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Abstract 

Due to screening limitations, in directed evolution (DE) of proteins it is rarely feasible to fully evaluate combinatorial 
mutant libraries made by mutagenesis at multiple sites. Instead, DE often involves a single-step greedy optimization 
in which the mutation in the highest-fitness variant identified in each round of single-site mutagenesis is fixed.  
However, because the effects of a mutation can depend on the presence or absence of other mutations, the 
efficiency and effectiveness of a single-step greedy walk is influenced by both the starting variant and the order in 
which beneficial mutations are identified—the process is path-dependent. We recently demonstrated a path-
independent machine learning-assisted approach to directed evolution (MLDE) that allows in silico screening of full 
combinatorial libraries made by simultaneous saturation mutagenesis, thus explicitly capturing the effects of 
cooperative mutations and bypassing the path-dependence that can limit greedy optimization. Here, we thoroughly 
investigate and optimize an MLDE workflow by testing a number of design considerations of the MLDE pipeline. 
Specifically, we (1) test the effects of different encoding strategies on MLDE efficiency, (2) integrate new models 
and a training procedure more amenable to protein engineering tasks, and (3) incorporate training set design 
strategies to avoid information-poor low-fitness protein variants (“holes”) in the training data. When applied to an 
epistatic, hole-filled, four-site combinatorial fitness landscape of protein G domain B1 (GB1), the resulting focused 
training MLDE (ftMLDE) protocol achieved the global fitness maximum up to 92% of the time at a total screening 
burden of 470 variants. In contrast, minimal-screening-burden single-step greedy optimization over the GB1 fitness 
landscape reached the global maximum just 1.2% of the time; ftMLDE matching this minimal screening burden (80 
total variants) achieved the global optimum up to 9.6% of the time with a 49% higher expected maximum fitness 
achieved. To facilitate further development of MLDE, we present the MLDE software package 
(https://github.com/fhalab/MLDE), which is designed for use by protein engineers without computational or machine 
learning expertise. 
 

Introduction 

Enzyme engineering has revolutionized multiple 
industries by making chemical processes cheaper, 
greener, less wasteful, and overall more efficient. 
Enzymes and other proteins are engineered by 
searching the fitness landscape, a surface in a high-
dimensional space that relates a desired function 
(“fitness”) to amino acid sequences.1,2 Exploring this 
landscape is extremely challenging: the search space 
grows exponentially with the number of amino acid 
positions considered, functional proteins are extremely 
rare, and experimental screening of proteins can be 
resource-intensive, with researchers often limited to 
testing a few hundred or thousand variants. Directed 
evolution (DE) can overcome these challenges by 

employing a greedy local search to optimize protein 
fitness.3 In its lowest-screening-burden form (hereafter 
referred to as “traditional DE”), DE starts from a protein 
having some level of the desired function, then iterates 
through rounds of mutation and screening, where in 
each round single mutations are made (e.g. by site 
saturation mutagenesis) to create a library of variants 
and the best variant is identified and fixed; iteration 
continues until a suitable level of improvement is 
achieved (Figure 1A).  

By focusing on single mutations rather than 
combinations of mutations, traditional DE can be used 
to optimize protein fitness with a low screening burden. 
The process is highly effective when the beneficial 
effects of mutations made at different sequence 
positions are additive; however, focusing on single 
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mutants ignores the codependence of mutations (epi-
stasis).4,5 Epistasis is commonly observed, for example, 
between residues close together in an enzyme active 
site or protein binding pocket, where mutations often 
affect function. Epistatic effects can decrease the 
efficiency of DE by altering the shape of the protein 
fitness landscape. Specifically, epistasis can alter 

gradients on the fitness landscape to make the route to 
a global optimum very long,6 or it can introduce local 
optima at which traditional DE can become trapped 
(Figure 1B). Both lower the average fitness that can be 
achieved for a given screening burden. The only way to 
account for epistasis during optimization is to evaluate 
and fix combinations of mutations, bypassing the path-

Figure 1. (A) Directed evolution (DE) by single-mutation greedy walk (“Traditional DE”). In this approach, mutations are fixed 
iteratively by walking up the steepest fitness gradient. (B) Smooth (left) vs rugged (right) fitness landscapes. A smooth fitness 
landscape contains a single fitness maximum, so traditional DE is guaranteed to eventually reach the global optimum, though 
the number of steps needed will depend on the topology of the peak. A rugged fitness landscape contains multiple fitness 
maxima. Traditional DE is only guaranteed to reach a local fitness optimum here; the maximum achieved will depend on the 
starting protein variant and the order in which positions are chosen for mutagenesis and testing. (C) Machine learning-assisted 
directed evolution (MLDE). In this approach, a sample drawn from a multi-site simultaneous saturation mutagenesis 
(“combinatorial”) library at a set of positions is used to train an ensemble of regressors. This ensemble is used to predict the 
best combinations of mutations not seen in the initial draw, which are then tested experimentally. Because the best mutations 
are fixed simultaneously, MLDE operates in a path-independent manner, so the global optimum of a combinatorial space can 
be achieved regardless of the starting point. Once mutations are fixed for a given set of positions, a new set is chosen and the 
procedure is repeated, allowing for larger, more efficient steps through sequence space. The MLDE procedure has many design 
considerations, which are highlighted as questions under each step. (D) The simulation procedure used throughout this study 
to evaluate improvements to the MLDE workflow, with tests performed to evaluate the different design considerations given 
above each step. The simulation procedure is repeated many times using data from the GB1 landscape. The effectiveness of a 
round of simulated MLDE is determined by (1) calculating the normalized discounted cumulative gain (NCDG) over all predictions 
in the simulation and (2) evaluating the mean and max true fitness of the M variants with highest predicted fitness.  
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dependence of traditional DE. Due to limited screening 
capacity, however, this is intractable for most protein 
engineering projects.  

