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We used full-system-estimation instrumental-variables simultaneous equations modeling (IV-SEM) to examine

physical activity relative to body mass index (BMI; weight (kg)/height (m)2) using 25 years of data (1985/1986 to

2010/2011) from the Coronary Artery Risk Development in Young Adults (CARDIA) Study (n = 5,115; ages 18–

30 years at enrollment). Neighborhood environment and sociodemographic instruments were used to characterize

physical activity, fast-food consumption, smoking, alcohol consumption, marriage, and childbearing (women) and

to predict BMI using semiparametric full-information maximum likelihood estimation to control for unobserved time-

invariant and time-varying residual confounding and differential measurement error throughmodel-derived discrete

random effects. Comparing robust-variance ordinary least squares, random-effects regression, fixed-effects re-

gression, single-equation-estimation IV-SEM, and full-system-estimation IV-SEM, estimates from random- and

fixed-effects models and the full-system-estimation IV-SEM were unexpectedly similar, despite the lack of control

for residual confounding with the random-effects estimator. Ordinary least squares tended to overstate the significance

of health behaviors in BMI, while results from single-equation-estimation IV-SEM were notably different, revealing the

impact of weak instruments in standard instrumental-variable methods. Our robust findings for fixed effects (which does

not require instruments but has a high cost in lost degrees of freedom) and full-system-estimation IV-SEM (vs. standard

IV-SEM) demonstrate potential for a full-system-estimation IV-SEM method even with weak instruments.

body mass index; endogeneity; epidemiologic methods; fixed effects; health behaviors; instrumental variables;

semiparametric methods; simultaneous equations

Abbreviations: BMI, bodymass index; CARDIA, Coronary Artery Risk Development in Young Adults; CI, confidence interval; FIML,

full-information maximum likelihood; GMM, generalized method of moments; IV, instrumental variable; IV-SEM, instrumental-

variables simultaneous equations model/modeling; OLS, ordinary least squares.

A critical challenge in observational studies of the influ-
ence of health behaviors, such as physical activity, on body
weight (1, 2) is the potential for residual confounding due to
omitted variables or differential measurement error (referred
to in econometrics as endogeneity) (3–8). The assessment of
diet and physical activity is known to be susceptible to error,
which may be differential by body weight (9, 10); more gener-
ally, confounding may reflect difficult-to-measure innate char-
acteristics, such as underlying health consciousness (3, 11).

Standard epidemiologic analyses of health behaviors
and body mass index (BMI) are susceptible to residual
confounding due to observed variables and differential
measurement error. In the current study, our goal was to es-
timate the effect of physical activity on BMI, while ac-
counting for these biases. We addressed the potential for
residual confounding and differential measurement error
in our analysis with an instrumental-variables simultane-
ous equations modeling (IV-SEM) approach commonly



used in econometric studies using longitudinal data (8,
11–13).
Econometric approaches to causal inference have been

employed in the epidemiologic literature (14–18) but have typ-
ically been limited to single-equation systems (11), such as the
role of a specific genetic variant in an outcome (19), or systems
models fitted using single-equation methods (11), such as
2-stage least squares (20). Our approach has several enhance-
ments over standard instrumental-variable (IV) methods, in-
cluding joint estimation of an entire system of equations that
accounts for unmeasured confounding and differential mea-
surement error in the analysis of multiple BMI risk factors,
and the use of semiparametric and nonlinear estimation. Our
method has been shown to perform better than linear IV meth-
ods even in the presence of weak instruments—a well-known
challenge for IV methods (21, 22). For these reasons, we con-
sider our approach a valuable addition to the IV methodolog-
ical framework considered by epidemiologists.
We estimated the effect of physical activity on BMI using

25 years of data from an established prospective cohort study,
the Coronary Artery Risk Development in Young Adults
(CARDIA) Study, with clinic-assessed, time-varying mea-
sures of weight and height, weight-related health behaviors,
and other relevant variables, as well as an extensive set of
community-level variables hypothesized to influence BMI-
related risk factors but not BMI directly, which served as
IVs (11, 23). These data provided the necessary components
for an IV-SEM with which to estimate the effect of physical
activity on BMI while accounting for other health behaviors,
including diet, smoking, alcohol consumption, and marital
status, as well as residual confounding and differential mea-
surement error. As a secondary aim, we examined the extent
to which our estimates differed from those obtained via other
modeling approaches. We therefore compared estimates from
our model with those from standard ordinary least squares
(OLS) with robust variance, longitudinal random-effects
and fixed-effects regression models, and single-equation-
estimation IV-SEM.

METHODS

CARDIA sample

CARDIA is a multicenter, longitudinal study of cardiomet-
abolic risk factors (24). The study began in 1985–1986 with
5,115 black and white adults aged 18–30 years sampled from
4 US metropolitan areas (Birmingham, Alabama; Chicago,
Illinois; Minneapolis, Minnesota; and Oakland, California).
Participant home addresses were geocoded at baseline (year
0) and at years 7, 10, 15, 20, and 25 of follow-up (respective
retention in survivors: 81%, 79%, 74%, 72%, and 72%). The
CARDIA protocol was approved by the institutional review
board at each field center, and every participant provided in-
formed written consent.

Individual-level measures

In standardized surveys, participants provided extensive de-
mographic and socioeconomic information, including age,
sex, race, education, income, marital status, the ages of any

children, and, for women, pregnancy status. Participants re-
ported their engagement in 13 physical activities, including
walking, running, and cycling, from which activity-specific
and total activity intensity scores were created (25). Fast-food
consumption, smoking status, and alcohol consumption were
assessed in all years; an interviewer-administered diet history
was included at years 0 (baseline), 7, and 20 (26). At each ex-
amination, height and weight were measured by trained study
staff to the nearest 0.5 cm and 0.2 kg, respectively. BMIwas cal-
culated as weight (kg)/height (m)2.

