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ABSTRACT

The InfraRed Imaging Spectrograph (IRIS) is a first-light instrument for the Thirty Meter Telescope (TMT)
that will be used to sample the corrected adaptive optics field by the Narrow-Field Infrared Adaptive Optics
System (NFIRAOS) with a near-infrared (0.8 - 2.4 µm) imaging camera and integral field spectrograph. To
better understand IRIS science specifications we use the IRIS data simulator to characterize relative photometric
precision and accuracy across the IRIS imaging camera 34”x34”field of view. Because the Point Spread Function
(PSF) varies due to the effects of anisoplanatism, we use the Anisoplanatic and Instrumental Reconstruction of
Off-axis PSFs for AO (AIROPA) software package to conduct photometric measurements on simulated frames
using PSF-fitting as the PSF varies in single-source, binary, and crowded field use cases. We report photometric
performance of the imaging camera as a function of the instrumental noise properties including dark current and
read noise. Using the same methods, we conduct comparisons of photometric performance with reconstructed
PSFs, in order to test the veracity of the current PSF-Reconstruction algorithms for IRIS/TMT.

Keywords: infrared:imaging, data:simulator, instrumentation: near-infrared, imaging:photometric, giant seg-
mented mirror telescopes: Thirty Meter Telescope

1. INTRODUCTION

1.1 IRIS for TMT

The InfraRed Imaging Spectrograph (IRIS)1–4 for the Thirty Meter Telescope (TMT) is an imaging camera
(imager) and integral field spectrograph (IFS) operating in the near infrared 0.8 µm - 2.4 µm wavelength range.
The imager will sample the diffraction limit of TMT’s 30 meter aperture and will provide a spatial plate scale
of 4 miliarcseconds (mas) per spatial pixel over a 34 x 34 arcsecond field of view, distributed over four Teledyne
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Hawaii-4RG-10µm detectors. The IFS is comprised of both lenslet and slicer spectrographs that are capable
of operating with varying spatial scales that operate in-parallel with the imager. The relative positions in the
focal plane of the imager detectors and the spectrograph fields of view are illustrated in Figure 1. IRIS will
provide unprecedented diffraction-limited spatial resolution and characterizing its photometric performance is
an important step in the development of IRIS science.

For the purposes of understanding the photometric capabilities of IRIS, we characterize the performance of the
IRIS imager in terms of its relative precision and accuracy. The quality of the imager photometric performance
is a function of the Signal-to-Noise Ratio (SNR) of an observed source within the field of view, as well as the
observational parameters, atmospheric quality, and performance of the Narrow-Field Infrared Adaptive Optics
System (NFIRAOS).5,6 To simulate these effects we use the IRIS data simulator7–9 package in conjunction
with imager Point Spread Functions (PSFs) simulated by the NFIRAOS team to indicate Strehl ratio, spatial
atmospheric effects, and spatial asymmetries in flux distribution. Because the field of view of the imager is large
relative to the spatial effects of atmospheric turbulence across the field of view, variations in the PSF caused by
anisoplanatism are expected even with the best possible performance of NFIRAOS. Characterizing anisoplanatic
effects is therefore an essential step in understanding the science capabilities of IRIS.

Figure 1. (Left) The setup of the IRIS imager detectors relative to the location of the spectrograph pick-off mirrors at
the center of the four detectors, with the estimated Strehl ratio for K-band observations shown in color. The Strehl ratio
for this figure was estimated assuming optimum performance of NFIRAOS and 75% (best 75 percent, below average)
atmospheric conditions. The IRIS simulations for photometric characterization were conducted over the upper-right
imager detector relative to the on-axis position of the spectrograph pick-off mirror at the center of the IRIS focal plane,
marked with the black dot for reference. (Right) The relative positions of the anisoplanatic PSFs used in the photometry
simulations. When simulating a point source within the imager field of view, a unique PSF is generated for that field
location by interpolating between the surrounding points from the above grid. The PSF grid itself is then used as the
PSFs used for fitting by AIROPA, or interpolated to a finer-sampled grid for fitting as discussed in Section 3.4

1.2 PSFs

The PSF spatial variations across the imager field of view is dependent on wavelength and distance from field
locations where the corrective effects of NFIRAOS are most pronounced. For our simulations we adopt a field
configuration where the best AO performance is achieved at the on-axis location of the spectrograph pick-off
mirror. For further descriptions of field locations relative to this position, we define the on-axis pick-off mirror
location to be the origin of the imager-plane coordinate system (0”, 0”), using arcseconds as our coordinate
units. The data set of PSFs used in photometry simulations extends to the upper right imager detector corner
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location (17”, 17”) in a 5 x 5 grid starting at the lower left imager corner location (0.6”, 0.6”). This grid of
PSFs is shown in Figure 1. For the sake of practicality in the scope of photometric simulations measuring the
effects of anisoplanatism, we assume similar photometric performance in the other three imager detectors due to
rotational symmetry given adequate AO performance relative to their positions.

