ AARTSEN	13C	ICCB	Galaxies
			⁴⁵ ABRAMOWSK	13	HESS	Central Galactic Halo
			⁴⁶ ACKERMANN	13A	FLAT	Galaxy
			47 ABRAMOWSK	112	HESS	Fornax Cluster
			⁴⁸ ACKERMANN	12	FLAT	Galaxy
			⁴⁹ ACKERMANN	12	FLAT	Galaxy
			⁵⁰ ALIU	12	VRTS	Segue 1
<1	$\times 10^{-22}$	90	⁵¹ ABBASI	11c	ICCB	Galactic halo, $m=1$ TeV
<3	$\times 10^{-25}$	95	⁵² ABRAMOWSK	111	HESS	Near Galactic center, $m=1$ TeV
< 1	$\times 10^{-26}$	95	⁵³ ACKERMANN	11	FLAT	Satellite galaxy, $m=10$ GeV
<1	$\times 10^{-25}$	95	⁵³ ACKERMANN	11	FLAT	Satellite galaxy. $m=100$ GeV
<1	$\times 10^{-24}$	95	⁵³ ACKERMANN	11	FLAT	Satellite galaxy. $m=1$ TeV
1 ^ D	EVSEKADA	10	search for as from D	M	anihilatio	n in galactic substructures with
- AD		12	- avaivit 101 : 75 11011 - L	IVI d	un maria. IC	m in galdette substructures with

HAWC; no signal, limits placed in J $\langle \sigma \cdot v
angle$ vs. declination plane for m(DM) $\sim~$ 1–108

HeV. ALBERT 19B search for DM signal from M31 galaxy in μ , τ , t, b, W channels using HAWC for m(DM) ~ 1 –100 TeV; no signal, limits placed in $\langle \sigma \cdot v \rangle$ vs. m(DM) plane. CHEUNG 19 derive model-dependent bounds on $\langle \sigma \cdot v
angle$ from EDGES data: $<4 imes 10^{-26}$

 ${
m cm}^3/{
m s}$ for e^+e^- and $b\,\overline{b}$ for ${
m m}(\chi)=100$ GeV (including boost factor).

DI-MAURO 19 place limits on WIMP annihilation via Fermi-LAT observation of M31 and M33 galaxies: $\langle \sigma \cdot v \rangle < 7 \times 10^{-27} \text{ cm}^3/\text{s}$ for $m(\chi) = 20$ GeV from M31.

JOHNSON 19 search for γ -rays, 10–600 GeV energy, from *P*-wave annihilating DM around SgrA* BH using Fermi-LAT; limits set for various models.

- l 19D search for $\chi\chi o ~\gamma$ in Fermi-LAT data; no signal, require $\langle\sigma \, v
 angle ~<~2 imes 10^{-26}$ cm^3/s for $\mathrm{m}(\chi)=100$ GeV.
- NG 19 search for X-ray line from sterile u decay/annihilation using NuStar M-31; no ignal: limits placed in m(u) vs mixing angle and $\langle \sigma{\cdot}v
 angle$ vs m(u).
- QUEIROZ 19 examine $\chi\chi \to \chi SM$ semi-annihilation of DM reaction; limits placed for arious assumed SM particles in $\langle \sigma \cdot v \rangle$ vs. $m(\chi)$ plane.
- BDALLAH 18 search for WIMP WIMP $\rightarrow \gamma X$ in central galactic halo, 10 years of lata; limits placed in $\langle \sigma \cdot v \rangle$ vs. m(WIMP) plane for m(WIMP): 0.3–70 TeV. HNEN 18 search for WIMP WIMP $ightarrow \gamma X$ from Ursa Major II; limits set in $\langle \sigma {\cdot} v
 angle$ vs.
- n(WIMP) plane for $b\,\overline{b},~W^+~W^-,~ au^+ au^-$, and $\mu^+\,\mu^-$ annihilation modes. LBERT 18B search for TeV-scale WIMPs with WIMP WIMP $\rightarrow \gamma X$ in Andromedia
- alaxy using HAWC Observatory; limits set in $\langle \sigma \cdot v \rangle$ vs m(WIMP) plane. CHANG 18A examine $\chi\chi
 ightarrow\,b\,\overline{b}
 ightarrow\,\gamma$ using Fermi Pass 8 data; no signal; require
- $\langle \sigma \cdot v \rangle < 10^{-26} \text{ cm}^3/\text{s for } m(\chi) = 50 \text{ GeV}.$ ISANTI 18 examine Fermi Pass 8 γ -ray data from galaxy groups; report m(WMP) >
- 0 GeV for annihilation in $b\overline{b}$ channel. MAZZIOTTA 18 examine Fermi-LAT electron and positron spectra searching for features
- originating from DM particles annihilation into $e^+ e^-$ pairs, from 45 GeV to 2 TeV; no ignal found, limits are obtained. ARTSEN 17c use 1005 days of IceCube data to search for $\chi\chi
 ightarrow$ neutrinos via various
- annihilation channels. Limits set. ALBERT 17A search for DM annihilation to us using ANTARES data from 2007–2015.
- No signal. Limits set in $\langle \sigma \cdot v \rangle$ vs. m(DM) plane for m(DM) \sim 10–10 \times 10⁵ GeV. The listed limit is for m(DM) = 100 TeV.
- 17 ARCHAMBAULT 17 set limits for WIMP mass between 100 GeV and 1 TeV on $\langle\sigma{\cdot}v\rangle$ for W^+ W^- , ZZ, $b\overline{b}$, $s\overline{s}$, $u\overline{u}$, $d\overline{d}$, $t\overline{t}$, e^+e^- , gg, $c\overline{c}$, hh, $\gamma\gamma$, $\mu^+\mu^-$, $\tau^+\tau^-$ annihilation channels
- ¹⁸AVRORIN 17 find upper limits for the annhilation cross section in various channels for AVRONG IN 17 mind upper limits for the animation cross section in various channels for DM particle mass between 30 GeV and 10 TeV. Strongest upper limits coming from the two neutrino channel require $\langle \sigma \cdot v \rangle < 6 \times 10^{-20}$ cm³/s in dwarf galaxies and $\langle \sigma \cdot v \rangle < 7 \times 10^{-21} \text{ cm}^3/\text{s}$ in LMC for 5 TeV WIMP mass.

¹⁹BOUDAUD 17 use data from the spacecraft Voyager 1, beyond the heliopause, and from AMS02 on $\chi\chi \rightarrow ~e^+~e^-$ to require $\langle \sigma \cdot v \rangle < 1. \times 10^{-28} \text{ cm}^3/\text{s}$ for m(χ) = 10 MeV.

 20 AARTSEN 16D search for GeV us from WIMP annihilation in galaxy; limits set on $\langle \sigma \cdot v
angle$ in Fig. 6, 7

- ²¹ABDALLAH 16 require $\langle \sigma \cdot v \rangle$ < 6 × 10⁻²⁶ cm³/s for m(WIMP) = 1.5 TeV from 254 hours observation (WW channel) and $< 2 \times 10^{-26} \text{ cm}^3/\text{s}$ for m(WIMP) = 1.0 TeV $\tau^+ \tau^-$ channel.
- $\gamma^{[0]} \tau^{-\gamma} \tau$ channel. 2^{2} ABDALLAH 16A search for line spectra from WIMP $\rightarrow \gamma\gamma$ in 18 hr HESS data; rule out previous 130 GeV WIMP hint from Fermi-LAT data.
- ²³AHNEN 16 require $\langle \sigma \cdot v \rangle < 3 \times 10^{-26} \text{ cm}^3/\text{s}$ for m(WIMP) = 100 GeV (*WW* channel).
- 24 AVRORIN 16 require (s,v) < 1.91 \times 10 $^{-21}$ cm $^3/s$ from WIMP annihilation to νs via W W channel for m(WIMP) = 1 TeV.
- 25 CAPUTO 16 place limits on VIMPs from annihilation to gamma rays in Small Magellanic Cloud using Fermi-LaT data: $\langle \sigma \cdot v \rangle < 3 \times 10^{-26} \mathrm{cm}^3/\mathrm{s}$ for $m(\mathrm{WiMP}) = 10$ GeV.
- 26 FORNA SA 16 use anisotropies in the γ -ray diffuse emission detected by Fermi-LAT to bound $\langle \sigma \cdot v \rangle < 10^{-25} \,\mathrm{cm}^3/\mathrm{s}$ for m(WIMP) = 100 GeV in $b \,\overline{b}$ channel: see Fig. 28. The limit is driven by dark-matter subhalos in the Milky Way and it refers to their Most Constraining Scenario.
- ²⁷LEITE 16 constraint WIMP annihilation via search for radio emissions from Smith cloud; $\langle \sigma \cdot v \rangle < 5 \times 10^{-27} \text{ cm}^3/\text{s}$ in *ee* channel for m(WIMP) = 5 GeV.
- 28 Ll 16 re-analyze Fermi-LAT data on 8 dwarf spheroidals; set limit $\langle \sigma \cdot v
 angle < 2 imes 10^{-26}$ cm³/s for m(WIMP) = 100 GeV in $b\overline{b}$ mode with substructures included.
- 29.1 I 64 constrain $\langle \sigma v \rangle < 10^{-25} \text{ cm}^3/\text{s}$ in $b\overline{b}$ channel for m(WIMP) = 100 GeV using Fermi-LAT data from M31; see Fig. 6.
- 30 LIANG 16 search dwarf spheroidal galaxies, Large Magellanic Cloud, and Small Magellanic Cloud for γ -line in Fermi-LAT data.
- 31 LU 16 re-analyze Fermi-LAT and AMS-02 data; require $\langle \sigma {\cdot} v
 angle < 10^{-25}$ cm $^3/$ s for $m_m(WIMP) = 1$ TeV in $b\overline{b}$ channel.
- 32 SHIRASAKI 16 re-anayze Fermi-LAT extra-galactic data; require $\langle \sigma \cdot v
 angle < 10^{-23}$ cm 3 /s for m(WIMP) = 1 TeV in $b \overline{b}$ channel; see Fig. 8.
- ³³AARTSEN 15c search for neutrinos from X^0 annihilation in the Galactic halo. See their Figs. 16 and 17, and Table 5 for limits on $\sigma \cdot v$ for X^0 mass between 100 GeV and 100 τĕV
- 34 AARTSEN 15E search for neutrinos from X^0 annihilation in the Galactic center. See their Figs. 7 and 9, and Table 3 for limits on σ v for X^0 mass between 30 GeV and 10
- ³⁵ IeV. ³⁶ ABRAMOWSKI 15 search for γ from X^0 annihilation in the Galactic center. See their Fig. 4 for limits on $\sigma \cdot v$ for X^0 mass between 250 GeV and 10 TeV.
- 36 ACKERMANN 15 search for monochromatic γ from X 0 annihilation in the Galactic halo. See their Fig. 8 and Tables 2–4 for limits on $\sigma \cdot v$ for X^0 mass between 0.2 GeV and 500
- 37 ACKERMANN 15A search for γ from X^0 annihilation (both Galactic and extragalactic) in the isotropic γ background. See their Fig. 7 for limits on $\sigma\cdot {\bf v}$ for X^0 mass between 10 GeV and 30 TeV.
- 38 ACKERMANN 15B search for γ from X⁰ annihilation in 15 dwarf spheroidal satellite galaxies of the Milky Way. See their Figs. 1 and 2 for limits on σ -v for X^0 mass between 2 GeV and 10 TeV.
- Set Net Figs. 10 and 11 and Tables 1 and 2 for limits on $\sigma \cdot v$ for X^0 mass between 25 of GeV and 10 TeV.
- 40 ACKERMANN 14 search for γ from X^0 annihilation in 25 dwarf spheroidal satellite galaxies of the Milky Way. See their Tables II–VII for limits assuming annihilation into e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $u\overline{u}$, $b\overline{b}$, and W^+W^- , for X^0 mass ranging from 2 GeV to 10 TeV.
- ⁴¹ Limit assuming X^0 pair annihilation into $b\overline{b}$. ⁴² Limit assuming X^0 pair annihilation into $W^+ W^-$
- 43 ALEKSIC 14 search for γ from X^0 annihilation in the dwarf spheroidal galaxy Segue 1. The listed limit assumes annihilation into W^+W^- . See their Figs. 6, 7, and 16 for limits on $\sigma \cdot v$ for annihilation channels $\mu^+\mu^-$, $\tau^+\tau^-$, $b\overline{b}$, $t\overline{t}$, $\gamma\gamma$, γZ , W^+W^- , ZZfor X^0 mass between 10^2 and 10^4 GeV.
- for X⁰ mass between 10² and 10⁴ GeV. ⁴⁴ AARTSEN 13C search for neutrinos from X⁰ annihilation in nearby galaxies and galaxy clusters. See their Figs. 5-7 for limits on $\sigma \cdot v$ for $X^0 X^0 \rightarrow \nu \overline{\nu}, \mu^+ \mu^-, \tau^+ \tau^-$, and W⁺ W⁻ for X⁰ mass between 300 GeV and 100 TeV. ⁴⁵ ABRAMOWSKI 13 search for monochromatic γ from X⁰ annihilation in the Milky Way halo in the central region. Limit on $\sigma \cdot v$ between 10⁻²⁸ and 10⁻²⁵ cm³ s⁻¹ (95% CL)
- is obtained for X^0 mass between 500 GeV and 20 TeV for $X^0X^0 \rightarrow \gamma\gamma$. X^0 density distribution in the Galaxy by Einstoi is assumed. See their Fig. 4. ⁴⁶ACKERMANN 13A search for monochromatic γ from X⁰ annihilation in the Milky Way.
- Limit on $\sigma \cdot v$ for the process $X^0 X^0 \rightarrow \gamma \gamma$ in the range $10^{-29} 10^{-27}$ cm³ s⁻¹ (95%) CL) is obtained for X^0 mass between 5 and 300 GeV. The limit depends slightly on the assumed density profile of X^0 in the Galaxy. See their Tables VII-X and Fig.10. Supersedes ACKERMANN 12
- 47 ABRAMOWSKI 12 search for γ 's from X^0 annihilation in the Fornax galaxy cluster. See their Fig. 7 for limits on $\sigma \cdot v$ for X^0 mass between 0.1 and 100 TeV for the annihilation channels $\tau^+ \tau^-$, $b \overline{b}$, and $W^+ W^-$. ⁴⁸ACKERMANN 12 search for monochromatic γ from X^0 annihilation in the Milky Way.
- Limit on $\sigma \cdot v$ in the range 10^{-28} - 10^{-26} cm³s⁻¹ (95% CL) is obtained for X^{0} mass between 7 and 200 GeV if X^0 annihilates into $\gamma\gamma$. The limit depends slightly on the assumed density profile of X^0 in the Galaxy. See their Table III and Fig. 15.
- ⁴⁹ACKERMANN 12 search for γ from X^0 annihilation in the Milky Way in the diffuse γ background. Limit on $\sigma \cdot v$ of 10^{-24} cm³s⁻¹ or larger is obtained for X^0 mass between 5 GeV and 10 TeV for various annihilation channels including $W^+ W^-$, $b \overline{b}$, g g, $e^+ e^-$, The limit depends slightly on the assumed density profile of X^0 in the Galaxy See their Figs 17–20.
- Galaxy, see their rigs. 17-20. 5^{0} ALIU 12 search for γ 's from χ^{0} annihilation in the dwarf spheroidal galaxy Segue 1. Limit on $\sigma \cdot v$ in the range 10^{-24} – 10^{-20} cm³s⁻¹ (95% CL) is obtained for χ^{0} mass between 10 GeV and 2 TeV for annihilation channels e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $b\overline{b}$, and $W^+ W^-$. See their Fig. 3.

- 51 ABBASI 11C search for u_{μ} from X 0 annihilation in the outer halo of the Milky Way. The limit assumes annihilation into $\nu\nu$. See their Fig. 9 for limits with other annihilation channels.
- $\Sigma^{\rm Channels.}_{\rm SABRAMOWSKI 11 search for <math>\gamma$ from X^0 annihilation near the Galactic center. The limit assumes Einasto DM density profile.
- ⁵³ACKERMANN 11 search for γ from X⁰ annihilation in ten dwarf spheroidal satellite galaxies of the Milky Way. The limit for m = 10 GeV assumes annihilation into $b\overline{b}$, the others $W^+ W^-$. See their Fig. 2 for limits with other final states. See also GERINGER-SAMETH 11 for a different analysis of the same data.

Dark Matter Particle (X⁰) Production in Hadron Collisions –

Searches for X^0 production in association with observable particles (γ , jets, $\ldots)$ in high energy hadron collisions. If a specific form of effective interaction Lagrangian is assumed, the limits may be translated into limits on X^0 -nucleon scattering cross section.

DOCUMENT ID

VALUE			_	DOCUMENT ID		TECN	COMMENT
• • •	We	do not	use	the following data	for a	verages,	fits, limits, etc. 🔹 🔹
				¹ AABOUD	1944	ATLS	multi-channel BSM search
				² AABOUD	1941	ATLS	$H \rightarrow \gamma \gamma$
				³ AABOUD	19AL	ATLS	$H \rightarrow \chi \chi$
				⁴ AABOUD	190	ATLS	single $t + E_T$
				⁵ AABOUD	19v	ATLS	review mediator based DM searches
				⁶ BANERJEE	19	NA 64	$e N \rightarrow e N + E$
				⁷ SIRUNYAN	19AN	CMS	$H_{\chi\chi} \rightarrow b \overline{b} E_T$
				⁸ SIRUNYAN	19вс	CMS	$LQLQ \rightarrow \mu i E_T$
				⁹ SIRUNYAN	19 BC	CMS	$V V \rightarrow H a a; H \rightarrow DM$
				¹⁰ SIRUNYAN	19c	CMS	$pp \rightarrow t \overline{t} \chi \chi$
				¹¹ SIRUNYAN	190	CMS	$pp \rightarrow \gamma E_T$
				¹² SIRUNYAN	19x	CMS	$pp \rightarrow t\overline{t} + p'_{T}; pp \rightarrow t(\overline{t}) + p'_{T}$
				¹³ AABOUD	18	ATLS	$pp \rightarrow Z\chi\chi, Z \rightarrow \ell\ell$
				¹⁴ AABOUD	18A	ATLS	$pp \rightarrow t \overline{t} \not\!$
				¹⁵ AABOUD	18CA	ATLS	$pp \rightarrow V\chi\chi; V \rightarrow jj$
				¹⁶ AABOUD	181	ATLS	$p p \rightarrow jet(s) + E_T$
				¹⁷ AGUILAR-AR	18B	MBNE	$p N \rightarrow \chi X, \chi = e, \pi, \text{ or } N$
				¹⁸ KHACHATRY	.18	CMS	$pp \rightarrow Z(\ell \ell) + E_T$
				¹⁹ SIRUNYAN	18BF	CMS	$pp \rightarrow t E_T$
				²⁰ SIRUNYAN	18BC	CMS	dijet resonance search
				²¹ SIRUNYAN	18BV	CMS	$pp \rightarrow Z \not\!\!\!E_T$
				²² SIRUNYAN	18c	CMS	$pp \rightarrow t \bar{t} E_T$
				²³ SIRUNYAN	18cu	CMS	$pp \rightarrow Z E_T$
				²⁴ SIRUNYAN	18DH	CMS	$pp \rightarrow \chi \chi h; h \rightarrow \gamma \gamma \text{ or } \tau \overline{\tau}$
				²⁵ SIRUNYAN	18s	CMS	$p p \rightarrow \text{jets } \not\!\!E_T$
				²⁶ AABOUD	17a	ATLS	$pp (H \rightarrow b\overline{b} + WIMP pair)$
				²⁷ AABOUD	17AN	IATLS	$pp \rightarrow Z' \rightarrow Ah \rightarrow h(b\overline{b}) + E_T$
				²⁸ AABOUD	17AG	ATLS	$pp \rightarrow h(\gamma\gamma) + E_T$
				²⁹ AABOUD	17BD	ATLS	$pp \rightarrow jet(s) + E_T$
				³⁰ AABOUD	17r	ATLS	$pp \rightarrow \gamma E_T$
				³¹ AGUILAR-AR	17a	MBNE	$p N \rightarrow \chi \chi X, \chi N \rightarrow \chi N$
				³² BANERJEE	17	NA 64	$e N \rightarrow e N \gamma'$
				³³ KHACHATRY	.17A	CMS	forward jets $+ \not\!$
				³⁴ KHACHATRY	.17F	CMS	$H \rightarrow \text{invisibles}$
				³⁵ SIRUNYAN	17	CMS	$Z + E_T$
				³⁶ SIRUNYAN	17AP	CMS	$pp \rightarrow Z' \rightarrow Ah \rightarrow h + MET$
				³⁷ SIRUNYAN	17AG	CMS	$p p \rightarrow \gamma + MET$
				³⁸ SIRUNYAN	17вв	CMS	$pp \rightarrow t \overline{t} + \not\!$
				³⁹ SIRUNYAN	17G	CMS	$pp \rightarrow j + E_T$
				⁴⁰ SIRUNYAN	17u	CMS	$pp \rightarrow Z\chi\chi; Z \rightarrow \ell\overline{\ell}$
				⁴¹ AABOUD	16ad	ATLS	(W or Z \rightarrow jets) + $\not\!$
				⁴² AAD	16AF	ATLS	$V \: V ightarrow$ forward jets $+ ot\!$
				⁴³ AAD	16AG	ATLS	ℓ + jets
				⁴⁴ AAD	16 M	ATLS	$pp ightarrow H + ot\!$
				45 KHACHATRY	.16bz	CMS	$jet(s) + \not\!\! E_T$
				46 KHACHATRY	.16CA	CMS	jets + $\not\!\!\!E_T$
				4 / KHACHATRY	.16N	CMS	$\rho \rho \rightarrow \gamma + \not\!\!\! E_T$
				⁴⁸ AAD	15 AS	ATLS	$b(\overline{b}) + \not\!\!\!E_T, t \overline{t} + \not\!\!\!\!E_T$
				49 AAD	15 BH	ATLS	$jet + E_T$
				⁵⁰ AAD	15 CF	ATLS	$H^{U} + \not\!\! E_T$
				DAAD	15 CS	ATLS	$\gamma + \not\!$
				⁵² KHACHATRY	.15 A G	CMS	$t \overline{t} + E_T$
				⁵³ KHACHATRY	.15 AL	CMS	jet + $\not\!$
				⁹⁴ KHACHATRY	.15 T	CMS	$\ell + \not\!\! E_T$
				³⁵ AAD	14 AI	ATLS	$W + \not\!\! E_T$
				50 AAD	14вк	ATLS	W, Z + $ ot\!$
				°'AAD	14ĸ	ATLS	$Z + \not\!\!\! E_T$
				^{5 8} AAD	14 0	ATLS	$Z + E_T$
				29 AAD	13AD	ATLS	jet $+ \not\!$
				VU AAD	13C	ATLS	$\gamma + E_T$
				VI AALTONEN	12ĸ	CDF	$t + \not\!\! E_T$
				V [∠] AALTONEN	12M	CDF	jet $+ \not\!\!\! E_T$
				V ³ CHATRCHYAN	12ap	CMS	jet $+ \not\!$
				⁰ ⁴ CHATRCHYAN	12T	CMS	$\gamma + \not\!\!\! E_T$

