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ABSTRACT

With the increasing use of satellite and ground-based high-spectral-resolution (HSR) measurements

for weather and climate applications, accurate and efficient radiative transfer (RT) models have become

essential for accurate atmospheric retrievals, for instrument calibration, and to provide benchmark RT

solutions. This study develops a spectral data compression (SDCOMP) RT model to simulate HSR

radiances in both solar and infrared spectral regions. The SDCOMP approach ‘‘compresses’’ the spectral

data in the optical property and radiance domains, utilizing principal component analysis (PCA) twice to

alleviate the computational burden. First, an optical-property-based PCA is performed for a given at-

mospheric scenario (atmospheric, trace gas, and aerosol profiles) to simulate relatively low-spectral-

resolution radiances at a small number of representative wavelengths. Second, by using precalculated

principal components from an accurate radiance dataset computed for a large number of atmospheric

scenarios, a radiance-based PCA is carried out to extend the low-spectral-resolution results to desired

HSR results at all wavelengths. This procedure ensures both that individual monochromatic RT cal-

culations are efficiently performed and that the number of such computations is optimized. SDCOMP is

approximately three orders of magnitude faster than numerically exact RT calculations. The resulting

monochromatic radiance has relative errors less than 0.2% in the solar region and brightness temper-

ature differences less than 0.1 K for over 95% of the cases in the infrared region. The efficiency and

accuracy of SDCOMP not only make it useful for analysis of HSR measurements, but also hint at the

potential for utilizing this model to perform RT simulations in mesoscale numerical weather and general

circulation models.

1. Introduction

Radiative transfer (RT) processes not only impact the

Earth–atmosphere energy balance but also provide key

information relevant to atmospheric remote sensing

(Goody and Yung 1989; Liou 2002). Therefore, the

transfer of radiation in the atmosphere is an essential

problem in atmospheric modeling and measurements

(Chandrasekhar 1960; Goody and Yung 1989; Liou

2002), and significant effort has been devoted to solving

the RT equation under different circumstances and with

differing degrees of accuracy. Since molecular absorp-

tion of atmospheric gases has significant spectral varia-

tion (absorption coefficients can change by a few orders

of magnitude within a spectral region of 0.01 cm21 or

less), high spectral resolution (HSR) is normally requiredCorresponding author: Vijay Natraj, vijay.natraj@jpl.nasa.gov
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for accurate RT calculations. This implies that tens of

thousands, if not more, of accurate RT simulations

have to be performed for even a narrow spectral re-

gion. The resolution of monochromatic RT calcula-

tions is basically controlled by the width of the

absorption line—stratospheric Doppler broadened

lines are typically much narrower than tropospheric

pressure-broadened lines. However, even for rela-

tively broad absorption lines, scattering due to mol-

ecules, aerosols, and clouds makes the simulations

complex and time consuming. The above consider-

ations make it impractical to employ HSR simula-

tions for applications such as satellite retrievals or

weather and climate modeling.

On the other hand, HSR measurements can provide

unique information about trace gases and other atmo-

spheric constituents (e.g., Crevoisier et al. 2004; O’Dell

et al. 2012). Such HSR instruments are on both polar

orbiting and geostationary satellites. Examples include

the Atmospheric Infrared Sounder (Aumann et al. 2003),

the Infrared Atmospheric Sounding Interferometer

(Hilton et al. 2012), the Cross-track Infrared Sounder

(Han et al. 2013), theVisible Infrared ImagingRadiometer

Suite (Yang et al. 2017), Orbiting Carbon Observatory-2

(Eldering et al. 2017) and TANSAT (Liu et al. 2013).

Ground-based HSR instruments have also been de-

veloped for gas and aerosol retrievals [e.g., Total

Carbon Column Observing Network (Wunch et al.

2011) and California Laboratory for Atmospheric

Remote Sensing (Fu et al. 2014)]. Analysis of these

HSR observations and development of retrieval algo-

rithms require accurate and computationally efficient

forward RT simulations. A distinction should be made

between HSR RT simulations and HSR measurements.

The former is normally performed at monochromatic

wavelengths with a spectral resolution much finer than

that of the actual measurements; the latter can be visu-

alized as the convolution of the former over the instru-

ment spectral response function.

