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Abstract

The increasing complexity of computer models used to solve contemporary infer-

ence problems has been set against a decreasing rate of improvement in processor

speed in recent years. As a result, in many of these problems numerical error is a

challenge for practitioners. However, while there has been a recent push towards

rigorous quantification of uncertainty in inference problems based upon computer

models, numerical error is still largely required to be driven down to a level at

which its impact on inferences is negligible. Probabilistic numerical methods have

been proposed to alleviate this; these are a class of numerical methods that return

probabilistic uncertainty quantification for their numerical error. The attraction of

such methods is clear: if numerical error in the computer model and uncertainty

in an inference problem are quantified in a unified framework then careful tuning

of numerical methods to mitigate the impact of numerical error on inferences could

become unnecessary.

In this thesis we introduce the class of Bayesian probabilistic numerical meth-

ods, whose uncertainty has a strict and rigorous Bayesian interpretation. A number

of examples of conjugate Bayesian probabilistic numerical methods are presented

before we present analysis and algorithms for the general case, in which the poste-

rior distribution does not posess a closed form. We conclude by studying how these

methods can be rigorously composed to yield Bayesian pipelines of computation.

Throughout we present applications of the developed methods to real-world infer-

ence problems, and indicate that the uncertainty quantification provided by these

methods can be of significant practical use.
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Chapter 1

Introduction

I may not have gone where I intended to go, but I think I have ended

up where I intended to be.

—Douglas Adams

The subject of the thesis, and its core research questions, will first be intro-

duced. In this chapter mathematical statements are somewhat sparse and important

concepts will be introduced rigorously in Chapter 2. The goal here is instead to pro-

vide intuition into the subject of, and main goals of the thesis.

1.1 Introduction to the Introduction

Since the advent of the digital age, the applied sciences have increasingly depended

on computer models to simulate from complex physical processes. These models are

formed of sets of equations that rarely have an analytical solution, and so the equa-

tions are discretised to produce a numerical method that yields an approximation

to the solution. The error incurred by discretising such systems is referred to as

discretisation error. In recent years there has also been a blossoming interest in the

field of uncertainty quantification (UQ), which seeks to quantify, often probabilisti-

cally, the uncertainty incurred when synthesising computer models with imperfect

or uncertain data. Probabilistic numerical methods (PNM) bring together the fields

of numerical analysis and uncertainty quantification by providing a probabilistic

quantification of discretisation error.

The roots of PNM can be traced back to the start of the 20th century

[Oates and Sullivan, 2019], but recent years have seen a surge in their develop-

ment. Great leaps forward have been made, but the field has been constrained
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by a lack of underlying theoretical principles. In particular, such methods are of-

ten labelled “Bayesian”, suggesting that the uncertainty output has a rigorous and

well-understood interpretation. However, until the work in this thesis, there was no

common definition of what makes a PNM Bayesian, and the particular features of

the setting in which PNM are generally constructed make such a definition surpris-

ingly complicated to elicit.

This thesis sets out to answer this question. In particular, the research

questions answered in this thesis are:

1. What makes a PNM Bayesian?

2. When are Bayesian PNM well-defined?

3. When can Bayesian PNM be usefully composed?

To answer these questions, we will construct a number of simple Bayesian PNM

in tractable settings to identify their common characteristics, and then proceed to

a rigorous treatment of the general setting. At the conclusion of the thesis, we

will have established general conditions for a Bayesian PNM to have a well-defined

output, have established algorithms for sampling from the output, and studied the

composition of Bayesian PNM.

1.2 Numerical Analysis as Inference

This section will introduce the background for the thesis and the core conceit of

PNM: that problems in numerical analysis can be phrased as inference problems.

1.2.1 Numerical Methods and Discretisation Error

Many equations that are of significant practical interest in the applied sciences do

not have a closed-form solution. To provide a canonical example, let D be an open

subset of Rd with boundary @D and consider the following elliptic partial di↵erential

equation (PDE):

�r ·
⇣
(x)ru

†(x)
⌘

= g(x) x 2 D

u
†(x) = b(x) x 2 @D (1.1)

This PDE is a simplified model for the flow of a quantity through a porous medium,

described by the domain D. The function (x) describes the permeability of the

domain, while u
†(x) is the pressure field for the quantity, with the superscript †

3



used to indicate that it is the “true” solution to the PDE. The applications of this

PDE are numerous; it has been used as a model for the steady state in groundwater

flow problems [Wang and Anderson, 1982] and also for medical imaging [see e.g.

Holder, 2004]. However, while it can be proven that under certain not particularly

restrictive conditions on D, , g and b a suitable notion of a solution exists and

has certain regularity properties, no closed-form for the solution can be determined

apart from in pathological cases.

The practical importance of this and similar systems cannot be overstated.

Indeed, modelling physical processes using intractable equations is increasingly cen-

tral to the applied sciences and society, as discussed in detail in the recent Blackett

report [Government O�ce for Science, 2018]. Numerical analysis is concerned with

the construction of and analysis of algorithms for producing approximate solutions

to such equations. This unspecified approximation is termed here û. To produce the

approximation, generally some kind of discretisation of the equations is employed.

For example, in the finite di↵erence method (FDM) for PDEs the continuous

domain D is replaced with a finite set of points, defined on a regular grid, and the

continuous equations replaced by finite di↵erence approximations thereof, resulting

in a finite-dimensional linear system that can be solved to approximate u
†(x). Al-

ternatively the discretisation could be of the function space that u
† occupies; in the

finite element method (FEM) this space is replaced by a finite-dimensional subset

thereof, whose basis functions are defined on small cells (called elements) of the

domain.

Regardless of how the discretisation is constructed, the translation from a

problem that is continuous and infinite-dimensional to one that is finite-dimensional

generally results in an error, ku† � ûk, where k ·k is an unspecified norm adapted

to the problem. This error is called discretisation error, and controlling that error

is again the focus of much of numerical analysis [Higham, 2002]. Control over this

error as a function of the discretisation resolution is a basic consistency requirement

for numerical algorithms, and more detailed descriptions of the error can be used to

adaptively refine the discretisation at the most critical locations in the domain.

Non-Negligible Error

There exist numerous applications in which current computational capacity is insu�-

cient to allow a discretisation detailed enough to make discretisation error negligible.

Two examples in which this is a serious and present challenge are:

• Climate Modelling. The importance of climate modelling [IPCC, 2009]

hardly needs to be stated in the modern day. The domain of the problem is

4



the earth, and the long timescales over which simulations of future climate

is required composed with the fine-scale on which the phenomena modelled

occur is such that a suitably fine discretisation is impossible.

• Computational Biology. Patient-specific models [Niederer et al., 2011] are a

tool of emerging importance in medicine. In cardiology, patient-specific models

are being developed to assist cardiac surgeons in procedures. For example, in

the treatment of cardiac arrhythmias, a patient-specific model of electrical

conductivity could be used to determine where in the heart to ablate in order

to treat the arrhythmia. To be of use, it must be possible to simulate from

these models on clinical timescales. The resolution of the discretisation, and

thus the size of discretisation error, competes with the solution speed required

for this practical application.

Many more such examples exist, but even from these two instances it is clear that

discretisation error is not a “solved problem” in numerical analysis. Rather, this is

a significant present challenge that a↵ects the ability of applied scientists to tackle

significant, real-world problems in society.

1.2.2 Inverse Problems and Uncertainty Quantification

Of particular relevance to this thesis are inverse problems. Consider a parameter ✓,

to be determined, and let G denote a map known as the parameter to observation

map. Experimental data y is related to ✓ by

y = G(✓) + ⇠

where ⇠ represents some noise process. To be concrete, here G might compose some

observation operator with the solution of a computer model, such as Eq. (1.1), while

✓ represents unknown parameters of that model which must be inferred, perhaps to

study some physical aspect of the problem such as the permeability field in Eq. (1.1),

or perhaps to make predictions from the model. The inverse problem is the problem

of “inverting” G to obtain an estimate of ✓.

The reason for placing inverted commas around “inverting”, above, is that

the inversion procedure is usually ill-posed. This could be for any of a number of

reasons, expounded in Dashti and Stuart [2017]:

1. If the dimension of the spaces which ✓ and y occupy di↵ers, then the problem

is either over-determined or under-determined and so a single ✓ representing

the unique inverse of G cannot be determined.

5



2. G might not be a linear map, in which case a unique solution is not guaranteed

in any case.

3. The observed instance of the noise ⇠ might be such that y lies outside of the

image of G.

As a result, some regularisation of the problem is needed to ensure that a solution

to it exists. Bayesian methods [Stuart, 2010] have emerged as a popular method by

which to perform this regularisation.

In a Bayesian inverse problem, a prior distribution p(✓) is placed on ✓. This

reflects the prior beliefs of the user about the parameter. This is then combined

with a likelihood, p(y|✓) that describes how likely the data is to be observed under

a given parameter, to obtain a posterior p(✓|y) that describes the user’s beliefs

given the data that they have observed. Such problems take their name from Bayes

theorem which, assuming the parameters and data are finite-dimensional, provides

an explicit form for the posterior distribution:

p(✓|y) =
p(y|✓)p(✓)

p(y)
(1.2)

where

p(y) =

Z
p(y|✓)p(✓)d✓.

A subtlety of the Bayesian formalism is the way in which uncertainty enters

the equation. The most obvious way in which uncertainty arises is through the noisy

observations of y, represented by ⇠. However, a second source of uncertainty arises

from the often underdetermined nature of such problems. Even if ⇠ is constant at 0,

resulting in exact observations, the fact that y does not contain enough information

to uniquely determine ✓ can still be interpreted as a kind of uncertainty. Here

the uncertainty represents the extent to which ✓ can be determined from what has

been observed. This interpretation is central to PNM, which posit that numerical

problems can be viewed as a kind of noiseless inverse problem, and thus are amenable

to a statistical treatment.

1.2.3 Probabilistic Numerical Methods

Probabilistic numerical methods are numerical methods that return a probability

distribution, whose purpose is to quantify uncertainty in the solution due to discreti-

sation error. This section will provide a literature review on the roots of PNM, up
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to present day, and place them in the context of the material thus far presented in

this chapter. Note that more thorough literature reviews for the particular problems

considered in this thesis are provided in the relevant chapters; for for linear solvers

in Chapter 4 and for PDEs in Chapter 5.

The idea to apply a statistical methodology to numerical problems is by no

means a modern creation. Perhaps the earliest reference to an approach that we now

understand as a PNM appears in Poincaré [1912]1. In that work, after examining

several di↵erent perspectives on the problem of function approximation, Poincaré

ultimately arrives at a Bayesian approach to the problem that we would now un-

derstand as Gaussian process regression, many years before the theory on Gaussian

processes was formalised. Function approximation is in many ways a prototypical

numerical method, and so this is perhaps the earliest instance of a mathematician

proposing that a statistical approach be applied to a numerical problem.

The modern perspective on PNM first appeared in a remarkable and prescient

series of papers by Frederick Michael (F.M.) Larkin (particularly Larkin [1972]; see

also Larkin [1969, 1970, 1974, 1979b,a]; Kuelbs et al. [1972]). In those papers,

Larkin proposed modelling an unknown function using a Gaussian measure on a

Hilbert space, and producing a numerical method by conditioning that measure on

knowledge of a finite number of functionals evaluated on the unknown. In addition

to applying this to function approximation, the technique we now know as Bayesian

quadrature was discussed in Larkin [1972]. Other early proponents of this view

include Kadane and Wasilkowski [1985] and Diaconis [1988]. In his paper, Diaconis

again introduces Bayesian quadrature, motivating this approach by way of the quote

included at the start of Chapter 6. His argument is that, even though one has

an analytical expression for a function f , many properties of it are nevertheless

unknown, and so an approach which acknowledges that uncertainty is justified.

Bayesian optimization was developed at the end of the 1980s, in Mockus

[1989] and Törn and Žilinskas [1989]. This approach augments a function approxi-

mation procedure with minimization2; the uncertainty in the function is used both

to acknowledge resulting uncertainty in its minimum, and to develop a procedure

for sequentially selecting locations at which to interrogate the function based on the

belief about where its minimum might lie. Research on Bayesian optimization is

slightly at odds with other PNM, in the sense that the probability is predominantly

used to construct an evaluation strategy rather than forming a fundamental out-

put of the method. Nevertheless, to this day it remains among the most popular

1Noted in Diaconis [1988]
2Equivalently, maximization; we assume minimization for simplicity.
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and successful PNM, and is widely used to optimize hyperparameters in machine

learning methods [Snoek et al., 2012].

Interest in PNM has surged in recent years, spurred by the positioning paper

of Hennig et al. [2015]. Bayesian quadrature methods continue to be developed, with

O’Hagan [1991] in the 1990s, and recent developments including Briol et al. [2019];

Xi et al. [2018]; Karvonen and Särkkä [2017]; Karvonen et al. [2018]. New areas in

which PNM have been developed include numerical linear algebra [Hennig, 2015;

Cockayne et al., 2019a; Bartels et al., 2019, see also Chapter 4], ordinary di↵erential

equations [Schober et al., 2014; Conrad et al., 2017; Kersting and Hennig, 2016;

Chkrebtii et al., 2016, see also the discussion in Section 1.3] and partial di↵erential

equations Owhadi [2015]; Cockayne et al. [2016, see also Chapter 5]. Development

in Bayesian optimization also continues at a rapid pace; see Snoek et al. [2012]

for a review. Yet, literature on foundational principles of PNM has thus far been

surprisingly sparse, a gap which this thesis seeks to address.

1.3 Towards Bayesian Probabilistic Numerical Methods

Despite the surge in interest in PNM, foundational theoretical contributions have

not matched the pace of new developments. A particular open question is when

PNM output a distribution can truly be interpreted as a Bayesian posterior. To

take ODEs as an example, consider an ODE of the form

u
0 = f(u(t)) t 2 [0, T ]

u(0) = u0.

The works of Schober et al. [2018] and Chkrebtii et al. [2016] each begin with a

Gaussian prior, and discretise the domain with a grid of points 0 < t1 < · · · <

tn = T . A simplified version of one approach from Schober et al. [2018] proposes to

obtain data by sequentially evaluating yi = f(mi(ti)), and conditioning the prior on

u
0(ti) = yi. Here mi is the posterior mean at iteration i. Conversely, Chkrebtii et al.

[2016] proposes to obtain data by sampling ui ⇠ µi, for µi the posterior at iteration

i, and then conditioning on u
0(ti) = f(ui). Both approaches claim to be Bayesian,

and both involve a prior and a Bayesian conditioning procedure. Yet, the work of

this thesis will show that neither approach has a strictly Bayesian interpretation.

Thus, it is clearly the case that a rigorous definition of a Bayesian PNM is required.

Similarly, for PDEs, Cockayne et al. [2016] proposed a method for linear

PDEs based upon conditioning a Gaussian prior that will be presented in Chapter 5,
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while Conrad et al. [2017] proposed a method based upon perturbing basis functions

in classical solvers with a small amount of noise, based upon the known convergence

order of the solver. There is an intuitive and fundamental distinction between these

two approaches, and yet no framework in which they can be compared yet exists.

A more profound issue is the question of when PNM can be composed and still

yield a meaningful output. Computer models often involve the solution of multiple

interlinked systems of equations, often using distinct numerical methods. For an

example in computational biology, see Niederer et al. [2011]. The analysis of error

in the composed system can be nontrivial [Babuška and Söderlind, 2018]. This has

often been listed as a potential area of high impact for PNM [see e.g. Hennig et al.,

2015; Conrad et al., 2017; Cockayne et al., 2019a], owing to the richer description of

error that they provide. However, conditions under which PNM, even those with a

Bayesian interpretation, can be composed meaningfully have yet to be elicited, and

again turn out to be surprisingly nontrivial.

1.4 Outline of the Thesis

The remainder of the thesis proceeds as follows. In the rest of this part, Chap-

ter 2 provides the necessary mathematical and statistical background for the de-

velopments in later chapters, and Chapter 3 introduces an intuitive definition of a

BPNM, leaving technical details for later in the thesis.

In Part II, BPNM are explored in a conjugate setting, with Gaussian priors

and linear information. Chapter 4 introduces a PNM for the solution of finite-

dimensional linear systems, while Chapter 5 focuses on partial di↵erential equations.

Part III departs from the conjugate setting. In Chapter 6 we describe condi-

tions for the existence of a posterior distribution for a generic prior and potentially

nonlinear information, as well as introducing connections to decision theory and

algorithms for sampling from these intractable posteriors. In Chapter 7 we explore

the composition of PNM, and introduce conditions under which composed BPNM

yield a distribution with a rigorous Bayesian interpretation. Finally, Chapter 8

summarises the contributions and discusses important next steps for this emerging

field.
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Chapter 2

Background

“Mathematics is a game played according to certain simple rules with

meaningless marks on paper.”

—David Hilbert

This chapter provides background essential for the thesis. Note that some

additional basic background material is included in Appendix A. The chapter pro-

ceeds as follows. In Section 2.1 we introduce some of the basic notation required. In

Section 2.2 we introduce some of the relevant PDE theory for the thesis and discuss

numerical solution of PDEs, then Section 2.3 introduces relevant probability theory.

Lastly, Section 2.4 introduces the idea of a Bayesian inverse problem and presents

an example of a PDE-constrained inverse problem that will serve as a test problem

in several sections of this thesis.

2.1 Notation

R will denote the set of all real numbers. Vectors in Rd will usually be denoted

with bold, lower-case Latin symbols, i.e. x 2 Rd. Throughout, we will assume that

D ✓ Rd for some d <1, and D will be taken to be an open set with boundary @D.

The notation D = D [ @D will be used. We use the notation L
p(D) to denote the

set of all functions u : D ! R with the property that kukp <1, where

kukp =

✓Z

D

|u(x)|p dx

◆ 1
p

.

Functions will usually be denoted with lower-case Latin symbols, i.e. u 2 L
p(D).

When p = 1, let kuk1 = supx2D |u(x)|; thus L
1(D) is a space consisting of all
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bounded functions. The notation C(D) will be used to denote the set of all contin-

uous functions on D. Similarly C
n(D) denotes the set of all continuous functions

with n continuous derivatives on D. Occasionally we will make use of L
p spaces

with respect to a measure other than the Lebesgue measure. Let µ denote some

measure on D; then L
p(D, µ) is the set of all functions u : D ! R with the property

that kukp,µ <1, where

kukp,µ =

✓Z

D

|u(x)|p µ(dx)

◆ 1
p

.

The evaluation functional will be denoted �x for x 2 D; for any function f : D ! R,

�x(f) = f(x).

For a sequence u = (ui), kukp = (
P

1

i=1
|ui|p)

1
p . The space `

p is the set of all

sequences u with kukp <1. When p =1, `
1 is the set of all bounded sequences.

Both the spaces L
2(D) and `

2 have the special property that they are Hilbert spaces.

2.2 Partial Di↵erential Equations

2.2.1 Numerical Solution of PDEs

The solution of PDEs is a fundamental task in numerical analysis, that is of interest

across the applied sciences. So many processes are modelled using PDEs that at-

tempting to provide an exhaustive list is an impossible task. The canonical text on

the theoretical analysis of PDEs is Evans [2010]. Brezis and Browder [1998] provide

a brief history of the analysis of PDEs, noting that they are used modelling the

physics of such diverse quantities as “vibrating strings, elasticity, the Newtonian

gravitational field of extended matter, electrostatics, fluid flows,. . . heat conduction,

electricity and magnetism.” As such, their importance can hardly be overstated,

and it is no surprise that many computer models have PDEs as their backbone.

Nevertheless, as discussed in Chapter 1, PDEs of interest seldom admit closed-form

solutions, and so the numerical solution of PDEs is associated with an equally vast

body of research as their theory and applications.

A surprisingly nuanced point is what is meant by the solution of a PDE. For

reference, consider again the following elliptic PDE from Eq. (1.1):

�r ·(x)ru(x) = g(x) x 2 D

u(x) = b(x) x 2 @D (2.1)

The most intuitive meaning of “solution” here would be a function, u(x), which
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satisfies the governing equations at each point x 2 D. Such a solution is known as a

strong solution, and Eq. (2.1) is referred to as the strong form of the PDE. However,

this definition proves to be restrictive for many systems which are nevertheless of

significant practical interest. To borrow an example from Evans [2010, Section 1.3],

the following PDE is often used to describe the propagation of shock waves:

@u

@t
+rx(F (u)) = 0

where F (u) is a potentially nonlinear function of u. The shock wave is represented

by a discontinuity in u that lies on a Lebesgue-null set of the domain D (for example,

a line or curve if D = R2), and so there are locations x 2 D at which rxu is not

defined, rendering a strong solution meaningless. As a result, a solution to the

system is often sought which is distributional in nature, in the sense that it satisfies

the governing equations almost-everywhere with respect to the Lebesgue measure.

Suppose that u 2 B(D) for some separable Banach space B(D), and let

V := {'i}i2N denote a basis of B(D). Then the weak form of Eq. (2.1) is obtained

by post-multiplying the equations by 'i and then integrating over the domain:

�
Z

D

r ·(x)ru(x)'i(x)dx =

Z

D

g(x)'i(x)dx x 2 D

Z

@D

u(x)'i(x)dx =

Z

@D

b(x)'i(x)dx x 2 @D. (2.2)

A solution u(x) =
P

i2N ui'i(x) which satisfies Eq. (2.2) for all i 2 N is known as a

weak solution to the PDE.

Today there exist a plethora of numerical schemes for approximating the

solution of such equations, among the most well-known of which are finite dif-

ference methods (FDM) [T. and Smith, 1987] and finite element methods (FEM)

[Zienkiewicz et al., 2013; Mitchell, 1988]. Each of these approaches discretises the

domain in some sense. In the case of FDM, this is by constructing a regular grid

of points and approximating derivatives using finite di↵erences. This results in a

finite-dimensional linear system of equations that can be solved to produce an ap-

proximate solution to the strong form of the PDE on the grid.

FEM instead discretise the weak form of the PDE, by first dividing the

domain into cells or volumes in a procedure referred to as “meshing”. The solution

is then approximated using a procedure known as Galerkin’s method, which involves

selecting an appropriate Vm ⇢ V with dim(Vm) = m < 1 and solving Eq. (2.2)

in Vm instead of in V. In the case of a linear PDE, this once again yields a linear

system of equations that can be solved to produce the coe�cients of a projection of
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the solution into Vm. The space Vm is typically constructed by defining a basis that

is compactly supported on the cells of the mesh. Then, if the PDE is governed by

a compact linear operator, the resulting linear system is sparse.

2.2.2 Sobolev Spaces

The amount of PDE theory required for the thesis is limited, however Sobolev spaces

are of significant importance and will be introduced in this section. For a more

detailed treatment, see Leoni [2017] for an accessible introduction and Demengel

and Demengel [2012] for the general case.

Central to the concept of a Sobolev space is a weak derivative, a derivative

that exists in the same weak sense as the weak solution described in the previous

section. The weak derivative allows definition of the Sobolev norm, and in turn a

Sobolev space.

Definition 2.2.1 (Weak Derivative). Let D ✓ Rd be open, ↵ 2 Nd, and let |↵| =
P

d

i=1
↵i. The vector ↵ is known as a multi-index. Let

@
↵ =

@
|↵|

@x
↵1
1

· · · @x
↵d
d

.

For a function u : D ! R, the function v : D ! R is known as the ↵-weak-derivative

of u if it holds that

Z

D

�(x)@↵
u(x) dx = (�1)|↵|

Z

D

@
↵
�(x)v(x) dx

for all � 2 C
1(D) such that � is supported on a compact subset of D. We will use

the notation D
↵
u = v.

Definition 2.2.2 (Sobolev norm). Fix k, p 2 N, For a function u 2 L
p(D), the

Sobolev norm of u is defined as

kukk,p :=
X

|↵|k

kD↵
ukp.

Sometimes the norm

kukk,p =

0

@
X

|↵|k

kD↵
ukp

1

A

1
|↵|
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is used, rather than that in Definition 2.2.2, however this norm is equivalent1.

Definition 2.2.3 (Sobolev Space). The Sobolev Space Wk,p(D) is defined as:

Wk,p(D) := {u 2 L
p(D) : kukk,p <1}.

The space Wk,p(D) is separable whenever p < 1 and is a Hilbert space whenever

p = 2. The notation Wk,2(D) = Hk(D) will be used in this special case.

2.3 Probability Theory

We now turn to an exposition of essential concepts from probability theory. We

begin this section by establishing some notation. The notation established here is

introduced more thoroughly in Appendix A.2.

For a measurable space X equipped with �-algebra BX , the notation PX will

be used to denote the set of all probability measures on X . Probability measures

will also sometimes be called distributions. Typically the �-algebra used will be the

Borel �-algebra. For any B 2 BX , the notation I[B] : X ! {0, 1} will be used to

denote an indicator function on B. We will generally denote probability measures

using Greek letters, i.e. µ, ⌫ 2 PX . Absolute continuity of µ with-respect-to ⌫ is

denoted µ ⌧ ⌫. For functions f : X ! R and measures µ 2 PX we will use the

notation

µ(f) :=

Z

X

f(x) µ(dx).

The notation �(x) will be used to denote a Dirac measure on the point x 2 X .

For a map T : X ! Y the associated pushforward of the measure µ 2 PX is

denoted T#µ, and defined as [T#µ](B) = µ(T�1
B), for each B in the image of BX

under T . Random variables will be denoted using capital letters, i.e. X, U . When

X, Y, Z are random variables on a space X , conditional independence of X and Y

given Z is denoted X ?? Y |Z.

2.3.1 Construction of Measures on Function Spaces

Another important concept for this thesis is the construction of measures on function

spaces, which will now be introduced. The natural setting for probability measures

on function spaces is separable Banach spaces, for reasons discussed in detail in

Dashti and Stuart [2017], and so we restrict attention to construction on such spaces

1In the sense that it induces the same topology on the Sobolev spaces introduced next.
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here. To this end, assume that X is a separable Banach space, and let {�i}i2N denote

a basis of X . Then, it holds that any u 2 X can be represented as

u =
1X

i=1

ui�i

for some sequence of coe�cients (ui). A distribution on X is obtained by randomis-

ing the coe�cients, i.e. by defining the random variable

U = u0 +
1X

i=1

�i⇠i�i. (2.3)

Here (⇠i) is a sequence of IID random variables with mean zero, while (�i) is a second

sequence introduced to ensure that the series converges almost-surely. The element

u0 2 X is some element of X to allow for distributions with nonzero expectation.

Di↵erent random variables (⇠i) result in di↵erent function-space distribu-

tions, where the `
p space in which (�i) must lie to ensure almost-sure convergence

depends on the choice of (⇠i). Uniform distributions are obtained when ⇠i ⇠ U [�1, 1]

and (�i) 2 `
1 [Dashti and Stuart, 2017, Section 2.2]. Gaussian distributions are

obtained when ⇠i ⇠ N (0, 1) and (�i) 2 `
2. Cauchy distributions arise2 when

⇠i ⇠ Cauchy(0, 1) and (�i) 2 `
2.

Generally speaking, this view of constructing measures on function spaces

requires that Eq. (2.3) be truncated when used in computation, that is, computation

proceeds based on the following random variable defined on a finite-dimensional

subspace of X :

U
N = u0 +

NX

i=1

�i⇠i�i. (2.4)

However, in the case of a Gaussian distribution an important alternate view of the

distribution arises.

2.3.2 Gaussian Measures

For a Gaussian distribution it is possible to choose the �i and �i in such a way as

to yield a more tractable distribution, commonly referred to as a Gaussian process

(GP). While the term “Gaussian process” can be used to refer to any Gaussian

measure, in this work it is used to refer to the presentation in this section. Compre-

hensive works on GPs include Bogachev [1998] and Rasmussen and Williams [2006];

2In fact, this holds only for the case for B a Hilbert space; the case for general Banach spaces is
more complicated, see Sullivan [2017].
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the former gives a measure-theoretic treatment, while the latter is more practical.

To define a GP we must first introduce some notation and definitions. For

an arbitrary domain D, let X = {x1, . . . ,xn} ⇢ D and X
0 = {x0

1
, . . . ,x0

n0} ⇢ D.

Then, for a function m : D ! R, m(X) 2 Rn is the vector with

[m(X)]i = m(xi).

Similarly, for a function k : D ⇥D ! R, k(X, X
0) 2 Rn⇥n

0
is the matrix with

[k(X, X
0)]ij := k(xi,x

0

j).

The matrix k(X, X) is sometimes referred to as k(X).

Definition 2.3.1 (Positive-definite function). The function k : D⇥D ! R is said to

be positive-definite if, for any finite set X ⇢ D, k(X,X) is a positive-definite matrix.

Similarly, k is said to be positive-semidefinite if k(X, X) is a positive-semidefinite

matrix for each X.

Definition 2.3.2 (Gaussian process). A random variable U on a domain D is said

to be a Gaussian process if there exists a function m : D ! R and a symmetric,

positive-definite kernel k : D⇥D ! R such that, for any set X = {x1, . . . ,xn} ⇢ D,

it holds that

U(X) ⇠ N (m(X), k(X))

where U(X) = [U(x1, . . . ,xn)]>. We use the notation U ⇠ GP(m, k). The function

m is referred to the mean of the GP, while k is referred to as its covariance function

or kernel.

This view of GPs is more tractable than that in Eq. (2.3) because the only

truncation error in the representation of the process is through the fact that only a

finite number of evaluation locations X can be stored in memory. However, for each

finite set X the finite-dimensional marginals U(X) can be computed exactly in this

formulation.

GPs have many other convenient properties. Much like their finite-dimensional

counterparts, there is an explicit formula for the projection of a Gaussian process

through an arbitrary bounded linear operator. Let L be a bounded linear operator,

and assume that m lies in the domain of L while k lies in the domain of LL̄, where

L̄ denotes the adjoint of L. Then, it holds that

[LU ](X) ⇠ GP(Lm, LL̄k).
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While this involves application of the adjoint of L, note that the application of L̄
to a positive-definite bivariate function k(x,x0) is equivalent to applying L to the

second argument of k, rather than the first; i.e. if D = R and L = d

dx
:

Lk(x, x
0) =

d

dx0
k(x, x

0)

A last significant property of GPs for this thesis is the presence of a closed-

form conditioning formula; that is, for any bounded linear operator L with finite-

dimensional codomain, U |LU = y is again a Gaussian process provided U is sup-

ported on the domain of L. This formula is critical for the material developed in

Chapter 5, and will be presented in detail there.

Reproducing Kernel Hilbert Spaces

An object of profound importance in the analysis of Gaussian measures is the repro-

ducing kernel Hilbert space (RKHS) associated with its covariance function. This

concept will now be introduced. The definitions in this section follow Berlinet and

Thomas-Agnan [2004], and proofs of the stated theorems can be found therein, in

Chapters 2 and 3.

Definition 2.3.3 (Reproducing Kernel Hilbert Space). A separable Hilbert space

H(D) with inner product h · , · i is said to be a reproducing kernel Hilbert space

(RKHS) if there exists a function k : D ⇥D ! R with the following properties:

1. For all x 2 D, k( · ,x) 2 H(D).

2. For all x 2 D, u 2 H(D), hu, k( · ,x)i = u(x).

We say that k is a reproducing kernel associated with H(D).

Theorem 2.3.4. A Hilbert space has a reproducing kernel if and only if all evalu-

ation functionals are continuous on H(D).

Theorem 2.3.4 reveals that the reproducing kernel of an RKHS is in fact

the representer of the evaluation operator in that space, in the sense of the Riesz

representation theorem [Demengel and Demengel, 2012, Theorem 1.38]. Indeed,

RKHS can be characterised as Hilbert spaces in which the evaluation operator is

continuous. The following theorem is due to Moore–Aronszajn, and identifies all

positive definite functions with an RKHS; see also Berlinet and Thomas-Agnan

[2004, Chapter 3].
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Theorem 2.3.5 (Moore–Aronszajn Theorem). For a function k : D ⇥D ! R, the
following two statements are equivalent:

1. k is a positive semidefinite function.

2. There exists an RKHS with reproducing kernel k.

This justifies a notation that will frequently be used in this thesis: we will

often emphasise the kernel k associated with an RKHS with the notation Hk(D).

Similarly, the inner product associated with this RKHS will often be denoted h · , · ik
and the norm k ·kk. Note that, since a vector space may be endowed with many

inner product structures that bestow a Hilbert structure, the reproducing kernel of

an RKHS depends on the inner product used. Thus, the same set of functions can

be the underlying set associated with many RKHS with di↵erent kernels and inner

product structures.

The Moore–Aronszajn theorem provides a much needed connection between

RKHS and GPs. Since each GP is associated with a positive-definite covariance

function, each GP is also associated with an RKHS. For a GP GP(m, k), the RKHS

Hk(D) is often referred to as the native space or Cameron–Martin Space of the GP.

The Cameron–Martin space of a GP can alternately be characterised as the set of

functions by which a Gaussian measure can be translated to obtain an equivalent

measure.

Theorem 2.3.6 (Theorem 2.4.5 of Bogachev [1998]). Let µ = GP(m, k) and let µh

be such that, if U is a random variable with law µ, µh is the law of U + h. Then

Hk(D) can be characterised as

Hk(D) = {h 2 X : µh ⌧ µ}.

Note that the RKHS associated with a GP is not the same as the set of

functions on which the GP is supported. In fact, we have the following theorem:

Theorem 2.3.7 (Theorem 2.4.7 of Bogachev [1998]). Let µ ⇠ GP(m, k) and let

Hk(D) denote the RKHS associated with k. Then it holds that if Hk(D) is infinite-

dimensional, then it is a null-set of µ, i.e. µ(Hk(D)) = 0.

A last important property of kernels that needs to be introduced in this

section is a Mercer kernel.

Definition 2.3.8 (Mercer Kernel). A function k : D⇥D ! R is said to be a Mercer

kernel if k is continuous, symmetric and positive semi-definite.
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The importance of a Mercer kernel lies in Mercer’s theorem, which provides

a representation of the kernel in terms of eigenvalues and eigenfunctions of its asso-

ciated integral operator, and is of significant theoretical importance. The following

theorem was originally due to Mercer [1909] and extended in Steinwart and Scovel

[2012]. The version below is su�ciently general for this thesis, and is a synthesis of

results from Steinwart and Scovel [2012, Lemma 2.12] and Sullivan [2015, Theorem

11.3].

Theorem 2.3.9. Let k : D ⇥D ! R be a Mercer kernel with RKHS Hk(D), and

assume that k is bounded. Consider the operator Tk, defined as

Tk(f)(x0) :=

Z

D

f(x)k(x, x
0) dx.

Then there is a sequence of eigenfunctions (ei) and eigenvalues �i, i 2 N such that:

• The eigenfunctions are such that ei 2 L2(D) are L2(D)-orthonormal; hei, eji2 =

�ij.

• When ordered, the eigenvalues �i 2 R+ are non-negative and convergent to

zero.

• The set {
p

�iei}, i 2 N is an orthonormal basis of Hk(D).

The following result, again from Sullivan [2015, Theorem 11.3], characterises

k in terms of the eigenvalues and eigenvectors from Theorem 2.3.9.

Theorem 2.3.10 (Mercer’s Theorem). Let k : D ⇥ D ! R be a bounded Mercer

kernel. Let (ei), (�i) be the eigenfunctions and eigenvectors from Theorem 2.3.9.

Then, for all x, x
0 2 D it holds that

k(x, x
0) =

1X

i=1

�iei(x)ei(x
0)

where convergence is absolute and uniform.

The last result in this section concerns the ability to represent stochastic

processes using an expansion based on the eigendecomposition of their covariance

function, when it is a Mercer kernel. The theorem was discovered independently

in Karhunen [1947] and Loève [1978], but the presentation below is as in Sullivan

[2015, Theorem 11.4].
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Theorem 2.3.11 (Karhunen–Loève Theorem). Let U : D ! R be a square-

integrable random variable with mean zero, and a covariance function that is a

Mercer kernel. Then we have that

U(x) =
1X

i=1

Zi�i(x)

where the �i are the eigenfunctions of the covariance operator of U , while the Zi are

given by

Zi :=

Z

D

U(x)�i(x)dx. (2.5)

Furthermore, E(Zi) = 0 and E(ZiZj) = �i�ij, for �ij the Kronecker delta.

As a last remark, since the projection in Eq. (2.5) is linear, it holds that Zi

is Gaussian distributed if U is Gaussian.

Prior Mean and Covariance

The selection of a prior mean and covariance function are of course critical; in

particular because the prior covariance determines the RKHS associated with the

GP, and thus describes the smoothness properties of functions that are in the support

of the distribution. Some important choices for this thesis will now be discussed.

