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1 Pre-cooled inlet

The Pulsed Laser Photolysis, Laser Induced Fluorescence (PLP-LIF) maintains the gas 

temperature in the reaction zone through an internally cooled copper “shroud”. By flowing cold 

methanol through the shroud, the cell was able to reach temperatures as low as ~235 K, however 

cooling room temperature gas was inefficient and limited by the freezing point of methanol (~195 

K). The PLP-LIF apparatus was augmented with a pre-cooled inlet (Figure S 1) which was 

designed to pre-cool the gas mixture up to the internal copper shroud inside the chamber. The inlet 

is a glass jacket design, ~1.5” O.D., ~0.86” I.D. and 18” long. Mounted on the reactor using a 1.5” 

o-ring sealed ConFlat flange (2.75” flange diameter), the jacket extends passed the chamber wall, 

sitting flush with the internal cooling shroud. The internal 1” O.D. tube extends past the copper 

shroud to ensure cold gas delivered directly into the reaction volume. 

The coolant was introduced to the front of the cooling jacket via a ¼” glass tube mounted inside 

the jacket. This ensured that coolant was distributed more evenly across the entire length of the 

inlet. Coolant was passed through the chamber’s internal cooling shroud before entering the cooled 

inlet. 

Whilst previous experiments have shown the capability of the PLP-LIF to reach temperatures close 

to ~190 K (Liu and Sander, 2015), the inlet has dramatically improved the stability of the 

temperatures <250 K to within ±1 K, along with the ease of reaching stable colder set-points (220 

K in ~1.5 hours versus 4 – 5 hours previously). Additionally, temperature profile measurements 

showed a small deviation in the temperature of ±2 K across the entire inlet and reaction region.
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Figure S 1: Diagram of the pre-cooled inlet with respect to the reactor wall and internal cooling 

shroud (not to scale). The cooled inlet allows cold gas to be injected directly to the reaction volume.

Figure S 2: Schematic of the PLP-LIF apparatus used in the study of OH + NO2.
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2 Reanalysis of Mollner et al. (2010) data

Datasets were reanalyzed corresponding to the data presented in the Mollner et al. (2010) 

publication taken in N2 at 298 K. Raw data was reanalyzed using the NO2 cross section data from 

Nizkorodov et al. (2004) and the fitting routine used to determine [NO2] in the current study. Raw 

OH LIF decays were also reanalyzed to generate bi-molecular plots (example at 200 Torr N2 shown 

in Figure S 3). The reanalyzed data was observed to be within ~4% of the data presented in Mollner 

et al. (2010); well within the experimental uncertainty and most likely due to the slight difference 

in the absorption cross sections used (discussion below).

By examining the NO2 cross section used in this study (Nizkorodov et al., 2004) compared to that 

retrieved from the Mollner et al. (2010) data analysis files and the Vandaele et al. (2002) absorption 

cross section used in the recent kinetic study by Amedro et al. (2019), it can clearly be seen in 

Figure S 4 that the cross sections are in excellent agreement. The absorption cross sections from 

Mollner et al. (2010) and Vandaele et al. (2002) are within their respective quoted uncertainties 

(3.6 and 7% (±2σ)). 

The spectrum used by Mollner et al. (2010) is presented as found in the analysis files, however the 

Vandaele et al. (2002) and Nizkorodov et al. (2004) spectra are convolved with the instrument line 

shape (ILS) used in the current study, defined by a Gaussian with a FWHM = 0.2 nm, and a 

pressure dependent Lorentzian function (λcenter = 425 nm, Full Width Half Max (FWHM) ~0.002 

nm). Integrated areas for the Gaussian and Lorentzian function were normalized to a total of 1 

before convolution. It should be noted that the experimental setup used in this work and Mollner 

et al. (2010) is almost identical. Mollner et al. (2010) measured NO2 with a single pass UV-Vis 

setup, a different CCD array and likely different spectrograph slit widths (these were not recorded 

with the datafiles); despite this we do not expect any significant differences in the ILS. 
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The Nizkorodov et al. (2004) cross section used in this work (recorded at 0.99 Torr) was convolved 

with a Lorentzian line shape parameter representative of pressure broadening at 760 Torr, as 

described in Nizkorodov et al. (2004). Applying a Lorentzian line shape broadening factor has 

been demonstrated to have negligible effect on the convolved spectrum compared to the ILS 

(Amedro et al., 2019; Winiberg, 2019). Both datasets shown in Figure S 5 are visually 

indistinguishable and a linear regression comparing the two datasets in this spectral window yields 

a slope of 1.00. Also shown in Figure S 5 is the reported absorption cross section from Nizkorodov 

et al. (2004) recorded at 596 Torr total pressure. The discrepancy between the high and low 

pressure data remains unknown, and was not observed in an analogous studies from (Vandaele et 

al., 2002; Vandaele et al., 2003). 

