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In this study, we use the transient thermal grating optical technique—a non-contact,

laser-based thermal metrology technique with intrinsically high accuracy—to investi-

gate room-temperature phonon-mediated thermal transport in two nanoporous holey

silicon membranes with limiting dimensions of 100 nm and 250 nm respectively. We

compare the experimental results to ab initio calculations of phonon-mediated ther-

mal transport according to the phonon Boltzmann transport equation (BTE) using

two different computational techniques. We find that the calculations conducted

within the Casimir framework, i.e. based on the BTE with the bulk phonon dis-

persion and diffuse scattering from surfaces, are in quantitative agreement with the

experimental data, and thus conclude that this framework is adequate for describing

phonon-mediated thermal transport through holey silicon membranes with feature

sizes on the order of 100 nm.
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I. INTRODUCTION

Nanoscale thermal transport has become a topic of much recent interest due to the novel

transport phenomena that emerge at the micro- and nanoscale1,2 and their relevance to tech-

nological fields such as microelectronics and thermoelectrics3,4. In semiconductor systems

with feature sizes comparable to the phonon mean free path (MFP), size effects can lead to

strong reductions in thermal conductivity—making thermal management in microelectronic

devices a significant engineering challenge5. In the field of thermoelectrics, nanostructur-

ing has emerged as a key strategy for enhancing the thermoelectric figure of merit ZT by

reducing the thermal conductivity without significantly affecting the electronic properties

of the material4,6. Traditionally overlooked for thermoelectric applications, silicon has gen-

erated recent interest as a material for thermoelectric devices due to the strongly reduced

thermal conductivity achievable through nanostructuring7. Experimental results on silicon

nanowires have shown thermal conductivity values two orders of magnitude lower than the

bulk value and ZT values approaching unity8–10. Two-dimensional “holey silicon” nanos-

tructures—suspended silicon membranes with a periodic array of nanopores—have exhibited

thermal conductivity reductions comparable to nanowires11–16 while retaining superior rela-

tive mechanical strength. Such nanostructures hold great promise for thermoelectric applica-

tions due to the wide variety of well-established and scalable fabrication and manufacturing

techniques available for silicon.

Thermal transport at the nanoscale differs significantly from macroscopic, diffusive ther-

mal transport. In structures with feature sizes comparable to the MFP of heat-carrying

phonons, thermal transport no longer obeys the heat diffusion equation1. One of the earliest

attempts to account for non-Fourier phonon-mediated thermal transport in nanostructures

was by Casimir17, whose model featured particle-like phonon transport with diffuse scatter-

ing at boundaries. Although Casimir’s original model was concerned with thermal transport

in rods, the broader formalism of semiclassical particle-like phonon transport with diffuse

boundary scattering is expected to be valid for any nanostructure for which λth � ` and

λth/2π . R , where R is the surface roughness, λth is the representative wavelength of

heat-carrying phonons, and ` is the limiting dimension of the nanostructure. Heat-carrying

phonons at room temperature in silicon have single-digit nanometer wavelengths18, which is

on the order of lithographically-realistic surface roughnesses19,20. Thus, silicon nanostruc-
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tures with feature sizes ` > 10 nm should be well described by the Casimir formulation of

thermal transport—that is, particle-like phonon transport according to the phonon Boltz-

mann transport equation (BTE) with diffuse scattering from surfaces. Studies comparing

experimental results with ab initio theory based on the BTE have shown that the Casimir

formulation is indeed valid for nanoscale silicon membranes21 and silicon nanobeams22. How-

ever, there have been highly conflicting reports regarding the validity of the Casimir for-

mulation for thermal transport in nanoporous holey silicon membranes23. Several studies

have reported room-temperature effective thermal conductivities reduced by up to an order

of magnitude relative to Casimir formulation predictions for such structures12,13,24, while

others have found good agreement between the Casimir formulation and experiment25–27.

In some cases, measurements showing quantitative deviations from the Casimir formulation

predictions for holey silicon nanostructures have been invoked as evidence of “coherent”

thermal transport effects at room temperature11,13,28. This notion, however, has been chal-

lenged by recent experimental and theoretical works29–31, in which no effect of nanopore

lattice disorder on the room-temperature thermal transport was found. It should be noted

that reports of “below Casimir” thermal conductivity rely on the measurements of the ab-

solute values of thermal conductivity, which are challenging even for bulk samples32. If

far-reaching conclusions are to be drawn from the absolute value of thermal conductivity,

then a technique with intrinsically high absolute accuracy is desirable.

