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Tunneling through an eternal traversable wormhole
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The Maldacena-Qi model describes two copies of the Sachdev-Ye-Kitaev model coupled with an additional
coupling and is dual to the Jackiw-Teitelboim gravity, which exhibits an eternal traversable wormhole in the
low-temperature limit. In this work, we study an experimental consequence of the existence of the traversable
wormhole by considering the tunneling spectroscopy for the Maldacena-Qi model. Making comparisons to the
high-temperature black-hole phase where the bulk geometry is disconnected, we find that both the tunneling
probability and the differential conductance in the low-temperature wormhole phase show nontrivial oscillation,
which directly provides an unambiguous signature of the underlying SL(2) symmetry of the bulk geometry.
We also perform bulk calculations in both high- and low-temperature phases, which match the results from the
boundary quantum theory.
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I. INTRODUCTION

Holographic duality has established many valuable con-
nections between some strongly interacting quantum systems
and the semiclassical gravity theory [1]. The Sachdev-Ye-
Kitaev (SYK) model [2–5], which describes N randomly
interacting Majorana zero modes, is one of the concrete ex-
amples where a holographic description exists. In the large-N
and low-temperature limit, the model effectively describes the
Jackiw-Teitelboim gravity in two-dimensional nearly anti–de
Sitter (AdS2) space-time [6]. Later, several generalizations
of the SYK model have been introduced to study different
physics [7–22], including tunneling spectroscopy [7–10] for
generalizations with U(1) symmetry [11–13]. Moreover, the
quantum simulation of the SYK model [23] has been per-
formed in NMR systems [24] and there are several other
proposals for realizing the SYK model in different experimen-
tal systems [25–28].

Meanwhile, wormholes have become a central topic in the
fields of gravity and quantum information. It is an essential
entry point to understand the quantum teleportation [29,30],
the late-time behavior of the spectral form factor [31], and the
resolution of the information paradox [32,33]. Besides, a sim-
ple quantum model for wormholes is the coupled SYK model
introduced by Maldacena and Qi [14]. The Maldacena-Qi
(MQ) model consists of two copies (left/right) of the original
SYK model, with additional direct hopping between corre-
sponding modes. Each copy of the SYK model corresponds
to a boundary of the AdS space-time. In the low-temperature
limit, a traversable wormhole [29,30] between the left and
the right boundary is formed. At higher temperatures, there
is a first-order transition to a geometry with two disconnected
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black holes. Dynamical evolution and equilibrium properties
of the MQ model have been studied in [34–36]. Later, the
model is generalized into the complex fermion version with
U(1) symmetry [37,38] and is found to be related to the large-
M random spin models [39]. There is also an experimental
proposal for realizing the MQ model [40].

In this work, we study the experimental consequence of
the eternal traversable wormhole in the bulk from the trans-
port perspective. As in the conventional experimental setup
for measuring the tunneling current, we consider attaching
leads to each side of the complex MQ model, as shown in
Fig. 1. We then apply a voltage at the left lead and measure
the current through the right lead. Intuitively, when the MQ

FIG. 1. Schematics of the setup where we couple each side of the
MQ model to a lead that allows us to measure the tunneling current.
Here the blue/red blob represents specific SYK interaction terms
for the L/R copy, which acts nontrivially on four fermion modes.
V represents bias voltage added to the left lead and the current on the
right lead JR is measured by the ammeter A. The inverse temperature
is βL for the left lead, β for the right lead, and β for the complex MQ
model system.
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model is in the wormhole phase, an electron in the left lead
dives into the traversable wormhole and will appear in the
right lead, leading to a large tunneling probability when the
energy matches the intrinsic modes of the AdS2 space-time.
On the other hand, if the MQ model is in the black-hole phase,
the correlation between the two sides becomes much weaker,
and the tunneling probability becomes small. We show that
this intuition is indeed consistent with detailed calculations on
either the quantum side or the gravity side, and the tunneling
spectroscopy provides an unambiguous signature of the bulk
geometry.

II. MODEL

We consider coupling each side of the complex MQ model
to a different lead described by noninteracting fermions. The
Hamiltonian is

Ĥ = ĤMQ + ĤLead +
∑
i,p

(λiĉ
†
L,iψ̂L,p + λiĉ

†
R,iψ̂R,p + H.c.),

(1)
where ĤMQ and ĤLead read

ĤMQ =
∑

i< j;k<l

Ji j,kl (ĉ
†
L,iĉ

†
L, j ĉL,k ĉL,l + ĉ†

R,i ĉ
†
R, j ĉR,k ĉR,l )

+ μ
∑

i

(ĉ†
L,iĉR,i + ĉ†

R,i ĉL,i ),

ĤLead =
∑

p

εp(ψ̂†
L,pψ̂L,p + ψ̂

†
R,pψ̂R,p).