All of the covariance functions introduced in this section are stationary, in that the

are of the form k(x,x0) = k(kx � x0k) for some norm. In this thesis, the norm

adopted is the Euclidean norm, meaning that all covariance functions introduced

are also isotropic. This assumption can naturally be relaxed, and the covariance

functions introduced here represent only a few of the most widely used covariance

functions known in the literature; for more information see Berlinet and Thomas-

Agnan [2004] and Fasshauer [2007, Appendix D]. Duvenaud [2014] describes how

covariance functions can be composed to yield new covariance functions.

Squared Exponential Covariance The squared exponential or exponentiated

quadratic covariance function is given by

k(x,x0; �, `) := �
2 exp

✓
� 1

2`2
kx� x

0k22
◆

. (2.6)

This choice has proven popular in the machine learning and applied statistics com-

munities owing to its tractability. The parameter � 2 R+ controls the amplitude of

the prior, while ` 2 R+ is known as the length-scale and controls the scale on which
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functions drawn from the distribution vary. Functions in the support of Gaussian

distributions with this covariance function are in C
1(D).

Matérn Covariance Functions The family of Matérn covariance functions are

also widely used, particularly when the high level of smoothness given by the squared

exponential covariance function is undesirable. These covariance functions are given

by

k(x,x0; �, `, ⌫) := �
2
21�⌫

�(⌫)

✓p
2⌫
kx� x0k2

`

◆
⌫

K⌫

✓p
2⌫
kx� x0k2

`

◆
. (2.7)

Here �( · ) is the Gamma function while K⌫( · ) is the modified Bessel function of the

second kind. The parameters �, ` 2 R+ are amplitude and length-scale parameters,

as before, while ⌫ 2 R+ is a smoothness parameter. Functions in the support of a

Gaussian distribution with a Matérn covariance with smoothness parameter ⌫ will

have d⌫e � 1 derivatives. The squared exponential covariance function arises as a

limiting case of the Matérn covariance, in the limit as ⌫ !1. Commonly members

of the Matérn family for specific values of ⌫ are referred to as Matérn-⌫ covariance

functions.

The functional form in Eq. (2.7) can be simplified when ⌫ = p+ 1

2
for some p 2

N. The general form is unimportant for this thesis and can be found in Rasmussen

and Williams [2006, Section 4.2], however since the case of p = 2 is used in several

of the experiments, this is presented here:

k

✓
x,x0; �, `,

5

2

◆
:= �

2

✓
1 +
p

5
kx� x0k2

`
+

5

3

kx� x0k2
2

`2

◆
exp

✓
�
p

5
kx� x0k2

`

◆
.

(2.8)

Wendland Covariance Functions The Wendland covariance functions are again

a family of covariance functions with varying smoothness. Compared to the Matérn

family, however, the Wendland functions are both piecewise polynomial and com-

pactly supported. However, the form of these functions now also depends upon the

dimension of the input domain. Since in this thesis the dimension of the domain D

of covariance functions will never exceed 2, to ensure appropriate di↵erentiability

the covariance functions for dim(D) = 3 were used throughout. The forms presented

below are those used in this thesis, from Fasshauer [2007, Appendix D]; these are
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strictly positive definite for any x,x0 2 R3:

k0(x,x0; �, ✏) := � max

✓
0, 1� kx� x0k2

✏

◆
2

(2.9)

k1(x,x0; �, ✏) := � max

✓
0, 1� kx� x0k2

✏

◆
4
✓

4kx� x0k2
✏

+ 1

◆
. (2.10)

The covariance function k0 results in a measure supported on functions in C
0(D),

while k1 gives a measure supported on twice di↵erentiable functions. The parameter

� 2 R+ again controls the amplitude, while ✏ 2 R+ is analogous to the length-

scale parameter for the other kernels introduced. The kernels above have support

wherever kx� x0k2 < ✏.

Kernel Parameters The covariance functions introduced in this section each

depend on parameters that have an enormous impact on the properties of the dis-

tribution, and so careful treatment of them receives an enormous amount of atten-

tion in the literature on GPs. In this section we describe two treatments of those

parameters. For more detail see Rasmussen and Williams [2006, Chapter 5].

Perhaps the most widely followed approach, particularly in the machine

learning community, is to estimate these parameters by maximising the marginal

likelihood of the data on which the process will be conditioned, as a function of

the parameters. This process is often called empirical Bayes. A second approach

pursued in this thesis is to consider the hyperparameters as additional parameters

to be learned from the data. These parameters can then be endowed with “hyper-

priors”, and their posteriors can be determined in the Bayesian framework. From a

statistical perspective this is appealing, as the parameters can then be marginalised

in the posterior distribution to obtain inferences that are independent of a particu-

lar assumed value. The downside of this approach is that the attractive conjugacy

properties of the Gaussian process are generally not maintained when parameters

of the kernel are treated in this way, so that a far more computationally expensive

inference procedure is required to sample from the joint posterior over the joint

distribution of the function u and the parameters of the prior.

2.4 Bayesian Inverse Problems

In this section, Bayesian inverse problems will be rigorously introduced. The pre-

sentation follows the seminal work of Stuart [2010]; Dashti and Stuart [2017] also

provides a thorough and accessible treatment.
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As in Section 1.2.2, we we will introduce Bayesian inverse problems by ex-

amining the abstract model problem

y = G(✓†) + ⇠. (2.11)

Here G : ⇥ ! Y, where ⇥ and Y are each separable Banach spaces equipped with

their respective Borel �-algebras, and ⇠ is a random variable supported on Y with

law ⌫0. The goal is to reconstruct ✓
† 2 ⇥ from the noisy observations y 2 Y.

We will make no assumptions on the dimensionality of ⇥, and in particular the

case dim(⇥) = 1 is an important one for this thesis. However, to eliminate some

technical detail we will assume that dim(Y) < 1, and it will usually be assumed

that Y = Rd for some d < 1. Similarly, it will often be the case that in fact the

domain and image of G are subsets of ⇥, Y respectively, but this amounts to small

additional technical detail not introduced here.

The traditional notion of Bayes theorem introduced in Eq. (1.2) is not appro-

priate when dim(⇥) = 1, as an equivalent of the Lebesgue density does not exist

in such settings. Instead, inference must be performed with respect to some other,

well-defined reference measure. The natural reference measure in Bayesian inference

problems is the prior, and this is the approach followed in Stuart [2010]. Let µ de-

note a prior measure on ⇥. Introduce the translated random variable ⇠✓ = ⇠ +G(✓),

and denote the law of ⇠✓ by ⌫✓. We assume that ⌫✓ ⌧ ⌫0 for µ-almost-all ✓ 2 ⇥;

thus, by the Radon–Nikodym theorem we have that:

d⌫✓

d⌫0

(y) = exp(��(✓;y))

for some function � : ⇥⇥Y ! R. This function is referred to as the potential in the

Bayesian inversion literature, and is commonly known as the negative log-likelihood

in Bayesian statistics. The function exp(��(✓;y)) is referred to as the likelihood.

Under appropriate measurability assumptions on � [see Dashti and Stuart,

2017, section 3.2], the posterior measure µ
y can be defined through its Radon–

Nikdoym derivative with respect to µ:

Theorem 2.4.1 (Bayes Theorem). Let

Z
y =

Z

⇥

exp(��(✓;y))µ(d✓).

Assume that Z
y

> 0, for almost-all3 y 2 Y. Then, the conditional distribution µ
y

3This “almost-all” statement, and the others in this theorem, are in fact with respect to the
product measure of µ and ⌫u; see Stuart [2010].
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exists for almost-all y 2 Y, we have that µ
y ⌧ µ, and

dµ
y

dµ
(✓) =

1

Zy
exp(��(✓;y)).

This notion of a Bayesian posterior is well-defined even in the case of infinite-

dimensional ⇥, and so the Bayesian framework has emerged as a popular framework

in which to perform inference on such quantities. As discussed in Dashti and Stuart

[2017, Section 1.1], the probabilistic interpretation is an elegant way to overcome

the following di�culties:

• The precise realisation of the noise ⌘ that corrupts the data is not known, so

distributional information about ⌘ must be incorporated into the solution to

the inverse problem. This induces stochasticity.

• The noise ⌘ may be such that the corrupted data is not in the image of

G, making the inversion ill-posed unless ⌘ is properly incorporated into the

inversion.

• Since dim(⇥)� dim(Y), the inference problem is inherently underdetermined.

Here stochasticity arises from the fact that, since ✓
† cannot be determined

completely from the data, uncertainty remains about its value.

It was shown in some detail in Stuart [2010] that under suitable regularity assump-

tions, Bayesian inverse problems are well-posed in the sense of Hadamard [1903].

We will now present an algorithm which is well-adapted to such inference

problems, before presenting a motivating example of an infinite-dimensional infer-

ence problem that will appear repeatedly in this thesis.

2.4.1 The Preconditioned Crank–Nicolson Algorithm

Markov chain Monte-Carlo (MCMC) is one of the most successful techniques for

sampling from the posterior distributions that arise in Bayesian statistics. Some

common MCMC techniques are outlined in Appendix A.3; for a detailed introduc-

tion see Brooks et al. [2011]. The popularity of MCMC is in part due to its flexibil-

ity; at a basic level, all that is required to apply an algorithm such as random-walk

Metropolis–Hastings (RWM) is the ability to evaluate both the likelihood and prior

densities at arbitrary locations in the domain4.

4Though of course, to prove convergence, more rigorous and restrictive conditions are required;
see Roberts and Rosenthal [2004]; Meyn and Tweedie [1993].
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In Bayesian inverse problems it is common to need to sample from a distri-

bution that is mathematically defined on an infinite-dimensional space. Although

for computational purposes the distribution must be discretised in some way, a de-

sirable property is that the sampling algorithm employed is dimensionally robust, so

that the acceptance rate does not decay to zero as the discretisation is refined. It is

well-known that most classical algorithms, such as RWM, do not have this property,

and so the number of samples required to sample from a distribution diverges as

the dimension increases [Cotter et al., 2013]. To address this, Cotter et al. [2013]

introduced the preconditioned Crank–Nicolson (pCN) algorithm which, for Gaussian

priors, has the required dimension-robustness property. This algorithm will now be

introduced.

Let µ denote a Gaussian reference measure, typically the prior for the Bayesian

inference problem at hand. The pCN algorithm employs proposals obtained by dis-

cretising a stochastic di↵erential equation that is invariant for µ. For a parameter

� 2 (0, 1), given a current state ✓n 2 ⇥ proposals are of the form:

✓̃n+1 =
p

1� �2✓n + �⇠n.

Here ⇠n is distributed according to µ. The parameter � is user-specified, and is typ-

ically tuned to achieve a target acceptance rate. Proposed moves are then accepted

or rejected according to a standard RWM criterion; let ↵(✓, ✓0) be given by:

↵(✓, ✓0) = exp(�(✓;y)� �(✓0;y)).

Then, with probability ↵(✓n, ✓̃n+1) the next state in the algorithm is set to ✓n+1 =

✓̃n+1; otherwise the chain remains at ✓n+1 = ✓n. This is reported as an algorithm

in Algorithm 2.1. The pCN algorithm can be generalised in several directions to

produce variants of the Metropolis-adjusted Langevin algorithm (MALA) and the

Hamiltonian Monte–Carlo (HMC) algorithms; see Beskos et al. [2017]. These ex-

tensions were not utilised in this thesis, however.

2.4.2 Example: Electrical Impedance Tomography

We will now introduce an important Bayesian inverse problem that serves as a test

problem in several chapters of this thesis.

Electrical Impedance Tomography (EIT) is a medical imaging technique in

which the interior conductivity of a patient is recovered by passing small currents

through electrodes attached to the patient and measuring the induced voltages. The

recovered conductivity can be used to detect abnormalities such as brain tumours;
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Algorithm 2.1 pCN algorithm for sampling from µ
y, defined as in Theorem 2.4.1.

The input ✓0 is an arbitrary initial state in the support of µ, � is a tuning parameter
used to control the acceptance probability, M is the number of samples required, �
is the potential and µ a means of sampling from the prior. The notation U(0, 1) is
used to denote a uniform distribution on [0, 1]. The output is the samples from the
posterior ✓1, . . . , ✓M ; if M is su�ciently large then this can be considered a sample
from µ

y.

1: procedure pCN(✓0, �, M, �, µ)
2: for i = 1, . . . , M do
3: wi ⇠ µ

4: ✓̃i  
p

1� �2✓i�1 + �wi

5: log ↵ �(✓i�1;y)� �(✓̃i;y)
6: Ui ⇠ U(0, 1)
7: if log Ui  log ↵ then
8: ✓i  ✓̃i

9: else
10: ✓i  ✓i�1

11: end if
12: end for
13: return ✓1, . . . , ✓M

14: end procedure

see Holder [2004] for a detailed introduction. EIT has also been proposed as a

tool for monitoring machines known as hydrocyclones, which are pieces of industrial

machinery used for separating particulates from fluids in which they are suspended

[Gutierrez et al., 2000].

As a Bayesian inverse problem, the parameter of interest is a conductivity

field (x), x 2 D, where D models the domain of interest; perhaps the interior of

a patient, or perhaps of a hydrocyclone. As such, the parameter is a function, and

so the theoretical framework for Bayesian inversion on infinite-dimensional spaces is

essential. It is assumed that Ne distinct electrodes are attached to the boundary @D.

Typically multiple patterns of currents are passed through the electrodes to increase

the amount of data for the recovery, and it will be assumed that the maximum

number of linearly independent stimulations is applied so that there are a total of

Ne � 1 distinct stimulations. The pattern of data collection is then defined by a

stimulation pattern and a measurement pattern.

The stimulation pattern describes which currents are applied to which elec-

trodes, and consists of a set of applied currents, {Cij}, i = 1, . . . , Ne � 1, j =

1, . . . , Ne, summarised by the matrix C 2 R(Ne�1)⇥Ne . The rows of this matrix cor-

respond to distinct stimulation patterns, while the columns correspond to electrodes.
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The output is a set of measured voltages {Vij}, i = 1, . . . , Ne � 1, j = 1, . . . , Nm,

where the row indices again correspond to the stimulation patterns, while the

columns describe the measurements. Often the measurements taken are not voltage

measurements at electrodes, but a voltage di↵erential between electrodes, and this is

captured in a measurement pattern, described by a matrix M 2 RNm⇥Ne . Columns

correspond to electrodes, and rows correspond to measurements. If the precise volt-

ages at the electrodes (across all stimulation patterns) are summarised in a matrix

Ṽ 2 R(Ne�1)⇥Ne , the actual measurements obtained from the experiments are given

by V = MṼ
>.

Two formulations of EIT, and its inverse problem, will be presented here.

The first, referred to as the point electrode model (PEM), is a variant of the original

formulation of the problem due to Calderón [1980] in which the voltage is assumed

to be applied continuously over @D. The second formulation, the complete electrode

model (CEM) of Cheng et al. [1989], uses more physically realistic boundary ob-

servations by explicitly modelling the boundary electrodes. Lastly in this section,

experimental data which is used in two chapters of the thesis will be presented.

The Point Electrode Model

In the point electrode model the voltage is assumed to be applied continuously over

@D, and the electrodes are modelled as a single point at which the applied voltage

has been measured, ei 2 @V , i = 1, . . . , Ne. The model is a variant of that originally

posited by Calderón [1980]. For each fixed stimulation pattern i = 1, . . . , Ne � 1 it

is given by:

�r · ((x)rui(x)) = 0 x 2 D

(ej)
@ui

@n
(ej) = Cij j = 1, . . . , Ne. (2.12)

Here n denotes the outward pointing normal vector on @D and @

@n is a shorthand

for the directional derivative in the direction of n, i.e. @

@n = n ·r. The index i has

been added to the voltage field ui to emphasise its dependence on the stimulation

pattern.

For the purposes of inference, let Ũ 2 R(Ne�1)⇥Ne be the matrix with entries

Ũij = ui(ej), and let U = MŨ
> Let Ui denote the i

th row of U , and let Vi denote

the i
th row of V . Throughout this thesis a Gaussian measurement error model will

be assumed for the voltages Vi, with noise covariance �. The noise is assumed to be
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IID across stimulation patterns, yielding the Gaussian likelihood:

p(V |) / exp (��(V |))

�(V |) =
1

2

Ne�1X

i=1

kVi � Uik2� (2.13)

This formulation di↵ers somewhat from that of Calderón [1980], which con-

sidered the problem of recovering the Dirichlet-to-Neumann map. For the purposes

of this thesis, the PEM is often more tractable than the CEM, as the need to cal-

culate boundary integrals is eliminated.

The Complete Electrode Model

The CEM is a more physically realistic model for EIT that was first described in

Cheng et al. [1989], and has been shown to be well-posed as a Bayesian inverse

problem [Dunlop and Stuart, 2016]. In the CEM, electrodes are explicitly modelled

as subsets of the domain. Let Ei, i = 1, . . . , Ne, be such that Ei ⇢ @D and Ei\Ej =

; whenever i 6= j. Each electrode is additionally associated with a contact impedance

⇣i, i = 1, . . . , Ne which models that the connection between the electrode and the

boundary is not perfect. In all applications in this thesis, the contact impedances

are assumed to be known a-priori. The CEM is then given by:

�r · ((x)rui(x)) = 0 x 2 D
Z

Ej

(x)
@ui

@n
(x)dx = Cij j = 1, . . . , Ne

(x)
@ui

@n
(x) = 0 x 2 @D

✏ N[

k=1

Ek

ui(x) + ⇣j(x)
@ui

@n
(x) = Ũij x 2 Ej , j = 1, . . . , Ne. (2.14)

Note that, unlike in the PEM, a solution comprises both the function ui(x) and the

voltages on the electrodes Ũij , j = 1, . . . , Ne. However the details of the likelihood

model otherwise follow the description in the previous section.

Experimental Data

A description of an experimental dataset that will be used in several sections of this

thesis is now provided. This data was taken from the EIDORS suite of contributed
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Figure 2.1: Agar targets from which the measurements described in Section 2.4.2
were obtained. The two large lung-shaped targets each have a lower conductivity
than the surrounding saline, while the smaller heart-shaped target has a higher
conductivity.

data5, and is due to Isaacson et al. [2004]. To obtain the data, Ne = 32 equispaced

electrodes were placed around the perimeter of a circular tank filled with saline

solution. Three agar targets were placed into the tank, as depicted in Fig. 2.1. Two

of the targets are roughly “lung shaped”, and the third is roughly “heart shaped”;

the lung shaped targets have a lower conductivity than the saline, while the heart

shaped target has a higher conductivity. The stimulation patterns were defined, for

each i = 1, . . . , Ne � 1, by:

Cij =

8
><

>:

A cos (i�j) i < Ne/2

A cos (⇡j) i = Ne/2

A sin ((i�Ne/2) �j) i > Ne/2

.

Here A is the amplitude of the current and

�j =
4⇡j

Ne

.

This serves as a useful test problem; the data was obtained in the real-world and

is not simulated, but the conditions for the experiment were nevertheless carefully

controlled and it was conducted in laboratory conditions. Bayesian inversion for

this problem will be performed in Sections 4.6.2 and 5.4.2.

5See http://eidors3d.sourceforge.net/data contrib/jn chest phantom/jn chest phantom.shtml.
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2.5 Conclusion

This concludes the background material required for the thesis. The next short

chapter gives an intuitive definition of a Bayesian probabilistic numerical method,

setting the stage for the remainder of the thesis.
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Chapter 3

Bayesian Probabilistic

Numerical Methods

“We demand rigidly defined areas of doubt and uncertainty!”

—Douglas Adams, The Hitchhiker’s Guide to the Galaxy

This chapter introduces the concept of a Bayesian probabilistic numerical method,

and gives several examples of such methods that will be examined in more detail

later in the thesis.

3.1 Bayesian Probabilistic Numerical Methods

Bayesian probabilistic numerical methods can be thought of as Bayesian inversion

problems applied to problems in numerical analysis. To formalise this, we must first

provide a framework in which to describe problems from numerical analysis in a

framework amenable to inference.

Abstractly, consider an unknown quantity u
† 2 X , where X is a separable

Hilbert space that may be finite- or infinite-dimensional. Next, a notion of finite-

dimensional information about the unknown u
† must be defined. We restrict to

finite-dimensional information because BPNM are fundamentally numerical meth-

ods, and therefore must operate in a computational framework of finite memory.

To this end, let Y be a second separable Hilbert space, this time explicitly finite-

dimensional. We will generally assume that Y ✓ Rd. Information about the un-

known u
† is taken to be provided by an information operator A : X ! Y. Lastly,

it is often necessary to define an additional quantity-of-interest (QoI) operator, to
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capture the fact that sometimes a derived quantity is of more interest than the

object of inference. Let Q be a QoI space, and let Q : X ! Q be a QoI operator.

Thus, to summarise, interest is in describing problems in numerical analysis

using two operators:

• The information operator A : X ! Y, describing how the unknown u
† is

linked to computable information y 2 Y.

• The QoI operator Q : X ! Y, describing the derived quantity of mathematical

interest.

It should be emphasised that the vector y 2 Y will generally be used to refer to the

“true” information that has been computed about the unknown u
†. While the QoI

operator is an important component of the problem, it is the information equation

that allows numerical methods to be posed as inference problems:

A(u†) = y. (3.1)

Viewed through the lens of Eq. (2.11) the analogy is clear. From the terminology

in that section, A is the parameter to observation map, and the noise ⇠ is a Dirac

distribution centred on 0. The terminology here is similar to that adopted in the

literature on the average-case analysis of numerical methods [see e.g. Ritter, 2000].

Examples of particular numerical problems, and how they can be adapted to this

framework, will now be given.

Example 3.1.1 (Solution of Linear Systems). Let X = Rd for some d < 1, and

consider solution of the linear system

Ax† = b

where A 2 Rd⇥d is assumed to be invertible. Here the unknown is the vector x†.

Note the switch in notation; when considering the solution of finite-dimensional

linear systems of equations we will use x instead of u to refer to objects in the

solution space X . This is to adhere to the conventional notation Ax = b used when

studying such systems in the numerical analysis community.

Since X is finite-dimensional, the system could be solved explicitly in finite

time (assuming exact arithmetic). There nevertheless exist a plethora of so-called

iterative methods for the solution of such systems. These are methods for which

terminating the method before convergence provides a meaningful solution to the

problem, in the sense that the error incurred is small; more detail will be provided

32



in Chapter 4. Iterative methods are often constructed by constructing a sequence

of search directions s1, . . . , sm, m < d, and left-multiplying the system by these

directions to obtain information, i.e.

s>i Ax† = s>i b

for i = 1, . . . , m. This principle can be used to define an information operator. Let

Y = Rm, and let Sm 2 Rd⇥m be defined by

Sm = [s1, . . . , sm].

Then, the information equation is given by

A(x) = S
>

mAx

and the information y can be computed as

y = S
>

mb.

In this example the object of interest is the solution x†; thus, the QoI operator is

simply the identity operator Q(x) = x, and the QoI space is Q = X . This problem

was considered in Cockayne et al. [2019b] and Bartels et al. [2019], and will be

studied in considerable detail in Chapter 4.

Example 3.1.2 (Integration). Let ⇧ be a measure on the domain D, and let X
now be a Hilbert space of ⇧-integrable functions u : D ! R. Consider computation

of the following integral:

⇧(u†) :=

Z

D

u
†(x)⇧(dx) (3.2)

In this setting X is typically an infinite-dimensional space. Somewhat counter-

intuitively, u
† is now a given function, but nevertheless for arbitrary u

† and ⇧ the

integral ⇧(u†) often does not have a closed-form. The probabilistic interpretation

here is used to capture the fact that, although one can interrogate u
† pointwise, the

desired QoI can not be computed explicitly. Imperfect information about u
† must

therefore be used to estimate the integral, owing to the finite nature of computation.

Many standard numerical methods for solving this problem involve implicitly

constructing some approximation to the function u
† based on evaluation at a finite

set of points {x1, . . . ,xm} ⇢ D. Classical examples of such methods include the

trapezium rule and Gaussian quadrature, but this also encompasses more advanced

methods such as quasi Monte-Carlo [Niederreiter, 1992]. Again, this can be used
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to construct an information operator. Let Y = Rm, and consider the information

operator

A(u) =

2

664

u(x1)
...

u(xm)

3

775

with the information naturally given by

y =

2

664

u
†(x1)

...

u
†(xm)

3

775

Since an explicit closed-form exists for u
†, y is computable. Here, however, the QoI

operator is nontrivial. The space Q = R, and Q(u) is defined by:

Q(u) =

Z

D

u(x)⇧(dx).

This problem is not considered in detail in this thesis, but is known as Bayesian

quadrature in the literature; see Briol et al. [2019], and references therein, for a

comprehensive introduction.

Example 3.1.3 (Partial Di↵erential Equations). The last example of translating

a numerical problem into an inference problem is of a partial di↵erential equation.

We will again take Eqs. (1.1) and (2.1) as a motivating example of a PDE; thus, X
is a Hilbert space of functions that are suitably di↵erentiable to serve as solutions

to the PDE 1. Let D be an open subset of Rd with boundary @D, and suppose that

the function (x) is given. Then, we have the following system:

�r · ((x)ru(x)) = g(x) x 2 D

u(x) = b(x) x 2 @D (3.3)

Numerical methods for PDEs obtain information about the solution by interrogating

the functions g and b in a multitude of ways. In this thesis, as in Example 3.1.2,

we will focus on pointwise interrogation of these functions. Let {xI

1
, . . . ,xI

m} ⇢ @D

and {xB

1
, . . . ,xB

n} ⇢ D be finite subsets of the interior and boundary, respectively.

Then Y = Rm+n and the information operator and information can each be defined

1This will be made formal in Chapter 5.
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by

A(u) =

2

66666666664

�r · ((xI

1
)ru(xI

1
))

...

�r · ((xI
m)ru(xI

m))

u(xB

1
)

...

u(xB
n )

3

77777777775

y =

2

66666666664

g(xI

1
)

...

g(xI
m)

b(xB

1
)

...

b(xB
n )

3

77777777775

.

This choice of information operator and information is less common than other

choices, for reasons that will be explained in Chapter 5, which examines this prob-

lem in detail. However, numerical methods using such a choice of information are

nevertheless widely applied, with a prime example being the symmetric collocation

method of Fasshauer [1999].

Having established a framework in which to view numerical problems as

inference problems, it is straightforward to state a rigorous definition of both a

PNM, and a BPNM.

Definition 3.1.4 (PNM). A probabilistic numerical method is defined by an infor-

mation operator A, a QoI operator Q and a belief update rule A : PX ⇥ y ! PX .

The method itself is an operator M : PX ⇥ Y ! PQ, given by

M(µ,y) = Q#A(µ,y)

The belief update rule is a rule which takes a prior distribution µ 2 PX and

updates it to a posterior belief A(µ,y) 2 PX . No restriction is placed on the form of

this update rule, but the specification of a Bayesian PNM is then straightforward.

Definition 3.1.5 (Bayesian PNM). A probabilistic numerical method is said to be

Bayesian if its update rule A(µ,y) represents conditioning of µ on y, i.e.

A(µ,y) = µ
y

for A#µ-almost-all y 2 Y.

This definition seems natural. Yet, examining many existing PNM, surpris-

ingly few methods are truly Bayesian by this definition. A breakdown of existing

PNM based upon this definition can be found in Appendix B.

Note that the definition of the conditional distribution µ
y, while intuitively

understood, has been left abstract. This is because the rigorous definition of that
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conditional distribution when observations are made without noise introduces con-

siderable additional technical detail, which will be presented in Part III. Neverthe-

less, for certain choices of prior µ and operators A and Q the required conditional

distribution can be constructed explicitly. We refer to these settings as conjugate,

and they will be examined in detail in Part II.

We conclude this chapter by discussing a special case of these definitions.

3.2 Classical Methods as PNM

It is convenient to be able to express classical numerical methods in the same frame-

work as PNM, as this allows PNM and classical numerical methods to be compared

in a single mathematical framework, such as will be introduced in Section 6.1.4.

Many numerical methods can be viewed as obtaining information through an infor-

mation equation as in Eq. (3.1). Such numerical methods can then be abstracted as

an operator NM : Y ! Q, which takes the information y and outputs an estimate of

q
† = Q(u†) formed by applying the numerical method to the computed information.

Thus, one can define the degenerate PNM

MNM(µ,y) = �(NM(y))

which simply outputs a Dirac distribution centred on NM(y). Note that this is

independent of the prior µ.

Note that not all numerical methods can be set in the form of Eq. (3.1). For

example, solvers of ordinary di↵erential equations are often adaptive, meaning that

the algorithm iteratively selects information by reflecting on the current solution

estimate. Such solvers lie within a more general class of numerical methods, and

while an extension of Eq. (3.1) to encompass such solvers may be possible, it is not

considered in this thesis.

3.3 Conclusion

This concludes the intuitive definition of a Bayesian PNM. To reiterate, the existence

of the posterior distribution µ
y in Definition 3.1.5 has thus far been assumed. This

will be addressed rigorously in Chapter 6. The next part is instead concerned

with the conjugate setting in which a closed-form for the posterior distribution is

available.
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Part II

Conjugate Methods
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Chapter 4

The Bayesian Conjugate

Gradient Method

“The practising Bayesian is well advised to become friends with as many

numerical analysts as possible.”

—James Berger, Statistical Decision Theory and Bayesian Analysis

This chapter presents a PNM for the solution of finite-dimensional systems

of linear equations of the form

Ax† = b (4.1)

where the matrix A 2 Rd⇥d and the vector b 2 Rd are each assumed to be given,

while the vector x† 2 Rd is the unknown to be determined. In the notation of

Chapter 3, X = Rd. This method is known as the Bayesian conjugate gradient

method and was first presented in Cockayne et al. [2019b].

In many PNMs the rationale for adopting a probabilistic approach to the

problem is the finite nature of computation. When X is infinite-dimensional the

unknown can never be perfectly identified, and using probability to describe residual

uncertainty in its value can be justified. In this case, since X is finite-dimensional

this justification no longer holds. Nevertheless, a probabilistic approach to these

problems is of interest for several reasons. Firstly, the structure exposed by the

analysis in this chapter serves as an illuminating introduction to PNMs. Secondly

and more practically, most naive inversion methods for linear systems such as that

in Eq. (4.1) incur an O(d3) cost. If an approximate but still accurate solution can

be obtained with reduced computational e↵ort, this may be of value when d is large.

Such high-dimensional linear systems arise frequently in the applied sciences.

An example of particular relevance to this thesis is in the approximate solutions of
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systems of PDEs. The finite element and finite di↵erence discretisations of PDEs

discussed in Section 2.2.1 each yield large, sparse linear systems which can have

billions of degrees of freedom. In some cases specialised algorithms have been devel-

oped to allow practical solution of these systems [e.g. Reinarz et al., 2018]. Another

example familiar to statisticians arises in computation with Gaussian measures (see

Section 2.3.2). Linear systems based upon the covariance function of the GP must

be solved to work with the conditional distributions of these measures, and so e�-

cient solution of such systems is vital for any method involving generation of spatial

random fields [Besag and Green, 1993; Parker and Fox, 2012; Schäfer et al., 2017].

This includes many PNMs, such as that which will be presented in Chapter 5. In

some such applications, such as in models of tropical ocean surface winds [Wikle

et al., 2001], the resulting systems may again have billions of degrees of freedom.

Thus, it is clear that there exist many important situations in which exact solution

of a linear system is not practical.

The structure of this chapter is as follows: Section 4.1 introduces classical

methods for solving linear systems. In Section 4.2 a prototypical PNM for Eq. (4.1)

is presented and its inputs discussed. Its correspondence with the conjugate gradient

method (CG) is also established for a particular choice of prior. Section 4.3 presents

the Bayesian conjugate gradient method (BayesCG), demonstrates that its posterior

mean lies in a particular Krylov subspace, and presents convergence analysis. In

Section 4.4 the critical issue of prior choice is addressed. Several choices of prior

covariance are discussed, and a hierarchical prior is introduced to allow BayesCG to

adapt to the scale of the problem. Section 4.5 contains implementation details, while

in Section 4.6 the method is applied to a challenging problem in medical imaging,

which requires repeated solution of a linear system arising from discretisation of a

PDE. Most of the theoretical results from this chapter are proven in the main text,

but some lengthier proofs are presented in Appendix C.

4.1 Classical Techniques for Linear Systems

Broadly speaking there are two main categories of method for solving Eq. (4.1)

numerically: iterative methods and direct methods. Direct methods seek to compute

the solution x† exactly, assuming exact arithmetic. The most näıve direct method

involves computing the matrix inverse A
�1 and applying it to b. This method is

widely known to be a highly numerically unstable way to compute the solution.

More prudent direct methods for solving Eq. (4.1) involve factorising the

matrix A into two factors. For example, in the LU decomposition [see Section 3.2 of
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Golub and Van Loan, 2013], two matrices L and U are constructed so that A = LU ,

while L is lower triangular and U is upper triangular. Once this decomposition has

been computed, the solution to the problem can be computed by first solving the

system Ly = b, and then solving Ux = y, which incurs only an O(d2) cost owing

to the fact that L and U are triangular. However, the cost of computing the factors

L and U remains O(d3). Furthermore, even when A is sparse, in that it has many

zero entries, the factors L and U are generally dense and so O(d2) additional storage

would be required.

Iterative methods take a di↵erent approach to direct methods. In an iterative

method, the goal is to construct a sequence (xm) which approaches x† in some

suitable norm, as m increases. CG is a well-known example of an iterative method

for approximate solution of linear systems based on positive-definite matrices A. It

was first introduced in Hestenes and Stiefel [1952]. Unlike the LU factorisation, the

CG algorithm is designed to be terminated after performing m < d iterations, at

a potentially substantially lower cost of O(md
2). Furthermore, when A is sparse,

the sparsity structure is reflected in the cost of the algorithm, in that if nnz(A)

denotes the number of nonzero entries of A, the cost of CG applied to A is just

O(m ·nnz(A)). Thus CG, or variants thereof, are the standard methods for solving

many problems governed by sparse, symmetric-positive definite matrices, such as in

solving systems arising from FEA.

A detailed introduction to CG will now be presented. The material in the

remainder of this section follows Golub and Van Loan [2013] to some degree; see

also Liesen and Strakos [2012]. To proceed, we first introduce the inner product and

norm induced by a positive-definite matrix M .

Definition 4.1.1. For a positive-definite matrix M , the inner product induced by

M , denoted hx,yiM , is given by

hx,yiM = x>
My.

The norm induced by this inner product is denoted kxkM and given by

kxkM :=
p
hx,xiM .

When hx,yiM = 0 we say that x and y are M -orthogonal, or alternatively conjugate

with-respect-to M . When additionally each of x and y have kxkM = kykM = 1 we

say they are M -orthonormal.

Second, we will often abuse notation to describe a�ne spaces. If the linear
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subspace S ⇢ Rd has basis {s1, . . . , sm}, m < d, then for a vector v 2 Rd and a

matrix M 2 Rd⇥d the a�ne space v + MS is defined as:

v + MS := span({v + Ms1, . . . ,v + Msm}.

4.1.1 Gradient Descent

A class of iterative methods arise from solving the following optimization problem

in a sequence of a�ne spaces Km ⇢ Rd, where dim(Km) = m:

xm = arg min
x2Km

kx† � xkA. (4.2)

Denote by em the error at iteration m and by rm the residual. These are

given by:

em : = x† � xm

rm : = A(x† � xm) = b�Axm

= Aem

While both of these are valid ways of describing the di↵erence between xm and the

truth, rm has the advantage of being computable, as x† is unknown while b is given.

If one seeks to solve Eq. (4.1) by iteratively minimising Eq. (4.2), a natural

approach is to perform this minimisation by gradient descent starting from a user-

supplied initial point x0. It is convenient here to consider the equivalent problem of

minimising the quadratic objective function f(x) = 1

2
x>

Ax� x>b, whose gradient

can be computed as:

rf(x) = Ax� b

so that rf(xm) = �rm. Then, from xm, the next estimate xm+1 is found by

moving in the direction which decreases f(xm) most rapidly, i.e.:

xm+1 = xm � ↵mrf(xm)

= xm + ↵mrm

where ↵m is a coe�cient to be determined. Thus, the residual rm is the m
th search

direction for gradient descent methods.
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The coe�cient ↵m can be determined by minimising f(xm+1):

@

@↵m

f(xm + ↵mrm) = r>mrf(xm + ↵mrm)

= r>m(A(xm + ↵mrm)� b)

= ↵mr>mArm � r>mrm

where the first line is from application of the chain rule. Setting this to zero, we

obtain

↵m =
r>mrm

r>mArm

.