- $^1\,{\sf AABOUD}$ 19AA searches for BSM physics in more than 700 event classes with more than 10^5 regions at 13 TeV with 3.2 fb $^{-1}$; no significant signal.
- ²AABOUD 19AI searches for vector boson fusion $pp \rightarrow Hqq$, $H \rightarrow$ invisible at 13 TeV with 36.1 fb⁻¹; no signal: require B($H \rightarrow$ invisible) < 0.37 (0.28 expected).
- 3 AABOUD 19AL perform search in three different channels for $H \to \chi \chi$ at 7, 8 and 13 TeV; combined result BF($H \to$ invisible) < 0.26 (0.17 expected).
- AABOUD 19Q search for single $t + E_T$ at 13 TeV with 36.1 fb⁻¹ of data; no signal; limits set in σ or coupling vs. mass plane for simplified models.
- ⁵ AABOUD 19v review ATLAS results from 7, 8 and 13 TeV searches for mediator-based DM and DE scalar which couples to gravity; no signal: limits set for large variety of simplified models .
- ⁶ BANER JEE 19 search for dark photon via $eN \rightarrow eN + E$ in NA64; no signal, limits placed in kinetic mixing ϵ vs. m(DM) plane for m(DM) $\sim 0.001-1$ GeV. ⁷ SIRUNYAN 19AN search at 13 TeV with 35.9 fb⁻¹ for $pp \rightarrow H\chi\chi \rightarrow b\overline{b} E_T$; no
- signal: limits set in the context of a 2HDM + pseudoscalar (a) model and a baryonic Z'model
- 8 SIRUNYAN 19BC search for DM via LeptoQuark pair annihilation LQ LQ $\rightarrow \mu j \chi \chi \rightarrow$
- BIROWAN 1365 search to DW via Leptoquark pair animination LQ LQ $\rightarrow \mu j \chi \chi \rightarrow \mu j \chi T$ with 77.4 fb⁻¹, 13 TeV; no signal: limits placed in m(χ) vs. m(LQ) placed. Model dependent limits on DM mass up to 600 GeV depending on m(LQ) placed. ⁹ SIRUNYAN 19B0 search for vector boson fusion $V V \rightarrow q q H$ with $H \rightarrow \chi \chi$ at 13 TeV with 38.2 fb⁻¹; no signal: limits placed for several models. Also search for $H \rightarrow$ invisible at 7, 8, and 13 TeV; no signal: limit placed on BF < 0.19.
- 10 SIRU NYAN 19c sector for DM via $pp \rightarrow t_{T\chi\chi}$ at 13 TeV, 35.9 fb⁻¹; no signal; limits placed on coupling vs. mediator mass for various simplified models.
- $^{11}\,{\rm SIRU\,NYA\,N}$ 190 search for $\rho\,\rho\,\rightarrow\,\,\gamma$ at 13 TeV with 35.9 fb $^{-1};$ no signal: limits placed on parameters of various models.
- 12 SIRUNYAN 19x search for $pp \rightarrow t \overline{t} \not\!\!\!E_T$ and $pp \rightarrow t \not\!\!\!\!E_T + ...$ at 13 TeV with 35.9 fb⁻¹; no signal: limits placed on χ production σ for various simplified models with m(χ) = 1 GeV.
- 13 1 dev. AABOUD 18 search for $pp \rightarrow Z + \not \! E_T$ with $Z \rightarrow \ell \ell$ at 13 TeV with 36.1 fb⁻¹ of data. Limits set for simplified models.
- ¹⁴ AABOUD 18A search for $pp \rightarrow t\bar{t} \ \overline{x}_T$ or $pp \rightarrow b\bar{b} \ \overline{x}_T$ at 13 TeV, 36.1 fb⁻¹ of data. Limits set for simplified models.
- Inits set for simplined models. ¹⁵ AABOUD 18cA search for $pp \rightarrow V\chi\chi$ with $V \rightarrow jj$ at 13 TeV, 36.1 fb⁻¹; no signal; limits set in m(DM) vs m(mediator) simplified model plane. ¹⁶ AABOUD 18I search for $pp \rightarrow j + E_T$ at 13 TeV with 36.1 fb⁻¹ of data. Limits set for simplified models with pair-produced weakly interacting dark-matter candidates.
- for simplified models with pair-produced weaky interacting variants considered. ¹⁷ AGUILAR-AREVALO 18B search for WIMP production in MiniBooNE *p* beam dump; no signal; limits set for m(χ) ~ 5–50 MeV in vector portal DM model. ¹⁸ KHACHATRYAN 18 search for $pp \rightarrow Z(\ell\ell) + E_T$; no signal; limits set on effective dark matter interactions and other excitic physics models.
- top quark and DM.
- $\begin{array}{c} \text{20 SIRUNYAN 18BO search for high mass dijet resonances at 13 TeV and 36 fb^{-1}; no signal: limits placed on various models, including simplified DM models involving a spin . \\ \end{array}$ 1 Z' mediator.
- = 1 Z metator. 21 SIRUNYAN 188v search for $p\rho \rightarrow Z \not \! \! E_T$ at 13 TeV; no signal, limits placed for various exotic physics models including DM.
- ²² SIRU NYAN 18c search for new physics in $pp \rightarrow$ final states with two oppositely charged leptons at 13 TeV with 35.9 fb⁻¹. Limits placed on m(mediator) and top squark for various simplified models.
- Values simplified inclusion of $pp \rightarrow Z E_T$ at 13 TeV and 2.3 fb⁻¹; no signal: limits placed for various exotic models including DM.
- ²⁴ SIRUNYAN 18DH search for $p \to \chi\chi h$; $h \to \gamma\gamma$ or $\tau\bar{\tau}$ at 13 TeV, 35.9 fb⁻¹; no signal; limits placed on massive boson mediator Z' in the context of Z'+2HDM and baryonic Z' models. Limits also cast in terms of spin-independent WIMP-nucleon cross section for masses 1–200 GeV.
- Section for masses 1-200 GeV. 25 SIRUNYAN 18s search for $pp \rightarrow$ jets $\not\!\!\!E_T$ at 13 TeV; no signal: limits placed on simplified dark matter models, on the branching ratio of the Higgs boson to invisible particles, and on several other exotic physics models including fermion portal DM.
- WIMP mass
- ²⁷AABOUD 17AM search for $pp \rightarrow Z' \rightarrow Ah \rightarrow h(b\overline{b}) + \not\!\!E_T$ at 13 TeV. Limits set in m(Z') vs. m(A) plane and on the visible cross section of $h(\overline{bb}) + E_T$ events in bins of E_T
- $μ_T$. ²⁸AABOUD 17AQ search for WIMP in $pp → h(γγ) + k_T$ in 36.1 fb⁻¹ of data. Limits on the visible cross section are also provided. Model dependent limits on spin independent DM Nucleon cross-section are also presented, which are more stringent than those from direct searches for DM mass smaller than 2.5 GeV . ²⁹AABOUD 17BD search for $pp → jet(s) + k_T$ at 13 TeV with 3.2 fb⁻¹ of data. Limits set for simplified models. Observables corrected for detector effects can be used to constrain other models
- other models.
- 30 AABOUD 17R, for an axial vector mediator in the s-channel, excludes m(mediator) <750-1200 GeV for m(DM) < 230-480 GeV, depending on the couplings.
- ³¹AGUILAR-AREVALO 17A search for DM produced in 8 GeV proton collisions with steel beam dump followed by DM-nucleon scattering in MiniBooNE detector. Limit placed on DM cross section parameter Y $~<~2\times10^{-8}$ for α_D = 0.5 and for 0.01 < m(DM) <
- 32 BANERJEE 17 search for dark photon invisible decay via *e N* scattering; exclude m (γ') < 100 MeV as an explanation of $(g_{\mu}-2)$ muon anomaly.
- $^{33}\,{\rm KHACHATRYAN}$ 17A search for WIMPs in forward jets $+ \not\!\!\!E_T$ channel with 18.5 fb $^{-1}$ at 8 TeV; limits set in effective theory model, Fig. 3.
- 34 KHACHATRYAN 17F search for $H \rightarrow$ invisibles in pp collisions at 7, 8, and 13 TeV; place limits on Higgs portal DM.
- 35 SIRUNYAN 17 search for $pp \rightarrow Z + \not\!\!\! E_T$ with 2.3 fb $^{-1}$ at 13 TeV; no signal seen; limits placed on WIMPs and unparticles.
- ³⁶SIRUNYAN 17AP search for $pp \rightarrow Z' \rightarrow Ah \rightarrow h+MET$ with $h \rightarrow b\overline{b}$ or $\gamma\gamma$ and $A \rightarrow \chi\chi$ with 2.3 fb⁻¹ at 13 TeV. Limits set in m(Z') vs. m(A) plane.
- $\begin{array}{l} 37 \\ \text{SIRU NYAN 17AQ search for } p \rightarrow \gamma + \text{MET at 13 TeV with 12.9 fb^{-1}}. \text{ Limits derived} \\ \text{for simplified DM models, effective electroweak-DM interaction and Extra Dimensions} \end{array}$ models

- ³⁸ SIRUNYAN 17BB search for WIMPs via $pp \rightarrow t \, \overline{t} + \not\!\!\! E_T$, $pp \rightarrow b \, \overline{b} + \not\!\!\! E_T$ at 13 TeV with 2.2 fb $^{-1}$. Limits derived for various simplified models.
- ³⁹ SIRUNYAN 17G search for $pp
 ightarrow j + {\not\!\! E}_T$ with 12.9 fb $^{-1}$ at 13 TeV; limits placed on WIMP mass/mediators in DM simplified models.
- ⁴⁰ SIRUNYAN 170 search for WIMPs/unparticles via $pp \rightarrow Z\chi\chi$, $Z \rightarrow \ell \overline{\ell}$ at 13 TeV with 2.3 fb $^{-1}$. Limits derived for various simplified models.
- ⁴¹AABOUD 16AD place limits on VVXX effective theory via search for hadronic W or Z About the pair introduction. See Fig. 5. ⁴²AAD 16AF search for $VV \rightarrow (H \rightarrow WIMP \text{ pair}) + \text{ forward jets with 20.3 fb}^{-1}$ at 8
- TeV; set limits in Higgs portal model, Fig. 8
- 43 AAD 16AG search for lepton jets with 20.3 fb⁻¹ of data at 8 TeV; Fig. 13 excludes dark photons around 0.1–1 GeV for kinetic mixing 10^{-6} – 10^{-2} ⁴⁴AAD 16M search with 20.3 fb⁻¹ of data at 8 TeV pp collisions; limits placed on EFT
- model (Fig. 7) and simplified Z' model (Fig. 6).
- variety of simplified models.
- Variety or simplified models. ⁴⁶ KHACHATRYAN 16CA search for WIMPs via jet(s) + E_T using razor variable; require mediator scale > 1 TeV for various effective theories. ⁴⁷ KHACHATRYAN 16N search for γ + WIMPs in 19.6 fb⁻¹ at 8 TeV; limits set on SI and SD WIMP-*p* scattering in Fig. 3.
- 46 AAD 15.8 search for events with one or more bottom quark and missing E_T , and also events with a top quark pair and missing E_T in *pp* collisions at $E_{cm} = 8$ TeV with L = 20.3 fb⁻¹. See their Figs. 5 and 6 for translated limits on X^0 -nucleon cross section for m = 1-700 GeV.
- ⁴⁹AAD 15BH search for events with a jet and missing E_T in pp collisions at $E_{cm} = 8$ TeV with L = 20.3 fb⁻¹. See their Fig. 12 for translated limits on X⁰-nucleon cross section
- for m=1-1200 GeV. ⁵⁰AAD 15CF search for events with a $H^0~(\to~\gamma\gamma)$ and missing E_T in pp collisions at $E_{\rm cm} = 8$ TeV with L = 20.3 fb⁻¹. See paper for limits on the strength of some contact interactions containing X^0 and the Higgs fields.
- ⁵¹AAD 15Cs search for events with a photon and missing E_T in pp collisions at $E_{\sf cm}$ = 8 TeV with L = 20.3 fb $^{-1}$. See their Fig. 13 (see also erratum) for translated limits on
- X^0 -nucleon cross section for m=1-1000 GeV. 52 KHACHATRYAN 15AG search for events with a top quark pair and missing E_T in ppcollisions at $E_{\rm cm} = 8$ TeV with L = 19.7 fb⁻¹. See their Fig. 8 for translated limits on X^0 -nucleon cross section for m = 1-200 GeV.
- $E_{\rm cm} = 8$ TeV with L = 19.7 fb⁻¹. See their Fig. 5 and Tables 4-6 for translated limits on X^0 -nucleon cross section for m = 1-1000 GeV.
- 54 KHACHATRYAN 15T search for events with a lepton and missing E_T in pp collisions at $E_{\rm cm} = 8 \text{ TeV}$ with $L = 19.7 \text{ fb}^{-1}$. See their Fig. 17 for translated limits on X^0 -proton cross section for m = 1-1000 GeV. ⁵⁵ AAD 14AI search for events with a W and missing E_T in pp collisions at $E_{\rm cm} = 8 \text{ TeV}$
- with L = 20.3 fb⁻¹. See their Fig. 4 for translated limits on X^0 -nucleon cross section for m = 1-1500 GeV. ⁵⁶AAD 14_{BK} search for hadronically decaying *W*, *Z* in association with E_T in 20.3 fb⁻¹
- at 8 TeV pp collisions. Fig. 5 presents exclusion results for SI and SD scattering cross section. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are also set in two fiducial regions.
- ${}^{57}AAD$ 14K search for events with a Z and missing E_T in pp collisions at $E_{cm} = 8$ TeV with L = 20.3 fb⁻¹. See their Fig. 5 and 6 for translated limits on X^{0} -nucleon cross section for $m = 1-10^3$ GeV. ⁵⁸AAD 140 search for Z H⁰ production with H⁰ decaying to invisible final states. See
- their Fig. 4 for translated limits on X^0 -nucleon cross section for m = 1-60 GeV in Higgs-portal X^0 scenario.
- ⁵⁹ AAD 13AD search for events with a jet and missing E_T in pp collisions at E_{cm} = 7 TeV with L = 4.7 fb⁻¹. See their Figs. 5 and 6 for translated limits on X^0 -nucleon cross section for m = 1-1300 GeV.
- ^{60}AAD 13C search for events with a photon and missing E_T in pp collisions at $E_{cm} =$ TeV with L = 4.6 fb⁻¹. See their Fig. 3 for translated limits on X^0 -nucleon cross section for m = 1-1000 GeV.
- ⁶¹AALTONEN 12K search for events with a top quark and missing E_T in $p\overline{p}$ collisions at $E_{\rm CM} = 1.96$ TeV with L = 1.1 to \ldots (95% CL) is given for $m_{\chi^0} = 0-150$ GeV. : 1.96 TeV with L = 7.7 fb $^{-1}$. Upper limits on $\sigma(t X^0)$ in the range 0.4–2 pb
- ⁶²AALTONEN 12M search for events with a jet and missing E_T in $p\overline{p}$ collisions at $E_{\rm Cm}$ = 1.96 TeV with L = 6.7 fb⁻¹. Upper limits on the cross section in the range 2-10 pb (90% CL) is given for $m_{\chi^0} = 1-300$ GeV. See their Fig. 2 for translated limits on v_0
- χ^0 -nucleon cross section. 63 CHATRCHYAN 12AP search for events with a jet and missing E_T in pp collisions at $E_{\rm cm}$ = 7 TeV with L = 5.0 fb⁻¹. See their Fig. 4 for translated limits on X^0 -nucleon cross section for m_{X^0} = 0.1-1000 GeV.
- 64 CHATRCHYAN 12T search for events with a photon and missing ${\it E}_T$ in ${\it pp}$ collisions at $E_{\rm Cm}=$ 7 TeV with L= 5.0 fb $^{-1}$. Upper limits on the cross section in the range 13–15 fb (90% CL) is given for $m_{\chi^0}=$ 1–1000 GeV. See their Fig. 2 for translated limits on X^0 -nucleon cross section.

REFERENCES FOR WIMP and Dark Matter Searches

AKERIB	20	PR D101 012003	D.S. Akerib et al.	(LUX Collab.)
AABOUD	19AA	EPJ C79 120	M. Aaboud et al.	(ALLAS COHAD.)
AABOUD	19A1	PL B793 499	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19AL	PRL 122 231801	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19 Q	JHEP 1905 041	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19V	JHEP 1905 142	M. Aaboud et al.	(ATLAS Collab.)
ABDELHAME	19	EPJ C79 630	A.H. Abdelhameed et al.	(CRESST Collab.)
ABDELHAME	19A	PR D100 102002	A.H. Abdelhameed et al.	(CRESST Collab.)
ABE	19	PL B789 45	K. Abe et al.	(XMASS Collab.)
ABEYSEKARA	19	JCAP 1907 022	A.U. Abeysekara et al.	(HAWC Collab.)
ABRAMOFF	19	PRL 122 161801	O. Abramoff et al.	(SENSELCollab.)
ADHIKARI	19	PRL 123 031302	G. Adhikari et al.	(COS INE-100 Collab.)
AGNESE	19A	PR D99 062001	R. Agnese et al.	(CDMS Collab.)
AGUILAR-AR	19A	PRL 123 181802	A. Aguilar-Arevalo et al.	(DAMIC Collab.)

