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Abstract

Background—The relationship between food environment exposures and diet behaviors is 

unclear, possibly because the majority of studies ignore potential residual confounding.

Methods—We used 20 years (1985–6; 1992–3; 2005–6) of data from the Coronary Artery Risk 

Development in Young Adults (CARDIA) study across four U.S. cities (Birmingham, AL; 

Chicago, IL; Minneapolis, MN; Oakland, CA) and instrumental-variables (IV) regression to obtain 

causal estimates of longitudinal associations between the percentage of neighborhood food outlets 

(per total food outlets within 1-km network distance of respondent residence) and an a priori diet 

quality score, with higher scores indicating higher diet quality. To assess the presence and 

magnitude of bias related to residual confounding, we compared results from causal models (IV 

regression) to non-causal models, including ordinary least squares regression, which does not 

account for residual confounding at all; and fixed-effects regression, which only controls for time-

invariant unmeasured characteristics.

Results—The mean diet quality score across follow-up was 63.4 (SD=12.7). A 10% increase in 

fast food restaurants (relative to full-service restaurants) was associated with a lower diet quality 

score over time using IV regression (β=−1.01; 95% CI=−1.99, −0.04); estimates were attenuated 

using non-causal models. The percentage of neighborhood convenience and grocery stores 

(relative to supermarkets) was not associated with diet quality in any model, but estimates from 

non-causal models were similarly attenuated compared to causal models.

Conclusion—Ignoring residual confounding may generate biased estimated effects of 

neighborhood food outlets on diet outcomes, and may have contributed to weak findings in the 

food environment literature.

BACKGROUND

Observational research suggests that the food environment is associated with diet outcomes,

[1, 2] and that these relationships differ across types of food outlets, perhaps due to 

differences in the nutrient and energy density of foods sold at each outlet.[3, 4] However, 

other studies report no associations between food environment exposures and dietary 

behaviors,[5–7] and past experiments placing supermarkets in food deserts or banning new 

fast food restaurants did not successfully change food purchases or obesity.[8, 9] An 

important limitation of the current literature is the fact that the majority of research ignores 

potential residual confounding.

For example, some food environment studies use ordinary least squares (OLS) regression,

[10, 11] which may generate biased estimates if omitted variables (e.g., selective placement 
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of food outlets) influence food environment exposures and health outcomes[12] More 

recently, longitudinal studies in the food environment literature have used fixed effects (FE) 

regression[13–15] which quantifies within-person associations, effectively using each 

individual as his/her own control. FE regression controls for all measured and unmeasured 

time-invariant confounding, but not for unmeasured characteristics that change over time 

(e.g., residential preferences).[12]

A causal approach to correct for residual confounding bias is instrumental-variables (IV) 

regression,[16, 17] which uses surrogates for exposures to eliminate the correlation between 

exposures and unmeasured characteristics. In the presence of time-varying residual 

confounding, IV regression theoretically provides less biased estimates relative to non-

causal models (e.g., OLS and FE regression). Although the literature suggests that 

associations between environmental exposures and health outcomes are sensitive to residual 

confounding,[18] to our knowledge no studies have examined the potential for unobserved 

bias in the context of the food environment and diet behaviors.

Based on these gaps in the literature, we used 20 years of dietary data from the Coronary 

Artery Risk Development in Young Adults (CARDIA) study and a causal approach (IV 

regression) to estimate longitudinal associations between the relative availability of 

neighborhood food outlets and an a priori diet quality score. We then compared results to 

non-causal models (OLS and FE regression) to assess the presence and extent of bias related 

to residual confounding. Based on previous work,[19–21] we hypothesized that estimates 

from non-causal models would be attenuated relative to causal models.