In practise, gradient descent is rarely used to solve linear systems, the pri-

mary reason being that it does not generally converge in d iterations and thus has

a worst-case cost exceeding that of standard direct solvers. The conjugate gradient

(CG) method, which will be introduced in the next section, addresses this issue.

4.1.2 Conjugate Gradients

CG augments gradient descent by adding the requirement that the search directions

be conjugate with-respect-to A, hence the name conjugate gradient. This can be

enforced by the Gram-Schmidt orthogonalisation procedure

s̃m := rm�1 �
m�1X

i=1

hsi, rm�1iA ·si

where si := s̃i/ks̃ikA. However, the orthogonality properties of the search directions

are such that a simpler form exists. The following proposition characterises the CG

search directions.

Proposition 4.1.2 (CG Search Directions). Let the first un-normalised CG search

direction be s̃1 = r0. Let the first normalised CG search direction be given by

s1 =
s̃1

ks̃1kA
.

For each m > 1, let the m
th CG search direction be given by

s̃m = rm�1 � hsm�1, rm�1iA ·sm�1
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and let the m
th normalised CG search direction be given by

sm =
s̃m

ks̃mkA
.

Then, for each m = 1, . . . , d it holds that the un-normalised CG search directions

{s̃1, . . . , s̃m} form an A-orthogonal set. Similarly, the normalised CG search direc-

tions {s1, . . . , sm} form an A-orthonormal set.

Proof. See Golub and Van Loan [2013, Section 10.2.4], particularly Corollary 10.2.4.

Note that this result is also a special case of the later Proposition 4.3.2.

To avoid ambiguity, where the meaning is not clear from the context the CG

search directions will be referred to using the superscript “CG”, i.e. S
CG
m . This

proposition is useful as computing the next search direction using this formula re-

duces the storage cost1 and computational complexity associated with the algorithm.

The resulting algorithm computes xm using only a single matrix-vector product in

each iteration, and so has complexity O(md
2). CG is presented as an algorithm in

Algorithm 4.2.

Algorithm 4.2 Implementation of the CG algorithm. Note that the only matrix-
vector multiplication required in iteration i is Asi. Furthermore note that only the
vectors xi, ri and si need be stored.

1: procedure cg(x0, A)
2: r0  b�Ax0

3: s1  r0

4: for i = 1, . . . , d do

5: ↵i  
r>
i�1ri�1

ksikA
6: xi  xi�1 + ↵isi

7: ri  ri�1 � ↵iAsi

8: if ri “su�ciently small” then
9: break

10: end if
11: �i  

r>
i ri

r>
i�1ri�1

12: si+1  ri + �isi

13: end for
14: return xi

15: end procedure

1In fact this can be simplified further to remove the requirement to store sm�1, but that sim-
plification is not critical to this presentation.
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Note that the solution xm from CG can also be expressed as

xm = x0 + SmS
>

mr0 (4.3)

where Sm is the matrix whose columns are s1, . . . , sm. This can be shown by first

noting, from Algorithm 4.2, that xm 2 x0 +span(s1, . . . , sm), and so can be written

as

xm = x0 + S
>

m↵

for some ↵ 2 Rm. Minimising kx0 + S
>
m↵�x†kA yields the expression in Eq. (4.3).

There are several important results about CG which must now be mentioned.

First among these is the characterisation of CG as a Krylov subspace method.

Definition 4.1.3 (Krylov Subspace). The Krylov subspace of order m generated

by a matrix A 2 Rd⇥d and a vector b 2 Rd is given by

Km(A, b) := span{b, Ab, A2b, . . . , Am�1b}.

The next theorem identifies the search directions in Proposition 4.1.2 as a

basis of Km(A, b).

Theorem 4.1.4. The search directions Sm from Proposition 4.1.2 have the property

range(Sm) = Km(A, r0)

Proof. See Golub and Van Loan [2013, Theorem 10.2.3].

An immediate corollary of Theorem 4.1.4 and Eq. (4.3) is the following:

Corollary 4.1.5 (CG as a Krylov Subspace Method). CG is a Krylov Subspace

method, in that xm 2 x0 + Km(A, r0). Furthermore xm is A-optimal in x0 +

Km(A, r0), in that

xm = arg min
x2x0+Km(A,r0)

kx� x†kA.

Proof. From Theorem 4.1.4, xm 2 Km(A, b), and xm is optimal in this space as it

seeks to minimise Eq. (4.2).

This result is also a consequence of Corollary 4.3.4, which will be proven

later in this chapter.

Lastly, CG can be shown to converge exponentially fast in m.
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Definition 4.1.6 (Condition Number). For an arbitrary invertible matrix M , the

condition number of M is given by

(M) := kMk2kM�1k2

where kMk2 denotes that matrix 2-norm or Frobenius norm. When M is positive-

definite, let �max denote the largest eigenvalue of M and �min denote the smallest

eigenvalue of M . Then it holds that

(M) =
�max

�min

.

When (M) is very large we will often say that M is ill-conditioned.

Theorem 4.1.7 (Convergence of CG).

kxm � x†kA
kx0 � x†kA

 2

 p
(A)� 1p
(A) + 1

!
m

Proof. See Golub and Van Loan [2013, Theorem 10.2.6].

Thus, the convergence rate of CG is driven by how well-conditioned the

matrix A is. In practise, the procedure in Proposition 4.1.2 can be shown to be

numerically unstable (see Liesen and Strakos [2012, Section 5.9]), and so even though

the convergence shown in Theorem 4.1.7 is exponentially fast, conjugacy of the

search directions often breaks down much faster than the rate at which the error

reduces. Thus, an important practise is that of preconditioning the matrix A to

accelerate convergence. This will be introduced next.

4.1.3 Preconditioning

Theorem 4.1.7 motivates the practise of preconditioning [Allaire and Kaber, 2008],

in which an equivalent system to Eq. (4.1) is constructed and solved by using the

auxiliary matrix P , known as a preconditioner. Two main preconditioning strategies

exist; in left-preconditioning, one solves the system P
�1

Ax† = P
�1b, while in right-

preconditioning the system AP
�1

Px† = b is solved. P is typically chosen to satisfy:

1. (P�1
A) < (A) (or (AP

�1) < (A)).

2. The solution of systems Px0 = b0 is computationally inexpensive for arbitrary

x0 and b0.
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From Theorem 4.1.7 it is clear that CG applied to a preconditioned system will

converge faster than standard CG if P is chosen well.

The optimal preconditioner is P = A
�1, but this is clearly impractical. Prac-

tical preconditioners tend to be problem-specific. There exist reasonably generic ap-

proaches for sparse matrices that involve approximate decompositions of the matrix.

Often these are modifications of standard matrix decompositions as used in direct

methods, which aim to also preserve some measure of sparsity. Examples are the

incomplete LU or incomplete Cholesky decomposition [e.g. Ajiz and Jennings, 1984;

Saad, 1994]. Another, more application-specific example is in numerical solution

of PDEs, where a coarse discretisation of the domain can be used to construct a

preconditioner for a finer discretisation [e.g. Bramble et al., 1990]. A more detailed

survey of preconditioning methods can be found in many standard texts, such as

Benzi [2002] and Saad [2003]. There is no generic preconditioning method, however,

and constructing one can be challenging. Indeed, this has been described as “a

combination of art and science” [Saad, 2003, Chapter 10].

4.2 A Probabilistic Linear Solver

In this section a generic PNM for solving Eq. (4.1) is presented. First, in Sec-

tion 4.2.1, the generic method is presented. Then, in Section 4.2.2, a particular

choice of prior is described, for which the probabilistic method coincides with the

solution produced from CG.

4.2.1 Inference with a Gaussian Prior

In a finite-dimensional setting multivariate Gaussian distributions are often defined

by their Lebesgue density. However, in this chapter we will often work with Gaus-

sian distributions that are singular, in the sense that they are concentrated on a

linear subspace of Rd. Since (strict) linear subspaces are of measure zero under the

Lebesgue measure on Rd, no Lebesgue density exists in this case. As a result we

will instead say that a random vector X ⇠ N (x, ⌃) with mean x 2 Rd and positive

semidefinite covariance ⌃ 2 Rd⇥d if it holds that �
>
X ⇠ N (�>x, �

>⌃�) for each

� 2 Rd. This definition is valid even when X is singular, though note that in this

case �
>
X will be a degenerate Gaussian with zero variance whenever � lies outside

the subspace on which X is concentrated.

Now, let X describe the prior level of uncertainty in the solution to Eq. (4.1).

It will be assumed that

X ⇠ N (x0, ⌃0). (4.4)
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Here x0 2 Rd and ⌃0 2 Rd⇥d are each assumed to be fixed, and furthermore for

convenience ⌃0 is assumed to be positive-definite so that its inverse exists.

We seek a Bayesian method in accordance with Definition 3.1.5. As described

in Example 3.1.1, let ym 2 Rd and Sm 2 Rd⇥m each be given by

ym =

2

664

y1

...

ym

3

775 Sm =

2

64
" "
s1 . . . sm

# #

3

75

where the search directions are assumed to be linearly independent and initially

assumed to be given a-priori. In Section 4.3.1 a particular choice will be presented

which defines BayesCG. To associate with the notation in Chapter 3, the information

operator is given by

Am(x) = S
>

mAx.

Thus, the information is ym = S
>
mb, and Ym = Rm. Here the subscript m has been

used to emphasise that the information is considered to be generated iteratively

over a number of iterations. The QoI in this example is x† itself, so Q(x) = x and

Q = Rd.

For this choice of prior, information operator and QoI operator, the BPNM

M(µ,ym) outputs a closed-form posterior thanks to the conjugacy properties of

Gaussian distributions.

Proposition 4.2.1 (Probabilistic Linear Solver). Let ⇤m = S
>
mA⌃0A

>
Sm and r0 =

b�Ax0. Then the posterior distribution is given by

p(x|ym) = N (x;xm, ⌃m)

where

xm = x0 + ⌃0A
>
Sm⇤�1

m S
>

mr0 (4.5)

⌃m = ⌃0 � ⌃0A
>
Sm⇤�1

m S
>

mA⌃0 (4.6)

Proof. Note that the joint distribution of x and ym is given by

"
x

ym

#
⇠ N

 "
x0

S
>
mAx0

#
,

"
⌃0 ⌃0A

>
Sm

S
>
mA⌃0 S

>
mA⌃0A

>
Sm

#!

from which the conditional distribution can be derived directly.

The posterior from Proposition 4.2.1 describes residual uncertainty in x†
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given the information in ym, but is impractical for use as a probabilistic numerical

method. This is primarily due to the requirement to invert the matrix ⇤m 2 Rm⇥m.

Though this comes at a lower cost than inverting A itself (O(m3) as opposed to

O(d3)), if many search directions are required to reach a desired level of accuracy

the cost of computing the posterior is still prohibitive. This will be addressed

by construction of a particular set of search directions which diagonalise ⇤m, in

Section 4.3.1.

An important remark is that the posterior covariance matrix is singular, i.e.

det(⌃m) = 0; in particular, S
>
mA⌃m = 0, since:

S
>

mA⌃m = S
>

mA⌃0 � S
>

mA⌃0A
>
Sm⇤�1

m| {z }
=I

S
>

mA⌃0

= 0.

This is due to the fact that observations are not corrupted with noise, so x† has

been completely determined in range(S>
mA); thus, the posterior after m iterations is

supported on the complement of this linear subspace. This makes certain posterior

quantities, such as probabilities, di�cult to compute, but we note that since its

null-space is known to be range(S>
mA) it can still be sampled e�ciently. This fact

is related to the general property that typically the output of BPNM is supported

on a null set of the prior, as will be discussed in more detail in Chapter 6.

A basic result, derived from the optimality properties of the conditional mean

of Gaussian distributions, gives a sense in which xm is optimal. This result is well-

known but will prove useful when comparing the posterior mean from probabilistic

linear solvers with other classical numerical methods.

Proposition 4.2.2. Let Sm = range(Sm). Then, the posterior mean from Proposi-

tion 4.2.1 satisfies:

xm = arg min
x2x0+⌃0A>Sm

kx� x†k
⌃

�1
0

(4.7)

Proof. First, by inspection the posterior mean from Proposition 4.2.1 satisfies xm 2
x0 + ⌃0A

>Sm. Thus, we will solve the optimisation problem in Eq. (4.7), and show

that the optimum is equal to xm.

Note that all x 2 x0 + ⌃0A
>Sm are of the form

x = x0 + ⌃0A
>
Sm↵

for some ↵ 2 Rm. Inserting this into the norm from the Proposition, note that it is
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equivalent to solve the following minimisation problem:

↵⇤ = arg min
↵2Rm

J(↵)

J(↵) =
1

2
kx0 + ⌃0A

>
Sm↵� x†k2

⌃
�1
0

and then set x⇤ = x0 + ⌃0A
>↵⇤. Di↵erentiating with-respect-to ↵ and setting to

zero gives:

rJ(↵) = S
>

mA⌃0A
>
Sm↵ + S

>

mA(x0 � x†) = 0

=) ↵⇤ = (S>

mA⌃0A
>
Sm)�1

S
>

mr0

and so

x⇤ = x0 + ⌃0A
>
Sm(S>

mA⌃0A
>
Sm)�1

S
>

mr0.

which is equal to xm in Proposition 4.2.1, as required.

The next result bounds the rate at which the posterior mean converges to the

truth with a function of the posterior covariance, thus showing that this covariance

provides a meaningful representation of the error.

Proposition 4.2.3.

kxm � x†k
⌃

�1
0

kx0 � x†k
⌃

�1
0


q

trace(⌃m⌃�1

0
)

Proof. Let ` 2 Rd be an arbitrary vector. Then

`>xm � `>x† = `>(x0 � x†) + `>⌃0A
>
Sm⇤�1

m S
>

mA(x† � x0) (from Eq. (4.5))

= `>(⌃0 � ⌃0A
>
Sm⇤�1

m S
>

mA⌃0)⌃
�1

0
(x0 � x†)

= h⌃m`,x0 � x†i
⌃

�1
0

(from Eq. (4.6))

and so we have that:

|`>xm � `>x†| = |h⌃m`,x0 � x†i
⌃

�1
0

|

 kx0 � x†k
⌃

�1
0
k⌃m`k

⌃
�1
0| {z }

(⇤)

. (4.8)

where the last line is from application of the Cauchy–Schwarz inequality. Now, by
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expanding the term (⇤) and simplifying, we see that

k⌃m`k2
⌃

�1
0

= `>(⌃0 � ⌃0A
>
Sm⇤�1

m S
>

mA⌃0)
>⌃�1

0
(⌃0 � ⌃0A

>
Sm⇤�1

m S
>

mA⌃0)`

= `>
�
⌃0 � 2⌃0A

>
Sm⇤�1

m S
>

mA⌃0

+ ⌃0A
>
Sm⇤�1

m S
>

mA⌃0A
>
Sm| {z }

=⇤m

⇤�1

m S
>

mA⌃0

�
`

= `>(⌃0 � ⌃0A
>
Sm⇤�1

m S
>

mA⌃0)` (4.9)

= `>⌃m`

which follows from Eq. (4.6)

Finally let ei denote the vector whose j
th entry is �ij and note that

kxm � x†k
⌃

�1
0

= k⌃�
1
2

0
(xm � x†)k2

=

 
dX

i=1

|e>i ⌃
�

1
2

0
xm � e>i ⌃

�
1
2

0
x†|2

! 1
2

 kx0 � x†k
⌃

�1
0

 
dX

i=1

e>i ⌃
�

1
2

0
⌃m⌃

�
1
2

0
ei

! 1
2

(from Eq. (4.8), (4.9))

= kx0 � x†k
⌃

�1
0

s

tr

✓
⌃
�

1
2

0
⌃m⌃

�
1
2

0

◆

= kx0 � x†k
⌃

�1
0

q
tr(⌃m⌃�1

0
)

where the last line uses the fact that the trace is invariant under cyclic permutation

of the argument.

Note that this result is extremely conservative, particularly when compared

to the later contraction result in Proposition 4.3.5. This is due to the later result

exploiting structure in the search directions constructed in Section 4.3.1. Neverthe-

less, it is also possible to bound the rate of contraction of the posterior covariance

itself:

Proposition 4.2.4.

trace(⌃m⌃�1

0
) = d�m
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Proof. We have that

trace(⌃m⌃�1

0
) = trace(I � ⌃0A

>
Sm⇤�1

m S
>

mA)

= trace(I)� trace(⌃0A
>
Sm⇤�1

m S
>

mA)

= trace(I)� trace(S>

mA⌃0A
>
Sm| {z }

=⇤m

⇤�1

m )

= d�m

where the third line uses the fact that the trace of a matrix is invariant under cyclic

permutation of the argument.

This result highlights an intuitive but somewhat disappointing property of

the PNM in Proposition 4.2.1. Since the search directions are arbitrary, after ob-

serving m search directions x† has been identified perfectly in an m-dimensional

linear subspace, and so it seems intuitive that uncertainty about x† should decrease

at a linear rate after adjusting for the weighting of the space provided by ⌃0. Nev-

ertheless, in light of the exponential rate in Theorem 4.1.7, this linear convergence

rate seems unsatisfying.

4.2.2 Correspondence with the Conjugate Gradient Method

In this section we examine the correspondence of the posterior mean xm described in

Proposition 4.2.1 with the CG method. It is frequently the case that Bayesian prob-

abilistic numerical methods have some classical numerical method as their posterior

mean, due to the characterisation of the conditional mean of a probability distri-

bution as an optimal element of the underlying space. In this finite-dimensional

setting this is made clear in Proposition 4.2.2. By comparing this to the optimality

property obtained in Theorem 4.1.7, the following result is clear:

Corollary 4.2.5. Assume A is symmetric and positive-definite. Let x0 = 0 and

⌃0 = A
�1. Then, taking Sm = S

CG
m to be the search directions from CG, Eq. (4.5)

reduces to xm = xCG
m .

Proof. The proof is immediate from inserting ⌃0 = A
�1 into Proposition 4.2.2, and

comparing with the optimality condition in Corollary 4.1.5.

The dependence of the prior covariance on A
�1 makes this choice impractical,

but the probabilistic interpretation of CG is nevertheless interesting. In the following

section a set of search directions is constructed which both produces a CG-like
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conjugacy for an arbitrary prior covariance, and recovers the CG search directions

in the case ⌃0 = A
�1.

4.3 BayesCG

In this section the algorithm referred to as BayesCG will be introduced and exam-

ined in detail. BayesCG is defined by a specific set of search directions, chosen to

diagonalise ⇤m, and these will be introduced in Section 4.3.1. Then, in Section 4.3.2

it will be established that BayesCG is a Krylov subspace method, and a theoretical

analysis will be conducted.

4.3.1 BayesCG Search Directions

Search directions which diagonalise ⇤m and define BayesCG will now be introduced.

Note that unlike CG, the BayesCG search directions do not require A to be positive-

definite, and are valid for arbitrary invertible A. We first present a simplification of

the posterior from Proposition 4.2.1 under A⌃0A
>-orthonormal search directions2,

arising from the fact that under these search directions ⇤m = I.

Proposition 4.3.1 (Conjugate Search Directions =) Iterative Method). Assume

that the search directions are A⌃0A
>-orthonormal. Then, xm in Eq. (4.5) simplifies

to

xm = xm�1 + ⌃0A
>sm(s>mrm�1).

Similarly, ⌃m can be computed iteratively as follows:

⌃m = ⌃m�1 � ⌃0A
>sms>mA⌃0.

Furthermore, to compute ⌃m post-hoc it su�ces to store the only the matrix ⌃0A
>
Sm 2

Rd⇥m.

Proof. First, note that ⇤m = I as the search directions {si}, i = 1, . . . , m are

2Note that this does not require that the search directions from Proposition 4.3.2 are used, but
is valid for those search directions.
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Q-orthonormal, where Q = A⌃0A
>. Then, from Eq. (4.5):

xm = x0 + ⌃0A
>
SmS

>

mr0

= x0 + ⌃0A
>

h
Sm�1 sm

i "
S
>

m�1

s>m

#
r0

= x0 + ⌃0A
>
Sm�1S

>

m�1r0| {z }
=xm�1

+⌃0A
>sms>mr0.

It remains to show that s>mr0 = s>mrm�1. To this end, from Eq. (4.5) we have

s>mrm�1 = s>mb� s>mAxm�1

= s>mb� s>mx0 � s>mA⌃0A
>
S
>

m�1| {z }
=0

r0

= s>mr0.

For the posterior covariance, note that with ⇤m = I we have, from Eq. (4.6):

⌃m = ⌃0 � ⌃0A
>
SmS

>

mA⌃0

= ⌃0 �
mX

i=1

⌃0A
>sis

>

i A⌃0

= ⌃m�1 � ⌃0A
>sms>mA⌃0

as required. Further, from the first line it is clear that storage of ⌃0A
>
Sm is su�cient

to compute ⌃m. This completes the proof.

Note that this posterior di↵ers slightly from that in Proposition 4.2.1. In

Proposition 4.2.1 information was provided by s>mr0, while in Proposition 4.3.1 it is

provided by s>mrm�1. It is straightforward to show that when search directions are

conjugate, the two expressions are equivalent:

s>mrm�1 = s>mb� s>mAxm�1

= s>mb� s>mAx0 � s>mA⌃0A
>
Sm�1| {z }

=0

r0 = s>mr0. (4.10)

Use of s>mrm�1 reduces the memory requirements of computing Eq. (4.5) and is thus

slightly preferred.

The next result provides an iterative method for constructing a set of A⌃0A
>-

conjugate search directions, which are termed the BayesCG search directions.
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Proposition 4.3.2 (Bayesian Conjugate Gradient Method). Denote s̃1 = b�Ax0

and s1 = s̃1/ks̃1kA⌃0A> . For m > 1 let

s̃m = rm�1 � hsm�1, rm�1iA⌃0A>sm�1 (4.11)

and let sm = s̃m/ks̃mkA⌃0A> . Then for each m, the set {si}m

i=1
is A⌃0A

>-orthonormal,

and as a result ⇤m = I.

Proof. See Appendix C.1.

BayesCG is termed a conjugate gradient method because the search direc-

tions arise from gradient descent on a particular function, subject to a conjugacy

requirement. The search directions used are not the same as those from CG, apart

from in the special case when ⌃0 = A
�1. The posterior mean may also be thought

of as a generalised conjugate gradient method in the sense of Gutknecht [1993].

Note that the search directions in Proposition 4.3.2 depend on x† through

their dependence on b. Specifically, assuming that x0 = 0 the first search direction

s1 = b = Ax†. This means that the first piece of information is given by

s>1 Ax† = (x†)>A
>
Ax†

which is nonlinear in x†. Thus, the conditioning procedure that is followed in

Proposition 4.3.1 is not strictly correct, as the information used is not technically

linear. The impact of this disconnect will be explored in detail in Section 4.6.1, and

represents an important line of future research for this method.

4.3.2 BayesCG as a Krylov Subspace Method

In this section it will be shown that BayesCG is a Krylov subspace method, which

will result in a faster convergence rate for the posterior mean than that elicited in

Proposition 4.2.3. For convenience, let K
⇤
m := x0 + ⌃0A

>
Km(A⌃0A

>
, r0). Then,

we have the following result.

Proposition 4.3.3. The search directions from Proposition 4.3.2 satisfy

range(Sm) = Km(A⌃0A
>
, r0).

Proof. See Appendix C.2.
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Corollary 4.3.4. The BayesCG mean xm satisfies

xm = arg min
x2K⇤

m

kx� x†k
⌃

�1
0

.

Proof. This is immediate from application of Proposition 4.3.3 in Proposition 4.2.2.

Note that these results also provide a new perspective on the previous ob-

servation that Proposition 4.2.1 has a posterior mean that coincides with CG when

⌃0 = A
�1. Since, for this choice of ⌃0, both the a�ne space K

⇤
m and the norm

minimised coincide with those from CG, it is clear that the posterior mean under

this prior should coincide with the CG estimate.

The last theoretical result in this section establishes a convergence rate for

BayesCG which echoes that from CG, given in Theorem 4.1.7.

Proposition 4.3.5.

kxm � x†k
⌃

�1
0

kx0 � x†k
⌃

�1
0

 2

 p
(⌃0A

>A)� 1p
(⌃0A

>A) + 1

!
m

.

Proof. See Appendix C.3.

Note that this rate is identical to that from CG, but with (A) replaced with

(⌃0A
>
A). However, since we have that (A>

A) � (A), the convergence rate for

BayesCG may be worse than that for CG unless ⌃0 is chosen to reduce the condition

number of (⌃0A
>
A). This idea will be examined further in the next section.

Also note that the rate of convergence in Proposition 4.3.5 is significantly

faster than that elicited in Proposition 4.2.3, owing to the fact that the search di-

rections have been chosen in such a way as to accelerate convergence. However, the

equality in Proposition 4.2.4 remains unchanged by this choice of search directions;

thus while the posterior mean will converge at an exponential rate, the posterior

covariance contracts linearly when its size is measured by trace(⌃m⌃�1

0
). This sug-

gests that the posterior will be conservative in general and this is verified empirically

in Section 4.6.1.

4.4 Prior Choice

Having introduced the search directions which define BayesCG, and thus identified

the information which will be used, it remains to describe the prior. Since, owing to
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the fact that observations are noiseless, the prior distribution completely determines

posterior uncertainty, an appropriate choice is critical. In Section 4.4.1 we will begin

by discussing the prior covariance structure. This will be followed in Section 4.4.2

by the introduction of a hierarchical prior which is designed to automatically scale

to the problem at hand.

4.4.1 Covariance Structure

As already discussed, the prior choice ⌃0 = A
�1 yields a posterior mean which

coincides with the solution estimate produced by CG. However from a statistical

perspective, correspondence with a classical numerical method does not in itself

justify the use of A
�1 as the prior covariance. In this section we will discuss some

alternative choices of ⌃0 that are more probabilistically justified.

Natural Prior

Information about x† is only available through interrogation of b, so taking inspi-

ration from Owhadi [2015] it seems natural to place a prior on b rather than on x†.

This is motivated by the fact that b is the object about which we obtain information,

and so is perhaps easier to reason about than x†. Furthermore, placing a prior on

b is equivalent to placing a prior on x† in the Gaussian case, since basic proper-

ties of linear projections of Gaussian distributions coupled with the relationship in

Eq. (4.1) imply that

b ⇠ N (b0, ⌃0) () x† ⇠ N (A�1b0, A
�1⌃0A

�>).

Since b is a-priori unknown, a natural prior to use would be b ⇠ N (0, I), which

implies that x ⇠ N (0, (A>
A)�1). This prior is just as impractical as taking ⌃0 =

A
�1, but has the interesting property that with the BayesCG search directions from

Proposition 4.3.2, convergence occurs in a single iteration:

s1 =
r0

kr0kA⌃0A>
=

r0

kr0k2

=) x1 = x0 +
(A>

A)�1
A

>r0(r>0 r0)

kr0k22
= x0 + A

�1(b�Ax0) = x†

Here the first line uses the fact that the search directions are A⌃0A
>-orthonormal,

while the second line applies the form for x1 from Proposition 4.3.1.
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Preconditioner Prior

A more practical choice of prior covariance uses the intuition above, but replaces

A
�1 with a preconditioner for system, as discussed in Section 4.1.3. Recall that

a preconditioner is a matrix P which serves as an approximate inverse for A, in

that P
�1 can be computed in significantly less than O(d3) operations and has the

property (P�1
A) ⌧ (A). Where such a preconditioner is available this suggests

the prior ⌃0 = (P>
P )�1.

Krylov Subspace Prior

A second practical approach uses results from numerical analysis to place the ma-

jority of the prior probability mass on a subspace of Rd in which we expect the

solution to lie. In the present setting, this is accomplished by placing mass on a

particular Krylov subspace. Consider

xK =
nX

i=1

wiM
i�1b (4.12)

where n < d and the weights are taken to be w ⇠ N (0, �), with � 2 Rn⇥n a

positive-definite matrix. Equivalently xK = Qnw, where Qn 2 Rd⇥n is a basis for

Kn(M, b), such as given by Arnoldi iteration [Liesen and Strakos, 2012, Section 2.4].

Noting that E(xK) = 0, the covariance of xK is given by

E(xKx>

K) = Qn�Q
>

n

so that xK ⇠ N (0, Qn�Q
>
n ).

Arnoldi iteration to generate Qn has the same computational complexity as

application of n iterations of BayesCG, so to prevent this cost from dominating

the procedure, it is necessary to take n < m ⌧ d. Furthermore we note that no

probability mass is placed outside of Kn(M, b) by following this procedure, which

is problematic as generally x /2 Kn(M, b) for n < d. To ensure that x† lies in the

support of the prior, let K
?
n (b, M) = Rd \Kn(b, M), and let Q

?
n 2 Rd�n⇥d denote a

matrix with range(Q?
n ) = K

?
n (M, b). Let x?

K
= Q

?
nw

?, where w? ⇠ N (0, 'I) for

some scaling parameter ' 2 R. Then, the Krylov subspace prior is given by:

x = x0 + xK + x?

K

⇠ N
⇣
x0, Qn�Q

>

n + 'Q
?

n (Q?

n )>
⌘

.
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There are several parameter choices associated with this approach:

Choice of M Given the analysis in Section 4.3.2, the most natural choice of Krylov

subspace in which to place prior mass is ⌃0A
>
Kn(⌃0A

>
A, ⌃0A

>r0). However since

this depends itself on the prior covariance which is to be determined, an alternative

choice must be made. Setting M = A also seems natural due to the rapid conver-

gence of CG shown in Theorem 4.1.7. Using this choice, the Krylov subspace prior

can loosely be thought of as encoding a numerical analyst’s intuition that projection

of x† into the Krylov subspace Km(A, r0) results in a small error in an appropriate

norm.

Selection of � and ' With M = A, the rate of convergence of CG shown in

Proposition 4.2.1 can be used to decide how much mass to place on each direction

in Kn(A, b), and thus determine � and '. Let ⇠ < 1. Owing to the assumed

orthogonality of the columns of Qn, � is taken to be a diagonal matrix with �ii =
⇥
2�⇠

i
⇤
2
. Like ⇠, � 2 R is a scaling parameter. Proposition 4.2.1 suggests fixing the

scale parameters introduced to ⇠ = (A)�1

(A)+1
and � = kx†kA. Note however that since

these quantities are not computable without significantly more computational e↵ort

than required to run BayesCG, some approximation must be used, or values chosen

based on the user’s prior belief. The choice of this approximation was not explored

herein, however.

The remaining parameter, ', describes how much mass is placed on K
?
m(A, b).

The argument above suggests the constraint ' < [2�⇠
i+2]2, but the precise choice of

' should again be based on the user’s prior belief on how rapidly CG will converge

in practise for a particular problem.

Computation of Q
?
n Note that

K
?

n (A, b) = {v : Q
>

n v = 0}

so that computing Q
?
n is equivalent to finding the null-space of Q

>
n . The QR-

decomposition of a (non-square) matrix Q
>
n consists of two matrices Q 2 Rd⇥d and

R 2 Rd⇥n such that Q
>
n = QR. The matrix Q can be used to determine the null

space of Q
>
n . Split Q as Q = [Q1, Q2], where Q1 2 Rd⇥(n+1) and Q2 2 Rd⇥(d�n�1).

Then it holds that Q2 is an orthonormal matrix with range(Q2) = K
?
n (A, b). The

computational complexity of this procedure is O(d3), however, so in practise a more

expedient method for computing or estimating the required null space would need

to be used; again, this was not explored.

58



4.4.2 Covariance Scale

In this section, calibration of the prior will be discussed. For the output of BayesCG

to be useful the prior must be appropriately calibrated. This is particularly impor-

tant for BayesCG owing to the data-driven nature of the search directions and the

poor calibration exhibited in Section 4.6.1. Loosely speaking, it is desirable that the

posterior covariance should reflect the distance between xm and x†. The approaches

described here each consider the introduction of a hyperparameter ⌫ into the prior

specification, so the following modified prior is used:

p(x|⌫) = N (x0, ⌫⌃0) (4.13)

with x0, ⌃0 as before, while ⌫ 2 R+ is a scale parameter to be estimated. Thus we

obtain a generalised version of the prior in Eq. (4.4), which is recovered when ⌫ = 1.

Even more generally, the entire posterior covariance could be treated as unknown

and endowed with a prior on positive-definite matrices, such as the inverse-Wishart

prior, but this approach was not considered.

Here two approaches to estimation of ⌫ are discussed. First, it is proposed

that the prior scale should be treated as as a hyperparameter and learned from

the observed data, similar to an approach from Bayesian linear regression [Gelman

et al., 2014]. Secondly, we discuss empirically calibrating of the covariance scale

to match an estimate of the error at iteration m. This approach is philosophically

unsatisfying, but seems to yield better-calibrated UQ than the hierarchical approach.

Hierarchical Prior

In this section ⌫ 2 R+ is endowed with Je↵reys’ (improper) reference prior:

p(⌫) / ⌫
�1

.

This “hyperprior” has conjugacy properties with Eq. (4.13), so that both the poste-

rior marginal distributions p(⌫|ym) and p(x|ym) can be obtained in closed-form. For

the following proposition, IG denotes an inverse-gamma distribution, while MVTm

denotes a multivariate t distribution with m degrees of freedom.

Proposition 4.4.1 (Hierarchical BayesCG). When p(x|⌫) = N (x0, ⌫⌃0) and p(⌫) /
⌫
�1, the posterior marginal for ⌫ is given by

p(⌫|ym) = IG

✓
m

2
,
1

2
r>0 Sm⇤�1

m S
>

mr0

◆
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while the posterior marginal for x is given by

p(x|ym) = MVTm

✓
xm,

r>
0

Sm⇤�1
m S

>
mr0

m
⌃m

◆
.

When the search directions are A⌃0A
>-orthonormal, this simplifies to

p(⌫|ym) = IG
⇣

m

2
,
m

2
⌫m

⌘

p(x|ym) = MVTm (xm, ⌫m⌃m)

where ⌫m := kS>
mr0k22/m.

Proof. We first compute the posterior marginal for ⌫. Note that

p(⌫|y) / p(y|⌫)p(⌫)

where

y|⌫ ⇠ N (S>

mAx0, ⌫⇤m).

We thus have that:

p(⌫|y) / ⌫
�

m
2 �1 exp

✓
� 1

2⌫
r>0 Sm⇤�1

m S
>

mr0

◆

which is the unnormalised density of an IG
�

m

2
,

1

2
r>

0
Sm⇤�1

m S
>
mr0

�
distribution, as

required. Now to determine the posterior marginal for x, we have the following:

p(x|y) =

Z
1

0

p(x|⌫,y)p(⌫|y) d⌫

/
Z

1

0

⌫
�1�(m+d)/2 exp

�
�⌫

�1
K(x)

�
d⌫ (4.14)

where

K(x) :=
1

2

h
r>0 Sm⇤�1

m S
>

mr0 + (x� xm)>⌃�1

m (x� xm)
i

Eq. 4.14 is recognised as the integral of an unnormalised inverse-Gamma density, so

that we can immediately find:

p(x|y) / �(m + d)K(x)�
1
2 (m+d)

/
"
1 +

1

m
(x� xm)>

⇢
r>

0
Sm⇤�1

m S
>
mr0

m
⌃m

��1

(x� xm)

#
�

1
2 (m+d)

.
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This is recognised as an unnormalised multivariate t distribution, so that

p(x|y) = MVTm

✓
xm,

r>
0

Sm⇤�1
m S

>
mr0

m
⌃m

◆

as required.

Since r0 reflects the initial error x0 � x†, the quantity ⌫m can be thought

of as describing the di�culty of the problem. Thus in this approach the scale of

the posterior should be automatically calibrated. However, as will be shown in

Section 4.6.1, this nevertheless yields a poorly calibrated posterior.

Empirical Calibration

In this section we discuss an empirical procedure for calibrating ⌫. This is designed

to compensate for the mismatch between the exponential convergence rate exhibited

in Proposition 4.3.5 and the linear rate of covariance contraction in Proposition 4.2.4.

The proposed approach is to construct an error indicator over the course of the

algorithm, and then use this to adjust an appropriate measure of spread of the

posterior to match that error prediction. It should be emphasised that this approach

is ad-hoc, and should not be considered as the unique, best approach to calibration;

it is presented here only to demonstrate that a calibration procedure that provides

more realistic uncertainty quantification can be constructed.

Constructing the Error Indicator The aim here is to construct a proxy for the

true error by constructing a computable upper bound for the error kxm�x†k2. Let

zi := kxi � xi�1k2 .