Neighborhood-level measures

Neighborhood measures temporally and geographically
linked to participant home addresses served as instruments
for identification of estimated effects of health behaviors
on BMI. Briefly, neighborhood measures included the pres-
ence of food stores and restaurants, physical activity facilities,
and parks; consumer price data; and features of the road net-
work (details are provided in the Web Appendix, available at
http://aje.oxfordjournals.org/). US Census data included
population-level educational attainment and income for the
census tract corresponding to participants’ home addresses
at the time of the examination.

Statistical analysis

Figure 1 is an abbreviated causal diagram of our statistical
model. We sought to estimate the effects of physical activity
and other health behaviors (the vectorHB) on BMI. We con-
sidered the potential for time-invariant and time-varying
residual confounding and differential measurement error, µ,
to cause bias in effect estimates, and we used a full-system-
estimation IV-SEM to estimate the effects of health behaviors
on BMI by using a set of IVs, V, to first identify variation in
health behaviors. A complete list of model variables is shown
in the Web Appendix and Web Table 1.
Econometricians refer to the differential error that con-

cerns us, µ, such as residual confounding, as “endogeneity
due to unobserved heterogeneity,” where “unobserved het-
erogeneity” reflects individual heterogeneity in the outcome
(here, BMI) that 1) is not explained by independent variables
(predictors already included in the regression model) and
2) is correlated with independent variables. “Endogeneity” re-
fers to variables that are determined within the model (i.e., are
recipients of an inward-pointing arrow on the causal diagram);
in contrast, “exogenous” variables are not determined by other
variables in the system (i.e., have only outward-pointing ar-
rows). Variables V and X in Figure 1 are exogenous. Both en-
dogenous and exogenous variables influence other system
variables. Here, endogenous health behaviors influence
BMI; exogenous IVs, V, influence health behaviors but not
BMI directly. There may be many instances where formal en-
dogeneity will not fit within our causal framework, such as re-
verse causation, whereby BMI influences health behaviors.
We acknowledge that the exact sources of unobserved hetero-
geneity quantified by our model-based approach cannot be
distinguished.
Previous publications provide more details of our approach

(27–29). Additional details on system equations can be found
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study data. Any unobserved heterogeneity due to diet will
be controlled in IV-SEM models and, to the extent that diet
is stable within-person, in fixed-effects regression.

The general specification for the set of first-stage equations
is shown below.

HBit ¼ γVit þ δXit þ μi þ μit þ εit ð1Þ

Health behavior (HB) was modeled as a function of strictly
exogenous explanatory variables, not influenced by other
components within our model system, including a vector of
IVs (V)—which influence BMI through health behaviors, but
do not directly influence BMI—and a vector of other exoge-
nous variables (X)—which may influence health behaviors as
well as BMI. Health behaviors, exogenous variables, and ran-
dom error (ε) were time-varying. Estimated effects of exog-
enous variables, V and X, are reflected by the regression
coefficients γ and δ, respectively, for the difference in health
behavior per unit change in V or X. In addition, our model
included time-invariant and time-varying error components
reflective of residual confounding and differential measure-
ment error (μ). Each health behavior (endogenous BMI pre-
dictor) was modeled in a set of first-stage equations, with the
full set repeated for each of the 3 physical activity specifica-
tions among men and women. Each first-stage equation was
“overidentified,” meaning the number of instruments ex-
ceeded the number of health behaviors, and comprised the
same set of independent variables (11).

The final equation in the model estimated BMI from phys-
ical activity and other health behaviors (HB) and a set of exog-
enous covariates (X) that were considered to be associated with
BMI (e.g., age, race, education, and income) beyond that ac-
counted for by our set of modeled health behaviors. Note
that this is the same set of X exogenous variables included in
the first-stage equations.

BMIit ¼ βHBit þ γXit þ μi þ μit þ εit ð2Þ

HBi,t BMIi,t

Vi,t

εBMIi,tεHBi,t

µi
µi,t

Xi,t

Figure 1. Causal diagram for a full-system-estimation instrumental-variables simultaneous equations model created to examine physical activity
in relation to body mass index (BMI). Time-varying BMI (BMIi,t) was predicted from time-varying physical activity and other health behaviors (HBi,t).
Vi,t represents a vector of instrumental variables that are associated with BMI only through their effect on health behavior. Xi,t represents a vector of
noninstrumental exogenous variables that may influence health behaviors and BMI. First-stage equations estimate HB from V and X, with distinct
equations for each health behavior. After identification of HB from exogenous variables (V and X ), BMI is predicted from the set of health behaviors
and noninstrumental exogenous covariates X. Random error associated with each health behavior and BMI is shown by εi,t. Endogeneity due to
unobserved heterogeneity (residual confounding or differential measurement error) is reflected by µ, with subscripts for time-invariant and time-
varying components.

in the Web Appendix. Briefly, in a series of first-stage regres-
sion equations, we used a set of IVs (and other exogenous 
variables, X (in Figure 1), distinguished from IVs by their 
possible direct influence on BMI) to predict physical activity 
and other health behaviors, after which we estimated the ef-
fect of health behaviors on BMI, accounting for endogeneity 
due to unobserved heterogeneity (reflecting residual con-
founding and differential measurement error).

In addition to the estimated effect of total physical activity 
on BMI, we estimated the effects of specific types of physical 
activities most relevant for our neighborhood environment 
variables: 1) walking (controlling for all 12 nonwalking 
physical activities) and 2) walking, running, and cycling 
(controlling for all 10 other physical activities). Physical ac-
tivity component variables were obtained by summing inten-
sity scores over the relevant activities. We hypothesized that 
walking, along with running and cycling, would be most af-
fected by neighborhood features—such as the road network—
as opposed to other activities, such as swimming, which may 
require dedicated facilities.

