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Summary 

Cell-cell communication systems typically comprise families of ligand and receptor variants that 

function together in combinations. Pathway activation depends in a complex way on which ligands 

are present and what receptors are expressed by the signal-receiving cell. To understand the 

combinatorial logic of such a system, we systematically measured pairwise Bone Morphogenetic 

Protein (BMP) ligand interactions in cells with varying receptor expression. Ligands could be 

classified into equivalence groups based on their profile of positive and negative synergies with 

other ligands. These groups varied with receptor expression, explaining how ligands can 

functionally replace each other in one context but not another. Context-dependent combinatorial 

interactions could be explained by a biochemical model based on competitive formation of 

alternative signaling complexes with distinct activities. Together, these results provide insights 

into the roles of BMP combinations in developmental and therapeutic contexts and establish a 

framework for analyzing other combinatorial, context-dependent signaling systems. 
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Introduction 

Cell communication pathways such as BMP, Wnt, and FGF play pivotal roles in normal 

development, disease, therapeutics, and regenerative medicine (Salazar, Gamer, and Rosen 

2016; Nusse 2005; Ornitz and Itoh 2015). A striking feature of these pathways is their use of 

families of homologous ligand variants. Within each pathway, multiple ligands typically function 

together in combinations (Antebi et al. 2017; Alok et al. 2017; Kadam, Ghosh, and Stathopoulos 

2012), and the effect of any given ligand can vary dramatically with cell or tissue context (Chen 

et al. 2013; Kadam et al. 2009; Fortin et al. 2005; Eubelen et al. 2018; Verkaar and Zaman 2010). 

Despite the prevalence of these features, and extensive information about the biochemical 

interactions and developmental roles of particular ligands, we lack a unified description of how 

ligands signal in combinations and across biological contexts. A clearer view of this structure 

could allow more predictive control of these pathways in natural and synthetic contexts. 

A prime example of such combinatorial and contextual ligand activity can be seen in the Bone 

Morphogenetic Protein (BMP) pathway. This pathway comprises ten major ligand variants, as well 

as four Type I and three Type II receptors subunits (Figure 1A). Distinct combinations of these 

components regulate the development of diverse tissues including skeleton, kidney, eye, and 

brain (Salazar, Gamer, and Rosen 2016; Godin, Robertson, and Dudley 1999; Huang et al. 2015; 

Butler and Dodd 2003). Interestingly, a pair of ligands can exhibit either redundant or distinct roles 

depending on context. For example, BMP9 can replace the essential role of BMP10 in proper 

vasculature formation, but not in the developing heart (Chen et al. 2013). Similarly, BMP4 can 

replace BMP7 in the developing kidney, but not in the developing eye (Oxburgh et al. 2005). In 

addition to variation across tissue context, BMP ligands also have non-overlapping roles when 

signaling in combinations, such as observed in the developing joint (Bandyopadhyay et al. 2006), 

and can combine with each other non-additively (Piscione et al. 1997; Ying, Qi, and Zhao 2001; 

Klammert et al. 2015; Antebi et al. 2017).  

Thus far, the primary framework for describing BMP ligand differences is variation in ligand-

receptor affinity. Ligand-receptor affinities govern the formation of signaling complexes, each of 

which contains a dimeric ligand bound to two Type I and two Type II receptor subunits (Figure 

1A). These signaling complexes phosphorylate SMAD1/5/8 effector proteins (as well as activate 

other non-canonical targets) to regulate target genes. Ligands are often grouped by their preferred 

Type I and Type II receptors to summarize their functional differences (Shimasaki et al. 2004; C. 

J. David and Massagué 2018). However, receptor preferences cannot explain key functional 

differences between ligands. For instance BMP9 and BMP10 exhibit similar receptor preferences 

(L. David et al. 2007) but behave non-equivalently, as mentioned above (Chen et al. 2013). 

Moreover, BMP receptors are expressed in combinations (Figure 1B), compete with one another 

for binding to ligands, and generate complex functional responses to ligand combinations, all of 

which make it difficult to predict the distribution of signaling complexes, and thereby the overall 

pathway activity, from qualitative affinity preferences alone (Antebi et al. 2017).  

Therefore, despite extensive molecular characterization, we cannot in general say how specific 

ligands will function in combinations, why these combinatorial effects vary with context, and what 

molecular features are necessary to generate the combinatorial and contextual behavior of BMP 

ligands. Addressing these questions would advance our understanding of the role of BMP 

signaling components in a variety of skeletal, respiratory, and brain diseases (Salazar, Gamer, 
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and Rosen 2016; Valer et al. 2019; Cunha and Pietras 2011) and aid the selection of therapeutic 

BMPs to selectively induce bone growth in orthopedics and oral surgery (Cicciù et al. 2014; 

Carragee, Hurwitz, and Weiner 2011; Seeherman et al. 2019). More generally, it could enable 

more precise control of cell fate decisions for therapeutic applications and provide insight into the 

overall logic of cell-cell communication systems. 

To obtain a systematic understanding of context-dependent ligand integration, we turned to 

pairwise interaction analysis, an approach that has provided powerful insights into the structure 

of other combinatorial biological systems. In this approach, one classifies pairs of perturbations 

as additive (neutral), positive (synergistic), or negative (antagonistic) depending on whether the 

perturbations are stronger or weaker in combination than expected from their individual effects. 

Pairwise analysis of mutations has revealed the structure of gene modules and protein functions 

(Schwikowski, Uetz, and Fields 2000; Segrè et al. 2005; Costanzo et al. 2016). Similarly, pairwise 

analysis of drug interactions successfully classified antibiotics into groups with similar biochemical 

mechanisms of action (Yeh, Tschumi, and Kishony 2006). We reasoned that pairwise analysis of 

BMP ligand combinations could be useful in two ways: First, it could provide a systematic map of 

how ligands combine to determine pathway activation (Figure 1C). Second, it could reveal how 

that combinatorial structure itself changes between different cell contexts. In this way, pairwise 

analysis of ligand combinations could provide a general way to understand systems that are both 

combinatorial and contextual.  

With that in mind, we analyzed pairwise combinations of ten of the most important BMP ligands 

across multiple receptor contexts. (Analogous to the convention for drug interactions, we will use 

the term “ligand interactions” to refer to non-additive responses to ligand combinations, without 

implying direct molecular interaction between the ligands.) We first show how this pairwise 

analysis classifies BMP ligands into equivalence groups, defined such that ligands in the same 

group exhibit a similar strength and profile of effective interactions with other ligands (Figure 1C). 

This analysis reveals that the ten ligands can be organized into a smaller number of equivalence 

groups, and introduces a compact, useful representation for complex multi-ligand systems. 

(Ligand equivalence groups, defined here, are distinct from equivalence groups in development, 

which describe groups of cells with the same fate potential (Greenwald and Rubin 1992).) Next, 

we turn to the question of how ligand interactions vary with cell context, measuring ligand 

interactions using cells with differing receptor expression profiles. We find that receptor 

expression plays a powerful, non-intuitive role in shaping combinatorial ligand responses, and 

that receptor context effects can explain previous observations in development. Finally, to 

understand how the observed combinatorial ligand responses could emerge from underlying 

molecular features of the pathway, we fit the data to a mathematical model of competitive ligand-

receptor interactions. We find that contextual multi-ligand BMP responses can emerge from the 

interplay between the affinities that govern signaling complex formation and the specific 

phosphorylation activities of the resulting complexes. Together, these results reveal the 

combinatorial and contextual logic of BMP signaling, and provide a framework for understanding 

other pathways that similarly integrate multi-ligand inputs with promiscuous protein-protein 

interactions.  
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Results 

 

Quantitative dose-response measurements reveal ligand-specific features 

Analyzing ligand combinations first requires an understanding of how the BMP pathway responds 

to ligands individually. To that end, we identified a core set of BMP ligands for our study from the 

larger set of TGF-β superfamily ligands (Weiss and Attisano 2013), focusing on ten homodimeric 

BMP ligands that play pivotal roles in development and are known to activate SMAD1/5/8 (Figure 

1A) (Hinck, Mueller, and Springer 2016). Next, we constructed a BMP reporter cell line (Figure 

S1A). As a base cell line, we selected NAMRU mouse mammary gland (NMuMG) epithelial cells, 

which can respond to BMP signals without differentiating (Piek et al. 1999) and expresses five of 

the seven BMP receptors, including ACVR1, ACVR2A, ACVR2B, BMPR1A, and BMPR2 (Antebi 

et al. 2017). We integrated a construct encoding a fusion Histone 2B (H2B)-mCitrine protein 

controlled by a synthetic SMAD1/5/8-activated BMP responsive element (BRE) (Korchynskyi and 

ten Dijke 2002). The resulting stable cell line exhibited unimodal, dose-dependent distributions of 

YFP fluorescence levels in response to varying concentrations of BMP ligands (Figure S1B), 

allowing quantitative readout of pathway activity and ligand dose responses (Figure S1C).  

The ligands exhibited a broad range of dose-response characteristics (Figure S1D). Seven 

ligands strongly activated the pathway but did so with varying saturating levels, concentrations 

for half-maximal activation (EC50), and logarithmic sensitivities, quantified by a fitted Hill 

coefficient. The EC50 ranged over three orders of magnitude among these ligands (Figure S1E) 

while the Hill coefficient varied between values of one and two (Figure S1F). By contrast, the 

Relative Ligand Strength (RLS), or the pathway activity at saturating concentrations normalized 

to the activity of the strongest ligand, could be quantified for all 10 ligands and fell into three 

distinct tiers (Figure S1G). In the lowest tier, GDF5, GDF6, and GDF7 barely activated the reporter 

above background. However, these ligands did activate the pathway following ectopic expression 

of BMPR1B (Figure S6E), a receptor not expressed by NMuMG cells and required for GDF 

signaling (Nishitoh et al. 1996). 

Ligands exhibit diverse combinatorial profiles  

While the single-ligand dose responses identified ligands of equivalent strength (quantified here 

as RLS), they were not sufficient to classify ligand equivalence in combinations. To systematically 

probe combinatorial responses, we measured the responses to all 45 pairs of the 10 ligands 

(Figure 2A), as well as each ligand alone or paired with itself. The interactions of each ligand pair 

were observed at nine distinct ratios, using concentrations spanning the ligand’s dynamic range 

(Figure 2A, inset). A robotic liquid-handling system enabled measurements of multiple ligand 

combinations in a single experiment (STAR Methods), and responses were quantified by flow 

cytometry after 24h incubation with the ligands (Figures 2B-E).  

Comparing two ligand’s activities across combinatorial conditions summarizes their ability to 

produce equivalent pathway output (quantified here with YFP fluorescence) in the presence of 

another ligand. For example, consider BMP4, BMP5,and BMP6, which are all strong activators 

with RLS close to 1. By definition, replacing BMP5 with itself produces equivalent responses 

across all conditions (Figure 2F, left). Replacing BMP5 with BMP6 also produced very similar 
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pathway activity, in the context of any other ligand or ratio, indicating that these two ligands 

behave equivalently in this context (Figure 2F, middle). By contrast, replacing BMP5 with an 

equivalent dose of BMP4 changed signaling activity in the presence of BMP10 or any of the GDFs 

(Figure 2F, right). Thus, ligands that exhibit similar RLS (strength) are not necessarily equivalent, 

due to the differences in their pairwise interactions with other ligands. 

Ligand interactions reveal BMP equivalence groups in NMuMG cells 

Because differences in pairwise interactions are key to determining ligand equivalence, we sought 

a metric to quantitatively classify the type and strength of ligand interactions. Common drug 

interaction metrics, such as Loewe or Bliss, and epistasis metrics do not precisely map onto ligand 

interactions (Loewe 1928; Bliss 1939; Russ and Kishony 2018; Yeh, Tschumi, and Kishony 2006), 

so we defined the Interaction Coefficient (IC) (Figures 3A, S2A, STAR Methods). The IC is 

designed to map qualitatively different interaction types and magnitudes onto a single linear scale 

by comparing the combined and individual effects of two ligands. This scale separates 

qualitatively different behaviors into different IC regimes and includes both linear (IC=1) and 

saturated (IC=0) additivity, as well as negative interactions (IC<0) and positive synergy (IC>1). 

The resulting scale can be written as a set of piecewise-linear equations (Figure S2A), which 

correctly classify distinct behaviors (Figure S2B).  

Despite its different definition, IC’s basic classifications mirror those of drug interactions, such as 

suppressive interactions (Yeh, Tschumi, and Kishony 2006; Bollenbach et al. 2009). These 

behaviors are also related to previously observed two-ligand response types, with balance, 

additive, ratiometric, and imbalance functions producing synergistic, additive, antagonistic, and 

suppressive interaction coefficients, respectively (Antebi et al. 2017). Moreover, like other 

interaction metrics, the IC value depends on the specific ligand concentrations for which it is 

computed, and is close to 1 at small enough concentrations of both ligands. Therefore, to 

characterize a ligand pair, we select the IC value of largest absolute value over all sampled 

concentration ratios (Figure 3B), as pairwise interactions are most evident at certain ligand ratios 

and with total concentrations close to saturation (Figure S2B). However, due to possible 

undersampling of concentration ratios and the unknown dynamic ranges of weakly activating 

ligands, these values may be underestimates of the strength of non-additive interactions.  