Increasingly, machine learning (ML) is being used 
to ease experimental screening burden by evaluating 
proteins in silico.7–10 Data-driven ML models learn a 
function that approximates the protein fitness 
landscape, and they require little to no physical, 
chemical, or biological knowledge of the problem. Once 
trained, these models are used to predict the fitness of 
previously unseen protein variants, dramatically 
increasing screening capacity and expanding the scope 
of the protein fitness landscape that can be explored. 
We recently demonstrated a machine learning-assisted 
directed evolution (MLDE) strategy for navigation of 
epistatic fitness landscapes that cover a small number 
of amino acid sites.11 MLDE works by training an ML 
model on a small sample (101–102) of variants from a 
multi-site simultaneous saturation mutagenesis 
(“combinatorial”) library, each with an experimentally 
determined fitness; the model is then used to predict the 
fitness of all remaining variants in the combinatorial 
library (104–105), effectively exploring the full 
combinatorial space. Combinations with the highest 
predicted fitness are experimentally evaluated, the best 
combination is fixed, and another round of MLDE is 
started at a new set of positions (Figure 1C). The 
iterative nature of MLDE is identical to that of traditional 
DE, but by evaluating and fixing multiple cooperative 
mutations, MLDE avoids some local fitness traps or 
long paths to the global optimum for each combinatorial 
library.  

Our original MLDE work serves as a baseline, as it 
did not explore the many design considerations of 
MLDE  (Figure 1C, bold and underlined questions).11 
Two notable considerations are (1) the choice of 
encoding strategy and (2) the handling of low-fitness 
variants in combinatorial libraries. Protein sequences 
must be numerically encoded to be used in ML 
algorithms, and the choice of encoding will affect the 
outcome of learning. In our original implementation, we 
used a one-hot encoding scheme that captures no 
information about the biochemical nature of different 
amino acids. Mutating an amino acid to a similar one (in 
terms of size, charge, etc.) is less likely to significantly 
affect protein fitness than mutating it to a very different 
one, however, and this knowledge can be transferred 
into ML models via the encoding strategy. The 
effectiveness of an ML model is also determined by the 
information content of the data used to train it, and so 
the choice of variants to use for the training stage of 
MLDE is important. Combinatorial libraries tend to be 
enriched in zero- or extremely low-fitness variants, 
particularly in regions critical to protein function like an 
enzyme active site.12–14 These “holes” provide minimal 
information about the topology of the regions of interest 

in a fitness landscape (i.e. they provide no information 
about regions with functioning proteins and no 
information about the extent to which different 
mutations affect fitness) and can bias ML models to be 
more effective at predicting low-fitness variants than 
high-fitness ones, the opposite of our goal. In our 
original implementation, we opted to sample randomly 
from full combinatorial spaces to generate training data 
with high sequence diversity. Because combinatorial 
landscapes tend to be dominated by holes, however, 
this random draw primarily returned sequences with 
extremely low or zero fitness, resulting in training data 
that, despite containing diverse sequences, was 
information-poor. 

In this work, we evaluate various design considera-
tions by simulating MLDE on the empirically deter-
mined four-site combinatorial fitness landscape (total 
theoretical size of 204 = 160,000 protein variants) of 
protein G domain B1 (GB1) (Figure 1D).15 Containing 
multiple fitness peaks (the routes to which are not 
always direct) and heavily populated by zero- and low-
fitness variants (92% have fitness below 1% of that of 
the global maximum), this landscape not only presents 
an ideal testing ground in which to compare the abilities 
of traditional DE and MLDE to navigate epistatic fitness 
landscapes, but also serves to test the ability of ML 
methods to navigate hole-filled regions of protein fitness 
landscapes. We begin by evaluating a number of 
alternate encoding strategies to one-hot, including 
physicochemical encodings and embeddings derived 
from five different natural language processing 
models.16,17 Next, we demonstrate how integration of 
models and training procedures better tailored for 
protein fitness landscapes (in particular 1D convol-
utional neural networks and gradient boosted Tweedie 
regression) into the workflow can improve MLDE 
performance.18–20 We then show the importance of 
reducing uninformative holes in MLDE training sets and 
propose integrating some form of zero-shot prediction 
(i.e. prediction of variant fitness prior to data collection) 
into the MLDE pipeline to generate more informative 
training data. We call the general strategy of running 
MLDE with training sets designed to avoid holes 
“focused training MLDE” (ftMLDE). As a demonstration, 
we show how predicted ΔΔG of protein stability upon 
mutation can be used as an effective zero-shot 
predictor of GB1 fitness, and then use this predictor to 
generate information-rich training data. Using this 
training data, we finally test the effect of training set size 
on the outcome of ftMLDE, finding that our improved 
procedure achieved the GB1 global maximum up to 77-
fold more frequently than traditional DE.  

To summarize our contributions, this paper des-
cribes significant improvements to our original method. 
It also highlights (1) the importance of considering the 
unique attributes of fitness landscapes when applying 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.04.408955doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.408955
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

ML to protein engineering problems and (2) how the 
three major paradigms of protein engineering (directed 
evolution, rational design, and, increasingly, machine 
learning) can be combined into a cohesive, highly 
efficient engineering pipeline. To improve access to 
such a pipeline, we introduce the MLDE software 
package, made available on the Arnold Lab GitHub 
(https://github.com/fhalab/MLDE). Designed to be acc-
essible to non-ML and non-computational experts, this 
repository contains Python scripts that allow execution 
of MLDE on arbitrary combinatorial fitness landscapes, 
thus enabling wet-lab application. 

 
Results and Discussion 

MLDE Procedure and Simulated MLDE 
MLDE attempts to learn a function that maps 

protein sequence to protein fitness for a multi-site 
simultaneous saturation mutagenesis (“combinatorial”) 
library. The procedure begins with measuring the 
fitness values of a small subsample from the library. 
These labeled variants are then used to train an 
ensemble of models with varied architectures (models 
come from scikit-learn,21 Keras, and XGBoost18 (Supp-
orting Information: Inbuilt Models)), employing k-fold 
cross validation to measure a validation error for each 
model class. Predictions from the top-performing 
trained models (as measured by validation error) are 
averaged to predict fitness values for the unsampled 
(“unlabeled”) variants. Unlabeled variants are ranked 
according to predicted fitness, and the top M are 
evaluated experimentally to identify the best-performing 
ones (Figure 1C). More detailed information about the 
implementation of MLDE can be found in the supporting 
information (MLDE Programmatic Implementation).  