2084 Searches Particle Listings WIMP and Dark Matter Searches

AJAJ	19	PR D100 022004	R. Ajaj et al.	(DEAP-3600	Collab.)
AKERIB	19	PRL 122 131301	D.S. Akerib et al.	. (LUX	Collab.)
ALBERT	19B	JCAP 1904 E01	A. Albert et al.	(HAWC	Collab.)
AMARE	19	PRL 123 031301	J. Amare et al.	(ANAIS	Collab.)
ANCLOUED	19	PR D100 022001	C. Amole et al.	(CDESET U	Collab.)
ANGLOREK	19	PRI 122 071301	G. Aligiolier et al. E Aprile et al	(XENON1T	Collab.)
APRILE	19.0	PRI 122 071301	E. Aprile et al. E. Aprile et al.	(XENON1T	Collab.)
APRILE	190	PRI 123 241803	E Aprile et al	(XENON1T	Collab.)
APRILE	19D	PRL 123 251801	E. Aprile et al.	XENON1T	Collab.
ARMENGAUD	19	PR D99 082003	E. Armengaud et al.	(EDELWEISS	Collab.)
BANERJEE	19	PRL 123 121801	D. Banerjee et al.	(NA 64	Collab.)
BRINGMANN	19	PRL 122 171801	T. Bringmann, M. Pospelov	(OSLC), VICT)
BRUNE	19	PR D 99 0 96005	T. Brune, H. Pas		(DORT)
CHEUNG	19	PL B789 137	K. Cheung et al.		(CUNC)
DUMAURO	19	PR D99 083018	M. Di Mauro et al		(20140)
HA	19	PRI 122 131802	C Ha et al	(C OS INE-100	Collab.)
IOHNSON	19	PR D 99 103007	C Johnson et al	(0001112 100	condu.)
KIM	194	IHEP 1903 194	KW Kim et al	(KIMS	Collab.)
KLOPF	19	PRL 122 222503	M. Klopf et al.	(PERKEO II	Collab.)
KOBAYASHI	19	PL B795 308	M. Kobayashi et al.	(XMASS	Collab.
LI	19D	PR D99 123519	S. Li et al.	× *	
LIU	19B	PRL 123 161301	Z.Z. Liu et al.	(CDEX	Collab.)
NG	19	PR D99 083005	K.C.Y. Ng et al.		
QUEIROZ	19	JCAP 1904 048	F.S. Queiroz, C. Siqueira		
SEONG	19	PRL 122 011801	I.S. Seong et al.	(BELLE	Collab.)
SIRUNYAN	19AN	EPJ C79 280	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	19BC	PL B795 76	A.M. Sirunyan et al.	CMS	Collab.)
SIRUNYAN	1980	PL 8793 520	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	190	PRE 122 011803	A.M. Sirunyan et al.	CMS	Collab.)
SIRUNTAN	190	JHEP 1902 074	A.M. Sirunyan et al.	(CMS	Collab.)
SUZUKI	19	ASP 110 1	T Suzuki et al	(XMASS	Collab.)
XIA	194	PI B792 193	I Xia et al	(PandaX-II	Collab.)
YAGUNA	19	JCAP 1904 041	C. Yaguna	(1 010 0X-11	20100.)
YANG	19	PRL 123 221301	L.T. Yang et al.	(CDFX	Collab.)
AABOUD	18	PL B776 318	M. Aaboud et al.	(ÀT LAS	Collab.
AABOUD	18 A	EPJ C78 18	M. Aaboud et al.	(AT LAS	Collab.)
AABOUD	18 CA	JHEP 1810 180	M. Aaboud et al.	(AT LAS	Collab.)
AABOUD	181	JHEP 1801 126	M. Aaboud et al.	(AT LAS	Collab.)
AARTSEN	18 D	EPJ C78 831	M.G. Aartsen et al.	(ice Cub e	Collab.)
ABDALLAH	18	PRL 120 201101	H. Abdallah <i>et al</i> .	(H.E.S.S.	Collab.)
ABE	18 C	PR D97 102006	K. Abe et al.	(XM AS S	Collab.)
ABE	18 F	PL B787 153	K. Abe et al.	(XMASS	Collab.)
ADHIKARI	18	NAI 564 83	G. Adhikari <i>et al.</i>	(COSINE-100	Collab.)
AGNES	18	PRL 121 081307	P. Agnes et al.	(DarkSide-50	Collab.
AGNES	18A 19D	PR D98 102006	P. Agnes et al.	(DarkSide-50 (DarkSide 50	Collab.)
AGNES	10 B	PRL 121 111303	P. Agnes et al.	(Darkside-50	Collab.)
AGNESE	10 1	PRI 120 061902	R. Agnese et al.	(SuperCDMS	Collab.)
AGNESE	10 0	PRI 120 001002	R. Agnese et al.	(SuperCDMS	Collab.)
Also	1010	PRI 122 069901 (errat)	R Agnese et al	(SuperCDMS	Collab.)
AGUILAR-AR	18 B	PR D98 112004	A.A. Aguilar-Arevalo	(MiniBooNE	Collab.
AHNEN	18	JCAP 1803 009	M.L. Ahnen et al.) (MAGIC	Collab.
AKERIB	18A	PR D 98 062005	D.S. Akerib et al.	` (LUX	Collab.
ALBERT	18 B	JCAP 1806 043	A. Albert et al.	(HÀWC	Collab.)
ALBERT	18 C	PR D 98 123012	A. Albert et al.	(HAWC	Collab.)
AMAUDRUZ	18	PRL 121 071801	P.A. Amaudruz et al.	(DEAP-3600	Collab.)
APRILE	18	PRL 121 111302	E. Aprile et al.	(XENON1T	Collab.)
ARMENGAUD	18	PR D98 082004	E. Armengaud et al.	(EDELWEISS-III	Collab.)
ARNAUD	18	ASP 97 54	Q. Arnaud et al.	(NEWS-G	Collab.)
CHANG	18A	PR D98 123004	L.J. Chang, M. Lisanti, S. M	lishra-Sharma	(PRIN)
UANC	10	PRL 121 061803	W. Crister et al.		Collab.)
KACHIILIS	10	PRI 120 241301 PRI 120 221301	C Kachulis et al.	(Super-Kamiokande	Collab.)
KHACHATRY	18	PR D97 099903	V Khachatryan et al	(CMS)	Collab.)
LISANTI	18	PRI 120 101101	M Lisanti et al	(PRIN MIT	MICH
MAZZIOTTA	18	PR D 98 022006	M Mazziotta et al	(Fermi-LAT	Collab)
REN	18	PRL 121 021304	X. Ren et al.	(PandaX-II	Collab.)
SIRUNYAN	18 B F	JHEP 1806 027	A.M. Sirunyan et al.	CMS	Collab.
SIRUNYAN	18BO	JHEP 1808 130	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	18 B V	EPJ C78 291	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	18 C	PR D97 032009	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	18 C U	JHEP 1801 056	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	18 D H	JHEP 1809 046	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	18S	PR D 97 0 92005	A.M. Sirunyan et al.	(CMS	Collab.)
YANG	18	CP C42 023002	L.T. Yang et al.	(CDEX	Collab.)
AABOUD	17 A M	PL B/05 II DBI 110 191904	M. Aaboud et al.	(ATLAS	Collab.)
AABOUD	17 AIVI	PRL 119 181804	M. Aaboud et al.	(ATLAS	Collab.)
AABOUD	17 R D	FIX D 70 112004 EPI C77 765	M. Aaboud er al. M. Aaboud et al	(ALLAS (ATLAS	Collab.
AABOUD	17 R	EPJ C77 393	M Ashoud et al.	(ATLAS	Collab.)
AARTSEN	17	EPJ C77 82	M.G. Aartsen et al.	(Ice Cube	Collab.
AARTSEN	17A	EPJ C77 146	M.G. Aartsen et al.	(Ice Cube	Collab.)
A Iso		EPJ C79 214 (errat.)	M.G. Aartsen et al.	(lce Cub e	Collab.
AARTSEN	17 C	EPJ C77 627 `´´	M.G. Aartsen et al.	(lce Cub e	Collab.)
AGUILAR-AR	17	PRL 118 141803	A. Aguilar-Arevalo et al.	(DAMIC	Collab.)
AGUILAR-AR	17 A	PRL 118 221803	A.A. Aguilar-Arevalo et al.	(Min`iBooNE	Collab.)
AKERIB	17	PRL 118 021303	D.S. Akerib et al.	(LUX	Collab.)
AKERIB	1/A	PKL 118 251302	D.S. Akerib et al.	(LUX	Collab.)
ALBERT	17 A	PL B769 249	A. Albert et al.	(ANTARES	Collab.)
A ISO	17	PE B190 203 (errat.)	A. Albert et al.	(ANTARES	Collab.)
ANGLOUED	17 A	FILE 110 201301 EPI C77 497	G. Angloher et al.	(PICO)	Collab.)
APRILE	17 A	PRI 118 101101	G. Augionet et al. E. Anrile et al.	(XENON100	Collab V
APRILE	17 A	PR D96 022008	E Anrile et al	(XENON100	Collab)
APRILE	17 D	PR D96 042004	E. Aprile et al.	XENON100	Collah
APRILE	17 G	PRL 119 181301	E. Aprile et al.	(XENON	Collab.)
APRILE	17 H	PR D96 122002	E. Aprile et al.	(XENON100	Collab.
APRILE	17 K	JCAP 1710 039	E. Aprile et al.	(XENON100	Collab.)
ARCHAMBAU	. 17	PR D95 082001	S. Archambault et al.	(VERITAS	Collab.)
AVRORIN	17	JETP 125 80	A.D. Avrorin et al.	(BAIKAL	Collab.)
BANERJEE	17	PRL 118 011802	D. Banerjee et al.	(NA 64	Collab.)
BARBOSA-D	17	PR D95 032006	E. Barbosa de Souza et al.	(DM17	Collab.)
BALIAT	1/	ASP 91 65	J.B.R. Battat et al.	(DRIFT-IId	Collab.)
BEHNKE	17	ASP 90 85	E. Bennke et al.	(PICASSO	Collab.)
CUEN	175	PKL 119 U21103	W. Boudaud, J. Lavalle, P. S. X. Chen. et al.	balati (Doordon Vill	Collab
CHEN	17 E	FR D96 102007	A. Chen et al. Y. Cui at al.	(PandaX-II (PandaX-II	Collab.)
EUL	17 A	FILL 117 101302 PRI 118 071201	A. Cui et al. C. Eu at al	(PandaX-II (PandaX-II	Collab.
A Iso	±1	PRI 120 049902 (arrot)	C Fu et al	(rallud∧-ll U.VehneV.)	Collab V
KHACHATRY	17 A	PRI 118 021802 (cital.)	V Khachatryan et al	(FalluaA-11 (CMC	Collab V
KHACHATRY	17 F	JHEP 1702 135	V. Khachatrvan et al	CMS	Collah
SIRUNYAN	17	JHEP 1703 061	A.M. Sirunyan et al.	CMS	Collab.)
SIRUNYAN	17AP	JHEP 1710 180	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	17AQ	JHEP 1710 073	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	17 BB	EPJ C77 845	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	17 G	JHEP 1/0/ 014	A.M. Sirunyan et al.	(CMS	Collab.)
SIKUNYAN	1645	JHEP 1/09 106	A.M. Sirunyan et al. M. Ashoud st al.	(CMS	Collab.)
	TOWD	- C D103 231	reasoned to di.	(AT LAS	CONOU.)

AABOUD AAD AAD AATSEN AARTSEN ABDALLAH ABDALLAH ABDALLAH ADRIAN-MAR. AQNES AGNESE AGNESE AGULAR-AR AHNEN AKERIB AKERIB AKERIB AKERIB AMOLE AMOLE	16F 16AF 16AG 16D 16 16 16 16 16 16 16 16 16 16 16 16 16	JHEP 1606 059 JHEP 1601 172 JHEP 1602 062 PR 033 072007 JCAP 1604 022 EPJ C76 531 PRL 117 11301 PRL 117 11302 PL B759 69 JCAP 1605 016 PR D33 081101 PRL 116 071301 PRL 116 161301 PRL 116 161301 PRL 116 161302 PR D39 062014 PR D39 062014 PR D39 061101 FPL C76 25	M. Aaboud et al. G. Aad et al. G. Aad et al. M.G. Aartsen et al. M.G. Aartsen et al. M.G. Aartsen et al. H. Abdallah et al S. Adrian-Martinez et al. S. Adrian-Martinez et al. P. Agnese et al. A. Aguila-Arevalo et al. M.L. Ahnen et al. D.S. Akerib et al. C. Amole et al. G. Amolen et al. G. Ancelar et al.	(ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (IceCube Collab.) (IceCube Collab.) (IteS.S. Collab.) (ItES.S. Collab.) (ANTARES Collab.) (ANTARES Collab.) (DarkSide-S0 Collab.) (DarkSide-S0 Collab.) (DAMC Collab.) (DAMC Collab.) (UX Collab.) (UX Collab.) (PICO Collab.) (PICO Collab.)
ANGLOHER APRILE APRILE ARMENGAUD AVRORIN CAPUTO	16A 16 16B 16 16 16	PRL 117 021303 PR D94 092001 PR D94 122001 JCAP 1605 019 ASP 81 12 PR D93 062004 PR D93 062004	G. Angloher et al. E. Aprile et al. E. Aprile et al. E. Armengaud et al. A.D. Avrorin et al. R. Caputo et al.	(CRESST-II Collab.) (XENON100 Collab.) (XENON100 Collab.) (EDELWEISS-III Collab.) (BAIKAL Collab.)
FORNASA HEHN KHACHATRY KHACHATRY Also KHACHATRY KHACHATRY	16 16AJ 16BZ 16CA 16N	PR D94 123005 EPJ C76 548 PR D93 052011 JHEP 1612 083 JHEP 1708 035 (errat.) JHEP 1612 088 PL B755 102	M. Fornasa et al. L. Hehn et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al.	(FERMILLAT COILAD.) (EDELWEISS-III COILAD.) (CMS COILAD.) (CMS COILAD.) (CMS COILAD.) (CMS COILAD.) (CMS COILAD.)
LEITE LI LIANG LU SHIRASAKI TAN	16 16 16A 16 16 16 16	JCAP 1611 021 PR D93 043518 JCAP 1612 028 PR D94 103502 PR D93 103517 PR D94 063522 PR D94 063522	N. Leite et al. S. Li et al. Z. Li et al. YF. Liang et al. B-Q. Lu, H-S. Zong M. Shirasaki et al.	(Danday, Collab.)
TAN ZHAO AAD AAD AIso AAD	16 B 16 15 A S 15 B H 15 C F	PRL 137 121303 PR D93 092003 EPJ C75 92 EPJ C75 299 EPJ C75 408 (errat.) PRL 115 131801	A. Tan et al. W. Zhao et al. G. Aad et al. G. Aad et al. G. Aad et al. G. Aad et al.	(PandaX Collab.) (CDEX Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
AAD Also AARTSEN AARTSEN ABRAMOWSKI ACKERMANN ACKERMANN ACKERMANN	15 CS 15 C 15 E 15 15 15 A 15 B	PR D91 012008 PR D92 059903 (errat.) EPJ C75 20 EPJ C75 492 PRL 114 081301 PR D91 122002 JCAP 1509 008 PRL 115 231301 ICAP 115 2020	G. Aad et al. G. Aad et al. M.G. Aartsen et al. M.G. Aartsen et al. A. Abramowski et al. M. Ackermann et al. M. Ackermann et al.	(ATLAS Collab.) (ATLAS Collab.) (lceCube Collab.) (H.E.S.S. Collab.) (FE.S.S. Collab.) (Fermi-LAT Collab.) (Fermi-LAT Collab.) (Fermi-LAT Collab.)
AGNESE AGNESE AGNESE AMOLE APRILE APRILE CHOI	15 15 A 15 B 15 15 15 15 A 15 A	PL B743 456 PR D91 052021 PR D92 072003 PRL 114 231302 PRL 115 091302 SCI 349 851 PRL 114 141301	 Annan-Warlingz et al. Agness et al. Agness et al. Agness et al. Agnese et al. Annole et al. Aprile et al. Aprile et al. K. Choi et al. 	(ANTARES Collab.) (DarkSide-50 Collab.) (SuperCDMS Collab.) (PICC Collab.) (XENON Collab.) (XENON Collab.) (Super-Kamiokande Collab.)
KHACHATRY KHACHATRY KHACHATRY NAKAMURA XIAO AAD AAD	15AG 15AL 15T 15 15 14AI 14BK	JHEP 1506 121 EPJ C75 235 PR D91 092005 PTEP 2015 4 043F01 PR D92 052004 JHEP 1409 037 PRL 112 041802	 V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. K. Nakamura et al. X. Xiao et al. G. Aad et al. G. Aad et al. 	(CMS Collab.) (CMS Collab.) (CMS Collab.) (NEWAGE Collab.) (PandaX Collab.) (ATLAS Collab.) (ATLAS Collab.)
AAD AAD ACKERMANN AGNESE AGNESE AKERIB ALEKSIC	14 K 14 O 14 14 14 A 14 A 14	PR D90 012004 PRL 112 201802 PR D89 042001 PRL 112 241302 PRL 112 041302 PRL 112 091303 JCAP 1402 008	G. Aad et al. G. Aad et al. M. Ackermann et al. R. Agnese et al. D.S. Akerib et al. J. Aleksic et al.	(ATLAS Collab.) (ATLAS Collab.) (Fermi-LAT Collab.) (SuperCDMS Collab.) (SuperCDMS Collab.) (LUX Collab.) (MAGIC Collab.)
ANGLOHER APRILE AVRORIN FELIZARDO LEE LIU UCHIDA	14 14 A 14 14 14 A 14 A 14 A 14	EPJ C74 3184 ASP 54 11 ASP 62 12 PR D89 072013 PR D90 052006 PR D90 032003 PTEP 2014 063C01	G. Angloher et al. E. Aprile et al. A.D. Avrorin et al. M. Felizardo et al. H.S. Lee et al. S.K. Liu et al. H. Uchida et al.	(CRESST-II Collab.) (XENON100 Collab.) (BAIKAL Collab.) (SIMPLE Collab.) (KIMS Collab.) (CDEX Collab.) (XMASS Collab.)
YUE AAD AAD AALSETH AARTSEN AARTSEN ABE	14 13AD 13C 13 13 13C 13B	PR D90 091/01 JHEP 1304 075 PRL 110 011802 PR D88 012002 PRL 110 131302 PR D88 122001 PL B719 78	Q. Yue et al. G. Aad et al. C. E. Aalseth et al. M.G. Aartsen et al. M.G. Aartsen et al. K. Abe et al.	(CDEX Collab.) (ATLAS Collab.) (CoGeNT Collab.) (IceCube Collab.) (IceCube Collab.) (XMASS Collab.)
ABRAMOWSKI ACKERMANN ADRIAN-MAR AGNESE AGNESE APRILE BERNABEI BENABEI	13 13A 13 13 13A 13 13A 13A	PR D88 082002 JCAP 1311 032 PR D88 031104 PRL 111 251301 PRL 111 021301 EPJ C73 2648	 A. Abrahowski et al. M. Ackermann et al. S. Adrian-Martinez et al. R. Agnese et al. R. Agnese et al. R. Agnese et al. R. Bernabei et al. 	(H.E.S.S. Collab.) (Fermi-LAT Collab.) (ANTARES Collab.) (CDMS Collab.) (XENON100 Collab.) (DAMA Collab.)
BOLIEV LI SUVOROVA	13 13 B 13	JCAP 1309 019 PRL 110 261301 PAN 76 1367 Translated from YAF 76	M. Boliev et al. H.B. Li et al. O.V. Suvorova et al. 1433.	(TEXONO Collab.) (INRM)
ZHAO AALTONEN ABLTONEN ABBASI ABRAMOWSKI ACKERMANN AKIMOV ALIU	13 12 K 12 M 12 12 12 12 12 12 12 12	PR D88 052004 PRL 108 201802 PRL 108 211804 PR D85 042002 APJ 750 123 PR D86 022002 PL B709 14 PR D85 062001 EPL 673 1471	W. Zhao et al. T. Aatlonen et al. T. Aatlonen et al. R. Abbasi et al. A. Abramowski et al. M. Ackermann et al. D.Yu. Akimov et al. E. Aliu et al.	(CDEX Collab.) (CDF Collab.) (CDF Collab.) (IteCube Collab.) (H.E.S.S. Collab.) (Fermi-LAT Collab.) (ZEPLIN-III Collab.) (VERITAS Collab.)
AN GLUHEK APRILE ARCHAMBAU ARMENGAUD BARRETO BEHNKE Also	12 12 12 12 12 12 12	PRJ (72 1971 PRL 109 181301 PL B711 153 PR D86 051701 PL B711 264 PR D86 052001 PR D90 079902 (errat.)	 G. Angioner et al. E. Aprile et al. S. Archambault et al. E. Armengaud et al. J. Barreto et al. E. Behnke et al. E. Behnke et al. 	(CRESSI-III COIlab.) (XENONIOO COIlab.) (PICASSO COIlab.) (EDELWEISS COIlab.) (DAMIC COIlab.) (COUPP COIlab.) (COUPP COIlab.)
BROWN CHATRCHYAN CHATRCHYAN DAHL DAW FELIZARDO KIM	12 12AP 12T 12 12 12 12 12 12	PR 1285 021301 JHEP 1209 094 PRL 108 261803 PRL 108 259001 ASP 35 397 PRL 108 201302 PRL 108 181301	 A. Brown et al. S. Chatrchyan et al. S. Chatrchyan et al. C.E. Dahl, J. Hall, W.H. E. Daw et al. M. Felizardo et al. S.C. Kim et al. 	(OXF) (CMS Collab.) Lippincott (CHIC, FNAL) (DRIFT-IId Collab.) (SIMPLE Collab.) (KIMS Collab.)

