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ABSTRACT
The shape of a neutron star (NS) is closely linked to its internal structure and the equation of state of supranuclear matters. A
rapidly rotating, asymmetric NS in the Milky Way undergoes free precession, making it a potential source for multimessenger
observation. The free precession could manifest in (i) the spectra of continuous gravitational waves (GWs) in the kilohertz (kHz)
band for ground-based GW detectors, and (ii) the timing behaviour and pulse-profile characteristics if the NS is monitored as
a pulsar with radio and/or X-ray telescopes. We extend previous work and investigate in great detail the free precession of a
triaxially deformed NS with analytical and numerical approaches. In particular, its associated continuous GWs and pulse signals
are derived. Explicit examples are illustrated for the continuous GWs, as well as timing residuals in both time and frequency
domains. These results are ready to be used for future multimessenger observation of triaxially deformed freely precessing NSs,
in order to extract scientific implication as much as possible.
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1 IN T RO D U C T I O N

Pulsars are magnetized rotating neutron stars (NSs). Using the so-
called pulsar timing technique, the Hulse-Taylor pulsar provided
the first validation for the existence of gravitational waves (GWs;
Taylor, Fowler & McCulloch 1979). In the new era after the
direct observation of GWs with ground-based laser interferometric
detectors (Aasi et al. 2015; Acernese et al. 2015; Abbott et al. 2016,
2017b, 2019a), pulsars continue to play an important role in the
context of GW astrophysics. They can be perceived as GW sources
radiating continuous GWs, as well as GW detectors in the form of
pulsar timing arrays (Janssen et al. 2015; Perera et al. 2019). In
this work, we are interested in freely precessing, asymmetric NSs,
which can produce both modulated pulse signals and continuous GW
radiations with characteristic features (Zimmermann & Szedenits
1979; Zimmermann 1980; Bisnovatyi-Kogan, Mersov & Sheffer
1990; Jones & Andersson 2001, 2002), and thus become potential
multimessenger sources of great scientific interest.

The most compelling evidence for NS free precession comes from
PSR B1828–11. Timing observation over 13 yr for this isolated pulsar
showed strong Fourier power at periods of about 250, 500, and 1000 d
(Stairs, Lyne & Shemar 2000), which could be an indication for free
precession. Link & Epstein (2001) suggested the period at 500 d as the
precession period of a biaxial NS with a precessing angle of ∼3◦ and
a dipole moment nearly orthogonal to the symmetric axis. They also
interpreted the period at 250 d as a result of the electromagnetic dipole
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torque. Timing data of another pulsar, PSR B1642–03, provided
additional support for the idea of NS free precession (Cordes 1993;
Shabanova, Lyne & Urama 2001). Recently, the Canadian Hydroden
Intensity Mapping Experiment/Fast Radio Bursts (CHIME/FRB)
Collaboration reported the detection of a 16.35 ± 0.15 d periodicity in
the radio burst from FRB 180916.J0158+65 (Amiri et al. 2020). This
periodicity may arise from the free precession of a magnetar (Levin,
Beloborodov & Bransgrove 2020; Zanazzi & Lai 2020). Another
possible evidence of precession comes from oscillations in gamma-
ray burst afterglows. The afterglow may be powered by a long-lived
remnant (Dai & Lu 1998; Zhang et al. 2006), which might be a
millisecond magnetar (Suvorov & Kokkotas 2020). In the early stages
of its life, the magnetar is likely to precess and result in modulation
of X-ray luminosity. Suvorov & Kokkotas (2020) found that the data
of two bursts are highly consistent with precessing oblique rotators.
While more evidence is needed to solidify the phenomenon of NS
free precession, it is nowadays certainly interesting to study it in the
context of GW astrophysics.

The conventional model for NS structure consists of a liquid core
and a thin solid crust. Jones & Andersson (2001) conjectured that the
core of a NS does not participate in the free precession. Assuming the
crust-only precession, they constructed a simple model with a thin
radio beam fixed on the body of a biaxially deformed NS, and they
assumed that the beam is aligned with the dipole moment. The model
was applied to some potential candidates that may be undergoing free
precession (Jones & Andersson 2001). Although our understanding
related to NSs has advanced remarkably (Baym et al. 2018), NS
structure is still unclear and alternative models have already been
proposed. NSs could actually be strange stars if Witten’s conjecture
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Triaxially deformed freely precessing NSs 1827

is correct (Witten 1984), and they could globally be in a solid state
if quarks are condensed in position space (Xu 2003) or momentum
space (Mannarelli, Rajagopal & Sharma 2007), resulting in highly
elastic quadrupole deformations (Owen 2005) and thus large free
precession amplitudes. Therefore, a multimessenger study of freely
precessing NSs would help in understating the equation of state of
cold matter at supranuclear density and distinguish between different
models.

Previous studies dominantly focused on biaxial NSs. In the most
generic case, the deformation of a NS does not need to be biaxial.
A triaxially deformed NS can demonstrate new features in its free
precession. We extend the simple model in Jones & Andersson
(2001) and study the timing residual of a freely precessing triaxial
NS in this work. The internal dissipation from the frictional-type
coupling between the crust and the core may damp the wobble angle
in a relatively short time-scale (Jones & Andersson 2002). As an
illustrative work, we do not consider the damping here, but use
different wobble angles in our calculation, from large ones to small
ones, to display the modulations of spin period and spin period
derivative in both time and frequency domains. The precession
modulates the pulse width as well, which provides a good way
to probe the beam shape of the pulsar radiation (Link & Epstein
2001; Desvignes et al. 2019). We use a simple cone model (Gil,
Gronkowski & Rudnicki 1984; Lorimer & Kramer 2005) to study
the pulse-width modulation of triaxially deformed freely precessing
NSs, and investigate the change of pulse width with different choices
of wobble angles.

From the GW perspectives, precessing NSs have been recognized
as potential sources of continuous GWs for decades (Zimmermann &
Szedenits 1979; Zimmermann 1980; Alpar & Pines 1985). In the new
era of GW astronomy, the detection of GWs from precessing NSs
with ground-based detectors is imminent. Using the Advanced Laser
Interferometer Gravitational-Wave Observatory (LIGO) data from
its first and second observing runs, the search of continuous GWs
at once and twice rotation frequencies from 222 pulsars has been
performed (Abbott et al. 2019b). Stringent upper limits are set on
the GW amplitude, the fiducial ellipticity, and the mass quadrupole
moment via the search at the twice of the rotation frequency. These
results can be used for testing various alternatives to the general
relativity (GR; e.g. Xu, Zhao & Shao 2020).

Zimmermann (1980) treated precessing triaxial NSs as rigid
bodies and derived the quadrupole waveform for them. In addition,
he simplified the waveform assuming a small wobble angle, and
showed that the spectral lines of the continuous GWs are located at
angular frequencies of �r + �p and 2�r, where �r is the rotation
angular frequency, and �p is the free precession angular frequency
of the NS. The first-order spectral lines yield little information about
other physical properties of NSs beyond the rotation and precession
frequencies. Based on Zimmermann (1980), Van Den Broeck (2005)
obtained a third angular frequency at 2(�r + �p) by expanding the
waveform to the second order of the wobble angle. The feasibility
to detect continuous GWs from precessing triaxial NSs was re-
examined, and it is found that the deviation from axisymmetry, the
oblateness, and the wobble angle can be determined if the second-
order line is observed (Van Den Broeck 2005).