Several rigorous RT schemes, for example, discrete

ordinates (Chandrasekhar 1960; Liou 1973), Monte

Carlo (Plass and Kattawar 1968), and adding–doubling

(Twomey et al. 1966) methods, have been developed to

perform accurate RT simulations, particularly for scat-

tering atmospheres. Meanwhile, a HSR line-by-line

model has to be applied to compute the gaseous ab-

sorption (Clough et al. 1992). The approach of using a

line-by-line model coupled with exact RT calculations is

reasonable for sensitivity studies or model validation for

limited atmospheric scenarios; however, it becomes

impractical for applications (such as radiance simula-

tions for satellite retrieval/assimilation or flux simula-

tions for climate and weather forecasting) that involve a

large number of simulations over vast spatiotemporal

domains. As a result, several fast RTmethods have been

developed for a variety of applications. Generally, there

are two approaches to improve the efficiency of RT

simulations. One approach achieves computational

efficiency by accelerating every RT simulation but

keeping the number of independent RT simulations

unchanged (Wang et al. 2013; Liu et al. 2015). The

second approach alleviates the computational burden

by decreasing the number of RT simulations needed

to compute HSR radiances (Liu et al. 2006; Moncet

et al. 2008). The accuracy and efficiency of several fast

RT approaches have also been investigated (Clough

et al. 2005; Oreopoulos et al. 2012; Randles et al. 2013;

Aumann et al. 2018).

A variety of fast RT models have been employed for

HSR simulations (Duan et al. 2005; Natraj et al. 2005;

Liu et al. 2006; Moncet et al. 2008; O’Dell 2010; Spurr

et al. 2013; Wang et al. 2015; Kopparla et al. 2016;

Somkuti et al. 2017). These models include two varieties

of principal component analysis (PCA)-based tech-

niques. Natraj et al. (2005) perform PCA on spectrally

binned sets of optical properties; costly multiple-

scattering RT calculations are only done for a few

PCA-derived optical states. This approach will hence-

forth be referred to as optical-property-based PCA

(Opt-PCA). On the other hand, Liu et al. (2006) per-

form rigorous RT calculations at only a small number of

representative wavelengths, and then compute radi-

ances at higher spectral resolution using PCA in the

radiance domain. This methodology employs PCA in

radiance space, and will be referred to as radiance-based

PCA (Rad-PCA).

Both Opt-PCA and Rad-PCA have been tested and

validated for various applications. Opt-PCA was first

applied to scalar radiance simulations (no polarization)

at high resolution in and around the O2 A-band (Natraj

et al. 2005), and later expanded to RT modeling with

polarization (Natraj et al. 2010). Subsequently, the PCA

procedure was analytically differentiated and Jacobians

developed for the PCA-based radiation fields (Spurr

et al. 2013). A slightly different method for calculating

the Jacobians was demonstrated by Efremenko et al.

(2014a). Further work was also done to extend the

technique to broadband radiances and fluxes (Kopparla

et al. 2016), to improve treatment of aerosol scattering

(Kopparla et al. 2017), and to demonstrate application

for retrievals (Somkuti et al. 2017). Efremenko et al.

(2014b) discussed Opt-PCA within the general frame-

work of dimensionality reduction in optical property

space. Rad-PCA is designed to fully exploit a large

amount of information from spectral radiances (Liu

et al. 2006; Matricardi 2010; Havemann et al. 2018).
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The technique has been extended for solar spectrum

simulations (Liu et al. 2016; Yang et al. 2016), and been

applied to retrievals of atmospheric profiles, surface

characteristics, and cloud properties under all-sky con-

ditions, as well as in satellite data assimilation (Liu et al.

2009; Matricardi and McNally 2014; Wu et al. 2017).

In this study, we combine the advantages of Opt-PCA

and Rad-PCA to further enhance the computational

efficiency of HSR RT simulations with negligible loss of

accuracy. The new technique compresses spectral in-

formation in both optical property and radiance do-

mains, and will hence be referred to as spectral data

compression (SDCOMP) model. To the best of the

authors’ knowledge, this is the first attempt at unifying

the optical and radiance-based PCA approaches to both

reduce the number of monochromatic wavelengths at

which RT calculations are performed and optimize the

RT calculation efficiency at each wavelength. Widely

utilized fast RT models, such as the ones developed by

Liu et al. (2006), Matricardi (2010),Moncet et al. (2015),

and Havemann et al. (2018), fail to do the latter. A

similar methodology (that couples the PCA-based ap-

proaches in a different manner) was recently applied for

radiance computations in the Hartley-Huggins band of

ozone (delÁguila et al. 2019). However, their work only

included the effects of gas absorption and Rayleigh

scattering (no aerosols or clouds). Further, its perfor-

mance for wider spectral ranges is still unclear.