METHODS

Study Sample

CARDIA is a prospective study of the development of cardiometabolic disease among white 

and black young adults. In 1985–86, 5,115 CARDIA participants were recruited from four 

US metropolitan areas (Birmingham, AL; Chicago, IL; Minneapolis, MN; Oakland, CA), 

with balanced enrollment by age (18–24 y or 25–30 y), race (white or black), gender, and 

education (≤HS or >HS). Follow-up examinations were conducted in 1987–1988 (Year 2), 

1990–1991 (Year 5), 1992–1993 (Year 7), 1995–1996 (Year 10), 2000–2001 (Year 15), 

2005–2006 (Year 20), and 2010–2011 (Year 25), with retention of 91%, 86%, 81%, 79%, 

74%, 72%, and 72% of participants, respectively.

Individual-level data

Dietary intake was assessed at Years 0, 7, and 20 using the CARDIA Diet History, an 

interviewer-administered, open-ended validated questionnaire,[22] where participants self-

reported type and frequency of dietary consumption in the past month. Responses were 

assigned to 46 food groups based on previously established methods (Supplemental file 1).

[23, 24]

A standardized questionnaire was used to collect self-reported individual-level 

sociodemographics at each exam, including age, gender, race (black, white), current 

educational attainment (years), marital status, and number of children. Total family income 
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(categorical responses) was collected starting in Year 5, so we used income values from Year 

5 as a proxy for baseline values.

Neighborhood-level data

We extracted data related to counts of physical activity (PA) facilities and food outlets at 

each exam year from the Dun & Bradstreet (D&B) Duns Market Identifiers File (Dun & 

Bradstreet, Inc., Short Hills, NJ),[25] a commercial data set of US businesses with fair 

reliability and validity.[26, 27] Food outlets were classified according to 8-digit Standard 

Industrial Classification codes in Years 7, 10, 15, 20, and 25. Only 4-digit codes were 

available at baseline, necessitating a second step that involved matching business names 

(Supplemental file 2).

We used data from several commercial sources to calculate measures related to 

neighborhood sociodemographics, employment, street connectivity, and consumer and 

housing prices (Supplemental file 2). Using a Geographic Information System, we matched 

neighborhood-level measures to CARDIA respondents’ residential addresses at baseline and 

Years 7, 10, 15, 20, and 25.

Analytic Sample

Participants who resided in one of the baseline cities at each exam year were eligible for the 

current study (n=4,316, 2,462, and 1,202 at Years 0, 7, and 20, respectively). We excluded 

one participant who withdrew from the study and two participants who changed gender. We 

also excluded person-observations with missing diet data (n=3, 83, and 149 at Years 0, 7, 

and 20, respectively). Using multilevel mixed-effects linear regression (-mixed- in Stata 

14.0) with baseline study center, gender, race, age, and exam year, we imputed values for 

missing individual-level income data [n=758 (17.6%), 56 (2.3%), and 34 (2.8%) at Years 0, 

7, and 20, respectively] and marital status (n=6 (0.1%) at baseline). We also imputed values 

for missing data related to counts of PA and food outlets, road connectivity, and 

neighborhood sociodemographics (n=2, 2, and 4 at Year 7) using the mean of non-missing 

values across exam years. Our final sample size was 4,310, 2,377, and 1,053 individuals at 

exam years 0, 7, and 20, respectively (n=7740 person-observations).

Statistical Analysis

Outcome specification—We re-created an a priori diet quality score using a previously 

established approach.[23, 24] Briefly, based on their hypothesized relationships with health, 

we classified food groups (n=46) as beneficial (n=20), adverse (n=13), or neutral (n=13). At 

each exam, consumption (servings/week) of non-neutral foods was categorized into quintiles 

ranging from lowest to highest consumption and given a score of 0 to 4 for beneficial food 

groups and 4 to 0 for adverse food groups; for example, intake in the highest quintile of 

positively-rated foods received a score of 4 and vice-versa for negatively-rated foods. For 

food groups with a large proportion of non-consumption, we categorized non-consumers as 

0 and created quintiles for consumers only. The a priori diet quality score has a theoretical 

maximum of 132; a higher score indicates higher diet quality. The actual mean diet quality 

score in our analytic sample was 63.3 (SD=13, range=24–107) at baseline.
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Exposure specification—We created our explanatory variables (Y vector in equations 

below) by calculating food outlet counts within a 1-km street network distance from 

respondents’ residences, with the intent of capturing resources accessible by walking.[28] 