Following Zimmermann (1980) and Van Den Broeck (2005),
in this work we use a Newtonian treatment for the precession,
augmented with the GW radiation formalism in GR (Misner,
Thorne & Wheeler 1973). In this problem, the Newtonian treatment
is indeed also valid for strong-field objects like NSs, if the GR
expressions for the integrals of various moments are used (Thorne
1980). Similarly to Van Den Broeck (2005), we expand the GW

Figure 1. The inertial and body coordinate systems for the rigid body.
Uppercase letters, X, Y, and Z, denote the inertial frame coordinates, while
lowercase letters, x1, x2, and x3, denote the coordinates in the body frame.
Three Euler angles, θ , φ, and ψ , are defined as shown.

waveform to the second order of the precessing angle. However,
unlike Van Den Broeck (2005), where a hierarchy for small
parameters is assumed, more generically we treat the deviation from
axisymmetry as a small parameter independent of the wobble angle
in the expansion. Consequently, we obtain three more frequencies
in the continuous GW spectra that are useful for a more complete
extraction of physical information.

The structure of this paper is as follows. In Section 2, we provide
both analytical and numerical solutions for freely precessing triaxial
rigid bodies. Estimations of the oblateness, the non-axisymmetry,
and the wobble angle for elastically deformed NSs are given based
on existing literature. In Section 3, we show the timing residuals and
pulse-width modulations of precessing triaxial NSs. These features
could be identified if the NS is observed as a radio and/or X-ray
pulsar. In Section 4, after briefly reviewing the quadrupole formula
in Zimmermann (1980), we expand the waveform to the second
order assuming a small wobble angle, a small non-axisymmetry,
and a small oblateness. Because of the relaxation in the assumption
about the small quantities, three new spectral lines are obtained with
respect to previous studies. In Section 5, we discuss the extraction
of physical information of NSs from radio signals and continuous
GWs. We briefly summarize our work in Section 6.

2 FR E E PR E C E S S I O N O F T R I A X I A L R I G I D
B O D I E S

In general, the rotation axis of a rigid body does not coincide
with its principal axes. As a consequence, a freely rotating rigid
body precesses around the direction of the total angular momentum
(Landau & Lifshitz 1960). The motion of the body can be described
by three Euler angles, θ , φ, and ψ , and their time derivatives. In
Fig. 1, we denote the coordinates of the inertial reference frame by
uppercase letters, X, Y, and Z, with unit basis vectors êX, êY, and
êZ. The vector êZ is chosen to be in the direction of the angular
momentum of the rigid body, J . We use lowercase letters, x1, x2, and
x3, to denote the coordinates in the body frame, which is attached
on the rigid body. Their unit basis vectors are ê1, ê2, and ê3, chosen
to be parallel to the three individual eigenvectors of the moment of
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inertia tensor. We use I1, I2, and I3 as the diagonal components of the
moment of inertia tensor in the body frame.

For freely precessing rigid bodies, the dynamical equations of
motion in the body frame are (Landau & Lifshitz 1960)

I1ω̇1 − (I2 − I3) ω2ω3 = 0, (1)

I2ω̇2 − (I3 − I1) ω3ω1 = 0, (2)

I3ω̇3 − (I1 − I2) ω1ω2 = 0, (3)

where ω1, ω2, and ω3 represent the angular velocities along ê1,
ê2, and ê3. The dots denote the derivatives with respect to time t.
Considering the kinematics of the rigid body, the evolution of the
three Euler angles can be described by (Landau & Lifshitz 1960)

ω1 = φ̇ sin θ sin ψ + θ̇ cos ψ, (4)

ω2 = φ̇ sin θ cos ψ − θ̇ sin ψ, (5)

ω3 = φ̇ cos θ + ψ̇, (6)

where the Euler angles are defined in Fig. 1.
As the rigid body is torque free, both the kinetic energy,

E = 1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
, (7)

and the angular momentum,

J = (
I 2

1 ω2
1 + I 2

2 ω2
2 + I 2

3 ω2
3

)1/2
, (8)

are conserved. In the following, we assume that the principal
moments of inertia satisfy I1 < I2 < I3. We also assume J2 >

2EI2, which is equivalent to the condition that the tail of the angular
momentum J moves around ê3 along a closed curve in the body
frame (Landau & Lifshitz 1960). Results for other choices can be
obtained by properly relabeling the indices.

The motion of a rigid body described by equations (1)–(6) is an
initial value problem. In principle, one can obtain the evolution of the
orientation of the triaxial rigid body at any time once the initial values
of the three Euler angles and the angular velocities are specified. In
subsequent calculations, we choose the initial values such that at t =
0, one has φ = 0, ψ = π/2, and θ is at its minimum value θmin. The
initial values of the angular velocities in the body frame are denoted
as ω1 = a, ω2 = 0, and ω3 = b at t = 0. These assumptions can
easily be extended to generic cases. Worth to stress that, throughout
the calculation, we have assumed that the moments Ii (i = 1, 2, 3) are
constant and the body undergoes free precession. We have ignored
the damping of the precession due to some physical processes for
NSs (e.g. the fluid dynamics of the NS interior). Now, we discuss the
analytical solution and the numerical method to solve the equations
of motion in equations (1)–(6).

2.1 Analytical solution

The exact analytical solution to equations (1)–(6) for a precessing
triaxial rigid body has been obtained in terms of the elliptic functions
(Landau & Lifshitz 1960; Zimmermann 1980; Whittaker 1988;
Shakura, Postnov & Prokhorov 1998; Van Den Broeck 2005; Akgun,
Link & Wasserman 2006; Lasky & Melatos 2013; Pina 2015). Here
we briefly review the solution according to Landau & Lifshitz (1960)
for readers’ convenience.

The angular velocities in the body frame are

ω1(τ ) = a cn(τ,m), (9)

ω2(τ ) = a

[
I1 (I3 − I1)

I2 (I3 − I2)

]1/2

sn(τ, m), (10)

ω3(τ ) = b dn(τ,m), (11)

where τ is the dimensionless time variable,

τ = t

√
(I3 − I2)

(
J 2 − 2EI1

)
I1I2I3

, (12)

and sn, cn, and dn are the elliptic functions (see e.g. Olver et al.
2010). The parameter m can be expressed as

m = (I2 − I1) I1a
2

(I3 − I2) I3b2
. (13)

The angular velocities in the body frame are periodic with a
period,

T = 4K(m)

b

[
I1I2

(I3 − I1) (I3 − I2)

]1/2

, (14)

where K(m) is the complete elliptic integral of the first kind (Olver
et al. 2010). The period T is the free precession period. If I1 is nearly
equal to I2, the parameter m is close to zero. In this case, the period
T is approximately 2πI1/[ω3(I3 − I1)], which is the well-known free
precession period for a biaxial body.