Figure S 3: Bi-molecular plot for k1, measured at 200 Torr N2 and 298 K from the study of Mollner 

et al. (2010). Raw data files were reanalyzed using the methods used in this study. Observed 

differences in the rate coefficients are within the uncertainty of the respective studies (±11%).
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Figure S 4: Comparison of the Vandaele et al. (2002), Nizkorodov et al. (2004) NO2 absorption 

cross sections, along with the absorption cross section for NO2 used in the work by Mollner et al. 

(2010). Each cross section has been convolved with the ILS used in the current study (see text for 

details), except that of Mollner et al. (2010) which appears as observed in the analysis files. The 

cross section of Nizkorodov et al. (2004), recorded at 0.99 Torr, has been treated to represent the 

pressure broadening effect at 760 Torr (see details in text).
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Figure S 5: Comparison of the NO2 absorption cross sections reported by Nizkorodov et al. (2004), 

recorded at 596 and 0.494 Torr. All datasets have been convolved with the ILS used in this study. 

The green spectrum, has been additionally treated to represent the pressure broadening effect at 

760 Torr (see details in text).
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3 Supplementary Figures

Figure S 6: Comparison of k’ vs [NO2] for different methods of [NO2] characterization at 50 Torr 

N2 and 230 K. Error bars in the y-axis represent the precision in the k’ measurement to ±2σ and 

are shown for the “In-situ” dataset only. “In-situ” data points represent the [NO2] determined from 

the in-situ UV/Vis absorption axis. “Flow” data points represent [NO2] determined using the NO2 

pre-mix concentration (0.34%) and volumetric flow rates (0 – 90 sccm in 500 sccm total). “Flow 

(Corr)” is the same “Flow” data corrected for the N2O4 equilibrium concentration, based on the 

equilibrium constant from Burkholder et al. (2020) and [NO2] . =  ( 8 [NO2]0 Keq + 1) 4Keq

Observed curvature in “Flow” at [NO2] > 0.2 × 1015 cm-3 is primarily due to the dimerization of 

NO2 to N2O4, however the applied correction does not resolve the discrepancy with the In-situ 

entirely, suggesting an additional loss of NO2 or N2O4 or possible minor impurities in the NO2 

source.
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Figure S 7: The total rate constant, k1, as a function of [M] (N2) at 293 K compared to literature 

data from Donahue et al. (1997). Error bars represent the total uncertainty to 2σ. Fits to this work 

using the IUPAC (Atkinson et al., 2004) and JPL (Burkholder et al., 2020) fall-off parametrizations 

are also shown.
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Figure S 8: The total rate constant, k1, as a function of [M] (N2) at 271K compared to literature 

data from D'Ottone et al. (2001). Error bars represent the total uncertainty to 2σ. Fits to this work 

using the IUPAC (Atkinson et al., 2004) and JPL (Burkholder et al., 2020) fall-off parametrizations 

are also shown along with the current parameterizations from JPL (Burkholder et al., 2020), 

IUPAC (Atkinson et al., 2004) and Amedro et al. (2019).
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Figure S 9: Comparison of experimental data taken at 230 and 245 K with literature data from 

Wine et al. (1979), Brown et al. (1999) and Amedro et al. (2019). Error bars represent the total 

uncertainty to 2σ. Parameterizations of k1 from JPL (Burkholder et al., 2020), IUPAC (Atkinson 

et al., 2004) and Amedro et al. (2019) are shown for comparison. kfit is represented by the fit to 

this work using the IUPAC parameterization (eq. 4, main text), in comparison to the JPL 

parameterization used in the main text figures.
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Figure S 10: Rate constant, k1, for the reaction of OH + NO2 as a function of [N2] (p = 50 – 750 

Torr) measured over range of temperatures (293 – 230 K). Data was fit with the weighted JPL 

recommended Troe function (Eq. 2, main text), and is compared to the predicted k calculated 

from the recent work by Amedro et al. (2019), which uses the IUPAC parameterization with the 

following constants: k0 = 2.6 × 10-30 cm6 molecule-2 s-1, kinf = 6.3 × 10-11 cm3 molecule-1 s-1, n = 

3.6 and Fcent = 0.39. Error bars represent the total uncertainty in the average k1 to ±2σ.
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Figure S 11: Low-pressure literature data comparison at 293 K (Anastasi and Smith, 1976; Wine 

et al., 1979; Donahue et al., 1997; Brown et al., 1999; Dransfield et al., 1999; D'Ottone et al., 2001; 

Mollner et al., 2010; Amedro et al., 2019).  
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Figure S 12: The total rate constant, k1, as a function of [M] at 245 K in N2 and Air bath gases. 

Error bars represent the total uncertainty to 2σ. 
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