(2)

Here i, j, k, l = 1, 2, . . . , N . ĉL/R,i is the annihilation operator
in the left/right copy of the SYK model, where two copies are
coupled by μ. ψ̂L/R,p describes fermions in the left/right lead
with momentum p with a gapless dispersion εp. Note that the
number of modes in leads does not scale with N . Ji j,kl , and λi

are independent random Gaussian variables with zero mean
and variance:

|Ji j,kl |2 = 2J2

N3
, |λi|2 = λ2

ND
. (3)

Here D is the number of coupled modes in the lead.
We first consider the total system at thermal equilibrium

and inverse temperature β. Since the leads only contain O(1)
modes, to the leading order of 1/N , the two-point function
of the MQ model is not modified by a finite λ. Conse-
quently, the system still contains two different phases. In the
low-temperature limit, the MQ model is dual to an eternal
traversable wormhole, where two copies of the SYK model
are connected through a holographic bulk. Here the perfect
correlation between two copies plays an important role for ob-
taining a wormhole solution in the low-temperature limit [14].
At higher temperatures, the system turns into a black-hole
phase where the emergent space-times in the gravitational
description correspond to nearly disconnected black holes.

We then analyze modes in the leads. Without the coupling
to the SYK dots, the left and the right leads are decoupled.
When λ is turned on, the fermion can tunnel from the left lead
to the right lead through the MQ model. Explicitly, we define
the retarded Green’s function GRO(t ) ≡ −iθ (t )〈[Ô(t ), Ô†(0)]〉
and focus on the local fermion modes ψ̂α = ∑

p ψ̂α,p/
√

D

with α = L/R that couple to the MQ model. In other words,
we put the contact point of the lead to the SYK models
at x = 0. Taking into account the self-energy from the MQ
model, the Schwinger-Dyson equation of ψ reads(

GRψ (ω)−1
)
αγ

= (
GR,0

ψ (ω)−1
)
αγ

− λ2GRc (ω)αγ . (4)

Here GRc (ω)αγ is the retarded Green’s function of the MQ
model (αγ component). GR,0

ψ (ω)αγ = −iπρ0δαγ is the bare
Green’s function of leads. Here we assume that the density
of states of leads can be approximated as a constant ρ0.
Other real-time Green’s functions GAψ and GKψ are then de-
termined by GAψ (ω) = GRψ (ω)† and at inverse temperature β

the fluctuation-dissipation theorem gives

GKψ (ω)eq = (
GRψ (ω) − GAψ (ω)

)
Fβ (ω), (5)

where Fβ (ω) = 1 − 2 f F
β (ω) = tanh(βω/2), with f F

β (ω) be-
ing the Fermi-Dirac distribution function.

III. TUNNELING SPECTROSCOPY

Now we consider the nonequilibrium problem of calcu-
lating the tunneling current. The charge of the right lead
is defined as Q̂R = ∑

p ψ̂
†
R,pψ̂R,p. Consequently, the current

flowing from the right SYK model to the right lead reads

ĴR = −i[Ĥ, Q̂R] = −i
∑
i,p

(λiĉ
†
R,iψ̂R,p − λ∗

i ψ̂
†
R,pĉR,i ). (6)

When the full system is at thermal equilibrium, the current
vanishes. We are interested in the setup shown in Fig. 1, where
we tune the voltage V and the inverse temperature βL of the
left lead while fixing all other parts of the system to V = 0
and β. Measuring 〈ĴR〉 then detects how many particles from
the left lead can tunnel through the MQ model.

The calculation of the tunneling current can be analyzed
using the Schwinger-Keldysh formalism. The contours of this
path-integral method contain a forward and a backward evo-
lution with fermionic fields cα,i, f /b and ψα,p, f /b. After the
Keldysh rotation

cα,i,1 / 2 = cα,i, f ± cα,i,b, cα,i,1 / 2 = cα,i, f ∓ cα,i,b,

and similarly for ψα,p,1 / 2. The Green’s function GO(ω)ab
αγ

becomes 4 × 4 matrices with both α, γ = L/R and a, b = 1/2
labels. Explicitly, in 1 / 2 space we have

Gψ (ω)αγ =
(

GRψ (ω)αγ GKψ (ω)αγ

0 GAψ (ω)αγ

)
, (7)

and similarly for Gc(ω)αγ . As in Eq. (4), the Schwinger-
Dyson equation for Gψ (ω) now reads

(Gψ (ω)−1)ab
αγ = (

G0
ψ (ω)−1

)ab

αγ
− λ2(Gc(ω))ab

αγ . (8)

Similarly to the equilibrium case, Gc is the equilibrium real-
time Green’s function of the MQ model, which satisfies the
fluctuation-dissipation theorem, Eq. (5), at β without addi-
tional chemical potential. On the contrary, Gψ does not satisfy
the fluctuation-dissipation theorem since the left lead is at
a different temperature and chemical potential. Nevertheless,
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we have relations for the bare Green’s functions of leads:

GK,0
ψ (ω)LL = −2π iρ0FβL (ω − V ),

GK,0
ψ (ω)RR = −2π iρ0Fβ (ω).

(9)

Then the tunneling current 〈JR〉 can be computed to the
leading order under the 1/N expansion. Diagrammatically, we
have

(10)

Here the dashed line represents ψ fields and the solid line
represents c fields. The black dots represent the insertion of
the identity operator (I ⊗ I ) in L/R and 1/2 space, while
the open circles represent vertex λ2(PR ⊗ σx ). Here PR is the
projector into the R space and σx is in the Pauli matrix in the
1/2 space. Implicitly, all internal labels of modes, momenta,
and the frequency ω should be summed up or integrated over.
Summing up all diagrams gives

〈JR〉 = λ2

2

∫
dω

2π
tr[Gc(PR ⊗ σx )Gψ − Gψ (PR ⊗ σx )Gc].