AALSETH

2085 Searches Particle Listings WIMP and Dark Matter Searches, Other Particle Searches

ALSETH	11	PRL 106 131301	C.E. Aalseth et al. (CoGeNT Collab.)	
ALSETH	11A	PRL 107 141301	C.E. Aalseth et al. (CoGeNT Collab.)	
BBASI	11 C	PR D84 022004	R. Abbasi et al. (IceCube Collab.)	
ABRAMOWSKI ACKERMANN	11	PRL 105 151301 PRI 107 241302	A. ADramowski et al. (H.E.S.S. Collab.) M. Ackermann et al. (Fermi-LAT Collab.)	
HIEN	11	PL B695 124	S Ablen et al (DMTPC Collab.)	
HMED	11	PR D83 112002	Z. Ahmed et al. (CDMS Collab.)	
(HMED	11A	PR D84 011102	Z. Ahmed et al. (CDMS and EDELWEISS Collabs.)	
HMED	11B	PRL 106 131302	Z. Ahmed et al. (CDMS Collab.)	
AJELLO NGLE	11	PR D84 032007 PPI 107 051201	M. Ajello et al. (Fermi-LAT Collab.) L'Angle et al. (XENON10 Collab.)	
Also	11	PRI 110 249901 (errat)	J Angle et al. (XENON10 Collab.)	
PRILE	11	PR D84 052003	E. Aprile et al. (XENON100 Collab.)	
PRILE	11A	PR D84 061101	E. Aprile et al. (XENON100 Collab.)	
PRILE	11B	PRL 107 131302	E. Aprile et al. (XENON100 Collab.)	
RMENGAUD	11	PL B702 329	E. Armengaud et al. (EDELWEISS-II Collab.)	
SERINGER-SA	11	PRL 106 021303 PRI 107 241303	A Geringer-Sameth S.M. Koushiannas	
IORN	11	PL B705 471	M. Horn et al. (ZEPLIN-III Collab.)	
ANAKA	11	APJ 742 78	T. Tanaka et al. (Super-Kamiokande Collab.)	
BBASI	10	PR D81 057101	R. Abbasi et al. (IceCube Collab.)	
AHMED	10	SCI 327 1619	Z. Ahmed et al. (CDMS II Collab.)	
KIMOV	10	PK D62 122004	D.S. Akerio et al. (CDMS II Collab.)	
PRILE	10	PRI 105 131302	E Anrile et al. (XENON100 Collab.)	
RMENGAUD	10	PL B687 294	E. Armengaud et al. (EDELWEISS-II Collab.)	
ELIZARDO	10	PRL 105 211301	M. Felizardo et al. (The SIMPLE Collab.)	
AIUCHI	10	PL B686 11	K. Miuchi et al. (NEWAGE Collab.)	
ABBAST	09B	PRL 102 201302	R. Abbasi et al. (IceCube Collab.)	
NGLE	09	PR D80 115005	L Angle et al. (XENON10 Collab.)	
NGLOHER	09	ASP 31 270	G. Angloher et al. (CRESST Collab.)	
RCHAMBAU	09	PL B682 185	S. Archambault et al. (PICASSO Collab.)	
.EBEDENKO	09A	PRL 103 151302	V.N. Lebedenko et al. (ŽEPLIN-III Collab.)	
IN	09	PR D79 061101	S.T. Lin et al. (TEXONO Collab.)	
ALSETH	08	PRL 101 251301 PRL 102 109003 (arrot)	C.E. Aalseth et al. (CoGeNT Collab.)	
NGLE	08A	PRI 101 091301	L Angle et al. (XENON10 Collab.)	
BEDNYAKOV	08	PAN 71 111 V.	A. Bednyakov, H.P. Klapdor-Kleingrothaus, I.V. Krivosheina	
		Translated from YAF 71 1	112. (755) (114) (214)	
FF	07.0	PL B653 161 PRI 99 091301	G.J. Aller et al. (ZEPLIN-II Collab.) HS Lee et al. (KIMS Collab.)	
AUCHI	07	PL B654 58	K Miuchi et al	
KERIB	06	PR D73 011102	D.S. Akerib et al. (CDMS Collab.)	
HIMIZU	06A	PL B633 195	Y. Shimizu et al.	
KERIB	05	PR D72 052009	D.S. Akerib et al. (CDMS Collab.)	
ALNER DADNADE UE	05	PL B616 1/	G.J. Aller et al. (UK Dark Matter Collab.) M. Barnabe Heider et al. (PICASSO, Collab.)	
SENOIT	.05	PL B616 25	A Benoit et al (EDELWEISS Collab.)	
GIRARD	05	PL B621 233	T.A. Girard et al. (SIM PLE Collab.)	
SIULIANI	05	PRL 95 101301	F. Giuliani	
SIULIANI	05 A	PR D71 123503	F. Giuliani, T.A. Girard	
CLAPDOR-K	05	PL B609 226 DI D599 151	H.V. Klapdor-Kleingrothaus, I.V. Krivosneina, C. Tomei E. Giuliani, T.A. Girard	
SIULIANI	04 A	PRI 93 161301	F Giuliani	
AIUCH I	03	ASP 19 135	K. Miuchi et al.	
AKEDA	03	PL B572 145	A. Takeda et al.	
NGLOHER	02	ASP 18 43	G. Angloher et al. (CRESST Collab.)	
	02	PR D66 043503	P. Belli et al. (DAMA Colleb.)	
SREEN	020	PR D66 083003	A M Green	
BAUDIS	01	PR D63 022001	L. Baudis et al. (Heidelberg-Moscow Collab.)	
MITH	01	PR D64 043502	D. Smith, N. Weiner	
JLLIO	01	JHEP 0107 044	P. Ullio, M. Kamionkowski, P. Vogel	
BENOIT	00	PL B479 8	A. Benoit et al. (EDELWEISS Collab.)	
	000	PRI 85 3083	LL Collar et al. (SIMPLE Collab.)	
MBROSIO	99	PR D60 082002	M. Ambrosio et al. (Macro Collab.)	
BERNABEI	99	PL B450 448	R. Bernabei et al. (DAMA Collab.)	
BERNABEI	99 D	PRL 83 4918	R. Bernabei et al. (DAMA Collab.)	
BRHLIK	99	PL B464 303	M. Brhlik, L. Roszkowski	
JERBIN	99	Translated from YAE 62 2	A.V. Derbill et al. 2034	
KLIMENKO	98	JETPL 67 875	A.A. Klimenko et al.	
		Translated from ZETFP 6	7 835.	
	97	PK D56 1856 DI D294 214	M.L. Sarsa et al. (ZARA) A Alessandrollo et al. (MUA MILAL SASSO)	
SELLI	96	PL B387 222	P Belli et al. (DAMA Collab.)	
Also		PL B389 783 (erratum)	P. Belli et al. (DAMA Collab.)	
BELLI	96 C	NC C19 537 `	P. Belli et al. (DAMA Collab.)	
BERNABEI	96	PL B389 757	R. Bernabei et al. (DAMA Collab.)	
ARSA	20 96	FILE 7 0 331 PL B386 458	M L Sarsa et al. (ZODC)	
Also	20	PR D56 1856	M.L. Sarsa et al. (ZARA)	
MITH	96	PL B379 299	P.F. Smith et al. (RAL, SHEF, LOIC+)	
NOWDEN	96	PRL 76 332	D.P. Snowden-Ifft, E.S. Freeman, P.B. Price (UCB)	
JARCIA	95 0E	PR D51 1458	E. Garcia et al. (ZARA, SCUC, PNL)	
VUENBY	70 95	PE B301 /0 PRI 74 4133	J.J. Quenoy et al. (LUIC, KAL, SHEF+) D.P. Snowden-lifft E.S. Freeman, P.B. Price (LUCR)	
Also		PRL 76 331	J.I. Collar (SCIIC)	
Also		PRL 76 332	D.P. Snowden-Ifft, E.S. Freeman, P.B. Price (UCB)	
BECK	94	PL B336 141	M. Beck et al. (MPIH, KIAE, SÀSSO)	
BACCI	92	PL B293 460	C. Bacci et al. (Beijing-Roma-Saclay Collab.)	
ALDWELL	21 88	PRI 61 510	D. Keussei er al. (NEUC, CIT, PSI) D.O. Caldwall at al. (IICSB, IICB, IBL)	

Other Particle Searches

OMITTED FROM SUMMARY TABLE OTHER PARTICLE SEARCHES

Revised February 2018 by K. Hikasa (Tohoku University).

We collect here those searches which do not appear in any other search categories. These are listed in the following order:

- Concentration of stable particles in matter
- General new physics searches
- Limits on jet-jet resonance in hadron collisions
- Limits on neutral particle production at accelerators

- Limits on charged particles in e^+e^- collisions
- Limits on charged particles in hadron reactions
- Limits on charged particles in cosmic rays
- Searches for quantum black hole production

Note that searches appear in separate sections elsewhere for Higgs bosons (and technipions), other heavy bosons (including W_R, W', Z' , leptoquarks, axigluons), axions (including pseudo-Goldstone bosons, Majorons, familons), WIMPs, heavy leptons, heavy neutrinos, free quarks, monopoles, supersymmetric particles, and compositeness.

We no longer list for limits on tachyons and centauros. See our 1994 edition for these limits.

CONCENTRATION OF STABLE PARTICLES IN MATTER

Concentration of Heavy (Charge +1) Stable Particles in Matter

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	he followin	g data for average	es, fits	, limits,	etc. • • •
$<4 \times 10^{-17}$	95	¹ YA MA GATA	93	SPEC	Deep sea water, <i>M</i> =5-1600m _p
$< 6 \times 10^{-15}$	95	² VERKERK	92	SPEC	Water, $M = 10^5$ to 3 × 10^7 GeV
$< 7 \times 10^{-15}$	95	² VERKERK	92	SPEC	Water, $M = 10^4$, 6 × 10 ⁷ GeV
$< 9 \times 10^{-15}$	95	² verkerk	92	SPEC	Water, $M=10^8$ GeV
$<3 \times 10^{-23}$	90	³ НЕММІСК	90	SPEC	Water, $M = 1000 m_D$
$<2 \times 10^{-21}$	90	³ НЕММІСК	90	SPEC	Water, $M = 5000 m_D^r$
$<3 \times 10^{-20}$	90	³ НЕММІСК	90	SPEC	Water, $M = 10000 m_p$
$< 1. \times 10^{-29}$		SMITH	82B	SPEC	Water, <i>M</i> =30–400 <i>m</i>
$<2. \times 10^{-28}$		SMITH	82B	SPEC	Water, <i>M</i> =12-1000 <i>m</i>
$< 1. \times 10^{-14}$		SMITH	82B	SPEC	Water, <i>M</i> >1000 <i>m</i> _
$<(0.2-1.) \times 10^{-21}$		SMITH	79	SPEC	Water, M=6-350 m

 $^1\,\mathrm{YA}\,\mathrm{MA}\,\mathrm{GATA}\,$ 93 used deep sea water at 4000 m since the concentration is enhanced in deep sea due to gravity. 2 VERKERK 92 looked for heavy isotopes in sea water and put a bound on concentration

of stable charged massive particle in sea water. The above bound can be translated into into a bound on charged dark matter particle (5 $imes 10^6$ GeV), assuming the local density, $ho{=}0.3~{
m GeV/cm^3}$, and the mean velocity $\langle v
angle{=}300~{
m km/s}$.

³ See HEMMICK 90 Fig. 7 for other masses 100–10000 m_p

Concentration of Heavy Stable Particles Bound to Nuclei

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follo	wing data	for averages, fits,	limits	s, etc. 🔸	••
$<1.2 \times 10^{-11}$	95	¹ JAVORSEK	01	SPEC	Au, <i>M</i> = 3 GeV
$< 6.9 \times 10^{-10}$	95	¹ JAVORSEK	01	SPEC	Au, <i>M</i> = 144 GeV
$<1 \times 10^{-11}$	95	² JAVOR SE K	01в	SPEC	Au, <i>M</i> = 188 GeV
$<1 \times 10^{-8}$	95	² JAVORSEK	01в	SPEC	Au, <i>M</i> = 1669
$< 6 \times 10^{-9}$	95	² JAVORSEK	01в	SPEC	Fe, <i>M</i> = 188 GeV
$<1 \times 10^{-8}$	95	² JAVORSEK	01в	SPEC	Fe, <i>M</i> = 647 GeV
$<4 \times 10^{-20}$	90	³ HEMMICK	90	SPEC	C, $M = 100 m_p$
$< 8 \times 10^{-20}$	90	³ HEMMICK	90	SPEC	C, $M = 1000 m_{p}$
$<2 \times 10^{-16}$	90	³ HEMMICK	90	SPEC	C, $M = 10000 m_p$
$< 6 \times 10^{-13}$	90	³ HEMMICK	90	SPEC	Li, $M = 1000 m_p$
$<1 \times 10^{-11}$	90	³ HEMMICK	90	SPEC	Be, $M = 1000 m_p$
$< 6 \times 10^{-14}$	90	³ HEMMICK	90	SPEC	B, $M = 1000 m_p$
$<4 \times 10^{-17}$	90	³ HEMMICK	90	SPEC	O, $M = 1000 m_p$
$<4 \times 10^{-15}$	90	³ HEMMICK	90	SPEC	F, $M = 1000 m_p$
$< 1.5 imes 10^{-13}$ /nucleon	68	⁴ NOR MA N	89	SPEC	206 _{PbX} -
$<$ 1.2 $ imes$ 10 $^{-12}$ /nucleon	68	⁴ NORMAN	87	SPEC	^{56,58} FeX ⁻

¹ JAVORSEK 01 search for (neutral) SIMPs (strongly interacting massive particles) bound

to Au nuclei. Here M is the effective SIMP mass. ² JAVORSEK 01B search for (neutral) SIMPs (strongly interacting massive particles) bound to Au and Fe nuclei from various origins with exposures on the earth's surface, in a satellite, heavy ion collisions, etc. Here *M* is the mass of the anomalous nucleus. See also JAVORSEK 02.

³ See HEMMICK 90 Fig. 7 for other masses 100–10000 m_p .

 4 Bound valid up to $m_{\chi^-} \sim 100$ TeV.

2086 Searches Particle Listings Other Particle Searches

GENERAL NEW PHYSICS SEARCHES

This subsection lists some of the search experiments which look for general signatures characteristic of new physics, independent of the framework of a specific model

The observed events are compatible with Standard Model expectation, unless noted otherwise.

VALUE DOCUMENT ID TECN COMMENT

 We do not use the feature 	ollowing data for a	/erage	es, fits, l	imits, etc. • • •
	¹ SIRUNYAN	20a	CMS	SUSY/LQ search with mT2 or long-lived charged particles
	² ALCA NTARA	19		Auger, superheavy DM
	³ PORAYKO	18	ΡΡΤΑ	pulsar timing fuzzy DM search
	⁴ AAD	15 AT	ATLS	$t + \not\!\! E_T$
	⁵ KHACHATRY	.15 F	CMS	$t + E_T$
	⁶ AALTONEN	14 J	CDF	$W + \hat{2}$ jets
	⁷ AAD	13a	ATLS	$WW \rightarrow \ell \nu \ell' \nu$
	⁸ aad	13c	ATLS	$\gamma + E_T$
	⁹ AALTONEN	131	CDF	Delayed $\gamma + \not\!\!\! E_T$
	¹⁰ CHATRCHYAN	13	CMS	$\ell^+ \ell^-$ + jets + $\not\!\!\!E_T$
	¹¹ AAD	12c	ATLS	$t \overline{t} + E_T$
	¹² AALTONEN	12M	CDF	jet + ₽T
	¹³ CHATRCHYAN	12AP	CMS	jet + ₽T
	¹⁴ CHATRCHYAN	12Q	CMS	$Z + jets + E_T$
	¹⁵ CHATRCHYAN	12T	CMS	$\gamma + \not \! E_T$
	¹⁶ AAD	11s	ATLS	jet $+ \not\!\! E_T$
	¹⁷ AALTONEN	11AF	CDF	$\ell^{\pm}\ell^{\pm}$
	¹⁸ CHATRCHYAN	11 C	CMS	$\ell^+ \ell^-$ + jets + $\not\!\!E_T$
	¹⁹ CHATRCHYAN	11U	CMS	jet $+ \not\!\!\!E_T$
	²⁰ AALTONEN	10af	CDF	$\gamma \gamma + \bar{\ell}, E_T$
	²¹ AALTONEN	09AF	CDF	$\ell \gamma b \not \! E_T$
	²² AALTONEN	09G	CDF	$\ell\ell\ell E_T$

- ¹ SIRUNYAN 20A search for SUSY and LQ production using mT2 or presence of long-lived charged particle; no signal, limits placed in various mass planes for different BSM scenarios and various assumed lifetimes. ² ALCANTARA 19 place limits on m(WIMPzilla=X) vs lifetime from upper bound on ultra
- high energy cosmic rays at Auger experiment: e.g. $\tau(X) \, < \,$ 4 $\times \, 10^{22}$ yr for m(X) =10¹⁶ GeV
- 3 PORAYKO 18 search for deviations in the residuals of pulsar timing data using PPTA. No signal observed. Limits set on fuzzy DM with 3 \times 10 $^{-24}$ $\,<$ m(DM) < 2 \times 10 $^{-22}$
- 4 AAD 15AT search for events with a top quark and mssing E $_T$ in pp collisions at E $_{\rm Cm}$
- = 8 TeV with *L* = 20.3 fb⁻¹. 5 KHACHATRYAN 15F search for events with a top quark and mssing E_T in pp collisions at $E_{\rm cm}$ = 8 TeV with L = 19.7 fb⁻¹.
- ⁶AALTONEN 14J examine events with a W and two jets in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV with L= 8.9 fb $^{-1}$. Invariant mass distributions of the two jets are consistent with the Standard Model expectation.
- ⁷AAD 13A search for resonant WW production in pp collisions at $E_{\rm cm}$ = 7 TeV with L $4.7 \ {\rm fb}^{-1}$.
- 8 AAD 13C search for events with a photon and missing $\not\!\!E_{T}$ in pp collisions at $E_{\rm cm}=7$ TeV with L = 4.6 fb $^{-1}$.
- TeV with L = 4.6 rb 9 AALTONEN 13 search for events with a photon and missing E_T , where the photon is detected after the expected timing, in $\rho\overline{\rho}$ collisions at $E_{\rm CM} = 1.96$ TeV with L = 6.3 ${\rm fb}^{-1}.$ The data are consistent with the Standard Model expectation.
- ¹⁰ CHATRCHYAN 13 search for events with an opposite-sign lepton pair, jets, and missing E_T in *pp* collisions at $E_{cm} = 7$ TeV with L = 4.98 fb⁻¹.
- ¹¹AAD 12C search for events with a $t\bar{t}$ pair and missing $\not\!\!E_T$ in pp collisions at $E_{\rm cm}=7$ TeV with L = 1.04 fb⁻¹. ¹²AALTONEN 12M search for events with a jet and missing E_T in $p\overline{p}$ collisions at E_{cm}
- = 1.96 TeV with L = 6.7 fb⁻¹. ¹³ CHATRCHYAN 12AP search for events with a jet and missing E_T in pp collisions at
- $E_{\rm cm}$ = 7 TeV with L = 5.0 fb⁻¹.
- 14 CHATRCHYAN 12Q search for events with a Z, jets, and missing $\not\!\!\!E_T$ in pp collisions at $E_{\rm cm}$ = 7 TeV with L = 4.98 fb⁻¹.
- ¹⁵ CHATRCHYAN 12T search for events with a photon and missing E_T in pp collisions at $E_{\rm cm}$ = 7 TeV with L = 5.0 fb⁻¹.
- $^{16}\mathrm{AAD}$ 11s search for events with one jet and missing E_T in pp collisions at E_{cm} = 7 TeV with $L = 33 \text{ pb}^{-1}$.
- $^{17}\rm AALTONEN$ 11AF search for high- p_T like-sign dileptons in $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV with $L = 6.1 \text{ fb}^{-1}$.
- ^{1.96} IeV with L = 6.1 ib ⁻. ¹⁸ CHATRCHYAN 11C search for events with an opposite-sign lepton pair, jets, and missing E_T in pp collisions at $E_{cm} = 7$ TeV with L = 34 pb⁻¹.
- ¹⁹ CHATRCHYAN 110 search for events with one jet and missing E_T in pp collisions at $E_{\rm cm}$ = 7 TeV with L = 36 pb⁻¹.
- ²⁰AALTONEN 10AF search for $\gamma\gamma$ events with e, μ , τ , or missing E_T in $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV with L = 1.1-2.0 fb⁻¹.
- 21 AALTONEN 09AF search for $\ell\gamma b$ events with missing E_T in $p\overline{p}$ collisions at $E_{
 m cm}$ = 1.96 TeV with L = 1.9 fb⁻¹. The observed events are compatible with Standard Model expectation including $t \, \overline{t} \gamma$ production.
- ²²AALTONEN 09G search for $\mu\mu\mu$ and $\mu\mu e$ events with missing E_T in $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV with L = 976 pb⁻¹

LIMITS ON JET-JET RESONANCES

Heavy Particle Production Cross Section

Limits are for a particle decaying to two hadronic jets.							
nits(pb)	CL%	Mass(GeV)		DOCUMENT ID		TECN	COMMENT
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$ $ullet$							
			1	AABOUD	19aj	ATLS	$pp \rightarrow \gamma X, X \rightarrow jj$
			2	SIRUNYAN	19в	CMS	$pp \rightarrow jA, A \rightarrow b\overline{b}$
			3	SIRUNYAN	19CD	CMS	$pp \rightarrow Z'\gamma, Z' \rightarrow jj$
			4	AABOUD	18ad	ATLS	$pp \rightarrow Y \rightarrow HX \rightarrow (bb) + (ag)$
			5	AABOUD	18ck	ATLS	$pp \rightarrow bbb + E_T$
			6	AABOUD	18 CI	ATLS	$pp \rightarrow \text{vector-like guarks}$
			7	AABOUD	18N	ATLS	$pp \rightarrow ii$ resonance
			8	SIRUNYAN	18D.	CMS	$pp \rightarrow ZZ \text{ or } WZ \rightarrow \ell \overline{\ell} i i$
			9	SIRUNYAN	18DY	CMS	$pp \rightarrow RR; R \rightarrow ii$
			10	KHACHATRY	.17w	CMS	$pp \rightarrow ii$ resonance
			11	KHACHATRY	.17Y	CMS	$pp \rightarrow (8-10) i + E_T$
			12	SIRUNYAN	17F	CMS	$pp \rightarrow ii$ angular distribution
			13	AABOUD	16	ATLS	$pp \rightarrow b + \text{iet}$
			14	AAD	16N	ATLS	$pp \rightarrow 3$ high E_{T} jets
			15	AAD	165	ATLS	$pp \rightarrow ii$ resonance
			16	KHACHATRY	.16ĸ	CMS	$pp \rightarrow ii$ resonance
			17	KHACHATRY.	16	CMS	$pp \rightarrow ii$ resonance
			18	AAD	13D	ATLS	7 TeV $pp \rightarrow 2$ jets
			19	AALTONEN	13R	CDE	1.96 TeV $n\overline{p} \rightarrow 4$ jets
			20	CHATRCHYAN	134	CMS	7 TeV $nn \rightarrow 2$ jets
			21	CHATRCHYAN	13A	CMS	7 TeV $pp \rightarrow b\overline{b}X$
			22	AAD	125	ATLS	7 TeV $pp \rightarrow 2$ jets
			23	CHATRCHYAN	12BL	CMS	7 TeV $pp \rightarrow t\bar{t}x$
			24	AAD	11AG	ATLS	7 TeV $pp \rightarrow 2$ jets
			25	AALTONEN	11 M	CDF	1.96 TeV $p\overline{p} \rightarrow W+2$ jets
			26	ABAZOV	111	D0	1.96 TeV $p\overline{p} \rightarrow W+2$ jets
			27	AAD	10	ATLS	7 TeV $pp \rightarrow 2$ jets
			28	KHACHATRY	.10	CMS	7 TeV $pp \rightarrow 2$ jets
			29	ABE	99F	CDF	1.8 TeV $p\overline{p} \rightarrow b\overline{b}$ + anything
			30	ABE	97G	CDF	1.8 TeV $p\overline{p} \rightarrow 2$ jets
<2603	95	200	31	ABE	93G	CDF	1.8 TeV $p\overline{p} \rightarrow 2$ jets
< 44	95	400	31	ABE	93 G	CDF	1.8 TeV $n\overline{p} \rightarrow 2$ jets
< 7	95	600	31	ABE	93G	CDF	1.8 TeV $p\overline{p} \rightarrow 2$ jets

¹AABOUD 19AJ search for low mass dijet resonance in $pp \rightarrow \gamma X$, $X \rightarrow jj$ at 13 TeV with 79.8 fb⁻¹ of data; no signal found; limits placed on Z' model in coupling vs. m(Z')plane.

