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Abstract—Autonomous systems increasingly rely on on-board
computation to avoid the latency overheads of offloading to
more powerful remote computing. This requires the integration
of hardware accelerators to handle the complex computations
demanded by date-intensive sensors. FPGAs offer hardware
acceleration with ample flexibility and interfacing capabilities
when paired with general purpose processors, with the ability to
reconfigure at runtime using partial reconfiguration. Managing
dynamic hardware is complex and has been left to designers
to address in an ad-hoc manner without first-class integration
in autonomous software frameworks. This paper presents an
abstracted runtime for managing adaptation of FPGA accelera-
tors, including partial reconfiguration and parametric changes,
that presents as a typical interface used in autonomous software
systems. We present a demonstration using the Robot Operating
System (ROS), showing negligible latency overhead as a result
of the abstraction.

I. INTRODUCTION

Autonomous adaptive systems modify their behaviour un-
der unknown scenarios by monitoring and processing exter-
nal stimuli and applying decision logic to determine their
response. Systems such as unmanned aerial vehicles [1],
communication systems [2] and self-driving vehicles [3],
[4] must rapidly adapt to external events using information
gathered from high data rate sensors. Such sensors typically
require post-processing for the large volumes of streamed
data generated as the external stimuli is monitored, such as
with LiDAR [5]. This can be problematic when implemented
on traditional general purpose processor based systems that
share computing resources between processing sensor data and
cognitive decision functions. Many data-intensive sensors de-
mand complex signal processing that is amenable to hardware
acceleration through parallelisation, and in some cases such
computation may be offloaded to custom application specific
integrated circuits (ASICs) for this purpose. However, as hard-
ware becomes more complex due to higher data rates and a
wider variety of sensors, and as machine learning applications
emerge [6], fixed ASIC accelerators become problematic due
to their lack of flexibility.

Field Programmable Gate Arrays (FPGAs) offer applica-
tion specific hardware acceleration while maintaining com-
putational flexibility through reconfiguration. They have seen
widespread use in the acceleration of image processing [7],
wireless communications [8], and machine learning [9], with
significant performance and energy benefits against CPU and
GPU implementations [10].

While accelerating low level processing of sensor data is
beneficial, the cognitive decision logic in adaptive systems
typically involves complex high level algorithms that interact
with scheduled event based operations. This type of computa-
tion is more appropriately suited for software implementation
on general purpose processors, typically implemented on top
of an operating system (OS) to offer wider flexibility and
programmability. Hence, it is challenging to manage the low
level software to hardware interface in hybrid adaptive systems
with an abstraction that can cross the boundary between cogni-
tive algorithms and data processing accelerators. Applications
such as flight controllers for autonomous drones require time
sensitive communication between a low latency processing
system to control actuators but may rely on an operating
system such as Linux for course navigation, networking, and
decision making [11]. While extensive contributions have been
made in autonomous software frameworks for CPSs [12],
limited research has considered their coupling with hardware
acceleration.

In this paper, we consider hybrid FPGA systems-on-chip
(SoCs) that tightly couple programmable logic (PL) with a
general purpose processing system (PS), such as the Xilinx
Zynq and Zynq Ultrascale+ SoC families, as platforms for
implementing such hybrid autonomous systems. Our contri-
butions in this paper are as follows:

• An abstracted Linux configuration manager, built on
an adaptive systems model to automate reconfigurable
hardware management and allow control from a high
level programming interface.

• An extension to custom partial reconfiguration (PR) de-
sign tools to generate PR bitstreams, software drivers and
abstract symbols based on configuration specifications.

II. BACKGROUND AND RELATED WORK

CPSs have gained much interest in literature over the years,
with various definitions of hierarchy and structure; we begin
by defining relevant concepts and terminology.

A. Adaptive System Concepts

A fundamental model of autonomous adaptive systems
defines the software operation in a closed loop of 3 tasks;
Observation, Decision, and Action [13]. Observation is defined
as the (post) processing of sensor data, such as feature extrac-
tion from an image processing event and can be considered
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as the extraction of key data points produced from sensors.
The decision task uses these data points to generate a next
action, which is typically determined by a high level decision
algorithm. This task is the main cognitive element of the
loop, where data evaluated in the observation task is used,
along with historical data, to form learned behaviours and
generate informed decisions. Finally, the action task propa-
gates the system changes, determined in the decision task,
such as adjusting internal memory registers, changing sensor
settings or triggering actuators. This could also be instructing
a hardware configuration manager of a desired configuration
or triggering an actuator/sensor change, as shown in Fig. 1.
The model in [14] extends this concept further into the
Observe-Normalise-Compare-Learn/Reason-Decide-Act loop,
where the additional tasks take a more deliberate approach to
constructive feedback, aiming to build a sustained model for
the adaptation processes. The process of adapting hardware
should be managed independently from hardware acceleration
to limit performance impact on high speed, real-time sensor-
actuator processing [15].
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Fig. 1. Visualisation of Hardware Abstraction and Definition.