The paper is organized as follows. The new model is

introduced in section 2. Section 3 discusses the perfor-

mance (in terms of accuracy and computational effi-

ciency) of the algorithm for both solar and infrared

spectral regions. We provide concluding remarks in

section 4.

2. The SDCOMP model

Rad-PCA saves computational time by performing

monochromatic RT calculations on a reduced set of

representative wavelengths and extending these results

to the whole spectral range using PCA in the radiance

domain. On the other hand, Opt-PCA accelerates the

simulations by efficient computation at each wave-

length through PCA in the optical property (e.g., optical

thickness, single-scattering albedo) domain. Clearly, the

two PCA techniques are complementary; we combine

the two approaches and investigate the performance of

the unified model for simulations of HSR top of the at-

mosphere radiance. This study considers a solar spectral

region between 0.75 and 0.92mm and an infrared spectral

region between 2000 and 2250cm21 to illustrate the per-

formance of the method for both solar and thermal radi-

ation sources. Spectral resolutions of 0.05 and 0.005 cm21

are used for the solar and infrared regions, respectively;

both scenarios contain 50 000 monochromatic wave-

lengths. It should be noted that this study is intended to

present the general methodology of SDCOMP; the

spectral resolution is not chosen to meet any specific

application. Clearly, finer spectral resolutions should

be used for more accurate results; this will be done in

future studies. Indeed, the numerical efficiency of our

method will increase with finer spectral resolution since

the computation time of SDCOMP is a very weak

function of spectral resolution; on the other hand, the

computation time of exact RT methods scales linearly

with the number of wavelengths.

Figure 1 shows schematically the SDCOMP method-

ology. The basic idea is to extend Opt-PCA results (left)

at representative wavelengths to all required HSR

wavelengths using the Rad-PCA approach (right).

Opt-PCA is executed on a much coarser wavelength

grid than the desired HSR grid. Opt-PCA follows a

three-step procedure. First, the spectral region is split

into bins, where each bin is characterized by grouping

optical properties (such as atmospheric-layer trace gas

optical thickness values or single-scattering albedos)

that are similar within the bin. Second, PCA is per-

formed on the optical properties so as to obtain the

eigenstates with the largest contributions to the vari-

ance. Finally, accurate RT calculations (using 32 com-

putational quadrature angles in this work) are carried

out only for a few PCA-projected states.

Opt-PCA partitions the radiation field into single and

multiple scattering (MS) contributions. The former

can be computed efficiently and is calculated at every

wavelength. The latter is computationally expensive.

Opt-PCA computes two-stream (2S) approximations

of the MS contributions at every wavelength; numer-

ically exact MS contributions (using a large number of

quadrature angles) are evaluated only for the mean

optical state within the bin and a small number (typ-

ically 2–4) of PCA-perturbed optical states. PCA-

derived correction factors are then used to compute

more accurate approximations to the exact MS field.

The correction factor is a metric to quantify the dif-

ference between 2S and numerically exact values of

the MS field. The radiance calculated by Opt-PCA at

the n representative wavelengths, Xn, can be ex-

pressed as

X
n
5 ISSn 1C

n
I2Sn , (1)

where ISSn is the single-scattering (SS) contribution, I2Sn is

the 2S approximation to the MS contribution and Cn is

the correction factor. Details about the procedure to

calculate Cn can be found in Spurr et al. (2013).
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In Rad-PCA, the first l principal component (PC)

vectors Vl3m are calculated offline from a large radiance

training dataset at m wavelengths. Then, the radiances

computed by Opt-PCA are used to compute PC scores

Wl using the formula

W
l
3V

l3n
5X

n
. (2)

Here, Vl3n is a subset of the full set of PC vectors cor-

responding to the n representative wavelengths. n is

normally much smaller thanm, but larger than l; that is,

m.. n. l. Since Vl3n is not a square matrix, we use the

pseudoinverse (Vl3n)
1 to find the least squares solution

of Eq. (2); the dimension of this pseudoinverse matrix is

n 3 l. Then, we have

W
l
’X

n
3 (V

l3n
)1 . (3)

