
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main
Matter, Volume 4
Supplemental Information
Artificial Intelligence and QM/MM

with a Polarizable Reactive Force Field

for Next-Generation Electrocatalysts

Saber Naserifar, Yalu Chen, Soonho Kwon, Hai Xiao, and William A. Goddard III

https://core.ac.uk/display/363148011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Supplemental Experimental Procedures 

1. Developing the vdW parameters of Cu and Au for RexPoN force field  
2. ReQM potential energy plots  
3. Schematic of CO dimerization in explicit solvent 
4. Solvation and minimization of AuNP surface sites in ReQM 
4.1. Water box preparation  
4.2. Surface site insertion in water box 
4.3. Minimization of AuNPs surface sites in ReQM   
5. Neural network based machine learning model   
6. Partition of the data to training, validation, testing sets  
7. The change of RMSE as a function of the training epoch 
8. Description and structure of seven active groups 
9. Supplemental References  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1. Developing the vdW parameters of Cu and Au for RexPoN force field  
To obtain the vdW parameters of Cu, we used the QM interaction energy of a water molecule with the 
Cu(100) surface (see Figure S1B). Here, we first minimized the water molecule on the surface using PBE-
D3 and then scanned the water molecule along the z axis against the Cu surface. Then, the three atomic 
parameters of RexPoN universal nonbonded curve1 were obtained by optimizing against the QM potential 
energy curve. We find the atomic parameters of Cu to be De=0.8089 kcal/mol, Re=2.8985 Å, and L=0.4200. 
The comparison between RexPoN and QM potential energy curves are shown in Figure S1A.  

Similarly, for the vdW parameters of Au, we used the QM interaction energy of a water molecule with the 
Au(100) surface (see Figure S2B). Using the same procedure as for Cu, we find the atomic parameters of 
Au to be De=2.9387 kcal/mol, Re=2.5557 Å, and L=0.2547. The comparison between RexPoN and QM 
potential energy curves are shown in Figure S2A.  

 
Figure S1. Development of vdW parameters for Cu atom. A) Comparison of RexPoN FF and PBE-D3 
potential energy curves for the scan of water molecule against Cu(100) surface. B) the snapshot of the 
system for one of the scan points. The water molecule was scanned along the z axis.    

 
Figure S2. Development of vdW parameters for Au atom. A) Comparison of RexPoN FF and PBE-D3 
potential energy curves for the scan of water molecule against Au(100) surface. B) the snapshot of the 
system for one of the scan points. The water molecule was scanned along the z axis.    

 



 

2. ReQM potential energy plots  
The changes of the potential energies as a function of time for each of the reaction intermediates during 
CO2RR (Figure 2 of the manuscript) are shown in Figure S3. The potential energy changes reasonably 
during the dynamics for all cases with no sudden change in the energies.     

 
Figure S3. Potential energies during NVT dynamics. The change of the potential energy as a function 
of time for each of the reaction intermediates (Figure 2 of the manuscript) during CO2RR.   

 
  



3. Schematic of CO dimerization in explicit solvent 

 
Figure S4. CO dimerization in explicit solvent. The snapshots of A) free CO* reactants and B) coupled 
*OC-CO products during CO dimerization. The CO dimerization is considered as the key step for the high 
C2 selectivity during CO2RR. Here, the Cu atoms are shown in orange, C in grey, H in white, and O in red. 
The hydrogen bonds are shown in as dashed red lines.   

 
4. Solvation and minimization of AuNP surface sites in ReQM 
4.1. Water box preparation 
For the solvation of the AuNPs surface sites we first prepared a water box with 306 molecules at room 
temperature and 1 atm with density of 0.9965 gr/cm3. To control the pressure we used a barostat with a 
relaxation time of 1 ps and to control temperature we used the Nosé-Hoover thermostat with damping time 
of 100 femtosecond (fs)2. We used a flexible model for the water molecules as our ReQM (force field and 
QM) simulations. We used a time step of 1.0 fs. We performed MD simulations in the NVT ensemble for 1 
nanosecond (ns) to fully relax the water molecules at 300 K. The snapshot of the last frame of the 
equilibration is shown in Figure S5.     

 

 
Figure S5. Water box equilibration with RexPoN force field. The snapshot of the water box with 306 
molecules (20x20x22.96 Å3) equilibrated at 300 K for 1 ns. This water box is used for the solvation of the 
AuNP surface sites.   