In [12], the authors survey a number of CPS frameworks
proposed in the literature. Many of these refer to collections
of heterogeneous objects distributed across a network [16],
which provides a useful model for conceptualising how such
nodes interact. Frameworks such as ROS [17] build upon these
concepts to provide a structured communication layer that
supports heterogeneous clusters. We take inspiration from the
ROS operating model for our configuration manager.

B. Configuration Terminology

We define terminology in the context of a tightly coupled
software/hardware CPS. Individual hardware components can
exist in a set of possible states, each of which might adjust
some internal hardware registers (a parametric change), or
force a hardware reconfiguration with a new circuit (a struc-
tural change). Combined together, multiple components form
a valid mode of the system that can be set by the cognitive
decision logic. In this way, it is shielded from managing the
low-level states of individual components. In some cases, the
fundamental hardware structure may change through modifi-
cation of access to specific sensors or actuators (such as a
radio switching from sensing to communication modes). We

refer to these as distinct hardware configurations, potentially
requiring a different set of data interfaces between software
and hardware. During runtime operation, the decision logic
communicates configuration changes to the hardware through
a configuration manager (CM) which abstracts the underlying
changes to hardware required for the desired configuration and
mode. The CM is responsible for abstracting the software to
hardware interface with an application programming interface
(API).

C. FPGA Acceleration of Adaptive Systems

Formal adaptive system frameworks are defined in the
literature [18] but commonly consider software-only CPSs
that lack directly coupled hardware acceleration. Typically,
CPSs that utilise hardware offload are tightly integrated be-
tween low-level software and hardware control so the design
complexity and requirement for extensive FPGA knowledge
limits wide spread adoption [15]. This presents significant
design challenges for autonomous systems that wish to exploit
the capabilities of reconfigurable hardware within a software
programmable framework, such as partial reconfiguration in
FPGAs. PR is accomplished by defining a static region of
functionality, fixed at runtime, and one or more partially
reconfigurable regions (PRRs) that can host different hard-
ware modules, interchangeable at runtime. The static region
typically contains fixed components such as reconfiguration
controllers as well as infrastructure like the processing subsys-
tems and DMA controllers. The PRRs can be loaded at runtime
with modules that have been compiled into PR bitstreams to
define an instance of hardware logic for that specific PRR.
Current research in this area has focused on improving vendor
tooling [19] and increasing performance [20], rather than
control abstractions. Work such as [21] attempts to virtualise
access to PR through the use of shells in the static region
that standardise hardware interfaces, providing a more generic
means of utilising hardware. Virtualisation helps to reduce
the complexity of hardware but it also forces PR designs
to conform to fixed configurations, which define software to
hardware interfaces and are decided on by the shell provider.
This suits general accelerator platforms but not sensor-rich
autonomous systems with complex peripheral interfaces.

The current vendor PR design flow is plagued with the need
for prerequisite FPGA knowledge and understanding of the
convoluted build process. We consider the Xilinx toolchain
for reference, however the experience is similar across other
toolchains such as Intel Quartus. To begin a PR design, the
designer must decide on the number and location PRRs within
the PL. This should be done considering a number of factors;
a single PRR could be used for simplicity or multiple PRRs to
allow for each module to be exchanged independently and thus
reducing the number of required reconfiguration events. Using
multiple PRRs forces each region to be sized according the
requirements of individual hardware modules, while a single
PRR can be sized to the largest union of supported modules.
Reconfiguration latency is dependent on PR bitstream size,
which itself is dependent on PRR area. Grouping multiple
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modules into a PRR means it must be reconfigured multiple
times per module. Vendor tools restrict PR module generation
to a specific static region, as netlists and physical interfaces
must align, meaning PRRs should be generated with the
original static regions, including new bitstreams generated
after the initial build of a platform, limiting flexibility.
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Fig. 2. An outline of the Xilinx PR build flow, from generating hardware
within Vivado, to exporting hardware data into PetaLinux

This development process requires complex sequential steps
in order to generate hardware, before even exporting into
the Xilinx’s Linux build process, PetaLinux. The hardware
definition files (HDFs) generated from the Vivado toolflow,
outlined in Fig. 2, are required for PetaLinux to compile
a Linux image. PetaLinux is used to build the device tree
(DT) and kernel drivers required to communicate with the PL
from Linux. The setup process for a standard flow involves
importing the HDF and bitstreams then manually configuring
kernel parameters, enabling device drivers and potentially
injecting custom drivers and/or applications into the build.
While PetaLinux offers a build system for some automation,
this does not generate from PR logic and is unable to determine
drivers for PR.