We modeled other BMI risk factors, including fast-food 
consumption, smoking, and alcohol consumption, as well as 
marital status and, among women, childbearing, that we con-
sidered endogenous variables both associated with physical 
activity and predictive of BMI. Our full-system-estimation 
IV-SEM allowed us to account for confounding due to unob-
served selectivity of individuals engaging in these activities, as 
well as residual confounding and differential measurement 
error in endogenous covariates themselves. Models were fitted 
separately for men and women to allow us to control for the 
selectivity of women who were pregnant at the time of each 
examination and control for childbearing history.

We considered, but did not explicitly control for, overall 
diet quality in our final models because diet quality (modeled 
as a score reflecting comprehensive food consumption) was 
not predictive of BMI in multivariable-adjusting models. 
Further, diet was assessed in only 3 examination periods, 
and this would have limited the analysis to a fraction of the
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Estimated effects of endogenous health behaviors (HB) and
exogenous (X) independent variables are reflected by the
regression coefficients β and γ, respectively, for the differ-
ence in BMI per unit change in the independent variable.
The complete set of system equations is shown in the Web
Appendix.
As with all IV approaches, our method relies on having a

set of IVs that are 1) substantively relevant, 2) predictive of
endogenous health behaviors, 3) exogenous—not influenced
by other system variables, and 4) not directly related to BMI

(and can be excluded from the BMI model). We based our
causal model on substantive considerations. In particular,
the selection of IVs was guided by published findings on
the role of the built environment in health behaviors (30–
34). We included an assessment of the strength of our full
set of IVs to predict endogenous health behaviors with F
tests of first-stage models. The set of IVs, noninstrument ex-
ogenous variables, and the endogenous health behaviors in-
cluded in the model are further described in the Web material
(Web Appendix and Web Table 1).

Table 1. Key Attributes That Differentiate Regression Approaches

Attribute OLSa Random
Effectsb

Models That Control for Endogeneity Due to
Unobserved Heterogeneityc

Fixed
Effectsd

IV Modelse

Single-Equation
System IV
Regressionf

GMM
IV-SEMg

FIML
IV-SEMh

Controls for time-invariant random error across individuals
(individual-level unobserved heterogeneity) and uses error
structure in parameter estimation (improved efficiency)

No Yes No No No Yes

Controls for time-invariant endogeneity due to unobserved
heterogeneity

No No Yes Yes Yes Yes

Controls for time-varying endogeneity due to unobserved
heterogeneity

No No No Yes Yes Yes

Multiple-equation system, single-equation IV estimator No No No No Yes No

Multiple-equation system, full-system IV estimator: uses correlation
among endogenous independent variables in parameter
estimation (increased precision as compared with standard IV
methods)

No No No No No Yes

Nonlinear IV estimator (including discrete factor model for
unobserved heterogeneity): less sensitive to weak IVs, as
compared with other IV methods

No No No No No Yes

Low power due to loss of degrees of freedom, compared with other
approaches that control for endogeneity due to unobserved
heterogeneity

No No Yes No No No

Loss of precision if little within-person exposure variability No No Yes No No No

Allows estimation of the effects of time-invariant predictor variables,
as compared with fixed effects

No No No Yes Yes Yes

Requires valid IVs No No No Yes Yes Yes

Allows estimation of the effects of multiple endogenous variables No No Yes No Yes Yes

Use of multiple instruments allows testing of identification and can
improve precision

No No No No Yes Yes

Abbreviations: FIML, full-information maximum likelihood; GMM, generalized method of moments; IV, instrumental variable; IV-SEM,

instrumental-variables simultaneous equations model; OLS, ordinary least squares.
a OLS regression models using the Stata -regress- command (StataCorp LP, College Station, Texas) with the robust variance option.
b Longitudinal random-effects regression models using the Stata -xtreg- command with the “re” option.
c Models can be distinguished broadly as those that directly address endogeneity from unobserved heterogeneity stemming from, for example,

residual confounding and differential measurement error, including fixed-effects regression and the IV models, as opposed to those that assume no

differential unobserved heterogeneity conditional on covariates included in the regression model, such as OLS and random-effects regression.
d Fixed-effects regression estimates for within-person differences from longitudinal data, obtained using the Stata -xtreg- command with the

“fe” option.
e Amongmodels that address endogeneity from unobserved heterogeneity, we compared 3 IV approaches.We included single-equation system

IV regression for comparative purposes, given its prevalence in the epidemiologic literature, though we do not present results from this approach.
f Attributes hold for all IV regression, including single-equation systems, such as a model of a single IV for a single (endogenous) predictor

variable. An example is instrumenting smoking behavior with a single genetic variant to predict lung cancer.
g IV methods for a system of equations that are estimated as a series of single equations. These simultaneous equations modeling approaches,

including 2-stage least squares or GMM estimators, are available in standard statistical software, such as Stata’s -ivregress- with the “gmm” or

“2sls” option.
h IV methods for a system of equations that are estimated jointly. These approaches include FIML and 3-stage least squares, and are

distinguished from single-equation-estimation approaches by their accounting for error correlation among equations.
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Table 2. Sex-Specific Descriptive Statistics for Study Participants Over the Course of the Study Period,a CARDIA Study, 1985–1986 to 2010–2011

Variable

Year of Study Period

0 7 10 15 20 25

No.
or %

Mean (SD)
No.
or %

Mean (SD)
No.
or %

Mean (SD)
No.
or %

Mean (SD)
No.
or %

Mean (SD)
No.
or %

Mean (SD)

