
Received 5 September 2018; editorial decision 27 November 2018; accepted 4 December 2018; 
published online December 9, 2018.

Presented in part: Experimental Biology 2017, 22–26 April 2017, Chicago, IL, and FASEB: 
Nutritional Immunology, 24–29 June 2018, Leesburg, VA.

aJ. R. and W. D. G. contributed equally to this work.
bN. J. M. and M. A. B. contributed equally to this work.
cPresent affiliation: US Air Force 59th Medical Wing Science and Technology, Lackland AFB, TX
Correspondence: M. A. Beck, PhD, 2303 Michael Hooker Research Center CB 7461, University 

of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (melinda_beck@unc.edu).

The Journal of Infectious Diseases®  2019;219:1652–61

Obesity-Induced Changes in T-Cell Metabolism Are 
Associated With Impaired Memory T-Cell Response to 
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Background. Obesity is an independent risk factor for increased influenza mortality and is associated with impaired memory 
T-cell response, resulting in increased risk of infection. In this study, we investigated if weight loss would restore memory T-cell
response to influenza.

Methods. Male C57BL/6J mice were fed either low-fat or high-fat diet to induce obesity. Once obesity was established, all mice 
received primary infection with influenza X-31. Following a recovery period, we switched half of the obese group to a low-fat diet to 
induce weight loss. Fifteen weeks after diet switch, all mice were given a secondary infection with influenza PR8, and memory T-cell 
function and T-cell metabolism were measured.

Results. Following secondary influenza infection, memory T-cell subsets in the lungs of obese mice were decreased compared 
to lean mice. At the same time, T cells from obese mice were found to have altered cellular metabolism, largely characterized by an 
increase in oxygen consumption. Neither impaired memory T-cell response nor altered T-cell metabolism was reversed with weight 
loss.

Conclusion. Obesity-associated changes in T-cell metabolism are associated with impaired T-cell response to influenza, and are 
not reversed with weight loss.
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The 2009 H1N1 influenza pandemic introduced obese adults 
as a vulnerable population to influenza virus infection. For the 
first time, obesity was recognized as an independent risk factor 
for increased morbidity and mortality [1]. This is concerning, 
as over 37% of the adult US population is obese [2] and seasonal 
influenza infection remains in the top 10 causes of death in the 
United States [3, 4].

Models using diet-induced obese mice and human subjects 
demonstrate impairments in both innate and adaptive immune 
responses following influenza infection or vaccination [5–14]. 
Diet-induced obese mice have increased mortality to primary 
[13] and secondary [5] influenza infections, impaired mainte-
nance of influenza-specific memory T cells [6], and decreased

memory T-cell function [5]. In a human influenza vaccine study, 
peripheral blood mononuclear cells (PBMCs) from both over-
weight and obese adults have decreased CD4+ and CD8+ T-cell 
activation and function [9, 10]. Alarmingly, despite influenza 
vaccination, obese adults have twice the risk of developing influ-
enza or influenza-like illness compared with vaccinated healthy-
weight adults [15]. However, the mechanism by which obesity 
impairs the T-cell response to influenza remains unknown.

T-cell function and metabolism are closely linked and changes
in T-cell metabolism can alter function. In general, naive T 
cells utilize oxidative metabolism to fuel immune surveillance 
whereas activated effector T cells switch to a metabolic pheno-
type characterized by aerobic glycolysis and glutamine oxidation 
essential for effector function, growth, and proliferation [16]. 
The conversion of effector T cells to long-lived memory T cells 
requires a switch back to oxidative metabolism, with fatty acids 
as the predominate fuel source [17, 18]. Given obesity results in 
systemic metabolic dysregulation of glucose usage and fatty acid 
oxidation and storage [19, 20], we hypothesized obesity would 
impair T-cell metabolism, leading to memory T-cell dysfunction 
in response to influenza infection. Furthermore, we hypothesized 
restored systemic metabolism via weight loss would be sufficient 
to recondition T-cell metabolism and thereby improve T-cell 
memory responses to infection.
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We used a mouse model of influenza infection, where lean 
and diet-induced obese mice were inoculated with X-31 influ-
enza virus to generate memory T cells, followed by weight loss 
induced by a diet switch. After significant weight loss and normal-
ization of serum glucose and insulin, mice were reinfected with 
PR8 influenza virus, and T-cell metabolism and function were 
assessed. For the first time, our results demonstrate obese mice 
have impaired T-cell metabolism, concomitant with impaired 
memory T-cell responses to influenza infection. Furthermore, 
we show that despite significant weight loss, formerly obese mice 
retain impaired T-cell metabolism and impairments in memory 
T-cell function upon secondary reinfection. These results sug-
gest that obesity-associated changes in T-cell metabolism may be 
responsible for impaired T-cell memory response to influenza.