Using the PSFs described, we create a PSF unique to any field location by using a bilinear interpolation scheme
between the closest four PSFs for a given location on the imager detector. We then convolve the interpolated PSF
with the flux for a given point source magnitude, and simulate the sky-background and instrumental effects of
IRIS using the data simulator to approximate an observation. For photometry, we then use PSF-fitting routines
to retrieve estimated flux values for each simulated source.

1.3 PSF Fitting Routines

PSF-fitting routines are a necessary step in achieving high-precision measurements in AO data in order to account
for extended spatial flux distribution as described by the PSF. Aperture photometric methods are insufficient
for achieving high precision measurements of crowded fields as shown by years of work performed with the
DAOPHOT algorithm and later by Starfinder .10 Starfinder/DAOPHOT algorithms are effective tools in fitting
an empirical or prescribed PSF to stellar fields whose PSF variability across the field is negligible, but this is not
the case for the IRIS imager due to the high difference in Strehl ratio across the field of view shown in Figure 1 as
a result of anisoplanatism. We then use the Anisoplanatic and Instrumental Reconstruction of Off-axis PSFs for
AO (AIROPA)11,12 software package in order to account for the anisoplanatic effect and subsequent variability
in the PSF across the imager field of view. We use aperture photometry as a comparison for the results of the
PSF-fitting routines provided by AIROPA. We also test the veracity of PSF-Reconstruction (PSF-R) algorithms,
through using a separate data set of reconstructed PSFs for fitting with AIROPA; this is discussed in Section
3.3.1.

In conducting these simulations we not only hope to characterize the IRIS imager performance, but to use
practical methods astronomers would use on the acquired data to extract source positions and photometric
counts using PSF-fitting astrometry and photometry. Large detector fields of view such as is provided by the
Hawaii-4RG detectors of the IRIS imager provide new problems for data processing beyond anisoplanatic PSFs.
Because the PSF varies across the field as described in 1.2, we use AIROPA to fit PSFs in a field-variable manner.
However, due to the large field of view and potentially large number of sources to be processed by AIROPA,
CPU draw and processing time becomes a potential issue with very crowded fields. Full discussion of issues
encountered and therefore potential issues for AO data with large fields of view are found in Section 3.5, and
analysis of irrevocable anisoplanatism is found in Section 3.4.2.

2. SIMULATION METHODS

In order to properly assess the photon noise distribution for each simulated source, we use a Monte Carlo
simulation method of measurement over many simulation seeds in order to measure the variation in results, and
therefore assess the associated error with a given simulated observation. In order to obtain relative photometric
precision measurements, we apply aperture and PSF-fitting photometry to simulated frames across the varying
simulation seeds and calculate values for photometric precision for a variety of stellar magnitudes, field positions,
and instrumental modes. Absolute photometric accuracy may then be calculated by comparing the photometric
results across simulation seed results to the known simulated flux values adjusted by the instrumental values
applicable to each simulation case.

We have catered our simulations to the available PSFs in order to provide a meaningful comparison between
PSF-fitting and aperture photometric results. In Section 3 we discuss the field configurations used in the
simulations for characterizing the photometry error budget for the IRIS imager. For each configuration we
limited the field to one imager detector, a 4096x4096 spaxel image at a plate scale of 4 mas per spaxel. For the
purposes of exploring the photometric error of IRIS in terms of its absolute accuracy and relative precision, we
define the errors associated with a single photometric source using the equations

Accuracy Error (%) = 100 ∗ F̄ − F∗

F̄
(1)
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and
Relative Precision (%) = 100 ∗ σFlux

F̄
(2)

where F is the average flux determined through PSF-fitting or aperture photometry, F∗ is the known seeded
flux, and σFlux is the standard deviation of the flux results over all simulation seeds. Unless otherwise specified,
“photometric error” refers to a value of relative precision.

The details of the computer used for these simulations are relevant to the discussion of the photometric
results because processing time and CPU draw are a concern for contemporary AO data processing techniques
as discussed in Section 3.5. We used a 22-core 44-thread processing unit clocked at 2.1GHz and 30 MB Cache,
and 250Gb RAM. All seeds for a given simulation were multi-threaded over 25 individual processes at a time.
Individual simulation sets were called via scripts as batch files and saved according to their simulation seed
number, completely isolating individual seed results in order to provide an accurate sample of the photometric
value distribution.