The Euler angles θ and ψ are also periodic, and can be expressed
as

cos θ = I3b

J
dn(τ,m), (15)

tan ψ =
[

I1 (I3 − I2)

I2 (I3 − I1)

]1/2 cn(τ,m)

sn(τ,m)
. (16)

From the above two equations, one finds that the angle θ has a period
of T/2, while the angle ψ has a period of T. In contrast, the angle φ

is not periodic. It can be represented as a sum of two parts, φ = φ1

+ φ2. The ‘periodic’ part φ1 has a period of T/2, and is defined via

exp [2iφ1(t)] = ϑ4

(
2πt
T

+ iπα, q
)

ϑ4

(
2πt
T

− iπα, q
) , (17)

where ϑ4 is the fourth Jacobi theta function with nome q =
exp [−πK(1 − m)/K(m)]. In equation (17), α is determined via

sn [2iαK(m)] = iI3b

I1a
. (18)

The ‘linear-in-time’ part φ2 is given by

φ2 = 2πt

T1
=

(
J

I1
+ 2πi

T

ϑ ′
4(iπα, q)

ϑ4(iπα, q)

)
t, (19)

where ϑ ′
4(u, q) is the derivative of ϑ4(u, q) with respect to u.1 As

I1 approaches I2, the period T1 in equation (19) approaches 2πI1/J.
Generally, T and T1 are not commensurate with each other, so the
motion of the body is not periodic in the inertia frame. For simplicity,
we define (Zimmermann 1980; Van Den Broeck 2005)

�p ≡ 2π

T
= πb

2K(m)

[
(I3 − I2) (I3 − I1)

I1I2

]1/2

, (20)

1Note that the solution of the Euler angle φ in Landau & Lifshitz
(1960) and Zimmermann (1980) has sign typos when the following
theta function and its derivative (Whittaker 1988) are used as they
claimed. The fourth Jacobi theta function is defined as ϑ4(u, q) = 1 +
2
∑∞

n=1(−1)nqn2
cos(2πnu), and the derivative of ϑ4 with respect to u is

ϑ ′
4(u, q) = 4π

∑∞
n=1 n (−1)n+1qn2

sin(2πnu).
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�r ≡ 2π

T1
− 2π

T
= J

I1
+ 2πi

T

ϑ ′
4(iπα, q)

ϑ4(iπα, q)
− �p (21)

for later use.

2.2 Numerical approach using quaternions

Although the analytical solution given in the above subsection is
exact, the use of it is not intuitive. Here we discuss a numerical
method to integrate the equations of motion. There are two reasons
for the need of a numerical method. First, numerical methods can
avoid the use of the elliptic functions. Second, they can be easily
applied to general equations of motion where precessions are much
involved with torques in consideration. In generic cases with torques,
analytical solutions usually do not exist.

In our numerical calculation, we employ the numerical method
solving three-dimensional rotations through the use of quaternions,
which is a mathematically equivalent formalism to the aforemen-
tioned one using the Euler angles in describing rotations in the three-
dimensional space (Arribas, Elipe & Palacios 2006). The rotation
matrix can be either written in terms of trigonometric functions of
the Euler angles, or expressed by a specific quaternion whose time
evolution is determined by the angular velocity of the rigid body.
In numerical integrations, the latter is preferred because it produces
stable results more efficiently (Arribas et al. 2006).

A quaternion, q = q0 + q1 i + q2 j + q3k, in the quaternion basis,
{1, i, j , k}, is usually denoted as

q = (q0, q) , (22)

with q = (q1, q2, q3) being a three-vector when used in calculating
three-dimensional rotations. The rotation transformation from r to
r ′ is performed via (Coutsias & Romero 2004)

(0, r ′) = q (0, r) q̃

= (
0,
(
q2

0 − q · q
)

r + 2q(q · r) + 2q0q × r
)

= (0,R r) , (23)

where q̃ = (q0, −q) is the conjugate quaternion of q. Note that from
the first to the second line we have used the multiplication rule of
quaternions, and from the second to the third line the usual dot
product and cross product of three vectors are applied. Explicitly, the
rotation matrix R in equation (23) is

R =

⎛
⎜⎜⎝

q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3

⎞
⎟⎟⎠ ,

(24)

which equals the normal Euler rotation matrix. Comparing the
elements of them, we can relate the quaternion q with the Euler
angles through

q0 = cos
θ

2
cos

(
1

2
(φ + ψ)

)
, (25)

q1 = sin
θ

2
cos

(
1

2
(φ − ψ)

)
, (26)

q2 = sin
θ

2
sin

(
1

2
(φ − ψ)

)
, (27)

q3 = cos
θ

2
sin

(
1

2
(φ + ψ)

)
. (28)

Figure 2. Upper panel: the numerically solved time evolution for cosines of
θ , ψ , and φ. Lower panel: absolute error of the numerical results with respect
to the analytical results for cosines displayed in the upper panel. In this plot,
for illustrative purposes we have taken generic values for the rigid body:
I1/I3 = 1/3, I2/I3 = 2/3, and a = b = 1 rad s−1. With these values, we have
a free-precession period T = 6.9 s. The figure contains four free precession
periods.

In addition, the differential equation that governs the time evolution
of the quaternion q can be expressed as (Coutsias & Romero 2004;
Betsch & Siebert 2009)

dq

dt
= 1

2
q (0, ω) = 1

2

⎛⎜⎜⎜⎜⎝
0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

q0

q1

q2

q3

⎞⎟⎟⎟⎟⎠ . (29)

Once the initial orientation of the rigid body is given, one
can translate it into the initial value of the quaternion q using
equations (25)–(28). Together with the initial values of ω1, ω2, and
ω3, equations (1)–(3) and equation (29) can be integrated to obtain
the angular velocities in the body frame and the time evolution of the
quaternion q(t), hence the elements of the rotation matrix R at any
given time. The Euler angles can be recovered by the elements of the
matrix R via

φ = tan−1

(
−R13

R23

)
, (30)

θ = tan−1

(√
1 − R2

33

R33

)
, (31)

ψ = tan−1

(R31

R32

)
, (32)

where Rij (i, j = 1, 2, 3) is the component of the matrix R. In
Fig. 2, we present an explicit example, where the numerical result
and the absolute error relative to the analytical solution are shown.
Without dedicated efforts in obtaining Fig. 2, the numerical accuracy
is already well below a few parts in trillion in this case. Note that this
example is for a very generic case of free precession for a triaxially
deformed rigid body, while the realistic situation for NSs is much
milder as we are to discuss below, thus we expect significantly better
numerical accuracy than what is shown in Fig. 2.
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1830 Y. Gao et al.