Throughout this work, we demonstrate improve-
ments to MLDE through simulation on the empirically 
determined four-site combinatorial fitness landscape of 
protein G domain B1 (GB1).15 Originally reported by Wu 
et al., this landscape consists of 149,361 experimentally 
determined fitness measurements for 160,000 possible 
variants, where fitness is defined by both the ability of 
the protein to fold and the ability of the protein to bind 
antibody IgG-Fc. To our knowledge, this landscape is 
the only published one of its kind (i.e. the only almost-
complete combinatorial landscape where fitness is 
reported as scalar values amenable to training the 
regression models used in MLDE). By imputing the 
fitness of the remaining 10,639 variants and evaluating 
the resultant complete landscape, Wu et al. identified 
30 local optima, the routes to which were often indirect 
(e.g. if a local optimum was four mutations away from a 
starting point, it would take more than four mutations to 
travel by single-mutation greedy walk from the starting 
point to the optimum). Epistatic interactions are thus 
highly prevalent in the GB1 landscape. The goal of 

simulated MLDE is to mimic what we would expect had 
we performed thousands of MLDE experiments on 
GB1. Thus, to ensure that our simulations match what 
would have been observed experimentally had our 
simulated experiments actually been performed, we do 
not use the variants with imputed fitness in this study.  

A round of simulated MLDE begins with generating 
labeled variants (Figure 1D). Here, we draw a small set 
of variants from the GB1 landscape and attach their 
known fitness values—this stage of the simulation is 
analogous to building a combinatorial library, picking 
colonies from an agar plate, then expressing and 
assaying the variants harbored by the colonies. The 
labeled variants are then fed into the MLDE pipeline and 
the average predictions of the top three models (as 
measured by cross-validation error) are used to rank 
the unlabeled variants by predicted fitness. The quality 
of the returned ordering is evaluated using a combin-
ation of metrics, including (1) the ranking metric “norm-
alized discounted cumulative gain” (NDCG) calculated 
over the full ordering of unlabeled data and using the 
true fitness as the gain, (2) the mean fitness of the M-
highest-ranked unlabeled variants, and (3) the max 
fitness of the M-highest-ranked unlabeled variants (Su-
pporting Information: Evaluation Metrics). The NDCG 
score evaluates the predictive performance of a model 
over all unlabeled datapoints, while the mean and max 
fitness of the M-highest-ranked variants evaluate how 
well our process predicts the highest-fitness variants in 
the fitness landscape. Evaluating the M-highest var-
iants is analogous to experimentally constructing and 
characterizing the M protein variants predicted to have 
highest fitness. Whenever reported, mean and max 
fitness are normalized to the highest fitness in the 
unlabeled dataset and so can typically be interpreted as 
a fraction of the global maximum in the GB1 dataset. 

More Informative Encodings Improve MLDE 
Outcome 
 Protein sequences must be numerically encoded to 
be used in ML algorithms. Our previous implementation 
of MLDE used one-hot encoding, an uninformative 
categorical encoding strategy that captures no inform-
ation about amino acid similarities and differences. To 
investigate the effects of more informative encodings, 
we tested physicochemical parameters as well as 
learned embeddings. Physicochemical parameters are 
manually curated indices that describe amino acid 
qualities such as hydrophobicity, volume, mutability, 
etc. In this work, we used the set of physicochemical 
parameters developed by Georgiev, which is a low-
dimensional representation of over 500 amino acid 
indices from the AAIndex database.16,22,23 Learned em-
beddings are vectors of continuous values extracted 
from machine learning models trained on unlabeled 
data, and they capture similarities and differences 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.04.408955doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.408955
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

between specific amino acids as well as contextual 
information about amino acid positions in a protein. 
Here, we evaluate the effectiveness of the learned 
protein embeddings generated by all fully unsupervised 
models made available by Rao et al.17 These include 
embeddings generated from models with a transformer 
architecture (“Transformer”),24 three separate LSTM-
based architectures (“LSTM”, “UniRep”, and 
“Bepler”),25–27 and a dilated residual network architect-
ure (“ResNet”),28 all trained on ~30 million protein sequ-
ences from the Pfam database.29  

To compare the different encoding strategies, we 
performed 2000 rounds of simulated MLDE, using 384 
randomly drawn GB1 variants as training data in each 
simulation (Methods: Encoding Comparison Simul-
ations). For the sake of computational efficiency, only 
XGBoost and Keras models were used in the ensemble 
of MLDE models for the largest embeddings (LSTM and 
UniRep). Importantly, the training data and cross-
validation indices were kept the same for each encoding 
strategy in each simulation, allowing for pairwise 
comparison of simulation results. As shown in Figure 2, 
more informative encodings generally achieved a 
higher NDCG than one-hot. These results become 
more apparent when making pairwise comparisons 
(Supporting Figure S6), with LSTM-derived encodings 
achieving a higher NDCG than one-hot in 97.4% of 
simulations, transformer-derived in 92.1%, UniRep-
derived in 89.6%, Bepler-derived in 79%, ResNet-
derived in 67.15% and Georgiev in 90.4%. For all 
encodings except UniRep-derived, those that yielded a 
higher NDCG than one-hot also had a higher expected 
mean fitness in the top 96 predictions (Supporting 
Figures S7–S12 for pairwise comparisons). This pattern 
did not hold for the expected max fitness in the top 96 
predictions, with only Georgiev encodings yielding a 
higher expected max fitness than one-hot.  