MATERIALS AND METHODS

Mice and Diets

C57BL/6J 6-week-old male mice were obtained from The 
Jackson Laboratory and allowed 1 week of acclimation. Mice 

were group housed (3–5 per cage), maintained at ambient 
temperature, and given ad libitum access to food and water. 
Thirty mice were placed on low-fat chow diet (LFD; Harlan 
Laboratories, 2920X) with 60 mice placed on 60% high-fat 
diet (HFD; Research Diets, D12492) for 22 weeks. Diet-
induced obese mice were then split into 2 groups, with 30 
mice remaining on HFD and 30 mice switched to LFD to 
induce weight loss. Mice were maintained on the weight-
switched diets for 15 weeks. All procedures were performed 
in accordance with protocols approved by the Institutional 
Animal Care and Use Committee at the University of North 
Carolina at Chapel Hill.

Influenza Infections

For primary influenza infection, mice were lightly anesthe-
tized with isoflurane and infected intranasally with 30  μL of 
sterile phosphate-buffered saline (PBS) containing 400 egg 
50% infectious dose of live X-31 mouse-adapted recombinant 
influenza virus strain that consists of external hemagglutinin 
and neuraminidase proteins of A/Aichi/2/68 (H3N2) [21] and 

60

55

50

45

40

35

30

25

20

15

65

W
ei

gh
t (

g)

A

250

200

150

100

50

0

Se
ru

m
 g

lu
co

se
 (m

g/
dL

)

B

X31

Diet
switch

PR8

****
****

****

Always lean

Always lean

Always obese

Always obese Always obese

Weight loss

Weight loss

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Weeks on diet

***
***

14

12

10

8

6

2

4

0

Se
ru

m
 in

su
lin

 (μ
g/

L
)

C

Always lean Weight loss

***
*

Figure 1. Weight loss restores serum glucose and insulin levels in formerly obese mice. A, Male, 7-week-old C57BL/6J mice were fed low-fat (n = 30) or high-fat diet 
(n = 60) for 18 weeks. Mice were infected with X-31 influenza virus for generation of memory T cells (4 weeks). Four weeks following primary infection, diets were switched 
and half of the mice receiving high-fat diet (n = 30) were placed on low-fat diet (n = 30). Mice were maintained on switched diet for 15 weeks and then infected with PR8 
influenza virus. Body weights were measured weekly. B, Fasting serum glucose and (C) serum insulin of always lean, always obese, and weight loss mice prior to secondary 
PR8 infection. Each symbol represents data obtained from 1 mouse with mean ± standard deviation (A, B), or mean ± standard error of the mean (C). Two-way ANOVA (A) and 
1-way ANOVA (B, C) with Tukey multiple comparisons were used to compare groups. *P < .05, ***P < .001, ****P < .0001.



the internal proteins of A/Puerto Rico/8/34 (PR8). Mice were 
weighed daily for 14 days to monitor weight loss. For secondary 
infection, mice were infected intranasally with 30 μL of sterile 
PBS containing 0.5 hemagglutination units of PR8 (American 
Type Culture Collection, Manassas, VA), a H1N1 influenza 
virus. Mice were then sacrificed at day 0, 3, and 7 after sec-
ondary infection with PR8.

Lung Viral Titers

Lung viral titers were determined using a modified 50% cell cul-
ture infectious dose protocol using hemagglutination as an end-
point, as previously described [8].

Bronchoalveolar Lavage Total Protein
Lungs were lavaged with Hanks’ Balanced Salt Solution, and the 
collected supernate used for measurement of total protein, as 
previously described [8].