Men

Total no. of participants 2,327 1,836 1,755 1,619 1,535 1,517

African-American race, % 49.7 45.3 45.9 43.8 42.1 43.1

Current smoker, % 31.6 29.0 28.2 24.0 21.0 18.9

Alcohol drinker, % 71.6 66.1 63.9 62.3 62.8 63.3

Married, % 20.4 44.0 49.6 56.7 58.9 57.3

Age, years 24.8 (3.6) 32.0 (3.6) 35.0 (3.6) 40.2 (3.6) 45.2 (3.5) 50.1 (3.6)

Education, years 13.8 (2.4) 14.7 (2.6) 14.9 (2.6) 15.2 (2.6) 15.4 (2.6) 15.5 (2.7)

Fast-food consumption, frequency/week 2.34 (2.51) 2.30 (2.72) 2.05 (2.17) 2.08 (2.53) 1.91 (2.28) 1.53 (2.31)

Physical activity, intensity unitsb

Total physical activityc 5.22 (3.23) 4.30 (2.99) 4.23 (3.01) 4.25 (3.05) 4.07 (2.91) 4.07 (2.93)

Walking activityd 0.53 (0.56) 0.44 (0.51) 0.43 (0.52) 0.46 (0.52) 0.49 (0.54) 0.54 (0.54)

Nonwalking activityd 4.69 (3.10) 3.86 (2.89) 3.80 (2.87) 3.79 (2.92) 3.58 (2.76) 3.53 (2.77)

Combined walking, running, and bikingd 1.58 (1.31) 1.35 (1.28) 1.32 (1.30) 1.37 (1.32) 1.37 (1.35) 1.46 (1.40)

All activities other than walking, running, and bikingd 3.64 (2.49) 2.95 (2.27) 2.91 (2.31) 2.89 (2.27) 2.70 (2.14) 2.61 (2.11)

Women

Total no. of participants 2,785 2,248 2,192 2,051 2,013 1,980

African-American race, % 53.1 50.9 51.1 49.8 49.9 49.8

Current smoker, % 29.3 25.1 23.2 20.4 17.9 15.3

Alcohol drinker, % 52.2 46.2 44.2 44.2 47.2 48.5

Married, % 23.8 43.6 47.8 51.0 52.6 50.6

Age, years 24.9 (3.7) 32.1 (3.7) 35.0 (3.7) 40.2 (3.6) 45.2 (3.5) 50.1 (3.6)

Education, years 13.8 (2.1) 14.7 (2.3) 14.9 (2.4) 15.2 (2.6) 15.4 (2.6) 15.5 (2.7)

Fast-food consumption, frequency/week 1.72 (1.97) 1.66 (2.14) 1.54 (1.87) 2.08 (2.53) 1.91 (2.28) 1.53 (2.31)

Physical activity, intensity unitsb

Total physical activityc 3.35 (2.51) 2.62 (2.21) 2.56 (2.24) 4.25 (3.05) 4.07 (2.91) 4.07 (2.93)

Walking activityd 0.57 (0.54) 0.49 (0.49) 0.50 (0.51) 0.46 (0.52) 0.49 (0.54) 0.54 (0.54)

Nonwalking activityd 2.78 (2.32) 2.13 (2.04) 2.06 (2.06) 3.79 (2.92) 3.58 (2.76) 3.53 (2.77)

Combined walking, running, and bikingd 1.27 (1.17) 0.99 (1.05) 0.97 (1.09) 1.37 (1.32) 1.37 (1.35) 1.46 (1.4)

All activities other than walking, running, and bikingd 2.08 (1.77) 1.63 (1.56) 1.58 (1.61) 2.89 (2.27) 2.70 (2.14) 2.61 (2.11)

Abbreviations: CARDIA, Coronary Artery Risk Development in Young Adults; SD, standard deviation.
a Data are shown for each of the 6 CARDIA examination periods included in the analysis, with year 0 being the study baseline.
b Physical activity intensity units have been rescaled by dividing by 100. Physical activity variables are shown for the 3 model specifications.
c Total physical activity intensity units equaled the sum of intensity units contributed by each of 13 separate activities assessed in CARDIA, including: running; biking; swimming; racket sports; exercise

class or dancing; job activity such as lifting, carrying, or digging; home or leisure activity such as snow-shoveling, moving heavy objects, or weight-lifting; strenuous sports such as basketball, football, skating,

or skiing; golf; calisthenics; home maintenance or gardening; and strenuous sports not otherwise listed (e.g., volleyball, table tennis).
d Intensity units for specific activities (e.g., walking vs. nonwalking activities) sum to total physical activity intensity units.



We compared our full-system-estimation IV-SEM with
several other model-based approaches available in Stata soft-
ware (StataCorp LP, College Station, Texas; see Table 1), in-
cluding OLS regression with robust variance estimation
(Stata’s -regress- command), random-effects regression
(-xtreg- command, “re” option), fixed-effects regression
(-xtreg-, “fe” option), and single-equation-estimation
IV-SEM (-ivregress-, “gmm” option). OLS and random-
effects regression assume that there is no residual confound-
ing or differential measurement error, although the random
effects allow for individual variability in random errors. In
contrast, differential unobserved heterogeneity is controlled
in fixed-effects regression (time-invariant sources only) and
single-equation-estimation IV-SEM (both time-invariant and
time-varying sources). Fixed-effects regression can suffer
from low statistical power due to loss of degrees of freedom
(individual-level differencing) and a lack of within-person
variability in the exposure of interest, and it does not allow
estimation of time-invariant predictors.
Single-equation-estimation IV-SEM methods are less effi-