We then calculated the relative (versus absolute) availability of each food outlet type by 

calculating the percentage of convenience stores, grocery stores, and supermarkets per total 

food stores (sum of total convenience stores, grocery stores, and supermarkets), and the 

percentage of fast food restaurants and full-service restaurants per total restaurants (sum of 

total fast food and full-service restaurants). For example, a 10% increase in fast food 

restaurants equals a 10% decrease in full-service restaurants.

Given that associations between the percentage of food outlets and diet may differ with 

variation in the denominator (i.e., having fewer or more alternatives might influence choice 

of food outlet), we modeled the total number of food outlets as endogenous. Endogenous 

variables (including exposures) are related to, and determined by, other variables in the 

model.[29]

Covariates—We treated marital status and number of children as endogenous variables (W 
vectors in equations below). We also adjusted for non-instrument exogenous variables (X 
vectors in equations below), including age and age-squared (continuous), race (white, 

black), gender, educational attainment (<HS, ≥HS), income (≤$42,500, >$42,500), baseline 

study center, year, and market-level food prices. Exogenous variables are theoretically and 

statistically associated with endogenous variables, and not determined by other variables in 

the model.

Instrumental variables regression

Instrumental variables: Potential instruments (Z vectors in equations below) should be 

theoretically and statistically associated with endogenous variables; not correlated with 

unmeasured characteristics (i.e., error terms); and have no direct theoretical or statistical 

association with the outcome.[16, 17] We considered several potential instruments, including 

neighborhood sociodemographics; employment density; count of PA facilities; and street 

connectivity. Prior studies have shown that these factors influence variation in neighborhood 

food outlets,[4, 25] providing empirical support for our set of instruments. We also assumed 

that our instruments did not have a direct association with diet quality (outside of 

associations with food environment variables); however, sociodemographic variables 

predicted diet outcomes in multivariable-adjusted OLS models, and thus were excluded in 

our final IV model.

Empirical model: The following is the general specification for our model (Supplemental 

file 3):

1)

2)
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3)

In equation 1, Wit represented endogenous variables, which influenced both diet and food 

environment variables, and were also influenced by exogenous variables in the model; Zit 

represented exogenous IVs, which influenced food environment variables but not diet 

quality; and Xit represented other exogenous variables (e.g., food prices), which influenced 

both diet and food environment variables. In equation 2, Yit represented endogenous food 

environment variables. In equation 3, Dit represented diet quality. Across equations, i 
equaled 1, …, N participants; t equaled 1, …, Ti years; and μi and εit represented unobserved 

time-invariant and time-varying error components, respectively. The equations capture both 

the direct and indirect effects of vectors on endogenous variables (e.g., α2 represents the 

direct effect of Zit on Yit, and α1 represents the indirect effect of Zit on Yit via Wit).

We used the generalized method of moments (GMM) estimator, which is based on choosing 

a parameter value that minimizes a quadratic function of the moment conditions.[30] Unlike 

two-stage least squares, GMM estimation allows for a cluster-corrected weighting matrix, 

which is more efficient than other IV estimators.

Empirical tests of IV assumptions and specification: We used the Durbin-Wu-Hausman 

test to evaluate the assumption that our endogenous food environment variables were related 

to and influenced by other variables in the model. Failure to reject the null hypothesis 

implies that our food environment exposures were not exogenous, and our assumption was 

invalid. To test the assumption that our instruments were uncorrelated with the error terms, 

we used the Sargan-Hansen J test of overidentifying restrictions. Failure to reject the null 

hypothesis (p>0.05) supports our assumption that our IVs were not correlated with error 

terms in the model and that it was valid to exclude instruments as direct predictors of the 

outcome. To test the strength of the set of instruments combined to predict food environment 

exposures, we evaluated the magnitude of F-statistics from reduced form regressions; a 

critical value <10 indicates that instruments were weak.[31]

We used -ivregress- with the “gmm” option and the -estat- post-estimation command to 

report goodness-of-fit statistics and perform tests of endogeneity and overidentifying 

restrictions for IV regression in Stata (version 14.0). We also used a probit model to derive 

inverse probability weights to account for potential selection bias due to out-migration from 

the four cities between baseline and Year 20. We used gender, race, and baseline study 

center to predict the probability of being in the sample at Year 20, and used the inverse of the 

probability to weight all models (-pweight-).