Lung Histopathology
Lungs were removed and inflated with 4% paraformalde-
hyde fixative, paraffin embedded, and stained with H&E. 
Determination of lung pathology was performed as previously 
described [8].

Fasting Glucose and Insulin

One week prior to secondary infection (week 37 on diet), mice 
were fasted for 6 hours, blood was collected by tail nick, and 
glucose levels were measured by glucometer (Freestyle). At time 
of sacrifice, serum was collected and insulin levels were mea-
sured by enzyme-linked immunosorbent assay (Mercodia).

Antibodies and Flow Cytometry

Preparation of lungs and visceral adipose tissues for flow cytom-
etry analysis and staining protocols have been described else-
where [8, 22]. The following antibodies and reagents were used: 
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Figure 2. Weight loss does not reverse visceral adipose tissue (VAT) T-cell infiltration in formerly obese mice. A, Epididymal visceral adipose tissue (VAT) weights and (B) 
stromal vascular fraction (SVF) cell number per gram VAT was determined prior to secondary PR8 infection. C, CD4+ T-cell number and (D) CD8+ T-cell number were determined 
from total SVF cells collected prior to secondary PR8 infection. Each symbol represents data obtained from 1 mouse with mean ± standard deviation (A, B) or mean ± standard 
error of the mean (C, D). One-way ANOVA with Tukey multiple comparisons were used to compare groups. *P < .05, **P < .01, ***P < .001.



Alexa Fluor 700 anti-mouse CD3 (17A2, eBioscience), APC-Cy7 
rat anti-mouse CD4 (GK1.5, BD Pharmingen), PacBlue rat anti-
mouse CD8a (53–6.7, BD Pharmingen), PerCP-Cy5.5 rat anti-
mouse CD11a (2D7, BD Pharmingen), FITC rat anti-mouse 
CD25 (3C7, BD Pharmingen), APC anti-mouse Foxp3 (FJK-
16s, eBioscience), BUV395 hamster anti-mouse CD69 (H1.2F3, 
BD Biosciences), BV480 rat anti-mouse CD103 (M290, BD 
Biosciences), Zombie Yellow Fixable Viability Dye (BioLegend), 
Alexa Fluor anti-mouse 594 CD4 (GK1.5, Biolegend), BUV395 rat 
anti-mouse CD8 (53–6.7, BD Biosciences), FITC rat anti-mouse 
CD62L (MEL-14, BD Biosciences), APC anti-mouse Granzyme 
B (GzA-3G8.5, eBioscience), PE-Cy7 anti-mouse interferon 
gamma (XMG 1.2, eBioscience), Zombie NIR (Biolegend), 
BUV395 rat anti-mouse CD4 (GK1.5, BD Biosciences), BV650 
rat anti-mouse CD8a (53–6.7, BD Biosciences), PerCP-Cy5.5 
rat anti-mouse CD62L (MEL-14, BD Biosciences), PE-Cy7 
anti-mouse CCR7 (4B12, eBioscience), BV421 rat anti-mouse 
CD127 (SB/199, BD Biosciences), BB515 rat anti-mouse CD44 
(IM7, BD Biosciences), and class  II tetramer I-A(b) Influenza 
A  NP 311–325 (QVYSLIRPNENPAHK, courtesy of National 
Institutes of Health Tetramer Core Facility). All samples were 

acquired on a BD LSR II flow cytometer, and data were analyzed 
using FlowJo (Treestar).

Extracellular Acidification Rate and Oxygen Consumption Rate

T cells were isolated from mouse splenocytes on day 0 and 
day 7 after PR8 infection. Cells were isolated using magnetic 
bead negative selection (Miltenyi) for CD4+ and CD8+ T cells 
in MACS buffer (PBS + 0.5% fetal bovine serum + 2 mM eth-
ylenediaminetetraacetic acid). Isolated T cells were counted 
using Bio-Rad TC20 with trypan blue exclusion for viabil-
ity. XFe96 cell culture microplates were treated with Cell-
Tak (Corning) in 0.1 M sodium bicarbonate to allow for cell 
adherence. CD4+ and CD8+ T cells were plated in nonbuffered 
RPMI-1640 with freshly added 10  mM glucose and 2  mM 
glutamine at 150 000 cells per well. Extracellular acidification 
(ECAR) and oxygen consumption rates (OCR) were deter-
mined using the Seahorse XFe96 Flux analyzer (Agilent) at 
37°C, as previously described [23]. OCR and ECAR were nor-
malized to cell number.