The proposed approach is to perform a simple regression on the values {zi}m

i=1
, and

use the fitted model ⌫(i) to extrapolate for the error required. Justified by the

exponential convergence rate of BayesCG, a log-linear function ⌫(i) = exp(a + bi)

has been used for the regression model.

To derive the error indicator we use the following bound derived from the
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triangle inequality:

kxm � x†k2 
dX

i=m+1

kxi � xi�1k2

⇡
dX

i=m+1

⌫(i) =: ↵m.

Thus ↵m provides an approximate upper-bound for kxm � x†k2.

Fitting the Posterior Next we adjust the spread of the posterior based on the

approximate upper-bound ↵m on the true error. This requires some measure of the

posterior spread, and for the ease of computability the measure trace(⌫m⌃m) was

used. Thus, to be concrete, ⌫m is selected so that:

trace(⌫m⌃m) = ↵m

=) ⌫m =
↵m

trace(⌃m)
.

Note that, since ↵m appears in the numerator and provides an approximate upper

bound for the true error, the UQ provided will still be conservative in general.

4.5 Implementation

BayesCG is presented as an algorithm in Algorithm 4.3. A Python implementation

can be found at github.com/jcockayne/bcg.

There are several issues and complications which arise when implementing

BayesCG in practise, which will now be discussed.

4.5.1 Further Simplication of BayesCG

Several simplifications are exploited in Algorithm 4.3. These are described here

in detail. First, for stability it is recommended to compute A⌃0A
>-orthogonal

directions rather than enforcing orthonormality; this is due to the tendency for

ks̃mkA⌃0A> to become very small over the course of the iteration. Second, two

coe�cients must be calculated: one for the purposes of updating xm, and one for

updating s̃m. Let Q = A⌃0A
>, and express these quantities as

xm = xm�1 + ↵m⌃0A
>s̃m

s̃m = rm�1 + �m�1s̃m�1
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Algorithm 4.3 Computation of the posterior distribution described in Proposi-
tion 4.3.1 with the optimisations described in Section 4.5.1. For clarity, all re-
quired matrix-vector multiplications have been made explicit, but for e�ciency these
should be calculated once-per-loop and stored. From the output, ⌃m computed as
⌃m = ⌃0 � ⌃F ⌃>

F
.

1: procedure BayesCG(A, b,x0, ⌃0, ✏, mmax) . (✏ the tolerance)
2: ⌃F initialised to a matrix of size (d⇥ 0) . (mmax the maximum #

iterations)
3: r0  b�Ax0

4: s̃1  r0

5: ⌫̃0  0
6: for m = 1, . . . , mmax do
7: E

2  s̃>mA⌃0A
>s̃m

8: ↵m  
r>
m�1rm�1

E2

9: xm  xm�1 + ↵m⌃0A
>s̃m

10: rm  rm�1 �Axm

11: ⌃F  [⌃F , ⌃0A
>s̃m/E]

12: ⌫̃m  ⌫̃m�1 +
r>
m�1rm�1

E2

13: if krmk2 < ✏ then
14: break
15: end if
16: �m  r>

mrm
r>
m�1rm�1

17: s̃m+1  rm + �ms̃m

18: end for
19: ⌫m  ⌫̃m/m

20: return xm, ⌃F , ⌫m

21: end procedure

where

↵m =
s̃>mrm�1

ks̃mk2Q

�m = �rmQs̃m

ks̃mk2Q
.

Now, using the expression for s̃m from Eq. (4.11), note that

↵m =
r>

m�1
(rm�1 � �ms̃m�1)

ks̃mk2Q

=
r>

m�1
rm�1

ks̃mk2Q
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since we have from Lemma C.1.1 that s̃>mrm = 0. Furthermore, from Eq. (C.3), we

have that

r>mQsm =
r>mrm�1 � r>mrm

s>mrm�1

= � r>mrm

s>mrm�1

= � r>mrm

r>
m�1

rm�1

ks̃mk2Q

so that

�m =
r>mrm

r>
m�1

rm�1

These two simplifications have been found (empirically) to improve the stability of

computation of Proposition 4.3.1 in Algorithm 4.3.

4.5.2 Numerical Breakdown of Conjugacy

It is well known [see Liesen and Strakos, 2012] that, after a certain iteration, the

CG search directions exhibit a breakdown of conjugacy when computed numerically.

This is in spite of the mathematical conjugacy which can be proven to hold. The

reason for this phenomenon is an accumulation of floating point error, and since

the procedure by which the BayesCG search directions are computed is essentially

the same as that by which the CG search directions are constructed, they share

this property. The breakdown of conjugacy is mitigated to some extent by using

the alternative information described in Eq. (4.10), which exploits “local” conju-

gacy [Meurant, 2006], but ultimately this only delays the conjugacy breakdown. A

side-e↵ect is that, while mathematically convergence is guaranteed in d iterations,

computationally m > d iterations may required.

While the impact of this on CG is well-known, in the present setting its im-

pact on the posterior covariance must also be discussed. When the search directions

are not conjugate ⇤m 6= I, and so the simplification exploited in Proposition 4.3.1 no

longer hold, inducing overconfidence in the resulting posterior. How this interacts

with the conflicting rates from Proposition 4.3.5 and Proposition 4.2.4 will be exam-

ined numerically in Section 4.6, but an analytical treatment of floating point error

in the context of BayesCG is beyond the scope of this thesis. However, to provide a

benchmark, “exact” posterior against which to compare the batch-computed search

directions are also introduced here. These are obtained by the full Gram-Schmidt
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orthogonalisation procedure:

s̃C

m := rm�1 �
m�1X

i=1

hsC

i , rm�1iA⌃0A>sC

m�1

sC

m := s̃C

m/ks̃C

mkA⌃0A>

Note that while these search directions are mathematically equivalent to BayesCG

search directions, they maintain their conjugacy when computed.

4.5.3 Computational Cost

Depending on how it is implemented, BayesCG requires either one or two addi-

tional matrix-vector multiplications per iteration over CG3. Regardless, the cost of

BayesCG is a constant factor higher than the cost of CG, i.e. O(md
2). For the

batch-computed search directions an additional loop of complexity O(m) must be

performed, and so the cost of BayesCG with these search directions is O(m2
d

2).

This assumes that A and ⌃0 are dense matrices; if they are sparse the cost is driven

instead by the number of nonzero entries in each matrix, rather than their dimen-

sion.

4.5.4 Termination Criteria

An additional use of the posterior distribution might be to determine when the poste-

rior has contracted to a desired tolerance, thus providing a probabilistic termination

criterion. Recall from Proposition 4.2.3 that xm approaches x⇤ at a rate bounded

by �m :=
q

trace(⌃m⌃�1

0
), and from Proposition 4.2.4 that trace(⌃m⌃�1

0
) = d�m.

This leads to the following termination criterion based upon Proposition 4.4.1:

�
2

m := trace(⌃m⌃�1

0
)⇥ ⌫m = (d�m)⌫m. (4.15)

The algorithm would then terminate when �
2
m < ✏, for some user-specified toler-

ance. However, as discussed, Proposition 4.2.3 is extremely conservative, and since

Proposition 4.3.5 establishes a much faster rate of convergence for kxm � x†k
⌃

�1
0

this is likely to be an overcautious stopping criterion. Furthermore, note that ⌫m

is not uniformly decreasing with m, which further casts doubt on the suitability of

Eq. (4.15) as a termination criterion. Thus, in practise a standard CG termination

criterion is used; see Golub and Van Loan [2013, Section 11.3.8] for more detail. Fur-

3Note that if storage is not a limiting factor, the matrix A⌃0 can be computed and stored,
reducing the number of matrix-vector multiplications required by 1 per iteration
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ther research is needed to establish whether a termination criterion can be derived

from the posterior distribution.

4.6 Numerical Results

In this section two numerical studies are presented. In Section 4.6.1, a simulation

study is presented in which theoretical results presented are verified empirically. In

Section 4.6.2, BayesCG is applied to the EIT problem introduced in Section 2.4.2.

4.6.1 Simulation Study

This first experiment is a simulation study, with the goal of verifying numerically

the theoretical properties proven earlier in this chapter.

For the simulation study a matrix A was generated by randomly drawing

its eigenvalues �1, . . . , �d from an exponential distribution with parameter � = 10.

The dimension d was fixed to d = 100. These were used as input to the MATLAB

function sprandsym, which generates a random sparse symmetric matrix with the

supplied eigenvalues. The sparsity parameter nnz(A) was set to 20%. After con-

structing A, many random solutions x† were drawn independently from a reference

distribution µref = N (0, I), after which b = Ax† was computed to provide the full

system required.

The BayesCG algorithm was then run for m = d = 100 iterations on each of

the random systems. Several choices of prior discussed in Section 4.4 were used:

• ⌃0 = I.

• ⌃0 = A
�1.

• ⌃0 = (P>
P )�1 for P a preconditioner obtained by computing an incomplete

Cholesky decomposition with zero fill-in [Ajiz and Jennings, 1984]. This de-

composition is simply a Cholesky decomposition in which an (approximate)

factor L̂ is constructed, and enforced to have same sparsity structure as A.

The preconditioner is then given by P = L̂L̂
>.

• ⌃0 the Krylov prior from Section 4.4.1. Here the parameters were set to

n = 20, � = kx†kA, ⇠ = (A)�1

(A)+1
and ' = 0.01 to give low weight to the

complement space.

Note that not all of these choices are practical; the choice ⌃0 = A
�1 is impractical for

reasons already discussed, while the Krylov prior involves computing the condition

66



number of A and the norm of x†. While these quantities might be estimated e�-

ciently, this was not explored in this section. However, it should be emphasised that

the choice ⌃0 = (P>
P )�1 is practical, as the incomplete Cholesky decomposition

can be computed at substantially lower cost than the O(d3) cost of computing the

complete Cholesky. Three sets of search directions are used: the sequentially and

batch computed search directions are compared with a set of orthonormal search

directions selected at random to provide a benchmark. These random directions

were obtained by sampling an orthogonal matrix from a uniform distribution using

the algorithm of Diaconis and Shahshahani [1987].

Posterior Mean

In Figure 4.1 the convergence of the posterior mean xm from BayesCG under the

choices of prior discussed above, is contrasted with the solution estimate from CG

for the test problems described above. When ⌃0 = I, the convergence rate of

the BayesCG mean is significantly slower than the CG solution estimate. This is

to be expected, since with this choice of prior the condition number that governs

convergence in Corollary 4.3.4 is (A>
A) = (A)2, so slower convergence is natural.

The randomly selected search directions also exhibit slower convergence that more

closely matches the slower rate elicited in Proposition 4.2.3. For ⌃0 = A
�1, the

posterior mean is identical to the estimate for xm obtained from CG. The fastest

rate of convergence is achieved when using the preconditioner prior ⌃0 = (P>
P )�1,

providing a strong motivation for such priors when preconditioners are available.

Note however that while the rate achieved for this prior is faster than the convergence

rate of CG, if a preconditioned CG algorithm were employed convergence would be

at a faster rate governed by (P�1
A).

Batch computed directions are examined in the lower row of Fig. 4.1. The

main di↵erence appears to be that convergence is achieved in m = d iterations, which

is not the case for the sequentially computed directions, owing to the aforementioned

breakdown of conjugacy. Lastly, note that with the Krylov subspace prior significant

numerical instability is observed starting at m = 20. This does not occur with the

batch computed directions, where a jump in the convergence rate is seen at this

iteration.

Posterior Covariance

We now turn to an evaluation of the posterior covariance, plotted in Fig. 4.2. The

statistic trace(⌃m) is plotted for each test problem and prior covariance choice, to
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Figure 4.1: Convergence in mean of BayesCG. Computation of the error kxm �
x†k2 for the test problems described in Section 4.6.1. CG (top left) was compared
to variants of BayesCG (right) with di↵erent prior covariances ⌃0. The search
directions are either sequentially computed (top row) or batch computed (bottom
row). For comparison, random search directions are displayed in the bottom left
panel.
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Figure 4.2: Width of the posterior covariance from BayesCG, as measured by
trace(⌃m). The experimental setup was as described in Figure 4.1, but the statistic
plotted is instead trace(⌃m)/trace(⌃0).
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empirically verify Proposition 4.2.4. Clearly, the faster convergence in the mean

exhibited when the BayesCG search directions are used does not transfer to a faster

rate of convergence in the posterior covariance. Throughout, a roughly linear rate

of convergence is observed, as expected from Proposition 4.2.4. Furthermore, com-

paring batch computed and sequentially computed directions, the impact of the

breakdown of conjugacy is clear in the right two columns, when the posterior co-

variance is shown to take negative values at around m = 20.

Uncertainty Quantification As discussed in Section 4.3.2, the UQ provided by

BayesCG is expected to be conservative in general. As a result, in this section we

assess the quality of the UQ using a statistical test. The same experimental setup

was used, but BayesCG was run for m = 10 iterations rather than m = d to ensure

that residual uncertainty is present. Batch computed search directions were used

throughout, as the main interest is in the uncertainty quantification properties of

the posterior rather than the numerical properties of the algorithm.

We first consider the version of BayesCG from Proposition 4.3.1, with the

Gaussian posterior. To assess the UQ, we make the ansatz that, if the posterior

is to be considered well-calibrated, we should expect x† to be a plausible draw

from the posterior distribution. The posterior covariance ⌃m is singular, of rank

d�m. However assessing uncertainty in its null space is irrelevant, as in this space

x† is known exactly. Since ⌃m is positive semidefinite, it has the singular-value

decomposition

⌃m = U

"
D 0d�m,m

0m,d�m 0m,m

#
U

>

where 0m,n denotes an m ⇥ n matrix of zeroes, D 2 R(d�m)⇥(d�m) is diagonal and

U 2 Rd⇥d is an orthogonal matrix. The first d �m columns of U , denoted Ud�m,

form a basis of range(⌃m) ⇢ Rd, the space in which x† is still uncertain. Under the

ansatz we can then show that

Ud�mD
�

1
2 U

>

d�m
(x† � xm) ⇠ N (0, Id�m)

=) Z(x†) := kD�
1
2 U

>

d�m
(x† � xm)k22 ⇠ �

2

d�m

where here In 2 Rn⇥n is the identity matrix. Note that the pre-factor Ud�m is

dropped from the final expression as the Euclidean norm is unitarily invariant.

The procedure for evaluation of the UQ is then to draw many test problems

x† ⇠ µref, evaluate Z(x†) for each and compare the empirical distribution of this

statistic to �
2

d�m
. When the posterior distribution is well-calibrated, the empirical
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Figure 4.3: Evaluation of the uncertainty quantification from Gaussian BayesCG,
under di↵erent choices of prior covariance and search directions. Kernel density
estimates of Z are displayed based on 500 sampled test problems. The theoreti-
cal distribution of Z is plotted for comparison. The right panel zooms in on the
area of the z-axis in which the statistics from ⌃0 = A

�1 and ⌃0 = (P>
P )�1 are

concentrated.

distribution should resemble a �
2

d�m
distribution. When the posterior is conservative

the distribution will exhibit a “left-shift” in its density, as xm is closer to x† than

indicated by the posterior covariance. An excessively confident posterior will be

right-shifted.

In Figure 4.3 the empirical distribution of Z is presented as a kernel density

estimate based upon 500 sampled problems, for the same range of priors as before.

The random search directions are the only choice which provides well-calibrated UQ,

owing to the fact that these directions do not have an implicit dependence on x†.

Conversely, the UQ is the most conservative for the prior covariances ⌃0 = I, A
�1

and (P>
P )�1, i.e. when the prior contains the most information about the solution

and, consequently, the convergence rate in Proposition 4.3.5 is fastest. The Krylov

subspace prior seems to provide better calibrated UQ; while it does not exactly

match the empirical distribution, it at least places a larger amount of its mass near

that distribution. Thus, this prior goes some way towards addressing the poor UQ

provided.

Similar arguments to above can be used to assess the multivariate t posterior

from Proposition 4.4.1. When S ⇠ N (0, I), T ⇠ MVTm(µ, ⌃) and U ⇠ �
2
m, it holds

that:

1p
m

Ud�mD
�

1
2 U

>

d�m
(T � µ)

d
=

Sp
U

=) 1

m
kD�

1
2 U

>

d�m
(T � µ)k22

d
=
kSk2

2

U
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Figure 4.4: Assessment of the uncertainty quantification from the multivariate t

version of BayesCG described in Proposition 4.4.1. The same prior covariances and
search directions were used as in Figure 4.3.

Applied to the posterior from Proposition 4.4.1, we have µ = xm and ⌃ = ⌃m.

Furthermore kSk2
2
⇠ �

2

d�m
. Lastly, multiplying both sides by m/(d�m) we have

Z(x†) :=
1

d�m
kD�

1
2 U

>

d�m
(xm � x†)k22

d
=

kSk
2
2

(d�m)

U

m

.

The ratio on the right-hand-side can be shown to follow an F (d�m, m) distribution.

Empirical distributions of this statistic are again plotted in Fig. 4.4, however the

quality of the posterior calibration appears to be much the same as for the Gaussian

posterior, with the BayesCG posterior providing the UQ closest to the theoretical

distribution being that obtained from the Krylov prior.

Lastly, Fig. 4.5 shows the uncertainty quantification obtained when ⌫m is

calibrated empirically using the procedure described in Section 4.4.2. Compared to

Fig. 4.3 and Fig. 4.4 the posterior appears to be generally better-calibrated for the

more practical priors ⌃0 = (P>
P )�1 and the Krylov prior, but the quality of the

calibration is still poor when ⌃0 = A
�1. Nevertheless this suggests that empirical

calibration procedures could be used to compensate for the implicit dependence of

the search directions on x†.

4.6.2 Electrical Impedance Tomography

We now proceed to a more practical application of BayesCG, to the EIT problem

described in Section 2.4.2. The EIT model used in this section is the CEM, and

the experimental setup setup and data is the same as from Isaacson et al. [2004], as

described in that section.

A finite-element discretisation was used to solve the weak form of Eq. (2.14).
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Figure 4.5: Uncertainty quantification from the empirical calibration procedure de-
scribed in Section 4.4.2.

The tank was modelled as a unit circle, and the electrodes were assumed to be equi-

spaced with each occupying precisely 1/64th of the boundary. Thus, each electrode

had length ⇡/32 and there was a distance of ⇡/32 between each neighbouring pair

of electrodes on @D. The contact impedances were taken to be ⇣i = 1, i = 1, . . . , 32

owing to a lack of information about the actual impedances.

The triangulations required for FEA were generated using the Python pack-

age meshpy, which was configured to ensure Nd equally sized elements were present

on the boundary. Nd is always taken to be a multiple of the number of boundary

electrodes; this ensures that each electrode is supported on an equal number of

boundary electrodes after discretisation. Figure 4.6 shows an example of a triangu-

lation with Nd = 64.

FEA yields a sparse linear system Ax† = b, where A is a positive-definite

sti↵ness matrix. Standard piecewise linear basis functions were used, and the com-

putations were perfomed using the FEniCS finite-element package. Since the dis-

cretisation error incurred by FEA is known to be driven by some measure of the

mesh size, an extremely fine discretisation of the domain might be required to elim-

inate discretisation error. When BayesCG is used, the system resulting from a very

fine mesh can be solved for a small number of iterations m ⌧ d. In this regime

the discretisation error from the linear solver is dominant, and it will be demon-

strated that the UQ provided by BayesCG can be of benefit in the inverse problem

of estimating the conductivity field (x).
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Figure 4.6: Finite-element discretisation used for the EIT experiment described in
Section 4.6.2, for Nd = 64. Red lines indicate the elements which correspond to
electrodes. Green dots show the locations at which the posterior conductivity field
was sampled.

Forward Solution

We first examine the application of BayesCG to the forward problem, for an arbitrary

fixed stimulation pattern. Similar to the figures in the previous section, in Fig. 4.7

error kxm � x†k is computed for the (practical) covariance choices ⌃0 = I and

⌃0 = (P>
P )�1. As in the previous section, an incomplete Cholesky factorisation

was used to compute the preconditioner P . Three mesh resolutions are presented:

Nd = 64, 128 and 256. The matrix A naturally depends on a conductivity field

, and for this both samples from the prior distribution over  , and the inferred

posterior mean in the inverse problem were each used. These are described in more

detail in the next section.

As before, when ⌃0 = I convergence is slow, but this is accelerated when

using ⌃0 = (P>
P )�1. Since this problem is obtained from a practical example

rather than sampled arbitrarily, it is useful to know that the same observations

transfer.

Inverse Problem

We now turn to the problem of propagating uncertainty from BayesCG from the

forward solution into the inverse problem of inferring . The Bayesian inversion

framework described in Section 2.4 was used. Since  is required to be strictly
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Figure 4.7: Convergence of the posterior mean for the linear system arising from
FEA discretisation of the PDE in Eq. (2.14), for a number of di↵erent conductivity
fields and discretisation resolutions. The solid lines represent the convergence of the
BayesCG posterior mean for conductivity fields sampled from the prior µ. The
dashed lines are for the conductivity field obtained as the the mean of µ

V
 .

positive, a log-Gaussian prior was placed upon it:

log((z)) = ✓(z) ⇠ GP(0, k)

where k was taken to be a Matérn 5/2 covariance function as given in Eq. (2.8). The

parameters were set to ` = 1.0 and � = 9.0, to ensure that the posterior distribution

lies in a region of high prior mass. Note that in general the conductivity field would

not be expected to be smooth, as the boundaries of the agar displayed in Fig. 2.1

has hard boundaries at the edges of the targets. To accommodate hard boundaries

a technique such as Bayesian level set invesion [Dunlop et al., 2016] could be used,

but this was not explored here as the smoother prior was still found to provide

reasonable reconstructions.

74



(a) Exact posterior mean for log  (b) BayesCG-based posterior mean for log 

(c) Ratio of point-wise posterior standard de-
viation, for BayesCG-based compared to ex-
act.

Figure 4.8: Comparison of the posterior distribution over the conductivity field ,
when using the modified potential �̂m with a BayesCG forward solver, compared to
the standard potential � with the forward problem solved using CG.

To propagate uncertainty, the proposed approach is to derive a new potential

�̂ by marginalising the posterior distribution output from BCG in the likelihood

used in the inverse problem. It is straightforward to show that, when a Gaussian

likelihood is used, this results in the new potential:

�̂m(V |) =
1

2

Ne�1X

i=1

kVi � Ui,mk2(�+⌃
U
i,m)�1 + C

Here, Ui,m and ⌃U

i,m
are the portions of xm and ⌃m output from BayesCG that

correspond to the electrode voltages Ui from the CEM, at iteration m of BayesCG.

C is a constant independent of V that does not a↵ect the inferences obtained, and

so can be ignored. Thus, the new likelihood exp(��̂m(V |)) is still proportional to

a Gaussian, but with a covariance inflated by ⌃U

i,m
to account for the precision of

the solver. It will be shown that replacing � from Eq. (2.13) with �̂m leads in turn

to a posterior distribution for the conductivity field that is widened to account for

the forward solver accuracy.
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In Fig. 4.8 the posterior distribution over the conductivity field is displayed,

under both potentials � and �̂m, with m = 80 iterations. In both cases the dis-

cretisation with Nd = 64 was used. Comparing Fig. 4.8a with Fig. 4.8b, it is clear

that qualitatively many of the features of the posterior are visible. In Fig. 4.8c the

ratio of the pointwise posterior standard deviation between the BayesCG posterior

and the exact posterior is plotted. Clearly this is uniformly larger throughout the

domain, so the use of �̂m has resulted in a posterior distribution which is wider to

account for the solver inaccuracy. Overall, the integrated standard deviation over

the domain is 0.0365 for BayesCG, while for the exact posterior it is 0.0046.

4.7 Discussion

In this chapter we have presented a PNM for the solution of finite-dimensional linear

systems. While the rate of convergence of the posterior mean from BayesCG was

shown to be near to the convergence speed of CG, the fact that the search directions

depend upon x† results in a posterior covariance that is overly conservative. This

is the primary deficiency with this method, and forms the focus of future research

in these methods.

The study of PNM for linear systems is of profound importance, as such

systems are among the most ubiquitous in numerical analysis. Understanding how

PNM can be constructed in this setting gives valuable insight and has a vast set of

potential applications, including the application to PDEs presented in Section 4.6.2.

A di↵erent approach to PNM for PDEs will be introduced in the next chapter;

this is based on the generalisation of the methods introduced in this chapter to

infinite-dimensional linear systems.
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Chapter 5

The Probabilistic Meshless

Method

“Perhaps some day in the dim future it will be possible to advance the

computations faster than the weather advances. . . But that is a dream.”

—Lewis Fry Richardson, 1922

In this chapter the probabilistic meshless method (PMM) will be introduced. The

PMM is a novel BPNM for the solution of the strong form of linear elliptic PDEs,

and as such is a method defined on function space. It follows the typical pattern of

conjugate BPNM on function spaces, in that a Gaussian prior is posited and condi-

tioned on linear projections of the solution. Once again the extension to Bayesian

inverse problems is explored through an application to the EIT example described

in Section 2.4.2, albeit in the form of the simplified PEM, rather than the CEM.

This chapter is structured as follows: In Section 5.1, related work will be

outlined, and in Section 5.2 the PMM is introduced. In Section 5.3 we discuss the use

of the PMM in inverse problems, in a similar manner as discussed in Section 4.6.2.

In Section 5.4 we present two numerical examples: a simulation study based on

a simple one-dimensional PDE, and another application to EIT. We conclude in

Section 5.5 with some discussion.

5.1 Introduction

In this section we begin by introducing meshfree methods in Section 5.1.1. These

methods are the closest methods in the literature on numerical solution of PDEs to
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the BPNM presented in this chapter. In Section 5.1.2 we describe other PNM for

solving PDEs that have been proposed.

5.1.1 Meshfree Methods

While the methods for solving PDEs introduced in Section 2.2.1 are widely used

in practise, they are nevertheless not uniformly the most appropriate solvers. A

particular challenge can be the procedure by which the domain is discretised. When

D has a complex geometry, the procedure of specifying a suitable grid or mesh

over it can become an extremely delicate, often manual process. This is amplified

in problems when the domain evolves over time, such as in cracking or warping

problems, as the domain might need to be regularly re-meshed to avoid degeneracy

[Rabczuk and Belytschko, 2007].

To combat these challenges, the class of meshless or meshfree methods has re-

cently emerged [Fasshauer, 1997; Liu, 2002]. These methods are defined, somewhat

ambiguously, by their not relying on the construction of a regular mesh over the so-

lution domain. A non-exhaustive list of such methods includes collocation methods

[Fasshauer, 1999; Kansa, 1990], element-free Galerkin methods [Belytschko et al.,

1994], meshless Petrov-Galerkin methods [Atluri and Shen, 2005] and smoothed-

particle hydrodynamics [Gingold and Monaghan, 1977], though this chapter will

focus on collocation methods. In addition to the advantage of not relying on con-

struction of a mesh, meshless methods often also have the virtue of yielding sig-

nificantly simpler computer code, as can be seen in Fasshauer [2007]. Conversely,

prominent texts on FEM go so far as to advocate that interested users should pre-

fer using professional software to attempting to implement the methods themselves

[Johnson, 1988, Section 1.9].

5.1.2 Existing PNMs for PDEs

Several other PNM for the solution of di↵erential equations have been proposed. The

literature has focussed more on the solution of ordinary di↵erential equations than

partial di↵erential equations. The principle challenge here is that linear ODEs are

generally so straightforward to solve as to be considered trivial. Thus, the nonlinear

setting has been the focus of attention, in which the conjugacy properties of Gaussian

distributions cannot be exploited and so approximations must be made. Schober

et al. [2014], Schober et al. [2018] and Kersting and Hennig [2016] follow a series

of approximations to pose the probabilistic solution of ODEs as a filtering method

[Law et al., 2015], and output a Gaussian distribution over the solution to the ODE.
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However, these methods are non-Bayesian as described in Appendix B, and the

relationship between the distribution output by the PNM and the Bayesian posterior

has not yet been established. Chkrebtii et al. [2016] constructs a method that

similarly resembles a filter, but outputs a nonparametric posterior distribution whose

relationship to the Bayesian posterior is nevertheless still unclear. Conrad et al.

[2017] and Lie et al. [2019] take a di↵erent approach, instead introducing stochastic

perturbations to a numerical approximation to the flow map resulting from classical

numerical methods applied over small time intervals �t. The perturbations are

calibrated to ensure that the convergence order of the underlying numerical method

is maintained; however, this approach is fundamentally di↵erent from the others

mentioned here in that no Bayesian interpretation is claimed.

Chkrebtii et al. [2016] also applied their method to parabolic (time-dependent)

PDEs, but did not consider standard linear elliptic PDEs as in this chapter. Conrad

et al. [2017] also considered application to PDEs, by instead introducing stochastic

perturbations to finite-element basis functions, which has a similar interpretation to

the approach that the authors pursued for ODEs, but nevertheless has a di↵erent

philosophical interpretation to what is presented here. Wang et al. [2018] devel-

oped a fully Bayesian PNM for the solution of a particular class of ODEs using Lie

group theory, but applicability was limited to those ODEs for which suitable Lie

transformations exist. Furthermore, extensive manual computation was required to

construct the solver and the resulting sampling algorithm was numerically challeng-

ing.

The approach described in this chapter was independently discovered in the

works of Bilionis [2016] and Raissi et al. [2017], though from a more empirical

standpoint and without the convergence analyses or applications to inverse prob-

lems described here. Raissi et al. [2018] develops their earlier work with applications

to nonlinear PDEs which resemble the filtering approach in Chkrebtii et al. [2016],

though again no theoretical guarantees were provided. Owhadi [2015] and Owhadi

[2017] follow similar arguments, though the focus of these methods is on application

to PDEs with rough coe�cients, i.e. in which (x) in Eq. (2.1) is a C
0(D) func-

tion. Those works showed that, when information is obtained following a specific

hierarchical procedure, recovery of the solution to the PDE can be obtained with

near-linear computational cost.
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5.2 Probabilistic Meshless Method

In this section the probabilistic meshless method (PMM) will be introduced. First,

symmetric collocation method will be introduced in Section 5.2.1. This is a classical

numerical method which is recovered as the posterior mean of the PMM for a par-

ticular choice of prior, echoing the relationship between CG and BayesCG presented

in Chapter 4. In Section 5.2.2 the PMM will be introduced. The choice of prior

will be discussed in Section 5.2.3, and theoretical analysis of the posterior will be

presented in Section 5.2.4.

First some notation will be established. Consider an abstraction of the PDE

in question. Let D ⇢ Rd with boundary @D be such that D is compact1. Let

H(D), HA(D) and HB(@D) each be separable Hilbert spaces of functions with inner

products h · , · i, h · , · iA and h · , · iB respectively. Introduce the bounded linear and

elliptic operators A : H(D) ! HA(D) and B : H(D) ! HB(@D). Let g 2 HA(D)

and b 2 HB(@D). Then, the problem of interest is the solution u
† 2 H(D) to the

system of operator equations

Au
†(x) = g(x) x 2 D

Bu
†(x) = b(x) x 2 @D. (5.1)

For concreteness, in the context of Eq. (2.1) the operator A can be associated with

the operator �r ·(x)r, while B is the boundary trace operator which restricts

u(x) to @D.

5.2.1 Symmetric Collocation

We now introduce the symmetric collocation method, a method that has much

in common with the PMM introduced in this chapter. For more details see the

presentation in Fasshauer [1999, Section 3.1] and the references therein.

Symmetric collocation seeks an approximation û to u
† of the form:

û(x) :=
mAX

i=1

c
A

i Āk(x,xA

i ) +
mBX

i=1

c
B

i B̄k(x,xB

i ) (5.2)

where

X
A = {xA

1 , . . . ,xA

mA} X
B = {xB

1 , . . . ,xB

mB}

and X
A ⇢ D, X

B ⇢ @D. Eq. (5.2) can be expressed more compactly by introducing

1i.e. closed and bounded
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some notation. This notation is cumbersome to define, but amounts to “vectoriz-

ing” or “broadcasting” functions f : D ! R so that when an argument in D
n is

passed, a vector in Rn is returned. Analogously, functions with two arguments will

be broadcast into matrices. The fact that the PDE consists of multiple operator

equations complicates this somewhat, but this intuition is nevertheless helpful.

For sets X = {xj}n

j=1
and X

0 = {x0

j
}n

0
j=1

, let Ak(X, X
0), Āk(X,X

0) and

AĀk(X, X
0) each in Rn⇥n

0
be defined as

[Ak(X, X
0)]ij = Ak(xi,x

0

j)

[Āk(X, X
0)]ij = Āk(xi,x

0

j)

[AĀk(X, X
0)]ij = AĀk(xi,x

0

j).

Let

L :=

"
A
B

#
, L̄ :=

h
Ā B̄

i
.

Let LL̄k(XAB) 2 R(mA+mB)⇥(mA+mB) be given by

LL̄k(XAB) :=

"
AĀk(XA

, X
A) AB̄k(XA

, X
B)

ĀBk(XB
, X

A) BB̄k(XB
, X

B)

#

and let Lk(x, X
AB), L̄k(x, X

AB) 2 RmA+mB be given by

Lk(x, X
AB) :=

"
Ak(x, X

A)

Bk(x, X
B)

#
L̄k(x, X

AB) :=

"
Āk(x, X

A)

B̄k(x, X
B)

#
.

Lastly, let Lk(XAB
,x) = Lk(x, X

AB)> and L̄k(XAB
,x) = L̄k(x, X

AB)>.

Using this notation, Eq. (5.2) can equivalently be expressed as

û(x) = Āk(x, X
A)cA + B̄k(x, X

B)cB

= L̄k(x, X
AB)c

where cA, cB are each column vectors with [cA]i = c
A

i
, [cB]i = c

B

i
, and c is a column

vector formed by concatenating cA and cB. The coe�cients c are determined by

demanding that û should satisfy the PDE exactly at the locations in X
A and X

B.

Let g = g(XA) and b = b(XB); then the interpolation equations that determine c
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are:

AL̄k(XA
, X

AB)cA = g

BL̄k(XB
, X

AB)cB = b

or

LL̄k(XAB
, X

AB)c =

"
g

b

#
.

Since this is a finite-dimensional linear system, it is then straightforward to deter-

mine that

c =
⇥
LL̄k(XAB

, X
AB)

⇤�1

"
g

b

#

=) û(x) = L̄k(x, X
AB)

⇥
LL̄k(XAB

, X
AB)

⇤�1

"
g

b

#
.

A detailed theoretical analysis of the symmetric collocation method is beyond

the scope of this work; it su�ces to know the form of the estimator.

5.2.2 Probabilistic Meshless Method

The probabilistic meshless method will now be introduced. The proposed ap-

proach is similar in spirit to Cialenco et al. [2012] and also bears resemblance to

the approach exposed in Chapter 4, thought with some additional technical detail

to account for the fact that the spaces in question are now infinite-dimensional

rather than finite-dimensional. To this end, endow u(x) with the Gaussian prior

u(x) ⇠ GP(m(x), k(x,x0)). In this work we will generally assume that m(x) = 0.

Choice of k(x,x0) will be discussed in Section 5.2.3. The BPNM is then obtained

by conditioning this prior on information obtained by projecting Eq. (5.1) against a

set of search directions. Let SA = {s
A

i
}mA

i=1
⇢ HA(D) and SB = {s

B

i
}mB

i=1
⇢ HB(@D).

Then information is obtained by projecting Eq. (5.1) against this set of search di-

rections, i.e.

D
s
A

i , Au
†

E

A

=
⌦
s
A

i , g
↵
A

i = 1, . . . , mA

D
s
B

i , Bu
†

E

B

=
⌦
s
B

i , b
↵
B

i = 1, . . . , mB
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Such an approach was explored in Owhadi [2015], with the search directions therein

a hierarchy of basis functions defined on increasingly small subsets of the domain.

However this requires computation of inner products which incurs additional dis-

cretisation error in general, and so we focus on a di↵erent class of search directions

which are more analytically tractable. To be specific, we will take s
A

i
and s

B

i
be the

representers of the appropriate evaluation operators for HA(D) and HB(D). Let

X
A = {xA

i
}mA

i=1
and X

B = {xB

i
}mB

i=1
, with X

A ⇢ D and X
B ⇢ @D. Then in a

slight abuse of notation we will take s
A

i
= �xA

i
for i = 1, . . . , mA, and s

B

i
= �xB

i

for i = 1, . . . , mB (recalling that �x is the evaluation operator). The collection

X
AB = (XA

, X
B) will be referred to as the design points. The solution which re-

sults from such information is an approximate solution to the strong form of the

PDE.