Each field configuration used for simulations is selected in order to address the photometric effects of specific
science questions or instrumental characteristics. Through selecting these configurations we aim to ascertain
the photometric performance of IRIS and populate a photometric error budget. When simulating an individual
star, we utilize the IRIS data simulator to convolve the estimated PSF (provided by the NFIRAOS team) with
flux values estimated for individual filters to simulate the flux distribution of point sources within the imager
field of view. We then estimate instrumental noise properties for each simulated spatial pixel and provide a
sky background value based on the simulated filter. The resulting simulated image can then be processed for
photometric and astrometric values.

For each simulated source we conduct aperture and PSF-fitting photometry. Aperture photometry is con-
ducted with the IDL routine Aper, which is a procedure adapted from DAOPHOT and computes concentric
aperture photometry at specified field locations using provided aperture radii and conducts sky subtraction.
We also use AIROPA to provide photometric and astrometric results via PSF-fitting as discussed in 1.3. We
provide the locations of each of the seeded sources to both methods of photometry, and calculate independent
values of precision for each method of photometric measurement. By comparing the precision results of aperture
photometry and AIROPA we gain insight into how AIROPA performs as a function of wavelength, instrumental
mode, and scientific field parameters. This exploration of AIROPA’s performance is a necessary requisite of
characterizing IRIS photometric precision and accuracy through PSF-fitting, but not a defined goal of these
simulations. For the purposes of ascertaining whether IRIS meets the instrumental photometric requirements,
we take the result with better performance in relative precision.

Photometric precision and accuracy is variable based on instrumental modes and field parameters. In order to
understand how photometric precision varies with science cases, we define four distinct simulation categories for
exploration with the IRIS imager: single-source (single star at the center of the field), grid-source (one star per
PSF), binary-case, and crowded field photometry. For each category we run simulations at varying bandpasses
and alter simulation characteristics to explore how resulting precision values change with science-field parameters.

2.1 Observational Parameters

In order to have consistent comparative values for the photometric performance between simulation cases, we
maintain a consistent SNR for each simulation case by varying the total integration time for each simulation.
Photometric performance is directly related to SNR, so in order to explore the effects of varying field configura-
tions and noise properties SNR must be consistent between comparisons. We chose a SNR value of 100 for each
of the simulations, and select the integration times shown in Table 1 for each bandpass in order to maintain this
SNR over varying filters. The integration times shown in Table 1 are also used in the binary case, with reference
to the primary source.
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SNR
Magnitude

(Vega)

Bandpass Integration Time (Total Seconds)
Z

λc: 0.87 µm
Y

λc: 1.01 µm
J

λc: 1.24 µm
H

λc: 1.62 µm
K

λc 2.19 µm

100

20 36.2 32.2 26.0 38.6 85.8
21 91.5 82.2 67.5 120.9 263.7
22 234.2 214.2 182.8 454.3 965.9
23 615.7 587.6 543.6 2092.1 4340.9
24 1719.4 1787.8 1897.7 11254.6 22985.4

Table 1. Total integration times for the imager by magnitudes and bandpass, zenith value of 30 degrees and 75% atmo-
spheric turbulence conditions (below average quality seeing). Note: we originally conducted these simulations at SNR of
10 as well, and failed in detection of faint sources using AIROPA, demanding a PSF-fit correlation value of 0.8 and a
threshold-above-noise value of 3σ.

2.2 Simulation Seed Analysis

Calculation of the relative photometric precision of the imager requires sampling the distribution of photometric
results as those values change due to intrinsic noise for a given simulated case. We achieve this by conducting
each simulation case over many individual seeds, and analyzing the resulting values for their error in accordance
with equations 1 and 2. In order to ensure that the error distribution is properly sampled by simulating over a
sufficient number of simulations seeds, we compare the results of the simulations with how those results change
over the seeds accounted for. This comparison is shown in Figure 2.

Figure 2. (Left) The relative precision results of a single star simulated in the center of the IRIS field of view as flux is
calculated and changes over the simulation seed number. (Right) The standard deviation of the error values (as shown
to the left) as it changes over seed number. These results illustrate the necessity for high numbers of simulations seeds in
order to properly assess the error distribution for individual simulations.

Figure 2 depicts the confidence with which we characterize the error distribution as a function of the number
of seeds used in our Monte Carlo simulations. In order to be certain in the error values we report, we spawn 2000
seeds for the purposes of assessing the relative photometric precision for each of the simulation cases described
below.