Nonetheless, the interaction metric (IC) revealed an array of interaction types within NMuMG cells’ 

pairwise responses (Figure S2C). Most pairwise interactions were saturated additive (gray), but 

some showed antagonism (red) or suppression (black) (Figures 3C, S2C-F). Combining the full 

set of pairwise interactions with measurements of individual ligand strength enabled clustering of 

ligands based on their functional similarity (Figure 3C, dendrogram). Ligands appearing in the 

same cluster (group) exhibit the same pattern of interactions with other ligands, suggesting they 

function interchangeably across pairwise ligand combinations. These groups can be represented 

compactly around a circle (Figure 3D), with the grayscale level of each group indicating the 

approximate individual activity of its ligands and internal lines representing the non-additive 

interactions between groups. These groups included [BMP2, BMP4], [BMP5, BMP6, BMP7, 

BMP9], [BMP10], [GDF5, GDF7], and [GDF6]. Here and below, square brackets denote sets of 

ligands that constitute an equivalence group. 
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In NMuMG cells, the full set of interactions among 10 ligands reduces to a set of five non-additive 

interactions among five distinct ligand groups. Ligands in the first group, [BMP5, BMP6, BMP7, 

BMP9], activated strongly as individuals and interacted additively with one another and all other 

ligands, except for weak antagonism with BMP10. The second group, [BMP2, BMP4], also 

contained strong activators, but was distinguished by its susceptibility to antagonism by GDF5 

and GDF7 and suppression by BMP10. The third and fourth groups, [GDF5, GDF7] and [GDF6], 

comprised non-activating ligands that respectively did or did not antagonize [BMP2, BMP4]. 

Finally, [BMP10] formed its own equivalence group based on its unique interactions and 

intermediate strength. Thus, most of the ligand distinctions represented here emerge from the 

interactions and could not have been inferred from signaling properties of the individual ligands.  

This systematic, interaction-based classification of ligands provides a multi-ligand perspective for 

predicting the effects of ligand combinations expressed in biological processes. For example, 

BMP2, BMP4, and BMP7 are coexpressed in skeletal development, but different combinatorial 

knockouts generate distinct skeletal defects (Bandyopadhyay et al. 2006). These results implied 

a unique role for BMP7, consistent with its classification in a separate equivalence group from 

BMP2 and BMP4. However, the equivalence map determined in NMuMG cells is not necessarily 

universal to all cell types. BMP receptor expression is variable across cell types in developing 

tissues (Danesh et al. 2009), and changes in receptor expression can significantly alter pairwise 

ligand interactions (Antebi et al. 2017). Therefore, these results provoke the question of how 

equivalence groups vary with cell context in general and with receptor expression profiles more 

specifically.  

Ligand equivalence depends on cell context 

Mouse embryonic stem cells (mESCs) present an ideal cell context in which to study BMP 

signaling. Manipulation of BMP signaling in mESCs is a key step in many directed differentiation 

protocols (Craft et al. 2013; Gouon-Evans et al. 2006), and single BMPs and pairs can produce 

distinct cell fates in the same protocol (Andrews et al. 2017). mESCs also differ from NMuMG 

cells in their expression of three of the five BMP receptors, providing a different BMP receptor 

context (Figure 4A). Finally, the two cell types are known to respond in distinct ways to some 

ligand combinations (Antebi et al. 2017).  

We used a fluorescent mESC reporter line to analyze the dose response for each of the ten 

ligands (STAR Methods). mESCs showed strikingly different responses to the individual ligands 

compared to NMuMG cells. They exhibited a greater diversity of activation strengths (Figure 4B), 

as well as greater EC50 values and lower Hill coefficients, indicating larger input dynamic ranges 

with lower sensitivity to moderate ligand concentrations (Figure S3A). In particular, high 

concentrations (approaching 10 µg/mL) of some ligands failed to fully saturate the response.  

Ligand interactions also differed between the two cell lines. While most pairwise interactions 

remained saturated additive (Figures S3B-D), a subset showed marked differences (|ΔIC|>0.5) 

between the two cell lines (Figure 4C). Most notably, BMP9 acquired synergistic interactions with 

activating ligands [BMP2, BMP4] as well as with non-activating ligands [GDF5, GDF6, GDF7] 

(Figure S3E), an effect proposed to emerge when ligands in pairs, but not individually, exclusively 

form high efficiency complexes, due to competition for a limited receptor pool (Antebi et al. 2017). 

At the same time, strong antagonistic interactions between GDF ligands and [BMP2, BMP4] were 
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lost. Together, these shifts represented an overall decrease in antagonism and increase in 

synergy across all ligand pairs (Figure 4C). Combined with the changes in individual activation, 

these differences generated new ligand equivalence relationships (Figure 4D). While some 

groups and interactions were preserved, such as the suppression between [BMP2, BMP4] and 

[BMP10], many other groups were split or merged (cf. Figures 4E, 3D).  

Together, these results directly demonstrate the contextuality of ligand interactions and ligand 

equivalence relationships. Within this larger set of pairwise interactions, a randomly chosen pair 

of ligands is most likely to interact additively, but is nevertheless unlikely to function equivalently 

in terms of its individual potency and pairwise interactions with other ligands. Moreover, 

equivalence groups can change in new cell types. Therefore, an observation of equivalence in 

one cell context does not guarantee equivalence in another, and vice versa.  

ACVR1 knockdown recapitulates features of mESC ligand interactions 

A key factor that could explain differences in ligand equivalence between NMuMG cells and 

mESCs is receptor expression (Danesh et al. 2009; Panchision et al. 2001; Yamauchi, Phan, and 

Butler 2008). mESCs express less ACVR1 and BMPR2, but more ACVR2B, than NMuMG cells 

(Figure 4A). Out of these three receptors, we first focused on ACVR1, a Type I receptor that plays 

key roles in bone and brain diseases (Shore et al. 2006; Valer et al. 2019; Agarwal et al. 2017), 

and asked whether reducing its expression could make ligand responses in NMuMG cells more 

similar to those of mESCs. To achieve stable knockdown of ACVR1, we constitutively expressed 

shRNA against ACVR1 in the NMuMG reporter cell line. This perturbation reduced expression to 

less than 20% of wild-type levels with minimal effects on off-target receptors (Figure S4A) and 

had the same effects on ligand interactions as transient siRNA knockdown of ACVR1 (Figure 

S4B).  

ACVR1 knockdown recapitulated some of the observed differences between NMuMG cells and 

mESCs, particularly those involving BMP9, a ligand known to signal through ACVR1 (Valer et al. 

2019). BMP9, the strongest individual activator of NMuMG cells, signaled only weakly in the 

knockdown cells, consistent with its low activity in mESCs (Figure 5A, cf. 4B). More dramatically, 

ACVR1 knockdown reproduced the synergy of BMP9 with GDF5, GDF6, and GDF7 observed in 

mESCs (Figures 5B, S4G,H, cf. 4C). Finally, in both mESCs and ACVR1 knockdown, the 

equivalence of BMP9 with BMP5, BMP6, and BMP7 was eliminated (Figures 5C,D, cf. 4E).  

By contrast, other distinct features of the mESC response did not appear in the ACVR1 

knockdown. Certain non-additive interactions in NMuMG cells persisted even after ACVR1 

knockdown (Figures 5C, S4C-E). For example, [BMP2, BMP4] was still suppressed by [BMP10] 

(Figures 5C, S4F) and antagonized by GDF5 (Figure 5C). Evidently, significant expression of 

ACVR1 is not necessary for these non-additive interactions. ACVR1 knockdown also produced 

new interactions not observed in NMuMG cells or mESCs. [BMP9] antagonized, rather than 

synergizing with, the other strongly activating ligands, including [BMP2, BMP4] and [BMP5, 

BMP6, BMP7]. This result therefore also showed that a single ligand (BMP9) can produce 

interactions of opposite signs in the same cell context, which was also not observed in either 

NMuMG cells or mESCs. Together, these results suggest that differences in receptor expression, 

and ACVR1 expression more specifically, can account for some of the distinct ligand responses 
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of mESCs and NMuMG cells, and reveal that knockdown of a single receptor subunit can 

substantially increase the complexity of ligand interactions.  

Perturbations of multiple BMP receptors reveal flexibility of ligand equivalence  

To further explore the effects of single receptor perturbations on ligand equivalence, we 

individually knocked down the two most abundant receptors, BMPR1A and BMPR2, or ectopically 

expressed the two receptors with weakest endogenous expression, ACVRL1 and BMPR1B. 

These four receptors differ widely in their ligand selectivity and expression profiles. BMPR2 and 

BMPR1A bind a diverse set of BMPs (Ten Dijke et al. 1994; Nishitoh et al. 1996; Orriols, Gomez-

Puerto, and Ten Dijke 2017) while ACVRL1 and BMPR1B have more specific ligand preferences. 

Additionally, BMPR1A and BMPR2 are broadly expressed across distinct tissues, whereas 

BMPR1B and ACVRL1 are highly expressed in relatively few tissues (Danesh et al. 2009; Cunha 

and Pietras 2011). We reasoned that perturbing receptors with such diverse properties could 

provide insight into how different specificities of receptor-ligand interactions influence ligand 

equivalence.  

To explore these diverse receptor properties, we first generated stable shRNA knockdown cell 

lines for BMPR1A and BMPR2, similar to the ACVR1 line (Figures S5A,B). Knockdown of BMPR2, 

which is also reduced in mESCs relative to NMuMG cells, decreased activation by BMP2 and 

BMP4, removed their antagonism by GDF5 and GDF7, and fused [GDF5, GDF6, GDF7] into one 

equivalence group (Figures 6A “BMPR2 KD,” S5C-G), all of which were features of BMP signaling 

in mESCs. Thus, this perturbation recapitulated certains aspects of mESC equivalence, though 

distinct from those produced by ACVR1 knockdown. Knockdown of BMPR1A produced a further 

simplified version of the BMPR2 knockdown, with no activation by BMP2 and BMP4 and only one 

non-additive interaction occurring between two of the three groups (Figures 6A “BMPR1A KD,” 

S5H-J). The loss of most non-additive interactions following knockdown of BMPR2 or BMPR1A 

also revealed that these receptors, unlike ACVR1, are necessary for many non-additive ligand 

interactions in NMuMG cells. 

Thus far, perturbations were of relatively promiscuous receptors, known to interact with a broad 

spectrum of ligands. By contrast, the receptors ACVRL1 and BMPR1B are known to be more 

ligand-specific (Chai et al. 2020; Nishitoh et al. 1996; Cunha and Pietras 2011), primarily binding 

BMP9 and BMP10 or the GDFs, respectively. We therefore ectopically expressed these receptors 

by stably integrating constructs encoding receptor cDNA into the NMuMG reporter cell line (Figure 

S6A). Ectopic ACVRL1 expression increased activation by BMP10 and removed its many 

suppressive and antagonistic interactions with other ligands (Figure 6A “ACVRL1 OX,” S6B-D). 

Similarly, BMPR1B increased activation by its preferred ligands GDF5, GDF6, GDF7, and 

removed their antagonism of BMP2 and BMP4 (Figure 6A “BMPR1B OX,” S6E-H). Thus, both 

perturbations reduced the number of equivalence groups and non-additive interactions, with 

ectopic BMPR1B expression allowing 8 of the 10 ligands to signal equivalently. More specifically, 

ectopic expression of each receptor resulted in its preferred ligands becoming equivalent to other 

strongly activating, weakly interacting ligands, such as BMP5, BMP6, BMP7, and BMP9. These 

experiments suggest that non-additive interactions could arise from receptor competition, which 

is specified by the receptor’s ligand preferences and can be relieved by ectopic receptor 

expression.  
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Comparing signaling across cell types reveals global structure of ligand equivalence  

Together, the pairwise interactions and corresponding equivalence maps observed across all cell 

contexts provide a more global view of the structure of BMP signaling. The full set of pairwise 

interactions reveals the striking plasticity of ligand strength and interactions (Figure 6A, top). 

GDF5, GDF6, and GDF7 were usually weak activators, while BMP5, BMP6, and BMP7 strongly 

activated all cell types. The remaining ligands were active in some but not all receptor contexts. 

While most pairwise interactions were additive, every ligand participated in synergy or antagonism 

with another ligand in at least one receptor context. Non-additive interactions tended to be 

consistent for a given ligand pair, exhibiting the same interaction type (i.e. color) across cell lines. 

All synergistic ligand interactions involved BMP9, whereas all suppressive interactions involved 

BMP10. Considered as a system, the meaning of any given BMP ligand is thus inherently 

contextual, depending both on other ligands and on receptor context.  

To represent the full dataset in a more compact way, we clustered ligands according to the 

similarity of their interactions across receptor contexts (Figure 6A, right), such that ligands in the 

same cluster had the same individual strength and pairwise interactions across all receptor 

contexts. This approach classified the ten BMPs into five global equivalence groups: [BMP2, 

BMP4], [BMP5, BMP6, BMP7], [BMP9], [BMP10], and [GDF5, GDF6, GDF7]. [BMP2, BMP4], as 

well as [BMP5, BMP6, BMP7], exhibited the strongest version of equivalence. Despite frequent 

changes in individual or combinatorial signaling across cell contexts, responses to ligands within 

each group always changed in the same manner, such that the ligands in each group were 

equivalent in all contexts. The global equivalence map also illustrates the variability and 

prevalence of ligand interactions (Figure 6B). For example, interactions between [BMP9] and 

[BMP2, BMP4] can vary from synergy to antagonism. In all receptor contexts except one, [BMP10] 

interacts non-additively with [BMP2, BMP4], while [BMP5, BMP6, BMP7] have only additive 

interactions with [BMP2, BMP4] or [GDF5, GDF6, GDF7]. (Note that we grouped GDF6 with GDF5 

and GDF7 despite its apparent lack of antagonistic interaction with [BMP2, BMP4] because its 

higher overall EC50 may obscure a potential underlying antagonism (Figure S6E, inset; STAR 

Methods).)  