150
120
90
60
30
30
20
10
0%

C
D

3+
C

D
8+

IF
N

-γ
+

G
rB

+

/C
D

8+
 T

 c
el

ls

A

Day 0 Day 3 Day 7

**
*

**

*
***

Always lean

Always obese

Weight loss

100

90

60

40

20

0

%
C

D
3+

C
D

8+
C

D
44

+
C

C
R

7–
C

D
62

L
–

/C
D

8+
 T

 c
el

ls
B

Day 3 Day 7

5

4

3

2

1

0%
C

D
3+

C
D

8+
C

D
44

+
C

C
R

7+

C
D

62
L

+
/C

D
8+

 T
 c

el
ls

C

Day 3 Day 7

*

***
***

20

15

10

5

0

%
C

D
3+

C
D

8+
C

D
69

+

C
D

10
3+

/C
D

8+
 T

 c
el

ls

D

Day 3Day 0 Day 7

Figure 3. Obesity, regardless of weight loss, results in dysregulated generation and function of CD8+ memory T-cell populations to influenza infection. Lungs were 
harvested, digested, and homogenized into single-cell suspensions and 1 × 106 cells were stained for CD8+ effector and memory T-cell populations and function by flow 
cytometry. A, Percent CD8+ effector T cells expressing intracellular functional markers granzyme B (GrB) and interferon-gamma (IFN-γ) at days 0, 3, and 7 after PR8 infection 
in always lean, always obese, and weight loss groups (n = 4–5). B, Percent of CD8+ effector memory T-cell populations at days 0, 3, and day 7 after PR8 infection (n = 4–5). 
 C, Percent of CD8+ central memory T cells comparing day 3 and 7 after PR8 infection (n = 4–5). D, Percent of CD8+ tissue-resident memory T-cell populations comparing days 
0, 3, and 7 after PR8 infection (n = 4–5). Each bar represents the mean ± standard error of the mean. One-way ANOVA with Tukey multiple comparisons was used to compare 
groups at each time point. *P < .05, **P < .01, ***P < .001.



Statistical Analysis

Details describing the statistical analysis and sample size of each 
experiment can be found in the figure legends. Potential outli-
ers were assessed using ROUT with Q equal to 1%. All statistical 
analysis was performed using GraphPad Prism 7 for Mac OS X, 
version 7.0c (GraphPad Software, Inc., La Jolla, CA). All data 
were determined as significant by P < .05.

RESULTS

Model to Study the Effects of Weight Loss on Memory T Cells

We utilized a well-established mouse model for both influenza 
infection and obesity [24–26]. Male 7-week-old C57BL/6J mice 
were placed on either a LFD (n = 30) or a 60% HFD (n = 60) for 
18 weeks. As expected, mice fed 60% HFD gained significantly 
more weight than LFD fed mice (Figure 1A).

Following 18 weeks on their respective diets, mice were infected 
with influenza X-31 and maintained their diet for an additional 4 
weeks, allowing T-cell memory to develop in either the lean or obese 
state. After memory generation, half of the obese mice were switched 
to LFD, leaving 30 obese mice remaining on HFD. This created 3 
groups of mice, which we termed: (1) always lean, (2) always obese, 
and (3) weight loss. Mice were maintained on the indicated diets for 

an additional 15 weeks. As shown in Figure 1A, obese mice switched 
from HFD to LFD (weight loss group) had a significant difference in 
final body weight compared to the always obese group.

Always obese mice developed hyperglycemia (Figure 1B) and 
hyperinsulinemia (Figure 1C), indicating systemic insulin resis-
tance as a consequence of obesity. Both always lean and weight 
loss mice had significantly lower fasting serum glucose (Figure 
1B) and serum insulin levels (Figure 1C) compared to always 
obese mice, with no difference between always lean and weight 
loss groups. Thus, mice that were previously obese but then lost 
weight developed a similar systemic metabolic phenotype to the 
always lean mice.