3. SIMULATED FIELDS & RESULTS

For the purposes of populating the photometric error budget for IRIS/TMT, it is in our interest to understand
the contribution of various noise sources to the overall photometric error. This section will define each of the field
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configurations and simulation parameters adopted in different cases used for assessing the photometric impact of
several instrumental and observational parameters. Because the method of photometric measurement impacts
the level of precision and accuracy possible, this section will also discuss the method of photometric measurement.
Each of the field configurations below is utilized to investigate the correlation of a noise source to its resulting
effect on the photometric error. For each case, a cursory summary of the pertinent results is provided. Because
the instrument requirements for photometry are defined in J-band (1.24 µm), error budget simulations will be
reported in J.

3.1 Single-Source Photometry

We investigate the photometric performance of a single point source of a certain magnitude located exactly at
the center of one imager detector. For the purpose of comparing photometric performance across wavelength
range, we conducted these simulations in the 5 main broadband filters Z (0.87 µm), Y (1.01 µm), J (1.24 µm),
H (1.62 µm), and K (2.19 µm). We simulated magnitude values from 20 to 24 and calculated integration time
to maintain a Signal-to-Noise Ratio (SNR) of 100. Integration times per magnitude per bandpass are shown in
Table 1.

Magnitude
(Vega)

Filter
AIROPA
Error (%)

Aperture
Error (%)

Strehl
PSF FWHM

(pixels)
Aperture Radius

(Pixels)

20

Z 0.47 0.31 0.04 2.26 8.46
Y 0.47 0.34 0.08 2.26 8.46
J 0.39 0.36 0.17 2.99 9.59
H 0.35 0.61 0.32 3.91 10.72
K 0.25 0.4 0.47 4.22 10.72

24

Z 0.5 0.38 0.04 2.26 8.46
Y 0.51 0.82 0.08 2.26 8.46
J 0.43 0.95 0.17 2.76 9.59
H 0.4 1 0.32 3.91 10.72
K 0.31 0.54 0.47 4.22 10.72

Table 2. The simulation results for a single point source at the center of one imager detector field of view. The location
for the simulated source in reference to the coordinates defined in Figure 1 is (8.8, 8.8) in arcseconds off-axis. As all of the
simulations in this paper, these were conducted using a zenith angle of 30◦ and ”poor” atmospheric conditions in order
to provide a conservative estimate for the photometric error.

The photometric error results from the single-source case are shown in Table 2. These simulations correspond
to a single star simulated at the (8.8”, 8.8”) point as defined in Figure 1. These values serve as a consistent
base error value for comparison with more complicated field configurations. Additionally, we use this same
configuration to test the effects of different instrumental noise values on photometric error by altering the
instrumental values for read noise and dark current in the data simulator.

3.1.1 Instrumental Noise Characteristics

We test the contribution of read noise and dark current to photometric error by conducting two sets of simulations
for each with altered values in addition to our standard simulation, in which we use the expected values of read
noise and dark current achieved by Teledyne Hawaii-2RG and Hawaii-4RG detecotrs. We simulate values for each
at twice the standard values, and also lacking those noise attributes entirely. The results of these simulations
are shown in Table 3 along with the standard deviations of the error values over all simulation seeds.

The results in Table 3 show that the instrumental noise contributions of read noise and dark current insofar
as they pertain to the effects on photometric error in J-band are small compared to the total noise fluctuations.
The differences between each set of the photometric error results, compared with the standard deviation of the
relative error values over 2000 seeds, are illustrative of the fact that the contributions of dark current and read
noise to photometric error are very small. For the purposes of the error budget, these values can be assessed as
<0.01% inferred from the noise distribution of these results.
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Magnitude
(J)

Noise Condition
AIROPA
Error (%)

Standard Deviation
of Error over all Seeds

20

Standard 0.39 0.01
Read Noise: 0 0.39 0.03

Read Noise: 10 e− 0.41 0.01
Dark Current: 0 0.39 0.01

Dark Current: 0.004 e−/s 0.39 0.01

21

Standard 0.38 0.01
Read Noise: 0 0.38 0.02

Read Noise: 10 e− 0.40 0.02
Dark Current: 0 0.38 0.02

Dark Current: 0.004 e−/s 0.41 0.02

22

Standard 0.39 0.01
Read Noise: 0 0.40 0.01

Read Noise: 10 e− 0.39 0.02
Dark Current: 0 0.41 0.01

Dark Current: 0.004 e−/s 0.40 0.02
Table 3. Differing noise profiles used for characterizing instrumental noise characteristics. The standard noise values
consist of 5 e− of read noise and 0.002 e−/s for dark current.

3.2 Grid-Source Photometry

In order to estimate the effect that PSF-variability has on photometric precision (absent of the effects of over-
lapping PSFs), we simulate a grid of point sources in the field at the locations for which we have a corresponding
PSF. These locations are shown in Figure 1, relative to an on-axis location of (0”, 0”). We simulated a slightly
larger field of view (in order to encompass the PSFs corresponding to the edges of the field of view), and simu-
lated a point source at each of the locations of the 5x5 grid in each of the 5 main filters, at the same magnitudes
and integration times as shown in Table 1.