This global equivalence diagram also portrays another surprising feature of context-dependent 

ligand differences. A single linear ligand ordering, following the circle from BMP9 around to 

BMP10, is consistent with all observed equivalence maps. With this ordering, no rearrangements 

of ligand position are necessary in any observed context. This suggests that ligand differences 

fall on a linear continuum, and is distinct from what one would expect in a clustering-based 

analysis, where many orderings are consistent with the same linkage tree. While analysis of 

additional receptor contexts could further increase the number of global equivalence groups, this 

diagram efficiently summarizes ligand differences and interactions. 

How closely do the equivalence relationships assessed here reflect intrinsic aspects of ligand 

sequence? To assess this, we compared similarity of ligand protein sequence (Figures 6C, S7A) 

with similarity of pairwise interaction profiles. In individual cell lines, these two metrics were only 

partially correlated (Figure 6D, top), suggesting that ligand sequence similarity does not fully 

predict functional similarity in a single receptor context. For example, BMP5 and BMP9 act 

equivalently in NMuMG (Figure 3D) but are relatively dissimilar in sequence (Figure 6C). Ligand 

sequence correlated with ligand function more strongly when all cell lines were considered 
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simultaneously (Figure 6D, bottom). This ‘global’ correlation coefficient, 0.80, approached the 

maximum value obtained with randomly sampled cell line combinations, 0.84 (Figure S7B). 

Interestingly, however, even when all cell lines were considered together, BMP9 and BMP10 

exhibited more divergent functional behavior than expected given their sequence similarity. 

Overall, this analysis suggests that ligand sequence similarity does not generally reflect functional 

similarity in any individual cell context, even for the most highly homologous ligands. Instead, it 

appears to correlate more strongly with aggregated, or global, functional similarity across multiple 

contexts. 

A mathematical model of competitive ligand-receptor interactions can explain context-

dependent ligand interactions 

As shown above, ligands can interact in different ways depending on receptor context. To 

understand how such complex, contextual responses could emerge, we analyzed a mathematical 

model of the pathway developed in a parallel study (Su et al. 2020). This model assumes that 

each ligand variant, Li, can bind to any pair of Type I and Type II receptors, Aj and Bk respectively, 

with affinity Kijk to produce a trimeric, ligand-receptor signaling complex, Tijk (Figure 7A), whose 

binding is captured by a set of ordinary differential equations describing mass-action kinetics. 

Each signaling complex can then phosphorylate SMAD proteins with its own specific kinase 

activity εijk. Receptors are expressed at specific total levels, Aj
0 or Bk

0. The limited total amount of 

each receptor generates competition among ligands for available receptors. Other features of the 

BMP system—including step-wise assembly of ligand-receptor complexes, the heterotetrameric 

stoichiometry of actual receptor complexes, co-receptors, and other factors—play important roles 

in the natural system but were not required to explain observations in this work (STAR Methods).  

To identify parameter values that can generate the range of interactions observed experimentally, 

we focused our analysis on a single ligand from each global equivalence group. Similarly, we 

considered only the five broadly-expressed receptors (Figures 7A, S4A, S5A): the Type I 

receptors ACVR1 and BMPR1A and the Type II receptors ACVR2A, ACVR2B, and BMPR2. We 

fit the model simultaneously to measurements of individual and pairwise responses in the four 

NMuMG-derived cell lines whose receptor profiles are restricted to this set (i.e. NMuMG and the 

knockdowns of ACVR1, BMPR2, and BMPR1A). We then analyzed a set of 22 solutions from 

nearly 7,000 least-squares fits that produced the lowest fitting error and preserved key pairwise 

interactions (Figures 7B, S8A; STAR Methods).  

Within these best fit parameter sets, all ligands were promiscuous, with substantial but variable 

affinities for most or all receptors (Figure S8B, top). BMP7 and GDF5 had lower affinities overall 

across all complexes, while BMP4, BMP9, and BMP10 had higher affinities for select complexes 

(Figure S8B, top). The ligands also differed in the activity of the resulting complexes. GDF5 weakly 

activated most signaling complexes, while other ligands strongly activated multiple receptor 

complexes (Figure S8B, bottom). Many signaling complexes exhibited strong affinity but weak 

activity or vice versa (Figure S8C). A parallel computational study of the BMP pathway showed 

that this inverse relationship between activity and affinity generates the complex multi-ligand 

responses necessary for combinatorial addressing, in which ligand combinations can selectively 

activate cell types (Su et al. 2020). Taken together, these results suggest that the context-

dependent ligand interactions observed experimentally can be explained by affinity-based 

competition to form complexes with different activities. They further suggest that the effective 
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biochemical parameters for mammalian BMPs exhibit the features associated with combinatorial 

addressing.  

In the model, context-dependence emerges from redistribution of signaling complexes 

We identified three key features of the best fit parameter sets that allowed them to reproduce the 

observed context-dependent ligand interactions. First, each of these parameter sets generated 

many high affinity (high Kijk), low activity (low εijk) signaling complexes. Ligands can appear weak 

not because they form fewer complexes but rather because they preferentially form complexes 

with weaker activity (Figure 7C). More surprisingly, even for highly active ligands, most of the 

response was generated by a small fraction of the formed complexes (Figures 7D, S8E,F).  

A second feature of top parameter fits was that they allowed individual receptor subunits to 

participate in multiple complexes with widely varying activities. Consequently, when receptors are 

rearranged into new complexes following the perturbation of a single receptor, significant changes 

in pathway activity can result. These changes can be direct and indirect. For example, knockdown 

of a single receptor subunit can directly reduce the output from complexes in which it appears by 

reducing their concentrations. It can also indirectly affect the response from other signaling 

complexes by increasing or decreasing abundance of inactive, competing complexes (Figures 

7E, S8G,H). For example, in the model, knockdown of BMPR1A reduces the activity of BMP4 and 

BMP10 complexes containing ACVR1 (and lacking BMPR1A itself). This indirect effect is due to 

the release of ACVR2B from BMPR1A, which allows formation of ACVR1-ACVR2B complexes 

that compete with the higher-activity ACVR1 complexes (Figures S8G,H). These indirect effects 

account for much of the complexity of receptor context.  

Finally, the parameter fits also produced hidden, or compensatory, shifts in the activity of one 

ligand in response to addition of a second ligand. For example, in NMuMG cells, BMP4 combined 

additively with BMP7 (Figure 3D), seemingly implying that the two ligands do not affect each 

other’s ability to signal. However, in nearly all top fitting results, BMP7 produced more output than 

expected if it shared its receptors equally with BMP4, while BMP4 produced less than expected. 

Thus, the saturated additive BMP4-BMP7 interaction resulted from opposite effects on the 

underlying signaling activities of the two ligands (Figures 7F, S8I,J). A more complete analysis of 

redistribution of signaling complexes is shown in Figures S8D-J, which highlight a single random 

parameter set.Taken together, these results show how reassortment of ligand and receptor 

subunits can reproduce observed interactions through sometimes non-intuitive mechanisms.  

To better illustrate how these effects occur, we constructed a simplified hypothetical system with 

three ligands, two Type I, and Type II receptor subunit variants interacting with the affinity and 

activity parameters shown in Figure 7G. As observed in the parameter fits, when all receptor 

subunits are expressed, even the highly active pink and blue ligands form many non-signaling 

complexes (Figure 7H). Further, knocking down a receptor indirectly reduces output from 

unperturbed receptors (Figure 7I). For example, when the black Type I receptor is removed, the 

white Type I receptor obtains unrestricted access to the pool of Type II receptors, allowing 

formation of a new, lower-activity complex with the pink ligand. Thus, even though the white Type 

I receptor is not itself perturbed, its output is reduced.  

This schematic example also shows how addition of one ligand can modify the activity of another 

through competition. For example, the gold ligand competes with the blue ligand to bind to the 
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white Type I and II receptor, which is the only receptor through which the blue ligand can signal 

(Figure 7J), producing an antagonistic interaction between the two ligands. By contrast, when the 

blue and pink ligands are combined, signaling by the former is increased while signaling by the 

latter is decreased relative to their individual activities. These changes cancel each other out, 

resulting in minimal change to the total signal. In this case, the apparent additivity of the interaction 

conceals compensatory changes in the distributions of both ligands. Thus, competition generally 

redistributes ligands across receptor complexes but does not necessarily produce changes in 

total signaling activity. This simplified example illustrates many of the principles observed in the 

full model.  

Discussion 

Individual BMP ligands are known to preferentially bind and signal through specific receptors. 

However, preferences alone cannot explain the striking contextuality of BMP ligand responses. 

Here, we introduced contextual ligand equivalence groups as an alternative framework to 

understand ligand differences when signaling in combinations across receptor contexts. This 

approach uses systematic pairwise measurements to define equivalence groups, each 

comprising a set of ligands that interact similarly with all other ligands when activating a given cell 

type (Figure 3D). Critically, these equivalence groups are contextual, changing with alterations in 

receptor expression (Figures 4-6). In contrast to ligand classifications based on biochemical 

properties like affinity, contextual equivalence groups classify BMP ligands and receptors based 

on their emergent functional properties.  

Contextual equivalence groups can explain ligand redundancy that varies between 

developmental contexts. For example, BMP10 signals in both developing heart and vasculature 

(Chen et al. 2013). Although BMP9 has the closest sequence similarity to BMP10, the contextual 

equivalence maps show that BMP9 can only substitute for BMP10 in the presence of ACVRL1 

(Figure 5G). Consistent with this picture, BMP9 rescued loss of BMP10 in developing mouse 

vasculature but not heart, as ACVRL1 expression is limited to vascular epithelium (Chen et al. 

2013; Seki, Yun, and Oh 2003). Contextual equivalence groups also reveal the effects of ligand 

context. For example, in receptor contexts where BMP4 and BMP7 are strong activators, they 

can only replace each other when antagonizing ligands such as GDF5, GDF6, GDF7, or BMP10 

are absent (Figure 3D, 5G, 5H). Consistent with this, BMP4 and BMP7 functioned redundantly in 

the developing kidney (Oxburgh et al. 2005), where those antagonizing ligands are not expressed 

(Godin, Robertson, and Dudley 1999). By contrast, loss of BMP4 produced more pronounced 

effects than loss of BMP7 in the context of developing skeleton with conditional BMP2 knockout 

(Bandyopadhyay et al. 2006), a context where GDF5 is expressed and plays a key role (Storm 

and Kingsley 1999).  

The contextual equivalence analysis of BMP signaling introduced here can be improved and 

extended in several ways. First, analyzing ligand equivalence in additional receptor contexts 

would provide more complete coverage of possible BMP signaling contexts. Second, including 

heterodimeric ligands such as BMP2/7 could reveal whether these ligands have distinct 

contextual properties from their related homodimers, in addition to their unique individual 

properties (Valera et al. 2010). Third, many natural contexts use three or more ligands 

simultaneously. The approach taken here could be extended to combinations of three or more 
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ligands to determine whether pairwise interactions completely determine multi-ligand effects or 

whether higher-order interactions are important.  

Contextual equivalence groups can be explained by a simple biochemical model, suggesting that 

the context-dependent behavior of BMP ligands could arise from differences in receptor affinity 

and signaling complex activity. Key aspects of this model are consistent with previously observed 

features of BMP signaling. For example, loss of BMP or related TGF-β receptors indirectly affects 

the abundance of other receptors complexes (Hiepen et al. 2019; Lowery et al. 2015; Razavi, 

Lopez, and Lyons 2019). More specifically, BMPR2 knockdown has unexpected and ligand-

specific effects across a variety of cell types (Han et al. 2013; Hiepen et al. 2019; Yu et al. 2005; 

Olsen et al. 2018; Theilmann et al. 2020), which may be explained by the low predicted activity of 

BMPR1A-BMPR2 complexes that recurred in all model fits. In pulmonary artery cells and 

myeloma cells, BMPR2 knockdown either did not affect or decreased signaling by BMP4 and 

BMP10, while, respectively, increasing or having no effect on signaling by BMP7 and BMP9. In 

the model, without BMPR2, BMP4 and BMP10 preferentially formed lower activity complexes than 

with BMPR2. Therefore, the absence of BMPR2 redistributes receptors to reduce pathway activity 

overall. By contrast, BMP7 and BMP9 mostly form complexes with high activity in the absence of 

BMPR2. For these ligands, association with other Type II receptors would tend to increase or 

maintain pathway activation. Thus, while the minimal phenomenological model established here 

does not represent the full complexity of the BMP system, it provides a foundation for a unified, 

systems-level framework for describing ligand differences, generating hypotheses, and 

reconciling otherwise counter-intuitive effects of perturbations among cell types. 

Independent experimental measurements of the effective affinity and activity parameters for 

various ligand-receptor signaling complexes (Figure 7) could determine parameters not fully 

constrained by existing data. This would allow the model to predict responses to ligand 

combinations in arbitrary cell (i.e. receptor) contexts. More specifically, measuring the effective 

affinity of overall complex formation may be a crucial follow-up to measuring the affinity of BMP 

ligands binding single receptors (Heinecke et al. 2009; Saremba et al. 2008; Aykul and Martinez-

Hackert 2016; Isaacs et al. 2010), and measurements of signaling complex activity may provide 

more examples of BMP ligands that bind and only weakly activate receptors, or vice versa 

(Nishitoh et al. 1996; Nickel and Mueller 2019; Aykul et al. 2020). Finally, while the existing model 

shows that competitive ligand-receptor interactions are sufficient to explain key features of 

contextual equivalence groups, further tests will be essential to understand how additional 

biochemical interactions, such as binding to negative regulators like Noggin, could enable other 

pathway behaviors.  