Transient thermal gratings (TTG) is a non-contact optical technique that measures the

time evolution of an impulsively generated sinusoidal temperature profile33,34. The experi-

mental observable is the amplitude of this sinusoidal temperature profile, which decays as

heat spreads from the peaks to the nulls of the grating. For a one-dimensional TTG, the

amplitude of the thermal profile and therefore the intensity of the heterodyned TTG signal

is given by

I(t) ∝ e−t/τ (1)

where τ ≡ 1/αq2, α is the thermal diffusivity, q ≡ 2π/L is the transient grating wavevec-

tor, and L is the transient grating period. The only parameter other than α that affects the

decay rate is L, which can be measured with high accuracy. Thus the thermal diffusivity

can be determined to high accuracy from the decay rate of the TTG signal. Furthermore,

TTG’s non-contact nature reduces additional sources of error due to the absence of any
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FIG. 1. Scanning electron micrographs of the patterned holey silicon membranes—(a) region A

(400 nm pitch, 280 nm nanopore diameter), and (b) region B (500 nm pitch, 250 nm nanopore

diameter).

interfaces with metrological structures.

In this paper, two 250 nm-thick holey silicon membrane nanostructures are investigated

with the TTG technique. The experimental results from TTG measurements are compared

to the results of two ab initio numerical Boltzmann transport techniques: the OpenBTE

computational framework developed by Romano et al.35 and the energy-based deviational

Monte Carlo BTE simulation technique developed by Peraud and Hadjiconstantinou36,37.

Quantitative agreement between numerical calculations and experiment is found for both

the unpatterned silicon membrane and holey silicon structures, confirming the validity of

the Casimir formulation for room temperature heat transport in silicon nanostructures with

feature sizes on the order of 100 nm.

II. EXPERIMENTAL

A. Sample Fabrication

The holey silicon structures were fabricated using electron beam lithography (EBL) and

reactive ion etching (RIE) of a 250 nm-thick freestanding silicon membrane 3.2 × 3.2 µm

window area, obtained from Norcada Inc.)38. Each of the two structures was a 100 µm-

diameter region of the freestanding membrane patterned with a square lattice of nanopores.

SEM micrographs of the regions are shown in Fig. 1. “Region A” had a pitch size (nanopore

periodicity) of 400 nm and a nanopore diameter of 280 nm, and “region B” had a pitch size

of 500 nm and a nanopore diameter of 250 nm.
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B. Transient thermal grating (TTG) measurements

In TTG, two “pump” laser pulses are crossed at the sample, where optical interference and

subsequent absorption lead to the establishment of a transient sinusoidal temperature profile

with spatial period L = λ/2 sin (θ/2), where λ is the pump wavelength and θ is the crossing

angle for the two pump beams. Through the temperature dependence of the material’s

complex index of refraction ñ ≡ n + ik—where n is the real index of refraction and k is

the absorption coefficient—this sinusoidal temperature profile is accompanied by a spatially

sinusoidal modulation in ñ as well. A quasi-continuous “probe” beam then impinges on the

sample, diffracting from this transient optical grating. As the amplitude of the temperature

grating diminishes due to heat transport from the peaks to the troughs, the amplitude of the

grating in ñ—and thus the amplitude of the diffracted signal—diminishes accordingly. In

this way, the time dependence of the diffracted signal can be directly related to the thermal

diffusivity according to Eq. 1. TTG measures the thermal transport dynamics over a length

scale set by the period of the transient grating, which can be tuned by changing the crossing

angle of the pump beams. Further details regarding this technique can be found in Ref.34.

The pump beams were derived from a 515 nm source with a 60 ps pulse duration and 1

kHz repetition rate, and the probe beam was derived from a continuous-wave 532 nm source.