The conditional distribution is again Gaussian; recalling the the notation

introduced in Section 5.2.1, we have the following:

Proposition 5.2.1 (PMM). Under the Gaussian prior u ⇠ GP(m, k) the posterior

distribution u|g, b ⇠ GP(m1, k1) := µ
g,b
u , where

m1(x) = m(x) + L̄k(x, X
AB)[LL̄k(XAB)]�1

"
g �Am(XA)

b� Bm(XB)

#
(5.3)

k1(x,x0) = k(x,x0)� L̄k(x, X
AB)[LL̄k(XAB)]�1Lk(XAB

,x0). (5.4)

Furthermore, k1(x,x) will be abbreviated to �(x)2.

Proof. This is a straightforward consequence of the conditioning formula for Gaus-

sian distributions; see Särkkä [2011, Section 3].

Note that m1(x) is identical to the estimate for the solution of the PDE

obtained from symmetric collocation in Section 5.2.1 when m(x) = 0. Here we

consider the output of the algorithm to be the full Gaussian posterior distribution,

so that the posterior variance k(x,x0) enables quantification of discretisation error.

An additional remark is that direct computation of the posterior incurs a

cost of O((mA + mB)3), owing to the requirement to invert the matrix LL̄k(XAB).

Unlike in Chapter 4, this chapter will not focus on reduction of this cost. If the

information operator were not restricted to consist of evaluation functionals, similar

conjugacy arguments to those described in Section 4.3.1 could be followed to reduce

this cost. However, this would introduce a requirement to compute h · , · iA and

h · , · iB, and since in the present setting those inner products do not have an explicit

closed form this approach was not pursued. Note that many approaches for rapid
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computation of similar matrices arising from Gaussian process regression have been

presented in the literature and could be applied here; see Snelson and Ghahramani

[2006]; Schäfer et al. [2017] and the references therein.

We now turn to a discussion of the choice of prior.

5.2.3 Prior Choice

Compared to Chapter 4, more structure is demanded in the present setting owing

to the fact that the derivatives required by A and B must each exist for all func-

tions in the support of the prior. Here several specific choices are considered. In

Section 5.2.3 a prior measure is introduced, with covariance inspired by the natural

prior ⌃0 = (A>
A)�1 from Section 4.4. In Section 5.2.3 a second prior covariance is

proposed which does not directly relate to one of those considered in Chapter 4, but

which proves useful for the development of theory. Note that while arbitrary prior

covariance functions can be used, the selection is subject to the restriction that the

spaces HA(D) and HB(@D) are RKHS. In practise, when A and B are di↵erential

operators as in the present section, this amounts to a requirement that k be suitably

di↵erentiable.

A Natural Prior Measure

The natural prior is derived by assuming that g(x), rather than u(x), is endowed

with a Gaussian prior, and deriving the implied distribution on u(x). For simplicity

we will make the restrictive assumption in this section that the PDE has homoge-

neous boundary conditions, i.e. B = I and that b(x) = 0. This assumption could

be generalised, but computing the covariance function required for the prior mea-

sure in this section is so challenging that such generality is unlikely to be useful.

Furthermore assume that for all g 2 HA(D), the PDE with forcing g has a unique

solution.

The construction in this section makes use of the deep connections between

kernels and Green’s functions, described in Fasshauer and Ye [2011]. To this end,

suppose that Eq. (2.1) admits a Green’s function G(x,x0) satisfying

AG(x,x0) = �(x� x0) x 2 D

BG(x,x0) = 0 x0 2 @D.

Recall that the Green’s function defines an integral operator that is essentially the
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inverse of A in that, for each x 2 D, we have:

Z

D

G(x,x0)g(x)dx0 = u(x).

Now following the same argument as in Section 4.4, since g is the object about which

information is obtained, placing a prior on g is natural in some sense. Thus, suppose

that g ⇠ GP(0, ⇤) for some positive-definite covariance function ⇤(x,x0), x,x0 2 D.

Placing such a distribution over g implies a requirement that H⇤(D) ✓ HA(D).

Now we derive the prior on u implied by this distribution on g. Define the

inner product space (Hnat(D), h · , · inat) by

Hnat(D) := {v 2 H(D) | Av 2 H⇤(D), v = 0 on @D},

hu, vinat := hAu, Avi⇤.

Note that by definition functions in Hnat(D) encode the boundary conditions of the

PDE, and so when computing the posterior from Proposition 5.2.1 no collocation

points need be allocated on the boundary, i.e. X
B may be taken to be the empty set.

Under this definition kuk2nat := hu, uinat = kgk2
⇤
. We now establish that Hnat(D) is

an RKHS.

Proposition 5.2.2. Introduce the natural kernel, defined as:

knat(x,x0) :=

Z

D

Z

D

G(x, z)G(x0
, z0)⇤(z, z0)dzdz0

. (5.5)

Assume that knat(x,x) is bounded. Then Hnat(D) is an RKHS with reproducing

kernel knat.

Proof. First we verify the reproducing property. For each u 2 Hnat(D), we have

hu, knat( · ,x)inat = hAu, Ak( · ,x)i⇤

=

⌧
Au, A

ZZ

D

G( · , z)G(x, z0)⇤(z, z0)dzdz0

�

⇤

.

Bringing the operator A inside the integral and using properties of the Green’s
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function, we have:

hu, knat( · ,x)inat =

⌧
Au,

ZZ

D

�( · � z)G(x, z0)⇤(z, z0)dzdz0

�

⇤

=

⌧
Au,

Z

D

G(x, z0)⇤( · , z0)dz0

�

⇤

=

Z

D

G(x, z0)
⌦
Au, ⇤( · , z0)

↵
⇤

dz0

where we have exploited the linearity of inner products to bring the inner product

inside the integral. Thus, applying the reproducing property in ⇤ we find

hu, knat( · ,x)inat =

Z

D

G(x, z0)g(z0)dz0

= u(x)

as required.

It remains to establish that Hnat(D) is an RKHS. From Theorem 2.3.4, this

is equivalent to continuity of the evaluation functional on Hnat(D). Recall that a

linear operator between normed spaces is continuous if and only if it is a bounded,

so we proceed to verify that the evaluation functional is a bounded linear operator.

Linearity is clear. To establish boundedness, note that by the Cauchy–Schwarz

inequality, for each v 2 Hnat(D) we have:

|v(x)| = |hv, knat( · ,x)inat|

 hv, vi1/2

nat
hknat( · ,x), knat( · ,x)i1/2

nat

= kvknat knat(x,x)1/2

which proves that the evaluation functional is a bounded linear operator. Thus,

Hnat(D) is an RKHS with reproducing kernel knat.

This result implies that it that placing a prior measure on g is equivalent to

placing a prior measure on u, as shown by the following proposition:

Proposition 5.2.3. It holds that g ⇠ GP(0, ⇤) if and only if u ⇠ GP(0, knat).

Proof. Note that since both A and the operator v(x) 7!
R

G(x, z)v(z)dz are linear,

the pushforward of a Gaussian measure through either operator is again Gaussian.

It thus su�ces to show that the first and second moments are equal.

First, suppose g ⇠ GP(0, ⇤). From the properties of Green’s functions we
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have that

u(x) =

Z

D

G(x, z)g(z)dz

=) E[u(z)] = E
Z

D

G(x, z)g(z)dz

�

=

Z

D

G(x, z)E[g(z)]dz = 0

and furthermore

E[u(x)u(x0)] = E
Z

D

Z

D

G(x, z)g(z)G(x0
, z0)g(z0)dzdz0

�

=

Z

D

Z

D

G(x, z)G(x0
, z0)E[g(z)g(z0)]dzdz0

=

Z

D

Z

D

G(x, z)G(x0
, z0)⇤(z, z0)dzdz0 = knat(x,x0).

and thus u ⇠ GP(0, knat).

For the converse suppose that u ⇠ GP(0, knat). Then we have that

E[g(x)] = E[Au(x)]

= AE[u(x)] = 0

and furthermore, letting Ã denote A when acting upon x0:

E[g(x)g(x0)] = AÃE[u(x)u(x0)]

= AÃknat(x,x0)

= AÃ
Z

D

Z

D

G(x, z)G(x0
, z0)⇤(z, z0)dzdz0

=

Z

D

Z

D

�(x� z)�(x0 � z0)⇤(z, z0)dzdz0

= ⇤(x,x0)

where for the third line the properties of Green’s functions were again used.

Note that Green’s functions can seldom be computed in practise. Thus, this

choice of prior covariance is interesting but impractical, as was the natural prior in

Section 4.4. However, unlike in that section it is not the case that the natural prior

implies convergence in a single iteration. This is because the search directions for

the PMM have not been constructed using g(x), but have instead been restricted

to be evaluation functionals. A more practical choice of prior measure will now be
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presented.

A Practical Prior Measure

To elicit a practical method, in contrast to the previous section it will now be

assumed that H(D) is an RKHS with some reproducing kernel k̃, i.e. H(D) =

H
k̃
(D). As commented in Section 2.3.2, Gaussian measures assign zero mass to

their RKHS, so it is necessary to construct a Gaussian measure using a covariance

function derived from k̃, rather than k̃ itself. Thus, for inference, the prior covariance

used will be a kernel k̂ which corresponds to a Gaussian measure with H
k̃
(D) in its

support, to ensure that u
† does not lie in a null set of the prior. We will assume that

H
k̂
(D) is embedded in H

k̃
(D) (see Definition A.1.6). Then natural requirements are

both that H
k̂
(D) be dense in H

k̃
(D), and that the support of the prior is H

k̃
(D).

A result from [Cialenco et al., 2012, Lemma 2.2], gives a construction for k̂ derived

from k̃ which satisfies these two requirements.

Proposition 5.2.4. For the covariance function

k̂(x,x0) :=

Z

D

k̃(x, z)k̃(z,x0)dz

it holds that H
k̂
(D) is dense in H

k̃
(D), and a (centered) Gaussian distribution with

covariance k̂ is supported on H
k̃
(D).

Proof. Recall the following. Since D is compact (by assumption) and k̃ is symmetric

and positive definite, Theorem 2.3.10 states that there exists an eigendecomposition

of k̃ which is countable, with eigenvalues {�i} and eigenfunctions {ei}, i 2 N, where

we assume that the eigenvalues are ordered so that �1 � �2 � · · · > 0. Furthermore

{ei} is an orthonormal basis of L
2(D) and k̃ can be represented in terms of its

eigendecomposition as

k̃(x,x0) =
X

i

�iei(x)ei(x
0).

Lastly, for any v 2 H
k̃
(D) it holds that

v =
X

i2N
ci

p
�iei (5.6)

for a unique sequence (ci) 2 `
2, and the k̃-norm of v is given by

kvk2
k̃

=
X

i

c
2

i .
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We begin by showing that k̂ is also a Mercer kernel with eigenvalues {�
2

i
}

and eigenfunctions {ei}, i 2 N. Since k̃ is positive-definite and bounded on D̄ and

D̄ is compact, so too must k̂ be, and furthermore we have that:

k̂(x,x0) =

Z

D

X

i2N

X

j2N
�i�jei(x)ei(z)ej(x

0)ej(z)dz

=
X

i2N

X

j2N
�i�jei(x)ej(x

0)

Z

D

ei(z)ej(z)dz

| {z }
=�ij

=
X

i2N
�

2

i ei(x)ei(x
0)

We now show that H
k̂
(D) is dense in H

k̃
(D). For any v 2 H

k̃
(D), we have

that v =
P

i2N ci

p
�iei and (ci) 2 `

2. Consider the partial sums v
N =

P
N

i=1
ci

p
�iei,

which converge to v in k ·k
k̃
, since v has finite k̃-norm. Note that v

N 2 H
k̂
(D), since

vN =
NX

i=1

ci

p
�iei =

NX

i=1

cip
�i

�iei.

It thus follows that for any v 2 H
k̃
(D) and each ✏ > 0 there is a v

0 2 H
k̂
(D) with

kv � v
0k

k̃
< ✏, and so H

k̂
(D) is dense in H

k̃
(D).

To see that µ(H
k̃
(D)) = 1, let V be a random variable with law µ and note

that from Theorem 2.3.11 V can be represented as

V =
X

i2N
⇠i�iei

where ⇠i ⇠ N(0, 1) IID. Examining Eq. (5.6) we must have ci = ⇠i

p
�i, and so the

k̃-norm of v̂ is given by:

E(kV k2
k̃
) = E

 
X

i2N
⇠
2

i �i

!
=
X

i2N
�i <1

since the sum of eigenvalues converges. Thus v̂ lies in H
k̃
(D) almost-surely.

5.2.4 Theoretical Results for the Forward Problem

In this section theoretical results for Proposition 5.2.1 will be presented, under the

prior covariance function k̂. Let ⇢ denote the maximum di↵erential order of A and B.

Throughout this section we will assume that the space H
k̂
(D) is norm-equivalent

to the Sobolev space H�(D), for � > d/2 (see Definition A.1.7, and furthermore
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that ⇢ < � � d/2. This ensures that H�(D) embeds in a space of appropriately

di↵erentiable functions, thanks to Sobolev embedding theorem. This was originally

problem in Sobolev [1938], and is presented in detail in in Evans [2010, Section 5.6].

See also Cialenco et al. [2012, Theorem 3.1].

The first proposition relates the pointwise error in the posterior mean to the

posterior variance from Proposition 5.2.1:

Proposition 5.2.5 (Local accuracy). For all x 2 D we have that

|m1(x)� u
†(x)|  �(x)ku†k

k̂

Proof. We begin by extending the inner product h · , · i
k̂

to vector-valued functions

in H
k̂
(d). Introduce the function ⌘ : (H

k̂
(d))n ⇥ (H

k̂
(d))m ! Rm⇥n, given by

[⌘(f, g)]ij = hfi, gjik̂.

Clearly ⌘(f, g) = ⌘(g, f)>. Furthermore from linearity of the inner product we have

that for any matrix A 2 Rk⇥n, ⌘(Af, g) = A⌘(f, g). In a slight abuse of notation,

for g
0 2 H

k̂
(d) we will assume ⌘(f, g

0) 2 Rn is given by

[⌘(f, g
0)]i = hfi, g

0i
k̂
.

Now, recall that

m1(x) = k̂(x, X
AB)LL̄k̂(XAB)v

where

v =

"
g

b

#

=

"
A⌘(k̂(XA

, · ), u†)

B⌘(k̂(XB
, · ), u†)

#

=

"
⌘(Ak̂(XA

, · ), u†)

⌘(Bk̂(XB
, · ), u†)

#

= ⌘(Lk̂(XAB
, · ), u†)

where on the second line we have used the reproducing property. Letting K =

k̂(x, X
AB)(LL̄k̂(XAB))�1, we then have that for fixed x, since KLk̂(XAB

, · ) 2
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H
k̂(D):

m1(x) = ⌘(KLk̂(XAB
, · ), u†)

= hKLk̂(XAB
, · ), u†i

k̂

=) |u†(x)�m1(x)| =
���
D
k̂(x, · )�KLk̂(XAB

, · ), u†

E

k̂

���

 ku†k
k̂

���k̂(x, · )�KLk̂(XAB
, · )
���

k̂| {z }
(⇤)

by the Cauchy–Schwartz inequality. Now, we have

(⇤)2 =
D
k̂(x, · )�KLk̂(XAB

, · ), k̂(x, · )�KLk̂(XAB
, · )
E

k̂

= k̂(x,x)� 2⌘

⇣
k̂(x, · ), KLk̂(XAB

, · )
⌘

+ ⌘

⇣
KLk̂(XAB

, · ), KLk̂(XAB
, · )
⌘

.

Applying the reproducing property and recalling the definitions of ⌘, L̄k̂ and LL̄k̂,

it is then clear that

(⇤)2 = k̂(x,x)� 2L̄k̂(x, X
AB)K> + KLL̄k̂(XAB)K>

= k̂(x,x)� L̄k̂(x, X
AB)(LL̄k̂(XAB))�1Lk̂(XAB

,x)

= �(x)2.

and thus

|u†(x)�m1(x)|  �(x)ku†k
k̂

as required.

Thus, the error in Proposition 5.2.5 is locally controlled by the posterior

variance. This bound can be directly linked to the set of design points X
AB. To

accomplish this, introduce fill distance for the (finite) set X ⇢ D, defined as:

h(X) := sup
x2D

min
x02X

kx� x0k2.

Then the following proposition from Cialenco et al. [2012], quoted here without

proof, bounds �(x) in terms of the fill distance of the design points h(XAB). De-

pendence of h(XAB) on the design points will generally be suppressed except where

it is relevant.

Proposition 5.2.6 (Lemma 3.4 of Cialenco et al. [2012]). For all x 2 D and
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whenever h > 0 is su�ciently small, it holds that

�(x)  C
F
h

��⇢�d/2

where C
F is a constant independent of x and X

AB.

The last result in this section uses Proposition 5.2.6 to establish consistency

results for the solver as the fill distance decreases:

Theorem 5.2.7. Let Z(✏) = {u 2 X : ku� u
†k2

2
> ✏}. For all h su�ciently small,

it holds that the posterior measure µ
g,b
u from Proposition 5.2.1 satisfies:

µ
g,b
u (Z(✏))  C

✏
h

2��2⇢�d

where C is a constant independent of h and h = h(XAB).

Proof. By applying the triangle inequality, we find:

Z

X

ku� u
†k22 µ

g,b
u (du) 

Z

X

ku�m1k22 µ
g,b
u (du)

| {z }
(1)

+

Z

X

km1 � u
†k22 µ

g,b
u (du)

| {z }
(2)

+

Z

X

ku�m1k2km1 � u
†k2 µ

g,b
u (du)

| {z }
(3)

.

Beginning with (1):

Z

X

ku�m1k22 µ
g,b
u (du) =

Z

D

Z

X

|u(x)�m1(x)|2 µ
g,b
u (du) dx

=

Z

D

�
2(x) dx (5.7)

where in the first time we used Fubini’s theorem to change the order of integration

and in the second line we used the definition of �(x). For (2):

Z

X

km1 � u
†k22 µ

g,b
u (du) = km1 � u

†k22

=

Z

D

|m1(x)� u
†(x)|2 dx

 ku†k2
k̂

Z

D

�
2(x) dx (5.8)
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by applying Proposition 5.2.5. For (3):

Z

X

ku�m1k2km1 � u
†k µ

g,b
u (du) =

"
km1 � u

†k22
✓Z

X

ku�m1k2 µ
g,b
u (du)

◆
2
# 1

2



km1 � u

†k22
Z

X

ku�m1k22 µ
g,b
u (du)

� 1
2

 ku†k
k̂

Z

D

�
2(x) dx

where the second line is from application of Jensen’s inequality and the third line

is from application of the bounds in Eqs. (5.7) and (5.8). Combining these and

applying Proposition 5.2.6, we then find, when h is su�ciently small:

Z

X

ku† � uk22 µ
g,b
u (du)  [CF ]2(1 + ku†k

k̂
+ ku†k2

k̂
)h2��2⇢�d

.

Now recall that Markov’s inequality states that if X is a nonnegative random variable

and ✏ > 0, then

P(X � ✏)  E(X)

✏
.

Applying this with X = ku† � Uk2
2

where U is a random variable with law µ
g,b
u , we

find that:

µ
g,b
u (Z(✏)) = P(X � ✏)

 1

✏

Z

X

ku† � uk22 µ
g,b
u (du)

 1

✏
[CF ]2(1 + ku†k

k̂
+ ku†k2

k̂
)h2��2⇢�d

as required.

This concludes the analysis of the forward solver. In the next section we will

analyse the use of the PMM as a forward solver in Bayesian inverse problems.

5.3 PMM and Bayesian Inverse Problems

The focus of this section is on establishing the properties of the posterior distribution

in Bayesian inverse problems, when PMM are used as the forward solver. Let ⇥

be a separable Banach space and let ✓
† 2 ⇥ be a parameter to be inferred. For

simplicity, Eq. (2.1) is assumed to depend on ✓ through the operators A and B,
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implying a PDE

A[✓]u†(x; ✓) = g(x) x 2 D

B[✓]u†(x; ✓) = b(x) x 2 @D. (5.9)

Note that this could be straightforwardly generalised to allow g(x) and b(x) to

depend on ✓. The operators A and B will be assumed to be linear and elliptic for

each ✓ 2 ⇥, and note that the dependence of u
† on ✓ has now been emphasised;

for each ✓ 2 ⇥, since the operators vary with ✓ the true solution to the PDE

di↵ers. Recall from Section 2.4 that we assume y 2 Y is observed data, with Y
assumed to be finite-dimensional and linked to u via a parameter-to-observation

map G : H(D)! Rd as follows:

y = G(u†( · ; ✓†)) + ⇠.

In this section it will be assumed that G is a bounded linear operator obtained

by evaluating u
†( · , ✓) at some (unspecified) set of points in D, and also that ⇠ ⇠

N (0, �), though this latter requirement could be relaxed. Note that the inverse

problem may nevertheless be nonlinear, as no assumptions have been made on the

linearity of u as a function of ✓. We thus have a potential given by

�(y; ✓, u) =
1

2
kG(u( · , ✓))� yk��1

where it has been emphasised that � depends on both ✓ and u. Note that while

each ✓ 2 ⇥ defines an exact solution u
†( · , ✓), this notation is used to allow for the

fact that this solution must generally be replaced with the output from a numerical

method. For a prior µ✓ on ✓, the posterior over ✓ is then defined by:

dµ
y
✓

dµ✓

(✓) =
1

Z
exp(��(y; ✓, u†))

Z =

Z

⇥

exp(��(y; ✓, u†))µ✓(d✓).

The approach proposed in this section is to use the output from the PMM as

a forward solver in a Bayesian inverse problem by marginalising the likelihood over

µ
g,b
u , much as in Section 4.6.2. Note that the output from Proposition 5.2.1 then

depends upon ✓ due to the dependence of A, B on ✓. Following the same arguments
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as in that section, this gives the PMM potential:

�h(y; ✓) :=
1

2
km(✓)� yk(�+⌃(✓))�1

where m(✓) and ⌃(✓) are defined as

m(✓) = G(m1( · ; ✓))

⌃(✓) = G(Ḡ(k1( · , · ; ✓)))

for m1 and k1 as given in Proposition 5.2.1, with their dependence on ✓ emphasised.

When the potential �h is used, the posterior distribution is then given by:

dµ
y,h

✓

dµ✓

(✓) =
1

Zh

exp(��h(y; ✓, u†))

Zh =

Z

⇥

exp(��h(y; ✓, u†))µ✓(d✓).

The theoretical result proven in this section is a consistency result for the

posterior µ
y,h

✓
. In the spirit of Stuart [2010], it will be shown that µ

y,h

✓
converges to

µ
y
✓

as h! 0. The metric used to demonstrate this convergence will be the Hellinger

metric. For two measure µ, ⌫ 2 PX which are such that µ⌧ ⌫, this is given by:

dH(µ, ⌫)2 := 1�
Z

X

✓
dµ

d⌫
(u)

◆ 1
2

µ(du). (5.10)

Note that the theoretical results in the previous section now also have a dependence

on ✓; in particular, the result from Proposition 5.2.6 now has a constant depending

on ✓, i.e.

�(x)  C
F

✓
h

��⇢�d/2

Assumption 5.3.1. There exists a function C(k✓k⇥) such that, for each ✓ 2 ⇥,

max{C
F

✓
, C

F

✓
ku( · , ✓)k

k̂
, C

F

✓
ku( · , ✓)k2

k̂
}  C(k✓k⇥)

and
R

C(k✓k⇥)4 µ✓(d✓) <1.

Then, we have the following result, which guarantees that when using the new

potential defined above to solve the inverse problem, the incurred error compared

to the true posterior is bounded by the accuracy of the PMM.

Theorem 5.3.2 (Robustness to Approximation Error). For each fixed y, the pos-

terior distribution µ
y,h

✓
satisfies dH(µy,h

✓
, µ

y
✓
) = O(h��⇢�d/2).
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Proof. See Appendix D.1.

Note that this result only guarantees that µ
y,h

✓
is close to µ

y
✓

in Hellinger

metric, but says nothing about the properties of µ
y
✓

itself. Thus, if µ
y
✓

is particularly

complex or challenging to interrogate, there is no guarantee that using the PMM

will ameliorate this.

5.4 Numerical Results

Two numerical experiments are now introduced. In Section 5.4.1, a simple simula-

tion study is constructed. Then in Section 5.4.2 an application to EIT is presented.

5.4.1 Illustrative Example

In this section we will apply the PMM to a simple one-dimensional test problem.

Both the forward and inverse problems will be considered.

Forward Problem

Consider Poisson’s equation in one dimension:

�r2
u(x) = g(x) x 2 (0, 1)

u(x) = 0 x 2 {0, 1}.

The simplicity of this problem is such that the Green’s function has an explicit

closed-form, which can be computed by direct integration:

G(x, x
0) =

(
x(x0 � 1) for x > x

0

x
0(x� 1) for x < x

0
.

We will solve this problem using PMM for two choices of prior covariance: knat and

k̂ from Section 5.2.3 respectively, computation of which will be discussed now.

Computation of the Natural Kernel To ensure computability of the natural

kernel, the prior covariance for g was taken to be the compactly supported polyno-

mial covariance function of Wendland [1995]:

⇤(x, x
0) = �0 max(1� ✏

�1|x� x
0|, 0)2.
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Here ✏ is a parameter controlling the width of the support, so that ⇤ is nonzero

wherever |x � x
0| < ✏. The amplitude parameter �0 controls the prior width. The

natural kernel

knat(x, x
0) =

Z
1

0

Z
1

0

G(x, z)G(x0
, z

0)⇤(z, z
0)dzdz

0

is available in closed form since G and ⇤ are each piecewise polynomial. Com-

putations are lengthy however, and were performed automatically using symbolic

integration software.

Computation of k̂ To illustrate performance for a more practical choice of co-

variance, k̂ is also computed. The base covariance function k̃ was taken to be a

higher-order Wendland covariance function

k̃(x, x
0) = �0 max(1� ✏

�1|x� x
0|, 0)4 · (4✏

�1|x� x
0| + 1).

This kernel conforms to the di↵erential order of the PDE in question, as k̃ is twice

di↵erentiable at the origin. Again, despite of the clear computability of k̂ as the

integral of a polynomial, the computations required are lengthy and were performed

using symbolic integration software.

Results In Fig. 5.1 the posterior mean and samples from the full posterior dis-

tribution are plotted for each choice of prior covariance, with g(x) = sin(2⇡x).

The exact solution, u
†(x) = (2⇡)�2 sin(2⇡x), is also shown. Both the covariance

functions ⇤(x, x
0) and k̃ were assigned a support of ✏ = 0.4, and the prior ampli-

tude �0 was estimated using the empirical Bayes procedure described in Rasmussen

and Williams [2006, Section 5.4]. The design points XA were taken to be take

mA = 39 equi-spaced points in (0, 1). For the prior covariance k̂ this is augmented

with X
B = {0, 1} so that the conditional measure satisfies the boundary conditions

almost-surely.

Fig. 5.2 shows convergence of the posterior mean m1(x) for each prior as the

number of design points is increased. Note that the natural kernel clearly exhibits a

reduction in the error incurred, and the convergence rate also appears to be some-

what faster. Fig. 5.2b plots the convergence of the trace of the posterior covariance,

as a measure of the posterior width. The fact that this is of approximately the

same magnitude as km1 � u
†k2 for each mA suggests that the posterior provides a

reasonable estimate of the error, even when mA is small.
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(a) Posterior based on knat.
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(b) Posterior based on k̂.

Figure 5.1: Comparison of posterior distributions from Proposition 5.2.1 based both
upon the natural kernel knat and on the kernel k̂.

20 40 60 80

mA

10�4

10�3

10�2

10�1

km
1
�

u
† k

2

Natural Kernel

Integral Kernel

(a) Error in conditional mean, km1�u
†k2

20 40 60 80

mA

10�4

10�3

10�2

10�1

T
ra

ce
(k

1
)

Natural Kernel

Integral Kernel

(b) Residual uncertainty, k�2k1

Figure 5.2: Convergence of posterior mean and covariance as the number mA of
design points is increased.
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Inverse Problem

The application of the PMM to inverse problems will now be examined by intro-

ducing a parameter into the forward problem as follows:

�r · (✓ru(x)) = g(x) for x 2 (0, 1) (5.11)

u = 0 for x 2 {0, 1}.

Again, take g(x) = sin(2⇡x). With true parameter value ✓
† = 1, the observation

operator G( · ) was a vector of two evaluation operators at x = 0.25 and x = 0.75,

i.e.

G(u( · ; ✓)) :=

"
u(0.25, ✓)

u(0.75, ✓)

#

The noise covariance was taken to be � = 0.0012
I. The prior over theta was taken

to be log-Gaussian, so that log ✓ ⇠ N (0, 1). Fig. 5.3 shows posteriors for a number

of values of mA using both symmetric collocation and the PMM as the forward

solver, with the former referred to as the “standard” approach and the latter as the

“probabilistic” approach. Fig. 5.4 shows convergence as mA is increased.

Comparing the posteriors in Fig. 5.3 and Fig. 5.4, note that when the stan-

dard approach is used (right column), the posterior variance does not change as

the discretisation resolution mA is varied for either the natural prior covariance or

the prior covariance k̂. The posteriors are highly peaked and 1 s.d. credible inter-

vals do not place significant mass in the region of ✓
† = 1. Conversely, when the

PMM forward solver is used (left column) we see that the posterior is wider and

places more mass around ✓
†. Comparing the posteriors from knat and k̂, note that

faster convergence is achieved with the natural kernel, which should be expected

considering the reduced variance exhibited for the forward problem.

5.4.2 Application to Electrical Impedance Tomography

We now turn again to EIT, as introduced in Section 2.4.2. In this section we work

with the PEM; while both the complete-electrode model and the point-electrode

model are linear for fixed  (as a function of u), the boundary integrals required for

the electrodes are analytically intractable. Thus the point electrode model serves as

a convenient test-bed and removes a potential source of discretisation error. As in

Section 4.6.2, the interest is in whether the quantification of uncertainty provided

by PNMs, specifically the PMM introduced in this chapter, can be used to reduce

the amount of computational e↵ort expended to sample from the posterior while
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Figure 5.3: Posteriors µ
y,h

✓
for the parameter ✓ from Section 5.4.1, with a PMM for-

ward solver (left column) versus posteriors generated using a symmetric collocation
forward solver (right-column), at various discretisation resolutions and for the two
prior covariance choices knat and k̂.
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Figure 5.4: 1 s.d. credible intervals for the parameter ✓ from Section 5.4.1 as a
function of the number of design points. When the discretisation is very course
(small mA) the posterior distributions are biased and overconfident with the stan-
dard forward solver, while with the PMM forward solver they are widened.
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(a) Discretisation of u(x), with mA = 96. (b) Discretisation of ✓(x)

Figure 5.5: Designs used in the EIT experiment in Section 5.4.2.

maintaining statistically valid inferences.

Throughout, the data introduced in Section 2.4.2 is used. The voltage mea-

surements were assumed to have been corrupted with Gaussian noise with standard

deviation 5.0, chosen heuristically owing to the fact that the measurement error in

the experiment is unknown. The domain was again taken to be a unit disc, and

for the purposes of the forward solver this was discretised using a regular design for

di↵erent mA. One example of such a design is depicted in Fig. 5.5a.

The prior µu was taken to be µu ⇠ GP(0, k̂) for k̂ an exponentiated quadratic

covariance as given in Eq. (2.6). Note that the conjugacy properties of the squared

exponential are such that this is equivalent to taking k̃ to be squared exponential.

The amplitude parameter was fixed to � = 100 to match the width of the prior

to the scale of boundary voltage observations. The length-scale parameter ` was

endowed with a half-range Cauchy prior (as recommended in Gelman [2006]) and

marginalised in the MCMC procedure.

A log-Gaussian prior was assigned to the conductivity field, so that (x) =

log(✓(x)) and µ✓ = GP(m✓, k✓). The prior covariance k✓ was again taken to be

squared exponential, with fixed length-scale and amplitude ` = 0.3 and � = 1.0.

The prior mean m✓ was taken to be a constant function, with the constant chosen by

maximising the log-likelihood of the observations over constant conductivity fields.

Samples from the posterior distribution were produced using the precondi-

tioned Crank–Nicolson (pCN) method described in Section 2.4.1. The conductivity

field was discretised to a grid of 177 points, depicted in Fig. 5.5b. Posterior sam-

ples from this section are based on 5, 000, 000 iterations of pCN, after 5, 000, 000

iterations of burn-in.

Fig. 5.6 shows the posterior conductivity fields (x) obtained for mA = 96,
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(b) mA = 127
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(c) mA = 165
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(d) mA = 209

Figure 5.6: Mean of ✓(x) for Section 5.4.2. Each figure shows the posterior mean
for the PMM forward solver.
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Figure 5.7: Convergence of the posterior mean to the reference field ✓ref in Sec-
tion 5.4.2.

127, 165 and 209 design points. Note that these are qualitatively similar to the

agar targets displayed in Fig. 2.1, even at the coarsest discretisation level. The

convergence of these fields to a reference conductivity field ✓ref is displayed in Fig. 5.7,

where ✓ref was obtained by using a high-quality symmetric collocation forward solver

with mA = 259.

While the posterior mean is an important statistic of the posterior, natu-

rally the focus should be on the posterior UQ provided. In Fig. 5.8a the pointwise

posterior variance obtained the posteriors over ✓ using a PMM forward solver are

compared to those using the reference solver. Note that the posterior variance is

generally larger throughout the domain.

Inspired by the UQ evaluation performed in Section 4.6.1, a summary statis-
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(a) Ratio of the variance in the posterior
distribution arising from using a PMM
forward solver, compared to a symmetric
collocation forward solver, at mA = 96
points.
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(b) Convergence of the statistic smA as a
function of mA.

Figure 5.8: Posterior variance analysis for the analysis in Section 5.4.2.

tic was also computed to evaluate the UQ. Let

smA :=

Z

⇥

k⌃�1/2

ref
(✓ �mref)k22 µ

y,h

✓
(d✓)

where µ
y,h

✓
is the posterior for ✓ using a PMM forward solver with mA design points,

while the mean mref and covariance ⌃ref are the posterior mean and covariance over

✓ obtained from the symmetric reference forward solver. Since the posterior distri-

bution over ✓ is non-Gaussian, no theoretical distribution for this statistic can be

derived. However, this statistic assesses “how much overlap” there is between the

reference posterior and µ
y,h

✓
. When smA < 1 the PMM posterior ⇧y,h

✓
is interpreted

as being over-confident, suggesting a failure to properly account for discretisation un-

certainty, though smA > 1 does not necessarily imply that the UQ is well-calibrated.

The statistic is plotted, for di↵erent mA, in Fig. 5.8, and as expected the results

show that more conservative inferences are obtained when using the PMM forward

solver.

5.5 Discussion

In this chapter we have thoroughly explored the construction of conjugate BPNM

in an infinite-dimensional setting. While many of the details resemble the finite-

dimensional setting described in Chapter 4, there were some technicalities arising

from the extension to function spaces. In particular, it is di�cult to construct a
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highly informative set of search directions as in Chapter 4 since the computation of

inner products requires evaluation of integrals that cannot be computed in closed-

form. On the other hand, because the choice of information was limited to evaluation

functionals and was thus independent of u
†, the issues with poor posterior UQ were

not present. Application of the PMM to inverse problems was also considered, with

similar results to Section 4.6.2.

In the next part of the thesis we will depart from the conjugate setting, and

explore the construction of BPNM for generic priors and information operators. We

will then formalise the composition of BPNM in pipelines of computation.
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Part III

Non-Conjugate Methods

106



Chapter 6

Beyond Conjugacy

“What does it mean to ‘know’ a function? The formula says some things

(e.g. f is smooth, positive, and bounded by 20 on [0, 1]), but there are

many other facts about f that we don’t know (e.g. is f monotone,

unimodal or convex?).

Once we allow that we don’t know f , but do know some things, it be-

comes natural to take a Bayesian approach. . . ”

—Persi Diaconis, 1988

In the previous chapters, only conjugate PNM were considered. However the

restriction to conjugate problems would rule out application of PNM to many of the

most challenging applications in numerical analysis, in which discretisation error is

genuinely a limiting factor. In particular, for the two examples given in Section 1.2.1

(climate modelling and electrical conductivity in the heart) the most realistic models

used are nonlinear, and so the methods from Part II cannot be applied directly.

Other authors have introduced PNM for nonlinear problems. As mentioned

in Section 5.1.2, the literature on PNM for ODEs such as Chkrebtii et al. [2016];

Schober et al. [2014]; Conrad et al. [2017] generally assumes nonlinearity. Similarly,

Raissi et al. [2018] constructs PNM for nonlinear PDEs. However, it is far from

clear that these methods are Bayesian in the sense of Definition 3.1.5, as while they

frequently employ Bayes’ rule at certain points in the procedure, it is not the case

that the output distribution is the conditional of the prior on data obtained.