Ligand classification by pairwise interactions can generalize beyond the core BMP pathway. First, 

additional TGF-ꞵ family ligands, such as TGF-ꞵ or activin, could be included. These ligands 

regulate phosphorylation of the related SMAD2/3 transcription factors, share some but not all 

receptors with BMP ligands (Razavi, Lopez, and Lyons 2019), and exhibit distinct activation 

dynamics that may allow more complex ligand integration (Weiss and Attisano 2013; Zi, Chapnick, 

and Liu 2012). Expanding into this related set of ligands not only introduces the probability of 

more complex equivalence relationships but also provides deeper insight into a critical signaling 

system in cancer and wound healing (Bierie and Moses 2010; Pakyari et al. 2013). Second, 

analyzing a broader set of BMP targets, including non-canonical outputs and broad repertoires of 
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target genes, could determine whether different outputs follow the same ligand equivalence 

relationships as SMAD1/5/8 phosphorylation (Saxena, Agnihotri, and Sen 2018; Gunnell et al. 

2010; Blitz and Cho 2009). Third, a similar approach could be applied to other pathways, such as 

Wnt or FGF, which also exhibit promiscuous interactions among multiple ligand and receptor 

variants (Gleason, Szyleyko, and Eisenmann 2006; Kettunen and Thesleff 1998). In the longer 

term, contextual equivalence groups could function as a ‘periodic table’ that organizes ligands 

according to their functional effects and contextual interactions in a unified manner to explain why 

specific components operate together in different developmental contexts and to allow context-

specific control of pathway activity for therapeutic applications.  
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Figure Titles and Legends 

 

 

 

Figure 1: BMP ligands can be classified by their pairwise interactions.  

(A) BMP ligands (colored petal shapes) bind Type I and Type II receptors to form signaling 

complexes. Active signaling complexes phosphorylate SMAD1/5/8 transcription factors, 

which translocate to the nucleus to activate endogenous gene targets. Promiscuous 

ligand-receptor interactions enable the formation of a wide variety of potential signaling 

complexes. The dimeric nature of the ligands allows each to recruit up to two Type I and 

two Type II receptors simultaneously. 

(B) Bulk RNA-Seq datasets of various mouse tissues, collected in (Lachmann et al. 2018), 

show that BMP ligands, Type I receptors, and Type II receptors are often expressed (i.e. 

FPKM > 0) as combinations (i.e. 2 or more). 

(C) Systematic measurements of individual and pairwise responses (left) can cluster BMP 

ligands into equivalence groups (middle). Ligands in the same equivalence group interact 

in similar ways (synergistic, additive, antagonistic, or suppressive) with other ligands and 

have the same individual strength (right). 
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Figure 2: Pairwise titration of relative ligand concentrations reveals ligand interactions. 

(A) Fully classifying ligand equivalence groups requires analysis of all possible pairs, as well 

as measurements of individual activity (1X) and each ligand paired with itself (2X) as a 
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positive control. Responses in each category are sampled at multiple ratios (inset), with 

at least one ligand very near its saturating concentration in each ratio. 

(B) The full dataset includes measurements for all possible gradients, pairs, and pairs with 

self, which are shown as each row of the heatmap. The columns correspond to 

concentration ratios, with the leftmost column reserved for a no BMP control. Medians of 

four biological repeats are shown with heatmap colors.  

(C) Sample gradients of BMP2, BMP10, and GDF6 show diversity of individual strength. Dots 

are four biological replicates, and the line connects the median value for each 

concentration. The ligand concentrations are high and saturating on the left, and decrease 

from left to right, as shown by the trapezoid height on the x-axis. 

(D) Ligands paired with themselves show purely additive relationships between ligands of the 

same strength. Colored dots and lines summarize biological replicates and median for the 

ligand of the indicated color, whereas the black line shows the pair indicated on the x-axis, 

either BMP2, BMP10, or GDF6 paired with itself for multiple concentration ratios. 

(E) All possible pairs of three ligands (BMP2, BMP10, and GDF6) show three types of pairwise 

interactions. Responses to pairs can be lower than both individual ligands (left), exactly 

equal to stronger of the two (middle), or interpolate between the two (right). As in C, the 

colored dots and lines show individual ligand responses, whereas black is the response 

to the pair. The concentration ratios are shown using the same trapezoids on the x-axis. 

(F) Responses to BMP5 paired with another ligand (“X”, colors) are plotted against the 

response to other ligands (BMP5, BMP6, or BMP7) also paired with X. Since all pairs are 

sampled at seven ratios, there are seven dots for each X (i.e. color). The first two plots 

show that BMP6 is a nearly equivalent replacement for BMP5, as BMP5+X closely 

resembles BMP6+X (i.e. dots are close to the y=x line). By contrast, BMP4 produces much 

lower activation than an equivalent amount of BMP5, in the presence of BMP10, GDF5, 

GDF6, or GDF7. Pathway activation is the median of four biological repeats, quantified by 

flow cytometry. 
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Figure 3: Antagonism and suppression define BMP equivalence groups in NMuMG cells.  

(A) The Interaction Coefficient (IC) classifies different regimes of pairwise responses by 

comparison to three references (horizontal lines): the two individual ligand responses, f(A) 

and f(B), and the sum of those responses, f(A) + f(B). The behavior type and strength for 

a given pairwise response, f(A+B), is indicated by its IC value and associated color map: 

black for suppressive, red for antagonistic, gray for saturated additive, blue for additive, 

and green for synergistic. IC values linearly interpolate between reference points. Though 

IC has no upper bound, values rarely exceed 2, which is the upper limit shown on all plots. 

See Figure S1B and STAR Methods for formula. 

(B) IC values for pairs of BMP2, BMP10, and GDF6 (as in Figure 2E) vary across pairs and 

multiple concentration ratios. Each pair exhibits a distinct response type. Circled IC values 

indicate which ratio was used to classify the pair, and the circle’s color indicates the 

interaction type. Trapezoids on x-axis indicate concentration ratios, analogous to inset in 

A.  

(C) Hierarchical clustering of IC and RLS values in NMuMG cells, computed from the medians 

of four biological replicates, reveals five distinct equivalence groups, defined at a distance 

of 1 to separate ligands with similar pairwise and individual strengths (STAR Methods). 

The square colors indicate either the ligand’s IC value (see colormap in B) when paired 

with another ligand or the RLS grayscale for its individual strength, as indicated by x-tick 

labels. The dendrogram on the right-hand side shows complete-linkage clustering of 

Euclidean distance between ligand features. The RLS and IC values are weighted such 
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that a distance of 1 indicates a significant difference in either individual strength or a 

difference of one pairwise interaction between two ligands (STAR Methods). 

(D) BMP ligand equivalence in NMuMG cells, as classified by hierarchical clustering in E, 

comprises five equivalence groups. Wedge grayscale value shows approximate RLS 

value of the contained ligands, while connecting line colors represent pairwise interactions 

between ligand groups. Groups without a linking edge interact additively. Ligands with 

similar individual strengths can be grouped differently based on their pairwise interactions.  

See also Figures S1, S2. 
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Figure 4: Mouse ES cells exhibit distinct BMP equivalence groups.  

(A) RNA-Seq of BMP receptors in mESC reporter and wild-type NMuMG cells show 

differences in receptor expression (highlighted by green and red arrows) between the two 

cell lines, with mESCs expressing more ACVR2B, but less ACVR1 and BMPR2. Dots 

show at least two biological repeats, and bar height is median. 

(B) RLS values in mESCs (closed circle) differ from NMuMG cells (open circle, cf. Figure 

S1G), with more intermediate strength activators in mESCs. Arrows indicate the change 

in mESCs relative to NMuMG cells. 

(C) IC values for seven pairwise interactions changed significantly (|ΔIC|>0.5) between 

NMuMG cells (open circle) and mESCs (closed circle). The majority show a net increase 

of IC, producing five new synergistic interactions. Both the color and y-axis value of the 

open and closed circles indicate the IC value for the indicated cell lines, computed on the 

median of four biological repeats. 

(D) Hierarchical clustering of IC and RLS values in mESCs reveal a new set of ligand 

equivalence groups compared to NMuMG cells (cf. Figure 3D), using the same cutoff 

criteria to group ligands by similar individual and pairwise interactions (STAR Methods). 

The square colors indicate either the ligand’s IC value when paired with another ligand or 

the RLS grayscale for its individual strength (see y-axis colormaps in B and C), as 

indicated by x-tick labels. The dendrogram on the right-hand side shows complete-linkage 

clustering of Euclidean distance between ligand features. 

(E) BMP equivalence in mESCs, as classified by hierarchical clustering in D, includes six 

equivalence groups. Grayscale value indicates the approximate RLS of the grouped 
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ligands, while connecting line colors indicate the pairwise interactions between groups of 

ligands. Groups without a linking edge interact additively. 

See also Figure S3. 
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Figure 5: ACVR1 knockdown reveals the effects of receptor context on ligand equivalence.  

(A) ACVR1 knockdown (closed circle) alters RLS values compared to NMuMG cells (open 

circle, cf. Figure S1G). BMP9 is the most strongly affected.  

(B) Three pairwise interactions changed significantly (|ΔIC|>0.5) between NMuMG cells (open 

circle) and ACVR1 knockdown (closed circle), producing new synergistic interactions with 

BMP9. Open and closed circles are colored by IC value. 

(C) Hierarchical clustering of RLS and IC values (as in A and B) in the ACVR1 knockdown 

context shows a more complex equivalence map. The square colors indicate either the 

ligand’s IC value when paired with another ligand or the RLS grayscale for its individual 

strength (see y-axis colormaps in A and B), as indicated by x-tick labels. The dendrogram 

on the right-hand side shows complete-linkage clustering of Euclidean distance between 

ligand features. 

(D) BMP equivalence following ACVR1 knockdown, as classified by hierarchical clustering in 

C, includes six groups. Wedge color shows approximate RLS value of the contained 

ligands, while connecting line colors indicate pairwise interactions between groups of 

ligands. Groups without a linking edge interact additively. Here, as in panels E-H, each 

receptor perturbation is shown as a cartoon of filled and empty receptors, which are drawn 

in the following order: ACVRL1, ACVR1, BMPR1A, BMPR1B, ACV2A, ACVR2B, BMPR2. 

See also Figures S4.  
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Figure 6: Analysis of multiple cell contexts reveals global ligand equivalence groups.  

(A) Clustering RLS and IC values for all ligands and pairs across all cell contexts shows global 

ligand similarity (upper row). The full set of IC values show the distribution of ligand 

interaction types (colors based on Figure 3C) and identify ligands with different 

frequencies of non-additive interactions. Lower row shows the corresponding ligand 

equivalence groups (reproduced from Figures 3D, 4E, 5D-H). For the dendrogram (right), 

clustering was done by complete linkage of the Euclidean distance between RLS and BC 

features, as before. 

(B) The global equivalence map was determined by cutting the dendrogram (panel A, right) 

at the indicated distance. Internal links show all instances of non-additive interactions 

between those ligands. Global groups tend to have linkages of the same interaction type 

(i.e. similar colors), with widely varying frequency. For example, BMP2 and BMP4 almost 

always interact with BMP10 but never with BMP5.  

(C) Recombinant ligand sequences were clustered by complete-linkage clustering of pairwise 

alignment distance, as computed by the BLOSUM50 matrix between globally-aligned 

sequences, neglecting all gaps. Ligands comprise roughly four groups of related proteins, 

indicated by color families. The recombinant ligands used in this study constitute the 

mature secreted form of the ligand, exclude pro-domains, and vary in length from 108 to 

146 amino acids (see also Figure S7A).  
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(D) Sequence similarity, quantified as in (C), correlates with IC/RLS similarity observed in 

each cell context, though the extent of correlation varies. In the correlation across all cell 

contexts, notable outliers include BMP9’s surprising functional difference from BMP10, 

despite their significant sequence similarity, and BMP9’s unexpected similarity with BMP5, 

BMP6, BMP7, despite relatively dissimilar sequences. Pearson correlation coefficient 

(bottom) quantifies correlation between sequence similarity and IC/RLS distance for each 

cell line. Highest correlation is achieved by considering all cell contexts together. 

See also Figure S5, S6, and S7. 
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Figure 7: Mathematical model of receptor competition can explain contextual ligand 

equivalence groups 

(A) In a minimal BMP receptor competition model, mass action kinetics govern one-step 

assembly of ligand (Li), Type I receptor (Aj), and Type II receptor (Bk) into trimeric signaling 
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complexes (Tijk) that activate pathway output with some activity (εijk). The included 

components are listed beneath their associated variable. 

(B) Observed responses, normalized between 0 and 1, correlate with simulated responses in 

top parameter fits. 

(C) Total complex abundance (in arbitrary units, normalized to total possible number of 

complexes) does not correlate with overall output from a given ligand. Ligands of 

intermediate strength (e.g. BMP10) can bind more receptors than strongly activating 

ligands.  

(D) For individual ligands activating NMuMG, the inferred output of each complex is plotted 

against its percentage of the total complexes for all top parameter fits. A minority of the 

complexes that form can produce the majority of the output. 

(E) The percent change in output (relative to NMuMG) from BMPR1A- and ACVR1-containing 

complexes following BMPR1A knockdown is shown for all five ligands. BMPR1A 

knockdown reduces the number of BMPR1A-containing complexes and reduces their 

output as expected, but also can reduce output from ACVR1-containing complexes, as 

BMPR1A loss increases availability of Type II receptors. All top parameter fits are plotted, 

unless the absolute change is small (i.e. <0.05 change in response). GDF5, which does 

not activate these cells and has only small changes in ACVR1 output, is not shown (N/A).  

(F) Percent change in output (relative to signaling alone) from complexes containing BMP4 

or another ligand are shown for BMP4 paired with four other ligands: BMP7, BMP9, 

BMP10, and GDF5. Equal sharing between the two ligands would reduce output by 50%, 

whereas ligands that do not share complexes produce as much as output alone as they 

do in a pair. All top parameter fits are plotted, unless the absolute change is small (i.e. 