As expected, always obese mice had greater visceral epididy-
mal fat pad mass, which was significantly reduced with weight 
loss, indistinguishable from that of always lean mice (Figure 
2A). Additionally, always obese mice had higher numbers of 
infiltrating cells in the stromal vascular fraction (SVF) of the 
visceral fat pad compared to always lean mice. Interestingly, 
weight loss did not reduce stromal vascular cell numbers, as 
there was no difference between always obese and weight loss 
groups (Figure 2B). Using flow cytometry, we identified T-cell 
populations within the SVF. CD4+ and CD8+ T cells were 
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Figure 4. Obesity, regardless of weight loss, results in dysregulated generation and function of CD4+ memory T-cell populations to influenza infection. Lungs were har-
vested, digested, and homogenized into single-cell suspensions and 1 × 106 cells were stained for CD4+ memory, influenza-specific, and regulatory T-cell populations and 
function by flow cytometry. A, Percent of CD4+ effector memory T-cell populations at day 3 and day 7 postinfection to PR8 (n = 4–5). B, Percent of CD4+ tissue-resident memory 
T cells at days 0, 3, and 7 after PR8 infection (n = 4–5). C, Percent of class II tetramer I-A(b) influenza A NP 311–325 positive cells at days 3 and 7 after PR8 infection (n = 4–5). 
D, Percent of CD4+ CD25+ Foxp3+ regulatory T cells at days 0, 3, and 7 after PR8 infection (n = 4–5). Each bar represents the mean ± standard error of the mean. One-way 
ANOVA with Tukey multiple comparisons was used to compare groups at each time point. *P < .05, **P < .01.



greater in both always obese and weight loss groups compared 
with always lean mice (Figures 2C and 2D). Differences in 
CD4+ T cells expressing interferon-gamma (IFN-γ) and inter-
leukin-17 (Th1 and Th17 cells, respectively) and in CD8+ T cells 
expressing IFN-γ were also found in visceral adipose tissue 
SVF among always lean, always obese, and weight loss groups 
(Supplementary Figure 1A–1C).

Lung pathology, viral titers, and lavage fluid total protein 
(Supplementary Figure 2A–2C) were equivalent among all 3 
groups of mice at day 3 and day 7 postinfection. We have pre-
viously reported differences in lung pathology in lean versus 
obese mice only when using a higher infectious dose of PR8 
that resulted in significant mortality in obese mice [5, 8, 14].

Weight Loss Does Not Restore Memory T-Cell Populations

At 15 weeks after diet switch, all mice were reinfected with 
H1N1 PR8. Primary infection with X-31, followed by secondary 
infection with PR8, provides a model for testing T-cell memory 
responses specifically, as the external hemagglutinin (HA) and 
neuraminidase (NA) proteins of X-31, an H3N2 virus, gener-
ate antibody that cannot neutralize the HA and NA proteins of 
PR8, an H1N1 virus. However, because internal viral proteins 
are the same between the 2 viruses, infection with X-31 will 
generate a robust memory T-cell response that can protect from 
a lethal infection with PR8.

Resolution of primary influenza infection results in approxi-
mately 90%–95% of effector T-cell death, with the remaining T 
cells acquiring a long-lived memory phenotype [21]. We identi-
fied CD8+ T-cell subsets in the lungs of mice at 0, 3, and 7 days 
after PR8 infection in always lean, always obese, and weight 
loss mice (Figure 3A–3D). As shown in our previous studies 
[5, 6], obese mice had a lower percent (Figure 3A) and number 
(Supplementary Figure 3A) of CD8+ T cells expressing IFN-γ 
and Granzyme B (GrB) at both days 3 and 7 after PR8 infection. 
Although mice in the weight loss group were challenged with 
PR8 in a lean state, their memory T-cell populations were gen-
erated with X-31 while in an obese state. Interestingly, weight 
loss did not restore functional CD8+ effector T-cell populations, 
with significantly lower percent of CD8+IFN-γ+GrB+ cells at 
both days 3 and 7 (Figure 3A).