In this chapter we will first present conditions under which a Bayesian PNM

is well-defined, in Section 6.1. In that section we will also present connections

between BPNM and decision theory. Sampling schemes for nonconjugate BPNM
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will be discussed in Section 6.2, and some experimental results will be presented in

Section 6.3.

6.1 Bayesian Probabilistic Numerical Methods

In this section we begin by recapping the notation from Chapter 3 in Section 6.1.1.

We then introduce the core theoretical challenge behind defining posterior distri-

butions in this setting in Section 6.1.2, before introducing disintegrations in Sec-

tion 6.1.3 to address this challenge. Lastly, connections between BPNM and decision

theory are presented in Section 6.1.4.

6.1.1 Notation: A Recap

Recall the following from Chapter 3. Let X and Y be measureable spaces with

Borel sigma-algebras BX , BY , and assume that dim(Y) < 1. Let u
† 2 X denote

an unknown that we wish to recover, and let let µ 2 PX be a distribution referred

to as the prior that reflects the user’s prior beliefs about u
†. Let A : X ! Y be a

measurable information operator such that, for each u 2 X , A(u) can be computed

without knowledge of u. Lastly, let Q be a measureable space with Borel sigma-

algebra BQ and let Q : X ! Q be a measurable quantity of interest operator.

From Definition 3.1.4, a probabilistic numerical method (PNM) is then de-

fined by an update rule A : PX ⇥ Y ! PX which updates a user’s prior belief to a

posterior belief. The method itself, M : PX ⇥ Y ! PQ, is defined by pushing the

output from the update rule through the QoI operator, i.e.:

M(µ,y) = Q#A(µ,y)

According to Definition 3.1.5 such a method is a Bayesian probabilistic numerical

method if A(µ,y) = µ
y for each y 2 Y, where µ

y denotes the conditional distribution

of µ on y. The set X y is a level set of A or, alternatively, the preimage A
�1(y), i.e.

X y = {u 2 X : A(u) = y}.

6.1.2 Conditioning on Null Sets

A core issue, alluded to in Chapter 3, is that most definitions of a conditional

distribution involve some variant of Bayes’ theorem. In the present setting the more

general version given in Section 2.4 is the most appropriate, so that the posterior
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would be defined as

dµ
y

dµ
(u) =

1

Z
I[X y](u)

Z =

Z

X

I[X y](u)µ(du) = µ(X y).

This construction of the posterior relies on the assumptions of the Radon–Nikdodym

theorem, namedly that µ
y ⌧ µ. However, in the case that X y is a null-set of the

prior, the entire support of µ
y is a null-set of µ and absolute continuity does not

hold.

This setting is the most common setting for Bayesian PNM, as the subman-

ifold of X defined by X y is generally a null-set of µ. Even in the simple Gaussian

process regression setting this is clear, since if µ is a Gaussian measure supported

on all of X , then for an arbitrary x 2 D, y 2 R, the set

X y = {u 2 X : u(x) = y}

clearly has the property µ(X y) = 0, provided that X is a strict superset of X y. While

verifying this fact for general µ and A is more challenging, empirically it is generally

the case for the priors and information operators used in PNM. Nevertheless, the

posterior distribution in this setting is well-defined, as can be seen in Rasmussen and

Williams [2006]. Thus we now turn to the problem of establishing a more general

notion of a conditional distribution which supports this setting.

6.1.3 Disintegrations and the Disintegration Theorem

The challenge for establishing the existence of posterior distributions from BPNM is

first to introduce an appropriate generalisation of a conditional distribution which

allows for the support of conditionals to be null-sets of the prior. Conditioning

on null sets is a part of Kolmogorov’s foundational measure-theoretic construction

of probability, in Kolmogorov [1933]. The means by which this was formalised in

that work was regular conditional probability. In this work we instead work with

disintegrations, as argued for in Chang and Pollard [1997], defined below following

Dellacherie and Meyer [1978].

Definition 6.1.1 (Disintegration). A collection {µ
y}y2Y ⇢ PX is a disintegration

of µ with respect to A if:

1. (Support:) The measure µ
y is supported on X y for A#µ-almost all y 2 Y, i.e.

µ
y(X \ X y) = 0.
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and for each measurable f : X ! [0,1) it holds that

2. (Measurability:) The map y 7! µ
y(f) is measurable.

3. (Conditioning:) µ(f) =
R

µ
y(f)A#µ(dy).

Properties (1) and (2) are each natural conditions for the required conditional

distribution to have. In particular, property (1) is what separates a disintegration

from a regular conditional distribution1. Property (3) is the condition that makes

disintegrations interpretable as conditional distributions, as this is in essence the

law of total probability. Thus, disintegrations serve as an appropriate notion of a

posterior distribution for BPNM, when the property µ(X y) holds for A#µ-almost-

all y 2 Y. It remains to discuss conditions on the map A and the measure µ under

which a disintegration can be said to exist, and be unique. These are provided by

the Disintegration theorem, quoted here from Chang and Pollard [1997].

Theorem 6.1.2 (Disintegration Theorem [Chang and Pollard, 1997, Theorem 1]).

Let the following conditions hold:

1. X is a metric space with Borel �-algebra BX .

2. µ 2 PX is a Radon measure.

3. BY is countably generated with {y} 2 BY for each y 2 Y.

Then there exists a disintegration {µ
y}y2Y of µ with respect to A. Moreover, if

{⌫
y}y2Y is another such disintegration, then {y 2 Y : µ

y 6= ⌫
y} is a A#µ-null set.

Property (1) is a natural condition to hold for the present application; most

numerical methods require the definition of some metric on their solution space in

order to measure convergence. Property (2) holds whenever X is both separable

and complete; again, these are mild conditions and are generally required for the

definition of a useful probability measure on X . Such a space is an example of a

Radon space. Property (3) is easily satisfied in the present setting when Y = Rn,

and BY is the Borel �-algebra. Thus, under very mild conditions BPNMs are well-

defined, in the sense that the required disintegration exists and is essentially unique.

1Recall that for regular conditional distributions, non-uniqueness results in many di↵erent “ver-
sions” of a conditional measure, each of which satisfies the definition. According to Chang and
Pollard [1997], the additional requirement (1) amounts to “a careful selection of versions of the
conditional expectations (in Kolmogorov’s sense)”, resulting in a more intuitive theoretical con-
struct.
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6.1.4 Decision-Theoretic Treatment

In this section we apply results from decision theory to define an appropriate notion

of contraction for PNM, as well as to explain the frequently observed property that

PNM often reproduce classical numerical methods as their posterior mean. Both of

these ideas were discussed in both Chapter 4 and Chapter 5. The fact that PNMs

often reproduce classical numerical methods has also been observed frequently in

the literature, in Briol et al. [2019], Karvonen and Särkkä [2017] and Karvonen et al.

[2018] for quadrature rules.

Contraction of PNM

Let L : Q⇥Q! R denote an integrable loss function, where L(q†, q) assigns an ab-

stract numerical loss to the setting when the QoI q
† = Q(u†) is incorrectly estimated

with another q 2 Q.

A BPNM can be regarded as providing a randomised decision rule for se-

lection of q through its posterior M(µ,y) = Q#µ
y. To assess such rules, the loss

function is generally averaged over the output of the randomised decision rule to

produce a risk function. Letting ⌫ 2 PQ denote an arbitrary randomised decision

rule for q, the risk function r : Q⇥ PQ ! R is then defined as:

r(q†, ⌫) =

Z

Q

L(q†, q) ⌫(dq) .

A distribution µ 2 PX can be thought of as describing a class of problems which the

user expects to need to solve using a numerical method such as a PNM. It is then

natural to consider the average risk or, when µ is the prior, the Bayes risk incurred

over all problems described by µ, as a measure of how well the BPNM estimates q

on average. For a PNM, this is defined as

R(µ, M, A) =

Z

X

r(Q(u), M(µ, A(u))) µ(du). (6.1)

The Bayes risk can be used to introduce a notion of contraction of BPNM under a

sequence of information operators (An), for n 2 N, where each An : X ! Yn. These

information operators might be thought of as representing an increasing amount of

information, so that dim(Yn) < dim(Yn+1). Thus, in the limit as n!1, informally

an “infinite amount of information” is obtained, so that u can be recovered exactly

(since X is assumed to be separable). We will now define what it means for this

sequence of operators to contract at a certain rate when used to estimate q
†.
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Definition 6.1.3 (Contraction). Let '(n) : N ! R+ be such that '(n) ! 0 as

n ! 1. A sequence (An, Mn) of information operators and update rules contracts

at a rate '(n) under a prior µ if R(µ, Mn, An) = C'(n), for some C independent of

n.

Note that a rate of contraction for the PMM was presented in Chapter 5. A

similar rate also appeared in Chapter 4, though the rate presented in that section

had a somewhat di↵erent interpretation; owing to the finite-dimensionality of X ,

the sequence of information operators (An) was defined for n = 1, . . . , d rather than

for n 2 N. Similar rates have appeared in other literature on BPNMs, such as Briol

et al. [2019].

Bayes Decision Rules

We now introduce the concept of a Bayes rule.

Definition 6.1.4 (Bayes Rule). A decision rule is said to be a Bayes rule if it

achieves the minimum Bayes risk among all decision rules. Formally, let M denote

the set of all PNM, i.e.

M = {M : PX ⇥ Y ! PQ}.

Then, for fixed information A, M
⇤ 2M is a Bayes rule if, for all M 2M

R(µ, M
⇤
, A) < R(µ, M, A).

We denote the set of all Bayes rules by MB.

Note that this definition encompasses classical numerical methods through

Section 3.2. This idea is also closely linked to the concept of an average-case optimal

numerical method; see Ritter [2000] and Cockayne et al. [2019a] for more detail on

the connection between BPNMs and such methods.

Given this definition it is natural to ask whether it is possible for PNMs to be

Bayes rules. However, a basic result from Bayesian decision theory states that if MB

is non-empty then it contains at least one non-random decision rule. This means

that while there may be PNM which are Bayes rules, the posterior distribution o↵ers

no benefit over a point estimate when assessed in this framework.

The question of whether BPNMs have optimality properties when interpreted

as decision rules remains open. The ideas introduced above clearly do not ascribe

value to the UQ that these methods provide, but analysis of the UQ enables more

informed decisions based upon whether the output is su�ciently accurate that any
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action should be taken, or whether more computational e↵ort should first be spent

on the problem. Nevertheless, the exposition of Bayes rules allows us to establish

the following result concerning the posterior mean of BPNMs:

Theorem 6.1.5. Suppose that M is a BPNM and suppose that Q ✓ Rd. Suppose

that squared-error loss is used, so that

L(q†, q) = kq† � qk22.

Then, for each y 2 Y it holds that if X
y is a random variable with law M(µ,y),

then E(Xy) is a Bayes rule for estimation of q
†.

Proof. This is a straightforward result from Bayesian decision theory. From Berger

[1985, Section 4.4.1], to determine a Bayes act a it is equivalent to minimise the

posterior expected loss for each y 2 Y, i.e.

J(q) :=

Z

Q

kq � ak22 ⌫
y(dq)

where ⌫
y = M(µ,y). Let ⌫y denote the expectation of ⌫

y. We then have that

1

2
rJ(q) =

Z

Q

(q � a) ⌫
y(dq)

= ⌫y � a.

Thus, taking a = ⌫y causes the derivative to be zero. Furthermore by inspection,

the Hessian of J(q) is an identity matrix which is positive-definite; hence this is a

minimum. This completes the proof.

This result explains the fact, observed in both Chapter 4 and Chapter 5 as

well as throughout the PNM literature, that PNM frequently have a posterior mean

that coincides with a classical numerical method. This is owing to the equivalence

between minimising squared-error loss, a natural objective in the construction of

numerical methods, and conditional expectation. However, it should be emphasised

that while this is an interesting and attractive property of BPNM, it is not considered

to be a fundamental requirement, and recent research has revealed new BPNMs

without an existing numerical method as their counterpart [e.g. Karvonen et al.,

2018; Xi et al., 2018]. Further, it has been noted [Berger, 1985, Section 2.4.2] that

the regularity with which squared-error loss appears in the literature has more to

do with its tractability than any other merit. Thus, the above theorem should be

interpreted only as explaining why it is so often the case that PNM coincide with
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classical numerical methods, rather than as an advocation of this property as a

design criterion.

6.2 Numerical Disintegration

The proof of the disintegration theorem in Section 6.1.3 is unfortunately non-

constructive. Thus, while it is guaranteed that the required disintegration will

exist, interrogating it remains a challenging numerical problem. In this section we

describe a method for approximately sampling from elements of the disintegration.

The approach pursued is based on constructing a sequence of distributions (µy
�
),

for � 2 R+, each of which which can be sampled from using standard Monte Carlo

methods, and which provably approach µ
y in the limit as � # 0.

Disintegrations and regular conditional probabilities have received limited

attention in the literature and are generally only treated as objects of mathematical

interest. The approach described here is the first method for approximately sampling

from disintegrations, and is similar in spirit to analysis which appears in Ackerman

et al. [2017]. It borrows from sampling techniques in the literature on rare event

simulation [Cérou et al., 2011], and could also be described as a kind of approximate

Bayesian computation (ABC) [Del Moral et al., 2012].

It should be noted that while the method described in this section does

provide a means to approximately sample from posterior distributions resulting from

arbitrary BPNM, the cost incurred is high compared to standard numerical methods

for such problems. This is owing to the cost incurred by the Monte Carlo methods

employed. As a result, the approach described in this section should be thought

of as a proof of concept, to demonstrate that the intractable posterior distributions

arising from BPNM can be approximately sampled from and to provide a benchmark

against which more e�cient approximation schemes can be compared.

6.2.1 Approximate Sampling from Disintegrations

We now introduce the sequence of distributions which will be used to approximate

the element of the disintegration. Suppose that Y = Rn. Let � : R+ ! R+ denote

a function with the following properties:

1. �(0) = 1.

2. �(r)! 0 as r !1.

3. � is decreasing, and continuous at 0.
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For � > 0, introduce the relaxation function �
y
�

: X ! R+, defined as

�
y
�
(u) = �

✓
kA(u)� ykY)

�

◆
.

It is assumed that µ(�y
�
) > 0 for all � > 0. Then, the �-relaxed distribution µ

y
�

is

defined through its Radon–Nikodym derivative with respect to µ as

dµ
y
�

dµ
(u) =

�
y
�
(u)

Z
y
�

Z
y
�

= µ(�y
�
).

Informally it is clear that �
y
�
! I[X y] as � # 0. Thus, one might expect that µ

y
�
! µ

y

as � # 0. To make this intuition formal, a notion of convergence on PX is required.

For the sake of generality, integral probability metrics will be used. While integral

probability metrics certainly appeared in earlier works (e.g. Zolotarev [1984] and

earlier editions of Dudley [2002]), Müller [1997] provides a thorough characterisation.

See also Sriperumbudur et al. [2012].

Definition 6.2.1 (Integral Probability Metric). Let F be a set of bounded and

measurable functions f : X ! R. Then the integral probability metric induced by

F is defined as

dF (⌫, ⌫
0) = sup

f2F

|⌫(f)� ⌫
0(f)|

Many, though not all, common probability metrics can be defined in this way;

in particular, the total variation distance is obtained when F is the set of all functions

with kfk1  1, while the Wasserstein distance arises from the class of functions

with both kfk1  1 and Lip(f)  1, where Lip(f) denotes the Lipschitz constant

of f . Conversely, the Hellinger metric introduced in Eq. (5.10) is an example of a

probability metric that is not a member of this class. Note that the total variation

distance is not a useful notion of convergence for disintegrations, as all elements

of the disintegration have disjoint support and the total variation distance between

two measures with disjoint support is always 1.

It is also important to note that, depending on the function class F , dF may

not satisfy the full definition of a metric given in Definition A.1.1. In paritcular, the

property dF (µ, ⌫) = 0 () µ = ⌫ may not be satisfied. In such cases dF is merely

a pseudometric. However this is not critical for our analysis.

We now introduce the set of assumptions under which it can be proven that

dF (µa

�
, µ

a)! 0 as � # 0.
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Assumption 6.2.2. Assume that A#µ admits a positive Lipschitz density pA with

respect to the Lebesgue measure on Y and with Lipschitz constant LA. Further

assume that pA(y) > 0 for all y 2 Y.

Assumption 6.2.3. Let C
m

�
:=
R

r
m

�(r)dr. Then we assume that C
n

�
< 1 and

C
n�1

�
<1, where n = dim(Y).

Assumption 6.2.4. The map y 7! µ
y is A#µ-almost-everywhere Lipschitz in dF ,

so that

dF (µy
, µ

z)  Cµky � zkY

for A#µ-almost-all y, z 2 Y, and for some constant Cµ that depends on µ.

Assumption 6.2.4 can be relaxed to allow a 7! µ
a to be merely ↵-Hölder,

as presented in Cockayne et al. [2019a], but for simplicity that relaxation was not

presented here.

Theorem 6.2.5. Let C̄
n

�
:= C

n

�
/C

n�1

�
, with n = dim(Y) Then, for � > 0 su�ciently

small,

dF (µy
�
, µ

y)  Cµ(C̄n

�
+ 1)�

for all y such that kykY < P , where P <1 is an arbitrary positive constant.

Proof. See Appendix E.1.

This result justifies the use of samples from µ
y
�

to approximate µ
y, for �

su�ciently small. The constant P a↵ects how small � must be for the result to

hold. Thus, posterior distributions from numerical disintegration could be thought

of as being approximate BPNM for the numerical problem at hand, in the sense

that the error between µ
y
�

and µ
y is small and controlled by �. Results demon-

strating the convergence of such approximations under a continuity assumption on

the disintegration have appeared in Tjur [1980] and Ackerman et al. [2017]. This

result is stronger, in that it establishes transfer of the Lipschitz continuity of the

disintegration to a rate of convergence in the relaxed disintegration. The result is

also valid for � other than indicator functions, which may be more computationally

expedient.

Not captured in Theorem 6.2.5 is the impact of prior truncation on inferences

in BPNM. Recall from Section 2.3.1 that priors on (separable) function spaces are

typically constructed by randomising weights of a basis of that space in such a way

as to ensure almost-sure convergence. For practical computation this basis must

be truncated, as in Eq. (2.4). The results in Cockayne et al. [2019a] attempt to
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bound the error resulting from this truncation, but assume that the prior can be

sampled without error and is truncated within the likelihood, which di↵ers from the

computational setup. Owhadi et al. [2015] show that in the general case, the error

incurred by performing inference with a truncated prior can be arbitrarily large.

What assumptions can be made to ensure robustness to prior truncation remains to

be established.

6.2.2 Sampling Methods

Having established that approximating µ
a with a distribution µ

a

�
is valid, and that µ

a

�

is suitably well-defined with respect to the prior, methods such as the pCN method,

introduced in Section 2.4.1, can be used to obtain samples from µ
a

�
. However, when

� is small the posterior is highly concentrated and samplers can converge very slowly.

To accelerate the convergence of the sampler a tempering scheme inspired

by the literature on rare event simulation was adopted. Consider a finite set

{�1, . . . , �N}, N 2 N, with �i > 0 for i = 1, . . . , N and �i > �i+1. For convenience,

abbreviate µ
y
�i

= µ
a

i
. Then the intuition behind tempering schemes is that if �1 is

su�ciently large it can be sampled from straightforwardly using standard Monte-

Carlo methods, and furthermore if �i � �i+1 is su�ciently small then µ
y
i

is a useful

importance sampling distribution for µ
y
i+1

. Thus, the ordered set {µ
y
1
, . . . , µ

y
N�1

}
is a set of latent distributions on which sampling procedures can be constructed to

permit more straightforward sampling from the true target distribution µ
y
N

.

Several schemes for sampling from tempered distributions exist in the lit-

erature, most prominent among them sequential Monte Carlo (SMC; Del Moral

et al. [2006], see Appendix A.3.2) and parallel tempering (Geyer [1991], see Ap-

pendix A.3.3).

6.3 Numerical Experiments

We now turn to a numerical evaluation of the procedure described in the previous

section. This is applied to two examples: a simple linear PDE in two dimensions,

and a more complex nonlinear boundary value problem in one dimension.

6.3.1 Poisson Equation

Our first illustrative example returns to Poisson’s equation, as seen in Section 5.4.1,

though in this case the equation is in two spatial dimensions rather than one. To

be specific, for D = [0, 1]2 let x 2 D be such that x = [x1, x2]>. Then, the PDE
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(c) Cauchy prior

Figure 6.1: (a) Model solution u(x) to Poisson’s equation, constructed using a fine
mesh of 50 ⇥ 50 elements. (b, c) Posterior mean for the solution u(x) of Poisson’s
equation with n = 16, and under a Gaussian and Cauchy prior. The design points
are plotted; green dots represent interior points, green squares represent Dirichlet
points and green crosses represent Neumann points.

considered is:

�r2
u(x) = 0 x 2 (0, 1)2 (6.2)

u(x) = x1 x1 2 [0, 1] x2 = 0 (6.3)

u(x) = 1� x1 x1 2 [0, 1] x2 = 1 (6.4)

@u/@x2 = 0 x2 2 (0, 1) x1 2 {0, 1} (6.5)

Fig. 6.1a shows a model solution to this system, generated using FEM with a fine

mesh. Note that since this PDE is linear in u, under a Gaussian prior an explicit

closed-form posterior can be constructed using the methods in Chapter 5. Here the

numerical disintegration procedure is used for illustrative purposes.

To admit di↵erent prior specifications than the Gaussian, a truncated series

prior was used, with the basis functions taken to be given by tensor products of

orthogonal polynomials in one spatial dimension. The base polynomials used were

normalised Chebyshev polynomials of the first kind as described in Appendix A.4.

The basis functions in Eq. (2.4) then given by:

�i(x) = Ti1(2x1 � 1)Ti2(2x2 � 1)

where i 2 N2 is now interpreted as a multi-index. The total degree of polynomials

used in the truncated representation of u(x) was restricted to NC , so that the prior

distribution is given by the random variable:

U
NC =

X

|i|NC

⇠i�i�i.
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Here the scaling parameters were set to �i = (|i| + 1)�2, to guarantee almost-sure

convergence, while the random variables ⇠i are taken to be IID, and either unit

Gaussian or Cauchy. Throughout, the maximum total order of the polynomials was

set to NC = 8, resulting in a total of 45 terms in the summation that defines U
NC .

Pointwise information was used, by defining a regular grid of points {xi}n

i=1
⇢

[0, 1]2 and enforcing either the interior or one of the boundary conditions at each

point depending on its location. To be explicit, let X
L denote the set of points at

which the interior condition (i.e. the Laplacian) is enforced, X
D denote the set of

points lying on one of the boundaries at which a Dirichlet condition is enforced, and

X
N denote the set of points lying on a boundary where a Neumann condition is

enforced. Let |XL| = NL, |XD| = ND and |XN| = NN, and let the total number of

points n = NL + ND + NN. Then, the information operator has the form:

A(u) =

2

64
A

L(u)

A
D(u)

A
N(u)

3

75

where

A
L(x) =

2

664

�r2
u(xL

1
)

...

�r2
u(xL

NL
)

3

775 , A
D(x) =

2

664

u(xD
1
)

...

u(xD
ND

)

3

775 , A
N(x) =

2

664

@u

@n(xN
1
)

...
@u

@n(xN
NN

)

3

775 .

Three di↵erent information operator resolutions were considered; n = 16, 25 and 36.

The posterior distribution was obtained by use of the parallel tempering

algorithm described in Appendix A.3.3. In the notation of that section, the dis-

tributions µi are defined by the relaxation parameters �i, which were taken to be

equally spaced on a logarithmic scale between 10�2 and 10�4. At each temperature,

ten iterations of a preconditioned MALA sampler were used to provide the transi-

tion kernel. This sampler is described in Appendix A.3.1, and can be implemented

e�ciently owing to the ease with which gradients of each log-likelihood can be ob-

tained in the present setting. The preconditioner � was taken to be � = diag(�), to

ensure that the scale of proposals matches the scaling of the prior coe�cients. The

total number of swaps, P in the notation of Appendix A.3.3, was adapted to the

resolution of the information operator. When n = 16, P = 106, and when n = 25

or n = 36, P = 107.

Posterior means from the numerical disintegration procedure with � = 10�4

and n = 16 are reported in Fig. 6.1b (for the Gaussian prior) and Fig. 6.1c (for
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Figure 6.2: Posterior distribution over the first four coe�cients in the spectral ex-
pansion for the solution u(x) to the Poisson equation. The posteriors plotted are
from numerical disintegration with a Gaussian prior, where � = 0.0008, n = 16.

the Cauchy prior). Little qualitative di↵erence can be observed between these two

figures and the model solution shown in Fig. 6.1a.

The spectrum of the posterior distribution, i.e. the posterior distribution over

the coe�cients ui, |i| < NC , is reported in Fig. 6.2, in this case for the Gaussian

prior. Note that the posterior distributions appear to be approximately Gaussian,

as expected due to the linearity of the problem.

Lastly, the posterior variance is examined in Fig. 6.3. In the first panel,

Fig. 6.3a, it is clear that the posterior variance is lowest at the boundaries where

Dirichlet conditions have been enforced, where the solution is known explicitly.

Posterior variance rises as the solution deviates from these boundaries, and peaks

near the boundaries where the Neumann condition has been enforced, reflecting

that the Neumann condition provides significantly less information about the value

of the solution. This behavior is also seen in Fig. 6.3b, but with diminished variance

owing to the finer discretisation of the domain. Fig. 6.3c displays more pathological

behavior, likely due to the fact that the amount of information is now approaching
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Figure 6.3: Point-wise standard deviation for the posterior over Poisson’s equation
under a Gaussian prior, as the number of design points n is varied.

the number of degrees of freedom in the truncated prior. This demonstrates that

many more than n degrees of freedom in the prior are needed to ensure that the

uncertainty quantification provided is not a↵ected by prior truncation.

6.3.2 The Painlevé ODE

In this section, the numerical disintegration procedure is applied to produce a BPNM

for solution of Painlevé’s first transcendental, a boundary value problem in one

dimension:

u
00 = u

2 � u, x 2 [0,1)

u(0) = 0

u(x)!
p

x as x!1 .

For computational purposes, the domain of the ODE was truncated to [0, 10], so

that in fact the following modified system was solved:

u
00 = u

2 � u, x 2 [0, 10]

u(0) = 0

u(10) =
p

10

This problem is of particular interest as a test-case for BPNM, as it admits two

distinct solutions, shown in Fig. 6.4a. Systems in which multiple solutions exist have

been used as motivation for PNM before, in Chkrebtii et al. [2016] and Cockayne

et al. [2016]. A probabilistic solver provides the notable advantage that all solutions

can be naturally represented by a PNM, as a multimodal posterior, whereas such a

representation is di�cult to provide from a classical numerical procedure.

The spectrum plot in Fig. 6.4b shows the coe�cients {ui} obtained when
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Figure 6.4: (a) The solutions to the Painlevé ODE, generated using the deflation
technique of Farrell et al. [2015]. The underlying ODE solver employed was MAT-
LAB’s chebfun package, so that the solutions are in the same polynomial basis as
used to sample the posteriors in this section. (b) Coe�cients {ui} corresponding
to each solution. (c) Negative-log-likelihoods corresponding to each solution, as a
function of the truncation level N .

each solution is estimated in the span of a set of normalised Chebyshev polynomials.

This was computed using the disintegration technique of Farrell et al. [2015] and the

chebfun package in MATLAB. Orthonormality of the Chebyshev polynomials means

that the slower decay for the negative solution compared to the positive solution

is equivalent to the negative solution having a larger L2 norm. This explains the

general preference that optimisation-based numerical solvers — and the results now

presented — have for the positive solution.

As in the previous section, a prior was constructed using a truncated series

expansion, so that

U
N =

NX

i=1

⇠i�i�i

The truncation order was set to N = 40 terms. The �i were again taken to be

normalised Chebyshev polynomials of the first kind as described in Appendix A.4,
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so that �i(x) = Ti�1(
1

2
(x � 5)). The ⇠i were taken to be either unit Gaussian or

Cauchy, while the decay parameters were set to �i = ↵�
�i, for ↵ = 8 and � = 1.5.

This scaling was chosen based on the exponential convergence seen in Fig. 6.4b, with

values of ↵ and � chosen by inspection of the true spectra to ensure that the prior

was adequately supported near the truth.

Pointwise information was again used. A regular grid of m spatial points,

{x1, . . . , xm}, was placed in (0, 10) and augmented with boundary information, so

that the information operator and corresponding information y 2 Rn, n = m + 2,

are given by

A(u) =

2

66666664

u
00(x1)� (u(x1))2

...

u
00(xm)� (u(xm))2

u(0)

u(10)

3

77777775

y =

2

66666664

�x1

...

�xm

0p
10

3

77777775

The posterior distribution was sampled by SMC (see Appendix A.3.2), based

on 1600 temperatures equally spaced on a logarithmic scale between 10 and 10�4.

An ensemble of P = 200 particles was used, and the transition kernel at each tem-

perature was provided by 10, 000 iterations of MALA at n = 12 and n = 17, and

40, 000 iterations at n = 22 (see Appendix A.3.1). With such a large number of

temperatures and such a large number of iterations at each temperature, computa-

tion was expensive, highlighting the importance of further work to reduce the cost

of BPNM outside of the conjugate framework.

Results for a selection of bandwidths �, with n = 17, are shown in Fig. 6.5.

Significantly more mass is placed around the positive than the negative node for the

smallest value of �, reflecting a preference for the solution with the smaller norm

even in the probabilistic approach. Fig. 6.6 shows spectral posterior distributions,

over the coe�cients ui, at n = 17 and � = 1. Note that these plots exhibit strong

multimodality and a highly skewed correlation structure.

In Fig. 6.7 the amount of information n is varied, while � is held fixed. For

n = 12 we note that a new mode appears under a Gaussian prior, and posterior

mass spans the range between the positive and negative solutions under both the

Gaussian and Cauchy priors. However at n = 22 both posteriors settle on the

positive solution to the ODE, again reflecting that the solution has lower L2 norm.

This may be due to the truncation of the prior; in Fig. 6.4c the log-likelihood of

the negative solution increases at a slower rate than that of the positive solution as

a function of the truncation level. This suggests that prior truncation might bias

the BPNM in favour of one solution over the other, even when without truncation
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Figure 6.5: Posterior samples for the Painlevé system for n = 17. Blue and green
dashed lines show the positive and negative solutions determined with chebfun.
Grey lines are samples from an approximation to the posterior provided by numerical
disintegration (bandwidth parameter �).

neither solution is preferred.

6.4 Discussion

This concludes the discussion of the non-conjugate setting. We have established

very general conditions for the existence and uniqueness of posterior distributions

of BPNM, and have proposed a Monte-Carlo algorithm for approximately sampling

from the posterior. There remain several open questions for this setting. Principal

among these are well-posedness results for the posterior distributions. Theorem 6.2.5

establishes the approximation properties of numerical disintegration under an as-

sumption of a level of smoothness of the disintegration with-respect-to the data,

but when that level of smoothness should be expected has yet to be established and

is a subject of ongoing research. Similarly, the computational cost of the proposed

numerical disintegration algorithm is too high for it to be considered practically use-

ful, and more computationally expedient methods must be developed if BPNM in

the non-conjugate setting are ever to be considered a viable alternative to standard

techniques in numerical analysis.

It should be noted that we do not insist that all PNM must be Bayesian;

124



0.2

0.4

0.6

0.9

u0

1.4

2.1

2.8

3.5

u1

-1.7

-1.2

-0.8

-0.3

u2

2.3 3.0 3.7

-0.7

-0.2

0.2

0.7

1.4 2.5 3.5 -1.7 -1.0 -0.3 -0.7 0.0 0.7

u3

Figure 6.6: Posterior distributions for the first four coe�cients obtained with nu-
merical disintegration (bandwidth � = 1), at n = 17. Dashed lines show the coe�-
cient values for the positive (blue) and negative (green) solutions determined with
chebfun. The Gaussian prior was used.

0.0 2.5 5.0 7.5 10.0
x

�2.5

0.0

2.5

u
(x

)

Gaussian, n = 12

0.0 2.5 5.0 7.5 10.0
x

u
(x

)

Gaussian, n = 17

0.0 2.5 5.0 7.5 10.0
x

u
(x

)

Gaussian, n = 22

0.0 2.5 5.0 7.5 10.0
x

�2.5

0.0

2.5

u
(x

)

Cauchy, n = 12

0.0 2.5 5.0 7.5 10.0
x

u
(x

)

Cauchy, n = 17

0.0 2.5 5.0 7.5 10.0
x

u
(x

)

Cauchy, n = 22
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Top: Gaussian prior. Bottom: Cauchy prior. In all cases � = 10�4.
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BPNM are a subclass of PNM that produce UQ with a well-understood and widely

studied meaning, but this does not dismiss other approaches as long as the meaning

of the UQ produced is similarly understood. Nevertheless, a compelling argument

for Bayesian PNM will be presented in the next chapter.

The last contribution of this thesis, in the next chapter, will be a study of

the composition of BPNM. Specifically, we will discuss when composed BPNM yield

an output with a strictly Bayesian interpretation, and present an application from

industrial process monitoring.
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Chapter 7

Pipelines of PNM

“This leads to a somewhat disturbing argument of an endless chain of

PNMs.”

—Anonymous reviewer of the paper ‘Bayesian probabilistic numerical

methods’

The final chapter in this thesis concerns the composition of PNM. For many

of the most challenging models of physical processes, simulating from the model

requires the application of multiple numerical methods, rather than a single one.

For example, climate models involve large systems of coupled ODEs and PDEs for

modelling the interlinked processes that determine climate evolution, such as sea

temperature, air temperature and ice sheets. Heart models [Niederer et al., 2011]

couple ODEs for modelling the electrical conductivity within cells to PDEs that

govern the propagation of electrical pulses through the heart. In each case, otherwise

independent numerical methods for solving each problem must be composed with

each other to approximate a solution to the overall problem. Such a composition

of numerical methods for estimating a quantity of interest is termed, in this this

thesis, a pipeline of computation.

While a single numerical method can often be analysed theoretically, for ex-

ample by deriving worst- or average-case error bounds, studying the propagation of

numerical error through pipelines of computation is substantially more complicated.

Nevertheless, accumulated discretisation error can have a significant impact on the

output of a pipeline [Roy, 2010; Anderson, 2011; Babuška and Söderlind, 2018].

The prospect of using PNMs for this task has been repeatedly used as a

motivation for the development of these methods (e.g. Hennig et al. [2015]; Conrad

et al. [2017]; Cockayne et al. [2019a]). If the output of pipelines of PNM can be

127



composed rigorously, then the posterior distribution output by the pipeline natively

describes the discretisation error of the output. Furthermore, as suggested in Hennig

et al. [2015], the pipeline allows for an analysis of variance to identify the dominant

source of discretisation error in the pipeline, so that the discretisation used in that

method can be refined. Some works have made limited attempts to incorporate

PNM in specific pipelines (e.g. Chkrebtii et al. [2016]; Cockayne et al. [2019a,b], as

well as Section 4.6.2 and Section 5.4.2). This chapter presents a detailed theoretical

analysis of composition of PNMs.

The chapter proceeds as follows. In Section 7.1 we introduce the definition of

a pipeline of computation, and present new theory related to to pipelines BPNM. In

Section 7.2 we consider the use of a pipeline of BPNM in an application to the use

of EIT in the monitoring of pieces of industrial machinery known as hydrocyclones.

7.1 Pipelines of PNM

In this section the basic definitions of pipelines of PNM are introduced. Note that

the developments in this section are not specific to Bayesian PNM and hold for

the any other PNM, including the trivial PNM constructed from classical numerical

methods described in Section 3.2. Consider a sequence of n PNM, M1, . . . , Mn each

identified by its information operator Ai : X ! Yi and its QoI Qi : Yi ! Qi.

The PNM are assumed to share a common state space without loss of generality.

If necessary, this state space might be a tensor product space consisting of the

individual state spaces required for each PNM. The definition of a pipeline of PNM

is now introduced.

Definition 7.1.1 (Pipeline of Computation). A pipeline of computation is described

by a directed acyclic graph (DAG), with two kinds of nodes:

• Method nodes, represented by ⌅. These represent the PNM which the pipeline

is composed of, and are labelled with integers, i = 1, . . . , n.