To evaluate whether our results differed from non-causal methods, we compared the 

magnitude and direction of estimates from IV regression to OLS regression (with robust 

variance), which does not account for residual confounding at all; and FE regression, which 

accounts for time-invariant unmeasured characteristics only.[12] We used -reg- with the 

“vce” option for OLS regression and -xtreg- with the “fe” option for FE regression, and 

adjusted for all covariates.
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Sensitivity analyses—To determine whether estimates from the diet quality analysis 

were robust to our a priori classification, we also compared IV regression results to 

empirically-derived diet pattern scores. Using principle components analysis with 

orthogonal rotation, we derived two uncorrelated dietary patterns with the 46 food groups: 

one with high factor loadings of healthier foods, labeled “Prudent,” and another with high 

factor loadings of unhealthier foods, labeled “Western”. We also used IV regression to 

examine associations between the food environment and servings per week of fruits, 

vegetables, whole grains, red/processed meat, and sugar-sweetened beverages (SSBs) 

(Supplemental file 1). To determine whether estimates were robust to missingness, we 

compared IV models with imputed values to those without imputed values.

RESULTS

Participants’ a priori diet quality score increased from 61.5 (SD=12.6) at baseline to 67.3 

(SD=12.5) in Year 20, with a mean of 63.4 (SD=12.7) over time (Table 1). Intake of fruits 

and vegetables increased between baseline and year 20, while intake of red/processed meat 

and SSBs decreased; whole grain consumption remained relatively stable. The percentage of 

fast food restaurants and grocery stores decreased over time, while the percentage of full-

service restaurants, convenience stores, and supermarkets increased.

In the central IV regression analysis, we rejected the null hypothesis of the Durbin-Wu-

Hausman test (P<0.001), and we failed to reject the null hypothesis of the test of 

overidentifying restrictions (P=0.59), which implies our model was properly specified. F-

statistic values for were greater than 10,[31] suggesting that our combined instruments 

strongly predicted our explanatory variables (Table 2). Results were robust to the inclusion 

and exclusion of individual instruments, where identification was possible.

Although the magnitude of point estimates of food environment variables was small across 

all models, it was relatively larger using causal (IV regression) versus non-causal (OLS and 

FE regression) models (Table 3). Assuming a linear relationship, a 10% increase in the 

percentage of fast food restaurants (relative to full-service restaurants) was associated with a 

1.01 (95% CI: −1.99, −0.04) decrease in the a priori diet quality score over time using IV 

regression; whereas, the percentage of fast food restaurants and diet quality were not related 

using non-causal models. The percentage of convenience or grocery stores (relative to 

supermarkets) was not associated with diet quality using any model.

Sensitivity analyses

Point estimates derived from IV regression models with empirically-derived diet pattern 

scores were similar in direction to those obtained in the central analysis (Supplemental file 

4). However, the magnitude of point estimates was more similar to non-causal models. The 

food environment was not associated with weekly servings of any single food group. 

Estimates from IV models without imputed values were nearly identical to those with 

imputed values.
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DISCUSSION

Although some researchers propose that improvements to the neighborhood food 

environment can promote healthy lifestyles, there are substantial challenges in studying how 

neighborhoods influence health. In addition to a largely cross-sectional literature with a 

narrow focus on grocery stores,[2, 32] previous studies using non-causal models do not 

explicitly account for residual confounding, and other methods (e.g., propensity score 

matching) do not control for unobserved bias.[33] We sought to resolve these 

methodological limitations by estimating longitudinal associations between neighborhood 

food outlets and diet quality using a causal model (IV regression), which corrects for time-

varying and time-invariant residual confounding (assuming instruments are valid). We also 

compared the magnitude and direction of causal estimates to those derived from non-causal 

models, including OLS regression, which does not account for residual confounding at all, 

and FE regression, which only accounts for time-invariant unmeasured characteristics.