<0.05 change in response). GDF5, which does not activate these cells and has only small 

changes in overall output, is not shown (N/A).  

(G) A schematic parameter set shows three ligands with different affinities and activities for 

four possible receptor dimers. In the model, these ligands have different individual 

strengths and pairwise strengths which change with receptor perturbations. 

(H) In a simulation where each receptor subunit is available, the three ligands form both 

signaling and nonsignaling complexes. Bar height shows complex abundance. Empty bars 

show nonsignaling complexes, whereas filled bars show signaling complexes. 

(I) After simulated knockout of the black Type I receptor, the abundances of many signaling 

complexes change, even if they did not involve the knocked out receptor. 

(J) In a simulation where each receptor subunit is available, competition for shared receptors 

changes the formation of signaling complexes by each ligand. The pink and gold ligands 

can respectively shift the blue ligand to preferentially form its signaling and nonsignaling 

complexes. 

See also Figure S8. 
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STAR Methods 

Resource Availability 

Lead Contact 

All requests for resources and reagents should be directed to and will be fulfilled by the Lead 

Contact, Michael Elowitz (melowitz@caltech.edu). 

Materials Availability 

The recombinant proteins, lentiviral particles, siRNAs, and qPCR probes used in this paper are 

described in Tables S1-S4 and can be purchased from commercial sources, as detailed in the 

Key Resources Table. Plasmids and cell lines generated for this paper, as indicated in the Key 

Resources Table, are available from the Lead Contact upon request.  

Data and Code availability 

The datasets and analysis scripts generated used to produce paper figures are available here: 

https://doi.org/10.22002/D1.1693.  

Experimental Model and Subject Details 

Tissue culture and cell lines 

NMuMG (NAMRU Mouse Mammary Gland cells, female) were acquired from ATCC (CRL-1636). 

E14 cells (mouse embryonic stem cells, E14Tg2a.4, male) were obtained from Bill Skarnes and 

Peri Tate. All cells were cultured in a humidity-controlled chamber at 37°C with 5% CO2. NMuMG 

cells were cultured in DMEM supplemented with 10% FBS (VWR #311K18),1mM sodium 

pyruvate, 1unit/mL penicillin, 1μg/mL streptomycin, 2mM L-glutamine, and 1X MEM non-essential 

amino acids. ES cells were plated on tissue culture plates pre-coated with 0.1% gelatin and 

cultured in standard pluripotency-maintaining conditions (Smith, 2001) using DMEM 

supplemented with 15% FBS (ES qualified, GIBCO #16141), 1mM sodium pyruvate, 1unit/mL 

penicillin, 1μg/mL streptomycin, 2mM L-glutamine, 1X MEM non-essential amino acids, 55μM β-

mercaptoethanol, and 1000units/mL leukemia inhibitory factor (LIF). 

Reporter cell line construction 

To construct reporter cell lines, a plasmid harboring the BMP response element (Korchynskyi and 

ten Dijke, 2002) in the enhancer region of a Major Late Promoter (MLP) driving the expression of 

an H2B-mCitrine protein fusion was integrated into the NMuMG genome using PiggyBac 

integration (System Biosciences). After transfection, cells were selected with 100μg/mL 

hygromycin. The base NMuMG reporter was a clonal cell line generated by limiting dilution. This 

reporter construct exhibited lower background YFP expression and increased signaling dynamic 

range relative to a similar NMuMG transcriptional reporter (Antebi et al., 2017), consistent with 

other observations of MLP’s lower background relative to mCMV (Ede et al., 2016). A previously-

reported mESC reporter was used (Antebi et al., 2017). To construct this reporter, a related 

construct, carrying minimal CMV in place of MLP, was randomly integrated into the E14 genome 

using the FugeneHD reagent and a clonal population selected by colony picking.  
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Method Details 

Quantifying BMP responses with flow cytometry 

To assay BMP pathway activity, we genomically integrated a transcriptional reporter into all cell 

lines as described above (see “Reporter cell line construction”), which expressed YFP 

proportional to pSMAD activation (Antebi et al., 2017). To measure how a given ligand or 

combination of ligands activated the pathway, we followed the following protocol in all robotic or 

manual experiments. Cells were plated at a confluency that, assuming a 24 hour doubling time, 

would produce sufficient cells for flow cytometry at the experiment endpoint (i.e. at least 5000 

cells 36 hours after plating in a 96 well format, or about 20-30% confluent at the start of the 

experiment). Twelve hours after plating, cell media was removed and replaced with ligand-

containing media. Twenty-four hours after ligands were added, cells were lifted from the plate for 

flow cytometry, by five minute incubation at 37°C in 0.25% Trypsin (or Accutase, for mESCs) 

following PBS wash. Trypsinization was quenched by resuspending cells in flow buffer, (HBSS 

containing 2.5mg/mL Bovine Serum Albumin (BSA)). Cells were then filtered through a 40μm 

mesh and analyzed by flow cytometry (MACSQuant VYB, Miltenyi or CytoFLEX, Beckman 

Coulter). Note that because of difficulties with cellular aggregation following filtering, alternative 

flow buffer formulations additionally included either 1mM ethylenediaminetetraacetic acid (EDTA) 

or 200U/mL DNAse I in some cases.  

Robotic liquid-handling protocol 

For each cell line, a similar protocol was used to generate a full pairwise dataset. First, the 

transcriptional BMP reporter was generated, and the receptor profile was assayed by qPCR. The 

only exception was the mESC reporter, whose receptor profile was obtained from a prior 

publication that assayed receptor expression by RNA-Seq (Antebi et al., 2017). Then, we 

determined the dynamic range of each ligand in this new receptor context. To do this, we 

completed at least one biological replicate of single ligand dose responses up to very high 

concentrations that were expected to approach saturation (e.g. 3μg/mL), with a high fold dilution 

to capture the full dynamic range. These dose responses fell into three types: saturating 

activators, non-saturating activators, and non-activators. For saturating activators, we selected a 

maximum concentration and fold dilution that sampled concentrations corresponding roughly to 

25, 50, 75, and 100% of maximal activation. For non-saturating activators, maximal activation was 

unknown. To avoid supraphysiological concentrations, we limited the maximum concentration to 

2 or 3μg/mL and used a minimum 2-fold dilution to sample what little of the dynamic range was 

accessible. For non-activators, there was no dynamic range. We therefore selected maximum 

concentrations and fold dilutions that approximated the median dynamic range of the activating 

ligands, reasoning that these highly homologous ligands had, to a first approximation, reasonably 

similar concentrations over which they were most active. The full list of all concentrations and fold 

dilutions used for each cell line is in Table S1. 

Next, we assayed all pairwise interactions, with single ligand gradients as well as “pseudo-pairs” 

of ligands with themselves as controls. For ten ligands, the screen included 10 gradients, 10 

“psuedo-pairs,” and the 45 possible pairs, or 65 rows of measurements. Each row included a no 

BMP control, plus the nine ratios at which each pair (ligand by itself, ligand paired with itself, or 
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ligand paired with another ligand) was assessed. The order of the rows and of the ligands was 

scrambled between biological repeats.  

To expose cells to these complex ligand combinations, we used a custom liquid-handling protocol 

on the Tecan EVO Freedom 200 base unit, which was housed in a sterile, laminar flow hood. To 

start the experiment, we manually plated cells eight to twelve hours before the start of the robotic 

protocol and prepared serial dilutions of the ten ligands by hand. The robotic protocol then added 

the precise ligand combinations to the appropriate plates, and timed the start of each plate to 

match the staggered analysis of each plate twenty-four hours after the ligand combinations were 

added. Specifically, at the appropriate time point, the robot removed a plate from the incubator, 

aspirated the media, replaced it with the appropriate ligand-containing media, and returned cells 

to the incubator. The robot incubator was fed 5% CO2. All plates were then collected from the 

robot incubator at the end of the experiment. 

Finally, we quantified cell responses in each of these ligand conditions. 20 to 24 hours after the 

BMP ligands were added, we measured YFP of each well by flow cytometry, as described above 

(see “Quantifying BMP reporter with flow cytometry”). We analyzed the resulting flow data with 

custom MATLAB scripts available at https://doi.org/10.22002/D1.1693, following the steps 

described below in “Data Processing.” 

Stable shRNA knockdown and ectopic receptor expression 

Individual BMP receptors were knocked down or ectopically expressed in the base NMuMG 

reporter cell line. For receptor knockdown, lentiviral particles containing constructs for constitutive 

shRNA expression reported by mCherry (SMARTvector, Dharmacon) were transduced into cells. 

Per manufacturer’s instructions for determining optimal transduction conditions, we transduced 

cells at an MOI of 20, using serum-free NMuMG growth media supplemented with 10μg/mL 

polybrene. 48h after transduction, cells were selected and continuously maintained in 3μg/mL 

puromycin. Cells with BMPR1A and BMPR2 knockdowns were polyclonal populations generated 

by a single shRNA. Cells with ACVR1 knockdown were a clonal population selected by limiting 

dilution of cells transduced with a pool of three shRNAs. For a list of the shRNAs used, see Table 

S2. 

For ectopic expression of BMP receptors, constructs for constitutive expression of mouse receptor 

cDNAs, reported by mTurquoise, were integrated into the base NMuMG reporter by PiggyBac 

integration (Systems Bioscience), using previously-reported plasmids (Antebi et al., 2017). Cells 

were selected and maintained with 500μg/mL geneticin. 

Transient siRNA knockdown 

Cells were plated at 40% confluency in a 24 well plate format with 30μM total siRNA 

(ThermoFisher Silencer Select #4390771) and 3μL RNAiMAX (Life Technologies). For every 

gene, a pool of two distinct siRNAs was used, listed in Table S3. Cells were passaged after 24 hr 

and then used for the relevant experiments. 

RT-qPCR 

Total RNA was harvested from cell lysate using the RNeasy mini kit (QIAGEN), and cDNA was 

generated from 1μg of RNA using the iScript cDNA synthesis kit (BioRad) per the manufacturer’s 

instructions. Primers and probes for specific genes (Table S4) were purchased from IDT. 
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Reactions were performed using 1:40 dilution of the cDNA synthesis product with either IQ SYBR 

Green Supermix or SsoAdvanced Universal probes Supermix (BioRad). Cycling was carried out 

on a BioRad CFX96 thermocycler using an initial denaturing incubation of 95° for 3 min followed 

by 39 cycles of (95°C for 15 s, followed by 60°C for 30 s). Each reaction was run at least in 

duplicate. 

Quantification and Statistical Analysis 

Analysis of RNA-Seq datasets 

To survey BMP ligand and receptor expression across various tissues, we selected relevant 

datasets from a collection of bulk, mouse RNA-Seq datasets (Lachmann et al., 2018). Datasets 

that indicated the sample library contained transcriptomic cDNA prepared from polyA RNA and 

that indicated a tissue-related source were kept. RNA-Seq quantification of BMP receptor 

expression in the NMuMG parental cell line and the mESC reporter cell line (cf. Figure S3A) was 

taken from GSE98674 (Antebi et al., 2017). 

BMP alignment and clustering 

To analyze amino acid sequences of BMP ligands, the relevant recombinant sequences 

(indicated by R&D Biosystems) were globally aligned with MATLAB’s “multialign” function, using 

default parameters. Distance between sequences was computed by the BLOSUM50 matrix, 

comparing only positions with no gaps across all aligned ligands, and they were clustered with 

average-distance linkage. 

Data processing 

All flow cytometry data for gradients and rims was gathered by the same method, implemented 

manually or robotically (see “Quantifying BMP reporter” and “Robotic liquid-handling protocol” 

above). The resulting flow data were analyzed in the following manner. Using a custom MATLAB 

GUI (https://antebilab.github.io/easyflow/), cells were gated on Forward Scatter (FSC) and Side 

Scatter (SSC), and median YFP used to summarize pathway activation in each well. A custom 

MATLAB script then dropped any wells with fewer than the threshold number of cells (i.e. 500), 

reordered wells to match standard ligand order, and subtracted background. For rims, an 

additional step minimized noise between the eleven plates, which, due to small variation in plate 

preparation and processing times, had incubation times varying from 20 to 24 hours. Assuming 

linear accumulation of YFP with time, variation in incubation generates a fold change in 

background-subtracted YFP. Therefore, each plate was linearly rescaled to a reference plate to 

minimize total least squares error between technical replicates shared between the two plates. 

Following standardization of each biological replicate, they were aggregated by another script. To 

reduce variance due to biological noise, each biological replicate was rescaled by a single linear 

factor that minimized total least squares error between all corresponding measurements in the 

two replicates.  

To complete gradient analysis, all biological replicates were fit to a Hill function by minimizing total 

least squares error between the Hill fit and all rescaled biological replicates. To complete rim 

analysis, Relative Ligand Strength (RLS) and Interaction Coefficients (IC) were computed. RLS 

is the ratio of each ligand’s maximal activation to the strongest ligand’s maximal activation. 

However, the IC metric, defined to quantify small differences in pathway activation, required more 
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careful analysis to ensure robustness to technical and biological noise, as described in the 

following section. 

Interaction Coefficient 

Drug synergy classification cannot fully capture ligand interactions 

Classification of synergy and antagonism occurs in many fields, including the study of drug 

interactions and gene epistasis (Costanzo et al., 2016; Meyer et al., 2019; Russ and Kishony, 

2018; Yeh et al., 2006; Zimmer et al., 2016). However, these metrics do not have clear analogies 

for classifying ligand interactions for at least two reasons.  