This grid of simulated point sources allowed us to investigate the effect of variation of the PSF on photometry,
utilizing AIROPA. The simulations at these points result in an error value corresponding to each field location.
This yields an error “heat map”, which illustrates the effect of variable PSFs on photometric error results. The
J-band results of this grid simulation are shown in Figure 3. The spatial variance to the error is consistent with
the change in Strehl ratio across the field of view shown in Figure 1.

Figure 3. (Left) Relative photometric precision results via AIROPA as it varies across the field simulated with the 5x5
grid of PSFs shown in Figure 1. (Right) Relative photometric precision using aperture photometry over the same sources,
with aperture radii equal those defined in Table 2. These figures represent the results of the J-band grid-source simulation
with point sources of 22nd magnitude.
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3.3 Binary-Source Photometry

For binary-case photometry we simulated two sources in the center of one imager detector field of view, varying
the separation and flux difference between them. We simulated in J, with a primary source magnitude of 20 and
varied the secondary source magnitude with ∆m=0.25 steps. We averaged the location of the secondary source
azimuthally over the simulation seeds, in order to compensate for asymmetrical PSF effects on the returned flux.
The configuration used and results for the two sources in the binary case are shown in Figure 4.

Figure 4. (Left) The field configuration of the simulated binary stars. We azimuthally averaged the position of the
secondary source in order to account for asymmetrical PSF effects. (Right) Photometric precision (left column) and
accuracy (right column) as it changes over distance between the binary stars (upper row) and as it changes over difference
in magnitude between the two sources (lower row).

The binary simulation results emphasize the importance of distinguishing sources in achieving high photo-
metric precision; when two stars are proximal on the sky, their PSFs blend and may become indistinguishable
using PSF-fitting. We will refer to this effect as source confusion. The relative precision achieved as it varies over
star separation in right upper-left Figure 4 shows that a separation of 20 mas is necessary to avoid a decrease
in photometric precision. These simulations also demonstrate that the effect of overlapping halos contributes to
photometric error as much as ∼1%.

3.3.1 PSF-R

The binary system case is useful for assessing the effect of overlapping PSFs on photometric error. In this case,
knowledge of the PSF becomes more important than in the isolated star field configuration, making it a good
candidate for testing the veracity of the reconstructed PSFs. The comparative results of the same binary source
simulation conducted using the package of reconstructed PSFs and science PSFs is shown in Table 4.

The error values at a separation of 10 mas are dominated by source confusion, which is more exaggerated for
the PSFs used in the R-PSF comparison simulations than those illustrated in Figure 4. This is illustrated clearly
through the comparison with the aperture results, which are lower in error because the aperture for the 10 mas
case is large enough to contain the cores of both simulated stars. Because we wish to assess the difference in
performance of our PSFs, we exempt the 10 mas case and consider only the non-confused results. From these
selections (separations of 20 - 60 mas), we then assess the associated error of PSF-Reconstruction by taking
the difference between our separate PSF error results in quadrature, and averaging them over the magnitude
differences. From this we assess the impact of PSF-reconstruction on photometric error to be of the order of
∼1%.
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∆m (J)

Separation:
0.01”

Separation:
0.02”

Separation:
0.03”

AIROPA
Error (%)

Aperture
Error (%

)
AIROPA
Error (%)

Aperture
Error (%

)
AIROPA
Error (%)

Aperture
Error (%

)

SCI PSF-R SCI PSF-R SCI PSF-R SCI PSF-R SCI PSF-R SCI PSF-R
0.0 24.2 25.5 1.14 0.95 1.18 1.39 1.40 1.54 1.65 1.77 2.14 2.23
0.25 27.5 27.6 1.50 1.69 1.43 1.56 1.55 1.71 1.81 2.04 2.14 2.33
0.5 29.7 29.8 1.17 0.96 1.25 1.43 1.36 1.52 1.83 1.92 2.07 2.14
0.75 29.2 29.7 1.51 1.68 1.52 1.65 1.60 1.75 2.11 2.35 2.16 2.36
1.0 24.4 21.8 1.16 0.98 1.40 1.65 1.38 1.55 2.27 2.38 2.10 2.18
1.25 29.0 26.4 1.53 1.72 1.79 1.94 1.61 1.76 2.73 2.95 2.21 2.42
1.5 38.5 38.5 1.18 0.99 1.81 2.08 1.40 1.57 3.09 3.23 2.17 2.23
1.75 49.0 49.3 1.53 1.72 2.27 2.43 1.63 1.81 3.84 4.06 2.28 2.47
2.0 49.4 50.7 1.19 1.00 2.58 2.86 1.42 1.61 4.47 4.67 2.22 2.29
2.25 41.1 44.3 1.50 1.71 3.32 3.49 1.66 1.81 5.59 5.85 2.32 2.54
2.5 31.2 33.7 1.17 1.00 3.50 3.79 1.44 1.62 6.61 6.91 2.28 2.36