Hence, the full spectral matrix Xm can be calculated as

follows:

X
m
’W

l
3V

l3m
5X

n
3 (V

l3n
)1 3V

l3m
. (4)

Rad-PCA calculates the radiances at the reference

wavelengths, Xn, using exact RT simulations; the

computational speed up of Rad-PCA is, therefore,

approximately m/n. On the other hand, SDCOMP

uses Opt-PCA to calculate Xn, thereby speeding up

the reference radiance calculations. Meanwhile, Opt-

PCA and SDCOMP differ in the total number of

wavelengths at which radiances are calculated; the

former needs to perform calculations over the entire

set of m wavelengths, whereas the latter only requires

computations at the n reference wavelengths. It is clear

that SDCOMP optimizes the advantages of both the

optical and radiance-based PCA models. For further

details on Opt-PCA and Rad-PCA, the readers are re-

ferred to prior publications on those models (Natraj

et al. 2005, 2010; Liu et al. 2006, 2016; Spurr et al. 2013;

Kopparla et al. 2016; Yang et al. 2016; Kopparla et al.

2017; Somkuti et al. 2017).

Radiances from exact RT simulations (including ab-

sorption, scattering and, in the thermal infrared, emission

effects) for a large variety of atmospheric conditions are

needed to calculate the PC vectors used by Rad-PCA.

For this purpose, we use an atmospheric profile dataset

developed by the Copernicus Atmospheric Monitoring

Service (CAMS) of the European Centre for Medium-

Range Weather Forecasts (ECMWF), which is a collec-

tion of representative model atmospheres (Eresmaa and

McNally 2016). The dataset includes 40000 atmospheric

profiles on a 60-level vertical grid from the surface to

0.1hPa covering realistic annual and diurnal variations in

temperature, specific humidity, and the mixing ratio of

ozone, carbon monoxide, nitrogen dioxide, sulfur diox-

ide, and formaldehyde.

For consideration of aerosol scattering, we employ

simulations of the Modal Aerosol Dynamics Model for

Europe (MADE) (Ackermann et al. 1998). MADE

provides vertical profiles of aerosol optical thickness

for five aerosol types (black carbon, organic carbon,

accumulation mode sea salt, coarse mode sea salt, and

sulfate). Corresponding spectrally dependent optical

properties for each aerosol type are precalculated using

Mie theory with size distribution parameters and re-

fractive indices from the Optical Properties of Aerosols

and Clouds (OPAC) database (Hess et al. 1998), except

for black carbon, where they are taken from d’Almeida

et al. (1991).

For the infrared spectral region, we use monthly mean

emissivity from the University of Wisconsin–Madison

FIG. 1. Flowchart to illustrate the basic concept of the SDCOMP RT model.

2058 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 77

Brought to you by CALIFORNIA INST OF TECHNOLOGY | Unauthenticated | Downloaded 12/16/20 10:58 PM UTC



Baseline Fit Emissivity Database (Seemann et al. 2008).

For the visible to near-infrared spectral range, we use

monthly mean surface reflectivity spectra based on the

visible and near-infrared bidirectional reflectance dis-

tribution function (BRDF) atlas (Vidot et al. 2018),

which was developed for the fast RT model RTTOV

(Saunders et al. 2018).

TheHigh-ResolutionTransmission 2016 (HITRAN2016)

molecular spectroscopic database (Gordon et al. 2017) is

used to obtain gas absorption optical thickness profiles;

all gases that absorb in the relevant spectral ranges

are considered in the simulations. The RT calculations

for the training dataset employ the linearized discrete

ordinate radiative transfer (LIDORT) model (Spurr

et al. 2001).