Compared to IV regression, we found that associations between the neighborhood food 

environment and diet quality were attenuated using non-causal models. Our results were 

consistent with previous studies comparing IV and OLS estimates of associations between 

environmental exposures and BMI across several disciplines.[19–21, 34, 35] Given the 

differences in magnitude between IV and FE regression, it also appears that time-varying 

unmeasured characteristics were an important source of bias. IV regression producing larger 

estimates may be due to a mismatch between demand and availability of certain types of 

food outlets (e.g., high demand for fast food among individuals locating in neighborhoods 

with few fast food restaurants). Although a few studies report no associations between 

neighborhood fast food restaurants and diet outcomes,[7, 36] our findings suggest that these 

relationships may be understated in the literature due to residual confounding.

We observed an inverse association between the percentage of fast food restaurants and diet 

quality using IV regression. However, we did not observe similar associations between the 

percentage of convenience or grocery stores and diet quality, nor with weekly servings of 

single food groups. These findings suggest that the distribution of fast food restaurants 

affects overall diet quality, possibly via changes across multiple food groups. For example, 

the relationship between fast food restaurants and single food groups may be too small to 

detect alone, while combined changes may be large enough to matter (e.g., relatively high 

consumption of adverse foods and low consumption of beneficial foods).

Our study shows that it may be possible to correct for residual confounding using a single-

equation estimator with valid instruments.[16, 37] Our sensitivity analyses with empirically-

derived dietary pattern scores and single food groups were also a strength, and the latter 

allowed us to consider which food groups may (or may not) have driven negative or null 

associations with diet quality. Although we were able to use street-network buffers and 

relative (vs. absolute) measures of food outlets to quantify the residential food environment, 

we were not able to capture what foods were sold in each food outlet type or food-

purchasing behavior. We also observed small classification errors in D&B, but we explicitly 

corrected for conspicuous errors, which were probably random in nature. Our measures of 

dietary intake were also based on self-report, which is prone to recall bias and error.
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In sum, we found that the relative availability of fast food restaurants was negatively 

associated with diet quality over time using a causal approach (IV regression), and that 

estimates from non-causal models (OLS and FE regression) were attenuated relative to 

causal models, potentially due to residual confounding. Our results emphasize the 

importance of assessing potential bias in studies of the food environment and health, and 

future observational studies may benefit from using causal methods that explicitly account 

for bias. Estimates of neighborhood associations with health in the literature are often weak, 

so ignoring potential bias could impact the accuracy and interpretation of findings. 

Furthermore, interventions and policies related to the food environment have focused on 

absolute changes to food outlets and have been largely unsuccessful,[8, 9, 38–40] but our 

results highlight the need to consider relative changes to food outlets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SUMMARY BOXES

What is already known on this subject?

In two or three sentences explain what the state of scientific knowledge was in this area 

before you did your study and why this study needed to be done. Be clear and specific.

• The majority of food environment and diet studies use non-causal modeling 

approaches (e.g., ordinary least squares regression), which ignore potential 

residual confounding and may contribute to mixed findings in the literature.

• A causal approach to correct for residual confounding bias is instrumental-

variables (IV) regression, which theoretically provides less biased estimates 

relative to non-causal models.

• To our knowledge, no studies have examined the potential for unobserved bias 

in the context of the food environment and diet outcomes.

What this study adds?

Give a simple answer to the question “What do we now know as a result of this study that 

we did not know before?”. Be brief, succinct, specific, and accurate. You might use the 

last sentence to summarize any implications for practice, research, policy, or public 

health.