A “reference” beam was derived from the same source as the probe beam, and the relative

phase between the two was controlled by tilting a highly parallel optical flat through which

the probe beam passes to achieve heterodyne detection39. At the sample the probe beam

diffracts from the transient grating and becomes superposed with the transmitted reference

beam, and the combined heterodyned signal is collected by a fast photodiode detector and

recorded on an oscilloscope. The 1/e2-intensity radius of the pump and probe beams were

100 µm and 40 µm, respectively. While the pump spot size is commensurate with the

patterned regions, the probe spot size is much smaller. Thus, although our pump may

be exciting a grating pattern that extends somewhat outside of the patterned region, our

experiment is only sensitive to the transport dynamics within the region bounded by the

much smaller probe spot. The pump pulse energies of the measurements ranged from 170 -

340 nJ, and the instantaneous power of the probe beam at the sample ranged from 0.8 - 1.6

mW. The probe beam was shuttered by an electro-optic modulator with a duty cycle of 5%

to prevent steady-state heating of the sample.
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The TTG measurements in this work were performed in a transmission geometry since

the thickness of the membrane is smaller than the optical penetration depth of silicon for

the wavelengths involved in the measurements. A schematic of the experimental geometry

is shown in Fig. 2(a), and the raw TTG data obtained from the two holey regions and

the unpatterned silicon membrane at a grating period of 4.25 µm are shown in Fig. 2(b).

Measurements were performed under medium vacuum at a pressure of 1 mbar. The maxi-

mum amplitude of the temperature grating was determined to have an upper bound of 35

K. Upper bounds on the average heating of the sample due to the pump and probe beams

were determined to be 20 K each.

The TTG signal for a one-dimensional thermal grating exhibiting diffusive thermal trans-

port is given by Eq. 1. τ—or equivalently α—is the only free parameter required to model

the normalized TTG signal. In addition, the heterodyne detection scheme further yields a

gain in signal-to-noise by a factor of the reference field amplitude, which can be increased

arbitrarily up to the saturation threshold of the photodetector. The low-dimensionality of

the dynamical parameter space, the signal gain provided by the reference field, and the fact

that neither precise knowledge of the magnitude of the temperature variation nor of the

magnitude of the heat flux is required in the analysis of the data allow for the determination

of the thermal diffusivity with high absolute accuracy. Further discussion regarding the

accuracy of transmission-geometry TTG experiments on nanomembranes can be found in

Ref.34. The traces were truncated such that fitting began 5 ns after pump incidence to ensure

that the fitted region corresponds only to thermal transport signal without any potential

contribution from the fast electronic response shown in the inset of Fig. 2(b). The acquired

fits are plotted alongside the raw TTG data in Fig. 2(b). Fig. 2(c) shows the measured

thermal diffusivity values obtained according to Eq. 1 as a function of TTG period for each

of the three regions measured. Each raw TTG trace consisted of 50,000 individual measure-

ments. The statistical error of the measurement was determined by partitioning the data

into subsets of 10,000 measurements, fitting each subset to Eq. 1, and taking the standard

error of the mean of the resulting distribution of τ values. In addition to the statistical

error of the measurement, the systematic error due to laser heating effects was also consid-

ered. The effects of laser heating were determined by performing each measurement three

times—once at a baseline set of pump and probe powers, and two additional times at which

the pump and probe powers respectively were doubled. Linearly extrapolating the measured
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FIG. 2. (a) Schematic of the TTG measurement in the transmission geometry. (b) Time-domain

TTG traces at 4.25 µm transient grating period for the two holey silicon membranes and the un-

patterned silicon membrane, as well as exponential fits to the data. Inset: full transient grating

response for the unpatterned membrane, including fast early-time electronic signal. (c) Effec-

tive thermal diffusivity values obtained from the time-domain data according to Eq. 1. For the

patterned regions the error is smaller than the sizes of the symbols.
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values of τ to zero pump and probe laser power allows us to determine the systematic error

due to laser heating, which was then added to the appropriate side of the errorbars for each

point to account for this systematic heating effect. We note that the upper bounds on laser

heating reported above are non-negligible relative to room temperature. However, since the

effect of laser heating is experimentally quantified in our error analysis, we can still compare

our experimental results with calculations that use room-temperature material properties.

Despite the somewhat high upper bounds on laser heating, we nevertheless note that the

effect of laser heating on the experimentally-determined values of α was found to be only

∼ 10% or less.