- ² SIRUNYAN 19B search for low mass resonance $pp \rightarrow jA$, $A \rightarrow b\overline{b}$ at 13 TeV using 35.9 fb^{-1} ; no signal; exclude resonances 50–350 GeV depending on production and decay.
- ³ SIRUNYAN 19CD search for $pp \rightarrow Z'\gamma$, $Z' \rightarrow jj$ with fat jet (jj); no signal, limits placed in m(Z') vs. coupling plane for Z' masses from 10 to 125 GeV.
- ⁴ AABOUT 18AD search for new heavy particle $Y \rightarrow HX \rightarrow (bb) + (qq)$. No signal observed. Limits set on m(Y) vs. m(X) in the ranges of m(Y) in 1–4 TeV and m(X) in 50-1000 GeV
- 5 AABOUD 18CK search for SUSY Higgsinos in gauge-mediation via $\it{pp}
 ightarrow \it{bbb} + \not{\!\!E_T}$ at 13 TeV using two complementary analyses with 24.3/36.1 fb⁻¹; no signal is found and Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95% confidence level.
- ⁶ AABOUD 18CL search for *pp* → vector-like quarks \rightarrow jets at 13 TeV with 36 fb⁻¹; no signal seen; limits set on various VLQ scenarios. For pure $B \rightarrow Hb$ or $T \rightarrow Ht$, set the mass limit m > 1010 GeV.
- 7 AABOUD 18N search for dijet resonance at Atlas with 13 TeV and 29.3 fb $^{-1}$; limits set on m(Z') in the mass range of 450-1800 GeV.
- ⁸ SIRUNYAN 18DJ search for $pp \rightarrow ZZ$ or $WZ \rightarrow \ell \overline{\ell} j j$ resonance at 13 TeV, 35.9 fb⁻¹; no signal; limits set in the 400–4500 GeV mass range, exclusion of W' up to 2270 GeV in the HVT model A, and up to 2330 GeV for HVT model B. WED bulk graviton exclusion up to 925 GeV.
- 9 SIRUNYAN 18DY search for $pp \rightarrow RR$; $R \rightarrow jj$ two dijet resonances at 13 TeV 35.9 fb^{-1} ; no signal; limits placed on RPV top-squark pair production.
- 10 KHACHATRYAN 17w search for dijet resonance in 12.9 fb $^{-1}$ data at 13 TeV; see Fig. 2 for limits on axigluons, diquarks, dark matter mediators etc.
- ¹¹ KHACHATRYAN ITY search for $p \rightarrow (8-10)$ j in 19.7 fb⁻¹ at 8 TeV. No signal seen. Limits set on colorons, axigluons, RPV, and SUSY.
- ¹² SIRUNYAN 17F measure $pp \rightarrow jj$ angular distribution in 2.6 fb⁻¹ at 13 TeV; limits set on LEDs and quantum black holes.
- $^{13}\mathrm{AABOUD}$ 16 search for resonant dijets including one or two b-jets with 3.2 fb $^{-1}$ at 13 TeV; exclude excited b^* quark from 1.1–2.1 TeV; exclude leptophilic Z^\prime with SM couplings from 1.1-1.5 TeV.
- to be a search for \geq 3 jets with 3.6 fb⁻¹ at 13 TeV; limits placed on micro black holes (Fig. 10) and string balls (Fig. 11).
- ¹⁵ AAD 165 search for high mass jet-jet resonance with 3.6 fb⁻¹ at 13 TeV; exclude portions of excited quarks, W', Z' and contact interaction parameter space.
- $^{16}\,\rm KHACHATRYAN$ 16K search for dijet resonance in 2.4 fb $^{-1}$ data at 13 TeV; see Fig. 3 for limits on axigluons, diquarks etc. ¹⁷ KHACHATRYAN 16L use data scouting technique to search for *jj* resonance on 18.8
- $\rm fb^{-1}$ of data at 8 TeV. Limits on the coupling of a leptophobic Z' to quarks are set, improving on the results by other experiments in the mass range between 500–800 GeV.
- ¹⁸AAD 13D search for dijet resonances in pp collisions at $E_{\rm cm}=$ 7 TeV with L= 4.8 fb^{-1} . The observed events are compatible with Standard Model expectation. See their Fig. 6 and Table 2 for limits on resonance cross section in the range m = 1.0-4.0 TeV.
- ¹⁹AALTONEN 13R search for production of a pair of jet-jet resonances in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV with L = 6.6 fb⁻¹. See their Fig. 5 and Tables I, II for cross section limits.
- ²¹ CHATRCHYAN 13A search for $b\overline{b}$ resonances in pp collisions at $E_{\rm CM} = 7$ TeV with L = 4.8 fb $^{-1}$. See their Fig. 8 and Table 4 for limits on resonance cross section in the range m = 1.0-4.0 TeV.
- ^{22}AAD 12s search for dijet resonances in pp collisions at $E_{\rm cm} = 7$ TeV with L = 1.0 ${\rm fb}^{-1}.$ See their Fig. 3 and Table 2 for limits on resonance cross section in the range m0.9-4.0 TeV
- ²³ CHATRCHYAN 12BL search for $t\bar{t}$ resonances in pp collisions at $E_{\rm cm} = 7$ TeV with L = 4.4 fb⁻¹. See their Fig. 4 for limits on resonance cross section in the range m = 0.5–3.0 TeV.
- ²⁴ AD 11AG search for dijet resonances in *pp* collisions at $E_{\rm CM} = 7$ TeV with L = 36 pb⁻¹. Limits on number of events for m = 0.6-4 TeV are given in their Table 3.
- 25 AALTONEN 11M find a peak in two jet invariant mass distribution around 140 GeV in W + 2 jet events in $ho \, \overline{
 ho}$ collisions at $E_{
 m cm}$ = 1.96 TeV with L = 4.3 fb $^{-1}$
- ²⁶ABAZOV 111 search for two-jet resonances in W + 2 jet events in $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV with L = 4.3 fb⁻¹ and give limits $\sigma < (2.6-1.3)$ pb (95% CL) for m = 110-170 GeV. The result is incompatible with AALTONEN 11M.
- 27 AAD 10 search for narrow dijet resonances in pp collisions at $E_{\rm cm}$ = 7 TeV with L = 315 nb $^{-1}$. Limits on the cross section in the range 10–10³ pb is given for m =
- ²⁸ KHACHATRYAN 10 search for narrow dijet resonances in pp collisions at $E_{cm} = 7 \text{ TeV}$ with L = 2.9 pb⁻¹. Limits on the cross section in the range 1–300 pb is given for m = 0.5–2.6 TeV separately in the final states qq, qg, and gg.
- ²⁹ABE 99F search for narrow $b\overline{b}$ resonances in $p\overline{p}$ collisions at $E_{\rm cm}$ =1.8 TeV. Limits on $\sigma(p\overline{p} \rightarrow X + anything) \times B(X \rightarrow b\overline{b})$ in the range 3-10³ pb (95%CL) are given for $m_X = 200-750$ GeV. See their Table I.
- ³⁰ABE 97G search for narrow dijet resonances in $p\overline{p}$ collisions with 106 pb⁻¹ of data at $E_{\rm CM}=$ 1.8 TeV. Limits on $\sigma(p\,\overline{p}
 ightarrow X+$ anything) ${
 m B}(X
 ightarrow jj)$ in the range 10^4 – 10^{-1} pb (95%CL) are given for dijet mass m=200–1150 GeV with both jets having $|\eta|<$ 2.0 and the dijet system having $|\cos\theta^*| < 0.67$. See their Table I for the list of limits. Supersedes ABE 93G
- The Fourier of the second section times branching ratio into light (d, u, s, c, b) quarks for $\Gamma = 0.02 M$. Their Table II gives limits for M = 200-900 GeV and $\Gamma = (0.02-0.2) M$.

LIMITS ON NEUTRAL PARTICLE PRODUCTION

Production Cross Section of Radiatively-Decaying Neutral Particle

VALUE (pb)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following	data for averages, fits,	limits, e	tc. • • •
<0.0008	95	¹ ALBERT 18C ² KHACHATRY17D ³ AAD 16AI	HAWC CMS ATLS	γ from Sun $Z\gamma$ resonance $pp \rightarrow \gamma + jet$
<(0.043-0.17)	95	⁴ KHACHATRY16M ⁵ ABBIENDI 00D	CMS OPAL	$pp \rightarrow \gamma\gamma$ resonance $e^+ e^- \rightarrow X^0 Y^0$,
<(0.05-0.8)	95	⁶ ABBIENDI 00D	OPAL	$\begin{array}{ccc} X^0 \to & Y^0 \gamma \\ e^+ e^- \to & X^0 X^0, \\ & & & & & \\ & & & & & \\ \end{array}$
<(2.5-0.5)	95	⁷ ACKERSTAFF 97B	OPAL	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
<(1.6-0.9)	95	⁸ ACKERSTAFF 97B	OPAL	$e^+ e^- \rightarrow X^0 X^0, \\ X^0 \rightarrow Y^0 \gamma$

 1 ALBERT 18c search for WIMP annihilation in Sun to long-lived, radiatively decaying mediator; no signal; limits set on $\sigma^{SD}(\chi p)$ assuming long-lived mediator. 2 KHACHATRYAN 17D search for new scalar resonance decaying to Z γ with Z $ightarrow e^+ e^-$,

 $\mu^+\mu^-$ in pp collisions at 8 and 13 TeV; no signal seen.

- ³AAD 16AI search for excited quarks (EQ) and quantum black holes (QBH) in 3.2 fb⁻¹ at 13 TeV of data; exclude EQ below 4.4 TeV and QBH below 3.8 (6.2) TeV for RS1 (ADD) models. The visible cross section limit was obtained for 5 TeV resonance with $\sigma_G/\dot{M_G} = 2\%.$
- 4 KHACHATRYAN 16M search for $\gamma\gamma$ resonance using 19.7 fb $^{-1}$ at 8 TeV and 3.3 fb $^{-1}$ at 13 TeV; slight excess at 750 GeV noted; limit set on RS graviton.
- ⁵ABBIENDI 00D associated production limit is for $m_{\chi^0} = 90-188$ GeV, $m_{\chi^0} = 0$ at $E_{\rm cm}{=}189~{\rm GeV}.$ See also their Fig. 9.
- ⁶ ABBIENDI 00D pair production limit is for $m_{\chi^0} = 45-94$ GeV, $m_{\chi^0} = 0$ at $E_{\rm cm} = 189$ GeV. See also their Fig. 12.
- ⁷ACKERSTAFF 97B associated production limit is for $m_{\chi^0} = 80-160$ GeV, $m_{\chi^0}=0$ from
- 10.0 pb $^{-1}$ at $E_{\rm CM}$ = 161 GeV. See their Fig. 3(a). 8 ACKERSTAFF 97B pair production limit is for m_{X^0} = 40–80 GeV, m_{Y^0} =0 from 10.0 pb $^{-1}$ at $E_{\rm CM}$ = 161 GeV. See their Fig. 3(b).

Heavy Particle Production Cross Section

VALUE (cm ² /N)	CL% DOCUMENT ID	TE	ECN COI	MMENT
•••We do not use t	he following data for aver	ages, fits,	, limits, et	ic. • • •
	¹ AABOUD	19H AT	TLS di-p	ohoton-jet resonance
	² aaboud	19V AT	TLS AT	LAS review, mediator-
	³ sirunyan	190 CI	MS pp	$\rightarrow \gamma E_T$
	⁴ AABOUD	18cj AT	TLS pp	$\rightarrow VV/\ell\ell/\ell\nu, V =$
	⁵ AABOUD	18cm AT	TLS pp	$\rightarrow e \mu / e \tau / \mu \tau$
	⁶ A A I J	18AJ LH	НСВ рр	$\rightarrow A' \rightarrow \mu^+ \mu^-;$
				dark photon
	⁷ BANER JEE	18 N/	A64 eZ	$\rightarrow e Z X (A')$
	⁸ BANER JEE	18A N/	A64 eZ	$\rightarrow e Z A', A' \rightarrow \chi \chi$
	⁹ MARSICANO	18 E1	137 e ⁺	$e^- \rightarrow A'(\gamma)$ visible
				decav

Searches Particle Listings Other Particle Searches

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			¹⁰ SIRU NYA N	18bb	CMS	$p p \rightarrow Z' \rightarrow \ell^+ \ell^-$ at 13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			¹¹ SIRUNYAN	18da	CMS	$pp \rightarrow Black Hole, string hall sphaleron$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			12 SIRU NYA N 13 SIRU NYA N 14 SIRU NYA N	18dd 18dr 18du	CMS CMS CMS	$pp \rightarrow jj$ $pp \rightarrow b\mu\overline{\mu}$ $pp \rightarrow \gamma\gamma$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			¹⁵ SIRU NYA N	18ed	CMS	$pp \rightarrow V \rightarrow Wh; h \rightarrow h$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			¹⁶ AABOUD	17в	ATLS	WH, ZH resonance
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			17 AAIJ	17br	LHCB	$pp \rightarrow \pi_{V}\pi_{V}, \pi_{V} \rightarrow jj$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			¹⁸ AAD	160	ATLS	$\ell + (\ell s \text{ or jets})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			¹⁹ AAD	16R	ATLS	WW.WZ.ZZ resonance
$\begin{array}{cccccc} & X(17) \rightarrow e^+e^- \\ & 21 \ \text{LES} & 15 \text{E} & \text{BABR} & e^+e^- \ \text{collisions} \\ 22 \ \text{ADAMS} & 97 \text{B} & \text{KTEV} & m=1.2\text{-}5 \ \text{GeV} \\ < 10^{-36}\text{-}10^{-33} & 90 & 23 \ \text{GALLAS} & 95 & \text{TOF} & m=0.5\text{-}20 \ \text{GeV} \\ < (4\text{-}0.3) \times 10^{-31} & 95 & 24 \ \text{AKESSON} & 91 & \text{CNTR} & m=0\text{-}5 \ \text{GeV} \\ < 2 \ \times 10^{-36} & 90 & 25 \ \text{BADIER} & 86 & \text{BDMP} \ \tau = (0.05\text{-}1.) \times 10^{-8}\text{s} \\ < 2.5 \times 10^{-35} & 26 \ \text{GUSTAFSON} & 76 & \text{CNTR} \ \tau \ > 10^{-7} \ \text{s} \end{array}$			²⁰ KRASZNAHO.	.16		$p^{7}\text{Li} \rightarrow {}^{8}\text{Be} \rightarrow X(17) N$,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						$X(17) \rightarrow e^+ e^-$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			²¹ LEES	15e	BABR	e^+e^- collisions
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			²² ADAMS	97B	KTEV	m= 1.2-5 GeV
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$< 10^{-36} - 10^{-33}$	90	²³ GALLAS	95	TOF	m= 0.5-20 GeV
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$<(4-0.3)\times10^{-31}$	95	²⁴ AKESSON	91	CNTR	m = 0-5 GeV
$<2.5 \times 10^{-35}$ 26 GUSTAFSON 76 CNTR τ $> 10^{-7}$ s	$<2 \times 10^{-36}$	90	²⁵ BADIER	86	BDMP	$\tau = (0.05 - 1.) \times 10^{-8} s$
	${<}2.5\times10^{-35}$		²⁶ GUSTAFSON	76	CNTR	$ au$ $> 10^{-7}$ s

 1 AABOUD 19H searches for di-photon-jet resonance at 13 TeV and 36.7 fb $^{-1}$ of data; no signal found and limits placed on $\sigma\cdot\text{BR}$ vs. mass plane for various simplified models.

- ²AABOUD 19v review ATLAS searches for mediator-based DM at 7, 8, and 13 TeV with up to $37\,{\rm fb}^{-1}$ of data; no signal found and limits set for wide variety of simplified models of dark matter.
- of dark matter. Since the search for $pp \to \gamma \, E_T$ at 13 TeV with 36.1 fb $^{-1}$; no signal found and limits set for various simplified models.
- ⁴AABOUD 18CJ make multichannel search for $pp \rightarrow VV/\ell\ell/\ell\nu$, V = W,Z,h at 13 TeV, 36.1 fb $^{-1}$; no signal found; limits placed for several BSM models.
- ⁵ AABOUD 18CM search for lepton-flavor violating resonance in $pp \rightarrow e\mu/e\tau/\mu\tau$ at 13 TeV, 36.1 $\rm fb^{-1}$; no signal is found and limits placed for various BSM models.
- ⁶ AAJJ IBAJ search for prompt and delayed dark photon decay $A' \rightarrow \mu^+\mu^-$ at LHCb detector using 1.6 fb⁻¹ of *pp* collisions at 13 TeV; limits on m(A') vs. kinetic mixing
- ⁷BANERJEE 18 search for dark photon A'/16.7 MeV boson X at NA64 via $eZ \rightarrow$ eZX(A'); no signal found and limits set on the X- e^- coupling ϵ_e in the range $1.3 \times 10^{-4} \le \epsilon_e \le 4.2 \times 10^{-4}$ excluding part of the allowed parameter space.
- 8 BANERJEE 18A search for invisibly decaying dark photons in $eZ \rightarrow eZA'$, $A' \rightarrow$ invisible; no signal found and limits set on mixing for m(A') < 1 GeV.
- ⁹ MARSICANO 18 search for dark photon $e^+e^- \rightarrow A'(\gamma)$ visible decay in SLAC E137 e beam dump data. No signal observed and limits set in ϵ coupling vs m(A') plane, see their figure 7
- $^{10}\,{
 m SIRUNYAN}$ 18BB search for high mass dilepton resonance; no signal found and exclude portions of p-space of Z', KK graviton models.
- portions of p space of 2, the gradient and the string ball, sphaleron via high multiplicity events at 13 TeV, 35.9 fb⁻¹; no signal, require e.g. m(BH) > 10.1 TeV.
- ¹² SIRUNYAN 18DD search for $pp \rightarrow jj$ deviations in dijet angular distribution. No signal observed. Set limits on large extra dimensions, black holes and DM mediators e.g. m(BH) > 5.9-8.2 TeV.
- ¹³SIRUNYAN 18DR search for dimuon resonance in $pp
 ightarrow b \mu \overline{\mu}$ at 8 and 13 TeV. Slight excess see at m($\mu p \sim 28$ GeV in some channels. ¹⁴ SIRUNYAN 18DU search for high mass diphoton resonance in $pp \rightarrow \gamma\gamma$ at 13 TeV using
- 35.9 fb⁻¹; no signal; limits placed on RS Graviton, LED, and clockwork. ¹⁵ SIRUNYAN 18ED search for $pp \rightarrow V \rightarrow Wh$; $h \rightarrow b \overline{b}$; $W \rightarrow \ell \nu$ at 13 TeV with
- 35.9 fb⁻¹; no signal; limits set on m(W') > 2.9 TeV. 16 AABOUD 17B exclude m(W', Z') < 1.49–2.31 TeV depending on the couplings and
- W'/Z' degeneracy assumptions via WH, ZH search in pp collisions at 13 TeV with 3.2 fb^{-1} of data.
- $^{17}\mathrm{AAIJ}\,^{17}\mathrm{BR}$ search for long-lived hidden valley pions from Higgs decay. Limits are set on the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4.
- ¹⁸AAD 160 search for high $E_T \ell + (\ell \text{s or jets})$ with 3.2 fb⁻¹ at 13 TeV; exclude micro black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions. ¹⁹AAD 16R search for *WW*, *WZ*, *ZZ* resonance in 20.3 fb⁻¹ at 8 TeV data; limits placed
- on massive RS graviton (Fig. 4).
- ²⁰ KRASZNAHORKAY 16 report $pLi \rightarrow Be \rightarrow e\overline{e}N 5\sigma$ resonance at 16.7 MeV- possible evidence for nuclear interference or new light boson . However, such nuclear interference was ruled out already by ZANG 17.
- $^{21}\,{\sf LEES}$ 15E search for long-lived neutral particles produced in e^+e^- collisions in the Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits.
- 22 ADAMS 97B search for a hadron-like neutral particle produced in p N interactions, which decays into a ho^0 and a weakly interacting massive particle. Upper limits are given for the actions of production for the mass range 1.2–5 GeV and lifetime 10^{-9} – 10^{-4} s. See also our Light Gluino Section.
- also our Light Guillo Section. 2^{23} GALLAS 95 limit is for a weakly interacting neutral particle produced in 800 GeV/*c p N* interactions decaying with a lifetime of 10^{-4} – 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm². See Fig. 10.
- ²⁴ AKESSON 91 limit is from weakly interacting neutral long-lived particles produced in pN reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $\tau > 10^{-7}$ s. For $\tau > 10^{-9}$ s, $\sigma < 10^{-30} \, \mathrm{cm}^{-2}/\mathrm{nucleon}$ is obtained.
- 25 BADIER 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-X$, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode.