2.3 Physical parameters for triaxial NSs

Before closing this section, let us discuss some typical values
for relevant physical parameters of triaxial NSs. To describe the
precession of triaxial NSs, one can define three small parameters out
of I1, I2, I3, a, and b, appearing in the previous equations. They are
usually taken as the oblateness,

ε ≡ I3 − I1

I3
, (33)

the non-axisymmetry,

δ ≡ I2 − I1

I3 − I2
, (34)

and the tangent of the initial wobble angle,

γ ≡ tan θmin = I1a

I3b
. (35)

We first discuss the oblateness due to elastic deformations of NSs.
For a conventional NS with a liquid core and a solid crust, the
oblateness is (Baym & Pines 1971; Jones & Andersson 2001)

εelast = η ε0, (36)

where η is the so-called rigidity parameter (Jones & Andersson
2001), and ε0 is the zero-strain oblateness. The rigidity parameter η is
unity for a perfectly rigid star and zero for a liquid star. By assuming
the shear modulus in the crust to be constant, the rigidity parameter
for a NS with a liquid core can be approximated as (Baym & Pines
1971)

η � 57μVc

10|Eg| � 2.3 × 10−5

(
μ

1030 erg cm−3

)
R4

6 M−2
1.4 , (37)

where μ is the shear modulus of the crust, Vc is the volume of the
crust, and Eg = −3GM2/5R is the gravitational binding energy of
the NS. The notations M1.4 and R6 represent the dimensionless NS
mass M1.4 ≡ M/ (1.4 M	) and the dimensionless NS radius R6 ≡
R/(106 cm). Cutler, Ushomirsky & Link (2003) adopted a relativistic
NS structure and solved for the strain field in the crust that evolves as
the NS spins down. They found that η is smaller than the estimation
in Baym & Pines (1971) by a factor of ∼40. The estimation of the
zero-strain oblateness ε0 is (Cutler et al. 2003; Van Den Broeck
2005)

ε0 � �2
r R

3

GM
= 2.1 × 10−3

(
fr

100 Hz

)2

R3
6M

−1
1.4 , (38)

where fr = �r/2π is the spin frequency of the NS, and �r is defined
in equation (21). Combining equations (36)–(38), we obtain the
oblateness due to the elastic deformation,

εelast � 4.9 × 10−8

(
fr

100 Hz

)2 (
μ

1030 erg cm−3

)
R7

6 M−3
1.4 . (39)

The oblateness for a NS due to elastic deformation is also limited
by the breaking strain σ break. According to Owen (2005), the largest
oblateness is

εmax = 3.4 × 10−7
(σbreak

10−2

) M−2.2
1.4 R4.26

6

1 + 0.7M1.4R
−1
6

. (40)

The value of σ break is uncertain. Early estimations are in the range
from 10−4 to 10−2 (Ruderman et al. 1992). Horowitz & Kadau (2009)
found that σ break is around 0.1 by simulating the crust as Coulomb
solids. Recent semi-analytical lattice studies of Baiko & Chugunov
(2018) showed that σ break is more like to be 0.04. Note that with this
value of σ break, the largest oblateness is about εmax = 8 × 10−7.

Now we turn to the non-axisymmetry. NSs are biaxial when δ

is zero or infinity, and triaxial when δ has a finite value. Because
of the complex evolution and relaxation of the crust after the star’s
birth and during the accretion in the late lifetime (Link, Franco &
Epstein 1998; Shakura et al. 1998; Link 2003; Akgun et al. 2006),
deformed NSs are possible to be triaxial, characterized by finite
values of δ. The magnetic stresses might contribute to the triaxiality
as well (Wasserman 2003). The non-axisymmetry depends on the
evolution and relaxation of the crust and the magnetic stresses, which
are complex, especially during dynamical or explosive processes.
Because of our lack of knowledge about δ, a measurement of it
would be particularly exciting.

As for the wobble angle θ , there is no physical limitation for slowly
rotating NSs. However, for a fast rotating one, as the rotational bulge
of the NS turns larger, more matter needs to be displaced during the
precession, leading to a larger crust strain (Jones & Andersson 2001;
Van Den Broeck 2005). In order to keep the strain below the limit
of σ break, the star can only possess a small wobble angle. Jones &
Andersson (2001) estimated the maximum allowed wobble angle,

θmax ≈ 0.45

(
100 Hz

fr

)2 (σbreak

10−3

)
M1.4R

−3
6 . (41)

The constraint on the wobble angle depends on the rotation frequency
and the breaking strain σ break. For a NS with fr = 100 Hz and σ break =
10−3, the wobble angle is smaller than 0.45 rad. If we take the
breaking strain in the extreme case where σ break = 0.1, the wobble
angle is basically unlimited even for a fast rotating NS at a spin
frequency of fr = 500 Hz.

For the theoretical analysis in subsequent sections, we apply series
expansion for the trigonometric functions of the three Euler angles in
Section 2.1, assuming a small oblateness, a small non-axisymmetry,
and a small wobble angle. The benefit of the perturbative treatment is
the great simplification it brings and the explicit harmonics appearing
in the spectra. As for generic cases when one or more of these
parameters are large, one can always restore back to the exact solution
(or the numerical scheme) for a careful check.

Following Zimmermann (1980) and Van Den Broeck (2005), we
find that practically it is more convenient to use

κ ≡ 1

16

I3

I1

I2 − I1

I3 − I2
(42)

than δ in the expansion. Up to the leading order, κ and δ are related
by κ � δ/16. A constant of 1/16 is included for the convenience
of later computation (Van Den Broeck 2005). The parameter m
in equation (13) is then simplified to m = 16κγ 2. In the series
expansion, different from Van Den Broeck (2005), we treat γ and
κ independently and do not assume any hierarchy between them.
The series expansions of trigonometric functions of the three Euler
angles up to the second order of γ and κ are

cos φ = cos
[
(�r + �p)t

]
, (43)

sin φ = sin
[
(�r + �p)t

]
, (44)

cos θ = 1 − γ 2

2
, (45)

sin θ = γ + 8γ κ sin2
(
�pt

)
, (46)

cos ψ = sin
(
�pt

) [
1 + (8κ + 32κ2) cos2

(
�pt

)]
+ sin

(
�pt

) [
16κ2 cos2

(
�pt

) (
3 cos

(
2�pt

) + 1
)]

, (47)

MNRAS 498, 1826–1838 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/2/1826/5893331 by C
alifornia Institute of Technology user on 03 D

ecem
ber 2020



Triaxially deformed freely precessing NSs 1831

sin ψ = cos
(
�pt

) [
1 − (8κ + 32κ2) sin2

(
�pt

)]
− cos

(
�pt

) [
96κ2 sin2

(
�pt

)
cos2

(
�pt

)]
. (48)

In subsequent sections, we apply the analytical solution in
equations (9)–(19) and above estimation for the oblateness, the
non-axisymmetry, and the wobble angle to investigate the timing
behaviour and the GW radiation of precessing triaxial NSs. Note
that the internal, fluid-dynamical mechanisms that might reorient the
NS over time are not included in the calculation. They should exist in
general, but depend on the equation of state of NSs (see e.g. Xu 2003,
for solid strange stars). In addition, the magnetic field evolution or
pulsation will lead to time-dependent changes in the oblateness and
the non-axisymmetry as well.

The braking torques (Goldreich 1970) and the gravitational radi-
ation reaction (Cutler & Jones 2001) are also omitted for simplicity,
which will make the spin frequency decrease and change the wobble
angle. For very young and/or highly magnetized NSs, this might
be quite important. Magnetic pressures can significantly adjust the
precession period and lead to a non-zero time derivative for the
free precession angular frequency, �̇p, because the oblateness might
evolve rapidly and the NS spins down much faster due to large
spin-down torques (Levin et al. 2020; Suvorov & Kokkotas 2020;
Zanazzi & Lai 2020). For some systems, the braking torques and the
gravitational radiation reaction may become important over long
time-scales. The details are beyond the scope of this paper and
deserve further investigation.