• Information nodes, represented by ⇤. Root information nodes represent the

information input to the pipeline, while child information nodes represent in-

termediate information as given by the QoI computed by the preceding nodes.

The graph is bipartite, so that edges appear only between method nodes and infor-

mation nodes. Root and sink nodes of the graph must each be information nodes.

The graph may have many root nodes, but we assume for simplicity that there is

a single sink node representing a single QoI which it is the goal of the pipeline to

compute, referred to as the principal QoI. Furthermore:
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u(x0), . . . , u(xm�1)

u(xm)

u(xm+1), . . . , u(x2m+1)

M1(µ,y1)

M2(µ,y2)

R
0.5

0
x(t)dt

R
1

0.5
x(t)dt

add( · , · )
R

1

0
x(t)dt

Figure 7.1: Pipeline representation of Example 7.1.2.

• Information nodes are either root nodes, or have a single parent method node.

• Method nodes may have many parent information nodes but connect to a

single output information node.

Note that the above definition allows for a method node to have multiple in-

formation nodes as its input. To accommodate this, we allow information operators

Ai and information yi to be decomposed into multiple components. Suppose that

method node i has m(i) information nodes as its parents. Its information node and

information are then assumed to constructed as:

Ai(u) =

2

664

A
1

i
(u)
...

A
m(i)

i
(u)

3

775 yi =

2

664

y1

i

...

ym(i)

i

3

775 .

Here yj

i
corresponds to the input supplied from input edge j of method node i, while

A
j

i
describes the information operator associated with that information. Thus, when

the in-edges to a node are ordered, input edge j of method node i encodes the infor-

mation A
j

i
(u) = yj

i
. This notational complexity will generally be suppressed except

for where it is significant. To build intuition, a simple example of the formalisation

of a sequence of computations into a pipeline is now presented.

Example 7.1.2 (Parallelised Integration). In this example, a computational pipeline

will be motivated by the task of parallelising the computation of an integral by split-

ting the domain. Let X be a (currently unspecified) set of functions u : [0, 1]! R.

The principal QoI that we wish to compute is then given by the map u 7!
R

1

0
u(x)dx,

and so Q = R. Information will be provided by pointwise evaluation of the true

integrand u
†, and for the purposes of this example we suppose that u

† is expensive

to evaluate so that the goal is to produce a pipeline of computation that parallelises

computation of the integral.

A simple parallelisation is given by splitting [0, 1] into [0, 0.5] and [0.5, 1],
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and summing the integral over each subinterval, i.e.:

Z
1

0

u
†(x)dx

| {z }
“Principal QoI”

=

Z
0.5

0

u
†(x)dx

| {z }
(1)

+

Z
1

0.5

u
†(x)dx

| {z }
(2)

(7.1)

For simplicity, suppose that the points at which u
† is evaluated are given by 2m+1

equally spaced points inside the domain; thus, integrals (1) and (2) will each be

computed based on the information provided by m + 1 equally spaced points inside

[0, 0.5] and [0.5, 1] respectively, with the central location x = 0.5 used in both

computations. Since each integral shares the central location, there are thus two

information operators for each method:

A
1

1(u) = [u(0), . . . , u(xm�1))]
>

A
2

1 = A
1

2 = [u(xm)]

A
2

2(u) = [u(xm+1), . . . , u(1)]>.

Similarly, two pieces of information are provided to each method:

y1

1 = [u†(0), . . . , u†(xm�1)]
> y2

1 = y1

2 = [u†(xm)]

y2

2 = [u†(xm+1), . . . , u
†(1)]> .

The QoI operators are defined as

Q1(u) =

Z
0.5

0

u(x)dx Q2(u) =

Z
1

0.5

u(x)dx

BPNM M1, M2 are then uniquely defined by the information operators and QoI

operators. A BPNM for computing these integrals is described in Briol et al. [2019].

To sum the integrals an additional “dummy” method is required:

add(y1, y2) = �(y1 + y2).

This dummy method satisfies the definition of a PNM with the state space X = R
and information space Y = R2.

The DAG representing the pipeline is displayed in Fig. 7.1. Note that the

two nodes associated with the computation of (1) and (2) in Eq. (7.1) each take

input from two information nodes, as they share the evaluation u
†(0.5).

We now introduce the notion of a collection of PNM being compatible with

a pipeline of computation. Informally, such a collection is compatible if the input

and output spaces from the PNM match the graph’s structure. This is a basic
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consistency condition which makes it possible for the methods represented by nodes

in the graph.

Definition 7.1.3 (Compatible). A collection of PNM is said to be compatible with

a pipeline P if:

(i) For nodes of the form

i

j

i
0

j
0

we have that Ai,i0 = Aj,j0 and Yi,i0 = Yj,j0 .

(ii) For nodes of the form

i j
j
0

we have that Qi = Yj,j0 .

Property (i) ensures that, where method nodes share information, the infor-

mation “means the same” to each method node, in that the information spaces and

information operators coincide. Property (ii) ensures that for a method node whose

output is input to a descendent method node, the QoI space for the former method

matches the information space of the latter.

Lastly, we introduce the concept of the computation associated with a pipeline

P :

Definition 7.1.4 (Computation). Consider PNMs M1, . . . , Mn assumed to be com-

patible with a pipeline P . The computation P [M1, . . . , Mn] associated with the

pipeline and the PNM is itself a PNM, with an information space defined by the

collection of root nodes of P , and output QoI space Qn. The information operator

is implicit, and defined by the graph structure and the composite PNMs. The PNM

associated with P is obtained by composing M1, . . . , Mn in the manner described

by P .

The material in this section has established definitions and conditions under

which PNM can be composed into pipelines. The next section will focus on the

properties of pipelines of Bayesian PNM.
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Figure 7.2: Translation from a pipeline to a dependency graph. (a) An abstraction
of the pipeline P from Example 7.1.2. (b) Dependence graph G(P ) corresponding
to the pipeline P . The nodes are indexed with a topological ordering.

7.1.1 Bayesian Computational Pipelines

We now assume that the PNM M1, . . . , Mn are Bayesian PNM. Supposing that

M1, . . . , Mn are compatible with P , it is natural to ask when the PNM P [M1, . . . , Mn]

also has a Bayesian interpretation. The natural answer, according to Definition 3.1.5,

is that P [M1, . . . , Mn](µ,y) is Bayesian when it outputs an appropriate pushforward

of µ
y. However, since both the QoI operator and information operator correspond-

ing to the pipeline are complex and implicit, this is di�cult to verify. Nevertheless,

maintaining a Bayesian interpretation for P [M1, . . . , Mn] is essential if BPNM are

to be meaningfully composed. Fortunately, it is possible to elicit conditions on

the graph associated with the pipeline that guarantee a Bayesian output when the

composite methods are Bayesian.

Definition 7.1.5 (Dependency Graph). The dependency graph associated with a

pipeline P , denoted D(P ), is the DAG obtained by deleting the method nodes from

P , and for each deleted node connecting each of its parent information nodes to its

child information node.

To provide intuition, the dependency graph for Example 7.1.2 is presented in Fig. 7.2.

The n
0 nodes in the dependency graph do not have a labelling in the present

notation, and so will be associated with a topological ordering subject to the basic

consistency requirements that the I root nodes should be labelled 1, . . . , I, and the

terminal node should be labelled n
0. With the method nodes removed, each node of

a dependency graph can be associated with a random variable Yi, i = 1, . . . , n
0 by a

process that will now be described.

First, let U ⇠ µ. Then, we assign Yi based on whether i is the index of

a root node. If this is the case, set Yi = Aj,k(U), where j, k are the indices of

an information operator corresponding to the information represented by node i.

Otherwise, if i is not a root node, set Yi = Qj(U) for j the index of a QoI operator
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associated with node i. Thus, each the random variables Yi is distributed according

to the pushforward of the prior into the information space corresponding to the

information node i. Note that while each Yi may correspond to multiple Aj,k and

Qj , the fact that the pipeline is assumed to be compatible ensures that the choice

of Aj,k or Qj is arbitrary, and the random variables are uniquely defined.

The dependency graph allows us to analyse the dependency structure be-

tween the di↵erent pieces of information represented by the Yi, and thus to estab-

lish a coherence condition for a prior and a pipeline of composed BPNM. We first

introduce some notation. For a dependency graph D(P ), let ⇡(j) ✓ {1, . . . , j � 1}
denote the parent nodes of node j, and let ⇡

{(j) = {1, . . . , j � 1} \ ⇡(j), i.e. the

antecedent nodes of j in the topological ordering, which are not its parent nodes.

Definition 7.1.6 (Coherence). Consider a pipeline P with dependency graph D(P ),

and compatible BPNM M1, . . . , Mn. Then a distribution µ 2 PX is said to be

coherent for P [M1, . . . , Mn] if, for all j = I + 1, . . . , n
0, we have that

Yj ?? Y
⇡{(j) | Y⇡(j).

Thus, a prior is said to be coherent for a pipeline of BPNM if, for each node

in D(P ), the information represented by that node is independent of all other infor-

mation in the pipeline conditional upon knowledge of the information represented

by its parents. This rules out any possibility that contradictory states of knowl-

edge can be represented in the pipeline. Note that this condition specifically does

not depend upon the implicitly defined information operator and QoI operator of

P [M1, . . . , Mn].

The following result relates coherency of a prior to a Bayesian interpretation

of P [M1, . . . , Mn].

Theorem 7.1.7. Let M1, . . . , Mn be BPNMs compatible with P , and let µ 2 PX be

coherent with P [M1, . . . , Mn]. Then P [M1, . . . , Mn] is a Bayesian PNM for the QoI

Qn under the prior µ.

Proof. To simplify notation, for integer multi-indices ↵ = (↵1, . . . , ↵m) and � =

(�1, . . . , �n), where 1  ↵i, �i  J , let µ
↵

�
be the law of (Y�1 , . . . , Y�n)|(Y↵1 , . . . , Y↵m).

Furthermore, for integers i, j with i < j we will use the notation i : j = (i, i +

1, . . . , j � 1, j). Now, the output of the pipeline is µ
1:I

J
and can be alternatively

expressed as:

µ
1:I

J (dyJ) =

Z

YI+1:J�1

µ
1:I

I+1:J(dyI+1:J)
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where Y↵ = Y↵1 ⇥ · · ·⇥Y↵n and dy↵ = dy↵1 . . . dy↵n . Now, by repeated application

of the conditioning property from Definition 6.1.1 it follows that

Z

YI+1:J�1

µ
1:I

I+1:J(dyI+1:J)

=

Z

YJ�1

· · ·
Z

YI+1

µ
1:I

I+1(dyI+1)µ
1:I+1

I+2
(dyI+2) · · · µ1:J�1

J
(dyJ)

=

Z

YJ�1

· · ·
Z

YI+1

µ
⇡(I+1)

I+1
(dyI+1)µ

⇡(I+2)

I+2
(dyI+2) · · · µ⇡(J)

J
(dyJ)

where the last line is from application of the assumed coherency property. This last

line we recognise as the identical to the computation associated with the pipeline of

computation, described in Definition 7.1.4.

This theorem establishes concrete conditions for a meaningful composition

of BPNM. Note that this does not rule out meaningful composition of non-Bayesian

PNM, but no other common frameworks for PNM have yet been developed. We

now examine the impact of Theorem 7.1.7 on Example 7.1.2.

Example 7.1.2, continued. Consider a generic prior on the function space X ,

represented by the random variable U . Following the ordering in Fig. 7.2b, the

random variables Y1, . . . , Y5 are given by:

Y1 = {U(x0), . . . , U(xm�1)} Y4 =

Z
0.5

0

U(x)dx

Y2 = {U(xm)} Y5 =

Z
1

0.5

U(x)dx

Y3 = {U(xm+1, . . . , U(x2m+1))}.

For µ to be a coherent distribution for the pipeline, the only conditional dependence

relations which must be verified are:

Y4 ?? Y3 | {Y1, Y2}

Y5 ?? Y1 | {Y2, Y3}

i.e.

Z
0.5

0

U(x)dx ?? {U(ti)}2m+1

i=m+1

�� {U(ti)}m

i=0,

Z
1

0.5

U(x)dx ?? {U(ti)}m�1

i=0

�� {U(ti)}2m+1

i=m
.
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Whether this holds depends strongly on µ. If µ is the law of a Wiener process on X
then it is straightforward to verify that the conditional independence conditions are

satisfied, since for a U so distributed it is well known that U(x+) ?? U(x�)|U(x),

whenever x
+

> x and x
�

< x. However it is straightforward to elicit other choices

of µ that are not coherent for the pipeline. An example is a prior on functions

whose first derivative is Wiener distributed. In this case, U(x+) 6?? U(x�)|U(x)

since knowledge of U(x�) conveys information about the derivative U
0(x) that is

significant for the prediction of U(x+). This example thus shows that the addi-

tional coherence condition required to ensure that the output of the pipeline has a

meaningful Bayesian interpretation is nontrivial.

Having established conditions under which a pipeline is Bayesian, we now

turn to an example of a pipeline of PNM used in an industrial application.

7.2 Application to Industrial Process Monitoring

The final numerical results in this thesis concern application of pipelines of BPNM

to the monitoring of pieces of industrial equipment called hydrocyclones.

Hydrocyclones are used in manufacturing and materials processing either

to separate particulates in suspension, or to separate liquids of di↵erent densities

[Bradley, 2013]. This is accomplished by injecting fluids into a large tank at high

pressure, creating a vortex. Centrifugal force causes denser materials to be drawn

to the outside of the tank, while lighter materials remain in the centre. When su�-

ciently separated, the two materials can be extracted from the tank and processed.

The contents of the hydrocyclone must be monitored to enable control of the

input flow rate and ensure su�cient separation of the contents. This is a challenge

since the tank walls are usually opaque, and internal sensors could disrupt the

induced vortex. It has therefore been proposed to use EIT as an unintrusive means

to monitor the tank’s contents [Gutierrez et al., 2000]. This translates the problem

considered in Section 4.6.2 into one with a temporal component, yielding a pipeline

of computation.

In this section the simplified PEM will be used to solve the tomography

problem. Practical experimental data was used, as provided in West et al. [2005].

To provide a brief description of the experimental setup, eight electrodes were placed

on the surface of a cylindrical perspex tank which was filled with water. A mixing

impeller was used to create a vortex in the tank and then removed, at which point

data collection began. Data is denoted y⌧ , with ⌧ 2 {⌧1, . . . , ⌧N} the collection

times. Data was collected at regular intervals, however since information on the
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precise timings is unavailable it was assumed that ⌧i = i for i = 1, . . . , N . After a

few seconds, concentrated potassium chloride solution was injected into the water,

and it is the behaviour of this solution rotating within the tank over time that we

seek to recover using EIT.

The stimulation pattern used was constructed by first choosing a reference

electrode, for simplicity assumed to be the first electrode i = 1. A current was

then passed between this electrode and each other electrode in turn, resulting in 7

stimulation patterns given by

Cij =

8
><

>:

A j = 1

�A i = j � 1

0 otherwise

where A is a fixed amplitude. Measurements obtained were the voltage di↵erential

over the two stimulated electrodes, so that

Mij =

8
><

>:

1 j = 1

�1 i = j � 1

0 otherwise

.

For modelling purposes, the tank was assumed to be a unit circle and the electrodes

were assumed to be equally spaced points around its circumference.

Unlike in previous sections, the conductivity field is now taken to be time

dependent, and the goal is recovery of the function (x, ⌧) for x 2 D and ⌧ 2 [0, T ).

The log-conductivity field was endowed with a separable centered Gaussian prior:

✓(x, ⌧) = log (x, ⌧)

✓(x, ⌧) ⇠ GP(0, k(x, ⌧ ;x0
, ⌧

0))

k(x, ⌧ ;x0
, ⌧

0) = �k⌧ (⌧, ⌧
0)kx(x,x0).

The parameter � was fixed to � = 10�3 based on the level of variation in the

data. The composite covariance functions were set to k⌧ = min(⌧, ⌧ 0), resulting

in a Brownian motion over time, while kx was set to be squared-exponential as in

Eq. (2.6), with unit amplitude and length scale ` = 0.3.

To sample from the posterior over  SMC was used, as described in Ap-

pendix A.3.2. This was motivated by the fact that the conditioning problem can be

viewed as a filtering problem over ⌧ . In brief, let µ0 denote the prior. Each piece of
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. . . ⌧ . . .

dµ⌧�1

dµ0

dµ⌧
dµ0

y⌧

1

2

Figure 7.3: Pipeline representation of the computation in Section 7.2. The method
node (black) represents the use of the PMM from Chapter 5 as the forward solver
for evaluating the likelihood in a sequential Monte-Carlo procedure.

information yt yields a posterior µ⌧ , defined through

dµ⌧

dµ⌧�1

(✓) = exp(��(✓;y⌧ )).

Here recall that evaluation of � requires solution of the PEM, as described in

Eq. (2.12). To obtain this solution the PMM from Chapter 5 was applied, and

the marginalisation procedure described in Section 5.4.2 was followed to incorpo-

rate the UQ for discretisation error from the forward solution into inferences. A

pipeline of computation arises from the fact that this must be performed for each

value of ⌧ . The formal representation of the pipeline in the notation of Section 7.1

is depicted in Fig. 7.3. The Brownian motion form of k⌧ ensures that the output of

the pipeline is Bayesian for estimation of µT .

The SMC scheme was applied using an ensemble of P = 100 particles, based

on a forward solver with mA+mB = 119 design points. Posterior means over (x, ⌧)

for ⌧ = 1, . . . , 8 are reported in Fig. 7.4. The high conductivity region containing

the solution can clearly be seen rotating inside the domain through these frames.

The posterior variance is examined in Fig. 7.5. The figure depicts the inte-

grated pointwise standard deviation over the domain for two distinct approaches to

the problem: that just described, and one in which a symmetric collocation solver

with the same discretisation resolution is used as a forward solver for the PDE in-

volved in calculating �. Note that the left panel of this figure shows some structural

periodicity, perhaps owing to certain values of ⌧ happening to result in a conduc-

tivity field that is easier to infer. Nevertheless, in the figure on the right a clear

upward trend in the variance can be seen, so that clearly discretisation uncertainty

has been captured and propagated through the pipeline.
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Figure 7.4: Posterior mean conductivity fields recovered in the hydrocyclone exper-
iment, for ⌧ = 1, . . . , 8.
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R
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�(x; ⌧)dx for the times ⌧ =
1, . . . , 8. Both the probabilistic (“PN”) and non-probabilistic (“Non-PN”) ap-
proaches are depicted, and these are described in more detail in the text. Right:
The di↵erence between these two quantities.
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7.3 Discussion

In this chapter we have established conditions under which the composition of BP-

NMs yields an output with a strictly Bayesian interpretation, and studied applica-

tion to the problem of monitoring hydrocyclones. While the result gives a condition

for the pipeline that can be straightforwardly evaluated, the restriction imposed on

a prior for the output of a pipeline to be Bayesian is surprisingly strong. This raises

a natural question of whether the demand for a rigorously Bayesian output can be

relaxed, and what the impact of such a relaxation might be.

The final chapter of this thesis will summarise the contributions, and discuss

the future of this nascent area of research.
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Chapter 8

Conclusion and Outlook

In this final chapter we will summarize the contributions of the thesis in Section 8.1,

and discuss the outlook for PNM, and BPNM, in Section 8.2.

8.1 Contributions

The contributions of this thesis can be separated into two categories.

In Part I we provided necessary background and introduced the central defini-

tion of the thesis: that of a Bayesian PNM. In Part II, two novel Bayesian PNM were

introduced. Chapter 4 introduced BayesCG, a PNM for solving finite-dimensional

linear systems of equations. BayesCG is an iterative method in the sense of Saad

[2003] that consists of updating a Gaussian belief over the solution to the system

based on information obtained through a series of search directions. While the de-

pendence of the search directions on the solution x† means that the method is not

strictly Bayesian, this also results in a rate of convergence and a level of computa-

tional complexity that is competitive with classical iterative methods. The choice

of prior was discussed in detail, and a prior inspired by preconditioners for the sys-

tem of interest was presented and shown to be reasonably practical. However, in

assessing the numerical performance of BayesCG it was shown that the uncertainty

quantification provided tended to exhibit a tradeo↵ between a rapidly converging

mean and well-calibrated uncertainty quantification. This was due to the depen-

dence of the search directions on the true solution to the linear system, x†, which

induces nonlinearity in the information operator. Correct uncertainty quantification

and a rapid rate of convergence could perhaps be achieved by applying the numerical

disintegration algorithm discussed in Chapter 6 to estimate the posterior, though

this would come at the expense of e�cient computation. Nevertheless, BayesCG was
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tested on the EIT problem described in Section 2.4.2, and the results indicated that

BayesCG might be useful in relaxing the computational e↵ort required in solving

this problem.

Chapter 5 continued the analysis of conjugate methods, introducing the

PMM for the solution of PDEs that is defined on the infinite-dimensional solu-

tion space. The choice of information in this problem was more restricted, in that

the di�culty of computing inner products led to a restriction to information based

on evaluation functionals. On the other hand, this removed the issues with posterior

UQ experienced in Chapter 4, as the search directions were then independent of u
†

and so the PMM is truly Bayesian by the definition in Chapter 3. A detailed conver-

gence analysis was again presented and the choice of prior was examined in detail.

The PMM was once again applied to the EIT example, and here the application

was more straightforward owing to there being no need for UQ calibration.

The contributions in Part III were more abstract and theoretical. In Chap-

ter 6 we presented existence and uniqueness results, given by the disintegration the-

orem, for BPNM posteriors under mild conditions on the information operator and

prior. These results provided no means by which to access the required posterior,

however, and so we also introduced a novel numerical method, numerical disinte-

gration, that can be used to approximately sample from the posterior of BPNM in

this general setting. While methods based on ND are not strictly Bayesian PNM

as they do not exactly sample from the required element of the disintegration, such

methods can be thought of being approximately Bayesian, in the sense that they

provide samples from a distribution that was proven to be close to the Bayesian

posterior in a particular metric, under an assumption of Lipschitz continuity of the

disintegration. We explored application of ND to a number of challenging but less

applied numerical problems, and while the algorithm typically performs well it is

associated with an extremely high numerical cost.

The last chapter, Chapter 7, studied the composition of BPNM. This is an

important setting as modern inference problems frequently involve the composi-

tion of multiple numerical methods. The rigorous Bayesian interpretation of the

posteriors from BPNM introduces some additional technical burden to ensure that

composed BPNM carry this same interpretation. We introduced a mathematical

framework in which composed BPNM can be represented with a directed acyclic

graph, and presented conditions that guarantee that the output of the pipeline is

Bayesian and can be easily verified from this graph. We then presented an applica-

tion of composed BPNM for an applied inference problem arising from monitoring

of hydrocyclones.
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8.2 Outlook

The field of probabilistic numerics is still in its infancy, and while evidence of the

usefulness of these methods has been presented in this thesis, there are still a great

many challenges that need to be faced before widespread adoption of BPNM would

be possible. Several of these challenges will be described here.

Computational Cost The greatest challenge for PNM, and especially for Bayesian

PNM, remains their computational cost. Since PNM provide additional output over

classical numerical methods, it is natural that their cost should be higher. However,

if PNM are ever to be used in place of standard numerical methods in challenging

contemporary settings in which discretisation error is a genuine concern, the in-

crease in cost must be marginal. The only setting in this thesis in which a marginal

cost increase was realised was in BayesCG, in which the cost was only a constant

factor higher than in CG, and a comparable convergence speed was achieved when

the prior was selected carefully.

For the PMM inversion of a dense Gramian matrix is required, and unless

specialised inversion techniques are exploited this incurs a cost of O(n3) where n

is the amount of information obtained. However the inversion of similar matrices

is a subject of active research (e.g. Snelson and Ghahramani [2006]; Schäfer et al.

[2017]), and such techniques might make inference more practical. Another avenue

that should be explored is exploitation of sparsity by using compactly supported

covariance functions.

Outside of the conjugate setting, the cost of the numerical disintegration

algorithm described in Chapter 6 is so high that this algorithm could never be con-

sidered practical. This would be even further compounded when BPNM must be

composed in piplines as in Chapter 7. The ND algorithm should be seen only as

a proof of concept demonstration that approximate sampling from the posterior

distribution of BPNM can be accomplished, and we defer the development of spe-

cialised algorithms for the nonconjugate setting for future work. What direction

those developments should take is an interesting question. One attractive approach

involves approximating the information operator; one might imagine replacing the

nonlinear operator A with a linearised operator Ã. If Ã is “close” to A in some

sense, one might expect that the posterior based on Ã would be close to that based

on A, in a similar way to how the relaxed posterior from ND is close to the element

of the disintegration it approximates. This raises further questions about the well-

posedness of BPNM, as in order to ensure that this is well-defined, smoothness of

the disintegration in its operator is required. Thus, conditions for the well-posedness
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of BPNM is an important open theoretical question that needs attention to enable

further development in the non-conjugate setting.

Prior Elicitation Another important challenge is the practical elicitation of pri-

ors for BPNMs. While this was addressed in some detail in Chapters 4 and 5, the

known properties of the solution that could be encoded while still allowing for ef-

ficient inferences was very limited. A simple example is positivity; in Section 2.4.2

it is known that the solution u(x) to EIT is everywhere positive, yet encoding this

in a Gaussian prior is not possible. There thus remains a substantial gap between

analytical knowledge of problems possessed by numerical analysts and what can be

encoded e�ciently into priors for BPNMs. Dismissing these concerns using subjec-

tivist arguments places a barrier between those developing PNMs and the numerical

analysts who must be convinced in order to promote widespread adoption, and so

it is encumbant on us to either provide practical solutions, or convincing arguments

for why such issues are not of concern.

The break from conjugacy and move towards approximate methods men-

tioned above would address this to some degree, though one motivation for the lin-

earisation of the information operator discussed above is so that conjugacy inference

with a Gaussian prior can still be employed. However, other e�cient approxima-

tion techniques for the posterior such as discussed in Schillings and Schwab [2016]

could be employed. Alternatively, to some degree a restriction such as positivity

could be encoded into the information operator rather than in the prior, so that

linearisation techniques could still be employed. A further possibility would be to

employ variational techniques to find Gaussian priors that were close to the desired

prior, and perform approximate Bayesian inference with this Gaussian prior again

in a conjugate framework.

8.3 Closing Remarks

This thesis has defined and developed the theoretical basis of Bayesian probabilistic

numerical methods, and developed methodology for two specific problem classes.

Though there are still challenges to be addressed, BPNMs show great promise. It

is my sincere hope that with more development these methods can become seri-

ous, practical numerical methods, and begin to be applied to real-world inference

problems to begin quantifying uncertainty associated with discretisation error. In

future, I believe that we will see a shift towards more approximate techniques with

theoretical guarantees. This will allow the benefits of BPNM to be obtained, at
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least in an approximate sense, while also allowing for a reduction in the numerical

cost of these algorithms.
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Henri Poincaré. Calcul des Probabilités. Gauthier-Villars, 1912.

T. Rabczuk and T. Belytschko. A three-dimensional large deformation meshfree

method for arbitrary evolving cracks. Comput. Method. Appl. M., 196(29-30):

2777–2799, may 2007. doi:10.1016/j.cma.2006.06.020.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Inferring solutions

of di↵erential equations using noisy multi-fidelity data. J. Comp. Phys., 335:

736–746, apr 2017. doi:10.1016/j.jcp.2017.01.060.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Numerical gaussian

processes for time-dependent and nonlinear partial di↵erential equations. SIAM

J. Sci. Comput., 40(1):A172–A198, jan 2018. doi:10.1137/17m1120762.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for

Machine Learning. MIT Press, Cambridge, MA, 2006.

Anne Reinarz, Tim Dodwell, Tim Fletcher, Linus Seelinger, Richard Butler, and

Robert Scheichl. Dune-composites – a new framework for high-performance fi-

nite element modelling of laminates. Compos. Struct., 184:269–278, Jan 2018.

doi:10.1016/j.compstruct.2017.09.104.

155

http://papers.nips.cc/paper/4657-active-learning-of-model-evidence-using-bayesian-quadrature
http://papers.nips.cc/paper/4657-active-learning-of-model-evidence-using-bayesian-quadrature
http://dx.doi.org/10.1137/140974596
http://dx.doi.org/10.1137/15M1013894
http://dx.doi.org/10.1137/130938633
http://dx.doi.org/10.1137/110831404
http://dx.doi.org/10.1016/j.cma.2006.06.020
http://dx.doi.org/10.1016/j.jcp.2017.01.060
http://dx.doi.org/10.1137/17m1120762
http://dx.doi.org/10.1016/j.compstruct.2017.09.104


Klaus Ritter. Average-Case Analysis of Numerical Problems, volume 1733 of Lecture

Notes in Mathematics. Springer-Verlag, Berlin, 2000. doi:10.1007/BFb0103934.

Gareth O. Roberts and Je↵rey S. Rosenthal. General state space

markov chains and MCMC algorithms. Probab. Surv., 1(0):20–71, 2004.

doi:10.1214/154957804100000024.

Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of langevin

distributions and their discrete approximations. Bernoulli, 2(4):341, December

1996. doi:10.2307/3318418.

Christopher Roy. Review of discretization error estimators in scientific computing.

In Proceedings of AIAA Aerospace Sciences Meeting Including the New Horizons

Forum and Aerospace Exposition, 2010.

Yousef Saad. ILUT: A dual threshold incomplete LU factorization. Numer. Linear

Algebr., 1(4):387–402, July 1994.

Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial

and Applied Mathematics, Philadelphia, PA, second edition, 2003.
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Appendix A

Additional Background

A.1 Analysis

We will begin by introducing a number of concepts from analysis and functional

analysis which will be useful throughout the thesis. All definitions are set in the

context of an underlying vector space V with R as the underlying scalar field, though

some definitions can be made more general.

Definition A.1.1 (Metric, Pseudometric). A metric on V is a function d : V⇥V !
R+ with the properties that, for any v, v

0
, v

00 2 V:

1. d(v, v
0) � 0.

2. d(v, v
0) = 0 () v = v

0

3. d(v, v
0) = d(v0, v)

4. d(v, v
00)  d(v, v

0) + d(v0, v00) (triangle inequality)

The pair (V, d) is known as a metric space. A function d : V ⇥ V ! R+ which

satisfies all above properties except 2 is known as a pseudometric.

Definition A.1.2 (Norm). A norm is a function k ·kV : V ! R+ which has the

properties

1. kvkV � 0 for all v 2 V such that v 6= 0.

2. k↵vkV = ↵kvkV for each v 2 V, ↵ 2 R

3. kv + v
0kV  kvkV + kv0kV for each v, v

0 2 V (triangle inequality)

The pair (V, k ·kV) is known as a normed vector space.
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Note that in a normed vector space, the norm also induces a metric d(v, v
0) =

kv � v
0kV .

Definition A.1.3 (Banach Space). A Banach space (B, k ·kB) is a normed vec-

tor space which is complete with respect to its norm, meaning that each Cauchy

sequence of points in B converges to a point in B.

Definition A.1.4 (Inner Product). An inner product on a vector space V is a

function h · , · iV : V ⇥ V ! R with the properties, for each v, v
0
, v

00 2 V:

1. hv, v
0iV = hv0, viV

2. h↵v, v
0iV = ↵hv, v

0iV

3. hv + v, v
00iV = hv, v

00iV + hv0, v00iV

4. hv, vi � 0 with hv, vi = 0 () v = 0.

The inner product also induces a norm through kvkV =
p
hv, viV .

Definition A.1.5 (Hilbert Space). A Hilbert space (H, h · , · iH) is a vector space

equipped with an inner product, which is complete with respect to the norm induced

by its inner product.

Note that Definition A.1.5 implies that any Hilbert space is also a Banach

space.

Definition A.1.6 (Embedding). Let X , Y be vector spaces. We say that X is

embedded in Y if X ⇢ Y and the map i : X ! Y given by i(x) = x is continuous.

Equivalently, since i is linear and bounded linear operators are continuous, X is

embedded in Y if there is a constant C > 0 such that

kxkY  CkxkX

for all x 2 X .

Definition A.1.7 (Norm-Equivalence). We say that two spaces X and Y are norm-

equivalent if each is continuously embedded in the other.

A.1.1 Some Useful Spaces

In this section some examples of the spaces introduced in the previous section will

be presented. The presented examples are of particular relevance for this thesis.
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Definition A.1.8 (`p space). Let R1 denote the set of all sequences indexed by N
with elements in R; that is, s 2 R1 is a sequence (s1, s2, . . . ) with si 2 R for each

i 2 N.

For each p 2 R, p � 1, define the p-norm on R1 by:

kskp =

 
1X

i=1

|si|p
! 1

p

and for p =1, define the 1-norm or sup-norm by

ksk1 = sup
i2N

|si|

The `p space is then defined, for p 2 R [ {1}, p � 1, by

`
p = {s 2 R1 : kskp <1}.

For each p � 1, `
p is a Banach space. When p = 2, `

p is a Hilbert space with inner

product:

hs, s0i2 =
1X

i=1

sis
0

i

A.2 Probability

Definition A.2.1 (Measureable Space). For a set X and a �-algebra BX , the pair

(X , BX ) is called a measurable space.

Definition A.2.2 (Measure, Distribution). A measure on a measurable space (X , BX )

is a function µ : BX ! R+ with the properties:

1. µ(X) � 0 for all X 2 BX

2. µ(;) = 0

3. For each collection {Xi}i2N of pairwise disjoint sets Xi 2 BX , we have

µ

 
1[

i=1

Xi

!
=

1X

i=1

µ(Xi).

A measure with the additional property that µ(X ) = 1 is known as a probability

measure or distribution.
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Definition A.2.3 (Pushforward Measure). Let (X , BX ) and (Y, BY) be measurable

spaces and let f : X ! Y be a measurable function. Let µ be a measure on X .

Then the pushforward of the measure µ through f , denoted f#µ, is a measure on Y
defined by

[f#µ](A) = µ(f�1(A))

for each A 2 BY , where f
�1(A) is to be understood as the preimage of A; f

�1(A) =

{f
�1(a) : a 2 A}.

Definition A.2.4 (Lp(X , µ) space). For a measurable space (X , BX ) and measure

µ on (X , BX ), consider the set of all measurable functions f : X ! R. For each

p 2 [1,1), p � 1 define the (p, µ)-norm on this set by

kfkp,µ =

✓Z

X

|f(x)|pµ(dx)

◆ 1
p

The L
p(X , µ)-space is the set of all measurable functions with finite (p, µ)-norm.

Again, for all p 2 R[ {1}, p � 1, L
p(X , µ) is a Banach space. When p = 2,

L
p is a Hilbert space with inner product:

hf, f
0i2,µ =

Z

X

f(x)f 0(x)µ(dx)

When X ✓ Rd for some d and µ is the Lebesgue measure we will simply call the

(p, µ)-norm the p-norm, and the set L
p(X , µ) will be called L

p(X ). When p = 1,

the norm k ·k1,µ is given by

kfk1,µ = inf({M 2 R+ : µ({x 2 X : |f(x)| �M}) = 0})

and the space L
1(X , µ) is defined analogously.

Definition A.2.5 (Absolute Continuity, Singularity of Measures). Consider two

measures µ, ⌫ on the measureable space (X , BX ). We say that µ is absolutely con-

tinuous with respect to ⌫ if, for each A 2 BX it holds that

⌫(A) = 0 =) µ(A) = 0.

In this case we write µ⌧ ⌫. If µ 6⌧ ⌫ we say that µ is singular with respect to ⌫.

If µ⌧ ⌫ and ⌫ ⌧ µ then we say µ and ⌫ are equivalent. Similarly if µ 6⌧ ⌫

and ⌫ 6⌧ µ we say µ and ⌫ are mutually singular.

Definition A.2.6 (Radon–Nikodym Derivative [Nikodym, 1930]). Suppose µ, ⌫ are
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measures and µ ⌧ ⌫. Then there exists a measurable function dµ

d⌫
: X ! R+ such

that, for each A 2 BX :

µ(A) =

Z

A

dµ

d⌫
(u) ⌫(du).

The function dµ

d⌫
is referred to as the Radon–Nikodym derivative of µ with-respect-to

⌫.

A.3 Monte–Carlo Sampling

In this section we summarise and introduce notation for the Monte–Carlo procedures

used in the main text. Basic knowledge of MCMC procedures is assumed in this

section; only the more esoteric procedures will be described in detail.

A.3.1 Metropolis-Adjusted Langevin Algorithm

The Metropolis-adjusted Langevin algorithm (MALA, Roberts and Tweedie [1996])

is an MCMC procedure with proposals that are derived from discretisation of a

stochastic di↵erential equation that has the target distribution as its invariant mea-

sure. Let µ be the target measure and assume that it is supported on ⇥ ✓ Rd.