cient than full-information IV-SEM methods. In addition,
single-equation linear estimators (as in -ivregress-) are
particularly susceptible to weak instruments; our method al-
lows nonlinear estimation and has been shown to be robust
in the presence of weak instruments (21, 22).We use 2 specifi-
cations of our full-system-estimation IV-SEM: 1) accounting
for endogeneity due to time-invariant unobserved heterogene-
ity only and 2) accounting for time-varying unobserved hetero-
geneity as well. Our model is more flexible parametrically than

other IV approaches, in terms of the availability of nonlinear
functional forms for model equations and the use of the dis-
crete factor method for modeling endogeneity due to unob-
served heterogeneity. (The discrete factor method is further
described in the Web Appendix.) In the present analysis, we
assumed constant effect estimates over time and with respect
to participant characteristics (no interaction).
We conducted analyses on 5,112 participants with data

collected over 6 examination periods. Three participants
were excluded from the original sample of 5,115 (1 dropped
out of the study and 2 changed sex). Because of follow-up
losses, there were 4,010 participants at year 7; 3,947 at year
10; 3,670 at year 15; 3,548 at year 20; and 3,497 at year 25
(23,858 observations in total). We tested the influence of loss
to follow-up with sensitivity analysis using inverse probabil-
ity weighting by examination participation; these models are
not presented, as results did not differ from those of unad-
justed models. Therewere complete data on community-level
indicators and participant age, sex, and race. We used regres-
sion prediction models to fill in missing individual-level data
(described in the Web Appendix and Web Table 2). We used
an α level of 0.05 for statistical significance. We used Stata
(version 13) and Fortran (Intel Fortran Compiler; Intel Corpo-
ration, Santa Clara, California) for all analyses.

RESULTS

Over the 25-year study period, smoking and fast-food
consumption declined among both men and women, and

Table 3. Fit Statistics for Each of the 3 Sex-Specific Physical Activity Specifications of the Instrumental-Variables Simultaneous Equations Model,

CARDIA Study, 1985–1986 to 2010–2011

Variable

Total Physical Activity Model Walking Model
Walking, Running, and Biking

Model

Men Women Men Women Men Women

F
Testa

P
Value

F
Test

P
Value

F
Test

P
Value

F
Test

P
Value

F
Test

P
Value

F
Test

P
Value

Current smoking 1.2 0.19 1.5 0.04 1.2 0.19 1.5 0.04 1.2 0.19 1.5 0.04

Alcohol consumption 3.6 <0.01 2.2 <0.01 3.6 <0.01 2.2 <0.01 3.6 <0.01 2.2 <0.01

Marital status 12.1 <0.01 2.6 <0.01 12.1 <0.01 2.6 <0.01 12.1 <0.01 2.6 <0.01

Fast-food consumption 3.8 <0.01 1.9 <0.01 3.8 <0.01 1.9 <0.01 3.8 <0.01 1.9 0.03

Physical activityb

Total physical activity 1.6 0.02 2.6 <0.01

Walking activity 4.3 <0.01 3.3 <0.01

Nonwalking activity 1.6 0.02 2.2 <0.01

Walking, running, and biking 2.5 <0.01 2.3 <0.01

Activities other than walking, running,
and biking

2.0 <0.01 2.4 <0.01

Abbreviation: CARDIA, Coronary Artery Risk Development in Young Adults.
a F tests of the first-stagemodels provide evidence of the combined strength of all instrumental variables to predict the endogenous health behavior

outcome. Rejection of the F test (P < 0.05) indicates that our set of instruments provides good identification for that endogenous health behavior

variable. The set of instrumental (or other exogenous) variables is described in the text, and they comprise indicators of community prices (e.g.,

housing, food), street connectivity, neighborhood food resources and physical activity facilities, and Census tract-level socioeconomic status

(income, education).
b Three physical activity specifications were fitted: total physical activity; walking/nonwalking; and walking, running, biking/all other activities. For

each specification, 4 other health behaviors (hypothesized to be associated with body mass index) were modeled, including current smoking,

alcohol consumption, marital status, and fast-food consumption.
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engagement in physical activity declined among men, with
the exception of walking, which remained stable (Table 2).
Changes in physical activity were less clear among women.

Table 3 presents results from sex-specific model F tests for
each of the 3 physical activity specifications, reflecting the
strength of the full set of IVs in predicting endogenous health
behaviors. F test statistics were small and well below recom-
mended thresholds (e.g.,≥10) (35) for considering the models
strongly identified; that is, our models suffered from “weak”
instruments. Even in the presence of weak instruments, P val-
ues for first-stagemodelF tests were statistically significant for
all models except smoking among men.

With the exception of generalized method of moments
(GMM) IV-SEM, model estimates were surprisingly similar
across the 6 modeling approaches (Table 4). The similarity of
point estimates from approaches that correct (fixed effects
and full-information maximum likelihood (FIML) IV-SEM)
and do not correct (OLS and random effects) for endogene-
ity due to unobserved heterogeneity supports a lack of re-
sidual confounding or differential measurement error in
multivariable-adjusted models, which is contrary to our ex-
pectation and unlikely to hold in general. Of the 2 FIML IV-
SEMs, those that accounted for time-invariant unobserved
heterogeneity only generally had a higher value for the log-
likelihood function.

Point estimates from the GMM IV-SEM were frequently
substantively different from those of other models, as well as
much less precise (Table 4). As an example, in both men and
women, all models supported a negative association between
smoking and BMI, with the exception of the GMM IV-SEM,
which yielded a positive (albeit statistically nonsignificant) es-
timate. Current smokers had a lower BMI than nonsmokers
(men: −0.88 (95% confidence interval (CI): −1.49, −0.27);
women: −0.61 (95% CI: −1.18, −0.05)), based on the
FIML IV-SEM accounting for time-invariant unobserved
heterogeneity (10th column of Table 4). Among men, some
GMM IV-SEM estimates were consistent with models that
did not account for unobserved heterogeneity; for example,
there was an apparent negative association between alcohol
consumption and BMI based on OLS, random effects, and
GMM IV-SEM, which was not supported in fixed-effects re-
gression and FIML IV-SEM.