First, all classifications of synergy, when agnostic of mechanism, depend on a phenotypic 

definition of additivity, i.e. a non-interacting relationship. However, the many definitions of 

additivity developed for drug interactions are not consistent with each other and not necessarily 

appropriate to describe ligands activating the same pathway. As an example of this, most 

definitions of additivity descend from approaches defined by Loewe (Loewe, 1928) and Bliss 

(Bliss, 1939), who predicted that additive outcomes would be the sum of each component’s dose 

or effect, respectively (Russ and Kishony, 2018). However, these assumptions make little sense 

in the context of two signaling proteins that use the same signaling components to produce their 

individual effects; indeed, individually saturating concentrations are not expected to sum in their 

effects or their normalized dose. A third approach to additivity considers the effect of each drug 

as an independent event, such that a non-additive response deviates from the known joint 

probability of independent outcomes (Yeh et al., 2006). But the sharing of pathway components 

between the two ligands makes this assumption of independence inappropriate. 

Second, classifications of interaction type depend on well-defined regimes of behavior. The effect 

of drug combinations on growth rate has distinct boundaries for these regimes, but there are not 

clear boundaries for pathway activation. For example, the largest effect of a drug is to decrease 

growth rate to zero, but the upper bound of a signaling protein’s effect could be set by any one of 

the pathway components being limiting and so depends heavily on cell context. Similarly, drugs 

can exhibit a “strong” form of antagonism when a combination causes cells to grow faster than in 

the absence of drugs. By contrast, signaling proteins cannot, in combination, decrease pathway 

activation below zero, i.e. the response in the absence of signaling proteins. Thus pathway 

activation requires a different separation between weak and strong antagonism. 

Interaction Coefficient captures features specific to ligand interactions 

To address the incongruency of drug and ligand interactions, we developed the Interaction 

Coefficient, a definition of additivity and associated regimes of behavior that are appropriate for 

ligand interactions as described above. The goal of defining this metric was to quantify and 

compare specific ligand behaviors of interest, rather than providing a generic or alternative 

synergy metric to an increasingly large list (Russ and Kishony, 2018; Tekin et al., 2016; Vlot et 

al., 2019). IC focuses on a definition of additivity most relevant for this study: additively interacting 

ligands combine with each other in the same way they combine with themselves.  

At first, this presents an apparent challenge, as the way a ligand combines with itself is 

inconsistent. In the limit of very low and very high concentrations, doubling ligand concentration 
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has no effect on pathway output. Conversely, at intermediate concentrations, doubling ligand 

concentration can increase pathway output by two-fold or more, depending on the cooperativity 

of the response. Rather than making the strong claim that any one of these behaviors is the true 

additive expectation, IC includes both as boundaries between distinct behavioral regimes, where 

output greater than the sum is synergy and output less than the maximum of the two is antagonism 

of some strength. Finally, rather than predicting which of these two behaviors would result when 

a ligand was added with itself, we simply measured them. Thus, while ICAB describes the 

phenotypic response when ligand A combines with ligand B, ΔIC, or the difference between ICAA
 

and ICAB, indicates whether any apparent non-additivity between A and B is truly unexpected. 

To complete our definition of IC, we add a third boundary dividing weak and strong antagonism, 

determined by whether the combination response interpolates or is less than both individual 

responses. Thus, the three boundaries define four behavior regimes. Within each regime, the 

strength of that behavior type can be computed by normalizing the observed response to the 

maximal effect size. This generates the following definition of IC: 

𝐼𝐶 =  
𝑓(𝐴 + 𝐵)

𝑓(𝐴) + 𝑓(𝐵)
, 𝑖𝑓 𝑓(𝐴 + 𝐵)  >  𝑓(𝐴)  +  𝑓(𝐵) 

𝐼𝐶 =  
𝑓(𝐴 + 𝐵)

[𝑓(𝐴) + 𝑓(𝐵)]  −  𝑓(𝐵)
, 𝑖𝑓 𝑓(𝐴) + 𝑓(𝐵) >  𝑓(𝐴 + 𝐵)  >  𝑓(𝐵) 

𝐼𝐶 =  
𝑓(𝐴 + 𝐵) − 𝑓(𝐵)

𝑓(𝐵) − 𝑓(𝐴)
, 𝑖𝑓 𝑓(𝐵)  >  𝑓(𝐴)  +  𝑓(𝐵)  >  𝑓(𝐴) 

𝐼𝐶 =  
𝑓(𝐴 + 𝐵)

𝑓(𝐴)
− 2, 𝑖𝑓 𝑓(𝐴)  >  𝑓(𝐴)  +  𝑓(𝐵) 

where f(X) is the nonnegative pathway response to ligand input X, and f(B) > f(A). Note that IC 

has no upper bound, consistent with the lack of upper bound on pathway activation, and that this 

calculation assumes all data have been background subtracted. 

However, this definition of IC misclassifies small absolute changes in f(A+B) as strong pairwise 

interactions in a few cases. Specifically, if 𝑓(𝐴) ≈ 0 or 𝑓(𝐵) ≈ 𝑓(𝐴), the denominator of IC 

diverges, respectively, in the additive and antagonistic regimes, effectively due to the collapse of 

one of the behavior regimes.  

We therefore defined a discontinuous definition of IC, which normalizes each regime to a more 

intuitive standard that does not approach zero, which is the response to the stronger ligand 

individually, or f(B). The Interaction Coefficient (IC) as reported in this paper is computed with the 

following piecewise formula:  

𝐼𝐶 =  
𝑓(𝐴 + 𝐵)

𝑓(𝐴) + 𝑓(𝐵)
, 𝑖𝑓 𝑓(𝐴 + 𝐵)  >  𝑓(𝐴)  +  𝑓(𝐵) 

𝐼𝐶 =  
𝑓(𝐴 + 𝐵)

𝑓(𝐵)
, 𝑖𝑓 𝑓(𝐴) + 𝑓(𝐵) >  𝑓(𝐴 + 𝐵)  >  𝑓(𝐵) 

𝐼𝐶 =  
𝑓(𝐴 + 𝐵) − 𝑓(𝐵)

𝑓(𝐵)
, 𝑖𝑓 𝑓(𝐵)  >  𝑓(𝐴)  +  𝑓(𝐵)  >  𝑓(𝐴) 
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𝐼𝐶 =  
𝑓(𝐴 + 𝐵)

𝑓(𝐴)
− 2, 𝑖𝑓 𝑓(𝐴)  >  𝑓(𝐴)  +  𝑓(𝐵) 

where f(X) is the nonnegative pathway response to ligand input X, and f(B) > f(A), as above. To 

describe the interaction of any ligand pair, the largest magnitude IC value, positive or negative, 

for all ratios of A to B is reported.  

Determining the Interaction Coefficient from noisy data 

Because f(X) is sampled only three or four times from a broad, underlying distribution, we sought 

a robust metric to determine if two sets of measurements, f(X) and f(Y), could be reasonably 

considered different from each other, in both a statistical and biological sense. Our first criterion 

was that the range of replicates of f(X) must not overlap with the range of f(Y) replicates. However, 

even technical replicates collected on different days (i.e. f(X) and f(X’)) were sometimes non-

overlapping, indicating these measurements were distributed over a large range. Therefore, we 

added an additional criterion that the degree of non-overlap must exceed a certain threshold. 

Many of the apparently spurious classifications occurred for low YFP values that were a large 

percentage change in background but an infinitesimal percentage of the overall dynamic range. 

Therefore, we set a threshold for effect size, which was the maximum, background-subtracted 

YFP observed in a given cell line’s full dataset divided by 30, i.e. ~3% of the cell line’s dynamic 

range. This threshold achieved two objectives, nearly eliminating spurious identification of strong 

pairwise interactions due to small variations in background and most closely matching a manual 

classification of pairwise interaction type. 

Nonetheless, the correct, automatic classification of some rims was not possible with this 

approach, perhaps due to a liquid-handling error specific to one or a set of measurements. For 

these 13 of the 385 total pairs (<4% of the full dataset of 7 cell lines with 45 pairs and 10 controls 

pairs each), we determined a more reliable estimate of IC value by selecting a less noisy point on 

the rim, calculating it from independent measurements of that same pair, or setting it to 0 for the 

null hypothesis of additivity. A full description of these pairs and their manual classification is 

included below. 

Rim classification corrections 

Confident, automatic classification of all pairwise interactions posed a significant challenge. 

Measurements were limited to three or four biological replicates while small robotic errors, such 

as dropped tips or cross-well contamination, randomly disturbed a small subset of the data. While 

the analysis pipeline outlined above minimized effects of technical and biological noise by 

rescaling, and randomization of experiment layout distributed any systematic errors more evenly, 

the automatic classification of pairwise interactions did not match our intuition in a small number 

of cases (13 of the 385 rims). Here we describe those cases, why they resisted automatic 

classification, and how we manually corrected the classification. 

First, for two measures of pathway activation to be considered different, the ranges of their 

respective biological replicates had to be non-overlapping. However, a single outlier among three 

or four points may cause these ranges to overlap, despite significant differences in the median. 

Thus, plausible non-additive interactions may be classified as additive by one erroneous 
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measurement. For example, in NMuMG cells, BMP2 and BMP4 combined with GDF5 or GDF7 

produced antagonism distinct from GDF6’s lack of effect of BMP2 (Figure S2D). Similarly, in 

mESC, BMP2 and BMP4 interacted very differently with BMP10 than with other activating ligands, 

and BMP2 was antagonized by GDF5, but not GDF6 (Figure S3E). However, despite these 

qualitative differences, all these rims were classified as additive due to a single outlier. For correct 

classification of these rims, the requirement for non-overlap was removed for the specific points 

on the rim where the pairwise interaction was clear (cf. asterisks in Figure S2D). 

Second, a few rims were classified as strong synergy due to a small increase in pathway activation 

at subsaturating concentrations, though synergy manifesting exclusively at extreme ligand ratios 

or small absolute effect sizes, both of which were unlikely for true synergistic interactions. 

Moreover, given the width of the distribution of median YFP measurements, multiple samples 

from the same distribution could often, by random chance, produce non-overlapping 

measurements. For example, In NMuMG cells, despite the similarity of responses to BMP9 paired 

with GDF5 or GDF6, the latter was classified as synergy due to lack of overlap at low activation 

levels (Figure S2E). Similarly, in the BMPR2 knockdown cell line, BMP2 paired with BMP5, BMP6, 

and BMP7 showed synergy at low activation levels, despite not much clear difference from 

BMP4’s additive interaction with BMP5 (Figure S5G). These small variations were not considered 

sufficient evidence for a strong claim of synergy, and these pairwise interactions were classified 

as additive, the null hypothesis for all pairs. 

Finally, two unexpected edge cases emerged in the ACVR1 knockdown. The combination of 

BMP4 with BMP9 generated both positive and negative IC values, though the positive IC values 

were larger (Figure S4D). However, the negative IC effect was larger in absolute terms and 

consistent strong antagonism observed in similar rims, such as BMP5 with BMP9. Therefore, this 

pair was summarized by only its largest negative IC value. Lastly, BMP2 with BMP10 appeared 

to be a borderline suppressive interaction. A closer examination of this pair at higher 

concentrations and more ligand ratios confirmed the suppression between BMP2 and BMP10, 

and this IC value was used to classify these ligands (Figures S4E,F). 

Interaction Coefficient provides useful classification and agrees with existing methods 

The Interaction Coefficient (IC) enabled several parts of the analysis presented here. First, as a 

dimensionless quantity, it allowed easy comparison between cell lines with drastically different 

dynamic ranges, either due to differences in sensor behavior or data being collected on different 

cytometers. Second, as a quantitative, rather than qualitative, metric, IC allowed “softer” 

classification of pairwise interactions, since small amounts of noise could possibly generate an 

observation of a weak, but not strong, antagonistic interaction. Third, IC reliably distinguishes 

distinct behavior types for a wide array of individual ligand doses, as summarized in Figure S1B.  

The few difficulties of using the IC do not limit its usefulness in this study. One possible drawback 

to computing IC as described here is the discontinuity of the metric, introduced to avoid 

divergence when 𝑓(𝐴) = 0 or 𝑓(𝐴) ≈ 𝑓(𝐵). However, these discontinuities preserve better our 

intuitive classifications of antagonism and suppression. Another challenge is that IC is computed 

by sampling many ligand ratios, computing IC for each ratio, and then summarizing the pairwise 

behavior with the largest magnitude IC value, whether positive or negative. However, this is a 

feature of all synergy metrics, which are defined with respect to the concentrations and ratio at 
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which the pair is studied. Rather, this highlights the importance of reporting synergy alongside the 

concentration regime that was sampled and recognizing that all estimates of non-additivity 

represent lower bounds.  

Ultimately, IC agrees with preexisting synergy metrics, while providing improvements specific to 

this application. Defining a synergy metric as distinct regimes normalized to their maximum effect 

size as implemented by Yeh et al. (2006), provides the basis for IC, though with a unique definition 

of additivity. Similarly, IC summarizes the same features described by Relative Ligand Strength 

and Ligand Interference Coefficient in another study of BMP pairwise interactions (Antebi et al., 

2017), but with two small differences. First, an RLS value less than one previously classified an 

interaction as ratiometric (i.e. antagonistic), but our study showed that not all non-activating 

ligands (e.g. RLS ~ 0) antagonized activating ligands, as captured by IC’s comparison of the 

combination response to activation by the stronger ligand alone. Second, nonzero LIC values 

earn a classification of imbalance or balance, but depend on the assumption that each ligand is 

individually saturating, such that any increase or decrease relative to that amount is noteworthy. 

However, as observed in mESCs (Figure 4A), not all ligands appeared to saturate the pathway. 

The assumptions underlying IC allow its use at subsaturating ligand concentrations, as in the case 

of BMP9 in mESCs.  