Table 4. The PSF-R comparison simulation results for the binary case for different separation values between sources
and magnitude differences from the primary source. Here ”SCI” refers to simulations conducted using the same ”Science
PSF” for extraction as was used to simulate each star, and ”PSF-R” refers to those in which an estimated reconstructed
PSF was used for extraction. These simulations were conducted using the same atmospheric conditions and zenith angle
as those defined in 3.1.

3.4 Crowded Field Photometry

The current photometry requirements for the IRIS instrument are to be applied in the case of a moderately
crowded field, as defined here. This section will discuss the purpose of using the crowded field as the basis
for defining whether the IRIS imager meets its instrument requirements, and describe the specifics of the field
configurations used in the photometry simulations.

The purpose of conducting crowded-field simulations is to measure the resulting change in photometric error
due to the effects of overlapping halos of point spread functions and crowded sources. However, it is difficult to
separate the instrumental effects from the resulting difficulty in photometric method, because close sources and
overlapping PSFs correspondingly create difficulty in PSF-fitting routines. Therefore, the aspects of IRIS we hope
to test the effects on photometric error by simulating the crowded-field configuration are PSF-variability across
the field (anisoplanatism), effects of overlapping PSF halos, a large range of magnitudes of sources (contrast
ratio), and the capabilities of current tools to recover sources.

For the photometry error budget we define the case for a crowded field which is not largely impacted by source
confusion. The extreme case in which all of the listed field characteristics are more exacerbated (many sources,
confusion, etc) is discussed in section 3.5 through simulation of the Galactic Center. The field configuration used
for the crowded field is the described 16.4” x 16.4” (4096 x 4096 pixels) field of view, in J-band, at a zenith
angle of 30 degrees, and atmospheric quality of best 75%. We simulate 1000 stars within the field randomly
distributed, with a minimum distance between stars equal to three times the full-width half-maximum of the
PSF (∼8.1 pixels or 32.4 mas, for the 2.7 pixel or 10.8 mas full-width half-maximum of the J-band PSF at 4 mas
per spatial pixel). The luminosity of the stars within the field is a uniform distribution of source magnitudes
between 20 and 24, with an integration time which achieves a SNR of 100 for the mean source brightness in
the field (∼196 seconds for J-band). We assume only a single calibration star within the field of view, which
translates to having a minimum of 0% error in the error heat map for the simulated field.

As in Section 3.2, the results of the crowded field simulation are interpreted via an error heat map, in which
there is an associated photometric precision and accuracy term for each star in the field. Using the 5x5 grid
of PSFs shown in Figure 1 as the field-variable input PSF-grid for our AIROPA PSF-fit, we achieve the results
shown in Figure 5.

Close inspection of the AIROPA accuracy results in Figure 5 yields repeating spatial structure to the error
which is associated with the input PSF-grid used for fitting via AIROPA. This repeating error structure is due to
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Figure 5. (Upper Row) We show the photometric precision (left) and accuracy (right) over the field as returned from
aperture photometry. (Lower Row) We show the photometric precision (left) and accuracy (right) achieved by AIROPA.
Figures are log-scale to compensate for outliers and to better illustrate the spatial structure of the AIROPA accuracy
(lower right).

the differences between the interpolated PSF used for the simulation of each source and the ”nearest neighbor”
approach used by AIROPA and the input 5x5 PSF grid defined in Figure 1. Because the error budget assumes
only a single calibration star within the field, it is of interest to minimize the spatial dependencies of the error.
This is achieved by interpolating the input PSF grid to more finely sample that PSFs across the field. By
interpolating a PSF to a 15x15 grid across the imager field of view, we yield improved results as shown in Figure
6.

As compared with the AIROPA accuracy results of Figure 5, Figure 6 demonstrates an improvement across
the field of the spatial consistency of the photometric error. This therefore improves the achievable photometric
error to be assessed for the photometric error budget, because a single calibration star within the field cannot
account for spatially variable inaccuracies due to spatially dependent PSFs. We found finer spatial sampling of
the PSF grid yielded minimal improvements. These differences exemplify the importance of properly sampling
the PSF across the field in accordance with the severity of the PSF variability.