2088 Searches Particle Listings **Other Particle Searches**

 26 GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m >2 GeV) longlived neutral hadrons in the M4 neutral beam. The above typical value is for m = 3 GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and interaction cross section are given in figure 2.

Production of New Penetrating Non-v Like States in Beam Dump

DOCUMENT ID TECN COMMENT VALUE \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

¹ LOSECCO 81 CALO 28 GeV protons

¹ No excess neutral-current events leads to σ (production) $\times \sigma$ (interaction) \times acceptance $<2.26\times 10^{-71}~\text{cm}^4/\text{nucleon}^2$ (CL = 90%) for light neutrals. Acceptance depends on models (0.1 to $4. \times 10^{-4}$).

LIMITS ON CHARGED PARTICLES IN e+ e-

Heavy Particle Production Cross Section in e^+e^-

Ratio to $\sigma(e^+e^-
ightarrow \mu^+\mu^-)$ unless noted. See also entries in Free Quark Search and Magnetic Monopole Searches.

VALUE	CL 70	DOCUMENTID		TECN	COMMENT
• • • We do not us	e the follo	owing data for avera	ages, f	iits, limit	is, etc. • • •
		¹ KILE	18	ALEP	$e^+ e^- \rightarrow 4$ jets
$<1 \times 10^{-3}$	90	² ABLIKIM	17aa	BES3	$e^+ e^- \rightarrow \ell \overline{\ell} \gamma$
		³ ACKERSTAFF	98P	OPAL	Q=1,2/3, m=45-89.5 GeV
		⁴ ABREU	97d	DLPH	Q=1,2/3, m=45-84 GeV
		⁵ BARATE	97ĸ	ALEP	Q=1, m=45-85 GeV
$<2 \times 10^{-5}$	95	⁶ AKERS	95r	OPAL	Q=1, m= 5-45 GeV
$<1 \times 10^{-5}$	95	⁶ AKERS	95r	OPAL	Q=2, m=5-45 GeV
$<2 \times 10^{-3}$	90	⁷ BUSKULIC	93c	ALEP	Q=1, m=32-72 GeV
$<(10^{-2}-1)$	95	⁸ ADACHI	90c	TOPZ	Q=1, m=1-16, 18-27 GeV
$< 7 \times 10^{-2}$	90	⁹ ADACHI	90e	TOPZ	Q = 1, m = 5-25 GeV
$< 1.6 \times 10^{-2}$	95	¹⁰ KINOSHITA	82	PLAS	Q=3-180, m <14.5 GeV
$< 5.0 \times 10^{-2}$	90	¹¹ BARTEL	80	JADE	Q=(3,4,5)/3 2-12 GeV
1					

 1 KILE 18 investigate archived ALEPH $e^+ e^-
ightarrow$ 4 jets data and see 4–5 σ excess at 110 GeV 2 ABLIKIM 17AA search for dark photon $A \rightarrow \ell \overline{\ell}$ at 3.773 GeV with 2.93 fb⁻¹. Limits

- are set in ϵ vs m(A) plane. ³ACKERSTAFF 98P search for pair production of long-lived charged particles at $E_{\rm CM}$ between 130 and 183 GeV and give limits $\sigma < (0.05-0.2)$ pb (95%CL) for spin-0 and spin-1/2 particles with m=45-89.5 GeV, charge 1 and 2/3. The limit is translated to the
- cross section at $E_{
 m cm}$ =183 GeV with the s dependence described in the paper. See their Figs. 2-4. ⁴ABREU 97D search for pair production of long-lived particles and give limits
- σ <(0.4–2.3) pb (95%CL) for various center-of-mass energies $E_{\rm CM}$ =130–136, 161, and 172 GeV, assuming an almost flat production distribution in $\cos\theta$.
- BARATE 97k search for pair production of thought on the production of the production of the production of thought on the production of thought on the production of thought on the production of thought on the production of the production of thought on the production of the producti
- 6 AKERS 95R is a CERN-LEP experiment with W $_{
 m Cm}~\sim~m_Z$. The limit is for the production of a stable particle in multihadron events normalized to $\sigma(e^+e^- \rightarrow hadrons)$. Constant phase space distribution is assumed. See their Fig. 3 for bounds for $Q=\pm 2/3$, +4/3.
- 7 BUSKULIC 93c is a CERN-LEP experiment with $W_{cm} = m_Z$. The limit is for a pair or single production of heavy particles with unusual ionization loss in TPC. See their Fig.5 and Table 1.
- and rable 1. 8 ADACH 90c is a KEK-TRISTAN experiment with $W_{cm} = 52-60$ GeV. The limit is for pair production of a scalar or spin-1/2 particle. See Figs. 3 and 4. 9 ADACHI 90E is KEK-TRISTAN experiment with $W_{cm} = 52-61.4$ GeV. The above limit
- is for inclusive production cross section normalized to $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \cdot \beta(3-\beta^2)/2$, where $\beta = (1 4m^2/W_{cm}^2)^{1/2}$. See the paper for the assumption about the production probability
- mechanism. 10 KINOSHITA 82 is SLAC PEP experiment at $W_{\rm CM}=$ 29 GeV using lexan and $^{39}{\rm Cr}$ plastic sheets sensitive to highly ionizing particles.
- BARTEL 80 is DESYPETRA experiment with W_{Cm} = 27-35 GeV. Above limit is for inclusive pair production and ranges between $1. \times 10^{-1}$ and $1. \times 10^{-2}$ depending on mass and production momentum distributions. (See their figures 9, 10, 11).

Branching Fraction of Z^0 to a Pair of Stable Charged Heavy Fermions

VALUE		CL%	DOCUMENT ID		TECN	COMMENT
• • •	We do not use the	following	data for averages	, fits,	limits, e	etc. • • •
<5 $ imes$	10-6	95	¹ AKERS	95 R	OPAL	m= 40.4-45.6 GeV

 $<1 \times 10^{-3}$ AKRAWY 900 OPAL m = 29-40 GeV 95 $1\,\rm AKERS\,95\,R$ give the 95% CL limit $\sigma(X\,\overline{X})/\sigma(\mu\,\mu) < 1.8 \times 10^{-4}$ for the pair production of singly- or doubly-charged stable particles. The limit applies for the mass range 40.4–45.6 GeV for X^{\pm} and < 45.6 GeV for $X^{\pm\pm}$. See the paper for bounds for $Q = \pm 2/3, \pm 4/3$.

LIMITS ON CHARGED PARTICLES IN HADRONIC REACTIONS

MASS LIMITS for Long-Lived Charged Heavy Fermions

Limits are for spin 1/2 particles with no color and $SU(2)_L$ charge. The electric charge Q of the particle (in the unit of e) is therefore equal to its weak hypercharge. Pair production by Drell-Yan like γ and Z exchange is assumed to derive the limits.

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	e following	data for averages,	fits, limits, e	tc. • • •
>660	95	¹ AAD 1	5bj ATLS	Q = 2
>200	95	² CHATRCHYAN1	3AB CMS	Q = 1/3
>480	95	² CHATRCHYAN1	3AB CMS	Q = 2/3
>5 74	95	² CHATRCHYAN1	3AB CMS	Q = 1
>685	95	² CHATRCHYAN1	3AB CMS	Q = 2
>140	95	³ CHATRCHYAN1	3AR CMS	Q = 1/3
>310	95	³ CHATRCHYAN1	3AR CMS	Q = 2/3
¹ AAD 15BJ use 20.3 f	b^{-1} of pp	collisions at Ecm	= 8 TeV. See	e paper for limits for $ Q $

cm pape = 3.4.5.6. $^2\,{\rm CHATRCHYA\,N}$ 13AB use 5.0 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}$ = 7 TeV and 18.8 fb $^{-1}$ at

- $E_{\rm cm} = 8$ TeV. See paper for limits for |Q| = 3, 4, ..., 8.
- ³ CHATRCHYAN 13AR use 5.0 fb⁻¹ of pp collisions at $E_{\rm cm}$ = 7 TeV.

Heavy Particle Production Cross Section

VALUE (nb)	CL% DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not use	the following data for aver	ages,	fits, lim	its, etc. 🔹 🔹 🔹
	¹ AABOUD	19AA	ATLS	BSM search
	² AABOUD	19Q	ATLS	single top +MET
	³ aaboud	17D	ATLS	anomalous WWjj, WZjj
	⁴ AABOUD	17L	ATLS	$m > 870$ GeV, $Z(\rightarrow \nu \nu) tX$
	⁵ SIRUNYAN	17в	CMS	tH
	⁶ sirunyan	17c	CMS	Z + (t or b)
	⁷ SIRUNYAN	17J	CMS	$X_{5/3} \rightarrow t W$
	⁸ AAIJ	15 bd	LHCB	m=124-309 GeV
	⁹ AAD	13ah	ATLS	q =(2-6) <i>e</i> , <i>m</i> =50-600 GeV
$< 1.2 \times 10^{-3}$	95 ¹⁰ aad	11)	ATLS	q =10e, m=0.2-1 TeV
$< 1.0 \times 10^{-5}$	95 ^{11,12} AALTONEN	09z	CDF	m>100 GeV, noncolored
$<4.8 \times 10^{-5}$	95 ^{11,13} AALTONEN	09z	CDF	m > 100 GeV, colored
$< 0.31 - 0.04 \times 10^{-3}$	95 ¹⁴ ABAZOV	09M	D0	pair production
<0.19	95 ¹⁵ AKTAS	04 C	H1	m=3-10 GeV
<0.05	95 ¹⁶ ABE	92J	CDF	m=50-200 GeV
< 30-130	¹⁷ CARROLL	78	SPEC	m=2-2.5 GeV
<100	¹⁸ LEIPUNER	73	CNTR	m=3-11 GeV

 1 AABOUD 19AA search for BSM physics at 13 TeV with 3.2 fb $^{-1}$ in $>10^5$ regions of > 700 event classes; no significant signal found.

- ²AABOUD 19Q search for single top+MET events at 13 TeV with 36.1 fb⁻¹ of data; no signal found and limits set in σ or coupling vs. mass plane for variety of simplified models including DM and vector-like top quark T.
- ³AABOUD 17D search for WWjj, WZjj in pp collisions at 8 TeV with 3.2 fb⁻¹; set limits on anomalous couplings.
- 4 AABOUD 17L search for the pair production of heavy vector-like au quarks in the Z(
 ightarrow $\nu\nu$) tX final state.
- 5 SIRUNYAN 17B search for vector-like quark $pp \rightarrow TX \rightarrow tHX$ in 2.3 fb $^{-1}$ at 13 TeV; no signal seen; limits placed. ⁶ SIRUNYAN 17c search for vector-like quark $pp \rightarrow TX \rightarrow Z + (t \text{ or } b)$ in 2.3 fb $^{-1}$
- at 13 TeV; no signal seen; limits placed.
- ⁷ SIRUNYAN 17J search for $pp \rightarrow X_{5/3}X_{5/3} \rightarrow tWtW$ with 2.3 fb⁻¹ at 13 TeV. No signal seen: m(X) > 1020 (990) GeV for RH (LH) new charge 5/3 quark.
- ⁸AAIJ 15BD search for production of long-lived particles in pp collisions at $E_{\rm cm}=$ 7 and 8 TeV. See their Table 6 for cross section limits. 9 AAD 13AH search for production of long-lived particles with |q|=(2-6)e in pp collisions
- at $E_{\rm cm} = 7$ TeV with 4.4 fb⁻¹. See their Fig. 8 for cross section limits.
- $E_{\rm CIII}$ = 7 TeV with L = 3.1 pb⁻¹. See their Table 5 for similar limits for |q| = 6e and 17e, Table 6 for limits on pair production cross section.
- ¹¹AALTONEN 09z search for long-lived charged particles in $p \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV with $\mathit{L}=1.0~\mathrm{fb}^{-1}.$ The limits are on production cross section for a particle of mass above 100 GeV in the region $\left|\eta\right|~\lesssim$ 0.7, $p_{T}>$ 40 GeV, and 0.4 $<\beta<$ 1.0.

 $^{12}\ensuremath{\mathsf{Limit}}$ for weakly interacting charge-1 particle.

- ¹³Limit for up-quark like particle.
- ¹⁴ABAZOV 09M search for pair production of long-lived charged particles in $p\overline{p}$ collisions at $E_{\rm Cm}$ = 1.96 TeV with L = 1.1 fb⁻¹. Limit on the cross section of (0.31–0.04) pb (95% CL) is given for the mass range of 60–300 GeV, assuming the kinematics of stau pair production.
- $^{15}{\rm AKTAS}$ 04c look for charged particle photoproduction at HERA with mean c.m. energy of 200 GeV. 16ABE 92J look for pair production of unit-charged particles which leave detector before
- decaying. Limit shown here is for $m{=}50$ GeV. See their Fig. 5 for different charges and stronger limits for higher mass. 2K + X Cross
- ¹⁷ CARROLL 78 look for neutral, S = -2 dihyperon resonance in $pp \rightarrow$ section varies within above limits over mass range and $p_{lab} = 5.1-5.9 \text{ GeV}/c$.
- 18 LEIPUNER 73 is an NAL 300 GeV p experiment. Would have detected particles with lifetime greater than 200 ns.

Heavy Particle Production Differential Cross Section

VALUE (cm ² sr ⁻¹ GeV ⁻¹)	CL%	DOCUMENT ID		TECN CH	G COMMENT
••• We do not	use the f	ollowing data for a	averag	es, fits, limit	is, etc. • • •
${<}2.6 imes10^{-36}$	90	¹ BALDIN	76	CNTR -	Q= 1, m=2.1-9.4 GeV
$<2.2 \times 10^{-33}$	90	² ALBROW	75	${\sf SPEC} \ \pm$	$Q=\pm1,\ m=$ 4-15 GeV
$< 1.1 \times 10^{-33}$	90	² ALBROW	75	$SPEC \pm$	$Q=$ \pm 2, $m=$ 6-27 GeV
$< 8. \times 10^{-35}$	90	³ JOVA NOV	75	CNTR \pm	m=15-26 GeV
$< 1.5 \times 10^{-34}$	90	³ JOVA NOV	75	$CNTR \pm$	$Q=\pm 2$, $m=3-10~{ m GeV}$
$< 6. \times 10^{-35}$	90	³ JOVA NOV	75	CNTR \pm	$Q=\pm 2$, $m=10-26~{ m GeV}$
$<1. \times 10^{-31}$	90	⁴ APPEL	74	CNTR \pm	m=3.2-7.2 GeV

eV CoV
ieV GeV

- 1 BALDIN 76 is a 70 GeV Serpukhov experiment. Value is per Al nucleus at $\theta=0$. For other charges in range -0.5 to -3.0, CL =90% limit is $(2.6\times 10^{-36})/[(charge)]$ for mass range (2.1-9.4 GeV) \times |(charge)]. Assumes stable particle interacting with matter as do antiprotons.
- $^2\rm ALBROW$ 75 is a CERN ISR experiment with $E_{\rm CM}$ = 53 GeV. θ = 40 mr. See figure 5 for mass ranges up to 35 GeV.
- 3 JOVANOVICH 75 is a CERN ISR 26+26 and 15+15 GeV pp experiment. Figure 4 covers ranges Q = 1/3 to 2 and m = 3 to 26 GeV. Value is per GeV momentum.
- ⁴ APPEL 74 is NAL 300 GeV pW experiment. Studies forward production of heavy (up to 24 GeV) charged particles with momenta 24-200 GeV (-charge) and 40-150 GeV (+charge). Above typical value is for 75 GeV and is per GeV momentum per nucleon.
- (+Charge). Above typical value is for 75 GeV and is per GeV momentum per nucleon ⁵ ALPER 73 is CERN ISR 26+26 GeV pp experiment. p > 0.9 GeV, $0.2 < \beta < 0.65$.
- ⁶ ANTIPOV 71B is from same 70 GeV p experiment as ANTIPOV 71C and BINON 69.
- ⁷ANTIPOV 71c limit inferred from flux ratio. 70 GeV p experiment as ANTIPOV 71c a
- ⁸ DORFAN 65 is a 30 GeV/c p experiment at BNL. Units are per GeV momentum per nucleus.

Long-Lived Heavy Particle Invariant Cross Section

VALUE (cm ² /GeV ² /N)	CL%	DOCUMENT ID		TECN	CHG	COMMENT
●●●Wedonotu	se the foll	lowing data for av	erages	, fits, lin	nits, et	. • • •
$< 5-700 \times 10^{-35}$	90	¹ BERNSTEIN	88	CNTR		
$< 5-700 \times 10^{-37}$	90	¹ BERNSTEIN	88	CNTR		
$<2.5 \times 10^{-36}$	90	² THRON	85	CNTR	_	Q=1, m=4-12 GeV
$<1. \times 10^{-35}$	90	² THRON	85	CNTR	+	Q=1, m=4-12 GeV
$< 6. \times 10^{-33}$	90	³ ARMITAGE	79	SPEC		m=1.87 GeV
$< 1.5 \times 10^{-33}$	90	³ ARMITAGE	79	SPEC		m=1.5-3.0 GeV
		⁴ BOZZOLI	79	CNTR	±	Q = (2/3, 1, 4/3, 2)
$<1.1 \times 10^{-37}$	90	⁵ CUTTS	78	CNTR		m=4-10 GeV
$< 3.0 \times 10^{-37}$	90	⁶ VIDAL	78	CNTR		m=4.5-6 GeV
1						

- ¹ BERNSTEIN 88 limits apply at x = 0.2 and $p_T = 0$. Mass and lifetime dependence of limits are shown in the regions: m = 1.5-7.5 GeV and $\tau = 10^{-8}-2 \times 10^{-6}$ s. First number is for hadrons; second is for weakly interacting particles.
- ² THRON 85 is FNAL 400 GeV proton experiment. Mass determined from measured velocity and momentum. Limits are for $\tau > 3 \times 10^{-9}$ s.
- ³ARMITAGE 79 is CERN-ISR experiment at $E_{\rm CR}$ = 53 GeV. Value is for x = 0.1 and p_T = 0.15. Observed particles at m = 1.87 GeV are found all consistent with being antideuterons.
- anticeuterons. ⁴ BOZZOLI 79 is CERN-SPS 200 GeV pN experiment. Looks for particle with τ larger than 10^{-8} s. See their figure 11–18 for production cross-section upper limits vs mass.
- that 10 ° s. See their right 11-16 for production cross-section upper limits vs mass. ⁵ CUTTS 78 is pBe experiment at FNAL sensitive to particles of $\tau > 5 \times 10^{-8}$ s. Value is for -0.3 <x <0 and $p_T = 0.175$.
- ⁶ VIDAL 78 is FNAL 400 GeV proton experiment. Value is for x = 0 and $p_T = 0$. Puts lifetime limit of $< 5 \times 10^{-8}$ s on particle in this mass range.
- Long-Lived Heavy Particle Production

$(\sigma(\text{Heavy Particle}) / \sigma(\pi))$

VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not use th	e followir	ng data for average	s, fits	, limits,	etc. •	••
<10-8		¹ NAKAMURA	89	SPEC	±	$Q = (-5/3, \pm 2)$
	0	² BUSSIERE	80	CNTR	±	Q = (2/3, 1, 4/3, 2)
	/FI/	descent with 10 Cal		D		 The Device second.

 1 NAKAMURA 89 is KEK experiment with 12 GeV protons on Pt target. The limit applies for mass $\lesssim 1.6~{\rm GeV}$ and lifetime $\gtrsim 10^{-7}~{\rm s}.$ 2 BUSSIERE 80 is CERN-SPS experiment with 200–240 GeV protons on Be and Al target.

See their figures 6 and 7 for cross-section ratio vs mass.

Production and Capture of Long-Lived Massive Particles

<u>VALUE (10⁻³⁶ cm²)</u>	DOCUMENT ID		TECN	COMMENT		
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, e	etc. • • •		
<20 to 800	¹ ALEKSEEV	76	ELEC	$ au{=}5$ ms to 1 day		
<200 to 2000	¹ ALEKSEEV	76B	ELEC	au=100 ms to 1 day		
<1.4 to 9	² FRANKEL	75	CNTR	$ au{=}50~{ m ms}$ to 10 hours		
<0.1 to 9	³ FRANKEL	74	CNTR	$\tau{=}1$ to 1000 hours		
¹ ALEKSEEV 76 and ALEKSEEV 76B are 61-70 GeV p Serpukhov experiment. Cross section is per Pb nucleus.						
2 FRANKEL 75 is extension of FRANKEL 74. 3 FRANKEL 74 looks for particles produced in thick Al targets by 300–400 GeV/c protons.						