3 MODULATED TIMING AND PULSE SIGNA LS

If a triaxially deformed freely precessing NS is observed as a pulsar,
the free precession will introduce characteristic modulations on the
timing and pulse signals. These modulations might be revealed by
radio and/or X-ray observations. In Section 3.1, we discuss the phase
modulations of precessing triaxial NSs and show the residuals of
spin period and spin period derivative for different initial values of
the wobble angle. In Section 3.2, the pulse-width modulations for
different initial values of the wobble angle are displayed.

3.1 Phase modulation

Following Jones & Andersson (2001), we assume for simplicity that
the pulsar beam is in the same direction as the magnetic dipole
moment m̂. Once the dipole moment sweeps through the plane
defined by the line of sight and the spin angular momentum, a
pulse can be observed. In Fig. 3, we show the geometry of a freely
precessing triaxial NS. We denote the polar angle between êZ and m̂

as �. We denote the azimuthal angle between êX and the projection
of m̂ on the X–Y plane as �. It is related to the Euler angles via
(Jones & Andersson 2001)

� = φ − π

2
+ arctan

(
cos ψ sin χ

sin θ cos χ − sin ψ sin χ cos θ

)
, (49)

where χ is the magnetic inclination angle between ê3 and m̂.
The time derivative of � is the instantaneous spin angular

frequency of the NS. Its time-averaged value corresponds to the
mean spin angular frequency obtained in the observation. Note that
for a precessing triaxial NS, all of the three Euler angles change with
time. Especially, the wobble angle varies in a range from its minimum
value θmin to the maximum value θmax. We discuss separately the two
situations for θmin > χ and θmax < χ to obtain the timing residual of
the precessing NS.

Figure 3. Geometry of a freely precessing triaxial pulsar. The observer is
in the X–Z plane. The dipole moment is denoted as m̂, and the dashed line
m̂′ represents the dipole moment when it sweeps through the X–Z plane,
namely the moment when the observer can see the pulse. We denote the angle
between êZ and m̂ as �, and the angle between ê3 and m̂ (i.e. the magnetic
inclination angle) as χ .

(i) When θmin > χ , the time-averaged spin frequency of the NS
is φ̇. Therefore, the precession-induced phase residual is (Jones &
Andersson 2001)

�� = � −
(
φ − π

2

)
= arctan

(
cos ψ sin χ

sin θ cos χ − sin ψ sin χ cos θ

)
.

(50)

(ii) When θmax < χ , the time-averaged spin frequency is φ̇ + ψ̇ ,
and the precession-induced phase residual is (Jones & Andersson
2001)

�� = � − (φ + ψ)

= arctan

[
(cos θ − 1) sin ψ sin χ − sin θ cos χ

cos ψ sin χ + (cos θ sin ψ sin χ − sin θ cos χ ) tan ψ

]
.

(51)

The precession-induced residuals of the spin period, P, and the spin
period derivative, Ṗ , can be calculated using the time derivatives of
the precession-induced phase residual,

�P = −P 2
0

2π
��̇, (52)

�Ṗ = −P 2
0

2π
��̈, (53)

where P0 is the mean spin period of the NS. Substituting the time-
evolving Euler angles into equations (50)–(53), one can obtain the
modulations of the spin period and the spin period derivative for
different choices of parameters.

In Figs 4 and 5, we respectively present examples for cases of a
large wobble angle where θmin > χ , and a small wobble angle where
θmax � χ . In the calculation, we take the magnetic inclination angle
χ = π/6, the mean spin period P0 = 0.01 s, and we make use of
equation (39) to estimate the oblateness.

(i) The residuals of the spin period and the spin period derivative
for the case of a large wobble angle are displayed in the upper panel
of Fig. 4. The Fourier transformation of the spin period residual is
shown in the lower panel of Fig. 4. The spectrum shows strong peaks
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1832 Y. Gao et al.

Figure 4. Upper panel: precession-induced residuals of the spin period and
the spin period derivative for a large wobble angle where θmin > χ . Lower
panel: the Fourier amplitude for the spin period residual. In this figure, we
have chosen the magnetic inclination angle χ = π/6, the oblateness ε =
4.9 × 10−8, the non-axisymmetry parameter δ = 0.1, and a wobble angle
in the range θ ∈ (0.79, 0.84). With these parameters, we have T1 = 0.010 s,
and a free precession period T = 3.1 × 105 s.

at frequencies n �p/2π, where n is a positive integer number and �p

(�2.0 × 10−5 s−1) is the free precession angular frequency defined
in equation (20).

(ii) For the small wobble angle limit where θmax � χ , we display
the residuals of the spin period and the spin period derivative in the
upper panel of Fig. 5. We also take the Fourier transformation of
the spin period residual, whose amplitude is shown in the lower
panel of Fig. 5. Notice that a logarithmic scale is used for the
Fourier amplitude. Compared to the case of a large wobble angle,
the harmonics at n�p/2π (n ≥ 2) are much weaker than the line at
�p/2π (now, �p � 3.0 × 10−5 s−1) in the case of a small wobble
angle. In the small wobble angle limit, the precession-induced spin
phase residual can be approximated as (Jones & Andersson 2001;
Link & Epstein 2001)

�� = − sin θ cot χ cos ψ − 1

4
sin2 θ (1 + 2 cot2 χ ) sin 2ψ. (54)

Applying the series expansion of the Euler angles in equations (43)–
(48) and using equation (51), the spin period residual is given by

�P ≈ P 2
0

2π
�pγ (8κ + 1) cot χ cos

(
�pt

)
+ P 2

0

4π
�pγ

2
(
1 + 2 cot2 χ

)
cos

(
2�pt

)
. (55)

Figure 5. Upper panel: precession-induced residuals of the spin period and
the spin period derivative for a small wobble angle where θmax � χ . Lower
panel: the Fourier amplitude for the spin period residual. In this figure, we
have chosen the same χ , ε, and δ as in Fig. 4, but a small wobble angle in the
range θ ∈ (0.017, 0.018). With these parameters, we have T1 = 0.010 s, and
a free precession period T = 2.1 × 105 s.

It shows that at the second order of the wobble angle, the modulation
of the spin period includes the first and the second harmonics of the
free precession angular frequency �p, corresponding to the first two
peaks in the lower panel of Fig. 5. The third peak comes from higher
order terms that are not included in the approximation. The residual
of the spin period derivative �Ṗ can be obtained by taking the time
derivative of �P, which gives

�Ṗ ≈ −P 2
0

2π
�2

pγ (8κ + 1) cot χ sin
(
�pt

)
− P 2

0

2π
�2

pγ
2
(
1 + 2 cot2 χ

)
sin

(
2�pt

)
. (56)

When κ = 0, equations (55) and (56) reduce to the corresponding
results for a precessing biaxial NS (Link & Epstein 2001). Note that
we have ignored the intrinsic spin-down of NSs for simplicity in
deriving equations (55) and (56).

3.2 Pulse-width modulation

In order to analyse the pulse-width modulation, we adopt a simple
cone model to describe the radiation of a pulsar. For a more
complicated radiation geometry, our method can be extended as well.
In the cone model, from the geometry in Fig. 6 we have (Gil et al.