We assume a single calibration star within the imager field of view to populate the photometric budget.
While uniform deviations in photometric accuracy can be compensated for by appropriate calibration stars,
this does not necessarily account for the spatial variations in accuracy shown in Figures 5 and 6. Since the
minimum in the accuracy error heat map is near zero and there is little uniformity in the error across the field,
it is unlikely that further calibration would necessarily improve photometric error. Therefore, in order to assess
a conservative estimate for the photometric error achieved, we adopt the value estimated by the photometric
accuracy simulations and asses the error to be ∼2.6%.
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Figure 6. We show the photometric precision (left) and accuracy (right) achieved by AIROPA. Figures are log-scale to
compensate for outliers and to better illustrate the spatial structure of the AIROPA accuracy. This plot was generated in
the same manner as Figure 5, but used an interpolated 15x15 PSF grid for fitting across the field in AIROPA, resulting in
improved consistency in the photometric accuracy across the field as compared with the 5x5 PSF grid defined in Figure
1.

3.4.1 Confusion

We define source confusion as the blending of proximal source PSFs such that distinguishing the stars in PSF-
fitting becomes problematic. The effects of confusion on photometric error are non-negligible and for the purposes
of the photometry budget are not considered. We verify that confusion does not contribute to the assessed
photometric error from the crowded field simulation by estimating the error as a function of each star’s distance
from its closest neighboring star. The scatter plot of simulated sources with color correlating to distance from
the on-axis point is displayed in Figure 7.

Figure 7. (Left) the simulated crowded field colored in accordance to distance from the on-axis location (0.0”,0.0”),
which corresponds to lower Strehl ratio as illustrated in Figure 1. (Middle) Each star’s photometric precision error as it
corresponds to the distance to its nearest star neighbor. (Right) Each star’s photometric accuracy error as it corresponds
to the distance to its nearest star neighbor. The binned average (using a bin size of 10 pixels) is shown to highlight
the lack of a trend upward as distance to the star’s nearest neighbor approaches 0, which would indicate the presence of
source confusion in our photometric measurements.

3.4.2 Anisoplanatic Effect

Anisoplanatism refers to changing atmospheric turbulence across the field of view; even assuming perfect perfor-
mance of NFIRAOS, the corrections of the AO system will desynchronize from atmospheric effects as distance
from the corrected field location increases, which results in variation of the PSF across the field. The effects
of anisoplanatism on photometry is of particular interest because it represents the performance of AIROPA in
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compensating for the spatially dependent PSF. Using the color distribution of the simulated star scatter plot
in Figure 7, we estimate the contribution of anisoplanatism to photometric error by analyzing the photometric
error distribution as a function of star magnitudes, as shown in Figure 8. From the variance of photometric error
values within individual brightness bins illustrated in Figure 8 we assess the effect of anisoplanatism for high
SNR sources to be ∼0.025%.

Figure 8. Demonstration of the effect of anisoplanatism on photometric error. (Left) The photometric precision for each
source plotted and colored according to the scatter plot of Figure 7 distributed over magnitude. Plotted on a log scale,
the effect of anisoplanatism is clear due to the separation of sources vertically in accordance with their distance from
the on-axis point (0.0”, 0.0”). Bars defining the standard deviation for each magnitude bin are included to highlight the
values of the rightmost plot. (Middle) The photometric accuracy for each crowded field source distributed over magnitude.
As opposed to the precision value, the effect of anisoplanatism is less pronounced, and the effect of anisoplanatism on
photometric accuracy is better demonstrated by Figure 7. (Right) The plotted standard deviation of each magnitude bin
in (Left) as marked by the black bars.

3.5 Galactic Center

To simulate an extreme crowded field case we use the Galactic Center (GC) field as our test-bed since it is a
scientific case which will fully take advantage of the capabilities of IRIS. The GC field configuration allows us to
further explore our current photometric methods directly with a science case. The results from the crowded-field
configuration are not analogous to the different field simulations conducted thus far, because it is difficult in
the Galactic Center case to find direct precision values for each source in the field. This is true particularly
because the sources recovered are heavily dependent on the PSF-fitting parameters of AIROPA, and require a
high number of CPU-processing hours to simulate.