Determining equivalence groups 

To classify the functional similarity of ligands, we sought a quantitative method to summarize 

differences between each ligand’s pattern of individual and pairwise activation. To this end, we 

used hierarchical clustering to summarize the hierarchy of possible ligand groupings. First, we 

computed ligand differences as the Euclidean distance between each ligand’s eleven features in 

a given cell line (i.e. nine IC values in pairs with the nine other ligands, one IC value in pair with 

itself, and one RLS value). RLS is multiplied by two for reasons described below. Next, we 

agglomeratively clustered ligands with complete linkage, such that the differences between two 

clusters is equal to the distance between their two most dissimilar members. Finally, we cut the 

resulting dendrogram to generate “monochromatic clusters” (cf. (Segrè et al., 2005)), such that 

ligands in the same group had similar activation strengths and had the same interaction type (i.e. 

color of synergistic, additive, antagonistic, suppressive), though not necessarily interaction 

strength, with all other ligands. The definition of our metrics allowed us to define a distance 

threshold of 1, which roughly corresponds with the desire for monochromaticity. Specifically, a 

distance of 1 corresponds with a difference of 1 in IC, which is the distance between the different 

regimes of IC behavior, or corresponds to a change of 0.5 in RLS (when RLS has been multiplied 

by 2), which is the difference between a strong and weak activator. Thus, most groups are defined 

by clusters at a distance of 1, with some small adjustments to preserve monochromaticity.  

Global equivalence groups 

When determining global equivalence groups, each ligand has seven times as many features (i.e. 

IC and RLS values) than when determining equivalence in a single cell line. To maintain a similar 

threshold, we increased the squared distance threshold seven-fold from 1 to 7, and cut the tree 

at a Euclidean distance of √7. The five resulting equivalence groups are in fact more robust to 

choice of distance than other possible groupings, as they are consistent with the widest possible 

range of thresholds.  
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This threshold increase allows ligands in the same global equivalence group to have small 

differences in pairwise interactions, meaning the global equivalence groups are not strictly 

“monochromatic.” However, since a claim of global inequivalence is a stronger claim than 

inequivalence in a single cell line, this reflects our intuition that a larger pattern of differences is 

required to assign ligands to distinct groups and reduces the influence of a single pairwise 

measurement on the global classification. This is important because the three ligands whose 

global equivalence would be most affected by lowering the threshold, GDF5, GDF6, and GDF7, 

had particularly challenging to identify pairwise interactions, as a result of being non-activators. 

Specifically, GDFs were placed in separate equivalence groups only when they differed in their 

ability to produce antagonistic interactions (NMuMG cells, mESCs, ACVR1 knockdown, ACVRL1 

ectopic expression) or when they differed in strength of antagonism (BMPR1B ectopic 

expression). However, a ligand’s inability to produce an antagonistic interaction may not reflect 

its intrinsic properties, but instead indicate that it is present at too low a concentration. For non-

activating ligands, it is difficult to determine which concentrations are sufficiently high and, in 

particular, whether all non-activators should be used at the same concentration. Indeed, GDF 

dose-responses in the single cell context where they activated, BMPR1B ectopic expression, 

showed significant differences in the three ligands’ EC50 values (Figure S6E, inset). Therefore, 

before confidently placing GDFs in separate global equivalence groups, the lack of antagonism 

or suppression in some cases should be confirmed by repeating experiments with more diverse 

GDF concentrations. 

BMP Mathematical Model 

Model assumptions and justification 

Dimeric BMP ligands activate the BMP pathway by complexing with two Type I and two Type II 

receptors. Once the complex is assembled, constitutively active Type II receptors phosphorylate 

and activate Type I receptors, which enzymatically activate SMAD1/5/8 molecules, generating a 

pool of pSMAD that translocates to the nucleus to promote gene expression. To focus on a 

minimal number of pathway components and steps, our model of BMP pathway activation 

considered only one-step formation of a trimeric signaling complex, containing a ligand, a Type I 

receptor, and a Type II receptor. In the model, each ligand binds each receptor dimer with a 

unique affinity and activates with a unique activity. Ligand specific-activity is a well-documented 

phenomenon in BMP signaling, though the mechanism is not clear (Nickel and Mueller, 2019).  

This simplified model neglects certain details of BMP pathway activation, which decreases model 

complexity without significant loss of explanatory power for our in vitro system. Specifically, one-

step complex formation overlooks the stepwise assembly of BMP signaling complexes. However, 

summarizing a two-step binding process with a single phenomenological parameter does not limit 

the possible pairwise interactions allowed by the pathway architecture (Su et al. 2020). The 

reduced model also neglects the pentameric nature of the full BMP signaling complex, where one 

BMP dimer binds two Type I and two Type II receptors. This model also does not include the other 

secreted and membrane-bound molecules that can influence signaling complex formation, such 

as secreted ligand antagonists (e.g. Twsg1, Noggin, Chordin), co-receptors (e.g. RGMA, ENG), 

pseudo-receptors (e.g. BAMBI), or other inhibitors (e.g. Fst). However, siRNA targeting the most 
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highly-expressed of these molecules in NMuMG, including Twsg1, Fst, and Rgmb, had no effect 

on pairwise interactions in NMuMG (Antebi et al., 2017).  

Model equations and solution 

To model BMP pathway activation, we used mass-action kinetics to describe the one-step 

formation of tripartite signaling complexes (Tijk), where one ligand (Li) binds one Type I receptor 

(Aj) and one Type II receptor (Bk) with a complex-specific affinity (Kijk). Each complex also has a 

distinct activity (εijk) with which it phosphorylates downstream SMAD proteins, and each complex 

contributes to the overall measured output (S). We assume that binding kinetics reach steady-

state more rapidly than complexes activate the pathway. We also assume that ligand 

concentration, provided by a large reservoir of cell media in experiments, is effectively constant. 

As shown in Su et al. 2020, this results in the final equations: 

𝑆 =  ∑ 𝜖𝑖𝑗𝑘𝑇𝑖𝑗𝑘

𝑖𝑗𝑘

 

𝑇𝑖𝑗𝑘 =  𝐾𝑖𝑗𝑘𝐿𝑖
0𝐴𝑗𝐵𝑘 

𝐴𝑗 =  𝐴𝑗
0 + ∑ 𝑇𝑖𝑗𝑘

𝑖𝑘

 

𝐵𝑘 = 𝐵𝑘
0 + ∑ 𝑇𝑖𝑗𝑘

𝑖𝑗

 

where Li
0, Aj

0, and Bk
0 correspond to the starting concentrations of these free species. Thus, when 

the receptor and ligand environment are specified (i.e. Li
0, Aj

0, and Bk
0 are known), pathway 

activation can be solved for, as a function of independent variables are Kijk and εijk. The implicit 

dependence of S on the model parameters can be solved by constrained optimization, 

implemented by the Python package promisys (Su et al. 2020). 

Parameter fitting 

To maximally constrain the fit parameters, we selected datasets that could be fit by the fewest 

parameters, which scale with the number of ligand and receptor components. To this end, the 

model was fit to five ligands signaling in cell lines that could be modeled with only five of the seven 

BMP receptors. Specifically, we focused on BMP4, BMP7, BMP9, BMP10, and GDF5, 

representing each one of the global equivalence groups and neglecting possible differences 

between GDFs. We further selected the NMuMG and receptor knockdown datasets, which 

express the fluorescent BMP reporter from the same genomic locus and express at most five 

BMP receptors. Receptor expression in these four cell lines was also measured by the same RT-

qPCR protocol.  

As indicated in the model, our measurements of BMP signaling can thus be modeled by S and its 

dependence on Li
0, Aj

0, Bk
0, the known ligand and receptor environments, and Kijk and εijk, the 

unknown affinities and activities that are fit. However, the data carry various units that also appear 

in the fit parameters. S is measured in units of background-subtracted median YFP, Li
0 in units of 
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ng/mL, and Aj
0 and Bk

0 in relative expression units from RT-qPCR abundance normalized to a 

housekeeping gene. The fit parameters units depend on these values in the following way:  

𝑇𝑖𝑗𝑘[=] 𝐴𝑗 

𝐾𝑖𝑗𝑘[=]
1

𝐿𝑖 𝐴𝑗
 

𝜖𝑖𝑗𝑘[=] 
𝑆

𝐴𝑗
 

The implicit units in the fit parameters influenced the parameter fitting in the following two ways. 

First, any global transform of S, Li
0, Aj

0, or Bk
0 affects absolute parameter values to reflect the 

change in units, but does not affect the overall fit. Therefore, for convenience, all values of S, Aj
0, 

or Bk
0 were normalized to a maximum of 1, dividing by the maximum YFP or relative expression 

value, respectively, across all four cell lines. Second, the lack of meaningful units for the Kijk and 

εijk parameters made it difficult to define biologically-reasonable constraints on the absolute values 

of these parameters. In principle, the values of Kijk and εijk may take any nonnegative value, but 

they cannot physically vary over an arbitrary number of orders of magnitude. Therefore, Kijk and 

εijk were bounded within six orders of magnitude. To find reasonable upper and lower bounds, a 

subset of the data was fit with strictly positive Kijk and εijk values, which used a method similar to 

the one described below but did not constrain parameters and produced dozens of equivalently 

good solutions. These sets of solutions showed most best fit parameter values for Kijk and εijk 

ranged between 10-4 and 102 when S and receptor expression were normalized between 0 and 

1.  

A final consideration in model fitting was the nature of RT-qPCR measurements, where different 

gene targets are amplified with different probe sets with different efficiencies. These values 

introduce significantly larger error than Li
0, which is directly controlled, and S, which is a median 

across hundreds of cells. At the high Ct values of these relatively low abundance receptors, 

estimates of the same level of expression could vary as much as 10-fold, assuming a 10% 

difference of efficiency amplified over 25 cycles. As relative receptor levels are crucial in the 

model, a rescaling parameter, bounded by a 10-fold increase or decrease, was added for each 

receptor, to reflect the uncertainty of the RT-qPCR estimate of gene expression. Thus, the values 

passed to the model are instead: 

𝐴𝑗
0 = 𝜌𝑗𝐴𝑗

0,𝑞𝑃𝐶𝑅 

𝐵𝑘
0 = 𝜌𝑘𝐵𝑘

0,𝑞𝑃𝐶𝑅 

where 𝐴𝑗
0,𝑞𝑃𝐶𝑅and 𝐵𝑘

0,𝑞𝑃𝐶𝑅 are total receptor expression measured by RT-qPCR and 𝜌𝑗and 𝜌𝑘are 

their respective rescaling parameters. To fit Kijk and εijk, we used SciPy’s least squares function 

to minimize the error between observed and model-predicted S, when Li
0, Aj

0, and Bk
0 were 

specified and Kijk, εijk, ⍴j, and ⍴k freely varied over the ranges described above. Each parameter 

fitting run was initiated with a distinct, randomly-chosen initial condition and resulted in an equal 

number of distinct solutions, each with some total error. Filtering out solutions whose error 

changed the type, rather than strength, of pairwise interactions between ligands, we identified a 
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set of 22 solutions that most closely matched the data’s qualitative behavior (Figure S8B). The 

values for the fit parameters shown in Figure S8D-J are reported in Table S5. 
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Supplemental Information Titles and Legends 

 

Figure S1: Quantitative dose-responses reveal individual ligand differences.  

(A) NMuMG reporter cells include a stably-integrated BMP response element driving 

expression of Histone 2B-mCitrine (H2B-YFP). 

(B) Flow cytometry data (YFP channel) for a BMP7 dose response in the NMuMG reporter 

cell line shows concentration-dependent increase in YFP. Colors shaded from gray to 

purple indicate increasing concentrations of BMP7, plotted in C. 

(C) Medians of YFP distributions in B show BMP7 dose response, plotted as a function of 

BMP7 concentrations, which are colored by the same scheme as in B. Black line shows 

Hill fit of this single biological replicate. Black dots are responses at concentrations not 

shown in panel B, but acquired in the same manner. 

(D) Dose responses for ten BMP ligands in the reporter line vary in slope, EC50, and saturating 

activity. Dots represent three biological repeats, and lines indicate the best fits to Hill 

functions.  

(E) EC50 values from best fit Hill functions for all activating ligands vary continuously over two 

orders of magnitude. Parameters for GDF5, GDF6, GDF7, whose weak responses do not 

resemble Hill fits, were omitted.  
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(F) Hill coefficients for activating ligands vary over a small range.  

(G) Relative Ligand Strength (RLS, saturating ligand activity normalized to the strongest 

ligand’s saturating activity) values show into weak, medium, and strong activation levels.  
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Figure S2: Interaction Coefficient (IC) classifies the range of pairwise interactions 

observed in simulations and experiments. 

(A) The Interaction Coefficient (IC) is computed by a discontinuous, piecewise formula 

corresponding to four regimes of possible pairwise response. These four regimes 

(synergy, additivity, antagonism, suppression) are defined by the magnitude of pairwise 

response relative to the individual responses (i.e. f(A+B) relative to f(A) and f(B)). 
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(B) Variety of theoretical measurements produced by a mathematical model of BMP signaling 

can be ordered and classified by IC. Top row shows theoretical pathway activation by 

ligand ratios ranging from pure Ligand A to pure Ligand B. Colors indicate low (blue) and 

high (yellow) values. Bottom row shows corresponding IC values for each theoretical 

observation, colored by the IC color scale. Theoretical rims are ordered from largest 

negative interaction to largest positive interaction. 

(C) For each ligand pair, one IC value is computed (STAR Methods). Most responses are 

saturated additive (gray), with limited instances of antagonism (red) with GDF5 and GDF7 

and suppression (black) with BMP10. 