MNRAS 498, 1826–1838 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/2/1826/5893331 by C
alifornia Institute of Technology user on 03 D

ecem
ber 2020



Triaxially deformed freely precessing NSs 1833

Figure 6. Geometry of the pulsar emission beam in the cone model (Gil et al.
1984; Lorimer & Kramer 2005). The emission is confined in a cone with an
opening angle ρ. We denote the impact angle as β, which corresponds to the
closest approach between the line of sight and the magnetic dipole moment.
Pulse signals can be observed once the line of sight sweeps through the cone.
The purple line denotes the sweep of the line of sight, and different cuts of
the line of sight through the cone result in different pulse width W.

1984; Lorimer & Kramer 2005)

sin2

(
W

4

)
= sin2(ρ/2) − sin2(β/2)

sin(� + β) sin �
, (57)

where � is defined in Fig. 3, and W, ρ, and β are defined in Fig. 6.
Equation (57) is not exact for the pulse width because in our

case the angle � changes with time. However, as the spin frequency
is much higher than the free precession frequency, the change in
� during a spin period is negligible, thus this approximation is
good enough for our calculation. In this cone model, the observer
can observe the pulse signal once the line-of-sight enters into the
emission cone. The variation of pulse width can be determined by
the angle � once the inclination angle (denoted as ι) between the
angular momentum and the line of sight to the NS is determined.
The angle � can be expressed through the Euler angles and the
magnetic inclination angle via (Jones & Andersson 2001; Link &
Epstein 2001)

cos � = sin θ sin ψ sin χ + cos θ cos χ. (58)

In Fig. 7, we present examples for the pulse-width modulation with
a large wobble angle where θmin > χ and a small wobble angle where
θmax � χ . The choices of the oblateness, the non-axisymmetry, and
the magnetic inclination angle are the same as in Figs 4 and 5 for
the large and small wobble angles, respectively. The example for
the large wobble angle is displayed in the upper panel of Fig. 7.
For our (extreme) choice of the parameters, the angle between the
angular momentum and the dipole moment changes significantly,
� ∈ (0.26, 1.31). As a consequence, the pulse width changes in
a wide range with W ∈ (0, 2.68). The line-of-sight leaves out of
the emission cone due to the free precession during certain time
ranges, and then the pulse width diminishes to zero accordingly. The
modulation of pulse width in the case of a small wobble angle is
shown in the lower panel of Fig. 7. In this case, the angle � is in the
range of � ∈ (0.51, 0.54), and the change of pulse width is much
milder with W ∈ (2.14, 2.21).

Figure 7. Upper panel: the pulse-width modulation in the case of a large
wobble angle; parameters are the same as in Fig. 4. Lower panel: the pulse-
width modulation for a small wobble angle; parameters are the same as in
Fig. 5. For both cases, we have chosen the inclination angle ι = 5π/6, and the
angular radius of the emission cone ρ = π/6.

In the case of a small wobble angle, applying the series expansions
of θ and ψ in equations (43)–(48), the angle � can be approximated
as

� ≈ χ − sin θ sin ψ ≈ χ − γ cos
(
�pt

)
, (59)

which reduces to the corresponding result for a precessing biaxial
NS (Link & Epstein 2001).

4 C O N T I N U O U S G R AV I TAT I O NA L WAV E S

We discuss generic continuous GWs from a triaxially deformed
freely precessing NS in Section 4.1, and the approximation to
the waveform with small oblateness, a small wobble angle, and
small non-axisymmetry in Section 4.2. The results mainly follow
Zimmermann (1980) and Van Den Broeck (2005), but we make
further extensions by assuming no hierarchy in the three small
parameters.

4.1 Generic waveform

We use the quadrupole approximation for the continuous GWs from
freely precessing triaxial NSs. In the transverse-traceless (TT) gauge,
the metric perturbation is (Misner et al. 1973)

hTT
ij = 2G

rc4

d2Iij

d t2
, (60)

where G is the gravitational constant, c is the speed of light, Iij is the
trace-free part of the moment of inertia tensor, and r is the luminosity
distance from the source to the observer.
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1834 Y. Gao et al.

Figure 8. Gravitational waveforms of h+ (black solid line) and h× (red dotted line) as a function of time at inclination angles (from top to bottom) ι = 0,
π/6, π/3, and π/2. We have chosen the oblateness ε = 0.05, the non-axisymmetry δ = 0.8, the wobble angle in the range θ ∈ (0.76, 1.21), the moment of
inertia I3 = 1045 g cm2, and the distance from the observer to the source r = 10 kpc. With these exaggerated parameters for illustrative purposes, we have
T1 = 0.0099 s, and a free precession period T = 0.50 s. This figure contains half of a free precession period.

Alternatively, the quadrupole formula in equation (60) can be
expressed as (Zimmermann 1980)

hTT
ij = −2G

rc4
RikRj lAkl, (61)

where R is the rotation matrix (equation 24), and Akl is determined
by the body-frame angular velocities and the body-frame moments
of inertia. For example, we have

A11 = 2
(
�2ω

2
2 − �3ω

2
3

)
, (62)

A12 =
(

�1 − �2 + �2
3

I3

)
ω1ω2, (63)

where

�1 ≡ I2 − I3, �2 ≡ I3 − I1, �3 ≡ I1 − I2. (64)

The other components of Akl can be obtained from equations (62)
and (63) by cyclic permutation of the indices.

The waveform in equation (61) is usually decomposed into h+ and
h×,

hTT
ij = h+

(
ê+

)
ij

+ h×
(
ê×

)
ij

, (65)

where h+ and h× represent the radiation of the two independent
polarizations. The polarization tensors, ê+ and ê×, are

ê+ = p̂ ⊗ p̂ − q̂ ⊗ q̂, (66)

ê× = p̂ ⊗ q̂ + q̂ ⊗ p̂, (67)

where p̂ and q̂ are two unit vectors with p̂ × q̂ in the propa-
gation direction of the GWs. We assume that the observer lies
in the Y–Z plane and define the inclination angle ι as the angle
between the direction of the angular momentum êZ and the line
of sight to the NS. In the inertial frame, the unit vectors p̂ and

q̂ are

p̂ = −êY cos ι − êZ sin ι, (68)

q̂ = −êX. (69)

Combining equation (61) and equations (65)–(69), the waveforms
of the two polarizations are (Zimmermann 1980; Van Den Broeck
2005)

h+ = − G

rc4

[
(R2k cos ι + R3k sin ι) (R2l cos ι + R3l sin ι)

−R1kR1l

]
Akl, (70)

h× = −2G

rc4
(R2k cos ι + R3k sin ι)R1lAkl . (71)

In Section 2, we have discussed the time evolution of the angular
velocities in the body frame and the three Euler angles, so we can
obtain h+ and h× at any given time t. In Fig. 8, we plot waveforms of
h+ and h× in the time domain at different inclination angles. Note that
the parameters that we have chosen for the plot are exaggerated for
NSs for illustrative purposes. Physical parameters consistent with the
estimates in Section 2.3 can be easily implemented, but the effects
will be too small for visual inspection. We also show the Fourier
transformation of the waveforms at the inclination angle of ι =
π/6 in Fig. 9. The peaks of the spectra are dominantly at angular
frequencies,

�r + n �p, 2�r + n �p, (72)

where n = 0, ±1, ±2,... is an integer number.
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Triaxially deformed freely precessing NSs 1835

Figure 9. The Fourier amplitudes of h+ and h× for the waveform in the
second panel of Fig. 8 with ι = π/6.