For grating periods from 4.25-7.5 µm we find that the experimental values of thermal dif-

fusivity are independent of L for both the unpatterned membrane and the holey membranes,

consistent with preliminary TTG results on holey silicon structures34. The exponential form

of the TTG data and the invariance of thermal diffusivity as a function of grating period

indicates that the transport kinetics are “effectively diffusive” over the TTG experimental

length scales, albeit with “effective” thermal diffusivity values αeff reduced relative to the

bulk because of the non-Fourier size effect due to nanostructuring.

It should be noted that occasionally an additional transient with a characteristic timescale

much longer than the acquisition timescale (i.e., approximately a constant offset from the

pre-pump baseline) was observed in some of the obtained TTG traces. However, we deter-

mined that the presence of this contribution to the signal (which is roughly on the timescale

that would correspond to thermal diffusion out of the pump spot) was not associated with

any change in the αeff value that was calculated from the time constant of the exponentially

decaying contribution to the signal observed on the 10s-100s ns timescale (which we took to

be the true TTG signal) that remained after subtracting out this approximately constant

offset. This issue is more thoroughly addressed in the Supplementary Material.

Experimental values of the effective thermal conductivity κeff were calculated from the

data in Fig. 2(c) according to

κeff = (1− φ)cSiαeff (2)

where φ is the void fraction of the holey silicon membrane and cSi is the bulk volumetric

specific heat of silicon. The resulting experimental values of κeff are shown in Fig. 3, where

the effective thermal conductivity values are plotted against the neck width `n (i.e., the
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FIG. 3. Effective thermal conductivity values experimentally measured and numerically computed

using the MC-BTE and OpenBTE methods for the holey silicon regions and the unpatterned

membrane. Also plotted are the κeff values obtained by using the Fourier law with the bulk

silicon thermal conductivity. `n is the neck width. The error was determined to be smaller than

the size of the symbols for both the experimental and (all) computational results.

difference between the pitch size and the nanopore diameter).

III. COMPARISON TO FIRST-PRINCIPLES NUMERICAL

CALCULATIONS

Numerical calculations of the thermal transport through the membranes were performed

according to the linearized isotropic phonon Boltzmann transport equation (BTE) under

the single-mode relaxation time approximation (RTA), which is given by

∂fkp
∂t

+ vkp · ∇fkp =
f0 − fkp
τkp

(3)

where fkp(r, t) is the occupation function for a mode traveling with wavevector k and

polarization p, vkp is the (isotropic) group velocity (where k ≡ |k|), f0
(
~ω, TL(r, t)

)
is the

Bose-Einstein distribution, TL(r, t) is the local temperature field defined such that energy is

locally conserved, ~ω is the phonon energy, and τkp is the (isotropic) single-mode relaxation

time.

The simulation domain is one pore-centered unit cell of the nanopore lattice with the

cylindrical axis of the pore chosen to be oriented along ẑ. Periodic boundary conditions are
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applied along both the x- and y-axes. The phonon group velocities and relaxation times

were determined respectively from the harmonic and anharmonic force constants, which

were obtained from density functional theory (DFT) calculations using the temperature

dependent effective potential (TDEP) method40. Naturally occurring isotope disorder was

taken into account. Details on the DFT calculations can be found in the Supplementary

Material.

The OpenBTE computational technique of Romano et al.35 and the energy-based devi-

ational Monte Carlo BTE (MC-BTE) technique of Peraud and Hadjiconstantinou36,37 were

both used for ab initio calculations of κeff for both the holey and unpatterned membranes.

For the OpenBTE case, Eq. 3 is transformed into the following form35:

Λŝ(Ω) · ∇T (r,Ω,Λ) + T (r,Ω,Λ) = TL(r),

TL =

[ ∫ ∞
0

K(Λ′)

Λ′2
dΛ′
]−1 ∫ ∞

0

K(Λ′′)