Aside fromGMM IV-SEM,model estimates were generally
consistent with expectation in both men and women (Table 4).
Physical activity and smoking were negatively associated
with BMI, while fast-food consumption and marriage were
positively associated with BMI. Among women, but less con-
sistently among men, alcohol consumption was negatively as-
sociated with BMI. Although we did not formally examine
effect measure modification by sex, the variables alcohol con-
sumption, physical activity, and fast-food consumption
appeared to be more strongly predictive of BMI in women
than inmen. For example, amongwomen, the BMI differences
associated with a 100-unit increase in total physical activity
were −0.18 (95% CI: −0.23, −0.12) and −0.27 (95% CI:
−0.39, −0.16) in the FIML IV-SEM models accounting for,
respectively, time-invariant unobserved heterogeneity and
time-invariant and time-varying unobserved heterogeneity,
as compared with −0.09 (95% CI: −0.16, −0.02) and −0.09
(95% CI: −0.17, −0.01), respectively, among men.

DISCUSSION

We have presented results from a semiparametric full-
system-estimation approach to IV-SEM analysis (FIML IV-
SEM) of BMI over 25 years of follow-up in the CARDIA
cohort. Using a system of equations to predict BMI as a func-
tion of weight-related behaviors, we corrected for residual
confounding or differential measurement error (endogeneity
due to unobserved heterogeneity). Substantively, our findings
were consistent with expectation, with BMI being negatively
associated with physical activity and smoking and positively
associated with fast-food consumption. In addition, marriage
was positively associated with BMI, and alcohol consumption
was negatively associated with BMI. Estimates from models
that adjusted and did not adjust for unobserved heterogeneity
were generally similar, indicating a relative lack of endogene-
ity after controlling for observed covariates, with the exception
of OLS regression, which tended to overstate the significance
of health behaviors in influencing BMI. Effect estimates from
a single-equation-estimation approach to IV-SEM analysis
(GMM IV-SEM) were notably different from other estimates,
reflecting the challenge of using standard linear IV methods in
the presence of weak instruments.

We hypothesized greater differences across modeling ap-
proaches, and in particular we did not anticipate marked sim-
ilarity between estimates that did not account for residual
confounding and differential measurement error (OLS and
random effects) and those that did (fixed effects and FIML
IV-SEM). The largest differences were observed for GMM
IV-SEM regression estimates, which were also the least pre-
cise. The differences between GMM and FIML IV-SEM
approaches are especially noteworthy, as GMM IV-SEM
is available in standard statistical software and more acces-
sible to researchers. Differences between GMM and FIML
IV-SEM estimates probably reflect FIML’s allowance of
nonlinear estimators and our use of the discrete factor method
(21, 22). GMM IV-SEM is a single-equation-estimation ap-
proach (fitting within the 2-stage least squares framework)
and lacks the efficiency of full-system estimators, which
not only account for unmeasured confounding and differen-
tial measurement error (unobserved heterogeneity) but use
that information for more precise parameter estimation.

IVmethods are known to be sensitive toweak identification.
Our comparison illustrates the potential for severe bias of IV
approaches in the absence of strong instruments. In contrast,
the consistency of results from our full-system-estimation
IV-SEM and other models, particularly fixed-effects regres-
sion, is illustrative of the robust nature of our approach in the
presence of weak instruments. As was shown in previous
work, our FIML IV-SEM has substantially stronger estimation
performance in the presence of weak instruments (21, 22). Our
results illustrate that, in the presence of weak instruments, stan-
dard IV approaches can be less preferable than a non-IV
method, such as random- or fixed-effects regression.

In practice, several considerations are likely to drive the de-
cision about which modeling approach to adopt, as outlined
in Table 1. Assuming that unmeasured confounding or differ-
ential measurement error is considered a threat to validity,
fixed-effects models or IV methods can be used to account
for such nonrandom unobserved heterogeneity. Fixed-effects



Table 4. Regression Coefficients (β) for the Effects of Physical Activity and Other Health Behaviors on Body Mass Index,a CARDIA Study, 1985–1986 to 2010–2011b

Model and Variable

OLS,
Robust Variancec

Repeated-Measures
Regression, Random

Effectsd

Fixed-Effects
Regressione GMM IV-SEMf

FIML IV-SEMg

(Time-Invariant
Residual Confounding)

FIML IV-SEMh

(Time-Invariant and
-Varying Residual
Confounding)

β 95% CI β 95% CI β 95% CI β 95% CI β 95% CI β 95% CI

Men

Model 1i

Total physical activity, intensity units −0.13 −0.18, −0.08 −0.08 −0.10, −0.06 −0.08 −0.10, −0.06 0.12 −0.33, 0.57 −0.09 −0.16, −0.02 −0.09 −0.17, −0.01

Current smoking, yes/no −1.24 −1.66, −0.83 −0.86 −1.03, −0.68 −0.78 −0.97, −0.60 0.99 −3.01, 4.99 −0.88 −1.49, −0.27 −0.98 −1.37, −0.59

Alcohol consumption, yes/no −0.93 −1.29, −0.58 −0.17 −0.30, −0.04 −0.10 −0.23, 0.03 −5.16 −7.58, −2.73 −0.12 −0.39, 0.15 −0.03 −0.27, 0.20