4.2 Waveform for small oblateness, small wobble angle, and
small non-axisymmetry

Following Zimmermann (1980) and Van Den Broeck (2005), we
investigate the waveforms in the limit of small oblateness ε, small
wobble angle θ , and small non-axisymmetry δ. The difference
between our work and the previous work is that, instead of assuming a
hierarchy between κ and γ , namely κ ∼ O

(
γ 2

)
in Van Den Broeck

(2005), we treat γ and κ as small quantities independent to each
other. As discussed in Section 2.3, it is more plausible to assume no
intrinsic hierarchy between κ and γ , in particular when the internal
structure of NSs is still rather uncertain.

The procedure to derive the expansion of the waveform is as
follows. First, we expand Rij and the angular velocities ω1, ω2, and
ω3 to the second order of γ and κ using the expansion of Euler angles
in equations (43)–(48). Second, we substitute the expansion of Rij and
Akl into equations (70) and (71). Third, we retain the GW waveform to
the second order of γ and κ and combine the trigonometric functions
using trigonometric identities. Such an extension with independent
κ and γ parameters gives us more features than what was discovered
before.

With the above procedure, we obtain six components of h+, which
are distinguished by different GW frequencies,

h1
+ = −Gεγ I3b

2 sin 2ι

rc4
cos

[
(�r + �p)t

]
, (73)

h2
+ = −32GεκI3b

2(1 + cos2 ι)

rc4
cos [2�rt] , (74)

h3
+ = 2Gε(64κ2 + γ 2)I3b

2(1 + cos2 ι)

rc4
cos

[
2(�r + �p)t

]
, (75)

h4
+ = −14Gεγ κI3b

2 sin 2ι

rc4
cos

[
(�r − �p)t

]
, (76)

h5
+ = 2Gεγ κI3b

2 sin 2ι

rc4
cos

[
(�r + 3�p)t

]
, (77)

h6
+ = −128Gεκ2I3b

2(1 + cos2 ι)

rc4
cos

[
2(�r − �p)t

]
. (78)

Similarly, we obtain six components of h×,

h1
× = 2Gεγ I3b

2 sin ι

rc4
sin

[
(�r + �p)t

]
, (79)

h2
× = 64GεκI3b

2 cos ι

rc4
sin [2�rt] , (80)

h3
× = −4Gε(64κ2 + γ 2)I3b

2 cos ι

rc4
sin

[
2(�r + �p)t

]
, (81)

h4
× = 28Gεγ κI3b

2 sin ι

rc4
sin

[
(�r − �p)t

]
, (82)

h5
× = −4Gεγ κI3b

2 sin ι

rc4
sin

[
(�r + 3�p)t

]
, (83)

h6
× = 256Gεκ2I3b

2 cos ι

rc4
sin

[
2(�r − �p)t

]
. (84)

Note that the components with frequencies �r + �p and 2�r are
the leading order contributions found in Zimmermann (1980), and
that the one with frequency 2(�r + �p) is the third spectral line in
Van Den Broeck (2005) once κ is treated as O(γ 2).

Below we briefly discuss the waveform for different choices of
γ and κ , and for presentation reasons, we leave their observational
aspects to the next section, together with the possible radio/X-ray
counterparts.

(i) When γ = 0 and κ �= 0, the NS does not precess and GWs are
radiated at twice of the rotation frequency. The radiation is caused
by the asymmetry between I1 and I2.

(ii) When κ = 0 and γ �= 0, GWs are radiated at �r + �p and
2(�r + �p). This is the classical result of a precessing biaxial NS
(Zimmermann & Szedenits 1979).

(iii) When κ �= 0 and γ �= 0, the NS is a precessing triaxial body.
At the first order of γ and κ , continuous GWs are emitted at angular
frequencies of �r + �p and 2�r (Zimmermann 1980). Previously,
Van Den Broeck (2005) treated κ as small as γ 2 and got a new
line. It is at the second order of γ , but still at the first order of κ .
The continuous GWs corresponding to this spectral line have an
angular frequency of 2(�r + �p). Here in our work, we treat κ and
γ independently and expand the waveform to the second order that
includes γ 2, κ2, and γ κ . We find three new spectral lines at angular
frequencies of �r − �p, �r + 3�p, and 2(�r − �p). We consider it
a natural extension of the results in Van Den Broeck (2005).

5 D ISCUSSIONS

The first detection of the coalescence of a binary NS system
opened the avenue for multimessenger astrophysics (Abbott et al.
2017b,c,d). In this paper, we discuss another possibility to achieve
multimessenger observation with electromagnetic and GW detec-
tors, namely the observation of precessing NSs. Multimessenger
astrophysics can be greatly advanced if a precessing NS is observed
as a pulsar via radio and/or X-ray telescopes, and in the meantime,
its continuous GW radiation is detected by the kilohertz (kHz) laser-
interferometric GW detectors, including LIGO (Aasi et al. 2015),
Virgo (Acernese et al. 2015), and Kamioka Gravitational Wave
Detector (KAGRA; Akutsu et al. 2019). As we will see below, this
should surely provide invaluable constraints on the NS structure,
complementary to traditional observables, including masses, radii,
and tidal deformabilities of NSs.

Radio/X-ray signals and continuous GWs from precessing triaxial
NSs will provide valuable information about the wobble angle,
the non-axisymmetry, and the oblateness of the source. These
measurements are ultimately related to the long-standing question on
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the equation of state for supranuclear matters inside NSs (Lattimer &
Prakash 2001). Below we take the case of a small wobble angle as an
example to discuss the extraction of physical properties from such
measurements (Van Den Broeck 2005).

For pulsar signals, the amplitude of the spin period residual in
equation (55) at the frequencies of �p and 2�p can be expressed as

�P1 = 1.6 × 10−10 cot χ

(
P0

0.01 s

)2 (
�p

10−5 rad s−1

)
× (γ + 8κγ ) s, (85)

�P2 = 8.0 × 10−11
(
1 + 2 cot2 χ

)( P0

0.01 s

)2

×
(

�p

10−5 rad s−1

)
γ 2 s, (86)

where �P1 is the amplitude of the spin period residual at the
frequency �p, and �P2 is the amplitude of the spin period residual
at the frequency 2�p.

The elliptic integral of the first kind K(m) approaches π/2 in the
small-wobble-angle and small-non-axisymmetry limit, which leads
to �p → ε �r. Therefore, in such a limiting case, the precession
angular frequency �p can be approximated as (Van Den Broeck
2005)

�p � π

2K(m)
ε �r. (87)

The free precession period T can be directly obtained from the po-
sitions of spectral lines in the frequency domain of timing residuals.
The wobble angle γ , the non-axisymmetry κ , and the magnetic
inclination angle χ cannot be fully determined with two spectral
lines. But if the non-axisymmetry is small enough, the second-order
contribution to the amplitude of the first line can be ignored. Then
the wobble angle γ and the magnetic inclination angle χ can be
determined.