Next, we identified effector and central memory CD8+ T cells: 
Tem (Figure 3B) and Tcm (Figure 3C), respectively. There were 
no differences in percent of Tem between groups at either day 3 
or 7, yet there were significantly lowers numbers of Tem cells in 
both always obese and weight loss mice at day 7 (Supplementary 
Figure 3B). Always obese mice had decreased percentage of CD8+ 
Tcm cells at day 3 postinfection (Figure 3C), and decreased cell 
numbers at day 7 (Supplementary Figure 3C). Importantly, we 
also examined CD8+ resident memory T cells (Trm) in the lung, 
which have recently emerged as a critical population of T cells for 
protection against influenza reinfection. At day 7 postinfection, 
compared to always lean mice, always obese and weight loss mice 

had significantly lower percent CD8+ Trm (Figure 3D) and cell 
number (Supplementary Figure 3D). Thus, weight loss had no 
effect in restoring this critical population.

In addition to examining CD8+ T-cell populations, we also 
identified CD4+ Tem, Trm, and T regulatory cells (Treg). 
Although we found no significant differences in the percent of 
CD4+ Tem among groups at any time point (Figure 4A), there 
were lower absolute numbers in always obese mice at day 7 
(Supplementary Figure 4A). Percent CD4+ Trm were signifi-
cantly lower day 3 postinfection in always obese mice, and were 
not restored with weight loss (Figure 4B). Interestingly, the 
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Figure 5. Altered CD4+ T-cell metabolism is not reversed by weight loss. Spleens 
harvested from mice were used for CD4+ T-cell isolation by negative selection mag-
netic bead separation. Cells were plated at 150 000 cells per well, and extracellular 
flux analysis was performed using the Seahorse XFe96 Flux analyzer at 37°C. A, 
Basal oxygen consumption rate (OCR) as a surrogate for mitochondrial respiration, 
(B) basal extracellular acidification rate (ECAR) as a surrogate for glycolysis, and (C) 
the ratio of oxidation to glycolysis (OCR:ECAR) were determined in CD4+ T cells at
day 0 and day 7 after PR8 infection in always lean, always obese, and weight loss 
mice (n = 5 per group). Data represent mean ± standard error of the mean. One-way 
ANOVA with Tukey multiple comparisons were used at day 0 and day 7 to compare 
differences between groups. *P < .05, **P < .01, ****P < .0001.
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weight loss mice had a significant increase in the percent and 
absolute numbers (Supplementary Figure 4B) of this popula-
tion at day 7.

To measure influenza-specific CD4+ T cells, we utilized a 
class  II influenza tetramer specific for influenza A  NP311-325. 
We found that at day 3 postinfection, always obese mice had 
significantly fewer percentage of influenza-specific CD4+ T 
cells in their lungs (Figure 4C), with weight loss mice nonsig-
nificantly lower (P =  .0643). Total cell numbers did not differ 
(Supplementary Figure 4C), nor were there differences in influ-
enza-specific CD4+ T cells among groups at day 7.

Finally, Treg cells are a critical population involved in reduc-
ing the inflammatory response after influenza clearance [27]. 
We found the percent of CD4+ Treg cells were significantly 
lower in always obese mice at days 0 and 3 postinfection, and 
were not restored with weight loss (Figure 4D). At day 7 post-
infection, compared with always lean, weight loss mice had an 
increased percent of Treg cells, although absolute numbers did 
not differ among groups (Supplementary Figure 4D).

These results indicate that memory T-cell subsets are dys-
regulated when generated in an obese state, and that weight 
loss following generation of these populations does not restore 
memory T-cell populations to the lean state.

CD4+ and CD8+ T-Cell Metabolism Is Impaired in the Obese State and Is Not 

Restored by Weight Loss

Oxidative and glycolytic metabolism were determined using 
an Agilent Seahorse extracellular flux analyzer, which mea-
sures the change in ECAR (as a surrogate for lactate produc-
tion and glycolysis) and the change in OCR (as a surrogate for 

mitochondrial respiration). ECAR and OCR were measured in 
splenic CD4+ and CD8+ T cells isolated at day 0 (uninfected) and 
day 7 after PR8 reinfection. Compared to always lean mice, CD4+  
T cells from always obese mice had significantly greater OCR 
at day 0 (prior to secondary infection; Figure 5A), and dramat-
ically greater OCR at day 7 postinfection (Figure 5A). Weight 
loss mice had equivalent CD4+ T-cell OCR to always lean mice 
prior to reinfection (day 0). However, at day 7 postinfection, 
OCR was significantly greater in weight loss mice compared 
with always lean, and did not differ from always obese (Figure 
5A). Although there was no significant increase in OCR in 
CD4+ T cells from day 0 to day 7 in always lean mice, there was 
a substantial increase in OCR in always obese and weight loss 
groups in response to secondary infection (Table 1).