Figure 2 presents some examples of the atmospheric

temperature, water vapor, and aerosol profiles and the

surface albedo spectra; for each parameter, 100 different

scenarios are shown in the figure. The figure clearly il-

lustrates the large dynamic range of the parameters,

which is required to obtain a representative HSR radi-

ance dataset to be used by Rad-PCA for training. The

top panel of Fig. 3 shows the resulting reflectance

spectra, based on the above profiles, within the solar

spectral region. We calculated spectra for 7000 ran-

domly selected atmospheric scenarios: (i) 5000 scenarios

are used as training spectra to calculate the PC vectors,

(ii) 1000 scenarios are used to choose the representative

wavelengths, and (iii) 1000 scenarios are used for model

evaluation (SDCOMP accuracy). The bottom panel of

Fig. 3 shows the first five PCs, as well as the average

reflectances, in the solar spectral region. The average

reflectance clearly shows the dominant gas absorption

features, whereas the PC vectors capture spectral vari-

ations of the reflectances (due to absorption, scattering,

and surface reflection) from one wavelength to another.

In this study, we use the first 100 PCs since the results

become stable and additional PCs do not further im-

prove the accuracy. This can be modified based on the

spectral information within the wavelength range of

interest.

It should be noted that the accurate monochromatic

RT simulations used here for the training and validation

datasets are computationally expensive; however, since

the training is performed only once during the model

development stage, the large computational burden is

FIG. 2. Examples of atmospheric temperature, water vapor, and aerosol optical depth (AOD) profiles, and surface

albedo spectra used in the simulations.
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acceptable. On the other hand, Opt-PCA simulations

are accurate enough for the calculation of the training

dataset. We have tested SDCOMP based on training

with Opt-PCA results (not shown here), and have found

errors due to this process to be negligible. This proce-

dure will make future SDCOMP development for wider

spectral regions much more efficient.

Liu et al. (2006) selected the representative wave-

lengths to predict PC scores by considering correlation

coefficients between radiances at different wavelengths.

This study uses an alternative, iterative method to pick

the wavelengths. It should be noted that neither method

might provide the ‘‘optimal’’ choice; more research is

required to optimize the procedure. Figure 4 shows

schematically the iterative method. We start with an

equal-spaced grid in the spectral domain, and iteratively

modify the grid based on the ensemble errors of calcu-

lated SDCOMP radiances. We follow two rules for the

modification. First, wavelengths at which SDCOMP

radiances have the largest errors (compared to an ‘‘exact’’

calculation using the LIDORT RT model) replace the

closest grid point from the prior iteration, so that the

‘‘quasi uniform’’ distribution of the grid will not be sig-

nificantly affected. Second, the total number of grid

points will be kept the same, and only ;25% of the grid

points are changed during each iteration. Typically, after

approximately three to four iterations, convergence is

achieved; that is, the overall errors cannot be improved

any more by changing the grid (keeping the total number

of points fixed). Note that, after convergence, if SDCOMP

errors at particular wavelengths are still significant, we can

add those monochromatic wavelengths to the grid to fur-

ther reduce computational errors.

Figure 5 illustrates the key steps of the aforemen-

tioned iterative procedure. First, 400 monochromatic

points are chosen uniformly within the given spectral

region. Based on this initial grid, SDCOMP results at the

full HSR set of 50 000 wavelengths are obtained for 1000

different atmospheric scenarios and evaluated against

FIG. 3. (top) Examples of simulated reflectance spectra at the

top of the atmosphere used for training Rad-PCA. (bottom)

Corresponding reflectance mean and first five principal com-

ponents (PC-1 to PC-5). To illustrate the curves on the same

plot, PC-1 to PC-5 are shifted by adding 0.08, 0.12, 0.16, 0.20,

and 0.24, respectively, to their values.

FIG. 4. Schematic of the iterative method to choose the representative monochromatic

wavelengths.
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accurate radiances/reflectances at the top of the atmo-

sphere fromLIDORT calculations. The average relative

errors for the HSR wavelength grid are illustrated in

Fig. 5a. Figure 5b illustrates a particular spectral region

(corresponding to the region with blue background in

Fig. 5a) with relatively large relative errors; the blue

circles (eight overall for this region) indicate the initial

equally spaced grid points. Clearly, the choice of uni-

formly separated grid points introduces significant er-

rors;;100 (out of 50 000) relative errors are over;2%,

which we set as the threshold for grid replacement. The

gray-shaded background of Fig. 5 indicates the thresh-

old. We replace some of the initial points with wave-

lengths at which the relative errors are larger than the

threshold; the arrows between Figs. 5b and 5c illustrate

this procedure. The replacement is done such that the

total number of representative wavelengths does not

change between iterations. SDCOMP is then invoked

again to perform calculations based on the updated grid,

and the new errors are shown in Fig. 5d. It is evident that

the average errors become much smaller, overall, al-

though there are still some regions with large errors

(yellow-shaded region in Fig. 5d). The procedure is re-

peated with a new but much smaller error criterion

(;0.4%, i.e., gray-shaded region in Fig. 5d); again, most

wavelengths that give large errors can be included in the

grid for the next iteration. It should be noted that once a

wavelength is picked to replace an initial one, it will not

be replaced in the later iterations. The errors become

stable after three to four iterations, and little improve-

ment obtained with further modification.