 

 

 



 

4.2. Surface site insertion in water box   
The equilibrated water box described above was used to solvate 2443 AuNP surface sites to train the neural 
network model. These surface sites were obtained from the work of Chen et al3 , who optimized the position 
of CO and HOCO using  vacuum QM calculations. Each surface complex was inserted in the middle of the 
water box. Next, any water molecule within the 3.0 Å cut off distance was removed from the system to avoid 
close contacts. Then, the water molecules were relaxed with RexPoN FF for 50 ps in NVT ensemble at 300 
K while the surface atoms (Au, CO, and HOCO) were fixed. We used the same time step, thermostat, and 
barostat as in the previous section. The vdW, electrostatics, and hydrogen bonding between the water and 
atoms of the surface are described by RexPoN FF. We used RexPoN FF parameters as described in 
section 4.1 of the manuscript. The vdW parameters of Au (similar to Cu) were obtained by optimizing vdW 
parameters of RexPoN against the PBE-D3 potential energy curve of a water molecule scanned against 
the Au(100) surface (see section S1). After MD, we minimized the last frame to prepare the input structure 
for ReQM minimization. The structure of solvated Au-CO and Au-HOCO sites for two cases are shown in 
Figure S6.   

 

  
Figure S6. Solvation of AuNPs surface sites. The training set structures (1384 Au-CO sites and 1059 
Au-HOCO sites) were solvated with water using ReQM. Two examples are shown here A) HOCO 
intermediate and B) CO adsorbate. Each cluster was inserted at the center of the equilibrated (at 300K) 
water box and water molecules within 3.0 Å of the cluster were removed to avoid close contacts. Then, the 
water molecules were relaxed at 300K while the cluster atoms were fixed. Finally, the coordinates of the 
adsorbents were minimized in ReQM. Here, the Au atoms are shown in yellow, carbon in grey, oxygen in 
red, and hydrogen in white. The atoms of the cluster (Au and adsorbent) are shown with larger spheres for 
better visualization.         

 

4.3. Minimization of AuNP surface sites in ReQM 
The final structure from the previous section was used in ReQM to minimize the coordinates of the CO and 
HOCO molecule on each surface site. Here, the QM region of the ReQM contains Au, adsorbent (CO or 
HOCO), and the water molecules that within 6 Å of the adsorbent. Although, the RexPoN FF describes 
hydrogen bonding between water and adsorbents, we include some water molecule in the QM region to 
allow accurate polarization and charge transfer within the QM region. During the ReQM minimization we 
relaxed only the position of CO or HOCO while other atoms were fixed. We use 0.05 eV/ Å  as the force 
convergence criterion. We used Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm as implemented in 
the ASE package and the force convergence criterion of 0.05 eV/Å for the minimization.  

 

 



 

 

5. Neural Network Based Machine Learning Model   
We used a neural network based machine learning algorithm similar to the work of Chen et al3. We provide 
a brief summary of the neural network model here since more details are provided elsewhere3. For each 
given cluster with N atoms, we compute the interatomic distances (Rij) for N-1 pairs between the Au atoms 
and the central Au atom (cAu). We transfer the computed Rij values to input features using the following 
two-body (C2) and three-body (C3) symmetry functions,  

 

𝐶𝐶2𝑚𝑚,𝑖𝑖 =  ∑ 𝑓𝑓𝑚𝑚�𝑅𝑅𝑖𝑖𝑖𝑖�𝑖𝑖 ,  (1) 

𝐶𝐶3𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 = ∑ 𝑓𝑓𝑚𝑚�𝑅𝑅𝑖𝑖𝑖𝑖�𝑓𝑓𝑚𝑚(𝑅𝑅𝑖𝑖𝑖𝑖)𝑓𝑓𝑚𝑚�𝑅𝑅𝑖𝑖𝑖𝑖�𝑖𝑖𝑖𝑖    (2) 

 

where m, n, and l are the indices of the symmetry functions, i is the index of the surface atom, and j and k 
are the indices of other Au atoms (see Figure S7A). Here, the C2 terms are constructed by summing over 
all Au and cAu pairs while the C3 terms are summed over three body terms that have cAu in one corner 
(see Figure S7C). 𝑓𝑓 is the symmetry function given by a Localized Cosine Piecewise function, 
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where dm and r are the center and width of symmetry function (see Figure S7B).   