It is not immediately clear why the improved NDCG 
using learned embeddings did not translate to a higher 
maximum fitness achieved. These results may align, 
however, with the recent observations of Biswas et al., 
who proposed that embeddings generated from unsup-
ervised models guide a subsequent supervised search 
away from sequences the unsupervised model deems 
to be “unnatural”.30 In other words, when using embe-
ddings derived from an unsupervised model for protein 
encoding, sequences different from those used to train 
that model are less likely to be predicted as fit; stronger 
evidence must be presented by the labeled data to 
identify fit “unnatural” sequences. Indeed, from homol-
ogy analysis (Supporting Information: EVcouplings Alig-
nments), we see that the sequence motifs defining the 
highest-fitness GB1 variants are not well represented in 
related sequences, and so could be considered “un-
natural” by the unsupervised models used to generate 
the encodings used here. Assuming this rationale to be 

true, we would thus expect MLDE using embeddings to 
be more effective at identifying the highest-fitness 
variants on protein fitness landscapes where those 
variants are more similar to “natural” sequences. Using 
embeddings from larger models trained on more seq-
uences such as that provided by Rives et al. could also 
potentially improve the effectiveness of embeddings by 
including more motifs in the model training data and 
allowing the model to learn a richer representation of 
protein sequences.31,32 Further investigation into the 
generalizability of embeddings for use in predicting 
beneficial “unnatural” mutations (both in MLDE and 

Figure 2. Results of simulated MLDE comparing seven 
different encoding strategies. Note that, for the sake of 
computational efficiency, only nine models were in the 
ensemble of models trained for simulations using the large 
UniRep- and LSTM-derived encodings, while 22 were in the 
ensemble for all others. (A) The normalized discounted 
cumulative gain (NDCG) of the 2000 simulations for each 
encoding shown as violin plots. The dashed line is the median 
NDCG from simulations using one-hot encoding. More 
informative encodings tend to outperform one-hot encoding in 
terms of NDCG. (B) Expectation values over the 2000 
simulations for the NDCG, maximum fitness of the top 96 
predictions, and mean fitness of the top 96 predictions. The 
LSTM achieves the highest expected NDCG and mean 
fitness of the top 96 predictions while physicochemical 
encoding (Georgiev) achieves the highest expected 
maximum fitness. Encoding using physicochemical 
parameters was the only strategy tested that achieved a 
higher expected maximum fitness than one-hot encoding. 
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otherwise) appears to be emerging as an important 
direction for future work. 

Models/Training Procedures More Tailored for 
Combinatorial Fitness Landscapes Improve 
MLDE Predictive Performance 

Many of the learned embeddings used in the 
previous section are extremely high-dimensional, with 
the largest (LSTM) describing each combination with 
8192 features (Supporting Information: Encoding 
Preparation). To better handle the high dimensionality 
introduced by learned embeddings, in our new 
implementation of MLDE we added two 1D convol-
utional neural network (CNN) architectures to the ens-
emble of models trained (Supporting Information: Inbuilt 
Models). CNNs rely on spatial dependencies of high-
dimensional input data to extract the most relevant high-
level features.33 Most commonly, they are applied to 
image processing tasks, where 2D convolutions are 
used to extract high-level features from local groupings 
of pixels. CNNs can also be applied, however, to 
sequential data such as protein and DNA sequences, 
where 1D convolutions extract high-level features from 
nearby members of the sequence.10,20,34 Indeed, recent 
evidence suggests that 1D CNNs are a particularly 
effective model class for protein engineering.10 For the 
simulations presented in the previous section, we found 
that the 1D CNNs defined in MLDE were particularly 
effective for the highest-dimensional encodings, where 
they were consistently among the top-ranking models in 
terms of cross-validation error during training (Supp-
orting Figures S13–S19, Supporting Table S6).  

In addition to 1D CNN architectures, we also integ-
rated XGBoost models trained with the Tweedie reg-
ression objective to better handle the zero-inflated 
nature of fitness landscapes. To explain, most mut-
ations are detrimental to protein activity, and as more 
mutations are made to a protein the probability that it 
will still fold and function drops off significantly.12 The 
result is that combinatorial fitness landscapes tend to 
be dominated by proteins with zero or extremely low 
fitness,13,14 something that is highlighted by the dis-
tribution of fitness for GB1 (Figure 3A). Gradient-
boosted Tweedie regression was developed to handle 
regression for datasets with zero-inflated labels that 
cannot be monotonically transformed to normality.19,35 
In the simulations discussed in the previous section, the 
ensemble of models trained contained XGBoost models 
with both a linear and tree base model, each trained 
with either the Tweedie regression objective or the 
default root mean squared error objective (four models 
total). Models trained with the Tweedie objective 
consistently achieved a higher NDCG than models 
trained with the default objective regardless of base 
model and encoding (Supporting Figure S20); only 
models with a tree base model consistently showed 

improved max and mean fitness in the top M pred-
ictions, however (Supporting Figures S21–S34).  

The Challenge of Holes in Combinatorial 
Fitness Landscapes and the Importance of 
Informative Training Data 

Diversity within training data is critical to con-
structing an effective machine learning model. Often, 
training set diversity is thought of in terms of exploration 
of the feature space, where limited resources are 
intelligently committed to minimize the amount of 
extrapolation that must be performed when making 
predictions. Equally important, however, is diversity in 
the labels; patterns in the ground truth will not be 
identified if there are no patterns in the training data 
(Figure 3B). The overabundance of “dead” (zero- or 
very low-fitness) variants in combinatorial fitness land-
scapes thus poses an additional challenge beyond that 
discussed in the previous section: a random draw for 
the generation of training data is likely to be populated 
by primarily zero- or extremely low-fitness variants. 
While useful for classifying dead vs functional proteins, 
these “holes” provide no information about the extent to 
which specific combinations of mutations benefit or 
harm fitness, and so have limited utility when training 
the regression models used in MLDE.  