For the solar spectral region in Fig. 5, a grid with 400

representative wavelengths after the iteration is enough

to give very accurate results. However, for infrared

wavelengths, significant overlap between absorption by

multiple gases, and the relatively dense nature of the

absorption lines, make the relationship between radi-

ances at different wavelengths much more complicated;

therefore, the simple iterative scheme discussed above is

not enough to obtain similar accuracy levels as that at

solar wavelengths. To address this issue, wavelengths at

which the errors are large are added as additional grid

points. Note that additional wavelengths imply more

Opt-PCA calculations. However, Opt-PCA computes

only approximate (2S and single scatter) RT solutions

at these points; these are computationally efficient and

take negligible time compared to exact RT calcula-

tions. Once the representative grid is obtained (off-

line), it is not changed for any other arbitrary user-

generated scenarios. Using 5000 (instead of 1000)

training atmospheres did not result in any significant

changes, either in the chosen reference wavelengths or

in the radiances.

3. SDCOMP performance

Figure 6 compares the accuracy of Opt-PCA, Rad-

PCA, and SDCOMP. The exact results illustrated in

the top panel are computed using 32-stream LIDORT

simulations at a spectral resolution of 0.05 cm21; relative

errors (REs) produced by Opt-PCA, Rad-PCA, and

FIG. 5. Example to illustrate the iterative method for choosing

the representative wavelengths. (a) Average relative errors at

50 000 wavelengths by using 400 equally spaced monochromatic

representative wavelengths. (b) As in (a), but for a much narrower

spectral range [blue region in (a)]; corresponding representative

wavelength grid points are indicated by blue circles. (c) Modified

grid points for next iteration (green circles) by replacing some of

the prior ones with those that produce large (as defined by values in

the gray-shaded area) relative errors. (d) Average relative errors

after adjustment.

FIG. 6. (top) Example of reflectance at the top of the atmosphere

computed using exact radiative transfer simulations. (bottom)

Corresponding relative errors produced by Opt-PCA (blue), Rad-

PCA (red), and SDCOMP (green).
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SDCOMP are shown in the bottom panel. RE is de-

fined as

RE5
R

F
2R

E

Max[R
E
]
3 100%, (5)

where RF and RE are the reflectances obtained from the

fast and exact models, respectively, and Max[RE] is the

maximum reflectance within the spectral region. This

definition is employed to avoid artificial amplification of

errors due to division by small numbers (Kopparla et al.

2017). All three models give accurate results, with

comparable biases with respect to the exact LIDORT

model. The maximum REs are less than 0.2%, and the

average absolute REs are lower than 0.05%. The errors

show similar structures over the spectral region, other

than slightly larger errors for SDCOMP at strongly ab-

sorbing wavelengths.

Figure 7 illustrates the probability and cumulative

probability distributions of spectral mean REs for 1000

different atmospheric trace gas and aerosol scenarios.

The 1000 profiles are different from those used for the

Rad-PCA training and those employed to choose the

representative wavelengths, thereby providing an un-

biased representation of SDCOMP errors. Most mean

REs are less than 0.1%. Over 90% of Rad-PCA

monochromatic results have REs less than 0.05%.

Opt-PCA and SDCOMP provide slightly larger errors,

but most of the errors (over 70% of the monochromatic

REs) are less than 0.05%. SDCOMP uses Opt-PCA

calculations at the reference wavelengths, whereas Rad-

PCA employs exact RT calculations at those wave-

lengths. Therefore, SDCOMPREs are, by design, worse

than those from Rad-PCA. The larger errors for Opt-

PCA are because PCA is performed on the optical

properties (that have a nonlinear relationship with the

radiance), whereas Rad-PCA employs PCA directly on

the radiance field. Finally, SDCOMP accrues errors due

to PCA in both optical property and radiance domains

and is therefore the least accurate of the three models.