(11)
Here the trace is taken in both L/R and 1/2 space. Using the
explicit formula for Gc and Gψ , we find

〈JR〉 =
∫

dω

2π
|T (ω)|2( f F

βL
(ω − V ) − f F

β (ω)
)
, (12)

with

|T (ω)|2 =
∣∣∣∣∣ 2�

(
GRc

)
LR(

�
(
GRc

)
LL

− �
(
GRc

)
LR

− i
)(

�
(
GRc

)
LL

+ �
(
GRc

)
LR

− i
)
∣∣∣∣∣
2

. (13)

Here we have defined � = πρ0λ
2. |T (ω)|2 can be understood

as the tunneling probability from the left lead to the right lead.
Explicitly, the tunneling current is 0 if there is no left-right
correlation in the MQ model. In the following sections, we
analyze the tunneling current in different phases, focusing on
the βL = β case. One can also derive a similar formula for the
energy current with an additional factor of ω [8].

A. Wormhole phase

We first consider the system in the zero-temperature limit
and focus on small μ/J . Holographically, the MQ model
is dual to the eternal traversable wormhole geometry in
the global AdS2 space-time with a metric ds2 = (−dt2

g +
dx2)/ sin2 x. The left/right copy of the SYK model lies on the
boundary near x = 0 or x = π . This indicates that both the di-
agonal and the off-diagonal components of Green’s functions
are conformal [14]. At zero temperature, after performing
Fourier transform for the conformal Green’s functions given
in [14], we find

GRc,WH(ω)αα = −2π5/4 sin (πω̃) sec (2πω̃)√
Jt ′D3/4(ω̃)

,

GRc,WH(ω)αᾱ = − D1/4(ω̃)√
2π3/4

√
Jt ′ ,

(14)

where α 
= ᾱ. We have defined Du(x) = �(u − x)�(u + x)
and ω̃ ≡ ω/t ′ for conciseness. Here �(z) ≡ ∫ ∞

0 dxxz−1e−x is
the standard gamma function. t ′ is an additional parameter
which is proportional to J1/3μ2/3. It relates the global time
tg to the boundary time t as tg = t ′t . The pole of GRc (ω) lies
at |ω| = ωn ≡ t ′(1/4 + n) with n = 0, 1, 2, . . . . This tower
of the spectrum is fixed by the SL(2) symmetry of the AdS2

space-time.

The full expression for the tunneling probability |T (ω)|2
can then be derived as

|T (ω)|2= 8
4π5/2�2

Jt ′D3/4(ω̃)2 + Jt ′ cos2 (2πω̃)D3/4(ω̃)2

π5/2�2 − 4 cos(2πω̃) + 8
.

(15)

We plot |T (ω)|2 using the conformal solutions in Fig. 2(a).
For extremely small coupling �, the fermion modes can only
tunnel through the MQ model when they are on resonance
with the MQ model. As a result, we have narrow peaks for the
tunneling probability near ωn with |T (ω)|2 ≈ 1. This shows
that the tunneling current is a direct probe of the eternal
traversable wormhole and the underlying SL(2) symmetry.
For larger coupling �, the narrow peaks get broadened, and
the two peaks at ±ω0 merge to a single broad peak.

If we further increase �, we find the peaks shift to ω′
n ≡

±t ′(3/4 + n) at small ω. At large �, Eq. (15) asymptoti-
cally approaches (2Jt ′D3/4(ω̃)2)/(π5/2�2), which gives rise
to the shift of peaks at ω′

n. Physically, this means that in the
large-� limit, the low-energy tunneling is dominated by the
contribution of bulk fields with scaling dimension 3/4, which
corresponds to the operator ι̂α,i = ∑

j;k<l Ji j,kl ĉ
†
α, j ĉα,k ĉα,l .

Similar effects have been studied in the SYK chain model [41]
and give rise to the low-high voltage duality for the tunneling
spectroscopy of the single SYK model [7].

We then consider the finite temperature and the finite μ/J
corrections within the wormhole phase. In this case, we nu-
merically solve the retarded Green’s functions for the MQ
model [34,35] and then compute the tunneling probability
|T (ω)|2. As found in [34,35], at finite temperature, the real-
time Green’s functions decay and there is a finite lifetime
for quasiparticle modes. Moreover, the weight of modes de-
cays quickly when n increases. Consequently, as shown in
Fig. 2(b), the tunneling probability, although still showing a
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FIG. 2. (a) The tunneling probability obtained from conformal
solutions, Eq. (15). (b) The tunneling probability obtained by directly
using the solutions of the Schwinger-Dyson equation in Eq. (13).
The Green’s functions are self-consistently calculated in βJ = 120
and μ/J = 0.025, which results in t ′/J = 0.3. (c) The differential
conductance defined by taking the derivative of Eq. (12). We also
use the same Green’s functions as in (b). In (a)–(c), the left panel
exhibits peaks at ωn ≡ t ′(n + 1/4) and the right panel exhibits peaks
at ω′

n ≡ t ′(n + 3/4).

few peaks, becomes smaller than 1 when n becomes large. We
also plot the differential conductance d〈JR〉/dV in Fig. 2(c).
As an essential physical quantity in condensed matter exper-
iments, we find that differential conductance measurement
at finite temperature also shows multiple peaks at ωn or ω′

n,
providing the prominently nontrivial predictions for the ex-
periments.