We thus propose a general strategy of running 
MLDE with training sets designed to contain a minimal 
number of holes. In this strategy, which we call “focused 
training MLDE” (ftMLDE), training data is not randomly 
drawn from the full combinatorial landscape (which will 
return primarily holes), but instead drawn from diverse 
regions of sequence space believed to contain fun-
ctional variants. Romero et al. used such an approach 
while building ML models to predict P450 thermo-
stability, where a classifier was used to build a training 
dataset enriched in functional protein variants.14 To 
demonstrate the concept and test the effectiveness of 
ftMLDE, we simulated a series of classifiers that, with 
50% accuracy, could identify variants above fitness 
thresholds of 0.011, 0.034, 0.057, and 0.080 (Methods: 
High-Fitness Simulations). To avoid “cheating” by 
inclusion of the highest-fitness variants in the training 
data, we enforced that our classifiers could never 
recommend variants with fitness greater than 34% of 
the global maximum. We then used these simulated 
classifiers to generate training data enriched in fun-
ctional, but not the fittest, protein variants (Supporting 
Figure S35), which was in turn used to perform sim-
ulated ftMLDE. Performing 2000 rounds of simulated 
ftMLDE using these classifiers (Methods: High-Fitness 
Simulations) for training data generation showed great-
ly improved NDCG, mean fitness achieved in the top 96 
predictions, and max fitness achieved in the top 96 
predictions compared to standard MLDE performed 
with randomly sampled training data (Figure 3C–E, 
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Supporting Table S7). Notably, the difference in 
expected results when comparing the weakest and 
strongest classifiers for training data generation (at 
0.017 ΔNDCG, 0.028 Δmean of top 96, and 0.038 Δmax 
of top 96) was less than the difference in results when 
comparing the weakest classifier and no classifier for 
training data generation (at 0.082 ΔNDCG, 0.132 
Δmean of top 96, 0.161 Δmax of top 96). This result 
suggests that, while achieving a higher mean fitness in 
the training data is beneficial to ftMLDE, the more 
important factor is elimination of holes. In turn, this 
suggests that ftMLDE using even the weakest training 
set design predictors can achieve superior results than 
standard MLDE. 

Predicted ΔΔG of Stabilization for the Design 
of Fitness-Enriched Training Data 

We next wanted to demonstrate a practical 
approach to building training data enriched in higher-
fitness variants, thus allowing a practical demonstration 
of ftMLDE. One way to accomplish this would be to take 
an active learning approach, where a diverse set of 
higher-fitness variants is identified from a round of 
standard MLDE and then used to train models in a 
round of ftMLDE. Indeed, a strategy like this was taken 
by Romero et al. when evolving for improved P450 
thermostability.14 While this active learning approach 
has proven success, it adds an additional round of data 

Figure 3. (A) The distribution of fitness in the GB1 landscape shown as a histogram. Most variants in this epistatic landscape 
have extremely low fitness, and the highest-fitness variants are very rare. (B) A demonstration of the importance of diversity in 
both the labels and features of training data for machine learning. Learning detailed topology is challenging if the labels are not 
representative of it, even if sampled from diverse regions of feature space. Only local topology can reliably be learned if points 
are sampled from a restricted region of feature space. (C) The NDCG values for simulated ftMLDE using training data sampled 
with simulated classifiers of varying strength. Simulated classifiers enforce that at least 50% of training data is from non-zero 
regions of protein space, thus committing limited training resources to regions more likely to contain the highest-fitness protein 
variants. Stronger classifiers enforce a higher mean training fitness. All data is shown as empirical cumulative distribution 
functions (ECDFs); vertical lines on the x-axis give the expectation value of the distribution. (D) The maximum fitness achieved 
for simulated ftMLDE using training data sampled with simulated classifiers of varying strength. (E) The mean fitness of the top 
96 predictions for simulated ftMLDE using training data sampled with simulated classifiers of varying strength.  
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collection to the workflow, which is undesirable. We 
thus chose to investigate zero-shot prediction strategies 
for training set design.  

We define zero-shot prediction strategies as those 
capable of predicting protein fitness without the need for 
further labeled training data collection, and thus they do 
not affect the overall screening burden of ftMLDE. While 
a number of zero-shot strategies exist—ranging from 
scoring protein variants based on evolutionary seque-
nce conservation,36–38 to computational modeling (e.g. 
prediction of ΔΔG upon mutation)39–43 and generative 
modeling,38,44,45 to name a few—the optimal strategy 
will vary by protein.46 For instance, we attempted to 
build multiple sequence alignments (MSAs) to the GB1 
protein sequence by querying the UniRef100 database, 
but found too few homologs to build an MSA with high 
coverage of all mutated positions in the GB1 landscape, 
thus disfavoring the use of evolutionary conservation 
approaches (Supporting Information: EVcouplings Alig-
nments). In contrast, the fitness of GB1 is considered to 
be, at least in part, a function of stability, suggesting that 
approaches like predicted ΔΔG of protein stability upon 
mutation might be more effective.15,47 Indeed, we find a 
correlation between single-mutant fitness data and 
literature GB1 ΔΔG data (|Spearman ρ| = 0.58, Supp-
orting Figure S36A).48 Wu et al. also previously pres-
ented evidence suggesting that predicted ΔΔG could be 
correlated to GB1 fitness.15  
 To test the effectiveness of ΔΔG predictions as a 
zero-shot predictor for GB1 fitness, we used the Triad 
protein design software suite (Protabit, Pasadena, CA, 
USA: https://triad.protabit.com/) with a Rosetta energy 
function to predict the stability of each of the 149,361 
GB1 variants with measured fitness, then calculated a 
predicted ΔΔG of stabilization for each variant relative 
to the parent amino acid sequence (Supporting 
Information: ΔΔG Calculations). Both fixed backbone 
and flexible backbone calculations were performed 
using a previously determined GB1 crystal structure 
(PDB: 2GI9) as a scaffold.49 The predicted ΔΔGs from 
each calculation correlated with literature values of 
experimentally determined ΔΔG values for the single 
mutants, though the fixed backbone calculations were 
more effective (Spearman ρ = 0.61 for fixed backbone, 
Spearman ρ = 0.42 for flexible backbone, Supporting 
Figure S36B–C). Interestingly, despite both approaches 
having predictive power for single mutant ΔΔG, only the 
fixed backbone calculations were effective at identifying 
GB1 variants enriched in fitness when ranking by pred-
icted ΔΔG (|Spearman ρ| = 0.27, Figure 4, Supporting 
Figures S37–S39). If instead, however, the GB1 var-
iants were ranked by root mean squared deviation 
(RMSD) of variant structures produced during flexible 
backbone calculations, those variants with the lowest 
RMSD tended to be enriched in fitness, though not as 

strongly as in the fixed backbone calculations (Supp-
orting Figure S40).  