Xilinx attempts to abstract the PS to PL interfaces with
their Linux distribution, PYNQ [22]. PYNQ is a Python
abstraction for controlling the PL from the PS and supports PR
as well as isolating the kernel recompilation requirements for
loading new bitstreams. While PYNQ does abstract hardware
interaction, it relies on the standard vendor build flow and
binds the user to a Python framework, adding additional
layers of software to their application, making it unsuitable
for low-latency systems. Additionally, there is no concept of
configurations or modes and the user is left to manage this
manually.

Abstraction frameworks such as [23] use loadable kernel
modules wrapped within a high level threaded API to load/un-
load hardware accelerators at runtime. While this abstraction
is suitable for wrapping low level interfacing, it still requires
the user to have extensive knowledge of the hardware and
how to control/manage it. Furthermore, this framework does
not implement any build time abstractions for hardware; it is
bespoke and is implemented directly on an FPGA using a soft-
processor as opposed to a hard processor, as used on the Xilinx

Zynq. ReconOS [24] is a build and runtime framework that
takes custom hardware and software libraries and generates a
reconfigurable OS centred around a POSIX API for thread-
based acceleration control. Their framework demonstrates a
tight interface between hardware and software but provides
limited abstraction for state or configuration control of the
system. Given that PR modules must be compiled with their
libraries and drivers, this creates a distinct architecture and set
of interfaces that users must adhere to. CoPR [25] provides a
number of the missing elements to reduce the complexity, such
as generating PRRs based upon input configurations specified
by the designer. However it does not support configurations
under a full operating system and lacks support for Linux and
the Zynq Ultrascale+ architecture. More recently, FOS [19]
decouples the build stages so that they can be generated
independently. This reduces design complexity, however, it
does not automatically generate runtime configurations from
the underlying hardware or abstract control for data streaming
into/out of hardware.

III. ARCHITECTURE

We have designed a Linux configuration management run-
time that offers a software abstraction for managing pro-
grammable logic configurations, by masking the complexities
of structural reconfiguration (such as PR), parametric changes
and hardware addressing. This runtime provides a generic API,
over a network capable protocol, for software frameworks to
interact with hardware acceleration available to the processing
system.

A. Adaptive Hardware Design Tooling

We use a collection of existing build tools [26], which
extend the vendor PR build flow with the inclusion of user
defined build schemas, representing the user’s desired PR
modules and arrangements. The build schema is a config
file that defines which hardware description language (HDL)
source files, such as Verilog or Xilinx IP cores, should be
used to generate PR modules as well as any custom logic that
defines the static region. This file constrains the combinations
of valid modules to modes that can be loaded, to constrain
implemented combinations. Based upon this build schema, the
tool is able to extract known interfaces (typically AXI(s) as
well as additional user defined protocols) from the PPRs to
generate infrastructure for communication between partial and
static regions. It then produces the bitstreams for the PRRs,
which are synthesised and implemented using the vendor tools.
These bitstreams are then exported to a Linux build flow,
where the design framework uses associated HDFs and meta-
data, to create the kernel configs, PR specific DT overlays and
injects any custom drivers required to support PR hardware
into the kernel. We use outputs produced by the build tools
to generate higher level abstraction schemas that are used
to load the state of hardware and software according to the
configurations applied.

3



B. Runtime Configuration Schemas
In order for the CM to infer the structure of hardware in

the PR at a given configuration, it uses a runtime schema
generated upon completion of the Vivado and PetaLinux
builds. We generate a template config schema for each possible
configuration of PRRs (constrained prior to building), prompt
the user for changes and make this read/writeable to the
Linux userspace. It includes the modules provisioned in the
PPRs, register addresses (and default values) to be set under
Linux’s memory mapped I/O (MMIO) interface and any device
tree overlays (DTO), which also contain drivers for described
hardware. Full configuration change of hardware may also be
specified through the schema, allowing for new static regions
and thus more PR modes, although compatible DTOs will need
to be generated and managed out-of-tree.