B. Black-hole phase

If we increase the temperature T � μ, there is a first-order
transition in the MQ model after which the system gets into
the black-hole phase where each side lives on the boundary
of a separate Rindler space-time with ds2 = −r(r − 2)dt2

R +

FIG. 3. (a) The tunneling probability and (b) the differential con-
ductance in the black-hole phase for �/J = 0.3 and βJ = 5.

dr2/r(r − 2). This is an analogy of the Hawking-Page tran-
sition in higher dimensions. In the black-hole phase, from the
gravity perspective, the Rindler space-times of the black holes
emulated by left/right SYK models are disconnected. Adding
the quantum correlation propotional to μ, we can approximate

GRc,BH(ω)αα = −i

√
β/J√

2π1/4

�
(

1
4 − i ωβ

2π

)
�
(

3
4 − i ωβ

2π

) , (16)

and GRc,BH(ω)αᾱ = μ(GRc,BH(ω)αα )2. We have kept terms up to
order μ and assume βJ  1. We can then expand |T (ω)|2 to
the O(μ2) order and obtain

|T (ω)|2 = 4μ2/�2∣∣∣1 +
√

2Jπ1/2

β�2

�( 3
4 −i ωβ

2π )
�( 1

4 −i ωβ

2π )

∣∣∣4 . (17)

Differently from the wormhole phase, the spectral function is
now a single peak near ω ∼ 0. We expect similar behavior
for the tunneling probability, as verified in Fig. 3(a). We also
plot differential conductance d〈JR〉/dV in Fig. 3(b), which,
in contrast with the wormhole phase, shows no oscillating
behavior. Plus, according to Eq. (17), the magnitude of the
tunneling probability is proportional to (μ/J )2 in the small-
μ/J limit and is much smaller than the wormhole phase result
in the order of magnitude 1.

IV. HOLOGRAPHIC PICTURE

Now we analyze the problem from a bulk perspective. To
get a simple holographic picture, we now choose a specific
dispersion εp. We assume that each lead can be described as a
half-infinite line with both massless left-moving and massless
right-moving Dirac fields living on a flat space-time; we show
that a gravity calculation can reproduce previous results.

We first give a brief introduction of the holographic dic-
tionary [1]. The holographic duality states that there is an
equivalence between a strongly correlated quantum many-
body system and a semiclassical system with gravity. The best
understood example is the duality between an AdS gravity
theory with space-time dimension d + 1 and a conformal
field theory with space-time dimension d , where the isometry
group of the AdS space-time matches the conformal group of
the quantum theory. Mathematically, the holographic duality
says ∫

Dφ eiSQFT[φ]+∫
JO = eiSbulk[�,g]

∣∣
�→J , (18)
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FIG. 4. The gravity picture for the tunneling probability in the
(a) wormhole geometry and (b) black-hole geometry. Here the col-
ored region in (a) corresponds to the AdS2 space-time, and the
colored region in (b) corresponds to two copies of the Rindler space-
time. In both cases, we consider an ingoing Dirac fermion from the
left lead and determine the tunneling amplitude Tbulk(ω) by solving
the Dirac equation. In (b), the wiggle line corresponds to the coupling
ν introduced in Eq. (37), and we impose the in-falling boundary

condition ψI,α
+ (r) = 0 at horizon r = 2.

which is known as the GKPW formula. Here on the left-hand
side, we have a path integral for quantum fields φ, with exter-
nal source coupled J to the field O. On the right-hand side, we
take the saddle-point solution of a gravity theory, where we
require that the boundary value of bulk fields should be equal
to J , which is specified in more detail below. This formula
enables us to compute the correlation function of a quantum
system by solving classical equations.

To illustrate how a holographic calculation works, we con-
sider reproducing the Green’s function, Eq. (16), of the single
SYK model from a bulk calculation. The calculation here is
standard but may benefit general readers. The single SYK
model in the low-energy limit is a conformal field theory in
0 + 1 dimension, which, as mentioned in the last section, is
dual to the AdS2 Rindler geometry with metric ds2 = −r(r −
2)dt2

R + dr2/r(r − 2). This geometry can be illustrated as the
left side of Fig. 4(b). This means that one should imagine the
bulk action contains some gravity part, with a solution of the
corresponding metric. We then just need to solve the equation
of motion for bulk fields in this geometry. Since Eq. (16) is
the Green’s function for fermionic operators, it is natural to
consider the Dirac equation in the bulk:

Sbulk =
∫ √−gdrdtR (i� 
D� − m��). (19)

Here we have included the mass m, which, as we see, is related
to the scaling dimension of the operator � in the quantum the-

ory as m = 1/2 − �. The Dirac equation in Rindler geometry
can be solved exactly and the full expression can be found in
the Appendix. Here we only focus on certain limits.