Structurally conservative mutations are generally 
less likely to disrupt protein function, and so the 
observation that RMSD can be used for zero-shot 
prediction is not entirely surprising. Because fixed 
backbone calculations will tend to heavily penalize 
mutations that would require significant backbone 
movement to stabilize, an interesting question arises 
over the extent to which structural conservation or 
accurate prediction of ΔΔG allows effective fixed back-
bone zero-shot prediction of fitness in GB1. If structural 

Figure 4. Results of zero-shot prediction using fixed 
backbone Triad ΔΔG of protein stability calculations. (A) The 
fitness of all GB1 variants ranked by predicted ΔΔG, where 
lower ΔΔG (and so lower rank) corresponds to a more 
energetically favorable mutation. Blue dots are all individual 
variants while the black line is the sliding median (window size 
= 1000) of fitness. (B) Cumulative fitness metrics for the Triad 
zero-shot predictions. The blue curve gives the percentage of 
variants ranked up to and including a given Triad rank that 
have fitness greater than 0.011 (the cutoff of the weakest 
simulated classifier in Figure 3). The orange curve gives the 
percentage of all “fit” (defined as fitness greater than 0.011) 
variants encompassed in the set up to and including a given 
Triad rank. The dotted line marks the first rank (8545) at which 
the Triad calculations have weaker classification power than 
the weakest simulated classifier in Figure 3. Sets up to the 
ranks after and including this cutoff have weaker classification 
power than the weakest simulated classifier and sets up to 
the ranks before this cutoff have stronger or equal. 
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conservation dominates, it is possible that Triad could 
be used for zero-shot prediction with other comb-
inatorial libraries in proteins where variant fitness is not 
related to stability, particularly when the mutations in 
question are tightly packed together and/or buried in the 
protein core as they are for the GB1 landscape used in 
this study (Supporting Figure S41). Answering this 
question and evaluating the generalizability of fixed 
backbone Triad calculations is beyond the scope of this 
work, but as more fully combinatorial datasets become 
available this question should be investigated in more 
detail. 

Predicted ΔΔG of Stabilization for Training 
Set Design Enables Highly Effective ftMLDE 
on the GB1 Landscape 

As a final test, we evaluated the performance of 
ftMLDE using GB1 training data predicted to be higher 
in fitness by the Triad ΔΔG calculations. To begin, we 
generated training data by randomly sampling 2000 
training sets of 24, 48, and 384 variants from the top 
1600 (1.1%), 3200 (2.1%), 6400 (4.3%), 9600 (6.4%), 
12,800 (8.6%), 16,000 (10.7%), and 32,000 (21.4%) of 
variants as ranked by predicted ΔΔG (21 “Triad training 
conditions” in total, each made up of 2000 training sets); 
completely random training data (i.e. from the full 
landscape) were also drawn so that standard MLDE 
could be performed as a control (three additional 
training conditions). Predictive algorithms (Triad 
calculations included) will tend to predict that similar 
sequences have similar fitness, so sampling from 
different percentiles of the top predictions explores the 
exploration-exploitation tradeoff of using zero-shot 
predictions for training set design. In other words, 
sampling from a larger top percentile of the ranked 
variants allows greater sequence diversity in the 
training data (thus potentially enabling exploration of 
more fitness peaks as depicted in Figure 3B) at the 
expense of confidence that the variants will have non-
zero fitness (Supporting Figure S42). Different sample 
sizes are tested to enable comparison of ftMLDE (and 
standard MLDE) with the most efficient implementation 
of traditional DE. To explain, throughout this work we 
have used 384 training samples with 96 tested 
predictions to evaluate simulations on a scale that 
approximates the typical experimental screening bur-
dens for standard DE approaches.11 In principle, trad-
itional DE could be performed on a four-site library by 
deterministically evaluating all 20 amino acids at each 
position, requiring only 80 measurements for the GB1 
landscape. Due to the cost of synthesizing variants 
individually, this approach is rarely taken, and res-
earchers instead opt to stochastically sample from 
pools of mutants (thus raising the required screening 
burden above 80). However, here we wish to directly 
compare the algorithms of traditional DE and ftMLDE; 

use of 24- and 48-variant training sets (with 56 and 32 
tested predictions, respectively) allows for direct com-
parison of ftMLDE and this most efficient implemen-
tation of traditional DE. 

For each of the 24 training conditions, simulated 
MLDE was performed using each training set (Methods: 
Zero-Shot Simulations). Importantly, after prediction, 
only the top-predicted unsampled combinations that 
could be constructed by recombining combinations in 
the training data were evaluated (e.g. if “AAAA” and 
“CCCC” were the only training examples, then only 
“AAAC”, “AACC”, “CAAA”, etc. could be in the top M 
proteins chosen for fitness evaluation). This approach 
enforces a confidence threshold on our predictions and 
focuses all resources on regions believed to contain the 
highest-fitness protein variants. The distributions of the 
achieved mean and max fitness for the simulations are 
shown in Figure 5 and summary statistics are given in 
Supporting Table S8. Most notably, when using any 
Triad training condition, all simulations at all screening 
burdens achieved both a higher expected maximum 
fitness as well as reached the global fitness optimum at 
a higher rate than traditional DE (Methods: Traditional 
Directed Evolution Simulations); ftMLDE with Triad 
training sets is thus a superior evolution strategy to 
traditional DE on the fitness landscape used here. The 
results when training on 384 samples are particularly 
impressive, with the global maximum achieved 15% of 
the time with training data from the top 1600 Triad-
ranked samples, 92% for the top 3200, 82% for the top 
6400, 77% for the top 9600, 67% for the top 12,800, 
45% for the top 16,000, 30% for the top 32,000, and 
8.8% for pure random sampling. By comparison, 
traditional DE reached the global optimum just 1.2% of 
the time. The difference in these rates highlights the 
importance of balancing exploration and exploitation, 
with the most effective sampling strategy having neither 
the highest-fitness training data nor the most sequence-
diverse training data (Supporting Figure S42).   