Probability distribution results for the 5000 training at-

mospheres are almost indistinguishable from those ob-

tained here, demonstrating that the testing profiles

span a wide range of atmospheric, surface and viewing

geometry conditions, and also corroborating the ro-

bustness of the training process.

Figure 8 is similar to Fig. 6 but shows brightness

temperatures (BTs) given by accurate simulations and

the corresponding BT differences (BTDs) due to the

three models. Since there are many more absorbing

gases and more finely spaced spectral lines in the in-

frared, 800 representative wavelengths and 200 PCs

are required for the monochromatic calculations

(compared to 400 wavelengths and 100 PCs in the near-

infrared). The BTDs are generally under 0.1K; less

than 1% of all results have BTDs larger than 0.1K.

Compared to the solar region, the differences are less

systematic in the infrared. The average BTDs for

Opt-PCA, Rad-PCA, and SDCOMP are approximately

0.012, 0.012, and 0.017K, respectively. For the IR

FIG. 7. (left) Probability distributions and (right) cumulative probability distributions of spectrally averaged Opt-

PCA, Rad-PCA, and SDCOMP relative errors for 1000 atmospheric trace gas and aerosol scenarios.
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simulations, since the computations of the monochro-

matic gas absorptions themselves are quite time con-

suming, the efficiency gained by combining the two PCA

approaches is even more significant; this will be dis-

cussed in greater detail at the end of the section.

Figure 9 is similar to Fig. 7 but shows the probability

and cumulative probability distributions of the mean

BTDs of the three models. The average BTDs for Opt-

PCA and Rad-PCA show largest probability less than

0.03K; the probability also decreases sharply as BTD

increases. Over 90% of the results show BTDs less than

0.05K; 99% show BTDs less than 0.1K. The BTDs for

SDCOMP are slightly larger, but also mostly under

0.1K (over 95%). It should be noted that all REs and

BTDs reported in this study are at monochromatic

wavelengths, which are expected to be much larger than

those for convolved radiances, representative of typical

instrument channel measurements, used for assimilation

of hyperspectral sounder data.

Figures 6–9 show that the accuracy of SDCOMP is

similar to that of Opt-PCA and Rad-PCA. On the other

hand, SDCOMP is more computationally efficient than

the other two PCA-based models, as demonstrated in

Table 1. To avoid the speed up of the fast RT ap-

proaches to be dependent on the choice of the accurate

RT model, we employ LIDORT with 32 streams as the

numerically exact RT model for all four scenarios. An

‘‘exact’’ model requires 50 000 accurate monochromatic

RT calculations. In comparison, Rad-PCA needs only

400 accurate RT simulations for the solar spectral re-

gion; radiance-based PCA is used to extend these results

to the full set of 50 000 wavelengths. The PCA process

takes negligible computational time. For Opt-PCA, a

combination of 2S and SS calculations is performed at

every wavelength (i.e., 50 000 total); these take negligi-

ble computational time as well. Following the treatment

by Kopparla et al. (2017), the spectral region is split into

11 intervals (bins) based on the total gas absorption

optical thickness; a maximum of (2k 1 1) accurate RT

simulations are needed for each bin, where k is the

number of PCs that are retained.We employ four PCs in

this study, implying that no more than 99 (2 3 4 1 1 5
9 calculations for each bin) accurate simulations are

FIG. 8. As in Fig. 6, but for results in the infrared expressed in terms

of brightness temperature.

FIG. 9. As in Fig. 7, but for results in the infrared expressed in terms of brightness temperature differences.
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required. For SDCOMP, the 400 accurate Rad-PCA

simulations are replaced by fast 2S/SS calculations.

Further, for the bin RT calculations, it should be noted

that bins containing less than nine wavelengths are

merged into an adjacent bin. Since there are far fewer

monochromatic wavelengths for SDCOMP (;400)

compared to Opt-PCA (50 000), several bins are either

empty or have very few wavelengths. In practice, only

about 50 accurate calculations are necessary. Table 1

lists only the main RT components required for the three

PCA-basedmodels; computation times that are shared by

all three models (e.g., modeling setup, input/output) are

not considered here. Considering that the computational

times for exact LIDORT simulations differ dramati-

cally for different atmospheric scenarios, we will not

provide absolute CPU times here; numbers in Table 1

simply demonstrate the speed up compared to exact

calculations.