Listing 1 shows an example output file from the build tool
with two template modes for the camera, default and edge
detection. We chose the YAML format as the user is expected
to modify these files to define their desired modes, thus
requiring the files to be human readable as well as consumable
by the CM. For example, upon loading the edge mode, the
CM understands that this means loading the partial bitstream
edge.bit, adjusting the memory map to cover the edge register
and leaving the DT overlay unchanged from the default mode.
1 config:
2 - name: camera
3 - modules: [default,edge,colorise]
4 - type: partial
5 - modes:
6 edge_detection:
7 - modules: [edge]
8 - mmio:
9 - base_address: 0x2000

10 - registers:
11 - focus:
12 - offset: 0x1010
13 - default: 0x01
14 - overlay:
15 - camera
16 default:
17 - modules: [default]
18 - overlay:
19 - camera

Listing 1. Configuration Specified in YAML, produced by the build tool

Additional schemas can be added to the tool post-build,
given they are compatible with PRR interfaces and generated
from the matching static region.

C. Configuration Manager
The CM is designed to be available within the Linux

userspace, regardless of the programming interface/framework
attempting to consume/control it. We use ZeroMQ [27], a
lightweight asynchronous messaging library, used for both
internal and external networking. Alternatives communication
libraries such as OpenDDS [28] could be substituted for
ZeroMQ, which we select for its lighter-weight implementa-
tion, support for multiple transport methods and programming
languages as well as lower latency.

We use shared memory via Linux’s inter-process commu-
nication (IPC) transport for low latency, however the CM can

also use external IP transport methods, such as TCP. ZeroMQ
is a publisher/subscriber (pubsub) protocol in which processes
that publish/subscribe to data are known as nodes and share
data over subscribable topics. The protocol is important as
it decouples data producing nodes from nodes that process
data, enabling multiple nodes within the system to subscribe
to CM changes and thus monitor the state of the hardware.
This allows other processes running inside of the PS, such as
system health checks or networking interfaces to also be aware
of hardware changes. ZeroMQ is message protocol agnostic,
allowing us to use protobufs [29] as our messaging protocol
and as raw binary for directly streaming data into and out
of hardware. Protobufs are a serializing method for structured
statically typed data, used to define the API interface.

We use userspace-to-kernel drivers to provide application
access to hardware memory buffers. The runtime is hosted
in the userspace to allow for greater flexibility of libraries
and reduce security risks of asking user code to interface
directly with hardware. To communicate using MMIO, we
use the Userspace IO (UIO) kernel module, which allows
for the mapping of configuration memory addresses and
interrupts within the PL up to the PS. For streaming data
between hardware, we use a zero-copy kernel driver and
userspace wrapper for the Xilinx AXI DMA interface [30]
(AXIDMA). This driver supports both DMA and VDMA as
well as allocation of contiguous buffers through the Linux
kernel’s contiguous memory allocator (CMA), which allows
for streaming data between userspace and hardware. While
the build tool does allow for custom drivers to be used, our
CM API wraps UIO and AXIDMA modules for controlling
hardware as they sufficiently provide read/write to AXI and
AXI Stream interfaces from the ZeroMQ interface.

To manage structural reconfiguration we use a custom PR
manager [26] that allows for provisioning via the high speed
internal configuration access port (ICAP) reconfiguration inter-
face using DMA, on both Zynq and Zynq Ultrascale+ devices.
This manager supports asynchronous provisioning, meaning
the PS is not blocked from processing during PR.

D. Configuration API

We expose an API on a selection of topics, available over
ZeroMQ. A sample list of topics used in the framework is
shown below, along with a psuedo code example in Listing 2.

• cm_status – publishes the state of the PL as a struct
containing values such as string:config_name, bool:

fpga_busy and enum:pr_mode.
• cm_(read/write)_config – publish/subscribe to the con-

fig that is currently loaded. This topic can also receive a
config file and provision it to hardware.

• cm_(read/write)_reg – allows reading/writing to MMIO
as defined by names in the config file for PR.

• cm_data_config – allows configuration of the AXI, AXI
Lite, and AXI stream channels of the PS-PL interface.

• cm_(read/write)_data – allows reading/writing to DMA
buffer for reading/writing to hardware over DMA.
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1 def act(dec_result):
2 if dec_result == "default":
3 pass
4 elif dec_result == "edge_detect":
5 # Swap to edge detection mode
6 zeromq_publish("cm_config", "edge")
7 elif dec_result == "default_zoom":
8 # Request a register write to zoom camera
9 zeromq_publish("cm_write_reg", "{’focus’:0

x2}")
10 # Continuously read from cm_data_read topic
11 obs_buffer = zeromq_subscribe("cm_data_read")
12 while True:
13 # Request from observation thread
14 dec_buffer = obs(obs_buffer)
15 # Request from decision thread
16 dec_result = dec(dec_buffer)
17 # Request to action thread
18 act(dec_result)

Listing 2. Pseudo example of congitive engine controlling the CM

IV. DEMONSTRATION

We provide a demonstration of our CM by implementing it
alongside the ROS2 framework to highlight the minimal effect
on latency and performance introduced with our abstraction.