The pulse-width modulations will provide important information
on the beam shape of pulsars. In this work, we used a simple cone
model (Gil et al. 1984) to describe the modulations of pulse width.
We find that up to the second order, the pulse-width modulation is the
same as that in the biaxial case. From the perspective of observation,
if the pulse-width variations from precessing NSs are observed, the
beam shape can be inferred via different cuts by the line of sight
(Link & Epstein 2001).

From above discussions, we find that the inclusion of the non-
axisymmetry of NS only slightly changes the timing residuals and
the pulse width compared with the biaxial results. The reason is that
the parameter m = 16κγ 2 plays an important role in determining
the behaviour of free precession. As m approaches zero, the biaxial
approximation is robust. Even for a large non-axisymmetry, if the
wobble angle γ � 1, the dynamics of the NS still only deviates
from the biaxial one slightly. In the case of large wobble angles
and large non-axisymmetries, the parameter m can be of order unity.
Then the amplitudes of the harmonics are correspondingly large in
timing residuals. In this case, if the angle between the beam and
the line of sight changes during the free precession, the observer
might lose the radiating beam when the line of sight does not cut the
radiating region (see the upper panel of Fig. 7). Some pulsars display
episodes of interpulsing (i.e. a pulse occurring midway between
successive main pulses). The existence of interpulses in a specific
system in principle leads to a constraint on the orientation between
the magnetic and rotation axes (Akgun et al. 2006), which may give

us more information on the pulsar geometries and pulse profiles.
More exploration along this line is worthwhile.

For active pulsars, magnetospheric processes may affect the pulse
signals from precessing NSs and make the interpretation of free
precession complicated. For example, the precession may itself
introduce changes on the emission geometry and the activities of the
magnetosphere (Link & Epstein 2001). Besides, the changes of the
emission height can contribute to pulse arrival time (Link & Epstein
2001). Depending on the properties of the observed pulsars, these
complications need to be considered. Compared to the radio signals,
the X-ray signals are hardly affected by dispersion and scattering
during the propagation. The Neutron star Interior Composition Ex-
plorer (NICER) mission can give phase-resolved X-ray spectroscopy
for pulsars (Bilous et al. 2019; Riley et al. 2019). High-precision X-
ray timing for millisecond pulsars has also been conducted (Deneva
et al. 2019). In the near future, NICER X-ray timing of pulsars may
help to track the precession of NSs better.

As a new observation window, GWs from precessing NSs can
give complementary physical information on these triaxial NSs.
Following Van Den Broeck (2005), we present the procedures to
extract physical parameters from continuous GWs. We take the ‘×’
mode as an example, and the discussion for the ‘+’ mode is similar.
For the ‘×’-polarized GW, the amplitudes of the first-order lines at
�r + �p and 2�r are

A1
× = 1.0 × 10−28 γ sin ι

(
ε

4.9 × 10−8

)(
fr

100 Hz

)2 (10 kpc

r

)
,

(88)

A2
× = 3.3 × 10−27 κ cos ι

(
ε

4.9 × 10−8

)(
fr

100 Hz

)2 (10 kpc

r

)
,

(89)

where we have assumed that the moment of inertia of the NS is
1045 g cm2 and applied equation (39) to estimate the oblateness at
specific rotation frequency for a NS with M = 1.4 M	 and R =
10 km.

If the first-order lines are observed, the rotation frequency and
the free precession frequency can be determined. The inclination
angle ι can be obtained by comparing the amplitudes of different
polarizations for the two first-order lines. Note that the determination
of the inclination angle ι is model dependent with the radio signals
(Jones 2007). The derived ι from continuous GWs is less model
dependent and can help to probe the pulsar geometry (Jones 2007).
In this work, the inclination angle ι is needed to determine the pulse-
width modulations.

The oblateness, non-axisymmetry, and wobble angle are degen-
erate in the first-order waveform. For the ‘×’-polarized GW, the
amplitudes of the second-order lines at 2(�r + �p), �r − �p, �r +
3�p, and 2(�r − �p) are, respectively,

A3
× = −2.1 × 10−28

(
64κ2 + γ 2

)
× cos ι

(
ε

4.9 × 10−8

)(
fr

100 Hz

)2 (10 kpc

r

)
, (90)

A4
× = 1.5 × 10−27 γ κ sin ι

(
ε

4.9 × 10−8

)(
fr

100 Hz

)2

×
(

10 kpc

r

)
, (91)
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A5
× = −2.1 × 10−28 γ κ sin ι

(
ε

4.9 × 10−8

)(
fr

100 Hz

)2

×
(

10 kpc

r

)
, (92)

A6
× = 1.3 × 10−26 κ2 cos ι

(
ε

4.9 × 10−8

)(
fr

100 Hz

)2

×
(

10 kpc

r

)
. (93)

Theoretically, by comparing the amplitudes of the two first-order
lines and one of the second-order lines, the wobble angle γ and the
non-axisymmetry κ can be determined. Then, one can obtain the
parameter m = 16κγ 2 so that the oblateness can be determined using
equation (87).

From the observational perspective, however, these amplitudes
at the second order are very small, and unlikely to be detectable
with the Advanced LIGO/Virgo detectors. Besides, if the coherent
time of the observation is shorter than the free precession period,
the free precession angular frequency �p cannot be resolved in
frequency domain. However, in the optimistic situation when they are
observed with the next-generation GW detectors (e.g. the Einstein
Telescope and Cosmic Explorer; Punturo et al. 2010; Hild et al.
2011; Sathyaprakash et al. 2012; Abbott et al. 2017a), they can be
used to infer the oblateness, non-axisymmetry, and wobble angle of
the star. The distance to the NS and the moment of inertia always
enter the waveform through the combination I3/r. Therefore, we
cannot obtain them independently. By inserting an educated guess
of I3, the distance to the NS can be roughly determined (Van Den
Broeck 2005). Or conversely, if the distance can be determined via
parallax or dispersion measure in pulsar timing data, one can get a
measurement of I3, thus putting new constraints on the equation of
state. Detailed analysis along this line is beyond the scope of this
paper, and we leave it to future study.

6 SU M M A RY

To summarize, in this paper we describe both the analytical and
numerical methods to calculate the dynamical evolution of precessing
triaxial rigid bodies. We discuss the timing residuals and the pulse-
width modulations for precessing triaxial NSs. We also present
concrete examples of the timing residuals and the pulse-width
modulations for large and small wobble angles. For the GWs from
triaxial precessing NSs, after reviewing the general solution of the
quadrupole waveform (Zimmermann 1980) and showing examples
of the waveform in both time and frequency domains, we extend the
work by Van Den Broeck (2005) at the second order by relaxing
the assumption on the small parameters γ and κ . We obtain three
new lines in the continuous GWs spectra, which might be useful for
future continuous GW analysis using the third-generation ground-
based detectors (Abbott et al. 2017a), depending on the distance
of the sources. If the prospects of the multimessenger astrophysics
discussed in this work become reality, numerous information on the
shape of NSs and the equation of state of supranuclear matters will
be obtained, enabling a new frontier for fundamental physics.
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