Further assume that µ admits a density ⇡ with respect to the Lebesgue measure.

The assumption of a Lebesgue density can be relaxed; see Beskos et al. [2017].

Proposals are then given by

✓̂i+1 = ✓i + �r log ⇡(✓i) +
p

2�
1
2 ⇠k.

Here � 2 Rd⇥d is a preconditioner matrix that must be tuned to achieve reasonable

acceptance probability, while ⇠k ⇠ N (0, I) IID. Since proposals are now asymmetric,

the proposed move is accepted with probability ↵(✓k, ✓̂k+1), where

↵(✓, ✓0) = min

✓
1,

⇡(✓0)q(✓, ✓0)

⇡(✓)q(✓0, ✓)

◆

q(✓, ✓0) = exp

✓
�1

4

��✓ � ✓
0 � �r log ⇡(✓0)

��2

��1

◆
.

The introduction of gradient information into the proposals yields an MCMC pro-

cedure that tends to converge more rapidly; this was found to be useful in many of

the challenging sampling problems presented in this thesis. MALA is presented as

an algorithm in Algorithm A.4.
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Algorithm A.4 MALA algorithm for sampling from measure µ with density ⇡.
Here ✓0 is an arbitrary initial state (assumed to be in the support of µ), P is the
number of iterations to perform and � is a preconditioner matrix.

1: procedure MALA(✓0, P, �)
2: for i = 1, . . . , P do
3: ✓̂i  ✓i + �r log ⇡(✓i) +

p
2�

1
2 ⇠k . ⇠k ⇠ N (0, 1)

4: if U(0, 1) < ↵(✓i�1, ✓̂i) then
5: ✓i  ✓̂i

6: else
7: ✓i  ✓i�1

8: end if
9: end for

10: end procedure
11: return ✓1, . . . , ✓P

A.3.2 Sequential Monte–Carlo

Let {µi}, i = 1, . . . , N denote a set of distributions on a single measureable space

⇥ equipped with �-algebra B⇥. Each distribution is assumed to be absolutely con-

tinuous with respect to a common reference measure µ0 2 P⇥. Suppose that µN is

some target distribution, and that the intermediate µi, i = 1, . . . , N � 1 are related

in some way, so that µi is “close” to µi+1 in an appropriate (but unspecified) sense.

Let {Ki}, i = 1, . . . , N be a set of transition kernels Ki : ⇥ ⇥ B⇥ ! [0, 1] be such

that Ki( · , B) is measureable for each B 2 B✓ and Ki(✓, · ) is a probability distri-

bution on ⇥ for each ✓ 2 ⇥. Further assume that each Ki has µi as its invariant

distribution. For intuition, in the context of the previous section a single iteration

of any MCMC procedure is a valid transition kernel, as is any number of iterations

of such a procedure. For each ✓ 2 ⇥, K(✓, · ) is a distribution over possible new

locations when the transition kernel is applied, starting from ✓.

In Sequential Monte–Carlo [Del Moral et al., 2006], the distribution µN is

approximated by an ensemble of P particles that are evolved over the course of N

iterations. The particles will be denoted {✓
i

j
}, i = 1, . . . , N and j = 1, . . . , P . Each

is associated with an importance weight w
i

j
that is updated over the course of the

procedure. The algorithm is initialised with an ensemble of particles ✓
0

1
, . . . , ✓

0

P
and

uniform weights w
i

j
= P

�1. A total of N iterations are performed, one for each

distribution, and at each i = 1, . . . , N the following steps are performed:

1. The particles are evolved by sampling ✓
i

j
⇠ Ki(✓

i�1

j
, · ).
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2. Each weight is updated according to:

w
i

j =
dµi

dµi�1

(✓i�1

j
)wi�1

j
.

The new weights are then normalised so that
P

P

j=1
w

i

j
= 1.

3. The particles are re-sampled from the discrete distribution over {✓
i

1
, . . . , ✓

i

P
}

defined by the weights {w
i

1
, . . . , w

i

P
}.

Commonly the re-sampling step is performed only when some measure of the sample

quality decreases below a threshold, but this detail is not presented here. SMC is

presented as an algorithm in Algorithm A.5.

Algorithm A.5 Sequential Monte Carlo. Here ✓
0 = {✓

0

1
, . . . , ✓

0

P
} is the initial state,

and K = {K1, . . . , KN} is the set of transition kernels.

1: procedure SMC(✓0
, K)

2: w
0

j
 P

�1 for j = 1, . . . , P

3: for i = 1, . . . , M do
4: Sample ✓̂

i

j
⇠ Ki(✓

i�1

j
, · ) for j = 1, . . . , P

5: ŵ
i

j
 dµi

dµi�1
(✓i�1

j
)wi�1

j
for j = 1, . . . , P

6: w
i

j
 ŵ

i

j
(
P

P

j=1
w

i

j
)�1 for j = 1, . . . , P

7: ✓
i

j
⇠ Discrete({✓̂

i

j
}P

i=1
; {w

i

j
}P

i=1
), for j = 1, . . . , P .

8: end for
9: end procedure

A.3.3 Parallel Tempering

As in the previous section, suppose that µi are distributions and let Ki denote

a set of appropriate transition kernels. The parallel tempering algorithm [Geyer,

1991] runs N Markov chains in parallel by alternating between application of Ki

and proposing “swaps” between the states of adjacent chains. To be specific, at

iteration j let k be selected uniformly at random from {1, . . . , N � 1}, and let ✓
i

denote the state of chain i. A swap is proposed between states ✓
i and ✓

i+1. To

maintain the correct invariant distribution of the ensemble of Markov chains, this

swap is accepted with probability

↵(✓k
, ✓

k+1) =
⇡k(✓k+1)⇡k+1(✓k)

⇡k(✓k)⇡k+1(✓k+1)
(A.1)

where ⇡k denotes the density of the target distribution µk with respect to some

reference measure that the µi are mutually absolutely continuous with-respect-to,
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for i = 1, . . . , N .

The parallel tempering algorithm is described in Algorithm A.6.

Algorithm A.6 Parallel Tempering. Here ✓0 = {✓
1

0
, . . . , ✓

N

0
} is the initial state,

K = {K1, . . . , KM} is the set of transition kernels and M is the number of iterations
to perform.

1: procedure PT(✓0, K, P )
2: for j = 1, . . . , P do
3: Sample ✓̂

i

j
⇠ Ki(✓i

j�1
, · ) for i = 1, . . . , N

4: Sample k ⇠ Uniform(0, N � 1)
5: if U(0, 1) < ↵(✓k

j
, ✓

k+1

j
) then

6: Set ✓
k

j
= ✓̂

k+1

j
and ✓

k+1

j
= ✓̂

k

j

7: else
8: Set ✓

k

j
= ✓̂

k

k
and ✓

k+1

j
= ✓̂

k+1

j

9: end if
10: For i 6= k, k + 1, set ✓

i

j
= ✓̂

i

j

11: end for
12: return {✓

N

1
, . . . , ✓

N

P
}

13: end procedure

A.4 Chebyshev Polynomials

In this section, Chebyshev polynomials will be introduced. The exposition follows

Sullivan [2015, Chapter 8]. We focus on Chebyshev polynomials of the first kind, as

these are the polynomials used throughout the thesis.

The Chebyshev polynomials are a set of polynomials defined on [�1, 1], that

are uniformly bounded in this interval. Thus, Tn : [�1, 1]! [�1, 1] is a polynomial

of degree n. The polynomials satisfy a three-term recurrence relation:

T0(x) := 1

T1(x) := x

Tn+1(x) := 2xTn(x)� Tn�1(x).

Constructed thus, the polynomials have the following orthogonality property with-

respect-to the measure µ on [�1, 1] with density p(x) = (1� x
2)�

1
2 :

hTn, Tmi2,µ =

(
⇡

2
n = m = 0

�nm⇡ otherwise
.

From this it is straightforward to instead make the Chebyshev polynomials orthonor-
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mal with respect to h · , · i2,µ. The polynomials also have a closed form, given in

Mason and Handscomb [2002, Section 1.4.2]:

Tn(x) =
1

2

h⇣
x +

p
x2 � 1

⌘
m

+
⇣
x�

p
x2 � 1

⌘
m
i
. (A.2)
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Appendix B

Dichotomy of Bayesian and

Non-Bayesian PNM

Table B.1 originally appeared in Cockayne et al. [2019a], and presents a dichotomy

of PNM based on Definition 3.1.5. For a more comprehensive and always up-to-date

list, please see http://probnum.org/
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Table B.1: Dichotomy of PNM.

Method QoI Q(x) Information A(x) Non- (or Approximate)

BPNM

BPNM

Integrator
R

x(t)⌫(dt) {x(ti)}n
i=1 Osborne et al. [2012b,a];

Gunter et al. [2014]

Bayesian Quadrature [Larkin,

1974; Diaconis, 1988; O’Hagan,

1991]R
f(t)x(dt) {ti}n

i=1 s.t. ti ⇠ x Kong et al. [2003]; Tan [2004];

Kong et al. [2007]R
x1(t)x2(dt) {(ti, x1(ti))}n

i=1 s.t. ti ⇠ x2 Oates et al. [2017]

{
R

xi(t)⌫(dt)}n
i=1 {xi(tj)}n

i=1, j = 1, . . . , m Xi et al. [2018]

Optimiser arg min x(t) {x(ti)}n
i=1 Bayesian Optimisation [Mockus,

1989]

{rx(ti)}n
i=1 Hennig and Kiefel [2013]

{(x(ti), rx(ti)}n
i=1 Probabilistic Line Search [Mah-

sereci and Hennig, 2015]

{I[tmin < ti]}n
i=1 Probabilistic Bisection Algorithm

[Horstein, 1963]

{I[tmin < ti] + error}n
i=1 Waeber et al. [2013]

Linear Solver x
�1

b {xti}n
i=1 Probabilistic Linear Solvers [Hen-

nig, 2015; Bartels and Hennig,

2016]

x {s
>
i x}n

i=1 BayesCG [Cockayne et al., 2019b]

ODE Solver x {rx(ti)}n
i=1 [Skilling, 1992]
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Method QoI Q(x) Information A(x) Non- (or Approximate)

BPNM

BPNM

Filtering Methods for

IVPs [Schober et al., 2014;

Chkrebtii et al., 2016; Ker-

sting and Hennig, 2016;

Teymur et al., 2016; Schober

et al., 2018]

Finite Di↵erence Methods

[John and Wu, 2017]

rx + rounding error Hull and Swenson [1966];

Mosbach and Turner [2009]

{rx(Hi)}n
i=1, Hi random Abdulle and Garegnani

[2018]

rs, s obtained by Lie trans-

formation of x

Wang et al. [2018]

x(tend) {rx(ti)}n
i=1 Stochastic Euler [Krebs,

2017]

PDE Solver x {Dx(ti)}n
i=1 Chkrebtii et al. [2016]; Raissi

et al. [2018]

Probabilistic Meshless Methods

[Owhadi, 2015, 2017; Cockayne

et al., 2016; Raissi et al., 2017]

Dx + discretisation error Conrad et al. [2017]

Rt(x) Rt0(x) Leike and Enßlin [2018]
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Appendix C

Proofs from Chapter 4

C.1 Proof of Proposition 4.3.2

The proof relies on the following lemma:

Lemma C.1.1. Assume that the search directions {si} are A⌃0A
>-orthogonal.

Then it holds that at iteration m, the residual rm = b�Axm satisfies r>msi = 0 for

i = 1, . . . , m.

Proof. From the definitions of rm and xm, we have that

s>i rm = s>i b� s>i Axm

= s>i b� s>i Ax0 � s>i A⌃0A
>
Sm⇤�1

m S
>

mr0.

Now, note that s>
i
A⌃0A

>
Sm⇤�1

m = e>
i
, the vector with [ei]j = �ij , since s>

i
A⌃0A

>
Sm

is the i
th row of ⇤m whenever i  m. Thus, s>

i
rm = s>

i
r0 � e>

i
S
>
mr0 = 0, which

completes the proof.

Proof of Proposition 4.3.2. Let t̃1 := r0, and for each m > 1, define t̃m as

t̃m := rm�1 �
m�1X

i=1

⇣
r>m�1Qti

⌘
ti (C.1)

where Q = A⌃0A
>. Let tm = t̃m/kt̃mkQ.

The proof is by induction. It will be shown that for each m the set of search

directions {ti}m

i=1
is Q-orthonormal, and further that each ti = si, as defined in the

proposition statement.

For m = 1 the set {t1} is trivially Q-orthonormal and t1 = s1. For m > 1, we

make the inductive hypothesis that {ti}m�1

i=1
is Q-orthonormal and such that ti = si,
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for i = 1, . . . , m� 1. Then, for each j < m

t>j Qt̃m = t>j Qrm�1 �
m�1X

i=1

r>m�1Qti · t>j Qti| {z }
=�ij

(by the inductive hypothesis)

= t>j Qrm�1 � t>j Qrm�1 = 0 (C.2)

and therefore the set {ti}m

i=1
is Q-orthonormal.

As a result, the assumptions of Proposition 4.3.1 are satisfied, allowing us to

apply this proposition to find

rj = b�Axj

= b�Axj�1 �Qtj(t
>

j rj�1)

=) Qtj =
rj�1 � rj

t>
j
rj�1

=) r>m�1Qtj =
r>

m�1
rj�1 � r>

m�1
rj

t>
j
rj�1

. (C.3)

Since the set {ti}m

i=1
is Q-orthonormal, we have from Lemma C.1.1 that for each

j  m, r>mtj = 0. Thus, by taking m = j in Eq. (C.1) and then left-multiplying by

r>m it holds that for each j  m:

0 = r>mt̃j := r>mrj�1 �
m�1X

i=1

r>m�1Qti · r>mti|{z}
=0

. (C.4)

from which we conclude that r>mrj = 0 whenever j < m. Applying this result to

Eq. (C.3), we find that:

rm�1Qtj = 0 8 j < m.

Returning to Eq. (C.1), we have:

t̃m = rm�1 �
m�1X

i=1

⇣
r>m�1Qti

⌘
ti

= rm�1 �
⇣
r>m�1Qtm�1

⌘
tm�1 �

m�2X

i=1

⇣
r>m�1Qti

⌘

| {z }
=0

ti

= rm�1 � (r>m�1Qtm�1)tm�1

which is equal to s̃m for each m > 1, completing the proof.
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C.2 Proof of Proposition 4.3.3

Throughout this section, let Q = A⌃0A
> and let K̄m = Km(Q, r0). The proof relies

on the following lemma:

Lemma C.2.1. Suppose that span({s1, . . . , sm}) = K̄m and {s1, . . . , sm} is a Q-

orthonormal set. Then rm = b�Axm is such that rm 2 K̄m+1.

Proof. Proof is by induction. Clearly r0 2 K̄1. Assume that ri 2 K̄i+1 for all

i = 1, . . . , m� 1. Then from Proposition 4.3.1 we have that, since {s1, . . . , sm} are

Q-orthonormal:

rm = b�Axm

= b�Axm�1 + Qsms>mrm�1

= rm�1| {z }
2K̄m

+ Qsm|{z}
2K̄m+1

s>mrm�1

so that rm 2 K̄m+1 as required.

Proof of Proposition 4.3.3. For m = 1, the first search direction is given by

s1 =
r0

kr0kQ

so that clearly span({s1}) = K̄1. Now for the inductive step, assume that

span({s1, . . . , sm�1}) = K̄m�1.

From Proposition 4.3.2 we have that

s̃m = rm�1| {z }
2K̄m

�(r>m�1Qsm�1) sm�1| {z }
2K̄m�1

where sm�1 2 K̄m�1 by the inductive assumption, and rm�1 2 K̄m from Lemma C.2.1,

noting that the assumptions of that Lemma are satisfied by the inductive assumption

and Proposition 4.3.2. Thus, s̃m 2 K̄m, as required, and so to must sm 2 K̄m.

C.3 Proof of Proposition 4.3.5

Throughout, let Q = A⌃0A
>.
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Proof of Proposition 4.3.5. We begin by introducing the operator norm induced by

the energy norm k ·kA, which is a norm on matrices M 2 Rd⇥d

kMkop

A
= sup{kMvkA : kvkA = 1}.

From Proposition 4.3.3, it follows that

xm 2 x0 + ⌃0A
>
Km(A⌃0A

>
, r0) =: K

⇤

m

Thus, it holds that there exists a polynomial P̃m�1 of degree m� 1 such that

em := xm � x† = x0 � x† + ⌃0A
>
P̃m�1(Q)r0

= e0 + ⌃0A
>
P̃m�1(Q)Ae0

= Pm(⌃0A
>
A)e0

where Pm is some polynomial of degree m. From Corollary 4.3.4 we have that

Pm 2 Pm is constructed to minimise the error:

kemk⌃�1
0
 kPm(⌃0A

>
A)kop

⌃
�1
0

·ke0k⌃�1
0

= k⌃�
1
2

0
Pm(⌃0A

>
A)⌃

1
2
0
kop

I
·ke0k⌃�1

0

= kPm(⌃
1
2
0
A

>
A⌃

1
2
0
)kop

I
·ke0k⌃�1

0

Now, note that ⌃
1
2
0
A

>
A⌃

1
2
0

is symmetric. Thus, let � be the matrix with the eigen-

values of ⌃
1
2
0
A

>
A⌃

1
2
0

on its diagonal, and let V be the orthonormal matrix whose

columns are its eigenvectors. Thus, we have that

⌃
1
2
0
A

>
A⌃

1
2
0

= V �V
>
.

Furthermore note that ⌃0A
>
A = ⌃

1
2
0
[⌃

1
2
0
A

>
A⌃

1
2
0
]⌃

�
1
2

0
. Hence, ⌃0A

>
A is similar to

⌃
1
2
0
A

>
A⌃

1
2
0
, and so the matrices share the same eigenvalues.

Now, clearly Pm(V �V
>) = V Pm(�)V > since V is orthonormal. Thus

kemkI  kV kop

I
kV >kop

I| {z }
=1

kPm(�)kop

I
·ke0k⌃�1

0

= kPm(�)kop

I
·ke0k⌃�1

0
(C.5)

where kV kop

I
kV >kop

I
= 1 follows since V is unitary and k ·kop

I
coincides with the
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matrix 2-norm, which is unitarily invariant. Let Pm denote the set of all polynomials

P of order m with P (0) = 1. This requirement ensures that if A is singular,

kemk⌃�1
0

= ke0k⌃�1
0

for all m. Let �̄ denote the set of eigenvalues of ⌃
1
2
0
A

>
A⌃

1
2
0
.

Then

kPm(�)kop

I
= min

P2Pm

max
�2�̄

sup
kvk2=1

kP (�)vk
2

= min
P2Pm

max
�2�̄

|P (�)|

 min
P2Pm

max
�2[�min,�max]

|P (�)|. (C.6)

Lemma C.3.1, proven below, establishes that the polynomial minimising this ex-

pression is

P (�) =
Tm

⇣
�max+�min�2�

�max��min

⌘

Tm

⇣
�max+�min
�max��min

⌘

where Tm( · ) is the m
th Chebyshev polynomial of the first kind; see Appendix A.4

for a detailed introduction.

Let  = �max/�min. Now, Tm(z) 2 [�1, 1] for all m and all z 2 [�1, 1]; thus

the numerator takes maximum value 1. Therefore

kPm(�)kop

⌃
�1
0


����Tm

✓
 + 1

� 1

◆����
�1

.

Lastly, note from Eq. (A.2) that:

Tm(z) =
1

2

h⇣
z +

p
z2 � 1

⌘
m

+
⇣
z �

p
z2 � 1

⌘
m
i

so that

kPm(�)kop

2
 2

✓p
 + 1p
� 1

◆m

+

✓p
� 1p
 + 1

◆m��1

 2

✓p
� 1p
 + 1

◆m

.

Inserting this into Eq. (C.5) and noting that since ⌃
1
2
0
A

>
A⌃

1
2
0

has the same eigen-

values as ⌃0A
>
A, it also has the same condition number, completes the proof.
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Lemma C.3.1 (Appendix S3 of Shewchuk [1994]). Eq. (C.6) is minimised by

P (�) =
Tm

⇣
�max+�min�2�

�max��min

⌘

Tm

⇣
�max+�min
�max��min

⌘

where Tm is the m
th Chebyshev polynomial of the first kind.

Proof. For convenience let

�0 :=
�max + �min

�max � �min

.

Note that �0 > 1. Further note that

� 2 [�min, �max] =) �max + �min � 2�

�max � �min

2 [�1, 1].

Now recall the following properties of Chebyshev polynomials (see Mason and Hand-

scomb [2002]):

C1 Tm(z) 2 [�1, 1] for all z 2 [�1, 1].

C2 Tm(1) = 1, and Tm(�1) = (�1)m.

C3 Let Z = {zi}, i = 1, . . . , m denote the ordered zeros of Tm(z). Then, Z ⇢
[�1, 1].

C4 Tm(z) attains the value (�1)m+i in the range [zi, zi+1] for i = 1, . . . , m� 1.

First, note that Tm(�0) > 1; this is because �0 > 1, Tm(1) = 1 from C2, and Tm

attains all its zeros in [�1, 1] from C3; thus Tm is a strictly increasing function in

(1,1). From this it is also clear that P (0) = 1, since Tm(�0) 6= 0. Thus, P (�) 2 Pm

as required. Further, note that

max
�2[�min,�max]

|P (�)| = Tm(�0)
�1

since the denominator is strictly positive from the argument above, while the nu-

merator attains its maximum value 1 in [�1, 1] from C1 and C3.

Proof that P (�) minimizes Eq. (C.6) is by contradiction. Suppose there is a

Q(�) 2 Pm with

max
�2[�min,�max]

|Q(�)| < Tm(�0)
�1

. (C.7)

Now consider the polynomial P (�) � Q(�), which is a polynomial of degree m.

From C1, P (�) 2 [�Tm(�0)�1
, Tm(�0)�1], and P (�) has m zeros in [�min, �max].
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From Eq. (C.7) it is clear that P (�) � Q(�) also has m zeros in [�min, �max], as to

prevent P (�) from crossing zero between its extrema in this range would require

|Q(�)| > Tm(�0)�1 (by C4).

However, since P (0) = Q(0) = 1, P � Q has an additional zero outside

[�min, �max]. Therefore, P �Q is a polynomial of degree m with at least m+1 zeros,

which is a contradiction. Thus P (�) minimises Eq. (C.6).
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Appendix D

Proofs from Chapter 5

D.1 Proof of Proposition 5.3.2

For convenience we introduce the Löwner ordering on positive semidefinite matrices.

For A, B 2 Rd⇥d we say that A � B if B � A is positive semidefinite. A natural

corollary of this is that if A � B then x>
Ax < x>

Bx for all x 2 Rd. Furthermore,

if A � B and each of A, B are nonsingular, then B
�1 � A

�1. For more information,

see Bernstein [2009].

From Dashti and Stuart [2017, Theorem 4.9], it is su�cient to show that the

two potentials �h(y; ✓) and �(y; ✓, u†) are asymptotically identical. Let �coll(✓) =

�(y; ✓,m1( · , ✓)) be the potential when a symmetric collocation forward solver is

used with the same set of design points X
AB. Then, suppressing dependence on ✓

and u
†, the triangle inequality yields:

|�h(✓)� �(✓)|  |�h(✓)� �coll(✓)|| {z }
(1)

+ |�coll(✓)� �(✓)|| {z }
(2)

. (D.1)

Beginning with (2) and letting u(✓) = G(u†( · ; ✓)) and ��1 = G, we have

2(�coll(✓)� �(✓))

= ky �m(✓)k2G � 2�(✓)

 ky � u(✓)k2G + 2ky � u(✓)kGku(✓)�m(✓)kG
+ ku(✓)�m(✓)k2G � 2�(✓)

= 2ky � u(✓)kGku(✓)�m(✓)kG + ku(✓)�m(✓)k2G

where on the final line we have used the fact that �(✓) = 1

2
ky � u(✓)k2

G
. Noting
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that all of the terms on the final line are positive we therefore have

2|�coll(✓)� �(✓)|

 ku(✓)�m(✓)k2G| {z }
(a)

+2 ky � u(✓)kGku(✓)�m(✓)kG| {z }
(b)

.

Now let � = (�min[�])�1 and note that � is the maximal eigenvalue of G.

Thus kxk2
G
 �kxk2

2
. Further, recall that k ·k2 

p
nk ·k1. Applying this first to

(a):

ku(✓)�m(✓)kG 
p

�ku(✓)�m(✓)k2 
p

� nku(✓)�m(✓)k1. (D.2)

Similarly for (b), we can show that:

ky � u(✓)kG 
p

�ky � u(✓)k2

This yields the bound

2|�coll(✓)� �(✓)|  �nku(✓)�m(✓)k21 + 2�
p

nku(✓)�m(✓)k1ky � u(✓)k2
 �nH

2
C̄

2

✓
+ 2�

p
nHC̄✓ky � u(✓)k2

by application of Proposition 5.2.5 and Proposition 5.2.6, and with H = h
��⇢�d/2

and C̄✓ = C
F

✓
ku†( · ; ✓)kk.

Now returning to (1) from Eq. (D.1)

2|�h(✓)� �coll(✓)| =
���ky �m(✓)k2

(⌃(✓)+�)�1 � ky �m(✓)k2G
��� .

By applying the Woodbury identity and letting M(✓) := G(⌃�1(✓) + G)�1
G, note

that

(y �m(✓))>(⌃(✓) + �)�1(y �m(✓))

= (y �m(✓))>G(y �m(✓))� (y �m(✓))>G(⌃(✓)�1 + G)�1
G(y �m(✓))

= ky �m(✓)k2G � ky �m(✓)k2
M(✓)
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Thus, we have

2|�h(✓)� �coll(✓)|

= ky �m(✓)k2
M(✓)

 ky � u(✓)k2
M(✓)| {z }

(c)

+ ku�m(✓)k2
M(✓)| {z }

(d)

+2ky � u(✓)kM(✓)ku�m(✓)kM(✓).

For (c), note that

⌃�1(✓) + G ⌫ ⌃�1(✓)

=) (⌃�1(✓) + G)�1 � ⌃(✓)

=) M(✓) � G⌃(✓)G

so that

ky � u(✓)kM(✓)  ky � u(✓)kG⌃(✓)G

 �

p
trace(⌃(✓))ky � u(✓)k2

where we have used the fact that for any positive-definite A 2 Rd⇥d, A � trace(A)I.

For (d) we have

⌃�1(✓) + G ⌫ G

=) (⌃�1(✓) + G)�1 � G

=) M(✓) � GG
�1

G = G

and so

ku(✓)�m(✓)kM(✓)  ku(✓)�m(✓)kG
 p� nku(✓)�m(✓)k1

from Eq. (D.2). This yields the bound

2|�h(✓)� �coll(✓)|  � trace(⌃(✓))ky � u(✓)k22 + �nku(✓)�m(✓)k21
+ 2�

p
ntrace(⌃(✓))ky � u(✓)k2ku(✓)�m(✓)k1

 �H
2ky � u(✓)k22 + �nH

2
C̄

2

✓
+ 2�

p
nH

2
C̄✓ky � u(✓)k2
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Combining these bounds, we obtain

2|�h(✓)� �(✓)|

 �H

✓
Hky � u(✓)k22 + 2nHC̄

2

✓
+ 2
p

nHC̄✓ky � u(✓)k2

+ 2
p

nC̄✓ky � u(✓)k2
◆

 �H
�
ky � u(✓)k22 + 2nC̄

2

✓
+ 4
p

nC̄✓ky � u(✓)k2
�

for all h su�ciently small and such that h < 1.

Having established this bound, we now turn to verifying that the assumptions

required for Dashti and Stuart [2017, Theorem 4.9] hold. It is required that there

exist functions M1, M2 : R+ ! R+ so that

D1: �(✓) � �M1(k✓k⇥),

D2: �h(✓) � �M1(k✓k⇥),

D3: |�h(✓)� �(✓)| M2(k✓k⇥)'(h),

D4: exp(M1(k✓k⇥)
�
1 + M2(k✓k⇥)2

�
is integrable in ✓ with respect to µ.

where '(h) ! 0 as h ! 0. If (D1-4) hold then it can be concluded that, for h

su�ciently small, dHell(µ
y,h

✓
, µ

y
✓
)  C'(h) for some constant C, as required.

Taking M1(k✓k⇥) = 0 satisfies both (D1) and (D2), as �(✓) � 0 and �h(✓) �
0 for all ✓ 2 ⇥. For (D3) and (D4), take '(h) = h

��⇢�d/2 and let

⌘ = sup{kG(u)k2 : u 2 H
k̂
(D) , kuk

k̂
 1}

Note that ⌘ < 1 since G is a bounded linear operator by assumption. To define

M2(k✓k⇥), first note:

C̄✓ky � u(✓)k2 = C
F

✓
ku†( · ; ✓)k

k̂
ky � u(✓)k2

 C
F

✓
ku†( · ; ✓)k

k̂
(kyk2 + ku(✓)k2)

 C
F

✓
ku†( · ; ✓)k

k̂
(kyk2 + ⌘ku( · ; ✓)k

k̂
)

 (kyk2 + ⌘)C(k✓k⇥)
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where in the last line we have applied Assumption 5.3.1. Further:

ky � u(✓)k22 + 2nC̄
2

✓
= ky � u(✓)k22 + 2n

h
C

F

✓
ku†( · ; ✓)k

k̂

i
2

 kyk22 + ⌘
2ku†( · ; ✓)k2

k̂
+ 2⌘kyk2ku†( · ; ✓)k

k̂
+ 2n

h
C

F

✓
ku†( · ; ✓)k

k̂

i
2

 kyk22 +
⇥
⌘

2 + 2⌘kyk2
⇤
C(k✓k⇥) + 2nC(k✓k⇥)2

having again applied Assumption 5.3.1 in the last line. Lastly, define

M2(k✓k⇥) := 4�
p

nkyk22 + �
⇥
⌘

2 + 4
p

n⌘ + (2⌘ + 1)kyk2
⇤
C(k✓k⇥) + 2�nC(k✓k⇥)2

Then by construction (D3) is satisfied. Furthermore (D4) is satisfied by the inte-

grability assumption in Assumption 5.3.1. This completes the proof.
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Appendix E

Proofs from Chapter 6

E.1 Proof of Theorem 6.2.5

Throughout, let ⌫ = A#µ. Fix f 2 F and y 2 Y. Then we have that:

µ
y
�
(f) =

1

Z
y
�

Z

X

f(u) �
y
�
(u) µ(du)

=
1

Z
y
�

Z

X

Z

Y

f(u) �

✓
kỹ � ykY

�

◆
µ
ỹ(du) ⌫(dỹ)

=
1

Z
y
�

Z

Y

�

✓
kỹ � ykY

�

◆
µ
ỹ(f) ⌫(dỹ)

=

Z

Y

µ
ỹ(f) [A#µ

y
�
](dỹ).

Where the second line follows from application of property (3) in Definition 6.1.1,

the third from an application of Fubini’s theorem (recalling that � is bounded, and

f 2 F so f is also bounded) and the final line is by the definition of µ
y
�
. Thus

|µy
�
(f)� µ

y(f)| =

����
Z

Y

�
µ
ỹ(f)� µ

y(f)
�

[A#µ
y
�
](dỹ)

����


Z

Y

��µỹ(f)� µ
y(f)

�� [A#µ
y
�
](dỹ)

 Cµ

Z

Y

kỹ � ykY [A#µ
y
�
](dỹ) (E.1)
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where the last line follows from application of Assumption 6.2.4. From this it follows

that

dF (µy
�
, µ

y) = sup
f2F

|µy
�
(f)� µ

y(f)|

 Cµ

Z

Y

kỹ � ykY [A#µ
y
�
](dỹ)

Now, consider the function

g
y
�
(u) :=

kA(u)� ykY
�

Let ⌫r = [gy
�
]#⌫. From Assumption 6.2.2, A(X) has a Lipschitz Lebesgue density on

Y. Thus, ⌫r also has a continuous and positive Lebesgue density on [0,1), denoted

pr,�. Thus

⌫r([a, b]) =

Z
b

a

pr,�(r) dr.

Furthermore by the definition of the pushforward measure, ⌫r(B) = ⌫([gy
�
]�1(B))

for each B in the �-algebra associated with ⌫r (note that this is given by the image

of the �-algebra BX under g
y
�
�A). Thus

⌫r([a, b]) =

Z
b

a

Z

S�r(y)

pA(y0) dy0 dr

=) pr,�(r) =

Z

S�r(y)

pA(y0) dy0

where Sr(y) denotes the surface of a sphere of radius r centered at y. Since pA is

positive and Lipschitz we then have

pr,�(r) =

Z

S�r(y)

|pA(y) + pA(y0)� pA(y)| dy0


Z

S�r(y)

�
|pA(y)| + |pA(y0)� pA(y)|

�
dy0


Z

S�r(y)

�
pA(y) + LAky � y0kY

�
dy0

= (pA(y) + LA�r) SR(�r)
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where SR(r) is the surface area of a k ·kY -sphere of radius r. Recall that we have

SR(r) = r
n�1SR(1). We can similarly elicit a lower bound:

pr,�(r) =

Z

S�r(y)

|pA(y) + pA(y0)� pA(y)| dy0

�
Z

S�r(y)

��pA(y)� |pA(y0)� pA(y)|
�� dy0

where the second line is from the reverse triangle inequality. Now note that using

the fact that pA is Lipschitz, we have that whenever y0 2 S�r(y):

|pA(y0)� pA(y)|  LAky � y0kY = LA�r

where the second equality follows from the fact that y0 lies on the sphere S�r(y)

so its distance from y is known. Now, let M(P ) = inf{pA(y)

LA
: kykY < P} and

note that M(P ) > 0 from Assumption 6.2.2, since pA(y) > 0 by assumption for all

y 2 Y. Then we have that whenever r < M(P )/�

pr,�(r) �
Z

S�r(y)

(pA(y)� LA�r) dr

= (pA(y)� LA(�r))SR(�r).

We then proceed to elicit a bound on Eq. (E.1):

Z

Y

kỹ � ykYA#µ
a

�
(dỹ) =

R
Y
kỹ � ykY�

⇣
kỹ�ykY

�

⌘
⌫(dỹ)

R
Y

�

⇣
kỹ�ykY

�

⌘
⌫(dỹ)

Letting r = 1

�
kỹ � ykY :

Z

Y

kỹ � ykYA#µ
a

�
(dỹ)

=

R
1

0
�r�(r)pr,�(r) drR

1

0
�(r)pr,�(r) dr


R
1

0
�r�(r)SR(�r)(pA(y) + LA�r)dr

R
M(P )/�

0
�(r)(pA(y)� LA(�r))SR(�r) dr +

R
1

M(P )/�
�(r)pr,�(r) dr

Now, since both � and pr,� are strictly positive, the denominator can be lower-
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bounded by
R

M(P )/�

0
�(r)pr,�(r) dr. We obtain:

Z

Y

kỹ � ykYA#µ
a

�
(dỹ) 

R
1

0
�r�(r)SR(�r)(pA(y) + LA�r)dr

R
M(P )/�

0
�(r)pr,�(r) dr


�SR(�)

R
1

0
r
n
�(r)(pA(y) + LA�r) dr

SR(�)
R

M(P )/�

0
rn�1�(r)(pA(y)� LA�r) dr

= �

R
1

0
r
n
�(r)(pA(y) + LA�r) dr

R
M(P )/�

0
rn�1�(r)(pA(y)� LA�r) dr

. (E.2)

Now note that in the limit as � ! 0, we have that

Z
1

0

r
n
�(r)(pA(y) + LA�r) dr ! pA(y)

Z
1

0

r
n
�(r)dr = pA(y)Cn

�

Z
M(P )/�

0

r
n�1

�(r)(pA(y)� LA�r) dr ! pA(y)

Z
1

0

r
n�1

�(r)dr = pA(y)Cn�1

�

from Assumption 6.2.3. Thus the ratio in Eq. (E.2) is such that

R
1

0
r
n
�(r)(pA(y) + LA�r) dr

R
M(P )/�

0
rn�1�(r)(pA(y)� LA�r) dr

��!
�#0

C
n

�

C
n�1

�

.

Thus, for � su�ciently small, (E.2) can be bounded above by �(✏+C̄
n

�
) where

C̄
n

�
:= C

n

�
/C

n�1

�
and ✏ is an arbitrary positive constant. Arbitrarily taking ✏ = 1

establishes that

|µa

�
(f)� µ

a(f)|  Cµ(1 + C̄
n

�
) �

for � su�ciently small, completing the proof.
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