(D) Some rims required a different calculation of IC. The automated (open circle) and 

corrected (closed circle) values are shown for the five pairs where these changes were 

made. See STAR Methods for full discussion. 

(E) To be classified as antagonistic, the full set of biological repeats for a rim response must 

not overlap with the distribution of measurements for the stronger individual ligand. 

However, for four of the corrected rims, single outliers created overlap and obscured clear 

differences between the rim and gradient. For example, BMP2 combined with GDF6 

clearly overlaps with the response to BMP2 alone and is additive, while BMP2 and BMP4 

combined with GDF5 and GDF7 appear qualitatively different. Compare inset plots of 

pairwise responses, each of which includes two single ligand responses (plotted in blue 

and green) and the response to the pair (plotted in black). The x-axis corresponds to 

multiple ratios of the two ligands, as in A. To correctly classify these rims, the requirement 

for nonoverlap was neglected. As an example, the IC value for each combination of BMP2 

with GDF5 is shown, where the ratio with the strongest antagonism (marked by an 

asterisk) can be recovered by ignoring the overlap test.  

(F) Similarly, nonoverlap between the spread of points for rim and gradient measurements 

spuriously classifies rims as synergistic, even though very similar looking rims show 

significant overlap. BMP9 combines with GDF5 and GDF6 in qualitatively similar ways, 

despite small differences in whether every point on the rim overlaps with the BMP9 

gradient. Thus, BMP9 with GDF6 was classified as additive, to match BMP9 with GDF5. 

See also Figure 3. 
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Figure S3: Full quantification of BMP signaling in mESC reveals unique ligand properties. 

(A) Dose responses to individual BMPs in mESCs were fit to Hill functions to determine best 

fit parameters and compare ligand behavior. Ligands that do not activate (GDF5, GDF6, 

GDF7) or do not saturate (BMP5, BMP6) were not fit. Relative to NMuMG cells, Hill 

coefficients are much lower for mESCs, and EC50 values are much higher. 

(B) Between NMuMG cells and mESCs, a small percentage of pairwise interactions changed 

significantly, and most changes represented an increase in IC. IC values for all ligand 

pairs activating mESC (closed circle) and NMuMG cells (open circle, as in S2B) are sorted 

by decreasing change in IC values.  

(C) Automatic classification of pairwise interactions failed for three rims, where antagonistic 

and suppressive interactions were misclassified as additive. See STAR Methods for full 

discussion. 

(D) As in Figure S2D, single outliers created overlap between rims and gradients. The 

corrected IC was computed by ignoring the overlap test for these rims. To show 

differences between correctly and incorrectly classified pairs, additive interactions of 

BMP2 with BMP7 or GDF6 are contrasted to BMP2 with BMP10 and GDF5, as well as 

BMP4 with BMP10. 

(E) High-resolution matrices of BMP9 with GDF5 and GDF6 in mESC confirm synergy of 

BMP9 with non-activating ligands. 

See also Figure 4. 
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Figure S4: Knockdown of ACVR1 by shRNA phenocopies siRNA knockdown and alters 

pairwise interactions. 

(A) RT-qPCR of BMP receptor expression shows potency and specificity of shRNA 

knockdown of ACVR1 in parental NMuMG cells. ACVR1-targeting shRNA, or transiently 

transfected with ACVR1-targeting siRNA. shRNA knocks down ACVR1 mRNA more 

potently than and as specifically as siRNA, while non-targeting shRNA appears to affect 

all receptors equally. Expression values are normalized to housekeeping gene 

expression, and then to the average expression of the same gene in NMuMG cells. Dots 

are biological replicates, and bar height is either one biological replicate or geometric 

mean of two replicates. 

(B) Responses to ligand pairs sampled at multiple ratios and overall high concentration for 

same cell types as in A show that non-targeting shRNA has no effect on pairwise 

responses, whereas knocking down ACVR1 by shRNA or siRNA produces similar effects, 

with lower activation by BMP4 and BMP9. 

(C) Automatic classification of pairwise interactions failed for two rims, as shown in D and E. 

See STAR Methods for full discussion. 
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(D) BMP4 combined with BMP9 produced a response with synergistic and antagonistic 

qualities. However, the synergy is a small effect relative to the antagonism, and the rim 

more closely resembles another strong antagonistic interaction, BMP5 with BMP9. The 

corrected classification therefore keeps the IC values corresponding to antagonism. 

(E) BMP2 with BMP10 appeared nearly suppressive, mirroring BMP4 with BMP10. Measuring 

pairwise interactions at a higher BMP2 concentration revealed a strong suppressive 

interaction (F), where heatmap intensity indicates pathway activation, reported by YFP 

median. 

Similarly, sampling responses to BMP9 with GDF5 (G) or with GDF6 (H) confirmed the balance 

interactions between these ligands. X- and y-axes in F-H correspond to logarithmically increasing 

ligand concentration, and colors show pathway activation as reported by YFP median. 

See also Figure 5. 
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Figure S5: Constitutive shRNA expression knocks down BMPR2 and BMPR1A to produce 

receptor-specific effects distinct from ACVR1 knockdown. 
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(A) RT-qPCR of BMP receptor expression shows that constitutively expressed shRNA knocks 

down BMPR2 and BMPR1A potently and relatively specifically, though with small possible 

increases in BMPR1A and ACVR2B, respectively. Expression values are normalized to 

housekeeping gene expression, and then to the average expression of the same gene in 

NMuMG cells. Dots are biological replicates, and bar height is either one biological 

replicate or geometric mean of two replicates. 

(B) Despite apparent perturbations to off-target BMP receptors, shRNA knockdown produces 

qualitatively similar responses to ligand pairs as the more specific siRNA knockdown. 

Pairwise responses are sampled at multiple ratios and overall high concentration in 

NMuMG reporter with BMPR2 and BMPR1A targeted by siRNA and shRNA. 

RLS and IC values change in specific ways following BMPR2 knockdown (closed circle), 

compared to NMuMG cells (open circle). (C) Activation by BMP2 and BMP4 decreases 

significantly, while BMP10 activation is lost. (D) Antagonism of BMP2 and BMP4 with GDFs is 

lost, while all BMP10 interactions become strong antagonism. Changes of IC less than 0.5 are 

not shown. (E) Hierarchical clustering of all IC and RLS values reveals equivalence groups 

following BMPR2 knockdown. (F) Automatic classification of pairwise responses failed for three 

ligand pairs in the BMPR2 knockdown dataset, as shown by the automatic (open circle) and 

corrected (closed circle) measurements. (G) Small nonoverlap between the rim and the gradient 

is classified as a synergistic interaction, analogous to Figure S2E. The IC values for BMP2 

combined BMP5, BMP6, and BMP7 are corrected to 0, to match the qualitatively similar pair, 

BMP4 with BMP5.  

RLS and IC also change following BMPR1A knockdown (closed circle) relative to NMuMG cells 

(open circle). (H) Activation by BMP2 is decreased while activation by BMP4 or BMP10 is lost. (I) 

All interactions of BMP2 and BMP4 with other non-activating ligands become additive, while 

BMP10 strongly antagonizes all activating ligands. Changes of IC less than 0.5 are not shown. 

(J) Hierarchical clustering of all IC and RLS values reveals equivalence groups following BMPR1A 

knockdown. 

See also Figure 6. 
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Figure S6: Ectopic expression of missing BMP receptors increases frequency of additive 

interactions and simplifies ligand equivalence. 

(A) ACVRL1 and BMPR1B mRNA are not detected (n.d.) or orders of magnitude lower than 

housekeeping genes in the original NMuMG reporter. Ectopic expression of ACVRL1 and 

BMPR1B in the NMuMG reporter increases mRNA levels, quantified by RT-qCPR, to 

match already expressed BMP receptors, such as BMPR2. BMPR1B levels were not 

measured (n.m.) in cells ectopically expressing ACVRL1.  

(B) Ectopic ACVRL1 expression (closed circle) in NMuMG cells (open circle) produces small 

changes in RLS, increasing activation by BMP10, and making GDFs weak activators. 

(C) Between ectopic ACVRL1 expression (closed circle) and NMuMG cells (open circle), only 

three ligand pairs show changes in IC larger than 0.5. BMP10’s suppression is lost, while 

GDF7 more weakly antagonizes BMP4.  

(D) Hierarchical clustering of all IC and RLS values reveals equivalence groups following 

ectopic ACVRL1 expression. 

(E) GDF5, GDF6, and GDF7 activate NMuMG cells following ectopic expression of BMPR1B, 

though with different EC50 values (inset, Hill fit parameters) that are not apparent in other 

cell lines where GDFs do not activate. 

(F) Ectopic BMPR1B expression (closed circle) in NMuMG cells (open circle) produces large 

changes in RLS, converting GDFs into strong activators and slightly decreasing BMP10’s 

strength. 

(G) Between ectopic BMPR1B expression (closed circle) and NMuMG cells (open circle), six 

ligand pairs show changes in IC larger than 0.5, and these pairs involve ligands whose 

RLS changed significantly. BMP10’s suppression becomes antagonism, but GDF5, rather 
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than antagonizing BMP10, suppresses it. Otherwise, antagonism by GDFs becomes 

mostly additive. 

(H) Hierarchical clustering of all IC and RLS values reveals equivalence groups following 

ectopic ACVRL1 expression. 

See also Figure 6. 
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Figure S7: BMP ligand sequence differences correlate with global functional differences. 

(A) Alignment of recombinant BMP sequences reveals amino acid variations between BMP 

ligands. 

(B) The correlation of sequence differences with functional differences was computed for 

10,000 random combinations of the seven cell lines. Less than 25% of samples produce 

higher correlation coefficients than merely including each cell line once. The best and 

worst correlations, as well as the correlation for each cell line appearing once, are shown 

in the inset. 

See also Figure 6. 
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Figure S8: In the model, abundance of high- and low-activity complexes depend on 

affinities, receptor context, and ligand conext. 

(A) Of the 6,920 least-squares fits generated, only 352 had fitting error less than 5 while also 

maintaining the two suppression and synergy interactions observed in the NMuMG and 
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ACVR1 knockdown cells. From these, we selected a top 22 fits which had low error and 

sufficiently high strength of suppression and synergy. eCDFs for fitting error, suppression 

strength, and synergy strength are plotted for the 352 solutions which maintained these 

interactions. The black line shows the observed value, while the gray region shows the 

accepted regimes for top fits. The pink dots show the top 22 fits which met all four criteria 

simultaneously. 

(B) In the top 22 fits, affinity (Kijk, upper plot) and activity (εijk, lower plot) parameters varied 

significantly over the allowed range in many cases, such as BMP4’s affinity for BMPR1A-

BMPR2. Others were tightly clustered across all parameter sets, such as BMP9’s affinity 

for ACVR1-BMPR2. The parameter fit shown in Figure 7B is highlighted with black circles. 

(C) Affinity and activity are anti-correlated across all top fits for certain receptor dimers and 

ligands, such as ACVR1-BMPR2. 

(D) A sample parameter set that fits all responses to five ligands in four cell lines are shown 

as lines for each receptor dimer, where color indicates the ligand species and thickness 

corresponds to the logarithm of the parameter value. Ligands bind most receptor dimers 

but activate few. In many cases, affinity and activity are inversely related, as indicated by 

thick arrows above and thin arrows below, or vice versa. 

(E) Abundance of each signaling complex (Tijk) in the mathematical model varies slightly 

between individual ligands when activating NMuMG cells. The possible complexes are 

grouped into sets of six, colored by the contained ligand and with the six bars 

corresponding to the six possible receptor dimers, in the same order as in B and cartooned 

with the same colors on the x-axis. Grayscale background for each bar indicates the 

binned (high > 100, low < 10-2, medium in between; arbitrary εijk units) activity of that 

complex. Ligands form similar amounts of the various complexes, but differ in their ability 

to activate them.  

(F) Strongly activating ligands achieve similar levels of pathway activation by activating 

distinct, ligand-specific receptor dimers, whereas weaker ligands activate fewer receptor 

dimers. Stacked bars show the contribution of various signaling complexes. Left and right 

halves of each unique bar in the stack are colored to indicate unique pairings of the Type 

I and Type II receptors, respectively.  

(G) Bars indicate the fold change, relative to NMuMG cells, in signaling complex abundance 

following BMPR1A knockdown. Ordering of bars and grayscale background are as in E. 

BMPR1A knockdown indirectly increases abundance of ACVR2B-containing complexes, 

which only BMP7 and BMP9 activate strongly. 

(H) As in D, individual ligands activating the BMPR1A knockdown cell line at saturating 

concentrations utilize different receptor complexes. Unexpectedly, BMP4 and BMP10 

produce lower activity overall, due to the loss of ACVR1-containing complexes that 

produced most of their pathway activation, while BMP7 and BMP9 shift to other ACVR1-

containing complexes. 

(I) The presence of saturating BMP4 introduces additional, BMP4-containing complexes and 

changes complex abundance as receptors are shared between the two ligands. Bars 

indicate the theoretical fold change, relative to ligands signaling alone, in the amount of 

each receptor complex. For each ligand pair, the full set of complexes are split between 

the upper plot (the first ligand of the pair) and lower plot (BMP4, the second ligand of the 
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pair). Ordering of bars and grayscale background are as in E. BMP7 and BMP9 lose some 

activating complexes to BMP4 while also forming new ones, due to their ability to 

promiscuously activate all ACVR1-containing complexes. 

(J) Bar height indicates the theoretical contribution of each ligand to overall activation by the 

ligand pair. Consistent with the effects of competition, overall pathway activation is 

reduced when BMP4 is combined with BMP10, increased when combined with GDF5, but 

stays the same, due to sharing of active complexes, when combined with BMP7 and 

BMP9. 

See also Figure 7. 
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