In the above model, we implement 12 C2 and 3 C3 symmetry functions, leading to a total number of 39 
input features. We consider that this gives the best balance of dataset size and model complexity. We use 
these features with a fully connected two-layer neural networks having 30 nodes in the first layer and 50 
nodes in the second layer (total of 2801 parameters) to fit two selected physical descriptors: ∆𝐸𝐸𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑚𝑚 and 
∆𝐸𝐸𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑚𝑚 .  

In summary, our model expresses the physical descriptors as a function of two-body and three-body terms 
with the weight and bias parameters w and b. Therefore, we can write the neural network function (FNN) as  

 

𝐸𝐸𝑖𝑖 = 𝐹𝐹𝑁𝑁𝑁𝑁�𝐶𝐶2𝑚𝑚,𝑖𝑖 , 𝐶𝐶3𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖;𝑒𝑒, 𝑏𝑏�  (4) 

 

 

 
 
 



 
 
Figure S7. Transferring geometric features to symmetry functions. A) The surface vector method was 
used to identify surface and bulk atoms for an 8 Å nanocluster model. Here, cAu denotes center atom and 
nAu denotes other atoms in the nanocluster. B) The shape of a localized piecewise cosine symmetry 
function with width of r, center dm, and Rcutoff = 8 Å. C) Representation of C2 and C3 symmetry functions 
given in Equations 1 and 2. The components of this figure are adopted from Chen et al3.     

 
  



6. Partition of the data to training, validation, testing sets  
Table S1. Machine learning data set for solvated CO adsorption energy. Partition of data set to training, 
validation, and testing sets for solvated CO adsorption energy, ∆𝐸𝐸𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑚𝑚. The size of the sets for different 
coordination numbers are set equal to each other to avoid making the model bias toward a specific set. The 
sites within each group have been selected randomly and the sets are independent from each other.   

Data Set Coordination Size  Final RMSE (eV) 

 6 7 8 9   

Training 296 296 296 296 1184 0.0748 

Validation 25 25 25 25 100 0.0758 

Testing  25 25 25 25 100 0.0691 

 

Table S2. Machine learning data set for solvated HOCO formation energy. Partition of data set to 
training, validation, and testing sets for solvated HOCO formation energy, ∆𝐸𝐸𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑚𝑚 . The size of the sets for 
different coordination numbers are set close to each other to avoid making the model bias toward a specific 
set. The sites within each group have been selected randomly and the sets are independent from each 
other.   

Data Set Coordination Size  Final RMSE (eV) 

 6 7 8 9   

Training 224 214 209 212 859 0.0928 

Validation 25 25 25 25 100 0.0969 

Testing  25 25 25 25 100 0.1017 

 

 

  



7. The change of RMSE as a function of the training epoch 

 

 
Figure S8. Convergence of neural network training for ∆𝑬𝑬𝑪𝑪𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔.  The change of the RMSE as a function of 
training epoch for ∆𝐸𝐸𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑚𝑚. The RMSE of validation sets help to avoid overfitting (early-stop). At epoch 11800, 
the training is stopped as RMSE of validation reaches to the minimum value of 0.0758 eV with the RMSE 
of training set at 0.0748 eV.  

 

 
Figure S9. Convergence of neural network training for ∆𝑬𝑬𝑪𝑪𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔. The change of the RMSE as a function of 
training epoch for ∆𝐸𝐸𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑚𝑚. The RMSE of validation sets help to avoid overfitting (early-stop). At epoch 7700, 
the training is stopped as RMSE of validation reaches to the minimum value of 0.0969 eV with the RMSE 
of training set at 0.0928 eV.  



8. Description and structure of seven active groups 
As explained in the manuscript, the top 300 sites (out of 11537) can be classified into seven groups. We 
provide in Figure S10 one representative structure for each group. Chen et al3 explained the structure of 
each group as follows. The center atom in Step111 has Au(111) character, the StepUnder111 has under-
coordinated Au(111) character, Step110 has 110 character, Step311 has 311 character, StepTB has twin 
boundary character, StepUnderTB has under-coordinated twin boundary features but with steps around the 
center atom and SurfaceDefect is the Au(111) surface but with one or two missing atoms around the center 
atom. 

 
Figure S10. Representation of AuNP active groups. A representative structure for each of the seven 
active groups identified in the top 300 sites. The center atom is shown in pink while other atoms in same 
layer are shown in white. The color of atoms for the layer below the center atom is gold, for one layer above 
the center atom is cyan, and for two layers above the center atom is gray. The dashed lines show twin 
boundaries. This figure was adopted from Figure 4 of Chen et al3.   
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