MLDE Software Enables Wet-Lab Application 
To facilitate further development of MLDE, as well 

as to allow for its practical wet-lab application, we de-
veloped the MLDE software package, available on the 
Arnold Lab GitHub (https://github.com/fhalab/MLDE). 
This repository contains Python scripts for (1) 
generating any of the encodings presented in this work 
for any combinatorial library and (2) performing MLDE 
as described in this work using any encoding strategy 
(used in this work or otherwise). The software package 
was designed for use by non-computational and non-
ML experts and can be executed with a simple 
command line call—all that is required for execution is 
a fasta file with the parent protein sequence and a csv 
file of combination-fitness data for training. 
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Conclusion 

We have demonstrated a series of improvements to 
MLDE that, all together, make it a more efficient process 
than the lowest-possible-screening-burden form of DE 
for navigating an epistatic, hole-filled, combinatorial 
protein fitness landscape. While incorporation of more 
informative encodings and models/regression strat-

egies more amenable to combinatorial protein fitness 
landscapes proved beneficial to MLDE outcome, by far 
the most significant improvement came from training 
set design strategies. Specifically, we show that a 
focused training MLDE (ftMLDE) strategy that uses 
some type of predictor to avoid uninformative ex-
tremely-low-fitness variants in the training data is more 
capable than standard MLDE at identifying the most-fit 

Figure 5. The results of simulated ftMLDE using training data generated from Triad zero-shot predictions shown as violin plots. 
Different colors distinguish sampling strategies (e.g. “Triad, 6400” means that training data was generated by randomly sampling 
from the top 6400 variants as predicted by Triad zero-shot calculations); different x-axis categories give the screening burden 
for the set of simulations; the large black circles give the expectation values of each distribution. (A) The max fitness achieved 
for the different sampling strategies and screening burdens. The simulated results of traditional DE are given on the far left in 
grey; the expectation value for traditional DE is given as a solid black line and the median is given as a dotted black line. For an 
equivalent screening burden, ftMLDE outcompetes traditional DE on the GB1 landscape after incorporation of zero-shot learning 
for training data selection; without zero-shot learning (standard MLDE, pink distributions) the results are comparable. (B) The 
mean fitness achieved in the tested predictions for the different sampling strategies and screening burdens.  
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variants in a combinatorial landscape. From simulated 
experiments, we note that the predictor used for training 
set design in ftMLDE does not need to be strong—
ftMLDE with even the weakest simulated classifier 
tested was more effective than standard MLDE—nor 
does it need to be capable of identifying particularly 
high-fitness variants—eliminating holes in the training 
data had a larger effect on outcome than subsequently 
raising training data mean fitness. The ability of the 
predictor to identify diverse sequences, however, is 
important for improving the probability of identifying the 
global maximum of a combinatorial landscape. This 
concept is highlighted when using predicted ΔΔG of 
protein stability as a zero-shot strategy for building 
training sets with functional GB1 variants, where a 
balance between sequence diversity and sequence 
fitness in the training data proved important for max-
imizing ftMLDE effectiveness.  

There is, of course, no guarantee that predicted 
ΔΔG would be effective for other proteins or other 
functions, though we do note evidence that, by favoring 
conformationally conservative mutations, this strategy 
could generalize to other combinatorial libraries. Choo-
sing an optimal training set design strategy will depend 
on the protein, and while we have mainly discussed 
unsupervised zero-shot strategies in this work,36–45 
many alternate strategies can be imagined. For ins-
tance, if a protein scaffold has been used in previous 
protein engineering studies, a crude non-computational 
approach would be to avoid mutations that previously 
destroyed protein function. More robustly, a transfer 
learning approach could be taken, where an ML model 
trained using information from related experiments. 
(e.g. evolution of the same protein for a different task, 
evolution of a different protein for the same task, or 
even data from previous rounds of MLDE at different 
positions) is used to predict the effects of mutations in 
the present experiment.50 Perhaps even more eff-
ectively, fitness information from single-site saturation 
mutagenesis or error-prone PCR random mutagenesis 
libraries could be used to predict the fitness of 
combinations. Indeed, Biswas et al. and Hie et al. each 
recently demonstrated approaches where ML models 
trained on single-site or random mutation data were 
capable of predicting the fitness of combinations of 
those mutations.30,51 The use of Gaussian processes in 
the application of Hie et al. is particularly interesting, as 
it enables use of the upper confidence bound algorithm 
to explicitly balance exploration and exploitation, thus 
providing a more principled way to inject sequence 
diversity into training set design while maintaining high 
fitness.51,52  

Whatever training set design approach is taken, we 
would expect its impact on the outcome of ftMLDE to be 
specific to the shape and makeup of the fitness land-
scape. For instance, on a non-epistatic landscape, min-

imalistic traditional DE will deterministically reach the 
global (and only) fitness maximum; in this case, ftMLDE 
could at best perform as well as traditional DE reg-
ardless of the training set design strategy used (though 
it may still be able to do so with a lower screening 
burden). Similarly, as the number of holes in a 
landscape increases, the probability of a random draw 
returning primarily uninformative zero-fitness variants 
increases, and so implementation of an effective train-
ing set design strategy will have a greater impact. Thus, 
the effectiveness of ftMLDE will vary as a function of the 
shape of the landscape, the number of holes in the 
landscape, and the availability of robust training set 
design strategies. We cannot expect that ftMLDE will 
always outcompete traditional DE. 

Thorough evaluation of the effectiveness of ftMLDE 
will only be possible once more combinatorial land-
scape data beyond that provided by the GB1 landscape 
become available. For now, however, ftMLDE can most 
confidently be used on combinatorial landscapes 
known to be highly epistatic and that either contain few 
holes or else for which confident training set design 
strategies can be employed. The strategies, concepts, 
and technology presented in this work will serve as a 
foundation for further evaluation of the generalizability 
of different encodings, model architectures, regression 
strategies, and training set design strategies for ftMLDE 
on combinatorial fitness landscapes. By achieving the 
GB1 global maximum up to 92% of the time with a  total 
screening burden of 470 protein variants, or up to 9.6% 
of the time with a screening burden of just 80 variants, 
the ftMLDE protocol presented here significantly 
outcompeted both traditional DE—which achieved the 
global optimum just 1.2% of the time—and our original 
implementation—which achieved the global optimum 
8.5% of the time with a screening burden of 570 
variants.11 This work thus presents a significant ad-
vance over our previous publication and is, to the best 
of our knowledge, the first proven example of a machine 
learning approach directly outcompeting minimalistic 
DE. Given the degree to which ftMLDE outcompetes 
traditional DE on the GB1 landscape, we hope for many 
more examples to come.   
 