• We found that the relative availability of fast food restaurants was negatively 

associated with diet quality over time using a causal approach (IV regression), 

and that estimates from non-causal models (ordinary least squares and foxed 

effects regression) were attenuated relative to causal models, potentially due 

to residual confounding.

• Our results emphasize the importance of assessing potential bias in studies of 

the food environment and health, and future observational studies may benefit 

from using causal methods that explicitly account for bias.
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TABLE 1

Descriptive statistics for study participants over the study period1: CARDIA exam years 0 (1985/86), 7 

(1992/3), and 20 (2005/06)

Exam year Year 0 Year 7 Year 20

N 4318 2374 1060

Individual-level socio-demographics (% or mean (SD))

 White 44.0 41.8 30.1

 Female 53.9 55.0 59.2

 Education ≤high school 41.8 29.2 24.2

 Income ≤$45,000 79.8 74.3 52.6

 Marital status (yes) 21.7 38.3 39.9

 Children (yes) 34.1 57.5 74.1

 Age, yr 24.8 (3.7) 32.0 (3.7) 45.2 (3.7)

Individual-level diet outcomes (mean (SD))

 a priori diet quality score 61.5 (12.6) 65.2 (12.3) 67.3 (12.6)

 Prudent diet pattern score3 −0.04 (0.99) −0.08 (0.97) −0.15 (0.97)

 Western diet pattern score4 0.06 (1.03) 0.10 (1.09) 0.16 (1.18)

 Fruit (svgs/wk) 1.5 (1.8) 1.7 (2.0) 1.7 (1.8)

 Vegetables (svgs/wk) 2.5 (2.3) 2.9 (2.5) 2.8 (2.3)

 Whole grains (svgs/wk) 1.5 (1.6) 1.7 (1.7) 1.5 (1.6)

 Red/processed meat (svgs/wk) 4.3 (4.0) 3.7 (3.5) 2.9 (2.7)

 Sugar-sweetened beverages (svgs/wk) 1.7 (2.3) 1.5 (2.3) 1.2 (2.6)

Neighborhood-level food outlets within 1km (mean (SD))2

 Fast food restaurants, % per total restaurants 65.0 (46.0) 46.0 (34.7) 41.7 (31.1)

 Full-service restaurants, % per total restaurants 2.6 (9.9) 39.8 (33.4) 41.5 (31.1)

 Convenience stores, % per total food stores 29.6 (28.3) 37.8 (25.8) 38.5 (28.0)

 Grocery stores, % per total food stores 60.4 (33.2) 53.9 (28.0) 45.4 (29.6)

 Supermarkets, % per total food stores 1.5 (6.3) 3.3 (8.3) 5.4 (11.2)

 Total restaurants, count 2.8 (4.5) 10.5 (17.7) 11.9 (26.0)

 Total food stores, count 5.4 (4.3) 11.3 (8.4) 8.1 (8.7)

1
Data are shown for each of the three CARDIA exam periods included in the analysis, with Year 0 being the study baseline.

2
Values represent the mean for all CARDIA participants per year and thus do not equal 100% for total restaurants or total food stores.

3
The “Western” diet pattern score has a theoretical mean and standard deviation of 0 and 1, respectively; a higher score indicates lower diet quality 

(range in analytic sample: −3.0 to 17.8).

4
The “Prudent” diet pattern score has a theoretical mean and standard deviation of 0 and 1, respectively; a higher score indicates higher diet quality 

(range in analytic sample: −3.3 to 9.5).
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TABLE 2

Goodness-of-fit statistics for evaluating strength of identification of endogenous variables: CARDIA exam 

years 0, 7, and 20

F-statistic p-value1

Fast food restaurants, % per total restaurants 87.4 <0.001

Convenience stores, % per total food stores 24.5 <0.001

Grocery stores, % per total food stores 55.1 <0.001

Total food outlets, count 288.5 <0.001

Marital status 14.3 <0.001

Number of children 9.9 <0.001

1
Rejecting the F-test indicates that our set of instruments provides good identification for that endogenous variable.
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