The situation for the infrared region is slightly dif-

ferent. Table 2 compares the relative efficiencies of the

three PCA approaches compared to the exact solution.

There are about 800 representative wavelengths (com-

pared to 400 for the solar case) for Rad-PCA; therefore,

more accurate RT simulations are needed for all PCA

models compared to the solar scenario. Meanwhile, the

difference in the number of accurate RT simulations

required for Opt-PCA and SDCOMP becomes smaller.

However, in this spectral region, computational times

for the modeling setup (mainly calculation of gas ab-

sorption optical thicknesses) and accurate RT simula-

tions are comparable, with a ratio approximately 3:10.

Thus, if we assume that each accurate RT simulation

uses a computational unit of 1.0, the corresponding

model setup will take an additional computational unit

of ;0.3. For the exact RT (50 000 exact RT simulations

and 50 000 setups) and SDCOMP (800 exact RT simu-

lations and 800 setups) simulations, over 20% of the

total computational time is spent in the modeling setup;

the fraction becomes over 99% for Opt-PCA (50 000

setups and ;100 exact RT simulations). The advantage

of SDCOMP compared with Opt-PCA is clearly due

to the significant decrease in modeling setup time.

SDCOMP is three orders of magnitude faster than the

exact simulation.

4. Conclusions

This study utilized the complementarity of two dif-

ferent PCA-based approaches to develop a spectral data

compression model that optimizes the advantages of the

two models. In this SDCOMP approach, PCA is used

twice independently: first, to compute radiances at rep-

resentative wavelengths utilizing correlations in optical

properties, and second, to extend radiances at these

wavelengths to those at a larger set of monochromatic

wavelengths using radiance correlations. Our results

indicate that SDCOMP further improves the computa-

tional efficiency of the two existing PCA-based ap-

proaches while providing similar accuracy as those

techniques (Figs. 6–9). The accuracy and efficiency may

be further improved by optimizing the choice of repre-

sentative wavelengths and/or the number of PC vectors.

Recent work has shown that the accuracy of SDCOMP

can be further improved by applying machine learning

TABLE 1. Comparison of relative computational efficiency of the three models for the spectral range between 0.75 and 0.92mm.

Method Exact model Opt-PCA Rad-PCA SDCOMP

Accurate RT simulationsa 50 000 ;100 ;400 ;50

Additional simulationsb — 50 000 2S/SS PCA ;400 2S/SS, PCA

Speed up 1 500 125 1000

a The accurate simulations employ LIDORT with 32 streams.
b Additional simulations include two-stream (2S)/single-scattering (SS) calculations (in the case of Opt-PCA) and PCA calculations (in

the case of Rad-PCA and SDCOMP). These take negligible computational time.

TABLE 2. Comparison of relative computational efficiency of the three models for the spectral range between 2000 and 2250 cm21.

Method Exact model Opt-PCA Rad-PCA SDCOMP

Accurate RT simulationsa 50 000 ;100 800 ;100

Modeling setupsb 50 000 50 000 800 800

Computational unitsc ;65 000 ;15 100 ;1 040 ;340

Speed up 1 4 62 ;190

a The accurate simulations employ LIDORT with 32 streams.
b For the infrared simulation, the computation time for modeling setup is comparable to that for accurate RT simulation (3:10 ratio).
c Here, we assume that each accurate RT simulation uses a ‘‘computational unit’’ of 1.0; therefore, each modeling setup takes a com-

putational unit of ;0.3.
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techniques (Le et al. 2020). Future efforts will investi-

gate the applicability and performance of SDCOMP

over wider spectral ranges. Only aerosol scattering is

considered here; results for cloudy atmospheres will

be analyzed in forthcoming endeavors. Furthermore,

SDCOMP may have the potential to be applied to flux

and atmospheric heating-/cooling-rate simulations in

weather and climate models. In order for SDCOMP to

be relevant for atmospheric retrieval systems and nu-

merical weather models, calculation of radiances alone

is not enough; the model needs to also have the capa-

bility to compute Jacobians. The current SDCOMP

model does not include Jacobian calculations. On the

other hand, there is no difficulty per se to perform such

calculations. This has already been demonstrated for

Opt-PCA by Spurr et al. (2013). The same methodology

will be employed for SDCOMP in future work.
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