A general solution for the Dirac equation contains two
independent coefficients C1 and C2, whose relation should
be determined from the boundary conditions. The space-time
contains two important limits: I, the horizon at r → 2; and
II, the space-time boundary at r → ∞. We first consider the
solution near the horizon. Expanding the general solution,
(A6), around r = 2, one finds

ψI
−(r) =(C1 + C2)

2− 1
4 + iω

2 π (r − 2)−
1
4 − iω

2 csc
(
π

(
1
2 + iω

))
�
(

1
2 − iω

)
�
(
iω + 1

2

) ,

ψI
+(r) =2− 1

4 − iω
2 π (r − 2)−

1
4 + iω

2 csc
(
π

(
1
2 − iω

))
�
(
iω + 1

2

)2

×
(

C1
�
(
iω + 1

2 + m
)

�
(

1
2 + m − iω

) − C2
�
(
iω + 1

2 − m
)

�
(

1
2 − m − iω

))
.

(20)
Here we use the label I to represent the Dirac field near
the horizon r = 2, as shown in Fig. 4(b). From the factor
of (r − 2)±iω/2, we find that ψI

− represents a wave moving
towards r = 2, which is called an in-falling solution, and
ψI

+ represents a wave moving outwards, which is called an
outgoing solution. Physically, one might expect that a physi-
cal object should only contain in-falling components, which
means that we should impose the boundary condition that
ψI

+ = 0 when computing the retarded Green’s function [1].
This determines the relation between C1 and C2:

C1

C2
= �

(
1
2 + m − iω

)
�
(
iω + 1

2 − m
)

�
(

1
2 − m − iω

)
�
(
iω + 1

2 + m
) . (21)

We then study the asymptotic behavior of the solution at
the AdS boundary at r → ∞. The result reads(

ψII
−

ψII
+

)
= C2

r− 1
2 +m�(1 − m)�( 1

2 − m + iω)

2m�(1 − 2m)�( 1
2 + iω)

(
1

−1

)

+ C1
r− 1

2 −m�(1 + m)�( 1
2 + m + iω)

2−m�(1 + 2m)�( 1
2 + iω)

(
1
1

)
.

(22)

Likewise, we use the label II for the result expanded near
r = ∞. Now we should specify what is the boundary value
of the bulk fields. Near r → ∞, we see that there are two
independent solutions proportional to r−1/2+m(1,−1) and
r−1/2−m(1, 1). The boundary value of the bulk field is defined
as the coefficient of the solution r−1/2−m(1, 1). This relates the
source J (ω) and C1,

J (ω) = C1
�(1 + m)�( 1

2 + m + iω)

2−m�(1 + 2m)�( 1
2 + iω)

, (23)

which fixes the solution, Eq. (A6), in the bulk together with
Eq. (21).

One can then determine the right-hand side of Eq. (18)
by using the solution, with additional boundary counter-terms
for the holographic renormalization [1]. The result shows that
there is a shortcut to this calculation, where the coefficient of
the other solution near r → ∞ is just proportional to the ex-
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pectation of the boundary operator 〈O(ω)〉J with finite source
term J:

〈O(ω)〉J ∝ C2
�(1 − m)�( 1

2 − m + iω)

2m�(1 − 2m)�( 1
2 + iω)

. (24)

The Green’s function is then determined by

GR
OO(ω) = 〈O(ω)〉J

J (ω)
∝ 4m�

(
m + 1

2

)
�
(−m − iω + 1

2

)
�
(

1
2 − m

)
�
(
m − iω + 1

2

) .

(25)
This exactly takes the form of the conformal Green’s function
in 0 + 1 dimension with a scaling dimension � = 1/2 − m,
which matches Eq. (16) for m = 1/4, if we also make the
substitution ω → ωβ/2π due to the relation between the
boundary and the global Rindler time t = βtR/2π .

Similarly, one can consider the wormhole geometry, where
there are two boundaries. The solution of Dirac equations can
also be derived analytically. Its asymptotic form near each
boundary also contains two terms with different powers of
coordinate as in Eq. (22), whose coefficients determine the
value of the source term and the operator expectation. Similar
calculations on a global AdS can reproduce Eq. (14).

A. Wormhole geometry

Having introduced the basic idea of holographic calcu-
lations, we are now ready to explain the calculation of the
tunneling probability. We first focus on the wormhole phase
where the correlation between the left and the right system
is from a nontrivial bulk geometry. The MQ model in the
wormhole phase is equivalent to a fermionic field in the global
AdS2 space-time with mass m = 1/2 − �. Recall that we
assume the leads are described by massless Dirac fermions in
flat space-time, and we consider the following action of bulk
Dirac fermions on the geometry shown in Fig. 4(a),

SWH
bulk =

∫ √−gdxdtg (i� 
D� − m(x)��), (26)

where 
D is the covariant derivative of spinors on curved
space-time. The metric ds2 = (−dt2

g + dx2)/ζ 2(x) and the
mass m(x) depend on the spatial coordinate as

(ζ (x), m(x))=
{

(ε, 0), x ∈ (−∞, ε) ∪ (π−ε,∞),

(sin x, 1/4), x ∈ (ε, π − ε).
(27)

Here ε is a cutoff where we glue different geometries and it
should be related to �. We also assume that ε � 1 and neglect
higher orders of ε. As we see, this corresponds to a large
coupling λ in the original model. Note that we have assumed
a solid background of AdS2 geometry for the MQ model,
which is a direct consequence of having a small number of
probe fields. When the external field contains O(N ) degrees
of freedom, there will be back-reaction, which changes the
AdS2 geometry.