Λ′′2
〈T (r,Ω,Λ′′)〉dΛ′′

(4)

where ŝ(Ω) is the unit vector for the propagation direction Ω, T (r,Ω,Λ) is the “effective

temperature” of phonons with MFP Λ traveling in direction Ω (i.e., the sum of their energy

densities divided by cSi), K(Λ) is the bulk MFP distribution (i.e., the derivative of the ther-

mal conductivity accumulation function with respect to Λ), and 〈x(Ω)〉 ≡ (1/4π)
∫
4π
xΩdΩ

is the angular average over all propagation directions. Eq. 4 is derived by imposing steady-

state conditions on Eq. 3, as well as assuming that δT (r) ≡ TL(r) − T0 (where T0 is the

reference temperature, which in this study was 300 K) is small such that f0[~ω, TL(r)] in

Eq. 3 can be expanded to first order in δT (r) and any temperature dependence of material

properties can be neglected. The advantage of this approach is that the only input required

to solve Eq. 4 is the MFP distribution K(Λ).

In OpenBTE, a difference of temperature ∆T is applied at the two opposing faces of

the unit-cell along the x-axis, and the first guess for TL was given by the standard diffusive

equation. Diffuse scattering at boundaries was modeled in such a way that phonons of a

given value of Λ were diffusely emitted (i.e., emitted equally in all directions) from the surface

with a total energy equal to the total energy of all incident particles with the same value

of Λ. To overcome numerical instability due to small-MFP phonons, OpenBTE switches to

a modified Fourier’s law to compute the diffusive component to heat transport41 for such

modes. Totally diffuse-scattering boundary conditions were imposed on all surfaces of the
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computational domain. Eq. 4 was solved by the finite-volume method while a Delaunay

mesh was generated for space discretization42,43.

The deviational energy-based MC-BTE technique36,37 was also used to calculate κeff for

the nanostructures investigated. This technique achieves low statistical variance compared

to other Monte Carlo techniques by only simulating the trajectories of “deviational” particles

which describe the excess/deficit thermal energy in a given mode relative to equilibrium,

and achieves high computational efficiency by performing the calculation in an energy-based

BTE formulation that lends itself naturally to energy conservation. The diffuse boundary

scattering condition was modeled in the same fashion as in the OpenBTE method described

above—namely, deviational particles with a given MFP were diffusely emitted from the

surface with a total energy equal to the total energy of all incident particles with the same

MFP. Unlike the OpenBTE technique as described in Ref.35, the MC-BTE solver applies

a constant temperature gradient throughout the simulation domain rather than isothermal

conditions at the x̂-normal boundaries. To assess the impact of this discrepancy in the

applied perturbation we compute κeff with OpenBTE using both approaches on test aligned

structures, finding negligible differences in effective thermal conductivity values.

For both computational techniques, the conductance of one unit cell was calculated by

dividing the total heat flux through one end of the simulation domain by ∆T . The effective

thermal conductivity κeff was then obtained by dividing this conductance value by the

rectangular cross-sectional area of the unit cell normal to x̂ and by multiplying by the unit

cell length along x̂44. Our results for both computational techniques are shown in Fig. 3

for comparison to the experimental TTG results for both holey silicon structures and the

unpatterned membrane.

In a previous paper34, preliminary TTG results investigating thermal transport in a sim-

ilar holey silicon membrane were compared to the values of κeff obtained from ab initio

MC-BTE simulations. Agreement between experiment and theory was found to within

∼ 20%. However the sample in that study was patterned over the entirety of the suspended

membrane, and as such comparison with an unpatterned region to ensure the intrinsic qual-

ity of the silicon membrane was not possible. There thus remained an ambiguity in the

previous study as to whether the discrepancy between theory and experiment was due to

deviations from the Casimir formulation, or due simply to material quality effects. Our com-

putational results for κeff are shown alongside our experimental results in Fig. 3, as well as
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the values of κeff for the structures calculated using the Fourier law with the bulk silicon

thermal conductivity value of 143 W/m.K. We see that the size effect associated with the

thickness of the unpatterned membrane alone reduces κeff by nearly a factor of two relative

to the value obtained from the Fourier law (which is simply the value for bulk silicon in

the case of the unpatterned membrane), in good agreement with previous measurements on

nanoscale silicon membranes21. The quantitative agreement between the experimental and

computational results for an unpatterned region ensures the intrinsic sample quality of the

membrane, and allows us to associate any deviation between experimental and computa-

tional results for the patterned regions solely with the introduction of the nanopore lattice.