Methods 

Encoding Comparison Simulations  
 The simulation procedure for comparing encoding 
strategies was designed to enable pairwise comparison 
of simulation results using the different encodings. For 
a given simulation, each of the tested encodings shared 
the same training set (same variant identities) and cross 
validation indices. A random seed was not used for 
model training, however, so there may be some var-
iance introduced by models that rely on randomness for 
training.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.04.408955doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.408955
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

 All encoding comparison simulations were run with 
a randomly drawn training set of 384 variants (drawn 
without replacement) and five-fold cross validation. 
Except for the simulations run with LSTM- and UniRep-
derived encodings, all 22 inbuilt MLDE models were 
trained; due to the computational expense of per-
forming calculations on the very large LSTM- and 
UniRep-derived encodings, only the XGBoost and 
Keras models were run for simulations using them (See 
Supporting Information: Inbuilt Models for architectures 
and default parameter values). Trained models were 
then ranked according to their cross-validation mean 
squared error (MSE) and the predictions of the top three 
were averaged to predict the fitness of the remaining 
148,977 variants (Supporting Information: MLDE Pro-
grammatic Implementation for details on model averag-
ing). The values of NDCG, max achieved fitness, and 
mean achieved fitness reported for this set of sim-
ulations are all based on these predictions. 

High-Fitness Simulations 
 Simulated classifiers have two parameters: “cutoff” 
and “limit”. When used for sampling, 50% of variants 
chosen must have a fitness greater than or equal to the 
value of “cutoff” and 50% must have a fitness below. 
Cutoff values of 0.011, 0.034, 0.057, and 0.080 were 
used to define four different classifiers in this study. 
“Limit” gives the highest allowed fitness value sampled 
from the GB1 dataset. Throughout this study, “limit” was 
set to 0.34 for all simulated classifiers.  

To generate training data using a simulated 
classifier, the GB1 dataset was first filtered to exclude 
all variants with fitness greater than “limit”. The rem-
aining data was then split into two sets: one set had all 
variants with fitness greater than or equal to the 
threshold and the other set had all variants with fitness 
less than the threshold. Equal numbers of samples 
were then drawn at random from the two sets without 
replacement. Training data for the “no classifier” control 
discussed in the results section and presented in Figure 
3C-E (“100% Training Fitness ≥ 0”) was generated by 
sampling at random from the limit-filtered GB1 dataset. 
 For each of the four simulated classifiers and the no 
classifier control, 2000 training sets were generated, 
each containing 384 variants (10,000 training sets of 
384 variants in total). Each training set was then fed into 
the simulated MLDE pipeline using Georgiev param-
eters for variant encoding and 5-fold cross validation. 
Trained models were then ranked according to their 
cross-validation MSE and the predictions of the top 
three were averaged to predict the fitness of the un-
labeled variants. The values of NDCG, max achieved 
fitness, and mean achieved fitness reported for this set 
of simulations are all based on these predictions. 

 

Zero-Shot Simulations 
To generate training data using predicted ΔΔG, the 

GB1 dataset was first ranked by Triad score (from 
lowest to highest predicted ΔΔG). We defined ΔΔG 
such that a lower predicted ΔΔG corresponded to a 
predicted more energetically favorable mutation. Next, 
the top 1600 variants (i.e. the 1600 variants with the 
lowest predicted ΔΔG) were identified, and 2000 
random samples of 384 were drawn at random without 
replacement. This process was repeated for the top-
ranked 3200, 6400, 9600, 12,800, 16,000, and 32,000 
variants, resulting in 14,000 total training sets, each 
containing 384 random samples.  

For the 384-training-sample simulations, each of 
the 14,000 training sets was then fed into the simulated 
MLDE pipeline. For the sake of computational eff-
iciency, only CPU-bound (scikit-learn and XGBoost) 
models were evaluated. All simulations were performed 
using Georgiev parameters for variant encoding and 5-
fold cross validation. Trained models were ranked acc-
ording to their cross-validation MSE and the predictions 
of the top three were averaged to predict the fitness of 
the remaining variants. Only the top-predicted un-
sampled combinations that could be constructed by 
recombining combinations in the training data were 
evaluated, enforcing a confidence threshold on our 
predictions and focusing all resources on regions be-
lieved to contain the highest-fitness protein variants. 
The reported values of max achieved fitness and mean 
achieved fitness reported for this set of simulations are 
all derived from this restricted set of evaluated proteins, 
though the “fitness” value returned is still normalized to 
the full unsampled set. For a given simulation, the 
global maximum is considered to be achieved if it is 
present in either the training data or the evaluated 
predictions. The random controls presented in the 
results and in Figure 5 are derived from the Encoding 
Comparison Simulations when using Georgiev 
encodings, but only evaluating the CPU models and 
employing the same confidence threshold strategy for 
evaluating predictions.  

For the 24- and 48-training-sample simulations, the 
first 24 and 48 variants in each of the full 384-sample 
training sets were used for training, respectively. For 
random controls, the first 24 and 48 variants from the 
full 384-sample training sets used in the Encoding 
Comparison Simulations were used for training. Oth-
erwise, the procedure was the same as for the 384-
training-sample simulations.  

Traditional Directed Evolution Simulations 
 Traditional DE simulations were performed from 
every variant in the GB1 landscape with non-zero 
starting fitness. Zero-fitness variants were omitted from 
these simulations as a researcher would never begin a 
DE study from such a variant. As in the MLDE 
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simulations, variants with imputed fitness in the GB1 
dataset were ignored for these simulations. 

A greedy walk simulation begins with 4 potential 
positions to evaluate. One of these positions is se-
lected, the fitness values of all mutants at this position 
are evaluated, and the best mutation is fixed. In the next 
round, there are three positions to evaluate. One of 
these positions is selected, all mutants are evaluated, 
and the best mutation is fixed again. This process 
continues until all positions have been evaluated; the 
fitness of the best variant identified in the last round is 
returned. The results reported for the greedy walk 
simulations consider all possible paths from all non-
zero-fitness starting variants (with 24 paths per starting 
variant and 119,814 non-zero fitness starting points, 
this is 2,877,216 simulated greedy walks in total).  
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