CD4+ T cells from always obese mice had significantly greater 
ECAR at day 0 compared to always lean and weight loss groups 
(Figure 5B). However, at day 7 postinfection, ECAR was sig-
nificantly lower in the weight loss group compared with always 
lean. All 3 groups of mice had a significant drop in ECAR at day 
7 postinfection (Table 1).

Ratios of basal OCR:ECAR, a measure of relative magnitude 
of mitochondrial oxidation versus glycolysis, were determined 
at day 0 and day 7 postsecondary infection. As seen in Figure 5C, 
there were no OCR:ECAR differences prior to secondary infec-
tion. However, following infection, always obese and weight 
loss mice had significantly greater OCR to ECAR compared 
to always lean mice, demonstrating an overall change in T-cell 
metabolism in obesity, which is not reversed by weight loss.

Similar impairments in metabolism were found for CD8+ 
T cells. Prior to secondary infection, OCR was not different 

Table 1. Obese and Weight Loss Mice Have Greater Metabolic Change Following PR8 Influenza Infection

Day 0 Versus Day 7 Metabolic Comparison Fold Difference Adjusted P Value Fold Difference Relative to Always Lean

CD4+ T cell basal OCR Always lean 0.33 .7869 …

Always obese 1.41 <.0001 3.21

Weight loss 1.45 .0001 3.33

CD4+ T cell basal ECAR Always lean −0.42 .0106 …

Always obese −0.71 <.0001 0.69

Weight loss −0.68 <.0001 0.62

CD4+ T cell OCR:ECAR Always lean 1.47 .0217 …

Always obese 7.32 <.0001 3.98

Weight loss 6.62 <.0001 3.50

CD8+ T cell basal OCR Always lean 1.22 .0163 …

Always obese 2.20 <.0001 0.80

Weight loss 1.73 <.0001 0.42

CD8+ T cell basal ECAR Always lean −0.16 .6642 …

Always obese −0.67 <.0001 3.19

Weight loss −0.59 .0001 2.68

CD8+ T cell OCR:ECAR Always lean 1.93 .0379 …

Always obese 8.42 <.0001 3.35

Weight loss 5.74 <.0001 1.97

Metabolic differences in splenic CD4+ and CD8+ T cell basal OCR, basal ECAR, and OCR:ECAR ratio due to PR8 infection were determined. Fold differences from day 0 to day 7 in always 
lean (n = 10), always obese (n = 10), and weight loss (n = 10) mice were compared using 2-way ANOVA with Tukey multiple comparisons. Fold differences from day 0 to day 7 were compared 
between groups relative to fold difference in the always lean group. Bold indicates significant fold change from day 0 to day 7.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy700#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy700#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy700#supplementary-data


among groups (Figure 6A). However, following secondary in-
fection, compared with always lean mice, CD8+ T cells from al-
ways obese and weight loss mice had significantly elevated OCR 
(Figure 6A). ECAR of CD8+ T cells prior to infection was signif-
icantly elevated in always obese mice, however ECAR was lower 
in both always obese and weight loss mice at day 7 postinfection 
(Figure 6B). The change in ECAR between day 0 and day 7 was 
significantly lower in obese and weight loss mice compared to 
always lean mice; however, ECAR did not change between day 
0 and day 7 for the always lean mice (Table 1).

Similar to what was seen in CD4+ T cells, OCR:ECAR 
ratios among groups were not different in CD8+ T cells at day 

0. However at day 7 postinfection, OCR:ECAR ratios were sig-
nificantly higher in always obese and weight loss mice (Figure
6C). These findings indicate that the metabolic state of both
CD4+ and CD8+ T cells is determined by the systemic metabolic 
state at the time of the primary infection during memory gener-
ation, as subsequent weight loss did not reset T-cell metabolism 
from an obese phenotype to a lean phenotype.