The tunneling probability |T (ω)|2 corresponds to a scat-
tering problem in the gravity theory. Writing the Dirac field
as � = (ψ−, ψ+), in the x < ε region, we consider an ingo-
ing right-moving fermion ψ+(x) = eiωx with momentum p =
ω and a reflected left-moving fermion ψ−(x) = R(ω)e−iωx.

In the x > π − ε region, only a right-moving component
ψ+(x) = Tbulk(ω)eiωx exists.

To determine Tbulk(ω), we need to match the boundary
condition between the global AdS space-time and the flat
space-time by requiring the Dirac field is smooth. The com-
plete solution of the Dirac equation in this coordinate is given
in the Appendix. In the limit of small ε, we only need the
asymptotic behavior of � near x = 0 and x = π . Near x = 0,
we have the expansion for the spinor fields

ψL
1 (x) = 2−1/4C̃1x1/4,

ψL
2 (x) = 21/4C̃2x−1/4,

(28)

while expanding around x = π , we find

ψR
1 (x) = 23/4π

(π − x)1/4

(
C̃1�

(
3
4

)
�
(

1
4

)
D3/4(ω)

+ iC̃2ω

D1(ω)

)
,

ψR
2 (x) = 21/4π (π − x)1/4

(
C̃2�

(
1
4

)
�
(

3
4

)
D1/4(ω)

+ iC̃1ω

D1(ω)

)
.

(29)

Here L/R represents that the general solutions with con-
stants C̃1 and C̃2 are expanded around x = 0 or x = π . As
we define in the Appendix, the linear combinations of these
spinor fields give rise to the left-moving or right-moving
component at each boundary. The continuous condition of
the left-moving component at the right boundary x = π − ε

leads to the constraint ψR
−(π − ε) = (ψR

1 (π − ε) − ψR
2 (π −

ε))/(2i ) = 0, which finally can be simplified as

C̃1

C̃2
=

√
2(D3/4(0) cos(2πω)D1/4(ω) − 2iπ2√ε sin(πω))√

εD1/4(0) cos(2πω)D3/4(ω) − 4iπ2 sin(πω)
.

(30)
Moreover, the continuous conditions of the right-moving
component at the left or right boundary give that

eiωε = (
ψL

1 (ε) + ψL
2 (ε)

)
/2,

Tbulk(ω)eiω(π−ε) = (
ψR

1 (π − ε) + ψR
2 (π − ε)

)
/2.

(31)

These two equations determine the tunneling probability
|Tbulk(ω)|2 as

|Tbulk(ω)|2 =
∣∣∣∣eiω(2ε−π ) ψ

R
1 (π − ε) + ψR

2 (π − ε)

ψL
1 (ε) + ψL

2 (ε)

∣∣∣∣
2

= 8
4D3/4(0)2

εD3/4(ω)2 + ε cos2(2πω)D3/4(ω)2

D3/4(0)2 − 4 cos(2πω) + 8
.

(32)
Finally, we find that |Tbulk(ω)|2 becomes exactly the same as
Eq. (15) once we identify ε = Jt ′D3/4(0)2/π5/2�2 and recall
that in the bulk calculation we are measuring energy with
respect to tg, which differs from the boundary energy t by a
factor of t ′, i.e., tg = t ′t , and the ω here corresponds to ω̃ in
Eq. (15).

B. Black-hole geometry

We then consider the bulk calculation in the black-hole
phase. Geometrically, the left and the right system are de-
coupled and each side of the MQ model can be replaced by
a massive Dirac fermion in the Rindler space-time. The bulk
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action then reads

SBH
bulk =

∑
α=L/R

∫ √−gdrdtR (i�α/D�α − m(r)�α�α ), (33)

with ds2 = −dt2
R/ζ 2(r) + ζ 2(r)dr2 and m(r) being

(ζ (r), m(r)) =
{

(ε̃, 0), r ∈ (1/ε̃,∞);(
1/

√
r(r − 2), 1/4

)
, r ∈ (2, 1/ε̃).

(34)
Here boundary I, r = 2, is the location of the horizon, and
the Rindler space-time is connected to the flat space-time at
boundary II, r = 1/ε̃, where ε̃ is not necessarily the same
as ε. The boundary time t is related to tR as t = βtR/2π .
Furthermore, to distinguish the left (L) and right (R) systems,
we introduce additional labels α = L/R on spinor fields and
constants. Equation (20) and Eq. (22) now read

ψI,α
− (r) = (Cα

1 + Cα
2 )

2− 1
4 + iω

2 π (r − 2)−
1
4 − iω

2 csc
(
π

(
1
2 + iω

))
�
(

1
2 − iω

)
�
(
iω + 1

2

) ,

ψI,α
+ (r) = 2− 1

4 − iω
2 π (r − 2)−

1
4 + iω

2 csc
(
π

(
1
2 − iω

))
�
(
iω + 1

2

)2

×
(
Cα

1

�
(
iω+ 1

2+m
)