Married, yes/no 0.55 0.19, 0.91 0.19 0.05, 0.32 0.13 −0.01, 0.27 1.30 0.05, 2.54 0.46 0.11, 0.81 0.55 0.16, 0.94

Fast-food consumption, frequency/
week

0.13 0.06, 0.19 0.05 0.03, 0.07 0.04 0.02, 0.06 0.23 −0.23, 0.68 0.05 0.01, 0.09 0.08 0.01, 0.14

Model 2j

Walking, intensity units −0.10 −0.33, 0.14 −0.13 −0.23, −0.04 −0.13 −0.23, −0.03 0.45 −1.55, 2.45 −0.10 −0.31, 0.12 −0.11 −0.31, 0.09

Nonwalking, intensity units −0.13 −0.18, −0.08 −0.08 −0.10, −0.06 −0.08 −0.10, −0.05 0.08 −0.43, 0.59 −0.09 −0.13, −0.04 −0.04 −0.09, 0.01

Model 3k

Walking, running, and cycling,
intensity units

−0.42 −0.53, −0.32 −0.18 −0.22, −0.13 −0.15 −0.20, −0.11 −0.92 −1.97, 0.13 −0.15 −0.25, −0.05 −0.16 −0.30, −0.02

All other physical activity, intensity
units

0.01 −0.06, 0.07 −0.04 −0.07, −0.01 −0.04 −0.07, −0.02 0.78 0.10, 1.46 −0.09 −0.15, −0.03 0.08 0.01, 0.15

Women

Model 1

Total physical activity, intensity units −0.33 −0.40, −0.25 −0.22 −0.25, −0.19 −0.21 −0.24, −0.17 −0.30 −0.97, 0.37 −0.18 −0.23, −0.12 −0.27 −0.39, −0.16

Current smoking, yes/no −0.65 −1.16, −0.13 −0.95 −1.17, −0.73 −1.02 −1.25, −0.78 2.94 −2.45, 8.33 −0.61 −1.18, −0.05 −0.76 −1.38, −0.15

Alcohol consumption, yes/no −1.33 −1.72, −0.94 −0.45 −0.60, −0.30 −0.36 −0.52, −0.20 0.27 −3.18, 3.73 −0.36 −0.71, −0.02 −0.54 −0.92, −0.16

Married, yes/no 0.20 −0.27, 0.67 0.32 0.15, 0.49 0.35 0.17, 0.52 −3.67 −7.64, 0.30 0.37 0.06, 0.68 0.39 −0.01, 0.80

Fast-food consumption, frequency/
week

0.25 0.16, 0.35 0.12 0.08, 0.15 0.11 0.07, 0.14 −0.07 −1.15, 1.00 0.09 0.02, 0.15 0.14 0.06, 0.21

Model 2

Walking, intensity units −0.31 −0.59, −0.02 −0.38 −0.50, −0.25 −0.38 −0.51, −0.25 −1.95 −5.82, 1.93 −0.28 −0.51, −0.06 −0.16 −0.38, 0.06

Nonwalking, intensity units −0.33 −0.40, −0.25 −0.20 −0.24, −0.17 −0.19 −0.22, −0.15 0.03 −1.02, 1.09 −0.18 −0.23, −0.13 −0.13 −0.20, −0.06

Table continues



Table 4. Continued

Model and Variable

OLS,
Robust Variancec

Repeated-Measures
Regression, Random

Effectsd

Fixed-Effects
Regressione GMM IV-SEMf

FIML IV-SEMg

(Time-Invariant
Residual Confounding)

FIML IV-SEMh

(Time-Invariant and
-Varying Residual
Confounding)

β 95% CI β 95% CI β 95% CI β 95% CI β 95% CI β 95% CI

Model 3

Walking, running, and cycling,
intensity units

−0.70 −0.83, −0.58 −0.34 −0.40, −0.27 −0.30 −0.37, −0.24 −0.19 −2.10, 1.72 −0.38 −0.50, −0.27 −0.40 −0.51, −0.29

All other physical activity, intensity
units

−0.12 −0.22, −0.02 −0.16 −0.20, −0.11 −0.15 −0.20, −0.11 −0.37 −1.70, 0.97 −0.05 −0.13, 0.04 −0.06 −0.15, 0.03

Abbreviations: BMI, body mass index; CARDIA, Coronary Artery Risk Development in Young Adults; CI, confidence interval; FIML, full-information maximum likelihood; GMM, generalized

method of moments; OLS, ordinary least squares; IV-SEM, instrumental-variables simultaneous equations model.
a Weight (kg)/height (m)2.
b Regression coefficients were obtained from OLS, repeated-measures random-effects regression, fixed-effects regression, and 3 instrumental-variable models. Multivariable models

adjusted for age, age squared, sex, study center, participant educational attainment, participant income, and educational attainment of the participant’s parents. The model for women

additionally adjusted for number of children.
c Multivariable-adjusted OLS regression using Stata’s -regress- command (StataCorp LP, College Station, Texas) with the robust variance option.
d Repeated-measures random-effects regression using Stata’s -xtreg- command with the “re” option.
e Repeated-measures fixed-effects regression using Stata’s -xtreg- command with the “fe” option.
f IV-SEM using Stata’s -ivregress- command with the “gmm” option.
g IV-SEM in Fortran (Intel Corporation, Santa Clara, California), accounting for unobserved time-invariant residual confounding.
h IV-SEM in Fortran, accounting for unobserved time-invariant and time-varying residual confounding.
i Model 1 included a single equation for CARDIA physical activity intensity units, rescaled by dividing by 100.
j Model 2 included 2 equations for physical activity: walking and nonwalking.Walking and nonwalking components of total physical activity were derived by summing intensity units for walking

and intensity units for all 12 nonwalking components, respectively (queried about in the CARDIA survey). In addition to walking and nonwalking physical activity, the model system included

equations for other endogenous BMI predictors included in the total physical activity model: smoking, alcohol consumption, marital status, and fast-food consumption. Beta coefficients for other