DISCUSSION

Each year, 3000 to 56 000 people in the United States die from 
influenza infection, with approximately 500 million obese indi-
viduals worldwide at heightened risk [28, 29]. Although vacci-
nation provides the best protection against influenza infection, 
our laboratory has shown, compared with lean adults, influen-
za-specific memory T cells from obese adults have decreased 
activation and function in response to ex vivo influenza chal-
lenge [9, 10]. Strikingly, despite vaccination, obese adults are 2 
times more likely to develop influenza or influenza-like illness 
[14].

Obesity is a systemic metabolic disease, characterized by ele-
vated serum insulin and glucose levels, along with increased 
adipose tissue mass accompanied by an increase in immune 
cell infiltration into the SVF surrounding adipocytes. In our 
model of diet-induced obesity, obese mice developed hypergly-
cemia and hyperinsulinemia, increased visceral fat mass, and 
an increase in both CD4+ and CD8+ T cells into the SVF. Thus, 
obesity induced by diet in this model mirrors the metabolic 
dysfunction of obese adults [30].

For memory T cells to effectively participate against reinfec-
tion, they must be present at the site of the secondary infec-
tion. Memory T-cell subsets in the lungs of mice reinfected with 
influenza virus, compared with lean mice, obese mice had sig-
nificantly lower percentages of CD4+ and CD8+ Tcm, Trm, and 
Treg cells and a lower percent of CD8+ effector T cells. Because 
it is well established that the metabolic state of T cells dictates 
their function [31], we reasoned that the systemic metabolic 
alterations of obesity would also affect T-cell metabolism.

Even prior to infection, we found T cells from obese mice had 
altered cellular metabolism characterized by increased OCR and 
ECAR. However, at 7 days postinfection, both CD4+ and CD8+ 
T cells from obese mice dramatically increased OCR compared 
to lean mice, with increased OCR:ECAR ratio, demonstrating 
an important switch in T-cell metabolic phenotype in obesity.

We hypothesized that weight loss would restore function and/
or T-cell metabolism in formerly obese mice. Several studies 
report that weight loss does not completely reverse the effects 
of weight gain, with metabolite and inflammation signatures 
persisting following weight loss [32, 33]. Here we found weight 
loss could reverse the systemic hyperinsulinemia and hypergly-
cemia seen in obesity and significantly reduce visceral adipose 
tissue mass. However, weight loss failed to reduce infiltration 
of T cells into adipose tissue and did not reverse the memory 
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Figure 6. Altered CD8+ T-cell metabolism is not reversed by weight loss. Spleens 
harvested from mice were used for CD8+ T-cell isolation by negative selection mag-
netic bead separation. Cells were plated at 150 000 cells per well, and extracellular 
flux analysis was performed using the Seahorse XFe96 Flux analyzer at 37°C. A, 
Basal oxygen consumption rate (OCR) as a surrogate for mitochondrial respiration, 
(B) basal extracellular acidification rate (ECAR) as a surrogate for glycolysis, and
(C) the ratio of oxidation to glycolysis (OCR:ECAR) were determined in CD8+ T cells 
at day 0 and 7 after PR8 infection in always lean, always obese, and weight loss
mice (n = 5 per group). Data represent mean ± standard error of the mean. One-way 
ANOVA with Tukey multiple comparisons were used at day 0 and day 7 to compare 
differences between groups. *P < .05, **P < .01, ***P < .001.



T-cell dysfunction seen in response to influenza reinfection.
Notably, weight loss also did not reverse the obesity-associated
metabolic dysfunction, with CD4+ and CD8+ T-cell OCR and
OCR:ECAR ratios remaining elevated at day 7 postinfection,
equivalent to the levels seen in always obese mice.

Altogether, our results demonstrate obesity induces a unique 
T-cell metabolic program that is associated with T-cell dysfunc-
tion and is not reversed by weight loss. These findings suggest
obesity-associated T-cell metabolic dysfunction as a mechanism
for altered T-cell infiltration and function in obesity. These results 
have significant public health importance and impact. Compared 
with lean adults, influenza vaccination of obese adults is less pro-
tective against influenza and influenza-like illness and our data
suggest that weight loss alone, while important for metabolic
health, may be insufficient to restore immune dysfunction and
vaccine efficacy. In light of these results, it is imperative further
interventions and revisions of vaccine strategies be considered.
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