Long-Lived Particle (LLP) Search at Hadron Collisions

Limits are for cross section times branching ratio.

(pb/nucleon)	DOCUMENT ID	TECN	COMMENT
• • • We do not us	e the following dat	a for averages	, fits, limits, etc. 🔹 🔹 🔹
	¹ AAD	20D ATLS	p p ightarrow LLPs at 13 TeV
	² AABOUD	19AE ATLS	pp at 13 TeV
	³ AABOUD	19AK ATLS	$pp \rightarrow \Phi \rightarrow ZZ_d$
	⁴ AABOUD	19AMATLS	DY multi-charged LLP production
	⁵ AABOUD	19AO ATLS	LLP via displaced jets
	⁶ AABOUD	19AT ATLS	heavy, charged long-lived particles
	⁷ AABOUD	19G ATLS	LLP decay to $\mu^+\mu^-$
	⁸ SIRUNYAN	19вн CMS	LLP via displaced jets

⁹ SIRUNYAN	19вт СМЅ	LLP via displaced jets+MET
¹⁰ SIRUNYAN	19ca CMS	$LLP \rightarrow \gamma$ search
¹¹ SIRUNYAN	19Q CMS	$pp \rightarrow j + \text{displaced dark quark jet}$
¹² SIRUNYAN	18AW CMS	Long-lived particle search
¹³ AAI J	16AR LHCB	$H \rightarrow XX$ long-lived particles
	1 CONCLUC	diagent and diagtic at LICCD-

- ¹AAD 20D search for opposite-sign dileptons originating from long-lived particles in pp collisions at 13 Tev with 32.8 fb⁻¹; limits placed in squark cross section vs. $c\tau$ plane for RPV SUSY.
- 2 AABOUD 19AE search for long-lived particles via displaced jets using 10.8 fb $^{-1}$ or 33.0 fb $^{-1}$ data (depending on a trigger) at 13 TeV; no signal found and limits set in branching ratio vs. decay length plane.
- ³AABOUD 19AK searches for long-lived particle Z_d via $pp \rightarrow \Phi \rightarrow ZZ_d$ at 13 TeV with 36.1 fb⁻¹; no signal found and limits set in $\sigma \times BR$ vs. lifetime plane for simplified model.
- $^{\rm 4}$ AABOUD 19AM search for Drell-Yan (DY) production of long-lived multi-charge particles at 13 TeV with 36.1 fb $^{-1}$ of data; no signal found and exclude 50 GeV < m(LLMCP) < 980-1220 GeV for electric charge |q| = (2-7)e.
- ⁵ AABOUD 19A0 search for neutral long-lived particles producing displaced jets at 13 TeV with 36.1 fb⁻¹ of data; no signal found and exclude regions of $\sigma \cdot BR$ vs. lifetime plane for various models.
- 6 AABOUD 19AT search for heavy, charged long-lived particles at 13 TeV with 36.1 fb $^{-1};$ no signal found and upper limits set on masses of various hypothetical particles.
- ⁷AABOUD 19G search for long-lived particle with decay to $\mu^+\mu^-$ at 13 TeV with 32.9 fb⁻¹; no signal found and limits set in combinations of lifetime, mass and coupling planes for various simplified models.
- ⁸ SIRUNYAN 19BH search for long-lived SUSY particles via displaced jets at 13 TeV with 35.9 fb⁻¹; no signal found and limits placed in mass vs lifetime plane for various hypothetical models.
- SIRUNYAN 19BT search for displaced jet(s)+ E_T at 13 TeV with 137 fb⁻¹; no signal found and limits placed in mass vs lifetime plane for gauge mediated SUSY breaking models.
- 10 SIRUNYAN 19cA search for gluino/squark decay to long-lived neutralino, decay to γ in GMSB; no signal, limits placed in m(χ) vs. lifetime plane for SPS8 GMSB benchmark _ point .
- ¹¹ SIRUNYAN 19Q search for $pp \rightarrow j$ + displaced jet via dark quark with 13 TeV at 16.1 fb⁻¹; no signal found and limits set in mass vs lifetime plane for dark quark/dark pion no model.
- ¹¹ SIRUNYAN 18AW search for very long lived particles (LLPs) decaying hadronically or to $\mu \overline{\mu}$ in CMS detector; none seen/limits set on lifetime vs. cross section.
- ¹³AAIJ 16AR search for long lived particles from $H \rightarrow XX$ with displaced X decay vertex using 0.62 fb⁻¹ at 7 TeV; limits set in Fig. 7. ¹⁴KLACHATEXAN 16BW coarch for bound table charged particles via TeE with 2.5 fb⁻¹
- 14 KHACHATRYAN 168w search for heavy stable charged particles via ToF with 2.5 fb $^{-1}$ at 13 TeV; require stable m(gluinoball) > 1610 GeV.
- 15 BADIER 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-, \mu^+\mu^-, \pi^+\pi^-, \pi^+\pi^-, \pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode.

Long-Lived Heavy Particle Cross Section

VALUE (pb/sr)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the follow	ing data for avera	nges, f	its, limit	s, etc. ● ● ●
<34	95	¹ RA M	94	SPEC	$1015 < m_{\chi^{++}} < 1085$ MeV
<75	95	¹ RA M	94	SPEC	920 <m<sub>X⁺⁺ <1025 MeV</m<sub>

 1 RAM 94 search for a long-lived doubly-charged fermion X^{++} with mass between m_N and m_N+m_π and baryon number +1 in the reaction $pp \to X^{++} n$. No candidate is found. The limit is for the cross section at 15° scattering angle at 460 MeV incident energy and applies for $\tau(X^{++}) \gg 0.1\,\mu s.$

LIMITS ON CHARGED PARTICLES IN COSMIC RAYS

Heavy Particle Flux in Cosmic Rays

-				-			
VALUE (cm ⁻	$2sr^{-1}s^{-1}$	<u>CL%</u> E	VTS	<u>DO CUME</u>	NT ID	TECN	COMMENT
• • • We	do not use	the follo	owing	data for aver	ages, fits, li	mits, etc.	• • •
				¹ ALVIS	18	MA JD	Fractionally charged
< 1	$\times 10^{-8}$	90	0	² AGNESE	E 15	CD M2	Q = 1/6
~ 6	× 10 ⁻⁹		2	³ saito	90		$Q \simeq 14, m \simeq 370 m_p$
< 1.4	$\times 10^{-12}$	90	0	⁴ MINCEF	R 85	CALO	$m \ge 1$ TeV
				⁵ SAKUYA	AMA 83в	PLAS	$m\sim~1~{ m TeV}$
< 1.7	$\times 10^{-11}$	99	0	⁶ BHAT	82	CC	
< 1.	$\times 10^{-9}$	90	0	⁷ MARINI	82	CNTR	$Q=1, m \sim 4.5 m_p$
2.	$\times 10^{-9}$		3	⁸ YOCK	81	SPRK	$Q=1, m \sim 4.5 m_{p}$
			3	⁸ үоск	81	SPRK	Fractionally charged
3.0	$\times 10^{-9}$		3	⁹ YOCK	80	SPRK	$m \sim 4.5 m_p$
(4 ±1)	$\times 10^{-11}$		3	GOODN	1AN 79	ELEC	$m \ge 5 \text{ GeV}$
< 1.3	$\times 10^{-9}$	90		¹⁰ внат	78	CNTR	$m>1~{ m GeV}$
< 1.0	$\times 10^{-9}$		0	BRIATC	RE 76	ELEC	
< 7.	$\times 10^{-10}$	90	0	YOCK	75	ELEC	Q>7e or $<-7e$
> 6.	$\times 10^{-9}$		5	¹¹ YOCK	74	CNTR	m > 6 GeV
< 3.0	$\times 10^{-8}$		0	DARDO	72	CNTR	
< 1.5	$\times 10^{-9}$		0	TONWA	R 72	CNTR	$m>10~{ m GeV}$
< 3.0	$\times 10^{-10}$		0	B J OR NI	3OE 68	CNTR	$m > 5 { m GeV}$
< 5.0	$\times 10^{-11}$	90	0	JONES	67	ELEC	m=5-15 GeV

2090 Searches Particle Listings **Other Particle Searches**

¹ ALVIS 18 search for fractional charged flux of cosmic matter at Majorana demonstrator; no signal observed and limits are set on the flux of lightly ionizing particles for charge as low as e/1000.

 $^2\,\text{See}$ AGNESE 15 Fig. 6 for limits extending down to Q=1/200.

³ SAITO 90 candidates carry about 450 MeV/nucleon. Cannot be accounted for by con-ventional backgrounds. Consistent with strange quark matter hypothesis.

- ⁴ MINCER 85 is high statistics study of calorimeter signals delayed by 20–200 ns. Calibration with AGS beam shows they can be accounted for by rare fluctuations in signals from low-energy hadrons in the shower. Claim that previous delayed signals including BJORNBOE 68, DARDO 72, BHAT 82, SAKUYAMA 83B below may be due to this fake ...
- effect. ⁵ SAKUYAMA 83B analyzed 6000 extended air shower events. Increase of delayed particles and change of lateral distribution above 10¹⁷ eV may indicate production of very heavy parent at top of atmosphere.
- 6 BHAT 82 observed 12 events with delay $> 2. \times 10^{-8}$ s and with more than 40 particles. 1 eV has good hadron shower. However all events are delayed in only one of two detectors in cloud chamber, and could not be due to strongly interacting massive particle.
- ⁷ MARINI 82 applied PEP-counter for TOF. Above limit is for velocity = 0.54 fight. Limit is inconsistent with YOCK 80 YOCK 81 events if isotropic dependence on zenith angle is assumed.
- With $m > 5.3m_p$, $Q = \pm 0.75 \pm 0.05$ and $m > 2.8m_p$, $Q = \pm 0.70 \pm 0.05$ and 1 events with $m > 5.3m_p$, $Q = \pm 0.75 \pm 0.05$ and $m > 2.8m_p$, $Q = \pm 0.70 \pm 0.05$ and 1 event with $m = (9.3 \pm 3.) m_p$, $Q = \pm 0.89 \pm 0.06$ as possible heavy candidates.
- ⁹YOCK 80 events are with charge exactly or approximately equal to unity. 10 BHAT 78 is at Kolar gold fields. Limit is for au > 10 $^{-6}$ s

11 YOCK 74 events could be tritons

Superheavy Particle (Quark Matter) Flux in Cosmic Rays

VALUE(cm⁻²sr⁻¹s⁻¹) CL% DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 15 PMLA 4 < $m < 1.2 \times 10^5 m_p$ ¹ ADRIANI $< 5 \times 10^{-16}$ ² AMBROSIO 00b MCRO $m > 5 \times 10^{14} \text{ GeV}$ 90 $< 1.8 imes 10^{-12}$ CNTR $m \ge 1.5 \times 10^{-13}$ gram MCRO $10^{-10} < m < 0.1$ gram PLAS $m > 10^{11}$ GeV ³ASTONE 90 93 $<1.1 \times 10^{-14}$ ⁴ AHLEN 90 92 $<2.2 \times 10^{-14}$ ⁵ NAKAMURA 90 91 $< 6.4 \times 10^{-16}$ PLAS $m > 10^{12} \text{ GeV}$ ⁶ ORITO 90 91 $<2.0 \times 10^{-11}$ BOLO $m > 1.5 \times 10^{-13}$ gram CNTR $1.4 \times 10^8 < m < 10^{12}$ GeV CNTR $m > 1.5 \times 10^{-13}$ gram ⁷ LIU 90 88 $<4.7 \times 10^{-12}$ ⁸ BARISH 90 87 $<3.2 \times 10^{-11}$ ⁹ NAKA MURA 90 85 $< 3.5 \times 10^{-11}$ ¹⁰ ULLMAN CNTR Planck-mass 10¹⁹GeV 90 81 $<7. \times 10^{-11}$ ¹⁰ ULLMAN 81 CNTR $m \le 10^{16} \text{ GeV}$ 90

 1 ADRIANI 15 search for relatively light quark matter with charge Z = 1–8. See their Figs. 2 and 3 for flux upper limits.

AMBROSIO 00B searched for quark matter ("nuclearites") in the velocity range $(10^{-5}-1) c$. The listed limit is for $2 \times 10^{-3} c$.

- 10 3 ASTONE 93 searched for quark matter ("nuclearites") in the velocity range $(10^{-3}-1)c$. Their Table 1 gives a compilation of searches for nuclearites.
- ⁴AHLEN 92 searched for quark matter ("nuclearites"). The bound applies to velocity $< 2.5 imes 10^{-3}$ c. See their Fig. 3 for other velocity/c and heavier mass range.

⁵ NAKAMURA 91 searched for quark matter in the velocity range $(4 \times 10^{-5} - 1) c$.

- ⁶ ORITO 91 searched for quark matter. The limit is for the velocity range $(10^{-4}-10^{-3})$ c.
- ⁷ LIU 88 searched for quark matter ("nuclearites") in the velocity range (2.5 $\times 10^{-3}$ -1). A less stringent limit of 5.8 $\times 10^{-11}$ applies for (1-2.5) $\times 10^{-3}$ c.

 $^8\,\text{BARISH}$ 87 searched for quark matter ("nuclearites") in the velocity range (2.7 \times $10^{-4} - 5 \times 10^{-3}$ c.

⁹NAKAMURA 85[°] at KEK searched for quark-matter. These might be lumps of strange quark matter with roughly equal numbers of u, d, s quarks. These lumps or nuclearities were assumed to have velocity of $(10^{-4}-10^{-3}) c$.

 10 ULL MA N 81 is sensitive for heavy slow singly charge particle reaching earth with vertical velocity 100-350 km/s.

Highly lonizing Particle Flux

(m-2yr-1)	CL% EV	TS	DOCUMENT ID	TECN	COMMENT
• • • We do not use	the follow	ing data	for averages, fit:	s, limits, etc.	• • •
<0.4	95	0	KINOSHITA	81B PLAS	Z/β 30-100

SEARCHES FOR BLACK HOLE PRODUCTION

VALUE	DOCUMENT ID	TECN	COMMENT
• • • We do not use the fo	llowing data for av	erages, fits, li	mits, etc. • • •
not seen	¹ AABOUD	16P ATLS	13 TeV $pp \rightarrow e \mu, e \tau, \mu \tau$
	² aad	15AN ATLS	8 TeV $p p \rightarrow$ multijets
	³ aad	14A ATLS	8 TeV $pp \rightarrow \gamma + jet$
	⁴ AAD	14al ATLS	8 TeV $pp \rightarrow \ell + jet$
	⁵ AAD	14c ATLS	8 TeV $pp \rightarrow \ell + (\ell \text{ or jets})$
	⁶ AAD	13D ATLS	7 TeV $pp \rightarrow 2$ jets
	⁷ CHATRCHYAI	V13A CMS	7 TeV $pp \rightarrow 2$ jets
	⁸ CHATRCHYAI	V13AD CMS	8 TeV $pp \rightarrow multijets$
	⁹ AAD	12AK ATLS	7 TeV $pp \rightarrow \ell + (\ell \text{ or jets})$
	¹⁰ CHATRCHYAI	V12w CMS	7 TeV $pp \rightarrow$ multijets
	¹¹ AAD	11AG ATLS	7 TeV $pp \rightarrow 2$ jets

¹AABOUD 16P set limits on quantum BH production in n = 6 ADD or n = 1 RS models. ²AAD 15AN search for black hole or string ball formation followed by its decay to multijet final states, in *pp* collisions at $E_{\rm cm}$ = 8 TeV with L = 20.3 fb⁻¹. See their Figs. 6-8 for limits

 3 AAD 14A search for quantum black hole formation followed by its decay to a γ and a jet, in pp collisions at $E_{\rm cm}$ = 8 TeV with L = 20 fb⁻¹. See their Fig. 3 for limits.

- ⁴AAD 14AL search for quantum black hole formation followed by its decay to a lepton and a jet, in pp collisions at $E_{\rm cm}$ = 8 TeV with L = 20.3 fb⁻¹. See their Fig. 2 for limits.
- 5 AAD 14 c search for microscopic (semiclassical) black hole formation followed by its decay to final states with a lepton and ≥ 2 (leptons or jets), in *pp* collisions at $E_{\rm cm} = 8$ TeV with L = 20.3 fb⁻¹. See their Figures 8–11, Tables 7, 8 for limits.
- 6 AAD 13D search for quantum black hole formation followed by its decay to two jets, in pp collisions at $E_{\rm cm} = 7$ TeV with L = 4.8 fb⁻¹. See their Fig. 8 and Table 3 for
- ⁷CHATRCHYAN 13A search for quantum black hole formation followed by its decay to two jets, in pp collisions at $E_{\rm cm}$ = 7 TeV with L = 5 fb $^{-1}$. See their Figs. 5 and 6 for limits
- ⁸ CHATRCHYAN 13AD search for microscopic (semiclassical) black hole formation followed by its evapolation to multiparticle final states, in multijet (including γ , ℓ) events in pp collisions at $E_{\rm cm} = 8$ TeV with L = 12 fb⁻¹. See their Figs. 5-7 for limits.
- ⁹AAD 124K search for microscopic (semiclassical) black hole formation followed by its decay to final states with a lepton and ≥ 2 (leptons or jets), in *pp* collisions at $E_{\rm cm}$ = 7 TeV with L = 1.04 fb⁻¹. See their Fig. 4 and 5 for limits.
- ¹⁰ CHATRCHYAN 12w search for microscopic (semiclassical) black hole formation followed by its evapolation to multiparticle final states, in multiper (including γ , ℓ) events in pp collisions at $E_{\rm cm} = 7$ TeV with L = 4.7 fb⁻¹. See their Figs. 5–8 for limits.
- ¹¹ AAD 11As search for quantum black hole formation followed by its decay to two jets, in pp collisions at $E_{\rm CM} = 7$ TeV with L = 36 pb⁻¹. See their Fig. 11 and Table 4 for limits.