�
(

1
2+m − iω

) −Cα
2

�
(
iω+ 1

2 − m
)

�
(

1
2 − m − iω

)), (35)

(
ψII,α

−
ψII,α

+

)
= Cα

2

r− 1
2 +m�(1 − m)�( 1

2 − m + iω)

2m�(1 − 2m)�( 1
2 + iω)

(
1

−1

)

+Cα
1

r− 1
2 −m�(1 + m)�( 1

2 + m + iω)

2−m�(1 + 2m)�( 1
2 + iω)

(
1
1

)
. (36)

Up to now, the left and right copies are still decoupled. To
have a nonvanishing contribution, we further need to add the
coupling between the boundary II in different copies:

�SBH
bulk ∼ ν

∫ √−γ dtR
(
�B

L �B
R + H.c.

)
(37)

Here �B
α is the corresponding boundary operator at side α

and γ is the reduced metric on the boundary. The coupling
constant ν should be proportional to μ. This geometry is
illustrated in Fig. 4(b).

The tunneling probability can now be determined perturba-
tively. When ν = 0, by again imposing the in-falling boundary
condition near the horizon, we can compute an ingoing Dirac
fermion in the left lead scattered by the left black hole. The
metric in flat space, defined in Eq. (34), reveals that the in-
going Dirac fermion is a mode e−iωε̃2r in the left lead which
moves towards r = 2. Note that the sign of the ingoing mode
is determined by the convention of coordinates. Here the ingo-
ing mode moves to the direction that r decreases, in contrast
to the wormhole phase where the ingoing mode moves to the
direction where x increases, as denoted in Figs. 4(a) and 4(b).
The matching between the mode and Eq. (22) at r = 1/ε̃ gives

e−iωε̃ = ψII,L
− (1/ε̃). (38)

Here we have added the L/R indices for the bulk fields to
distinguish two Rindler space-times. Together with the result

of in-falling boundary conditions,

Cα
1

Cα
2

= �
(

1
2 + m − iω

)
�
(
iω + 1

2 − m
)

�
(

1
2 − m − iω

)
�
(
iω + 1

2 + m
) , (39)

Eq. (38) determines the wave function (ψL
−(r), ψL

+(r)) on the
left copy.

We then take the coupling, Eq. (37), into account pertur-
batively. The coupling term can be understood as a source
term on the right boundary, whose strength is proportional to ν

times the expectation of the left system boundary operator [1],
i.e., the coefficient in Eq. (36) that is proportional to r−1/2+m.
This gives

δJR = ν
CL

2 �
(

3
4

)
�
(
iω + 1

4

)
21/4

√
π�

(
iω + 1

2

) . (40)

With this additional contribution, we can determine two con-
tinuous conditions at the right copy to the leading order of ν.
First, the absence of the ingoing wave at boundary II of the

right copy ensures that (1/ε̃)−3/4δJR + ψII,R
− (1/ε̃) = 0. This

can be written explicitly:

23/2�( 5
4 )�(iω + 3

4 )

�( 3
4 )�(iω + 1

4 )
CR

1 + (ε̃)−1/2CR
2 − νCL

2 = 0. (41)

Second, the outgoing wave can be similarly calculated as

Tbulk(ω)eiωε̃ = (1/ε̃)−3/4δJR + ψII,R
+ (1/ε̃). Finally, we obtain

the tunneling probability:

|Tbulk|2 =
∣∣∣∣∣ (1/ε̃)−3/4δJR + ψII,R

+ (1/ε̃)

ψII,L
− (1/ε̃)

∣∣∣∣∣
2

= 4ν2ε̃∣∣∣1 +
√

ε̃�( 1
4 )�( 3

4 −iω)√
2�( 3

4 )�( 1
4 −iω)

∣∣∣4 .

(42)

By identifying

ν = μ/(�
√

ε̃), ε̃ = 4
√

πJ�

(
3

4

)2

/

(
β�2�

(
1

4

)2)
(43)

and again making the substitution ω → ωβ/2π , we find that
|Tbulk(ω)|2 matches the result [Eq. (17)] on the quantum side
exactly.

V. CONCLUSION

We consider the tunneling spectroscopy for the MQ model
by coupling each side to a different lead. In the low-
temperature wormhole phase and for small coupling to leads,
both the tunneling probability |T (ω)|2 and the differential
conductance dJR(V )/dV show peaks at |ωn| = t ′(1/4 + n),
which is fixed by the SL(2) symmetry. In the high-temperature
black-hole phase, there is only a single peak near ω = 0. We
further give a holographic picture in both phases and find an
exact match for the calculation between the gravity side and
the quantum side.