BMI predictors were similar to those of the total physical activity model and are not displayed.
k Model 3 included 2 equations for physical activity: 1) walking, running, and biking; and 2) all other forms of physical activity. Distinct components of total physical activity were derived by

summing intensity units for walking, running, and biking and intensity units for all 10 other components, respectively (queried about in the CARDIA survey). In addition to equations for walking/

running/biking and all other physical activity, the model system included equations for other endogenous BMI predictors included in the total physical activity model: smoking, alcohol

consumption, marital status, and fast-food consumption. Beta coefficients for other BMI predictors were similar to those of the total physical activity model and are not displayed.



models are limited to studies with more than 1 observation pe-
riod, relatively large samples, and estimation of effects for ex-
posures that change sufficiently over the observation period; in
the absence of one or more of these features, IV methods can
be considered. IV approaches require that valid instruments
can be identified. In the presence of strong instruments, IV
methods are generally robust to many parametric assumptions;
in the presence of weak instruments, more robust methods
(such as the FIML IV-SEM) may be necessary. Furthermore,
as in any modeling exercise, results may be more or less sen-
sitive to specification assumptions relating to the linearity of
outcome variables or multivariate normality of random effects,
and approaches that limit these assumptions will be preferable.
Our FIML IV-SEM estimates that accounted only for time-

invariant unobserved heterogeneity were generally similar to
those that accounted for both time-invariant and time-varying
unobserved heterogeneity. Although it is conceptually pref-
erable to account for time-varying unobserved heterogeneity,
for several reasons we prefer the models that accounted for
time-invariant unobserved heterogeneity only. First, when
estimates differed meaningfully (such as all other physical
activity in the walking/running/biking model among men),
the results from the model that accounted for time-invariant
unobserved heterogeneity only were more consistent with sub-
stantive expectation (in the exception noted, physical activity
was inversely associated with BMI). In addition, the models
with time-invariant unobserved heterogeneity accommodated
an equal or greater number of levels for unobserved heteroge-
neity, which wewould expect to improve our control for endo-
geneity. Finally, results from the time-invariant-only models
were generally more precise.
Substantively, our results confirm the importance of phys-

ical activity, smoking, and fast-food consumption in shaping
body mass (36–38). The association between alcohol con-
sumption and BMI has been equivocal in epidemiologic
studies (39). In our heterogeneity-corrected analysis, alcohol
consumption was negatively associated with BMI among
women, as supported by prior work (40, 41), but not among
men, suggesting possible sex differences. Our findings and
those of others (42, 43) indicate that marriage is positively
associated with BMI. The roles of alcohol consumption and
marriage in BMI merit further study.
Although our method accounted for confounding due to

omitted variables and differential measurement error, it may
have residual bias due to residential selection. Community-
level indicators served as IVs; however, the potential for
informative residential selection is a recognized challenge
in studies of neighborhood exposures and health (44, 45).
We considered including community dummy variables as
model covariates, but this proved infeasible due to the very
large number of communities with small numbers of partic-
ipants. Instead, we adjusted for baseline study center, hypoth-
esizing that participant residence was independent of error
components conditional on baseline study center. The simi-
larity of estimates derived from our model and from fixed-
effects regression indicates that selective migration due to
unobserved time-invariant individual characteristics was
not an appreciable source of bias.
The use of community-level indicators as IVs is common in

the econometrics and epidemiologic literature but may have

contributed to the weak identification. Only 1 community in-
dicator, cigarette price, was directly related to cigarette smok-
ing, which was the most poorly identified health behavior. IVs
are assumed to be exogenous and, ideally, are strongly predic-
tive of endogenous predictors but not directly predictive of the
system outcome (BMI). Achieving this balance is the greatest
challenge in IV analysis, and one’s success in doing so cannot
be directly tested. A major contribution of our method is the
ability to obtain consistent estimates even in the presence of
weak instruments, which allows us to focus on IVs less likely
to be within the model system, such as community indicators.
We note that weak identification may also reflect nondifferen-
tial measurement errors in our IVs.
Our model does not eliminate the possibility of bias, such

as bias from model misspecification, but the robust findings
across multiple regression approaches (aside from GMM
IV-SEM) are supportive of causal estimates. In addition to
our statistical modeling approach, a strength of our study
was our extensive set of candidates for IVs from a compre-
hensive set of community-level data. Our finding of multiple
levels of time-invariant and time-varying unobserved hetero-
geneity is a testament to our rich data set and highlights our
ability to capture significant unobserved heterogeneity.
In conclusion, we used 25 years of CARDIA data to jointly

model health behaviors and BMI. Our analysis yielded con-
sistent estimates of the influences of diet, physical activity,
smoking, and other variables on BMI, and it accounted for
endogeneity due to unobserved heterogeneity stemming,
we hypothesized, from residual confounding and differential
measurement error. Our results confirm the importance of
physical inactivity and fast-food consumption in relation to
weight gain, and they support the development of policy
and intervention efforts in these areas. In addition, our find-
ings indicate that marital status and alcohol consumption may
play underappreciated roles in body mass. The large differ-
ences between our full-system-estimation IV-SEM, as well
as fixed- and random-effects regression, and the single-
equation-estimation method that used standard statistical
software (Stata) illustrate that, in the presence of weak instru-
ments, a non-IV approach may be preferable. The potential
for large bias when using simple IV models in the presence
of weak instruments is added support for our method—for
which estimates were robust across estimation approaches.
This work contributes to the growing body of literature re-
lated to the use of IV methods in epidemiologic practice.
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