A further reduction of κeff is observed due to the nanopore superlattice patterning, resulting

in a reduction of κeff by a factor of 3 relative to the Fourier law prediction for region A and

a near order of magnitude reduction in κeff for region A relative to bulk silicon. The quanti-

tative agreement that we obtain between first-principles BTE computational techniques and

non-contact high-accuracy TTG thermal transport measurements indicate that the broader

Casimir formulation for lattice-based thermal transport is indeed quantitatively accurate

for treating room-temperature thermal transport through periodic holey silicon membranes

with feature sizes on the order of 100 nm.

IV. CONCLUSIONS

We have used the non-contact optical TTG method to investigate thermal transport in

two nanostructured holey silicon membranes. We observe effectively diffusive transport at

grating periods larger than 4 µm and a reduction in effective thermal conductivity by nearly

an order of magnitude relative to the bulk value. Two ab initio numerical techniques simu-

lating transport according to the semiclassical phonon Boltzmann transport equation yielded

excellent agreement with the measurements. Our results indicate that the Casimir frame-

work of semiclassical particle-like phonon-mediated thermal transport with diffuse boundary

scattering is adequate for describing thermal transport in holey silicon structures with lim-

iting dimensions of ∼100 nm.
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SUPPLEMENTARY MATERIAL

Long-time, approximately constant contribution to the signal during TTG

measurements

For some of the measurements performed in this work a contribution to the measured

signal at much longer timescales than the normal TTG decay was observed. The raw TTG

traces for all regions investigated at all grating periods are plotted in Fig. S1, where it can be

seen that the signal in some of the measurements of the patterned regions does not decay to

the pre-pump baseline by the end of the TTG decay. We see that this contribution is present

in the holey silicon regions at the larger grating periods studied—i.e., grating periods of 6.6

µm and 7.5 µm for region A, and 7.5 µm alone for region B. Interestingly, this long-time

signal contribution does not appear in any of the TTG measurements of the unpatterned

membrane. The timescales of these very slow transients (10s - 100s of µs—much longer

than the acquisition time window used to capture the entirety of the “true” TTG signal but

shorter than the time between pump pulses) are roughly consistent with thermal diffusion of

the deposited heat at a diffusivity of αeff out of the 100 µm-diameter pump spot. However,

it is not clear why this contribution would be present at some grating periods while not in

others, nor is it clear why such signal would be present in the heterodyned TTG signal at

all. This very slow contribution to the signal is well-separated in terms of timescale from

17



the faster decay on 10s-100s ns timescales (which we take to be the “true” TTG signal

corresponding to thermal transport from the peaks to the nulls of the thermal grating), and

we choose to treat it as a constant offset when fitting the faster decay to determine αeff .

Fig. 2(c) is recreated in Fig. S2, where the measurements corresponding to TTG traces

which did not decay to the baseline over the acquisition time window are indicated with

arrows. We see that the presence of this long-time signal does not have any appreciable

effect on the αeff values obtained, which indicates that it is a separate and independent

contribution to the signal that has no impact on the signal arising from thermal transport

from the peaks to the troughs of the transient grating.

Detail on density functional theory calculations

Parameters for the lattice dynamical calculations were obtained from DFT calculations

as implemented in VASP45–48. The calculations used a 5 x 5 x 5 supercell, a 500 eV plane

wave energy cutoff and exchange correlation was treated with the AM05 functional49,50.

The phonon mean free paths were calculated at T = 300 K with the TDEP40 package

in the relaxation time approximation on a 70 x 70 x 70 q-point grid, assuming natural

isotope distribution. The mean free paths is given by |vτ |, where v is the group velocity

and τ is the scattering time. The latter is computed based on third-order force constants

and isotope disorder scattering, while the group velocity is computed from the phonon

dispersions. Details can be found in Ref.51.
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FIG. S1. Normalized TTG traces obtained for all regions at every grating period measured, with

baselines set to the pre-pump values. 19



FIG. S2. αeff values determined from the data in Fig. S1, where arrows correspond to mea-

surements where the signal at the end of the acquisition time window remains > 5% maximum

amplitude away from the pre-pump baseline values. We see that our determined values of αeff are

independent of the presence of this long-time contribution to the signal for all regions.
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