There are several extensions of the current work. One can
consider adding chemical potential to the complex version of
the MQ model, which should be dual to adding gauge fields
in the bulk. It is also interesting to consider a large number
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of modes in the leads, and then there will be nontrivial back-
reaction for the AdS2 background and the problem should be
solved self-consistently. We defer these to further studies.
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APPENDIX: THE SOLUTION OF THE DIRAC EQUATION

In this Appendix, we give the general solutions of the Dirac
equation in both the wormhole geometry and the black-hole
geometry. We first consider the global AdS2 space-time for the
wormhole geometry with metric ds2 = (−dt2

g + dx2)/ sin2 x.
In terms of left-moving and right-moving components � =

√
sin x(ψ−, ψ+), the Dirac equation reads

i(∂tg + ∂x )ψ+(tg, x) = −mψ−(tg, x) csc(x),

i(∂tg − ∂x )ψ−(tg, x) = −mψ+(tg, x) csc(x).
(A1)

Specifically, left-moving is defined as the direction x de-
creases, and vice versa. After performing Fourier transform
on the global time tg and getting the corresponding frequency
ω, the equations become

ωψ+(ω, x) + i∂xψ+(ω, x) = −mψ−(ω, x) csc(x),

ωψ−(ω, x) − i∂xψ−(ω, x) = −mψ+(ω, x) csc(x).
(A2)

Next we abbreviate ψ−/+(ω, x) as ψ−/+(x) for simplicity.
This set of differential equations can be analytically solved.
By introducing the new variable ψ1(x) = ψ+(x) + iψ−(x)
and ψ2(x) = ψ+(x) − iψ−(x) (here we use bold indexes 1 and
2 to avoid possible confusion with the label on the Keldysh
contour), the solution of (A2) reads [44]

ψ1(x) = (1 + cos(x))
1
4 − m

2√
sin(x)

[
C̃1(1 − cos(x))

1
4 + m

2 2F1

(
−ω,ω; m + 1

2
; sin2

( x

2

))

+ C̃2
i2

1
2 +mω

1 − 2m
(1 − cos(x))

3
4 − m

2 2F1

(
−m − ω + 1

2
,−m + ω + 1

2
;

3

2
− m; sin2

( x

2

))]
,

ψ2(x) = (1 + cos(x))
1
4 + m

2√
sin(x)

[
C̃1(1 − cos(x))

1
4 − m

2 2F1

(
−ω,ω;

1

2
− m; sin2

( x

2

))

+ C̃2
i2

1
2 −mω

1 + 2m
(1 − cos(x))

3
4 + m

2 2F1

(
1

2
+ m − ω,

1

2
+ m + ω;

3

2
+ m; sin2

( x

2

))]
,

(A3)

where 2F1(a, b; c; y) is the standard hypergeometric function and we have two undetermined constants, C̃1 and C̃2.
We then consider the black-hole geometry with metric ds2 = −r(r − 2)dt2

R + dr2/r(r − 2). Now we define the � =
(ψ−, ψ+), which gives

−∂tRψ−(tR, r)√
r(r − 2)

+
√

r(r − 2)∂rψ−(tR, r) + r − 1

2
√

r(r − 2)
ψ−(tR, r) + mψ+(tR, r) = 0,

∂tRψ+(tR, r)√
r(r − 2)

+
√

r(r − 2)∂rψ+(tR, r) + r − 1

2
√

r(r − 2)
ψ+(tR, r) + mψ−(tR, r) = 0,

(A4)

The bulk wave function moving to the direction where r increases when m = 0 is labeled by ψ+(tR, r), and vice versa. Then we
perform Fourier transform on the Rindler time tR and get the corresponding frequency ω. The equation becomes

iωψ−(r)√
r(r − 2)

+
√

r(r − 2)∂rψ−(r) + r − 1

2
√

r(r − 2)
ψ−(r) + mψ+(r) = 0,

− iωψ+(r)√
r(r − 2)

+
√

r(r − 2)∂rψ+(r) + r − 1

2
√

r(r − 2)
ψ+(r) + mψ−(r) = 0.

(A5)
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Here we also abbreviate ψ−/+(ω, r) as ψ−/+(r). The solutions of these differential equations have the form [13]

ψ−(r) =
(

C1
2m

(
1
r

)m
�(m + 1)

(
1 − 2

r

)− iω
2 �

(
m + iω + 1

2

)
2F1

(
m, m − iω + 1

2 ; 2m + 1; 2
r

)
(r2 − 2r)1/4�(2m + 1)�

(
iω + 1

2

)

+ C2
2−m

(
1
r

)−m
�(1 − m)

(
1 − 2

r

)− iω
2 �

(−m + iω + 1
2

)
2F1

(−m,−m − iω + 1
2 ; 1 − 2m; 2

r

)
(r2 − 2r)1/4�(1 − 2m)�

(
iω + 1

2

)
)

,

ψ+(r) =
(

C1
2m

(
1
r

)m
�(m + 1)

(
1 − 2

r

) iω
2 �

(
m + iω + 1

2

)
2F1

(
m, m + iω + 1

2 ; 2m + 1; 2
r

)
(r2 − 2r)1/4�(2m + 1)�

(
iω + 1

2

)

− C2
2−m

(
1
r

)−m
�(1 − m)

(
1 − 2

r

) iω
2 �

(−m + iω + 1
2

)
2F1

(−m,−m + iω + 1
2 ; 1 − 2m; 2

r

)
(r2 − 2r)1/4�(1 − 2m)�

(
iω + 1

2

)
)

.

(A6)

Here we have two undetermined constants, C1 and C2.
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