A. Robot Operating System

ROS, designed by Willow Garage and maintained by the
Open Source Robotics Foundation, is a communication frame-
work designed to streamline networking across robotics plat-
forms using standardized schemas and messaging interfaces.
This later became ROS2 [31], which introduced the Data
Distribution Service (DDS) and added features such as quality
of service, security improvements, flexibility, and robustness.
In ROS2, networking is built on top the pubsub model akin
to ZeroMQ, as used in our CM.
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Fig. 3. Architecture of the ROS2 wrapper using our CM and ZeroMQ.

A ROS2 message is composed of predefined data structures
and is used to standardise the production/consumption of data.
For example, a publishing node in an autonomous vehicle,
such as a controller for LiDAR, could publish an image
payload to a camera_data topic. This would then alert n
subscribers listening to the topic that a payload was available
for consumption. In a CPS example, subscriber nodes could
be additional image processing tasks, data observation events,
network events to push the images back to a data centre, etc.
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B. Experiment

We use a ZeroMQ-ROS2 wrapper which maps our CM’s
ZeroMQ endpoints to a ROS2 node, seen in Fig 3. This makes
the ROS2 node into a wrapper for the CM’s ZeroMQ pub-
lishing/subscribing topics. We use the userspace abstractions
provided by our CM to expose the PL to the ROS2 node.

We perform an experiment to quantify the overhead of
moving data between an ROS2 node and a hardware accel-
erator. This demonstrates streaming image/video data to/from
hardware to a simple software cognitive engine in a CPS. We
focus on two main overheads; at the ZeroMQ interface and
moving data between the PS and the PL. We benchmark a PS-
PL-PS DMA transaction to quantify the transfer performance
between the CM and PL as well as effects of ZeroMQ on
latency and throughput for general communication. Data is
transferred round trip from the PS to a PL DMA controller
clocked at 100 MHz under Ubuntu 18.04. This is isolated
from the ZeroMQ interface and the time taken to perform the
DMA transactions over 1000 intervals was measured using 3
different size images (7.91, 3.96 and 1.98 MiB). Consider-
ing the 3.96 MiB image, we measured a max. approximate
throughput of 380.04 MiB/s (per direction), which was a total
of 10.43s for 1000 transfers and 10.43ms per image; 95% of
the theoretical max. throughput of this PS-PL interface [32].
We compare this to the PYNQ framework, where we saw the
same image transferred in an average of 10.61ms, highlighting
how our abstraction performed better by a fixed margin against
the overhead seen in a comparable abstraction framework. CM
PR time can be drawn from benchmarks in [26], where the
maximum configuration throughput is 398.6 MB/s with an
average trigger latency of 7µs.

We then tested the ZeroMQ layer under the same experiment
using IPC, to simulate data moving between the CM memory
buffers and the ROS node. We measured the latency and
throughput across 1000 trips with the 3.96 MiB image. We
saw an average of 5.36 ms latency and approximate throughput
of 1939.5 MiB/s, indicating it does not provide a bottleneck.
We also compared differing payloads using ZeroMQ IPC
and TCP mode to represent local API calls, as seen in
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Fig. 5. We evaluate these results against a comprehensive
benchmark of ROS2 overheads, performed on a desktop class
machine [33]. They demonstrate the transmission of a 2 MB
ROS2 payload, using the OpenSplice DDS, which shows
approximately 2 ms of latency; within 1.2 ms of our results
for an equivalent payload. We conclude that compared to
the latency experienced under ROS2 networking, the CM
overheads for both data transmission and reconfiguration are
insignificant, considering the added abstraction benefits. Given
the factors that can influence latency such as Linux scheduler,
networking, payload size, etc., it is likely that we could see
further reductions, such as with the use of component latency
reduction techniques presented in [34].

V. CONCLUSION

We have demonstrated an abstracted configuration manager
for managing hardware acceleration within an autonomous
adaptive system implemented on an FPGA SoC. We show
that high level software automation frameworks can offload
complex hardware processing of sensor data and actuator
logic, without requiring custom low level integrations with the
kernel. We showed how our CM can be used with frameworks
such as ROS2, where the hardware can be abstracted into
a networked node. Additionally we expanded existing build
flows to take user configurations, extend them with imple-
mentation details from the build process and pass them to the
CM, for seamless integration under Linux. As future work, we
intend to release this work as part of an open source framework
for adaptive systems and evaluate networking the CM across
multiple platforms.
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