REFERENCES FOR Other Particle Searches

AAD	20 D	PL B801 135114	G Aad et al	(ATLAS	Collab.)
CIDUNIVAN	20.0	FDI C00 2	A M Cirupyon et al	(CMS	Collab
SIRUNTAN	20 A	EFJ COU 5	A.W. Shunyan et al.	(CMS	Conab.)
AABOUD	19AA	EPJ C79 120	M. Aaboud et al.	(AI LAS	Collab.)
AABOUD	19AE	EPJ C79 481	M. Aaboud et al.	(AT LAS	Collab.)
AAROUD	10 A I	DI 0705 EC	M. Ashoud et al.	(ATLAS	Collab Á
AABOOD	12/43	FE 0755 50	WI. Addoud et al.	(ALEAS	Conab.)
AABOUD	19AK	PRE 122 151801	MI. A aboud et al.	(AI LAS	Collab.)
AABOUD	19A M	PR D99 052003	M. Aaboud et al.	(ATLAS	Collab.)
AABOUD	1940	PR D 99 052005	M Ashoud et al.	ζατιας	Collab \
AADOUD	1000	FR D 002000	With Address of the	(AT LAS	Condb.)
AABOUD	19AI	PR D99 092007	M. Aaboud et al.	(AI LAS	Collab.)
AABOUD	19G	PR D99 012001	M. Aaboud et al.	(AT LAS	Collab.)
AABOUD	19H	PR D 99 012008	M Ashoud et al.	ζατιας	Collab \
AABOOD	1211	FR D33 012000	WI. Addoud et al.	(ALEAS	Conab.)
AABOUD	19Q	JHEP 1905 041	M. Aaboud et al.	(AI LAS	Collab.)
AABOUD	19V	JHEP 1905 142	M. Aaboud et al.	(AT LAS	Collab.)
ALCANTA DA	10	PP D 99 102016	E Alcontoro I A Anchordogui I E	Soriano	
AECANTARA	12	PR D 99 103016	E. Alcantara, E.A. Anchoruoqui, J.F	. SUITAILU	
SIRUNYAN	19B	PR D99 012005	A.M. Sirunyan et al.	(CMS	Collab.)
SIRTINVAN	19 B H	PR D99 032011	A.M. Sirunyan et al	ісмя	Collab Ì
SILONIAN	17011	FR D33 032011	A.M. Shunyan et al.	(CIVI 3	Conab.)
SIRUNYAN	19B I	PL B797 134876	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	19 CA	PR D100 112003	A.M. Sirunvan et al.	(CMS	Collab.)
CIDTINIVAN	10 CD	DDI 102 021902	A.M. Simunyan et al.	icus.	Collab Á
SILONIAN	1900	FRE 125 251005	A.W. Shunyan et al.	Civia	Conab.
SIRUNYAN	190	JHEP 1902 074	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	19.0	JHEP 1902 179	A.M. Sirunyan et al	(CMS	Collab)
AAROUD	19 10	DI 0770 04	M Ashoud et al	(AÌTIAS	Collab \
AABOOD	IOAD	FL 0115 24	WI. Addoud et al.	(ALEAS	Conab.)
AABOUD	18 C J	PR D 98 052008	M. Aaboud et al.	(ALLAS	Collab.)
AABOUD	18 CK	PR D 98 0 92002	M Aahoud et al	(ATLAS	Collab)
AAROUD	10 (1	DB D 08 0 00000E	M Ashoud at al	ATLAC	Collab
AABUUD	TOCL	FK D 70 0 72000	wi. wabuuu et di.	(ALLAS	Conao.)
AABOUD	18 CM	PK D 98 0 92008	MI. Aaboud et al.	(AT LAS	Collab.)
AABOUD	18 N	PRI 121 081801	M Aahoud et al	(ATLAS	Collab \
	10.4.1	DDL 100 0(1001	D. Antil et al.	0.00	Collect
MATU	TOAL	PRE 120 001001	n. Adij <i>el di</i> .	(LHC)	Conab. j
ALBERT	18 C	PR D98 123012	A. Albert et al.	(HAWC	Collab.)
ALV IS	18	PRI 120 211804	S L Alvis et al	MAIÒRANA	- Collab Ì
DANEDIEE	10	DDI 100 021000	D. Denerite et al.	(MAGORANIA	Collab.)
BANERJEE	10	PRL 120 231802	D. Banerjee et al.	(NA 64	Conab.j
BANERJEE	18A	PR D97 072002	D. Banerjee et al.	(NA 64	Collab.)
KILE	18	IHEP 1810 116	I Kile I von Wimmersnerg-Toeller		(LIS BT)
MADELEANO	10	50101 1010 110	5. Nic, 5. Von Winnierspeig roener		(6501)
MARSICANO	18	PR D98 015031	L. Marsicano et al.		
PORAYKO	18	PR D98 102002	N.K. Porayako et al.	(PPTA	Collab.)
SIRLINYAN	18.AW	IHEP 1805 127	A.M. Siruñvan et al	(CMS	- Collab Ì
CIDUINIVAN	10 D D	ULED 1906 190	A.M. Eirupyop et al	(CMS	Collab
SILONIAN	1000	JHEF 1000 120	A.W. Shunyan et al.	Civia	Conab.)
SIRUNYAN	18 D A	JHEP 1811 042	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	18 D D	EP.I C78 789	A M. Sirunyan et al.	(CMS	Collab)
SIRTINVAN	18 D I	IHEP 1809 101	A.M. Sirunyan et al	λcms	Collab \
	1000	111ED 1007 101	A M. O'	(0110	
SIRUNYAN	18 D K	JHEP 1811 161	A.M. Sirunyan et al.	(CMS	Collab. j
SIRUNYAN	18 D U	PR D98 092001	A.M. Sirunvan et al.	(CMS	Collab.)
SIRTINVAN	18 D.V	PR D98 112014	A.M. Sirunyan et al	λcms.	Collab \
SIDUNDAN	1001	110 0 112014	A M. Shunyun et al.	(child	Condb.)
SIRUNYAN	18 E D	JHEP 1811 1/2	A.M. Sirunyan et al.	(CMS	Collab. j
AABOUD	17 B	PL B765 32	M. Aaboud et al.	(AT LAS	Collab.)
AABOUD	17 D	PR D95 032001	M Aahoud et al	(ATLAS	- Collab Ĵ
AAROUD	171	ULED 1708 0E2	M. Ashoud et al.	ATLAS	Collab
AABOOD	1/ L	JHEP 1/06 052	WI. A about et al.	(AI LAS	Conab. j
AAIJ	17 B R	EPJ C77 812	R. Aaij et al.	(LHCb	Collab.)
ABLIKIM	17 A A	PL B774 252	M Ablikim et al	(BES III	Collab)
KUACUATOV	17 D	INED 1701 076	V. Khachatryan et al	(CMS	Collab
KHACHATRI	110	511EF 1/01 0/0	V. Kilacilatiyali et al.	(CM3	Collab.)
KHACHATRY	17 W	PL B769 520	V. Knachatryan <i>et al</i> .	(CMS	Collab. j
KHACHATRY	17 Y	PL B770 257	V. Khachatryan et al.	(CMS	Collab.)
SIRLINYAN	17 B	IHEP 1704 136	A.M. Sirunyan et al.	(CMS	- Collab Ì
CIDUNIVAN	17.0	ULED 1705 000	A M. Sirunyan et al.	CMS	Collab
SILONIAN	II C	JHEF 1703 023	A.M. Shunyan et al.	(CIVI 3	Conab.)
SIRUNYAN	171	JHEP 1707 013	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	17 J	JHEP 1708 073	A.M. Sirunyan et al.	(CMS	Collab.)
ZANG	17	PL B773 159	X Zang GA Miller	,	(WASH)
AAROUD	16	DI 0750 220	M Aphoud at al	(ATLAS	Collab
AADOUD	10	TE 0137 227	With Address of the	(AT LAS	Condb.)
AABOUD	10 P	EPJ C/6 541	WI. A aboud et al.	(AI LAS	Collab. J
AAD	16AI	JHEP 1603 041	G. Aad et al.	(ATLAS	Collab.)
AAD	16 N	JHEP 1603 026	G Aad et al	(ATLAS	Collab \
AAD	16.0	DI 0760 500	G And at al	(ATLAS	Collab Á
AAD	100	FL B700 520	G. Adu et al.	ATLAS	Collab.
AAD	16 K	PL B755 285	G. Aad et al.	(AI LAS	Collab. j
AAD	16S	PL B754 302	G. Aad et al.	(ATLAS	Collab.)
AA11	16 A R	EPI C76 664	R Aaii et al) (LHCh	- Collab Ì
KUACUATOV	10000	DD D04 110004	M. Khashahayan at al	(CMC	Colleb.)
KHACHATKT	TODAA	PR D 94 112004	v. Klidclidtfydli <i>et di</i> .	(CIVI S	Conab. j
KHACHATRY	16K	PRL 116 071801	V. Khachatryan <i>et al</i> .	(CMS	Collab.)
KHACHATRY	16L	PRL 117 031802	V. Khachatryan et al.	(CMS	Collab.)
KHACHATRY	16 M	PRI 117 051802	V Khachatryan et al	(CMC	Collab
KDAC7NAUC	1.6	DDL 116 040501	A L Kroszpakorka:		A NUZ -
KKASZNAHU	10	FRE 110 042501	w.u. wrasznanorkay et al.	(HINR,	ANIK+)
AAD	15 A N	JHEP 1507 032	G. Aad et al.	(AT LAS	Collab.)
AAD	15 AT	EPJ C75 79	G. Aad et al.	(AT LAS	Collab
AAD	15 B J	EP1 C75 362	G Aad et al	(ATLAS	Collab
AAU	1201	ED1 015 302		(ALLAS	Conau.)
AAIJ	12 R D	EPJ C75 595	K. Aaijetal.	(LHCb	Collab.)
ADRIANI	15	PRL 115 111101	O. Adriani et al.	(PAMELA	Collab.1
AGNESE	15	PRI 114 111302	R Agnese et al) (CDMS	Collab
KUACUATOV	15 0	DDI 114 101901	V Khachatryan at al	(0.00	Collab
INDAGDALINT	100	TRE 114 101001	v. isilacilatiyali et di.	(CIMS	Conau.)
LEES	19 F	PKL 114 1/1801	J.P. Lees et al.	(BABAR	Collab.)
AAD	14 A	PL B728 562	G. Aad et al.	(AT LAS	Collab.ì
AAD	14 A I	PRI 112 091804	G Aad et al	ζάτι δς	Collab \
AAD	14.0	THEP 1408 103	G And et al	ATLAS	Collab
ANTONEN	14.0	DD D00 000001	T Askess stal	(ALLAS	Collab.)
AALIONEN	14 J	PK D89 092001	L. Aalonen et al.	(CDF	Collab.)
AAD	13 A	PL B718 860	G. Aad et al.	(AT LAS	Collab.)
AAD	13AH	PL B722 305	G Aad et al	(ATLAS	- Collab Ì

2091 Searches Particle Listings Other Particle Searches

AAD	13 C	PRL 110 011802	G. Aad et al.	(ATLAS Collab.)
AAD	13 D	IHEP 1301 029	G Aad et al	(ATLAS Collab.)
AALTONEN	131	PR D88 031103	T Aaltonen et al	(CDE Collab.)
AALTONEN	131	PR D00 031103	T Aanonen et al.	(CDI CONAD.)
AALIONEN	13 K	PRL 111 031802	I. Aaltonen et al.	(CDF Collab.)
CHATRCHYAN	13	PL B718 815	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	13A	JHEP 1301 013	S. Chatrchvan et al.	(CMS_Collab.)
CHATRCHYAN	13AB	IHEP 1307 122	S Chatrohyan et al	CMS_Collab)
CHATRCHYAN	12 4 D	ULED 1207 179	E Chotrohyon et al.	(CME_Collab.)
CHATRCHTAN	13AD	JHEP 1307 170	5. Chatronyan et al.	(CMS CONAD.)
CHAIRCHYAN	13AR	PR D87 092008	S. Chatronyan et al.	(CMS Collab.)
AAD	12AK	PL B716 122	G. Aad et al.	(ATLAS Collab.)
AAD	12 C	PRL 108 041805	G. Aad et al.	(ATLAS Collab.)
44 D	125	PL B708 37	G And et al	(ATLAS Collab.)
AALTONEN	1014	PDI 100 011004	T Asheres et al	(CDE Callab.)
AALTONEN	12 101	PRL 108 211804	T. Aanonen et al.	(CDF Collab.)
CHAIRCHYAN	12AP	JHEP 1209 094	S. Chatronyan et al.	(CMS Collab.)
CHATRCHYAN	12 B L	JHEP 1212 015	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	12 Q	PL B716 260	S. Chatrchyan et al.	(CMS_Collab.)
CHATRCHYAN	12T	PRI 108 261803	S Chatrohyan et al	(CMS_Collab.)
CHATRCHYAN	1010/	HED 1004 061	S. Chatrohyan et al.	(CMS_Collab.)
CHAIRCHTAN	12 99	JHEF 1204 001	5. Chatronyan et al.	(CMS CONAU.)
AAD	11AG	NJP 13 053044	G. Aad et al.	(ALLAS Collab.)
AAD	111	PL B698 353	G. Aad et al.	(ATLAS Collab.)
AAD	11S	PL B705 294	G. Aad et al.	(ATLAS Collab.)
AALTONEN	11 A E	PRI 107 181801	T Aaltonen et al	CDE Collab)
AALTONEN	11.14	DDI 106 171901	T. Asltonen et al.	(CDF Collab.)
AALTONEN	TTIM	PRL 106 1/1001	T. Aditolieli et di.	(CDF Collab.)
ABAZOV	111	PRL 107 011804	V.M. Abazov et al.	(DU Collab.)
CHATRCHYAN	11 C	JHEP 1106 026	S. Chatychyan et al.	(CMS Collab.)
CHATRCHYAN	11.0	PRI 107 201804	S Chatychyan et al	(CMS_Collab.)
	10	PRI 105 161801	G And et al	(ATLAS Collab.)
	10 4 5	DD D00 050005	T Astronom et al	(CDE Collab.)
AALIONEN	TUAP	PR D62 052005	T. Aditolieli et al.	(CDF Collab.)
KHACHATRY	10	PRL 105 211801	V. Khachatryan et al.	(CMS Collab.)
A Iso		PRL 106 029902	V. Khachatryan et al.	(CMS Collab.)
AALTONEN	09AF	PR D80 011102	T. Aaltonen et al.	(CDF_Collab.)
AALTONEN	09 G	PR D79 052004	T Aaltonen et al	CDF Collab 1
AALTONEN	007	PPI 102 021902	T Aaltonen et al	(CDE_Collab.)
ADAZOV	0014	DDI 100 161900	V.M. Abozov et al.	(DD Collab.)
ADAZOV	09101	PRL 102 101002	V.WI. ADAZOV Et al.	(Do Collab.)
AKTAS	04 C	EPJ C36 413	A. Atkas et al.	(H1 Collab.)
JAV ORS EK	02	PR D65 072003	D. Javorsek II et al.	
JAVORS EK	01	PR D64 012005	D. Javorsek II et al.	
LAVORSEK	01B	PRI 87 231804	D. Javorsek II. et. al.	
	000	EDI C12 107	G Abbiendi at al	(OPAL Collab.)
AMPROCIO	000	EDI 613 153	M. Ambarais at al	(MACDO CHILL)
AMBRUSIU	00 B	EPJ CI3 453	WI. Ambrosio et al.	(MACRO Collab.)
ABE	99F	PRL 82 2038	F. Abe et al.	(CDF Collab.)
ACKERSTAFF	98 P	PL B433 195	K. Ackerstaff et al.	(OPAL Collab.)
ABE	97 G	PR D55 5263	F. Abe et al.	(CDF Collab.)
ABRELL	97 D	PL B396 315	P Abreu et al	(DEÌ PHI, Collab Ì
ACKEDSTAFE	07.0	DL D201 010	K Ackersteff et al	(OPAL Collab.)
ADAMO	07.0	PDI 70 4000	K. Ackerstall et al.	(ENAL KTAL Callab.)
ADAWS	97 B	PRL 79 4083	J. Adams et al.	(FNAL KIEV CONAD.)
BARATE	97 K	PL B405 379	R. Barate et al.	(ALEPH Collab.)
AKERS	95 R	ZPHY C67 203	R. Akers et al.	(OPAL Collab.)
GALLAS	95	PR D52 6	E Gallas et al	(MSU ENAL MIT FLOR)
RAM	94	PR D49 3120	S Ram et al	(TELA TRIU)
ADE	02.0	DDI 71 0540	E Abo et al	(CDE Collab.)
ADE	950	PRL /1 2342	F. Abe et al.	(CDF Collab.)
ASTONE	93	PR D47 4770	P. Astone et al. (ROMA, ROMAI, CATA, FRAS)
BUSKULIC	93 C	PL B303 198	D. Buskulic et al.	(ALEPH Collab.)
YAMAGATA	93	PR D47 1231	T. Yamagata, Y. Takamor	ri, H. Utsunomiya (KONAN)
ABE	92 J	PR D46 1889	F. Abe et al.	(CDF Collab)
AHLEN	92	PRI 69 1860	S.P. Ahlen et al	(MACRO Colleb.)
VEDKEDK	02	DDI 69 1116	D Vorkerk at al	(ENCD SACI DAST)
VENNERN	22	TRE 00 1110	r. veikeik et di.	(ENSP. SACE, PAST)
AKESSON	91	ZPHY C52 219	I. AKESSON et al.	(HELIOS Collab.)
NAKAMURA	91	PL B263 529	S. Nakamura et al.	
ORITO	91	PRL 66 1951	S. Orito et al.	(ICEPP, WASCR, NIHO, ICRR)
ADACHI	90 C	PL B244 352	I. Adachi et al.	TOPAZ Collab
ADACHI	90 E	PL B249 336	L Adachi et al	(TOPAZ Collab.)
	.01	. 2 0247 000	n maaaann at mi.	(LOLAE COURD.)

AKRAWY	90 O	PL B252 290	MZA	vkrawy et al	(OPAL Collab.)	
HEMMICK	90	PR D41 2074	ткн	lemmick et al	(ROCH MICH OHIO+)	
SAITO	00	DDI 65 2004	T Sol	to at ol	(ICPR KOPE)	
NAKAMUDA	00	PRE 03 2034	1. Jai T.T. N	lo ecal.	(KNOT THIC)	
NAKAMURA	89	PR D39 1261	1.1. N	. akamura <i>et al</i> .	(KYOT, TMIC)	
NORMAN	89	PR D39 2499	E.B. N	orman et al.	(LBL)	
BERNSTEIN	88	PR D37 3103	R.M. E	Bernstein <i>et al.</i>	(STAN, WISC)	
LIU	88	PRL 61 271	G. Liu	, B. Barish		
BARISH	87	PR D36 2641	B.C. B	arish, G. Liu, C. L	ane (CIT)	
NORMAN	87	PRL 58 1403	E.B. N	orman, S.B. Gazes	. D.A. Bennett (LBL)	
BADIER	86	ZPHY_C31_21	L B ad	ier et al	(NA3 Còllab Ì	
MINCER	85	PR D32 541	A Mir	iceretal	(UMD GMAS NSE)	
	05	DI 161D 417	K Nal	contro at al	(UREK INUE)	
TUDON	05	PD D21 454		lannuna et al.	(VALE ENAL JONA)	
	80	PK D31 451	J.L. I	from et al.	(YALE, FNAL, IOWA)	
SAKUYAMA	83 B	LNC 37 17	H. Sak	uyama, N. Suzuki	(MEIS)	
A Iso		LNC 36 389	H. Sak	uyama, K. Watana	ibe (MEIS)	
Also		NC 78A 147	H. Sak	uyama, K. Watana.	ibe (MEIS)	
A Iso		NC 6C 371	H. Sak	uyama, K. Watana.	ibe (MEIS)	
BHAT	82	PR D25 2820	P.N. B	hat et al.	(TATA)	
KINOSHITA	82	PRL 48 77	K. Kin	oshita. P.B. Price.	D. Fryberger (ÙCB+)	
MARINI	82	PR D26 1777	A Ma	rini et al	(FRAS I BL NWES STAN +	
SMITH	82 B	NP B206 333	PES	mith et al	(Indio, EBE, Inteo, Onitin)	
KINOSUITA	01 D	RP D24 1707	K Kin	ochito D.D. Drice	(UCR)	
	010	PL 1029 1000	I. KU	oSecce et al		
LUSECCO	01	PL 1026 209	J.W. L	usecco er an	(WICH, PENN, BNL)	
ULLMAN	81	PRL 47 289	J.D. U	iim an	(LEHM, BNL)	
YOCK	81	PR D23 1207	P.C.M.	Yock	(AUCK)	
BARTEL	80	ZPHY C6 295	W.Ba	rtel <i>et al.</i>	(JADE Collab.)	
BUSSIERE	80	NP B174 1	A. Bus	siere <i>et al</i> .	(BGNA, SACL, LAPP)	
YOCK	80	PR D22 61	P.C.M.	Yock	(AUCK)	
AR MITA GE	79	NP B150 87	J.C.M.	Armitage et al.	(CERN, DARE, FOM+)	
BOZZOLI	79	NP B159 363	W. Bo	zzoli et al.	(BGNA, LAPP, SACL+)	
GOODMAN	79	PR D19 2572	J.A. G	oodman et al.	ÚMD)	
SMITH	79	NP B149 525	P.F. S	mith. J.R.J. Benne	tt (RHEL)	
BHAT	78	PRAM 10 115	PN B	hat PV Ramana	Murthy (TATA)	
CARROLL	78	PRI 41 777	AS C	arroll et al	(BNI PRIN)	
CUTTS	78	PRI 41 363	D Cut	te at al	(BROW ENAL ILL BARL+)	
VIDAL	78	PI 77B 344	RA V	id all <i>et</i> al	(COLU ENAL STON+)	
ALEKSEEV	76	SIND 22 521	6 D . A	lokroov at al	(UNP)	
ALLNJLLV	10	Translated from	VAE 22 1021	HERBEEV EL MI.	(3000)	
ALERCEEV	76 D	SIND 22 622	GD A	laksoov at al	(IN P)	
ALLNJLLV	100	Translated from	VAE 22 1100	HERBEEV EL MI.	(3000)	
BALDIN	76	SINP 22 264	BV B	ald in <i>et</i> al	(IIN R)	
DALDIN	10	Translated from	VAE 22 512	alu III et al.	(3007)	
BRIATORE	76	NC 314 553	I Bris	itore et al	(LCGT ERAS EREIR)	
GUSTAESON	76	PRI 37 474	H R G	lustafson et al	(ECCI, HIGS, HIEB)	
	76	ND D07 190	MG	Ubrow at al	(CERN DARE EOM .)	
FRANKEL	75	DD D10 05(1	W.G. Z	Noton et al.	(CERN, DARE, FOMT)	
FRANKEL	75	PK D12 2001	5. FIdi	ikei et di.	(MANU AACU CEDNI)	
JOVANOV	75	PL 56B 105	J.V. JC	vanovich et al.	(MANI, AACH, CERN+)	
YOCK	75	NP B86 216	P.C.M.	Yock	(AUCK, SLAC)	
APPEL	74	PRL 32 428	J.A. A	ppel <i>etal</i> .	(COLU, FNAL)	
FRANKEL	74	PR D9 1932	S. Fra	ikel <i>et al</i> .	(PENN, FNAL)	
YOCK	74	NP B76 175	P.C.M.	Yock	(AUCK)	
ALPER	73	PL 46B 265	B. Alp	er et al.	(CERN, LIVP, LUND, BOHR+)	
LEIPUNER	73	PRL 31 1226	L.B. L	eipuner <i>et al.</i>	(BNL, YALE)	
DARDO	72	NC 9A 319	M. Da	rdo et al.	Ì (ΤΟRΙ)	
TONWAR	72	JP A5 569	S.C. T	onwar. S. Naranan	B.V. Sreekantan (TATA)	
ANTIPOV	71B	NP B31 235	YM	Antinov et al	(SERP)	
ANTIPOV	710	PL 34 B 164	V M J	Antinov et al	(SERP)	
RINON	60	DI 200 E10	E C D	inon at al	(SERP)	
DINON	60	FL JUD 510	F.U. D	mon crai.	(BOUD TATA DEDNA)	
DJUKNBUE	00	NC 853 241	J. Blot	nuue et al.	(BUHK, TATA, BERN+)	
JUNES	07	FR 104 1084	L.W. J	ones (MIC	H, WISC, LBL, UCLA, MINN+)	
DURFAN	65	PKL 14 999	D.E. U	iorran et al.	(COLU)	