The GC is simulated with a field of view of 16.4”x16.4”(4096x4096 pixels) centered on Sgr A*, K-band imaging
filter, zenith angle of 30◦, 2.2 second integration time (the presumed instrument minimum), and with a minimum
simulated stellar magnitude of mK=27 (Vega). The luminosity profile of the simulated field is displayed in Figure
10, and underestimates the actual number of sources expected in the GC in order to reduce CPU-processing
time in our simulations. The number of stars seeded in the GC simulation includes known sources down to 23rd
magnitude, with additional sources down to 27th magnitude randomly dispersed. The total number of sources
simulated is 130200, a large underestimate of the number that will likely be observed in the GC following the
advent of observations by 30-meter-class telescopes.13

In simulating the Galactic Center we have encountered several issues specific to the processing of data of dense
stellar fields with large fields of view and high sensitivities. Because the GC is an extreme case which tests the
level to which we are capable of processing and recovering faint and confused sources, the recoverable photometric
values are highly dependent on the specific methods with which we process the simulated frames. The PSF-
fitting requisite correlation value for a source (‘C’) and the requisite threshold-above-noise value (‘threshold’)
used in PSF-fitting by AIROPA both have a large contribution to the quality and quantity of recovered sources.
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Additionally, because there are several hundreds of thousands of sources within the field, the processing time is
of large concern when studying the GC field. These issues are discussed in detail below.

3.5.1 Problems of CPU Hours and Source Recovery

The performance of AIROPA in the GC is heavily dependent on the provided requisite correlation value for
PSF-fitting - the assigned value for which a given source must match the corresponding PSF in order to be
returned as a source. Source recovery is also defined by the provided threshold value - the value above the
standard noise which a source must meet in order to be analyzed in the PSF-fitting routine. Both the correlation
value and requisite threshold impact the number of sources recovered and the overall CPU time which is required
for PSF-fitting. These CPU hours refer to the time required for AIROPA to complete PSF-fitting iterations and
return photometric and astrometric values for a single simulation. Figures 9 and 10 illustrate the relationship
between correlation value, threshold value, CPU time, and source recovery.

Figure 9. (Left) The simulated Galactic Center field, centered on Sagittarius A*. (Middle) CPU processing time versus
source recovery via AIROPA with different threshold values, where each point ascending a given threshold line is a
decreasing correlation value for that simulation. (Right) Average total number of sources returned by AIROPA per CPU
hour for a given set of simulations with consistent threshold values (and varying correlation values).

The Galactic Center poses a challenge in computing, for appropriately fitting the great number of sources in
the field and achieving high source recovery. Because of the high sensitivity of IRIS and the large aperture of
TMT, the number of sources observed in the GC will be even greater than the number simulated here. Figure 9
shows that AIROPA improves in fitting efficiency per CPU hour at lower threshold values, despite the increased
total computing time. We select a threshold value of 3 to demonstrate the recovery achieved for our simulated
field, and find the results for varied PSF-fit correlation requirements in Figure 10.

Figure 10. (Left) The computing time over different PSF-correlation requirement values for AIROPA. (Right) the source
recovery for each correlation value specified for the given simulation plotted against the luminosity profile of the seeded
sources.
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The source recovery percentage of the simulation results with correlation values of 0.8, 0.7, 0.6, and 0.5 are
then 3.4%, 6.6%, 9.7%, and 12.6% respectively. This low recovery rate cannot be improved by decreasing the
requisite PSF correlation due to the corresponding negative impacts to accuracy shown in Figure 10 (Right).
Conducting high-recovery, high-accuracy GC field measurements, additionally with practical processing time
requirements, will be a challenge for GC astronomers using 30-meter-class telescopes. As discussed in Section
2, the computer used for these simulations was not limited in terms of CPU core count. Higher single-core
processing clock speeds may prove marginally beneficial for improving processing time, but likely not to the
extent which would enable complete source recovery at high accuracy. We therefore conclude that advancing our
processing algorithms is a priority for the development of this science case. Future improvements in PSF-fitting
algorithms and faster computations for iterative PSF-fitting will be a requirement for dense stellar field data
processing with high-sensitivity and large field of view instruments such as IRIS.

4. SUMMARY

We have reported the results of the simulations conducted to ascertain the photometric performance of the
IRIS instrument in conjunction with NFIRAOS/TMT. Using the full IRIS data simulator and large package
of simulated NFIRAOS-provided PSFs, we have conducted large Monte Carlo simulations to sample the value
distributions of the projected performance of IRIS using aperture and spatially-variable PSF-fitting photometry.
We have simulated thousands of seeds for the field configurations of the single-star, binary-star, and crowded
field cases. We have shown using these configurations that for the purposes of the instrument photometry
requirements, we achieve an accuracy level of ∼2.6% for simulations with a mean SNR of 100 in J-band (λc: 1.24
µm), and assess the contributions to this value of the instrumental noise characteristics, effects of overlapping
PSF halos, and anisoplanatism. We have assessed the contributions to photometric error of current PSF-R
algorithms in comparison with the best estimate of on-sky PSFs and calculate an estimate of ∼1%. We have also
explored the Galactic Center as a prospective science case as it relates to advancements in data image processing
and analyzed the current problems to crowded field photometry that such an extreme case poses to astronomers.
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